CN112994542A - 基于换相点换相的无刷直流电机无感控制方法 - Google Patents

基于换相点换相的无刷直流电机无感控制方法 Download PDF

Info

Publication number
CN112994542A
CN112994542A CN202110477563.XA CN202110477563A CN112994542A CN 112994542 A CN112994542 A CN 112994542A CN 202110477563 A CN202110477563 A CN 202110477563A CN 112994542 A CN112994542 A CN 112994542A
Authority
CN
China
Prior art keywords
motor
phase
voltage
electromotive force
direct current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110477563.XA
Other languages
English (en)
Other versions
CN112994542B (zh
Inventor
徐海霞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Changzhou Vocational Institute of Light Industry
Original Assignee
Changzhou Vocational Institute of Light Industry
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Changzhou Vocational Institute of Light Industry filed Critical Changzhou Vocational Institute of Light Industry
Priority to CN202110477563.XA priority Critical patent/CN112994542B/zh
Publication of CN112994542A publication Critical patent/CN112994542A/zh
Application granted granted Critical
Publication of CN112994542B publication Critical patent/CN112994542B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/14Electronic commutators
    • H02P6/16Circuit arrangements for detecting position
    • H02P6/18Circuit arrangements for detecting position without separate position detecting elements
    • H02P6/182Circuit arrangements for detecting position without separate position detecting elements using back-emf in windings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility

Abstract

本发明提出了一种基于换相点换相的无刷直流电机无感控制方法,其通过引入一种新型的电机相电压检测电路,将方波无传感器控制算法实现的外部电路进行了简化,进一步降低了方波无传感器控制算法的实现成本;同时根据反电势为正弦波无刷直流电机的反电势特性,分析了在方波控制算法的换相位置点电机的反电势存在的规律,利用这个规律结合无刷直流电机反电势与转速的关系精确获得电机的换相位置,从而规避了传统过零点算法中的延时估算的过程,并提出了查询、对比的新方法,使实现过程更为简单,且在动态响应上具有很大优势。

Description

基于换相点换相的无刷直流电机无感控制方法
技术领域
本发明属于电机控制技术领域,具体涉及一种有别与过零点检测而直接锁定换相点的无刷直流电机无位置传感器的换相方法。
背景技术
无刷直流电机已经在人们的日常生活中得到了广泛的应用,众多的家用电器甚至电动交通工具中都存在着无刷直流电机的身影。目前,绝大多数无刷直流电机均带有位置传感器来向电机控制器提供电机转子的位置信号,常用的电机转子位置传感器有,霍尔传感器、正余弦编码器和磁感应编码器等。在低成本或者位置精度要求不高的应用中,霍尔传感器是经常采用的形式。而这些传感器的存在增加了无刷直流电机的制造成本,并且传感器的损坏风险也会降低电机的可靠性,同样的,位置传感器的安装精度对电机的生产工艺也提出了较高的要求。因此,无刷直流电机的无位置传感器控制技术早已得到了国内外广大学者的重视和研究。
目前,在无刷直流电机无位置传感器的方波控制算法中,基于反电势过零点检测的转子位置估算方法及其衍生的其他方法是被研究的最为透彻,并且应用最为广泛的无传感器控制方法,其他算法如定子电感法、速度无关位置函数法等虽在理论上得到了很好的验证,但在实际应用过程中存在着种种原因而实现困难。但反电势过零点毕竟不是电机的真实换相位置,在其过零点后的时间推算存在一定的不确定性,所以在电机负载发生快速较大变化的时易于出现失步的现象。
同时基本的无刷直流电机无传感器算法的检测电路需三个ADC端口分别检测电机的三相电压,在其他变体算法的实现过程中会引入更多的资源需求。在许多成本敏感度较高的应用场合更不适用。
发明内容
本发明的目的在于克服上述缺陷,提供一种基于换相点换相的无刷直流电机无感控制方法,其根据正弦波无刷直流电机的反电势特性,分析了在方波控制算法的换相位置点电机的反电势存在的规律,利用这个规律结合无刷直流电机反电势与转速的关系精确获得电机的换相位置,从而规避了传统过零点算法中的延时估算的过程,并实现过程更为简单。
本发明实现上述目的的技术方案为:
一种基于换相点换相的无刷直流电机无感控制方法,包括如下步骤:
1)构建无传感器的无刷直流电机反电势检测电路;
2)根据方波控制电机驱动桥臂导通与电机反电势形成的关系,得出:当电机发生换相时其悬空相的反电势为其幅值的一半;根据无刷直流电机的反电势幅值与其转速成正比例关系Ep=Ke×ω,将电子频率转换为电子周期,并将周期分为6个等分扇区,得出
Figure BDA0003047368870000021
Figure BDA0003047368870000022
其中:Ep为电机反电势的幅值,Ke为反电势常数,ω为电机转动电子频率,Es为换相点悬空相的反电势估算电压,Te为电机转动中每个驱动扇区的时间;
3)、根据转速与反电势估算电压建立换相点电压数据库,并形成
Figure BDA0003047368870000031
的数组计算和提取方式;其中,Te=n*ΔT,ΔT为芯片中定时中断采样的周期值,n为数组元素序列号同时也是换相后该定时中断发生的次数;
4)、当起始或产生定时中断时,n=0,控制器驱动桥臂输出电压驱动电机;
5)、根据中断执行n+1,通过中断反电势检测电路获取采样电压并得出悬空相电压值Ex;
6)、对应n×ΔT的发生时间查询估算电压数据库,若悬空相电压处于上升期,当Ex>Es(n)时,跳转步骤7,否则跳转步骤5;若悬空相电压处于下降期,当Ex<-Es(n)时,跳转步骤7,否则跳转步骤5;
7)、执行电机换相,更新驱动桥臂状态,n=0,跳转步骤4。
为了配合上述控制方法,本发明引入了一种新型的电机相电压检测电路,将方波无传感器控制算法实现的外部电路进行了简化,进一步降低了方波无传感器控制算法的实现成本,且实现简单、并在动态响应上具有很大优势。
具体构的反电势检测电路如下:
以电阻网络即电阻R1,R2和R3在电机的外部重构电机的中心点,且R1=R2=R3=R;利用R4和R5两个电阻将上述中心点的电压分压并形成检测端口采样所需的检测电压。
根据上述检测电路,悬空相电压值Ec的计算过程如下:
采用开通一相上三极管和另外一相的下三极管的方式驱动无刷直流电机转动,将上述反电势检测电路简化为驱动状态下的检测电路:
假设电机三相绕组相互对称,根据电机固有特性
Figure BDA0003047368870000041
根据电路原理推导出悬空相的反电势
Figure BDA0003047368870000042
Figure BDA0003047368870000043
其中,Vbus为电池电压,Uo为检测电压,Ia、Ib、Ic分别为电机A相绕组、电机B相绕组和电机C相绕组中的电流,Ra、Rb、Rc分别为电机A相绕组、电机B相绕组和电机C相绕组中的电阻;La、Lb、Lc分别为电机A相绕组、电机B相绕组和电机C相绕组中的电感;Ea、Eb、Ec分别为电机A相绕组、电机B相绕组和电机C相绕组中的反电势。
本发明的优点在于:
a.本发明所提方法在动态响应性能上有较大优势,且实现简单,在电机各个转速区间均具有良好的换相效果。
b.相对比其他的方波无传感器控制算法,本发明的控制方法由于其实现简单,成本要求较低的优势更适于在工业生产中得到应用和推广。
附图说明
图1为本发明涉及的基于电机中心点的反电势检测电路;
图2为本实施例中驱动状态下的简化检测电路;
图3为方波驱动电机桥臂导通与电机反电势的关系图;
图4为仿真实验时电机相电压变化趋势图;
图5电机换相算法的仿真对比图;
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。
实施例:如图1所示:其为本实施例涉及的反电势检测电路,首先利用R1,R2和R3三个电阻、6个三极管在电机的外部重构了电机的中心点,且有R1=R2=R3。再利用R4和R5两个电阻将该中心点的电压分压获得适于MCU采样的电压。
根据传统方波控制算法中,采用开通一相上管和另外一相的下管的方式驱动无刷直流电机转动,如图2所示:本实施例分析在A相上管导通和B相下管导通时的情况下悬空相的反电势的推导。在该状态下图1电路可简化为图2所示;在该电路中,Uo即为被检测电压。这里假设,电池两端电压为Vbus,电机三相绕组的反电势为Ea,Eb,和Ec,三相定子绕组的阻值分别为Ra,Rb和Rc,三相电子绕组的电感量为La,Lb和Lc。
根据图2所示,在不考虑电机定子绕组之间互感的情况下我们可以得到以下等式:
Figure BDA0003047368870000051
其中,Vo为电机真实中心点电压,Vbus为系统供电电压即电池电压,Ia为电机A相绕组中的电流,Ra为电机A相绕组的电阻,La为电机A相绕组的电感,Ea为电机A相绕组的反电势,Ib为电机B相绕组中的电流,Rb为电机B相绕组的电阻,Lb为电机B相绕组的电感,Eb为电机B相绕组的反电势,Ic为电机C相绕组中的电流。
由于外部选用电阻要远大于电机绕组的内阻,所以这里可以认为Ic近似为0;从而式1可以简化为式2,且得到Uo的计算公式如式3所示,这里假设R1=R2=R3=R:
Figure BDA0003047368870000061
Figure BDA0003047368870000062
Figure BDA0003047368870000063
这里假设,电机三相绕组是相互对称的,所以有以下电机固有特性。
Figure BDA0003047368870000064
将式4代入式2可得。
Figure BDA0003047368870000065
将式5代入式3可得
Figure BDA0003047368870000066
由式6可见,在外部匹配电阻已知,且系统供电电压已知的条件下,该检测电路检测到的电压可以准确计算出悬空相的反电势,可得到悬空相反电势的计算公式如式7所示。
Figure BDA0003047368870000067
本实施例中涉及的基于换相点换相的无刷直流电机无感控制方法,如下:
在电机转动的过程中,一般的反电势为正弦波的无刷直流电机,定子三相绕组产生反电势是相位互差120度正弦电压。无刷直流电机的方波控制算法输出的电压方向是压制电机反电势的的方向,即开通三相中电压最大相对应的上管和三相中电压最小相对应的下管,电机反电势压与驱动桥臂导通关系如图3所示。
根据图3可见,发生换相的位置具有以下特性:1)非换相桥臂反电势达到幅值电压;2)需换相桥臂的两相反电势相等。根据电机三相反电势电压之和为零的特性,可推导出:当电机发生换相时其悬空相的反电势为其幅值的一半。
根据无刷直流电机的反电势幅值与其转速成正比例关系:
Ep=Ke×ω (8)
其中,Ep为电机反电势的幅值,Ke为反电势常数,ω为电机转动电子频率。
由此可见,当被控电机确定的条件下,其反电势常数Ke即为已知条件,即可根据当前电机转动的电子转速得到需换相时的悬空相电压。
将式(8)中的电子频率转换为电子周期并将周期分为6个等分扇区,可得如下等式:
Figure BDA0003047368870000071
其中,Es为换相点悬空相的反电势估算电压,Te为电机转动中每个驱动扇区的时间。
将根据采样电压Uo得到的悬空相反电势与根据转速估算的反电势估算电压进行比较从而可以确定电机的换相点及换相电压,即当悬空相反电势处于上升的阶段,悬空相反电势大于估算电压(Ec>Es)即可换相;当悬空相反电势处于下降的阶段,悬空相反电势小于估算电压(Ec<Es)即可换相。无传感器方波控制有6个扇区,三个扇区中的悬空相电压是上升的,三个扇区的悬空相是下降的,根据当前驱动所在扇区即可确定悬空相是处于上升期还是下降期。
为提高控制器的运行效率,将根据转速的估算电压预先计算好并存放于一个数组中,即建立反电势估算电压数据库。在驱动电机的过程中,直接提取数组中的换相点电压与当前检测得出的悬空相反电势进行比对;其中数组中元素的计算提取方式如下:
Figure BDA0003047368870000081
其中,Te=n*ΔT,ΔT为电机控制器定时中断的周期值,ΔT为定时中断采样发生的间隔时间,该值的大小取决于电机控制要求,n为数组元素序列号同时也是换相后该定时中断发生的次数;这里是将连续性的对象进行离散化数字化的处理。
具体的控制方法步骤如下:
Step 1:根据被控电机参数产生换相电压数组Es(n);
Step 2:当起始或产生定时中断,n=0,控制器驱动桥臂输出电压驱动电机;
Step 3:根据中断执行n=n+1,通过反电势检测电路获取采样电压得出悬空相电压值Ex;
Step 4:对应n×ΔT的发生时间查询估算电压数据库,若悬空相电压处于上升期,当Ex>Es(n)时,跳转Step 5,否则跳转Step3;若悬空相电压处于下降期,当Ex<-Es(n)时,跳转Step 5,否则跳转Step3;;
Step 5:执行电机换相,更新驱动桥臂状态,n=0,跳转Step 3。
换相时间由电机转速决定,电机转的越快,换相时间越短。控制芯片以固定的频率发送中断,在检测到换相发生之前,中断次数不断累加。
本发明根据反电势为正弦波无刷直流电机的反电势特性,分析了在方波控制算法的换相位置点电机的反电势存在的规律,利用这个规律结合无刷直流电机反电势与转速的关系精确获得电机的换相位置,从而规避了传统过零点算法中的延时估算的过程,并提出了查询、对比的新方法,其实现过程更为简单、精确。
将本发明应用于实验仿真中
为了验证本发明所提方法的有效性和可行性,选用G40-LB08-64S35型无刷直流电机作为本文的实验对象,该电机的额定功率1500W,电机额定转速10000RPM,额定电压40V,转子极对数7对极。
1.仿真测试
为验证所提方法在动态响应方面的优越性,首先通过仿真对比过零点检测算法与本文所提算法的换相表现,根据被测电机特性模拟了该电机在外部施加负载令电机在0.1s内由6000RPM均匀降至1000RPM过程,其单相的反电势变化如图4所示。
这里选取自0.5s时刻开始至0.7s这段区间,分别采用过零点检测和本文所提的换相算法执行电机的换相的操作。图5给出了电机三相电压的在这段区间的变化趋势,并给出了分别采用两种算法根据当前的相电压执行换相操作的时刻。
在图5中,前三个坐标为电机三相电压在该时间段内的变化趋势,第四个坐标为基于过零点检测的换相算法提供的电机转子位置信息,每当产生一次换相位置数增加1,位置数在1-6区间内循环,第五个坐标为基于本文的换相算法提供的电机转子位置信息。
由图5可见,过零点换相算法在电机转速发生明显变化时,其换相扇区的时间发生了明显的不对称,随时间推移不对称性会显著增加,从而导致这种换相操作易于出现失步现象,这正是由于在负载变化较大速度较快的情况下过零点并非一个扇区的中心点所导致的,而本文所提算法在整个时间段都较为准确的选择了换相位置,具有较强的动态相应性能。
以上所述仅为本发明的实施例,并非因此限制本发明的专利范围,凡是利用本发明说明书内容所作的等效变换,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。

Claims (2)

1.一种基于换相点换相的无刷直流电机无感控制方法,其特征在于,包括如下步骤:
1)构建无传感器的无刷直流电机反电势检测电路;
2)根据方波控制电机驱动桥臂导通与电机反电势形成的关系,得出:当电机发生换相时其悬空相的反电势为其幅值的一半;根据无刷直流电机的反电势幅值与其转速成正比例关系Ep=Ke×ω,将电子频率转换为电子周期,并将周期分为6个等分扇区,得出
Figure FDA0003047368860000011
Figure FDA0003047368860000012
其中:Ep为电机反电势的幅值,Ke为反电势常数,ω为电机转动电子频率,Es为换相点悬空相的反电势估算电压,Te为电机转动中每个驱动扇区的时间;
3)、根据转速与反电势估算电压建立换相点电压数据库,并形成
Figure FDA0003047368860000013
的数组计算和提取方式;其中,Te=n*ΔT,ΔT为电机控制器定时中断采样的周期值,n为中断发生的次数;
4)、当起始或产生定时中断时,n=0,控制器驱动桥臂输出电压驱动电机;
5)、根据中断执行n+1,通过中断反电势检测电路获取采样电压并得出悬空相电压值Ex;
6)、对应n×ΔT的发生时间查询估算电压数据库,若悬空相电压处于上升期,当Ex>Es(n)时,跳转步骤7,否则跳转步骤5;若悬空相电压处于下降期,当Ex<-Es(n)时,跳转步骤7,否则跳转步骤5;
7)、执行电机换相,更新驱动桥臂状态,n=0,跳转步骤4。
2.根据权利要求1所述的一种基于换相点换相的无刷直流电机无感控制方法,其特征在于,构建步骤1)中所述反电势检测电路,并导出悬空相电压值Ec具体为:以电阻网络即电阻R1,R2和R3在电机的外部重构电机的中心点,且R1=R2=R3=R;利用R4和R5两个电阻将上述中心点的电压分压并形成检测端口采样所需的检测电压;
采用开通一相上三极管和另外一相的下三极管的方式驱动无刷直流电机转动,并形成驱动状态下的检测电路;
假设电机三相绕组相互对称,根据电机固有特性
Figure FDA0003047368860000021
根据电路原理推导出悬空相的反电势
Figure FDA0003047368860000022
Figure FDA0003047368860000023
其中,Vbus为电池电压,Uo为检测电压,Ia、Ib、Ic分别为电机A相绕组、电机B相绕组和电机C相绕组中的电流,Ra、Rb、Rc分别为电机A相绕组、电机B相绕组和电机C相绕组中的电阻;La、Lb、Lc分别为电机A相绕组、电机B相绕组和电机C相绕组中的电感;Ea、Eb、Ec分别为电机A相绕组、电机B相绕组和电机C相绕组中的反电势。
CN202110477563.XA 2021-04-29 2021-04-29 基于换相点换相的无刷直流电机无感控制方法 Active CN112994542B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110477563.XA CN112994542B (zh) 2021-04-29 2021-04-29 基于换相点换相的无刷直流电机无感控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110477563.XA CN112994542B (zh) 2021-04-29 2021-04-29 基于换相点换相的无刷直流电机无感控制方法

Publications (2)

Publication Number Publication Date
CN112994542A true CN112994542A (zh) 2021-06-18
CN112994542B CN112994542B (zh) 2023-07-11

Family

ID=76336687

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110477563.XA Active CN112994542B (zh) 2021-04-29 2021-04-29 基于换相点换相的无刷直流电机无感控制方法

Country Status (1)

Country Link
CN (1) CN112994542B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112865644A (zh) * 2021-01-22 2021-05-28 中电海康无锡科技有限公司 一种直流无刷电机的初始位置检测方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014032446A1 (zh) * 2012-09-03 2014-03-06 峰岹科技(深圳)有限公司 一种有感无刷直流电机驱动方法
EP2876807A2 (en) * 2013-11-25 2015-05-27 Melexis Technologies NV Phase current regulation in BLDC motors
CN107846160A (zh) * 2017-10-25 2018-03-27 朱家浩 一种高速无刷直流电机无位置传感器控制电路及其反电势相位补偿方法
CN112104272A (zh) * 2020-09-14 2020-12-18 中船重工(重庆)西南装备研究院有限公司 一种无位置传感器无刷直流电机位置检测方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014032446A1 (zh) * 2012-09-03 2014-03-06 峰岹科技(深圳)有限公司 一种有感无刷直流电机驱动方法
EP2876807A2 (en) * 2013-11-25 2015-05-27 Melexis Technologies NV Phase current regulation in BLDC motors
CN107846160A (zh) * 2017-10-25 2018-03-27 朱家浩 一种高速无刷直流电机无位置传感器控制电路及其反电势相位补偿方法
CN112104272A (zh) * 2020-09-14 2020-12-18 中船重工(重庆)西南装备研究院有限公司 一种无位置传感器无刷直流电机位置检测方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
杨龙;朱俊杰;王亮军;王湘中;廖迎新;: "无位置传感器BLDCM换相转矩脉动抑制的研究", 仪器仪表学报, no. 06 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112865644A (zh) * 2021-01-22 2021-05-28 中电海康无锡科技有限公司 一种直流无刷电机的初始位置检测方法
CN112865644B (zh) * 2021-01-22 2023-02-07 中电海康无锡科技有限公司 一种直流无刷电机的初始位置检测方法

Also Published As

Publication number Publication date
CN112994542B (zh) 2023-07-11

Similar Documents

Publication Publication Date Title
Liu et al. Direct torque control of brushless DC drives with reduced torque ripple
Jiang et al. A new phase-delay-free method to detect back EMF zero-crossing points for sensorless control of spindle motors
Chowdhury et al. Modelling and simulation of cost effective sensorless drive for brushless DC motor
CN110212819B (zh) 一种用于高速无刷直流电机的换相误差补偿方法
CN103684140A (zh) 无刷直流电机及其转子位置定位方法、启动方法
Lee A new method to minimize overall torque ripple in the presence of phase current shift error for three-phase BLDC motor drive
CN106787997B (zh) 一种电励磁双凸极电机转子精确位置估计方法
CN110350836B (zh) 共直流母线型开绕组永磁同步电机系统的直接转矩控制方法
CN113872484B (zh) 三相电流重构方法、装置、设备和存储介质
CN112994542B (zh) 基于换相点换相的无刷直流电机无感控制方法
Wang et al. A novel sensorless control method for brushless DC motor
Shao et al. Sensorless control for switched reluctance motor based on special position detection
Kumar et al. Novel closed loop speed control of permanent magnet brushless DC motor drive
CN109510525B (zh) 一种永磁同步电机初始状态检测方法
Concari et al. Sensorless control of BLDC motors at low speed based on differential BEMF measurement
US20130307451A1 (en) System and method for sensor-less hysteresis current control of permanent magnet synchronous generators without rotor position information
CN105515470A (zh) 一种直流无刷电机的转子位置检测电路
Yao et al. Line voltage difference integral method of commutation error adjustment for sensorless brushless DC motor
Halvaei Niasar et al. Low-cost sensorless control of four-switch, brushless DC motor drive with direct back-EMF detection
Wu et al. A wide-angle wave control method of reducing torque ripple for brushless DC motor
Kumar et al. Speed Control of BIdc Motor Drive By Using PID Controller‖
KR101684807B1 (ko) 진상각 제어기
Krishna et al. Position-sensorless operation of brushless permanent-magnet machines—A review
Dimri et al. Design and Simulation of Sensorless Control Algorithms of Brushless DC Motor: A Review
CN113872478B (zh) 电机转速调节方法、装置、设备和存储介质

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant