WO2014032374A1 - 内嵌式触控显示装置 - Google Patents

内嵌式触控显示装置 Download PDF

Info

Publication number
WO2014032374A1
WO2014032374A1 PCT/CN2012/086113 CN2012086113W WO2014032374A1 WO 2014032374 A1 WO2014032374 A1 WO 2014032374A1 CN 2012086113 W CN2012086113 W CN 2012086113W WO 2014032374 A1 WO2014032374 A1 WO 2014032374A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
layer
display device
touch display
substrate
Prior art date
Application number
PCT/CN2012/086113
Other languages
English (en)
French (fr)
Inventor
周星耀
Original Assignee
上海天马微电子有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海天马微电子有限公司 filed Critical 上海天马微电子有限公司
Priority to EP12876074.1A priority Critical patent/EP2725409B1/en
Priority to US14/088,256 priority patent/US9651814B2/en
Publication of WO2014032374A1 publication Critical patent/WO2014032374A1/zh

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/13338Input devices, e.g. touch panels
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/137Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering
    • G02F1/139Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering based on orientation effects in which the liquid crystal remains transparent
    • G02F1/141Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering based on orientation effects in which the liquid crystal remains transparent using ferroelectric liquid crystals
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0412Digitisers structurally integrated in a display
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0416Control or interface arrangements specially adapted for digitisers
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0445Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using two or more layers of sensing electrodes, e.g. using two layers of electrodes separated by a dielectric layer
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0446Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a grid-like structure of electrodes in at least two directions, e.g. using row and column electrodes
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133738Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers for homogeneous alignment
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133773Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers the alignment material or treatment being different for the two opposite substrates

Definitions

  • the present invention relates to the field of liquid crystal displays, and in particular, to an in-cell touch display device.
  • the touch display devices used in the market are basically separate touch screens, which are manufactured separately from the touch panel and then assembled by means of assembly.
  • the display device thus produced is relatively thick, and the transmittance and contrast of the display panel are also significantly lowered due to the addition of several layers of glass and film. In addition, this practice is also costly.
  • the embedded touch technology is born, which is a technology combining the touch panel and the liquid crystal panel, wherein the touch
  • the touch technology of the panel can be capacitive touch, resistive touch or infrared touch, etc.
  • the liquid crystal panel structure can also be a common TN (Twisted Nematic liquid crystal) mode, IPS (In Plane Switching liquid crystal mode or FFS (Fringe Field Switching liquid crystal) mode and so on.
  • TN Transmission Nematic liquid crystal
  • IPS In Plane Switching liquid crystal mode
  • FFS Frringe Field Switching liquid crystal
  • One is an On-Cell in-cell touch display device that is configured with a touch sensor on a liquid crystal panel.
  • Each liquid crystal panel and the touch component need to be combined by lamination. In this way, improving the bonding yield and reducing the number of bonding will be the mainstream of the development of touch panel process technology.
  • the other is an In-Cell in-cell touch display device that embeds a touch sensor into the liquid crystal image. Suzhong.
  • the manufacturing technology of the touch sensing component can be completed in the standard process of the TFT LCD.
  • the weight and the thickness are much reduced, and the product will be lighter and thinner without affecting the Reading perspective, panel transmittance and screen quality are better.
  • the use effect of the in-cell touch display device produced by the prior art is not ideal. Summary of the invention
  • the present invention provides an in-cell touch display device, including: a first substrate and a second substrate disposed opposite to each other;
  • the liquid crystal display structure comprising a pixel electrode layer, a common electrode layer and a liquid crystal layer, wherein the pixel electrode layer and the common electrode layer are respectively located At both ends of the liquid crystal layer, the liquid crystal in the liquid crystal layer is a ferroelectric liquid crystal.
  • the first substrate and the second substrate are transparent insulating materials.
  • the pixel electrode layer and the common electrode layer are transparent conductive materials.
  • the liquid crystal layer is a semi-V-shaped ferroelectric liquid crystal, and the semi-V-shaped ferroelectric liquid crystal is obtained by performing an asymmetric anchoring process on the ferroelectric liquid crystal.
  • the method for performing an asymmetric anchoring process on the ferroelectric liquid crystal is: the orientation directions in the upper alignment film contacted by the upper surface of the liquid crystal layer and the lower alignment film in contact with the lower surface are anti-parallel to each other The intensity of the orientation is different, and the azimuth angle ⁇ of the ferroelectric liquid crystal used is 22.5. .
  • an orientation direction of the upper alignment film in contact with the upper surface of the liquid crystal layer and a lower alignment film contacted by the lower surface are perpendicular to each other, and the intensity of the orientation is the same, and the ferroelectric liquid crystal is a twisted ferroelectric liquid crystal.
  • the ferroelectric liquid crystal used has an azimuth angle of 45.
  • the common electrode layer is a plurality of parallel electrodes arranged in parallel.
  • the capacitive touch structure includes a plurality of parallel-arranged driving electrodes arranged in a cross direction with the common electrode or a plurality of parallel-arranged sensing electrodes arranged in a cross direction with the common electrode, the common electrode and the driving electrode Or an insulating layer is disposed between the common electrode and the sensing electrode.
  • one side of the liquid crystal layer is adjacent to the second substrate, and the other side is covered with a color film, and the capacitive touch structure is the side of the color film relatively far from the liquid crystal layer.
  • the side of the capacitive touch structure relatively far from the liquid crystal layer is a first substrate.
  • the capacitive touch structure comprises a plurality of parallel-arranged sensing electrodes, and a plurality of parallel-arranged driving electrodes arranged in a cross direction with the sensing electrodes, wherein the driving electrodes and the sensing electrodes are in the same layer.
  • the capacitive touch structure is a two-layer structure, and includes a plurality of parallel-arranged sensing electrodes, a plurality of parallel-arranged driving electrodes arranged in a cross direction with the sensing electrodes, and between the driving electrodes and the sensing electrodes With an insulating layer.
  • the driving electrode or the sensing electrode comprises an overlapping indium tin metal oxide layer and a metal layer, and the metal layer is a mesh structure.
  • the surface of the metal layer is covered with a protective layer, and the protective layer is a black matrix for shielding.
  • a planarization layer is disposed between the liquid crystal layer and the color film.
  • the material of the planarization layer is a transparent organic material.
  • the present invention mainly has the following advantages:
  • the method of replacing the original nematic liquid crystal with the ferroelectric liquid crystal solves the flipping of the liquid crystal molecules in the in-cell touch display device in the ⁇ mode from the horizontal direction to the vertical direction or the vertical direction to the horizontal direction.
  • the flipping amplitude is too large, causing the dielectric constant of the liquid crystal layer to change too much. This greatly affects the problem of sensing the touch electrodes.
  • FIG. 1 is an equivalent circuit diagram of a touch electrode in an in-cell capacitive touch display device
  • FIG. 2 is a schematic view showing a structure of a TN mode capacitive in-cell touch display device in the prior art
  • FIG. 3 is a schematic view showing the arrangement of upper and lower polarizers and liquid crystal molecules in a white state of a TN mode in the prior art
  • FIG. 4 is a schematic view showing the arrangement of upper and lower polarizers and liquid crystal molecules in a black state of the TN mode in the prior art
  • FIG. 5 is a schematic diagram of replacing a nematic liquid crystal of a liquid crystal layer into a ferroelectric liquid crystal in a TN mode;
  • FIG. 6 is a plan view showing an embodiment of a capacitive touch structure provided by the third embodiment.
  • An in-cell capacitive touch display device includes a capacitive touch structure and a liquid crystal display structure, wherein the capacitive touch structure has a touch sensor composed of a touch electrode, and the touch electrode includes a driving electrode and a sensing electrode, and the display in the liquid crystal display structure
  • the electrode includes a pixel electrode and a common electrode, and the touch electrode and the display electrode closest to the touch electrode in the liquid crystal display structure each have a parasitic capacitance, and the existence of the parasitic capacitance may seriously affect the signal-to-noise ratio of the capacitive touch.
  • FIG. 1 it is an equivalent circuit at an intersection of each driving electrode and each sensing electrode in an in-cell capacitive touch display device, and Ct and Cr are respectively represented as a touch screen driving electrode, a detecting electrode, and a liquid crystal.
  • the driving electrode is equivalent to the driving line 121 and the resistor 122
  • the sensing electrode is equivalent to the sensing line 141 and the resistor 142
  • driving the electrode and sensing A mutual capacitance 16 is formed at each intersection of the electrodes
  • the driving electrode has a parasitic capacitance Ct to the ground
  • the sensing electrode has a parasitic capacitance Cr to the ground
  • the touch detection circuit 30 is a charge amplifier that converts the current on the sensing electrode into a voltage. Signal Vout is output.
  • the mutual capacitance 16 at the touch position changes, which causes the output current I on the sensing electrode to change, thereby causing the output voltage Vout to change.
  • the liquid crystal display structure is a TN mode liquid crystal
  • the parasitic capacitance has a greater influence on the touch electrode.
  • the TN mode is a liquid crystal molecule twist angle of 90.
  • the liquid crystal mode of the nematic liquid crystal is the basic liquid crystal mode of the liquid crystal panel.
  • the liquid crystal panel of the TN mode has a structure in which nematic liquid crystal is injected between glass substrates having transparent electrodes, and then a polarizing plate is disposed outside the glass substrate.
  • the transparent electrodes are a common electrode and a pixel electrode.
  • the nematic liquid crystal molecules are twisted 90 by the perpendicular alignment of the alignment film on the surface of the glass substrate, that is, the alignment film located on the upper and lower surfaces of the nematic liquid crystal layer.
  • the orientation method generally involves coating the polyimide film on the opposite surface of the upper and lower glass substrates into a film shape, and then rubbing the resin with a flannel in a certain direction (wiping treatment) to form minute stripes.
  • the liquid crystal molecules can be arranged in the same direction along the stripes.
  • the resin film which forms minute stripes in a certain direction is called an orientation film.
  • the liquid crystal molecules are rod-shaped molecules, which are divided into a growth axis and a short axis, and the dielectric constants in the long axis and the short axis direction are different.
  • the flipping of the liquid crystal molecules is reversed from the horizontal direction to the vertical direction or the vertical direction to the horizontal direction, and the flipping width is too large, resulting in a change in the dielectric constant of the liquid crystal layer. , greatly affecting the variation of the parasitic capacitance Ct, Cr, so that the output current I on the sensing electrode changes, thereby changing the output voltage Vout, and then touching The sensing of the touch electrodes of the screen has a great influence.
  • the inventor solved this problem by actively thinking and various attempts to eventually replace the ferroelectric liquid crystal with the original nematic liquid crystal. Since the ferroelectric liquid crystal can maintain a small turning angle, it is possible to reduce the dielectric constant change of the liquid crystal layer.
  • the ferroelectric liquid crystal is a ferroelectric liquid crystal, mainly a smectic C* phase (chiral smectic C phase).
  • the smectic C phase is obtained by cooling the nematic phase to a certain temperature
  • the smectic C phase composed of chiral carbon is a smectic C* phase.
  • the three liquid crystal molecules are composed of rod-like or strip-shaped molecules, and the molecules are arranged in a layer shape, wherein the long axes of the molecules in the liquid crystal molecular layer of the nematic phase are parallel to each other, and the direction thereof is perpendicular to the layer normal.
  • the long axes of the molecules in the liquid crystal molecular layer of the smectic C phase are parallel to each other, and the directions thereof are arranged obliquely to the layer normal.
  • the liquid crystal of the smectic C* phase is arranged in a layered structure. As shown in Fig. 2, the long axis of the molecules in the layer is at an angle to the normal of the layer, and the molecules in each layer are distributed on the surface of the cone with a vertex angle of 2 ⁇ .
  • the tilt angles of the liquid crystal molecules in the respective layers are uniform, but in the adjacent layers, the liquid crystal molecules are shifted with the spiral structure, so that the liquid crystal molecules along the normal of the same layer are arranged in a spiral structure.
  • the smectic smectic liquid crystal composed of the smectic C* phase loses the mirror symmetry and can have a spontaneous polarization dipole moment and has ferroelectric properties, that is, it is named ferroelectric liquid crystal.
  • ferroelectric liquid crystal display Like the metal in the magnetic field, when affected by the external electric field, the molecules of the ferroelectric liquid crystal will produce an accurate and orderly arrangement. Under the action of the electric field, the ferroelectric liquid crystal molecules can rotate in the cone surface. Arrangement, the modulation of the transmitted light intensity is achieved by the rotation of the liquid crystal molecules, so that under the action of the electric field, a difference between light and dark is produced. By controlling each pixel in accordance with such a principle, a desired image can be constructed. Since the rotation of the ferroelectric liquid crystal molecules is a structure in which the electric dipole moment is coupled with the external electric field, and the molecules are rotated by the male surface, there is an advantage that the corresponding speed is fast and the viewing angle is wide.
  • the nematic liquid crystal in the TN mode is replaced with a semi-V-shaped ferroelectric liquid crystal.
  • FIG. 2 it is a TN mode capacitive in-cell touch display device in the prior art.
  • the first substrate 100 and the second substrate 200 are disposed opposite to each other, and a liquid crystal display structure and a capacitive touch structure are disposed between the first substrate 100 and the second substrate 200, and the liquid crystal display structure includes a pixel electrode layer 120. , a common electrode layer, and a liquid crystal layer 30.
  • the pixel electrode layer 120 and the common electrode layer are respectively located at two ends of the liquid crystal layer, and the liquid crystal 30 in the liquid crystal layer is a nematic liquid phase.
  • the surface opposite to the first substrate 100 and the second substrate 200 has an alignment film which is twisted 90 by nematic liquid crystal molecules in the liquid crystal layer 30 by frictional anchoring perpendicular to each other. .
  • the first substrate and the second substrate are transparent insulating materials, and in this embodiment, they may be glass panels commonly used in the field of liquid crystal panel manufacturing.
  • the material of the pixel electrode layer 120, the common electrode layer, and the TFT array layer 110 are mainly made of a transparent conductive material, and in this embodiment, it may be an indium tin metal oxide commonly used in the field of liquid crystal panel manufacturing.
  • the common electrode in the figure is a split common electrode 210 and a common electrode 211, which can simultaneously serve as a touch structure of a capacitive touch structure, including a sensing electrode and a driving electrode.
  • the common electrode and the touch structure in the liquid crystal display structure can be shared by performing different functions by time-different input of different voltages at different times. Since the touch working time is relatively short, about 10% of the display refresh time, the liquid crystal molecules cannot respond in time during the voltage change, so the sharing of the common electrode and the touch electrode has little effect on the display.
  • the common electrode may be only one of a driving electrode or a sensing electrode in the touch electrode, and the other is located on the liquid crystal layer.
  • the common electrode serves as a driving electrode at the same time, and the surface of the liquid crystal layer having the common electrode is covered with an insulating layer, and the insulating layer is covered with the sensing electrode.
  • the common electrode serves as a sensing electrode at the same time, and the surface of the liquid crystal layer having the common electrode is further covered with an insulating layer, and the insulating layer is covered with a driving electrode.
  • the arrangement of the upper and lower polarizers and the liquid crystal molecules is as shown in Figs. 3 and 4, and the optical directions of the upper polarizer 610 and the lower polarizer 620 are orthogonal to each other.
  • 3 is a case where the liquid crystal molecules 30 on the upper and lower surfaces are parallel to the optical axis direction of the adjacent polarizer, and the liquid crystal molecules 30 in the middle are gradually twisted, and the light passing through the upper and lower polarizers is twisted synchronously with the twist of the liquid crystal molecules 30.
  • Fig. 4 shows the application of a voltage.
  • the liquid crystal molecules 30 on the upper and lower surfaces are parallel to the direction of the polarizer, and the intermediate liquid crystal molecules 30 are all erected. Thus, light cannot pass through the liquid crystal layer through the liquid crystal molecules. The liquid crystal layer appears dark.
  • the liquid crystal molecules have a twist angle of 90.
  • the liquid crystal mode of the nematic liquid crystal In such a structure, the dielectric constant of the liquid crystal layer caused by the vertical inversion of the liquid crystal 30 varies greatly, greatly affecting the common electrode 210 and the common electrode 211 which have the functions of the common electrode and the touch electrode as the touch electrode. Sensing judgment at the time.
  • the nematic liquid crystal 30 in the TN mode is replaced with the ferroelectric liquid crystal 40, as shown in FIG.
  • the ferroelectric liquid crystal 40 used is a semi-V-shaped ferroelectric liquid crystal, and the half V-shape refers to iron.
  • the electro-optic characteristic orientation of the electro-optical liquid crystal is semi-V-shaped. Since the electro-optic characteristic orientation of a general ferroelectric liquid crystal is V-shaped, it has a bistable state, and it is difficult to realize gray scale display, so it is necessary to become a half-V shape to realize gray scale display, so as to realize color shading change. More complex pattern display.
  • a semi-V-shaped ferroelectric liquid crystal can be obtained by a process of asymmetrically anchoring a ferroelectric liquid crystal.
  • the asymmetric anchoring process is such that the orientation directions of the alignment films on the first substrate 100 and the second substrate 200 are anti-parallel to each other, and the strengths of the upper and lower rubbing orientations are different.
  • the rubbing direction is anti-parallel.
  • the strength is different to achieve. This makes the depths of the minute fine lines formed on the alignment films (the upper alignment film and the lower alignment film) on the first substrate 100 and the second substrate 200 different.
  • the ferroelectric liquid crystal 40 molecules between the upper alignment film and the lower alignment film are arranged in the rubbing alignment direction, and the long axis direction is the horizontal direction.
  • the liquid crystal display structure is black.
  • a voltage of a bright state is passed between the common electrodes 210, 211 and the pixel electrode 120, a column of ferroelectric liquid crystal molecules 40 are twisted and arranged to function as a liquid crystal light valve, so that the liquid crystal display structure starts to display a pattern.
  • the ferroelectric liquid crystal 40 rotates according to the azimuth angle of its own spiral structure, the flipping of the ferroelectric liquid crystal 40 maintains a small angle with respect to the vertical inversion of the TN mode, and rotates almost in the horizontal plane, thus using ferroelectric liquid crystal The change in the dielectric constant of the liquid crystal layer can be reduced.
  • the ferroelectric liquid crystal used has an azimuth angle 2 of 22.5. This can be achieved by controlling the temperature at which the phase change is reduced when the ferroelectric liquid crystal is cooled, or the dipole moment of the ferroelectric liquid crystal molecule. Choose to wait. In actual use, it can be customized directly to the LCD manufacturer.
  • the liquid crystal used in the capacitive in-cell touch display device is a twisted ferroelectric liquid crystal.
  • the rubbing directions of the alignment films on the surfaces of the first substrate and the second substrate are perpendicular to each other and coincide with the optical axis of the polarizing plate, and other structures and embodiments in the capacitive in-cell touch display device are used. A similar.
  • the liquid crystal molecular layer in the twisted ferroelectric liquid crystal is perpendicular to the surface of the substrate, and the first substrate and the second substrate are anchored perpendicularly to each other, that is, the rubbing direction of the alignment film on the surfaces of the first substrate and the second substrate. Vertical to each other, but the molecular director is twisted to 90 between the two substrates. .
  • the antiferroelectric liquid crystal molecules rotate only in a nearly planar plane. In such a structure, the arrangement of the ferroelectric liquid crystal molecules between the upper and lower substrates is the same as that of the TN liquid crystal mode.
  • the liquid crystal mode of the liquid crystal display structure of the present embodiment when the voltage is not applied, it is in a bright state.
  • a voltage When a voltage is applied, the spontaneous polarization directions of the twisted ferroelectric liquid crystal molecules are uniform, and the liquid crystal molecules are almost rotated in the plane to obtain a dark state.
  • the change in the dielectric constant of the liquid crystal layer is much smaller than that of the TN liquid crystal, and the mutual capacitance and the parasitic capacitance change due to the flipping of the liquid crystal molecules can be effectively reduced.
  • the off-state response time is similar to the TN liquid crystal mode.
  • the twisted ferroelectric liquid crystal azimuth angle ⁇ is preferably 45. .
  • the capacitive touch structure in the in-cell capacitive touch display device may be on the side of the color film. Specifically, one side of the liquid crystal layer is adjacent to the first substrate, and another layer of the liquid crystal layer One side is covered with a color film, and the side of the color film opposite to the liquid crystal layer is the capacitive touch structure, and the other side of the capacitive touch structure faces the inner surface of the second substrate.
  • the structure of the liquid crystal panel is similar to that of the first embodiment or the second embodiment.
  • the capacitive touch structure includes a plurality of parallel-arranged sensing electrodes, and a plurality of parallel-arranged driving electrodes arranged in a cross arrangement with the sensing electrodes, wherein the driving electrodes and the sensing electrodes are on the same layer or a respective layer.
  • FIG. 6 A top view of an embodiment is shown in FIG. 6 and includes a driving electrode layer 12 and a sensing electrode layer 14 respectively.
  • the driving electrode layer 12 or the sensing electrode layer 14 are respectively formed by a plurality of small pieces of "diamond pattern" electrode patterns. Connected in series with a drive electrode arranged in parallel or with the sensing electrode.
  • the driving electrode layer 12 has a plurality of driving electrodes 12a, 12b, 12c
  • the sensing electrode layer 14 has a plurality of sensing electrodes 14a, 14b, 14c.
  • the drive electrodes and the sensing electrodes are arranged in a cross arrangement, and each of the "diamond patterns" of the drive electrodes are connected to each other in the same horizontal direction.
  • the sensing electrode and the driving electrode are covered with a dielectric layer having a via hole, and the interconnecting wires passing through the via hole electrically connect the sensing electrodes of each block "diamond pattern" together. Or the "diamond patterns" of the sensing electrodes are connected to each other in the same horizontal direction.
  • the sensing electrode and the driving electrode are covered with a dielectric layer having via holes, and the interconnecting wires passing through the vias electrically connect the driving electrodes of each block "diamond pattern" together.
  • the shape of the drive and sense electrodes in the pole layer can be similar to the above, both of which are "diamond patterns”.
  • the driving electrode and the sensing electrode are arranged in a cross arrangement, and each "diamond pattern" of the driving electrode or the sensing electrode is connected to each other in the same horizontal direction, and a transparent insulating layer is separated between the driving electrode and the sensing electrode as a dielectric layer.
  • the driving electrode and the sensing electrode comprise an overlapping indium tin metal oxide layer and a metal layer, wherein the indium tin metal oxide layer constitutes a "diamond pattern", and the metal layer metal covers the edge of each "diamond pattern" Formed as a mesh structure, the function of which is to increase the conduction performance of the entire touch electrode.
  • the mesh of the metal layer is also covered with a protective layer.
  • the ferroelectric liquid crystal layer is a bistable ferroelectric liquid crystal molecule, and the anchoring directions of the alignment films on the first substrate and the second substrate are parallel, and other structures are similar or identical to the foregoing embodiments.
  • the bistable ferroelectric liquid crystal molecules since the bistable ferroelectric liquid crystal molecules have only a bright state and a dark state, there is no gray state. Therefore, the liquid crystal display structure in this embodiment is only applicable to the case where only two states of light and dark are required, such as display of a word, display of a monochrome mark, and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Human Computer Interaction (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Mathematical Physics (AREA)
  • Liquid Crystal (AREA)

Abstract

一种内嵌式触控显示装置,包括相对设置的第一基板(100)和第二基板(200);位于该第一基板(100)和第二基板(200)之间的液晶显示结构和电容式触摸结构,该液晶显示结构包括像素电极层(120)、公共电极层和液晶层(30),该像素电极层(120)、公共电极层分别位于该液晶层(30)的两端,该液晶层(30)内的液晶(30)为铁电液晶。该内嵌式触控显示装置通过采取把铁电液晶替换原本的向列相液晶的方式,解决了在TN模式的内嵌式触控显示装置中液晶分子的翻转从水平方向到竖直方向或者竖直方向到水平方向进行翻转,其翻转的幅度太大,导致液晶层的介电常数变化太大,从而很大的影响触摸电极的感应的这个问题。

Description

内嵌式触控显示装置
本申请要求于 2012 年 8 月 27 日提交中国专利局、 申请号为 201210308846.2、 发明名称为"内嵌式触控显示装置 "的中国专利申请的优先 权, 其全部内容通过引用结合在本申请中。
技术领域
本发明涉及液晶显示器领域, 尤其涉及一种内嵌式触控显示装置。
背景技术
市场上采用的触控显示装置基本都是分离式触摸屏,这种方式为将触控面 板与液晶面板分开制造, 然后通过组装的方式制作在一起。这样制得的显示装 置比较厚, 并且由于增加了若干层玻璃、 薄膜, 显示屏的透光率以及对比度也 会明显下降。 另外这种做法成本也较高。 为了使带有触控面板的液晶显示装置 更轻薄, 有更好的显示效果和成本优势, 嵌入式触控技术诞生了, 其为将触控 面板和液晶面板结合为一体的技术,其中触控面板的触控技术可以采用电容式 触控、 电阻式触控或者红外触控等等, 其中液晶面板结构也可以为常见的 TN ( Twisted Nematic liquid crystal,扭曲向列型液晶)模式、 IPS( In Plane Switching liquid crystal, 平面内切换液晶)模式或者 FFS ( Fringe Field Switching liquid crystal, 边缘电场切换液晶)模式等等。 目前嵌入式触控技术的主要发展方向 有两种:
一种是 On-Cell内嵌式触控显示装置,其在液晶面板上配置触摸传感器。 各液晶面板和触控组件之间需以贴合来组成。 在这样的方式中, 提高贴合良 率、 减少贴合次数, 将是触控面板制程技术的发展主流。
另一种是为 In-Cell内嵌式触控显示装置,其将触摸传感器嵌入到液晶像 素中。 可以在 TFT LCD标准制程中完成触控感测元件的制造技术, 同时, 也没有屏幕外观贴合及机构对准的问题, 重量及厚度减少许多, 产品将更轻 更薄, 且不会影响可阅读的视角, 面板透光率及屏幕画质更佳。 总的来说, 现有技术生产的内嵌式触控显示装置的使用效果大都不是太 理想。 发明内容
本发明解决的问题是内嵌式触控显示装置使用效果不是太理想的问题。 为解决上述问题, 本发明提供了一种内嵌式触控显示装置, 包括: 相对设置的第一基板和第二基板;
位于所述第一基板和第二基板之间的液晶显示结构和电容式触摸结构,所 述液晶显示结构包括像素电极层、公共电极层和液晶层, 所述像素电极层、 公 共电极层分别位于所述液晶层的两端, 所述液晶层内的液晶为铁电液晶。
可选的, 所述第一基板和第二基板为透明绝缘材料。
可选的, 所述像素电极层和公共电极层为透明导电材料。 可选的, 所述液晶层中为半 V字型铁电液晶, 所述半 V字型铁电液晶通过 对铁电液晶进行不对称锚定工艺得到。
可选的, 所述对铁电液晶进行不对称锚定工艺的方式为: 所述液晶层的上 表面接触到的上取向膜和下表面接触到的下取向膜中的取向方向互为反平行, 取向的强度不同, 所使用的铁电液晶的方位角 Θ为 22.5。。
可选的,所述液晶层的上表面接触到的上取向膜和下表面接触到的下取向 膜中的取向方向互相垂直, 取向的强度相同, 所述铁电液晶为扭曲铁电液晶, 所使用的铁电液晶的方位角 Θ为 45。。 可选的, 所述公共电极层为多条平行排列的公共电极。
可选的,所述电容式触摸结构包括与所述公共电极交叉排列的多条平行排 列的驱动电极或与所述公共电极交叉排列的多条平行排列的感应电极,所述公 共电极和驱动电极或所述公共电极和感应电极之间具有绝缘层。
可选的, 所述液晶层的一侧靠近所述第二基板, 另一侧覆盖有彩膜, 在所 述彩膜相对远离所述液晶层的一侧为所述电容式触摸结构,所述电容式触摸结 构相对远离所述液晶层的一侧为第一基板。
可选的, 所述电容式触摸结构包括多条平行排列的感应电极、与所述感应 电极交叉排列的多条平行排列的驱动电极,所述驱动电极和感应电极处于同一 层。
可选的, 所述电容式触摸结构为双层结构, 其包括多条平行排列的感应电 极、与所述感应电极交叉排列的多条平行排列的驱动电极, 所述驱动电极和感 应电极之间具有绝缘层。
可选的, 其特征在于, 所述驱动电极或 /和感应电极包括重叠的铟锡金属 氧化物层和金属层, 所述金属层为网状结构。
可选的,所述金属层的表面覆盖有保护层,所述保护层为遮光用的黑矩阵。 可选的, 所述液晶层和彩膜之间具有平坦化层。
可选的, 所述平坦化层的材质为透明有机材料。
与现有技术相比, 本发明主要具有以下优点:
采取把铁电液晶替换原本的向列相液晶的方式, 解决了在 ΤΝ模式的内 嵌式触控显示装置中液晶分子的翻转从水平方向到竖直方向或者竖直方向到 水平方向进行翻转, 其翻转的幅度太大, 导致液晶层的介电常数变化太大, 从而很大的影响触摸电极的感应的这个问题。
附图说明
图 1为一种内嵌式电容触控显示装置中触控电极的等效电路图; 图 2为现有技术中的一种 TN模式的电容式内嵌触控显示装置的结构示 意图;
图 3为现有技术中 TN模式的白态中上下偏光片和液晶分子的排布示意 图;
图 4为现有技术中 TN模式的黑态中上下偏光片和液晶分子的排布示意 图;
图 5为把 TN模式中液晶层的向列相的液晶换成铁电液晶的示意图; 图 6为第三实施例提供的一种电容式触摸结构的实施方式的俯视图。 具体实施方式 内嵌式电容触控显示装置包括电容触控结构和液晶显示结构, 其中电容 触控结构中具有触摸电极构成的触摸传感器, 触摸电极包括驱动电极和感应 电极, 液晶显示结构中的显示电极包括像素电极和公共电极, 所述触摸电极 与液晶显示结构中最靠近触摸电极的显示电极之间的均具有寄生电容, 该寄 生电容的存在会严重影响电容触摸的信噪比。 具体如图 1所示, 其为一种内嵌式电容触控显示装置中每一条驱动电极 与每一条感应电极交点处的等效电路, Ct、 Cr分别表示为触摸屏驱动电极和 探测电极与液晶显示结构内其他显示电极的寄生电容, 驱动电极等效为驱动 线 121和电阻 122,感应电极等效为感应线 141和电阻 142,驱动电极和感应 电极的每一个交点处形成了互电容 16,驱动电极具有对地的寄生电容 Ct,感 应电极具有对地的寄生电容 Cr, 触摸检测电路 30是一个电荷放大器, 将感 应电极上的电流转化成为电压信号 Vout输出。 当手指触摸触控面板(触控结 构)时, 触摸位置处的互电容 16发生变化, 这样就导致感应电极上的输出电 流 I变化, 从而使输出电压 Vout变化。 当液晶显示结构为 TN模式的液晶时,寄生电容对触控电极的影响更大。 所述 TN模式是使用液晶分子扭曲角为 90。的向列液晶的液晶模式,为液晶面 板的基本液晶模式。 TN模式的液晶面板的构造为, 带有透明电极的玻璃基 板之间注入有向列液晶, 然后在其玻璃基板外侧配置偏光板。 所述透明电极 为公共电极和像素电极。 通过所述玻璃基板的表面的取向膜, 即位于向列液 晶层上下表面的取向膜的相互垂直摩擦锚定来实现向列液晶分子扭曲 90。。 其中本领域技术人员能够了解到的是, 要把液晶用于显示器, 需要使液晶分 子按一定方向排列, 这被称为取向。 取向的办法一般是在上下两玻璃基板相 对的表面上将聚酖亚胺类树脂涂布成薄膜状, 然后按某一方向用绒布擦涂树 脂(擦涂处理), 使其形成微小条纹, 这样可以让液晶分子沿着条纹朝同一方 向排列。 所述按某一方向形成微小条纹的树脂薄膜称为取向膜。 液晶分子是棒状的分子, 分成长轴和短轴, 长轴和短轴方向的介电常数 是不一样的。 在 TN模式的液晶显示结构进行画面显示时, 液晶分子的翻转 从水平方向到竖直方向或者竖直方向到水平方向进行翻转, 其翻转的幅度太 大, 导致液晶层的介电常数变化太大, 极大的影响寄生电容 Ct、 Cr的变化, 使得感应电极上的输出电流 I变化, 从而使输出电压 Vout变化, 进而对触摸 屏的触摸电极的感应产生很大的影响。
发明人通过积极的思考以及多种尝试, 最终采取把铁电液晶替换原本的 向列向液晶的方式, 解决了这个问题。 因为铁电液晶可以维持一个较小的翻 转角度, 从而对减小液晶层的介电常数变化。
具体的, 铁电液晶是一种具有铁电性的液晶, 主要为近晶 C*相(手性近 晶 C相)。 将向列相降温到一定温度可得到近晶 C相, 由手性碳构成的近晶 C相为近晶 C*相。 这三种液晶分子都是由棒状或者条状分子组成, 分子排列 成层状, 其中向列相的液晶分子层内分子长轴互相平行, 其方向与层法线垂 直。 近晶 C相的液晶分子层内分子长轴互相平行, 其方向与层法线成倾斜排 列。 近晶 C*相的液晶, 其排列呈层状结构, 如图 2所示, 层内分子的长轴与 层法线成 Θ角,各层内分子分布在以顶角为 2Θ的圆锥体表面,各层中液晶分 子倾斜角一致, 但是相邻各层中, 液晶分子偏移的随螺旋结构发生变化, 使 得沿着同一条层法线的液晶分子排列呈螺旋结构。 近晶 C*相 (手型近晶 C 相液晶)组成的倾斜近晶相液晶会失去镜面对称性, 从而能够具有自发极化 偶极矩, 具有铁电性能, 即命名为铁电液晶。
铁电液晶显示的原理: 像磁场中的金属一样, 当受到外界电场影响时, 铁电液晶的分子会产生精确的有序排列, 在电场作用下, 铁电液晶分子能在 锥面旋转地规则排列, 通过液晶分子的转动实现对透过光强的调制, 这样在 电场作用下, 就会产生明暗的区别。 按照这样的原理控制每个像素, 就可以 构成所需图像。由于铁电液晶分子的转动是电偶极矩与外电场的耦合的结构, 且分子是雄面转动, 因此具有相应速度快和视角宽的优点。 为使本发明的上述目的、 特征和优点能够更为明显易懂, 下面结合附图 对本发明的具体实施方式做详细的说明。
在以下描述中阐述了具体细节以便于充分理解本发明。 但是本发明能够 以多种不同于在此描述的其它方式来实施, 本领域技术人员可以在不违背本 发明内涵的情况下做类似推广。 因此本发明不受下面公开的具体实施方式的 限制。
实施例一
本实施例中, 把 TN模式中的向列相的液晶换成半 V字型铁电液晶。 如图 2所示,为现有技术中的一种 TN模式的电容式内嵌触控显示装置。 其具有上下相对设置的第一基板 100和第二基板 200,位于所述第一基板 100 和第二基板 200之间的液晶显示结构和电容式触摸结构, 所述液晶显示结构 包括像素电极层 120、 公共电极层以及液晶层 30。 所述像素电极层 120、 公 共电极层分别位于所述液晶层的两端, 所述液晶层内的液晶 30 为向列相液 曰
曰曰。
第一基板 100和第二基板 200相对的表面具有取向膜, 所述取向膜通过 相互垂直的摩擦锚定来实现液晶层 30中向列液晶分子扭曲 90。。
所述第一基板和第二基板为透明绝缘材料, 在本实施例中可以为液晶面 板制造领域中常用的玻璃面板。 在所述像素电极 110和第一基板 100之间还 具有 TFT阵列层 110。 像素电极层 120、 公共电极层的材质以及 TFT阵列层 110 主要材质为透明导电材料, 在本实施例中可以为液晶面板制造领域中常 用的铟锡金属氧化物。 图中公共电极为分裂开的公共电极 210 和公共电极 211 ,其可以同时兼做电容式触摸结构的触控结构,包括感应电极和驱动电极。 作为液晶显示结构中的公共电极和触控结构可以共用是通过在不同的时间输 入不同的电压而分时表现不同的功能来实现的。 由于触控工作时间比较短, 约为显示刷新时间的 10%, 液晶分子在电压改变的这段时间里来不及响应, 故公共电极和触控电极的共用对显示几乎没影响。
类似的, 在其它实施方式中, 公共电极也可以只是触控电极中的驱动电 极或者感应电极中的一种, 另一种位于液晶层上。 如, 公共电极同时作为驱 动电极, 液晶层中具有公共电极的一侧的表面上还覆盖有绝缘层, 所述绝缘 层上覆盖有感应电极。 或者公共电极同时作为感应电极, 液晶层中具有公共 电极的一侧的表面上还覆盖有绝缘层, 所述绝缘层上覆盖有驱动电极。
上下偏光片和液晶分子的排布如图 3和图 4所示, 上偏光片 610和下偏 光片 620光轴方向彼此正交。 图 3为透光的时候, 其中上下表面的液晶分子 30和靠近的偏光片的光轴方向平行, 中间的液晶分子 30逐步扭转, 而经过 上下偏光片的光随着液晶分子 30的扭转同步扭转而通过液晶层。图 4为施加 电压的情况,液晶分子在电场作用下,除了上下表面的液晶分子 30依然和靠 近的偏光片的方向平行, 中间液晶分子 30全部竖起来了。 这样, 光就不能通 过液晶分子而穿过液晶层了。 液晶层表现为暗态。
由于 TN模式是使用液晶分子扭曲角为 90。的向列液晶的液晶模式。在这 样的结构中,液晶 30垂直翻转带来的液晶层的介电常数变化很大,极大的影 响着兼具公共电极和触控电极作用的公共电极 210和公共电极 211在作为触 控电极时的感应判断。
本实施例中, 把 TN模式中的向列相的液晶 30换成铁电液晶 40, 如图 5 所示。 所使用到的铁电液晶 40为半 V字形铁电液晶, 所述半 V字型是指铁 电液晶的电光特性取向的形貌为半 V字型的。 由于一般的铁电液晶的电光特 性取向的形貌都是 V字型的, 具有双稳态, 难以实现灰阶显示, 故需要变成 半 V字形来实现灰阶显示, 以能实现色彩明暗变化较复杂的图案显示。 通过 对铁电液晶进行不对称锚定的工艺可得到半 V字形铁电液晶。所述不对称锚 定的工艺为对第一基板 100和第二基板 200上的取向膜取向的方向互为反平 行, 且上下摩擦取向的强度不同, 这通过摩擦树脂时候, 摩擦的方向反平行, 而且力度不同来实现的。 这使得在第一基板 100和第二基板 200上的取向膜 (上取向膜和下取向膜)上形成的微小细纹的深度不同。
这样, 在不加电压的情况下, 处于上取向膜和下取向膜之间的铁电液晶 40分子沿着摩擦取向的方向排列, 其长轴方向为水平方向。 液晶显示结构表 现为黑态。 当公共电极 210、 211与像素电极 120之间通过电压亮态电压时, 一列铁电液晶分子 40扭曲排列,起到液晶光阀的作用,从而使得液晶显示结 构开始显示图案。 由于铁电液晶 40按照其自身螺旋结构的方位角 Θ旋转,相 对于 TN模式的垂直翻转的情况, 铁电液晶 40的翻转维持一个较小的角度, 近乎在水平面内转动, 因而采用铁电液晶可以减小液晶层的介电常数变化。
本领域技术人员能够推知的, 在这种情况下, 液晶分子在平面内转动显 示的穿透率公式如下:
^ ί{λ) . 2 2πΑηά . 2
Τ≡ = sm sm 4Θ 即可以得到, 当 θ=22.5。时, Τ取最大值, 所以在 θ=22.5。时最好。 所以, 优选的, 本实施例中, 所使用的铁电液晶的方位角 Θ为 22.5。, 这可以通过降 温制铁电液晶时控制相变时降至的温度来实现, 或者铁电液晶分子偶极矩的 选择等来实现。 实际使用中, 可以直接向液晶厂商定制。
实施例二
本实施例中, 所述电容式内嵌触控显示装置中的液晶层采用的液晶为扭 曲铁电液晶。
具体的, 在第一基板和第二基板表面的取向膜的摩擦方向是互相垂直且 与偏振片光轴一致的, 除此之外所述电容式内嵌触控显示装置中其它结构和 实施例一类似。
在本实施例中, 所述扭曲铁电液晶中液晶分子层垂直于基板表面, 通过 第一基板和第二基板互相垂直的锚定, 即第一基板和第二基板表面的取向膜 的摩擦方向互相垂直, 但在两基板之间分子指向矢扭曲成 90。。 当通电以后, 反铁电液晶分子只在近乎平面内转动。 在这样的结构中, 上下基板之间扭曲 铁电液晶分子的排列与 TN液晶模式相同。
在本实施例的液晶显示结构的液晶模式中, 不施加电压时为亮态, 施加 电压时,扭曲铁电液晶分子的自发极化方向一致,液晶分子近乎在面内转动, 得到暗态。 这样液晶层的介电常数变化相比 TN液晶会小很多, 可以有效的 减小由于液晶分子翻转引起的互电容以及寄生电容变化。 但关态响应时间和 TN液晶模式差不多。
和实施例一类似的, 为了得到最大的穿透率, 所使用的扭曲铁电液晶方 位角 Θ优选为 45。。
实施例三
在本实施例中, 所述内嵌式电容触控显示装置中的电容触控结构可以为 在彩膜一侧的。 具体的, 所述液晶层的一侧靠近所述第一基板, 液晶层的另 一侧覆盖有彩膜, 在所述彩膜相对远离所述液晶层的一侧为所述电容式触摸 结构, 所述电容式触摸结构另一侧朝向第二基板的内表面。 其中的液晶面板 的结构和实施例一或者实施例二类似。
所述电容式触摸结构包括多条平行排列的感应电极、 与所述感应电极交 叉排列的多条平行排列的驱动电极, 所述驱动电极和感应电极处于同一层或 者各自一层。
一种实施方式的俯视图如图 6所示, 包括驱动电极层 12和感应电极层 14, 所述驱动电极层 12或感应电极层 14分别由若干小块的"钻石型图案"的 电极图形彼此相连连成一条一条平行排列的驱动电极或者与所述感应电极。 所述驱动电极层 12具有多条驱动电极 12a、 12b、 12c , 所述感应电极 层 14具有多条感应电极 14a、 14b、 14c 。 在这种实施方式中, 所述驱 动电极和感应电极交叉排列, 所述驱动电极的各"钻石型图案"在同水平方向 上互相连接。 而所述感应电极、 驱动电极上覆盖有介质层, 所述介质层具有 过孔, 穿过过孔的互连线将每条块 "钻石图形"的感应电极电连接在一起。 或 者所述感应电极的各"钻石型图案"在同水平方向上互相连接。所述感应电极、 驱动电极上覆盖有介质层, 所述介质层具有过孔, 穿过过孔的互连线将每条 块"钻石图形"的驱动电极电连接在一起。 极层中驱动电极和感应电极的形状可以和上面类似, 均为"钻石型图案"。 所 述驱动电极和感应电极交叉排列, 所述驱动电极或感应电极的各"钻石型图 案"在同水平方向上互相连接,驱动电极和感应电极之间有透明的绝缘层作为 介质层隔离。 所述驱动电极和感应电极包括重叠的铟锡金属氧化物层和金属层, 其中 由铟锡金属氧化物层构成"钻石型图案",金属层的金属覆盖在每个"钻石型图 案"的边缘, 形成为网状结构, 其作用是增加触摸电极整体的导通性能。 所述 金属层的网格上还覆盖有保护层。
实施例四
本实施例中, 所述铁电液晶层为双稳态铁电液晶分子, 第一基板和第二 基板上的取向膜的锚定方向平行, 其它结构和前述实施例类似或者相同。 在 这样的结构中, 由于双稳态铁电液晶分子只有亮态和暗态, 没有灰态。 所以, 本实施例中的液晶显示结构只适用于只需要显示明暗两种状态的场合, 如字 的显示, 单色标识的显示等。
本发明虽然已以较佳实施例公开如上, 但其并不是用来限定本发明, 任 何本领域技术人员在不脱离本发明的精神和范围内, 都可以利用上述揭示的 方法和技术内容对本发明技术方案做出可能的变动和修改, 因此本发明的保 护范围应当以权利要求所限定的范围为准。

Claims

权 利 要 求
1. 一种内嵌式触控显示装置, 其特征在于, 包括:
相对设置的第一基板和第二基板;
位于所述第一基板和第二基板之间的液晶显示结构和电容式触摸结构, 所述液晶显示结构包括像素电极层、公共电极层和液晶层,所述像素电极层、 公共电极层分别位于所述液晶层的两端, 所述液晶层内的液晶为铁电液晶。
2. 如权利要求 1所述的内嵌式触控显示装置, 其特征在于, 所述第一基板 和第二基板为透明绝缘材料。
3. 如权利要求 1所述的内嵌式触控显示装置, 其特征在于, 所述像素电极 层和公共电极层为透明导电材料。
4. 如权利要求 1所述的内嵌式触控显示装置, 其特征在于, 所述液晶层内 的液晶为半 V字型铁电液晶,所述半 V字型铁电液晶通过对铁电液晶进行不 对称锚定工艺得到。
5. 如权利要求 1所述的内嵌式触控显示装置, 其特征在于, 所述对铁电液 晶进行不对称锚定工艺的方式为: 设置所述液晶层的上表面接触到的上取向 膜和下表面接触到的下取向膜中的取向方向互为反平行, 取向的强度不同。
6. 如权利要求 1所述的内嵌式触控显示装置, 其特征在于, 所述液晶层的 上表面接触到的上取向膜和下表面接触到的下取向膜中的取向方向互相垂 直, 取向的强度相同, 所述铁电液晶为扭曲铁电液晶。
7. 如权利要求 1所述的内嵌式触控显示装置, 其特征在于, 所述公共电极 层为多条平行排列的公共电极。
8. 如权利要求 7所述的内嵌式触控显示装置, 其特征在于, 所述电容式触 摸结构包括与所述公共电极交叉排列的多条平行排列的驱动电极或与所述公 共电极交叉排列的多条平行排列的感应电极, 所述公共电极和驱动电极或所 述公共电极和感应电极之间具有绝缘层。
9. 如权利要求 1所述的内嵌式触控显示装置, 其特征在于, 所述液晶层的 —侧靠近所述第二基板, 另一侧覆盖有彩膜, 在所述彩膜相对远离所述液晶 层的一侧为所述电容式触摸结构, 所述电容式触摸结构相对远离所述液晶层 的一侧为第一基板。
10. 如权利要求 9所述的内嵌式触控显示装置, 其特征在于, 所述电容式触 摸结构包括多条平行排列的感应电极、 与所述感应电极交叉排列的多条平行 排列的驱动电极, 所述驱动电极和感应电极处于同一层。
11. 如权利要求 9所述的内嵌式触控显示装置, 其特征在于, 所述电容式触 摸结构为双层结构, 其包括多条平行排列的感应电极、 与所述感应电极交叉 排列的多条平行排列的驱动电极,所述驱动电极和感应电极之间具有绝缘层。
12. 如权利要求 8、 10或 11所述的内嵌式触控显示装置, 其特征在于, 所述 驱动电极或 /和感应电极包括重叠的铟锡金属氧化物层和金属层,所述金属层 为网状结构。
13. 如权利要求 12 所述的内嵌式触控显示装置, 其特征在于, 所述金属层 的表面覆盖有保护层, 所述保护层为遮光用的黑矩阵。
14. 如权利要求 9所述的内嵌式触控显示装置, 其特征在于, 所述液晶层和 彩膜之间具有平坦化层。
15. 如权利要求 9所述的内嵌式触控显示装置, 其特征在于, 所述平坦化层 的材质为透明有机材料。
PCT/CN2012/086113 2012-08-27 2012-12-07 内嵌式触控显示装置 WO2014032374A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP12876074.1A EP2725409B1 (en) 2012-08-27 2012-12-07 Embedded touch display device
US14/088,256 US9651814B2 (en) 2012-08-27 2013-11-22 Embedded touch display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210308846.2A CN103293734B (zh) 2012-08-27 2012-08-27 内嵌式触控显示装置
CN201210308846.2 2012-08-27

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/088,256 Continuation US9651814B2 (en) 2012-08-27 2013-11-22 Embedded touch display device

Publications (1)

Publication Number Publication Date
WO2014032374A1 true WO2014032374A1 (zh) 2014-03-06

Family

ID=49094889

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/086113 WO2014032374A1 (zh) 2012-08-27 2012-12-07 内嵌式触控显示装置

Country Status (4)

Country Link
US (1) US9651814B2 (zh)
EP (1) EP2725409B1 (zh)
CN (1) CN103293734B (zh)
WO (1) WO2014032374A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104662503A (zh) * 2012-09-24 2015-05-27 松下知识产权经营株式会社 输入装置
KR102294702B1 (ko) 2014-06-03 2021-08-26 동우 화인켐 주식회사 터치 패널
EP2966553B1 (en) * 2014-07-01 2020-02-19 LG Innotek Co., Ltd. Touch window
KR102303064B1 (ko) * 2014-07-01 2021-09-17 엘지이노텍 주식회사 터치 윈도우
KR102347852B1 (ko) * 2014-09-05 2022-01-06 삼성전자주식회사 터치 스크린 패널, 전자 노트 및 휴대용 단말기
JP2021189465A (ja) * 2020-05-25 2021-12-13 株式会社ジャパンディスプレイ 液晶表示装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63204313A (ja) * 1987-02-19 1988-08-24 Semiconductor Energy Lab Co Ltd 圧力感知装置
US5122787A (en) * 1989-01-18 1992-06-16 Seikosha Co., Ltd. Ferroelectric liquid crystal touch panel
US5805129A (en) * 1991-01-08 1998-09-08 Canon Kabushiki Kaisha Inhibiting transition of a surface stabilization state in a ferroelectric liquid crystal element using alternating voltages
CN1723517A (zh) * 2002-12-09 2006-01-18 皇家飞利浦电子股份有限公司 透明触敏开关系统
CN101055395A (zh) * 2007-04-19 2007-10-17 汕头超声显示器有限公司 一种被动驱动的液晶显示器
CN101251667A (zh) * 2007-10-12 2008-08-27 友达光电股份有限公司 液晶显示器
CN101794038A (zh) * 2009-01-28 2010-08-04 株式会社半导体能源研究所 显示装置

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7402332B2 (en) * 2004-02-10 2008-07-22 Dai Nippon Printing Co., Ltd. Liquid crystal display
US8259078B2 (en) * 2006-06-09 2012-09-04 Apple Inc. Touch screen liquid crystal display
US8139189B2 (en) * 2006-12-20 2012-03-20 Dai Nippon Printing Co., Ltd. Liquid crystal display having particular oblique vapor deposition-alignment layer with ferroelectric liquid crystal
US8019962B2 (en) 2007-04-16 2011-09-13 International Business Machines Corporation System and method for tracking the memory state of a migrating logical partition
JP5070977B2 (ja) * 2007-07-31 2012-11-14 大日本印刷株式会社 液晶表示素子
TWI380089B (en) * 2008-12-03 2012-12-21 Au Optronics Corp Method of forming a color filter touch sensing substrate
US8217913B2 (en) * 2009-02-02 2012-07-10 Apple Inc. Integrated touch screen
US8593410B2 (en) * 2009-04-10 2013-11-26 Apple Inc. Touch sensor panel design
US9075484B2 (en) * 2009-06-02 2015-07-07 Pixart Imaging Inc. Sensor patterns for mutual capacitance touchscreens
KR101735568B1 (ko) * 2010-03-30 2017-05-15 엘지디스플레이 주식회사 컬러필터 어레이 기판과 이를 포함하는 액정 표시 장치, 및 그의 제조 방법
CN102375629B (zh) * 2010-08-13 2015-05-06 上海天马微电子有限公司 内嵌电容式触摸屏及其驱动方法和驱动装置
CN102455536B (zh) * 2010-10-29 2014-11-19 三星显示有限公司 具有集成触摸屏面板的液晶显示器及其驱动方法
US20130050130A1 (en) * 2011-08-22 2013-02-28 Sharp Kabushiki Kaisha Touch panel and display device with differential data input
US9075488B2 (en) * 2011-11-03 2015-07-07 Synaptics Incorporated Virtual geometries for integrated display and sensing devices

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63204313A (ja) * 1987-02-19 1988-08-24 Semiconductor Energy Lab Co Ltd 圧力感知装置
US5122787A (en) * 1989-01-18 1992-06-16 Seikosha Co., Ltd. Ferroelectric liquid crystal touch panel
US5805129A (en) * 1991-01-08 1998-09-08 Canon Kabushiki Kaisha Inhibiting transition of a surface stabilization state in a ferroelectric liquid crystal element using alternating voltages
CN1723517A (zh) * 2002-12-09 2006-01-18 皇家飞利浦电子股份有限公司 透明触敏开关系统
CN101055395A (zh) * 2007-04-19 2007-10-17 汕头超声显示器有限公司 一种被动驱动的液晶显示器
CN101251667A (zh) * 2007-10-12 2008-08-27 友达光电股份有限公司 液晶显示器
CN101794038A (zh) * 2009-01-28 2010-08-04 株式会社半导体能源研究所 显示装置

Also Published As

Publication number Publication date
US20140078421A1 (en) 2014-03-20
US9651814B2 (en) 2017-05-16
CN103293734B (zh) 2015-12-02
EP2725409A4 (en) 2015-09-23
EP2725409B1 (en) 2020-02-05
EP2725409A1 (en) 2014-04-30
CN103293734A (zh) 2013-09-11

Similar Documents

Publication Publication Date Title
US9618779B2 (en) LCD viewing angle control method, LCD panel and LCD
JP4380648B2 (ja) 液晶装置及び電子機器
WO2014032374A1 (zh) 内嵌式触控显示装置
JPH1124068A (ja) 液晶層内のデュアルドメインの形成方法、それを用いた液晶表示装置の製造方法、及び液晶表示装置
JP2009128905A (ja) 液晶ディスプレイ装置
CN101387798A (zh) 液晶显示面板和使用其的lcd装置
WO2017070996A1 (zh) 一种视角可调控的液晶显示面板及其视角调控方法
CN1916702B (zh) 液晶显示器
JPH0772491A (ja) 単純マトリクス型液晶表示装置
TW200823527A (en) Liquid crystal display device
CN100376938C (zh) 可调视角液晶显示器
CN103293766A (zh) 横向电场型液晶显示装置
JP3684398B2 (ja) 光学的に補償されたスプレイモード液晶表示装置
CN1325977C (zh) 液晶显示装置
US9007558B2 (en) Liquid crystal display
CN101498871B (zh) 视角可控液晶显示装置及其驱动方法
JP4357622B2 (ja) 液晶表示装置
KR101021032B1 (ko) 광학적으로 등방성인 액정혼합물과 수직 전기장을 이용한 시야각 스위칭 액정 표시 소자
WO2015012092A1 (ja) 液晶表示装置
KR101383785B1 (ko) 수평 스위칭 모드 액정 표시 장치
JP5529709B2 (ja) 液晶表示装置
JP6277020B2 (ja) 液晶素子、液晶表示装置
KR101026035B1 (ko) 수직 전기장과 광학적으로 등방성인 액정혼합물을 이용한 시야각 스위칭 액정 표시 소자
TWI504984B (zh) 顯示面板及包含該顯示面板的顯示裝置
KR101960834B1 (ko) 액정 소자, 액정 표시 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12876074

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE