WO2014030904A1 - 무선 통신 시스템에서 채널상태정보(csi) 전송 방법 및 장치 - Google Patents

무선 통신 시스템에서 채널상태정보(csi) 전송 방법 및 장치 Download PDF

Info

Publication number
WO2014030904A1
WO2014030904A1 PCT/KR2013/007454 KR2013007454W WO2014030904A1 WO 2014030904 A1 WO2014030904 A1 WO 2014030904A1 KR 2013007454 W KR2013007454 W KR 2013007454W WO 2014030904 A1 WO2014030904 A1 WO 2014030904A1
Authority
WO
WIPO (PCT)
Prior art keywords
csi
crs
channel
channel state
state information
Prior art date
Application number
PCT/KR2013/007454
Other languages
English (en)
French (fr)
Inventor
김형태
박종현
김기준
김은선
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Priority to EP13831761.5A priority Critical patent/EP2890177B1/en
Priority to AU2013306572A priority patent/AU2013306572B2/en
Priority to CN201380044429.4A priority patent/CN104584625B/zh
Priority to US14/384,137 priority patent/US9509471B2/en
Priority to JP2015527394A priority patent/JP5953436B2/ja
Priority to KR1020157003204A priority patent/KR101662088B1/ko
Priority to RU2015109624/07A priority patent/RU2600569C2/ru
Publication of WO2014030904A1 publication Critical patent/WO2014030904A1/ko
Priority to US15/343,816 priority patent/US9749106B2/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0626Channel coefficients, e.g. channel state information [CSI]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/022Site diversity; Macro-diversity
    • H04B7/024Co-operative use of antennas of several sites, e.g. in co-ordinated multipoint or co-operative multiple-input multiple-output [MIMO] systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0632Channel quality parameters, e.g. channel quality indicator [CQI]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/24Radio transmission systems, i.e. using radiation field for communication between two or more posts
    • H04B7/26Radio transmission systems, i.e. using radiation field for communication between two or more posts at least one of which is mobile
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0023Time-frequency-space
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0032Distributed allocation, i.e. involving a plurality of allocating devices, each making partial allocation
    • H04L5/0035Resource allocation in a cooperative multipoint environment
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/14Two-way operation using the same type of signal, i.e. duplex
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/14Two-way operation using the same type of signal, i.e. duplex
    • H04L5/1469Two-way operation using the same type of signal, i.e. duplex using time-sharing

Definitions

  • the present invention relates to a wireless communication system, and more particularly, to determine a common reference signal (CRS) overhead and calculate channel state information in a wireless communication system supporting Cooperative Multipoint (CoMP).
  • CRS common reference signal
  • CoMP Cooperative Multipoint
  • the present invention relates to a method and apparatus for transmitting channel state information.
  • Multi-Input Multi-Output (MIMO) technology improves the efficiency of data transmission and reception by using multiple transmit antennas and multiple receive antennas, eliminating the use of one transmit antenna and one receive antenna.
  • MIMO Multi-Input Multi-Output
  • the receiving side receives data through a single antenna path, but if multiple antennas are used, the receiving end receives data through several paths. Therefore, the data transfer rate can be improved-the amount of transmission can be improved, and the coverage can be increased.
  • Single-cell MIM0 operation includes a single user-MIMO (SU-MIM0) scheme in which one UE receives a downlink signal in one cell, and two or more UEs perform one operation.
  • Multi-user MIMO (MIHIIMO) scheme for receiving a downlink signal in a cell may be divided.
  • CoMP coordinated multi-point
  • Channel estimation refers to a process of restoring a received signal by compensating for distortion of a signal caused by fading.
  • fading is a multipath in a wireless communication system environment. This is a phenomenon in which the strength of a signal fluctuates rapidly due to time delay.
  • a reference signal known to both the transmitter and the receiver is required. Also, the reference signal is simply It may also be referred to as a pilot (Pi lot) depending on RS (Reference Signal) or applicable standard.
  • the downlink reference signal is a coherent such as a Physical Downlink Shared CHannel (PDSCH), a Physical Control Format Indicator CHannel (PCFICH), a Physical Hybrid Indicator CHannel (PHICH), and a Physical Downlink Control CHannel (PDCCH). (coherent) Pilot signal for demodulation.
  • the downlink reference signal includes a common reference signal (CRS) shared by all terminals in a cell and a dedicated reference signal (DRS) dedicated to a specific terminal.
  • CRS common reference signal
  • DRS dedicated reference signal
  • DRS-based data demodulation is considered to support efficient reference signal operation and advanced transmission scheme. That is, DRSs for two or more layers may be defined to support data transmission through an extended antenna. Since the DRS is precoded by the same precoder as the data, the channel information for demodulating data at the receiving side can be easily estimated without any separate coding information.
  • a reference signal for acquiring channel state information may be defined at a receiving side, that is, CSI ⁇ RS.
  • a method of transmitting channel state information (CSI) by a terminal in a wireless communication system includes receiving a channel state information-reference signal (CSI-RS). Doing; Determining an overhead of a common reference signal (CRS) resource element based on the same antenna port number as the antenna port number associated with the CSI-RS; And transmitting the channel state information calculated based on the overhead of the CSI—RS and the CRS resource element.
  • CSI-RS channel state information-reference signal
  • a method for receiving channel state information (CSI) by a base station includes: transmitting channel state information ⁇ reference signal (CSI-RS); And receiving the channel state information calculated based on an overhead of a CRS resource element and the CSI-RS, wherein the overhead of the CRS resource element is equal to the number of antenna ports associated with the CSI-RS. Determined based on the number of ports.
  • CSI-RS channel state information ⁇ reference signal
  • a terminal for transmitting channel state information (CSI) in a wireless communication system includes: a RKRadio Frequency unit; And a processor, wherein the processor receives a channel state information_reference signal (CSI_RS) and is based on a common reference signal (CRS) resource based on the same antenna port number as the number of antenna ports associated with the CSI-RS. It is configured to determine the overhead of the element and to transmit the channel state information calculated based on the overhead of the CSI RS and the CRS resource element.
  • CSI_RS channel state information_reference signal
  • CRS common reference signal
  • a base station for receiving channel state information (CSI) in a wireless communication system includes: a radio frequency (I ⁇ ) unit; And a processor, wherein the processor transmits a channel state information ⁇ reference signal (CSI-RS), receives the channel state information calculated based on an overhead of a CRS resource element and the CSI-RS,
  • CSI-RS channel state information ⁇ reference signal
  • the overhead of the CRS resource element is configured to be determined based on the same antenna port number as the antenna port number associated with the CSI-RS.
  • the method may further include receiving CSI configuration information for reporting the CSI.
  • the CSI configuration information may be configured to report a channel quality indicator (CQI) without reporting a precoding matrix indicator (PMI) and a rank indicator (RI).
  • CQI channel quality indicator
  • PMI precoding matrix indicator
  • RI rank indicator
  • the CSI configuration information may be transmitted through RRC (Radio Resource Control) signaling.
  • RRC Radio Resource Control
  • the antenna port number associated with the CSI—RS may be set to 4 or less.
  • the CSI may indicate a channel state in a cooperative multi-point (CoMP) time division (TDD) system that satisfies channel reciprocity.
  • CoMP cooperative multi-point
  • TDD time division
  • channel state information may be more effectively reported in a wireless communication system.
  • channel overhead information may be calculated by efficiently determining a common reference signal (CRS) overhead.
  • CRS common reference signal
  • 1 is a diagram illustrating a structure of a downlink radio frame.
  • FIG. 2 shows an example of a resource grid for one downlink slot.
  • 3 shows a structure of a downlink subframe.
  • FIG. 5 is a configuration diagram of a wireless communication system having multiple antennas.
  • FIG. 6 is a diagram illustrating patterns of existing CRSs and DRSs.
  • FIG. 7 is a diagram illustrating an example of a DM RS pattern.
  • FIG. 8 is a diagram illustrating an example of a CSI—RS pattern.
  • 9 is a diagram for explaining an example of a method in which a CSI-RS is periodically transmitted.
  • 10 is a diagram for explaining an example of a method in which a CSI-RS is transmitted aperiodically.
  • FIG. 11 illustrates an example in which two CSI-RS configurations are used.
  • FIG. 12 is a flowchart illustrating a method of transmitting channel state information according to an embodiment of the present invention.
  • FIG. 13 is a diagram illustrating a configuration of a base station and a terminal that can be applied to an embodiment of the present invention.
  • each component or feature may be considered optional unless stated otherwise.
  • Each component or feature may be implemented in a form that is not combined with other components or features.
  • some of the components and / or features may be combined to form an embodiment of the present invention.
  • the order of the operations described in the embodiments of the present invention may be changed. Some components or features of one embodiment may be included in another embodiment or may be replaced with corresponding components or features of another embodiment.
  • Embodiments of the present invention will be described with reference to the relationship between data transmission and reception between a base station and a terminal.
  • the base station has a meaning as a terminal node of the network that directly communicates with the terminal.
  • the specific operation described as performed by the base station in this document may be performed by an upper node of the base station in some cases.
  • a 'base station (BS)' may be replaced by terms such as a fixed stat ion, a Node B, an eNode B (eNB), and an access point (AP).
  • the repeater may be replaced by other terms such as relay node (RN) and relay station (RS).
  • RN relay node
  • RS relay station
  • the term 'terminal' may be replaced with terms such as a user equipment (UE), a mole le station (MS), a mole le subscriber station (MSS), and a subscribing station (SS).
  • Embodiments of the present invention may be supported by standard documents disclosed in at least one of the IEEE 802 system, the 3GPP system, the 3GPP LTE and the LTE-A (LTE-Advanced) system, and the 3GPP2 system, which are wireless access systems. That is, steps or parts which are not described to clearly reveal the technical spirit of the present invention among the embodiments of the present invention may be supported by the above documents. In addition, all the terms disclosed in this document can be described by the standard document.
  • CDMA code division multiple access
  • FDMA frequency division multiple access
  • TDMA time division multiple access
  • OFDMA orthogonal frequency division multiple access
  • SC-FDMA single carrier frequency
  • CDMA may be implemented by a radio technology such as Universal Terrestrial Radio Access (UTRA) or CDMA2000.
  • TDMA may be implemented in a wireless technology such as Global System for Mobile communication (GSM) / Gener a 1 Packet Radio Service (GPRS) / Enhanced Data Rates for GSM Evolut ion (EDGE).
  • GSM Global System for Mobile communication
  • GPRS Packet Radio Service
  • EDGE Enhanced Data Rates for GSM Evolut ion
  • 0FDMA may be implemented with a radio technology such as IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802-20, Evolved UTRA (E-UTRA).
  • UTRA is part of the UMTSCUniversal Mobile Telecommunications System.
  • 3rd Generation Partnership Project (3GPP) long term evolut ion (LTE) is part of Evolved UMTS (E-UMTS) using E-UTRA, and employs 0FDMA in downlink and SC-FDMA in uplink.
  • LTE—A Advanced is an evolution of 3GPP LTE.
  • WiMAX can be described by the IEEE 802.16e standard (WirelessMAN-OFDMA Reference System) and the advanced IEEE 802.16m standard (WirelessMAN-OFDMA Advanced system). For clarity, the following description focuses on the 3GPP LTE and LTE-A standards, but the technical spirit of the present invention is not limited thereto. .
  • a structure of a downlink radio frame will be described with reference to FIG. 1.
  • uplink / downlink data packet transmission is performed in subframe units, and one subframe is defined as a predetermined time interval including a plurality of OFDM symbols.
  • the 3GPP LTE standard supports a type 1 radio frame structure applicable to frequency division duplex (FDD) and a type 2 radio frame structure applicable to time division duplex (TDD).
  • FIG. 1 is a diagram illustrating a structure of a type 1 radio frame.
  • the downlink radio frame consists of 10 subframes, and one subframe consists of two slots in the time domain.
  • the time it takes for one subframe to be transmitted is called a TTKtransmission time interval).
  • one subframe may have a length of 1 ms, and one slot may have a length of 0.5 ms.
  • One slot includes a plurality of 0FDM symbols in the time domain and a plurality of Resource Blocks (RBs) in the frequency domain. Since the 3GPPLTE system uses 0FDMA in downlink, the 0FDM symbol is one symbol interval. The 0 FDM symbol may also be referred to as an SC-FDMA symbol or symbol interval.
  • a resource block (RB) is a resource allocation unit and may include a plurality of consecutive subcarriers (s L1 bcarriers) in one slot.
  • the number of 0FDM symbols included in one slot may vary depending on the configuration of CPCCyclic Prefix).
  • CPs include extended CPs and normal CPC normal CPs.
  • the number of 0FDM symbols in one slot may be seven.
  • the 0FDM symbol is configured by an extended CP, the length of one 0FDM symbol is increased.
  • the number of 0FDM symbols included in one slot is smaller than that of the normal CP.
  • the number of 0FDM symbols included in one slot may be six. If the channel state is unstable, such as when the terminal moves at a high speed, an extended CP may be used to further reduce intersymbol interference.
  • one subframe includes 14 0FDM symbols.
  • the first two or three 0FDM symbols of each subframe may be allocated to a physical downlink control channel (PDCCH), and the remaining 0FDM symbols may be allocated to a physical downlink shared channel (PDSCH).
  • PDCCH physical downlink control channel
  • PDSCH physical downlink shared channel
  • the downlink slot includes a plurality of OFDM symbols in the time domain and includes a plurality of resource blocks in the frequency domain.
  • one downlink slot includes 7 OFDM symbols and one resource block includes 12 subcarriers as an example.
  • the present invention is not limited thereto.
  • Each element on the resource grid is called a resource element (RE).
  • the resource element a (k, l) becomes a resource element located in the k th subcarrier and the first 0FDM symbol.
  • one resource block includes 12X7 resource elements (in the case of an extended CP, 12X6 resource elements). Since the interval of each subcarrier is 15 kHz, one resource block includes about 180 kHz in the frequency domain.
  • NDL is the number of resource blocks included in a downlink slot. The value of NDL may be determined according to the downlink transmission bandwidth set by scheduling of the base station.
  • PDSCH Physical Downlink Shared Chancel
  • the basic unit of transmission is one subframe. That is, downlink control channels used in a D-.3GPP LTE system in which PDCCH and PDSCH are allocated over two slots include, for example, a physical control format indicator channel (PCFICH), Physical Downlink Control Channel (PDCCH), Physical HARQ Indicator Channel (PHICH), and the like.
  • PCFICH physical control format indicator channel
  • PDCCH Physical Downlink Control Channel
  • PHICH Physical HARQ Indicator Channel
  • the PCFICH is transmitted in the first 0FDM symbol of a subframe and includes information on the number of OFDM symbols used for control channel transmission in the subframe.
  • the PHICH includes a HARQACK / NACK signal as a response of uplink transmission.
  • Control information transmitted through the PDCCH is referred to as downlink control information (DCI).
  • the DCI includes uplink or downlink scheduling information or includes an uplink transmit power control command for a certain terminal group.
  • PDCCH is a resource allocation and transmission format of the DL-SCH.
  • Information of a higher layer control message such as resource allocation information of an uplink shared channel (UL-SCH), paging information of a paging channel (PCH), system information on a DL-SCH, and a random access response transmitted on a PDSCH.
  • Resource allocation a set of transmit power control commands for individual terminals in an arbitrary terminal group, transmit power control information, activation of Voice over IP (VoIP), and the like.
  • a plurality of PDCCHs may be transmitted in the control region.
  • the terminal may monitor the plurality of PDCCHs.
  • the PDCCH is transmitted in a combination of one or more consecutive Control Channel Elements (CCEs).
  • CCE is a logical allocation unit used to provide a PDCCH at a coding rate based on the state of a radio channel.
  • the CCE processes multiple resource element groups.
  • the format of the PDCCH and the number of available bits are determined according to the correlation between the number of CCEs and the coding rate provided by the CCEs.
  • the base station determines the PDCCH format according to the DCI transmitted to the terminal, and adds a Cyclic Redundancy Check (CRC) to the control information.
  • CRC Cyclic Redundancy Check
  • the CRC is masked with an identifier called Radio Network Temporary Identifier (RNTI) according to the owner or purpose of the PDCCH.
  • RNTI Radio Network Temporary Identifier
  • PDCCH 7 ⁇ In case of a specific UE, the cell-RNTI (C-RNTI) identifier of the UE may be masked in the CRC.
  • a paging indicator identifier may be masked to the CRC.
  • the PDCCH is for system information (more specifically, system information block (SIB))
  • SI—RNTI system information RNTI
  • the random access RNTI RA-RNTI
  • the uplink subframe may be divided into a control region and a data region in the frequency domain.
  • a physical uplink control channel (PUCCH) including uplink control information is allocated.
  • a physical uplink shared channel (PUSCH) including user data is allocated.
  • PUCCH Physical Uplink Control Channel
  • PUSCH physical uplink shared channel
  • one UE does not simultaneously transmit a PUCCH and a PUSCH.
  • PUCCH for one UE is allocated to an RB pair in a subframe. Resource blocks belonging to the resource block pair occupy different subcarriers for two slots. This is called a resource block pair allocated to the PUCCH is frequency-hopped at the slot boundary.
  • MIMO Multiple Antenna
  • the Multiple Input Multiple Output (MIM0) system is a system that improves the transmission and reception efficiency of data by using multiple transmission antennas and multiple reception antennas.MIM0 technology does not rely on a single antenna path to receive an entire message. The entire data may be received by combining a plurality of pieces of data received through a plurality of antennas.
  • the MIM0 technology includes a spatial diversity technique and a spatial multiplexing technique.
  • Spatial diversity scheme can increase transmission reliability or cell radius through diversity gain, and is suitable for data transmission for a mobile terminal moving at high speed.
  • Spatial multiplexing can increase the data rate without increasing the bandwidth of the system by simultaneously transmitting different data.
  • FIG. 5 is a configuration diagram of a wireless communication system having multiple antennas.
  • the theoretical channel is proportional to the number of antennas, unlike when only a plurality of antennas are used in a transmitter or a receiver
  • the transmission capacity is increased. Therefore, the transmission rate can be improved and the frequency efficiency can be significantly improved.
  • the transmission rate may theoretically increase as the rate of increase rate Ri multiplied by the maximum transmission rate Ro when using a single antenna.
  • a transmission rate four times higher than a single antenna system may be theoretically obtained. Since the theoretical increase in capacity of multi-antenna systems was proved in the mid-90s, various techniques have been actively studied to bring this to substantial data rate improvement. In addition, some technologies are already being reflected in various wireless communication standards such as 3G mobile communication and next generation WLAN.
  • the transmission signal if there are NT transmission antennas, the maximum information that can be transmitted is NT.
  • the transmission information may be expressed as follows.
  • each transmission information ⁇ may have a different transmission power.
  • Each full power adjusted transmission information is as follows.
  • S may be expressed as follows using the diagonal matrix P of the transmission power.
  • 1 means an increment between the i th transmit antenna and the j th information.
  • W is also called a precoding matrix.
  • the transmission signal X may be considered in different ways depending on two cases (eg, spatial diversity and spatial multiplexing).
  • spatial multiplexing different signals are multiplexed and the multiplexed signal is transmitted to the receiver, so that elements of the information vector (s) have different values.
  • spatial diversity the same signal is repeatedly transmitted through a plurality of channel paths so that the elements of the information vector (s) have the same value.
  • a combination of spatial multiplexing and spatial diversity techniques can also be considered. That is, the same signal may be transmitted according to a spatial diversity scheme through three transmission antennas, for example, and the remaining signals may be spatially multiplexed and transmitted to a receiver.
  • the received signals of each antenna, ⁇ , ⁇ may be expressed as vectors as follows.
  • channels may be classified according to transmit / receive antenna indexes.
  • the signal passing through the receiving antenna i from the transmitting antenna j is denoted by " ⁇ . Note that, in ⁇ , the order of the index-the receiving antenna index is first, and the index of the transmitting antenna is later.
  • FIG. 5 (b) shows a channel from NT transmit antennas to receive antenna i.
  • the channels may be bundled and displayed in the form of a vector and a matrix.
  • a channel arriving from a total of NT transmit antennas to a receive antenna i may be represented as follows.
  • all channels arriving from the NT transmit antennas to the NR receive antennas may be expressed as follows.
  • the white noise " ' ⁇ " " ⁇ added to each of the NR receive antennas can be expressed as follows.
  • the received signal can be expressed as follows through the imaginary mathematical modeling ring.
  • the number of rows and columns of the channel matrix H representing the channel state is determined by the number of transmit / receive antennas.
  • the number of rows is equal to the number of receiving antennas NR, and the number of columns is equal to the number of transmitting antennas NT. That is, the channel matrix H is NRXNT matrix.
  • a rank of a matrix is defined as the minimum number of rows or columns that are independent of each other. Thus, the tank of the matrix cannot be larger than the number of rows or columns.
  • the rank of the channel matrix H (rawfe (H)) is limited as follows.
  • 'rank' indicates the number of paths that can independently transmit a signal
  • 'number of layers' indicates the number of signal streams transmitted through each path.
  • the tank since the transmitting end transmits the number of layers corresponding to the number of hanks used for signal transmission, unless otherwise specified, the tank has the same meaning as the number of layers.
  • a packet is transmitted. Since a transmitted packet is transmitted through a wireless channel, signal distortion may occur during the transmission process. In order to correctly receive the distorted signal at the receiving end, the distortion must be corrected in the received signal using the channel information. In order to find out the hard channel information, the signal transmitted by both the transmitting side and the receiving side is transmitted. It is mainly used to find channel information with the degree of distortion when it is received through the channel. The signal is called a pilot signal or a reference signal.
  • RSs can be classified into two types according to their purpose.
  • One is an RS used for channel information acquisition, and the other is an RS used for data demodulation. Since the former is an RS for allowing the terminal to acquire downlink channel information, the former should be transmitted over a wide band, and a terminal that does not receive downlink data in a specific subframe should be able to receive and measure the corresponding RS.
  • Such RS is also used for measurement such as handover.
  • the latter is an RS that is transmitted together with the corresponding resource when the base station transmits a downlink, and the terminal can estimate the channel by receiving the corresponding RS, and thus can demodulate the data. This RS should be transmitted in the area where data is transmitted.
  • CRS common reference signal
  • DRS dedicated RS
  • CRS is for obtaining information about channel status and measuring for handover May be used and may be referred to as cell-specific RS.
  • the DRS is used for data demodulation and may be called a UE-specific RS.
  • DRS is used only for data demodulation, and CRS can be used for both purposes of channel information acquisition and data demodulation.
  • the CRS is a cell-specific RS and is transmitted every subframe for a wideband.
  • the CRS can be transmitted for up to four antenna ports depending on the number of transmit antennas in the base station. For example, if the number of transmit antennas of the base station is two, CRSs for antenna ports 0 and 1 are transmitted, and if four, CRSs for antenna ports 0 to 3 are transmitted.
  • FIG. 6 shows a pattern of CRS and DRS on one resource block (12 subcarriers on 14 OFDM symbols X frequencies in time in case of a normal CP) in a system in which a base station supports four transmit antennas.
  • resource elements RE denoted as' R0 1 , 'Rl', 'R2' and 'R3' indicate positions of CRSs for antenna port indexes 0, 1, 2, and 3, respectively.
  • a resource element denoted as 'D' in FIG. 6 indicates a position of a DRS defined in an LTE system.
  • RS for up to eight transmit antennas must also be supported. Since the downlink RS in the LTE system is defined only for up to four antenna ports, in the LTE-A system, if the base station has up to 8 downlink transmit antennas over 4 7) 1, the RS for these antenna ports is It handi be defined further. As RS for up to eight transmit antenna ports, both RS for channel measurement and RS for data demodulation should be considered.
  • Backward compatibility means that existing LTE terminals support LTE-A system operation correctly. From the RS transmission point of view, if the RS for the maximum 8 transmit antenna ports is added to the time-frequency domain where CRS defined in the LTE standard is transmitted every subframe over the entire band, the RS overhead becomes excessively large. do. Therefore, in designing RS for up to 8 antenna ports, consideration should be given to reducing RS overhead.
  • RS newly introduced in the LTE-A system can be classified into two types. One of them is RS in channel state information for the purpose of channel measurement for the selection of transmission rank, modulation and coding scheme (MCS), precoding matrix index (PMI), etc. State Information RS (CSI-RS), and the other is a demodulation-reference signal (DM RS), which is an RS for demodulating data transmitted through up to eight transmit antennas.
  • MCS modulation and coding scheme
  • PMI precoding matrix index
  • CSI-RS State Information RS
  • DM RS demodulation-reference signal
  • CSI-RS for channel measurement purpose is different from CRS in LTE system, which is used for data demodulation at the same time as channel measurement and handover measurement. There is a feature to be designed.
  • the CSI-RS may also be used for the purpose of measuring handover. Since the CSI-RS is transmitted only for obtaining channel state information, unlike the CRS in the existing LTE system, the CSI-RS does not need to be transmitted every subframe. Thus, to reduce the overhead of the CSI-RS, the CSI-RS may be designed to be transmitted intermittently (eg, periodically) on the time axis.
  • a dedicated DM RS is transmitted to a terminal scheduled for data transmission.
  • the DM RS dedicated to a specific terminal may be designed to be transmitted only in a resource region in which the terminal is scheduled, that is, a time in which data for the terminal is transmitted—frequency region.
  • FIG. 7 is a diagram illustrating an example of a DM RS pattern defined in an LTE-A system.
  • FIG. 7 shows positions of resource elements for transmitting a DM RS on one resource block in which downlink data is transmitted (12 subcarriers over 14 0FDM symbol X frequencies in time in case of a general CP).
  • the DM RS may be transmitted for four antenna ports (antenna port indexes 7, 8, 9, and 10) which are additionally defined in the LTE-A system.
  • DM RSs for different antenna ports can be distinguished by being located in different frequency resources (subcarriers) and / or different time resources (0 FDM symbols) (ie, can be multiplexed in FDM and / or TDM schemes). .
  • DM RSs for different antenna ports located on the same time-frequency resource may be distinguished from each other by orthogonal codes (ie, multiplexed in the CDM manner).
  • DM RSs for antenna ports 7 and 8 may be located in resource elements (REs) indicated as DMRSCDM group 1, and they may be multiplexed by an orthogonal code.
  • DM RS group 2 in the example of FIG. In the resource elements denoted by DM RSs for antenna ports 9 and 10 may be located, they may be multiplexed by an orthogonal code.
  • FIG. 8 is a diagram illustrating examples of a CSI-RS pattern defined in an LTE-A system.
  • FIG. 8 shows the location of a resource element on which a CSI-RS is transmitted on one resource block in which downlink data is transmitted (12 subcarriers on 14 OFDM symbols X frequencies in time in the case of a general CP).
  • one of the CSI-RS patterns of FIGS. 8 (a) to 8 (e) may be used.
  • the CSI-RS may be transmitted for eight antenna ports (antenna port indexes 15, 16, 17., 18, 19, 20, 21, and 22) which are additionally defined in the LTE-A system.
  • CSI-RSs for different antenna ports can be distinguished by being located in different frequency resources (subcarriers) and / or different time resources (OFDM symbols)-(ie, can be multiplexed in FDM and / or TDM schemes). ).
  • CSI-RSs for different antenna ports located on the same time-frequency resource may be distinguished from each other by orthogonal codes (ie, multiplexed in the CDM scheme).
  • CSI-RSs for antenna ports 15 and 16 may be located in resource elements (REs) designated as CSI-RS CDM group 1, which may be multiplexed by an orthogonal code.
  • REs resource elements
  • CSI-RSs for antenna ports 17 and 18 may be located in resource elements indicated as CSI-RS CDM group 2, which may be multiplexed by an orthogonal code.
  • CSI-RSs for antenna ports 19 and 20 may be located in resource elements indicated as CSI-RS CDM group 3, which may be multiplexed by an orthogonal code.
  • CSI-RSs for antenna ports 21 and 22 may be located, and they may be multiplexed by an orthogonal code.
  • FIGS. 8 (b) to 8 (e) The same principle described with reference to FIG. 8 (a) can be applied to FIGS. 8 (b) to 8 (e).
  • FIGS. 6 to 8 are merely exemplary and are not limited to a specific RS pattern in applying various embodiments of the present disclosure. That is, even when RS patterns different from those of FIGS. 6 to 8 are defined and used, various embodiments of the present invention may be equally applied.
  • CoMP transceiver technology also referred to as co-MIM0, collaborative MIM0 or network MIM0, etc.
  • CoMP technology can increase the performance of the terminal located in the cell-edge and increase the average sector throughput.
  • CoMP schemes applicable to downlink can be classified into joint processing (JP) techniques and coordinated scheduling I beamforming (CS / CB) techniques.
  • the JP technique may use data at each point (base station) of the CoMP cooperative unit.
  • CoMP cooperative unit means a set of base stations used in a cooperative transmission scheme.
  • the JP technique can be classified into a joint transmission technique and a dynamic cell selection technique.
  • the joint transmission scheme refers to a scheme in which PDSCH is transmitted from a plurality of points (part or all of CoMP cooperative units) at a time. That is, data transmitted to a single terminal may be simultaneously transmitted from a plurality of transmission points (TPs). According to the joint transmission technique, the quality of a received signal can be improved coherently or non-coherent ly, and can also actively cancel interference with other terminals. .
  • the dynamic cell selection scheme refers to a scheme in which PDSCHs are transmitted from one point (of CoMP cooperative units) at a time. That is, data transmitted to a single terminal at a specific point in time is transmitted from one point, and other points in the cooperative unit do not transmit data to the corresponding terminal at that point, and the point for transmitting data to the corresponding terminal is dynamically Can be selected.
  • CoMP cooperative units may cooperatively perform beamforming of data transmission for a single terminal.
  • data is transmitted only in the serving cell
  • user scheduling / beamforming may be determined by coordination of cells of a corresponding CoMP cooperative unit.
  • coordinated multi-point reception means receiving a signal transmitted by coordination of a plurality of geographically separated points.
  • CoMP schemes applicable to uplink can be classified into joint reception (JR) and coordinated schedunng / beamfoming (CS / CB).
  • the JR scheme means that a signal transmitted through a PUSCH is received at a plurality of reception points, and the CS / CB scheme means that a PUSCH is received only at one point, but user scheduling / beamforming is a function of cells of a CoMP cooperative unit. Means determined by the adjustment.
  • the base station should transmit CSI-RSs for all antenna ports. Transmitting CSI-RS for up to eight transmit antenna ports every subframe has a significant disadvantage, so CSI-RS should be transmitted intermittently on the time axis rather than every subframe. Reduce head Accordingly, the CSI 'RS may be transmitted periodically with a period of one subframe any integer multiple or may be transmitted in a specific transmission pattern.
  • the period or pattern in which the CSI-RS is transmitted may be configured by the base station.
  • the UE In order to measure the CSI-RS, the UE must know the CSI—RS configuration for each CSI-RS antenna port of the cell to which the UE belongs.
  • a downlink subframe index in which the CSI-RS is transmitted and a time ⁇ frequency position of the CSI-RS resource element (RE) in the transmission subframe for example, FIGS. CSI-RS pattern, as shown in e
  • CSI-RS sequence a sequence used for CSI-RS purposes, according to a predetermined rule based on slot number, cell ID, CP length, etc. randomly generated), and the like.
  • a plurality of CSI-RS configurations may be used in a given base station, and the base station may inform a CSI-RS configuration to be used for terminal (s) in a cell among the plurality of CSI-RS configurations.
  • the base station may inform a CSI-RS configuration to be used for terminal (s) in a cell among the plurality of CSI-RS configurations.
  • resources to which the CSI-RS for each antenna port is transmitted should be orthogonal to each other.
  • the CSI-RSs for each antenna port may be multiplexed in FDM, TDM and / or CDM scheme using orthogonal frequency resources, orthogonal time resources, and / or orthogonal code resources. Can be.
  • Band 1 for the BS to inform UEs in a cell of CSI-RS information (CSI-RS configuration (conf igurat ion)).
  • CSI-RS information CSI-RS configuration (conf igurat ion)
  • the time information includes subframe numbers through which CSI-RSs are transmitted, periods during which CSI-RSs are transmitted, subframe offsets through which CSI-RSs are transmitted, and CSI-RS resource elements (RE) of specific antennas.
  • the transmitted 0FDM symbol number may be included.
  • the information about the frequency may include frequency spacing in which the CSI-RS resource element (RE) of a specific antenna is transmitted, an offset or shift value of the RE in the frequency axis, and the like.
  • CSI—RS may be transmitted periodically with an integer multiple of one subframe (eg, 5 subframe periods, 10 subframe periods, 20 subframe periods, 40 subframe periods, or 80 subframe periods). .
  • one radio frame includes 10 subframes (subframe numbers 0 to 9).
  • 10 subframes subframe numbers 0 to 9
  • a transmission period of a CSI-RS of a base station is 10 ms (ie, 10 subframes) and a CSI-RS transmission offset is 3 is illustrated.
  • the offset value may have a different value for each base station so that the CSI-RS of several cells may be evenly distributed in time.
  • the offset value may be one of 0 to 9.
  • the offset value when the CSI-RS is transmitted in a period of 5 ms, the offset value may have one of 0 to 4, and when the CSI—RS is transmitted in the period of 20 ms, the offset value is one of 0 to 19.
  • the offset value may have one of 0 to 39 when the CSI-RS is transmitted in a period of 40 ms.
  • the offset value may be 0 to 79 when the CSI-RS is transmitted in a period of 80 ms. It can have one value.
  • This offset value indicates the value of the subframe where the base station transmitting the CSI-RS in a predetermined period starts the CSI-RS transmission.
  • the terminal can receive the CSI-RS of the base station at the corresponding subframe location by using the value.
  • the terminal measures the channel through the received CSI-RS and As a result, information such as CQI, PMI and / or Rank Indicator (RI) can be reported to the base station. Except where CQI, PMI, and RI are distinguished and described herein, these may be collectively referred to as CQI (or CSI).
  • CQI or Rank Indicator
  • the CSI-RS transmission period and offset may be separately designated for each CSI-RS configuration.
  • FIG. 10 is a diagram for explaining an example of a method in which a CSI-RS is transmitted aperiodically.
  • one radio frame includes 10 subframes (subframe numbers 0 to 9).
  • the subframe in which the CSI-RS is transmitted may appear in a specific pattern.
  • the CSI-RS transmission pattern may be configured in 10 subframe units, and whether or not to transmit CSI-RS in each subframe may be designated as a 1-bit indicator.
  • 10 illustrates a CSI-RS pattern transmitted at subframe indexes 3 and 4 within 10 subframes (subframe indexes 0 to 9). Such an indicator may be provided to the terminal through higher layer signaling.
  • the configuration for CSI-RS transmission may be configured in various ways as described above.
  • the base station may configure the CSI-RS. I need to tell the terminal-. Embodiments of the present invention for informing the UE of the CSI-RS configuration will be described below.
  • the following two methods may be considered as a method of informing the UE of a CSI-RS configuration.
  • the first method is a method in which a base station broadcasts information on a CSI-RS configuration to terminals by using dynamic broadcast channel (DBCH) signaling.
  • DBCH dynamic broadcast channel
  • the base station when the base station informs the UE about the system information, the information can be transmitted through a normal BOKBroadcasting channel). If there is a lot of information about the system information to inform the terminal and cannot transmit all by BCH alone, the base station transmits the system information in the same manner as general downlink data, but the PDCCH CRC of the heading-data is determined using a specific terminal identifier (for example, system information may be transmitted by masking using a system information identifier (SI ⁇ RNTI) rather than a C-RNTI. In this case, the actual system information is transmitted on the PDSCH region like general unicast data.
  • SI ⁇ RNTI system information identifier
  • System information may be obtained by decoding the PDSCH indicated by the corresponding PDCCH.
  • a broadcasting method may be referred to as a dynamic BCH (DBCH) by being distinguished from a physical broadcasting (PBCH) which is a general broadcasting method.
  • PBCH physical broadcasting
  • SIB master information block
  • SIB system information block
  • SIB1 to SIB8 system information block
  • CSI-RS configuration which is new system information not defined in the existing SIB type
  • the second method is a method in which a base station informs each terminal of information on CSI—RS configuration using Radio Resource Control (RRC) signaling. That is, information on the CSI-RS configuration may be provided to each of the terminals in the cell by using dedicated RRC signaling. For example, in a process of establishing a connection ion with a base station through initial access or handover, the base station may inform the terminal of CSI—RS configuration through RRC signaling. Can you-. Alternatively, when the base station transmits an RRC signaling message requesting channel state feedback based on the CSI-RS measurement to the terminal, the base station may inform the terminal of the CSI—RS configuration through the corresponding RRC signaling message.
  • RRC Radio Resource Control
  • [139] may be a plurality of CSI-RS settings (configuration) is used in any base station, the base station may transmit to the mobile station, over a predetermined sub-frame according to the CSI-RS each CSI-RS configuration.
  • the base station informs the user equipment of a plurality of CSI-RS configuration, and among them, informs the user equipment of the CSI—RS to be used for channel state measurement for CQKChannel Quality Information or CSI (Channel State Information) feedback. You can enjoy it.
  • CSI—RS Channel State Information
  • FIG. 11 is a diagram for explaining an example in which two CSI-RS configurations (conf igurat ion) are used.
  • one radio frame includes 10 subframes (subframe numbers 0 to 9).
  • the first CSI—RS configuration that is, the CSI-RS1 has a CSI-RS transmission period of 10 ms and a CSI-RS transmission offset of 3 IDs.
  • the second CSI-RS configuration that is, the CSI-RS2 has a CSI-RS transmission period of 10 ms and a CSI-RS transmission offset of 4 bytes.
  • the base station informs the user equipment about two CSI-RS configuration (conf igurat ion), and can inform which of these CSI-RS configuration (conf igurat ion) to use for CQI (or CSI) feedback.
  • the UE When the UE receives a request for CQI feedback from a base station from a CSI-RS configuration (conf igurat ion), the UE performs channel state measurement using only the CSI-RS belonging to the CSI-RS configuration (conf igurat ion). can do. Specifically, the channel state is determined as a function of the CSI—RS reception quality and the amount of noise / interference and the correlation coefficient. The CSI—RS reception quality measurement is performed using only the CSI-RS belonging to the corresponding CSI-RS configuration.
  • the measurement is performed in the corresponding CSI-RS transmission subframe or in designated subframes.
  • the UE receives a request for feedback from the base station from the first CSI-RS configuration (CSI—RSI)
  • the UE receives a fourth subframe (subframe index 3) of one radio frame.
  • the CSI-RS is used to measure reception quality, and can be specified to use odd-numbered subframes separately for measuring noise / interference and correlation coefficients.
  • the CSI-RS reception quality measurement and the amount of noise / interference and the correlation coefficient measurement may be specified to be limited to a specific single subframe (eg, subframe index 3).
  • the received signal quality measured using the CSI-RS is simply a signal-to-interference plus noise ratio (SINR) as S / (I + N) ( Where S is the strength of the received signal, I is the amount of interference, and N is the amount of noise.
  • S may be measured through the CSI-RS in the subframe including the CSI-RS in the subframe including the signal transmitted to the UE.
  • I and N are the amount of interference from neighboring cells, Since the signal is changed according to the direction of the signal from the neighboring cell, it can be measured through a CRS transmitted in a subframe for measuring s or a subframe designated separately.
  • the measurement of the amount of noise and interference and the correlation coefficient may be performed at a resource element (RE) to which the CRS or CSI-RS is transmitted in the corresponding subframe, or the measurement of noise / interference may be performed. This may be done through a null RE element configured to facilitate this.
  • the UE In order to measure noise / interference in the CRS or CSI-RSRE, the UE first recovers the CRS or CSI-RS, and then subtracts the result from the received signal, leaving only the noise and interference signal, and thereby removing the noise. You can get statistics of interference.
  • Null RE means a RE that the base station is empty without transmitting any signal (that is, transmit power is zero), and facilitates signal measurement from other base stations except the base station.
  • CRSRE, CSI-RS RE, and Null RE may all be used to measure the amount of noise / interference and the correlation coefficient, but the base station may designate to the terminal as to which of these REs to measure the noise / interference. .have. This is because, depending on whether the signal of the neighbor cell transmitted to the RE location where the UE performs the measurement is a data signal or a control signal, it is necessary to appropriately designate the RE to be measured by the UE. What is the signal of the neighboring cell is different depending on whether the synchronization between the cells and the CRS configuration (configuration) and CSI-RS configuration (configuration), so that the base station can determine the RE to perform the measurement by identifying this. . That is, the base station can designate the terminal to measure noise / interference using all or part of CRS RE, CSI-RS RE and Null RE.
  • the base station may use a plurality of CSI-RS configuration, and the base station informs the terminal of one or more CSI-RS configuration, and among them, the CSI- to be used for CQI feedback. It can tell you about RS configuration and Null RE position.
  • the CSI-RS configuration to be used for CQI feedback by the terminal is expressed in terms of distinguishing it from a null RE transmitted with a transmission power of 0, which is a CSI-RS configuration transmitted with a non-zero transmission power. configuration).
  • the base station informs one CSI-RS configuration at which the terminal will perform channel measurement, and the terminal is non-zero in the one CSI-RS configuration. It can be assumed to be transmitted at the transmit power.
  • the base station may be configured for a CSI-RS configuration transmitted with a transmission power of zero. (Ie, about a Null RE location), the UE may assume that the transmission power is 0 with respect to the resource element (RE) location of the corresponding CSI-RS configuration. In other words, the base station informs the terminal of one CSI-RS configuration () 11 ⁇ 01 of a transmission power other than zero, and if there is a CSI-RS configuration of 0 transmission power. May inform the terminal of the corresponding null RE position.
  • the base station informs the CSI-RS configuration of a plurality of terminals, among which all or part of it is used for CQI feedback. It can tell you about the CSI-RS configuration. Accordingly, the UE, which has received CQI feedback on a plurality of CSI-RS configurations, measures CQIs using CSI-RSs corresponding to the CSI-RS configurations, and measures the measured CQIs. Information can be sent together to the base station.
  • the base station can transmit the uplink resources required for the CQI transmission of the terminal for each CSI-RS configuration so that the terminal can transmit the CQI for each of a plurality of CSI ⁇ RS configuration (base station)
  • the uplink resource designation may be specified in advance and may be provided to the terminal in advance through RRC signaling.
  • the base station may dynamically trigger the terminal to transmit CQI for each of a plurality of CSI—RS configurations to the base station. Dynamic triggering of CQI transmission may be performed through the PDCCH. Which CSI-RS configuration (CQI) measurement to be performed may be known to the UE through the PDCCH. The UE receiving the PDCCH may feed back a CQI measurement result for the CSI ⁇ RS configuration specified in the corresponding PDCCH to the base station.
  • CQI CSI-RS configuration
  • a transmission time of a CSI-RS corresponding to each of a plurality of CSI-RS configurations may be specified or transmitted in another subframe, or may be specified to be transmitted in the same subframe.
  • transmission of CSI-RSs according to different CSI-RS configurations is designated in the same subframe, it is necessary to distinguish them from each other.
  • one or more of time resources, frequency resources, and code resources of a CSI-RS transmission may be differently applied.
  • the transmission RE position of the CSI-RS is different for each CSI-RS configuration (for example, the CSI-RS according to one CSI-RS configuration is the RE position of FIG. 8 (a)).
  • the CSI-RS according to another CSI-RS configuration is the same In one subframe, it can be specified to be transmitted in the RE position of FIG. 8 (b) (division using time and frequency resources).
  • the CSI-RS scrambling codes are differently used in different CSI-RS configurations to distinguish them from each other. You can also do this (code division).
  • a terminal measures a channel from a CRS based on a cell identifier between a plurality of transmission points sharing the same cell identifier (ID)
  • ID cell identifier
  • a channel of each transmission point cannot be distinguished. This is because a plurality of transmission points sharing the same cell identifier simultaneously transmit the same CRS, and at this time, a channel measured from the CRS becomes one channel in which channels of the plurality of transmission points are combined. Therefore, in order for the UE to measure the independent channel of each transmission point, it is efficient to measure the CSI-RS transmitted for each transmission point.
  • the base station may estimate some information of the downlink channel using an uplink sounding reference signal (SRS). Specifically, the base station may estimate the RI or PMI information of the channel state information from the SRS without feedback of the terminal.
  • SRS uplink sounding reference signal
  • the terminal may transmit the CQI to the base station.
  • the CQI may be generated based on the CSI-RS, not the CRS, to distinguish channels of transmission points sharing the same cell identifier.
  • the base station may be configured not to report the RI and the PMI to the terminal, and may be configured to calculate the CQI based on the CSI ⁇ RS corresponding to each transmission point.
  • the UE assumes the CRS overhead of the corresponding cell and determines that the data signal is not transmitted from the RE to which the CRS is transmitted.
  • the terminal calculates the CQI based on the CSI—RS, the terminal transmits any of a plurality of transmission points. Since it is not known whether the CSI-RS has been received from the point, the method of determining the CRS overhead becomes a problem.
  • the CQI may be calculated assuming CRS overhead corresponding to the CRS of the serving transmission point, but the CSI—RS received by the terminal If CSI-RS is a non-serving transmission point, how to determine the CRS overhead for CQI calculation is a problem.
  • the UE when the UE calculates and feeds back the CQI based on the CSI-RS without reporting the PMI and the RI, the UE may determine the CRS overhead according to the following embodiments.
  • the UE may determine the CRS overhead according to the number of ports of the CSI-RS used to calculate the CQI based on the CSI-RS. That is, when the terminal calculates the CQI using the N port CSI-RS, it is assumed that the CRS overhead of the N port.
  • the terminal calculates the CQI by assuming a CRS overhead corresponding to the CRS of one port. That is, the terminal assumes that the number of ports of the CRS is 1 because the number of ports of the CSI RS is 1, and calculates the CQI based on the CRS overhead of one port.
  • the terminal calculates the CQI assuming CRS overhead corresponding to the CRS of the two ports. That is, since the number of ports of the CSI RS is 2, the terminal assumes the number of ports of the CRS to be 2, and calculates the CQI based on the CRS overhead of the two ports.
  • the terminal calculates the CQI assuming a CRS overhead corresponding to the 4-port CRS. In other words, since the number of ports of the CSI RS is 4, the terminal assumes the number of ports of the CRS as 4, and calculates the CQI based on the CRS overhead of 4 ports.
  • the terminal assumes the transmission mode of a specific M (M ⁇ N) port of the N port M port.
  • the CQI may be calculated based on the CRS overhead of.
  • CQI may be calculated.
  • the terminal may calculate the CQI assuming CRS overhead of the 4 port CRS.
  • Transmission Mode for 8-Port Antenna Since the terminal does not exist, the terminal assumes a transmission mode using only four of eight ports.
  • the UE may use the CQI calculation method of transmission mode 2 in the current LTE system (eg, release 8).
  • transmission mode 2 the channel is estimated from the CRS, and when the CRS port is M, the CQI is calculated assuming a downlink transmission method using the M port.
  • the CRS overhead is the CRS overhead of the M-foam.
  • the CRS overhead may be determined by assuming that the number of CSI-RS ports is the number of CRS ports. That is, the CQI can be calculated assuming the CRS overhead of the N port.
  • the complexity of the UE implementation can be reduced by using the CQI calculation method of TM2.
  • the UE when the UE calculates the CQI based on the CSI-RS, the UE may calculate the CQI by assuming a CRS overhead corresponding to the CRS port of the serving transmission point. That is, when the CSI-RS of the N port is set in the terminal and the number of CRS ports of the serving transmission point is M, the terminal calculates the CQI assuming the CRS overhead of the M port regardless of the number of ports of the CSI-RS. .
  • the terminal calculates the CQI assuming CRS overhead of the two ports. That is, the UE calculates the CQI based on the CRS overhead of two ports according to the number of CRS ports of the serving transmission point regardless of the number of CSI-RS ports.
  • the UE calculates CQI by assuming CRS overhead of 4 ports. That is, the UE calculates the CQI based on the C S overheads of four ports according to the number of CRS ports of the serving transmission point regardless of the number of CSI-RS ports.
  • the UE calculates the CQI assuming a transmission mode using only a specific M (M ⁇ N) port among the N ports. For example, since there are up to four ports of CRS in the current LTE system (eg, Release 8), the CQI can be calculated assuming a maximum of four ports of CRS overhead.
  • the UE can determine the CRS overhead through a relatively simple procedure compared to the first method.
  • 12 is a flow diagram illustrating a merged CSI feedback method according to an embodiment of the present invention.
  • the terminal receives the CSI configuration information from the base station (S1210).
  • the terminal may receive the CSI configuration information for the period or pattern in which the CSI-RS is transmitted from the base station.
  • the UE In order to measure CSI-RS, the UE must know the CSI-RS configuration for each CSI-RS antenna port of the cell to which it belongs.
  • the base station may transmit the CSI configuration information to the terminal through higher layer signaling (eg, RRC signaling).
  • the terminal receives the CSI-RS according to the CSI configuration information (S1230).
  • CSI 'RS is one of RSs newly introduced in LTE—A system.
  • the CSI-RS is an RS for channel measurement for selecting a transmission tank, a modulation and coding scheme (MCS), a precoding matrix index (PM I), and the like.
  • MCS modulation and coding scheme
  • PM I precoding matrix index
  • Each of the plurality of transmission points sharing the cell identifier transmits CSI ⁇ RS through different resources.
  • the UE determines the overhead of a common reference signal (CRS) resource element based on the number of antenna ports equal to the number of antenna ports associated with CSI—RS (S1250).
  • CRS common reference signal
  • the UE since the UE calculates the CQI based on the CSI-RS, the UE cannot know which of the plurality of transmission points the CSI-RS is received from,
  • the problem is how to determine the CRS overhead.
  • the UE can calculate the CQI based on the CSI-RS, and may determine the CRS overhead according to the number of ports of the CSI-RS used for the CQI calculation. That is, when the terminal calculates the CQI using the N port CSI-RS, it is assumed that the CRS overhead of the N port.
  • the UE when the UE calculates the CQI based on the CSI-RS, the UE may calculate the CQI by assuming a CRS overhead corresponding to the CRS port of the serving transmission point. That is, when the CSI-RS of the N port is set in the terminal and the number of CRS ports of the serving transmission point is M, the terminal calculates the CQI assuming CRS overhead of the M port regardless of the number of ports of the CSI-RS.
  • the terminal transmits the channel state information calculated based on the overhead of the CSI—RS and CRS resource elements (S1270).
  • Figure 13 illustrates a base station and a terminal that can be applied to an embodiment of the present invention.
  • a relay When a relay is included in the wireless communication system, communication is performed between the base station and the relay in the backhaul link, and communication is performed between the relay and the terminal in the access link. Therefore, the base station or the terminal illustrated in the figure may be replaced with a relay according to the situation.
  • a wireless communication system includes a base station 1310 and a terminal 1320.
  • the base station 1310 includes a processor 1313, a memory 1314, and a radio frequency (RF) unit 1311, 1312.
  • the processor 1313 may be configured to implement the procedures and / or methods proposed by the present invention.
  • the memory 1314 is connected with the processor 1313 and stores various information related to the operation of the processor 1313.
  • the F unit 1316 is connected with the processor 1313 and transmits and / or receives a radio signal.
  • the terminal 1320 includes a processor 1323, a memory 1324, and RF units 1321 and 1322.
  • the processor 1323 may be configured to implement the procedures and / or methods proposed by the present invention.
  • the memory 1324 is connected with the processor 1323 and stores various information related to the operation of the processor 1323.
  • the RF units 1321 and 1322 are connected to the processor 1323 and transmit and / or receive a radio signal.
  • the base station 1310 and / or the terminal 1320 may have a single antenna or multiple antennas.
  • the specific operation described as performed by the base station may be performed by an upper node in some cases. That is, it is obvious that various operations performed for communication with a terminal in a network including a plurality of network nodes including a base station may be performed by the base station or network nodes other than the base station.
  • a base station may be replaced by terms such as a fixed station, Node B, eNc) deB (eNB), an access point, and the like.
  • the embodiment according to the present invention may be implemented by various means, for example, hardware, firmware, software, or a combination thereof.
  • an embodiment of the present invention may include one or more application specific integrated circuits (ASICs), digital signal processors (DSPs), digital signal processing devices (DSPDs),. Programmable logic devices (PLDs), field programmable gate arrays (FPGAs), processors, controllers, microcontrollers, microprocessors, and the like.
  • ASICs application specific integrated circuits
  • DSPs digital signal processors
  • DSPDs digital signal processing devices
  • PLDs Programmable logic devices
  • FPGAs field programmable gate arrays
  • processors controllers, microcontrollers, microprocessors, and the like.
  • an embodiment of the present invention may be implemented in the form of a module, procedure, function, etc. that performs the functions or operations described above.
  • the software code may be stored in a memory unit and driven by a processor.
  • the memory unit may be located inside or outside the processor, and may exchange data with the processor by various known means.
  • the present invention can be used in a wireless communication device such as a terminal, a relay, a base station, and the like.

Abstract

본 발명은 무선 통신 시스템에 관한 것이다. 본 발명의 일 실시예에 따른 무선 통신 시스템에서 단말이 채널상태정보(CSI)를 전송하는 방법은, 채널상태정보-참조신호(CSI-RS)를 수신하는 단계; 상기 CSI-RS와 연관된 안테나 포트 수와 동일한 안테나 포트 수에 기반하여 공통 참조신호(CRS) 자원요소의 오버헤드(overhead)를 결정하는 단계; 및 상기 CSI-RS 및 상기 CRS 자원요소의 오버헤드를 기초로 산출된 상기 채널상태정보를 전송하는 단계를 포함할 수 있다.

Description

【명세서】'
【발명의 명칭】
무선 통신 시스템에서 채널상태정보 (CSI) 전송 방법 및 장치
【기술분야】
[1] 본 발명은 무선 통신 시스템에 대한 것으로, 보다 구체적으로는 협력 멀티 포인트 (CoMP)를 지원하는 무선 통신 시스템에서 공통 참조신호 (CRS) 오버해드 (overhead)를 결정하고 채널상태정보를 산출하는 채널상태정보 전송 방법 및 장치에 대한 것이다.
【배경기술】
[2] 다중 입출력 (MIMO: Multi-Input Multi-Output) 기술은 한 개의 송신 안테나와 한 개의 수신 안테나를 사용했던 것에서 탈피하여 다중 송신 안테나와 다중 수신 안 테나를 사용하여 데이터의 송수신 효율을 향상시키는 기술이다. 단일 안테나를 사용 하면 수신측은 데이터를 단일 안테나 경로 (path)를 통해 수신하지만, 다중 안테나를 사용하면 수신단은 여러 경로를 통해 데이터를 수신한다. 따라서, 데이터 전송 속도 외- 전송량을 향상시킬 수 있고, 커버리지 (coverage)를 증대시킬 수 있다.
[3] 단일—셀 (Single— cell) MIM0 동작은 하나의 셀에서 하나의 단말이 하향링크 신호를 수신하는 단일 사용자 -MIMO (Single User-MIMO; SU-MIM0) 방식과 두 개 이상의 단말이 한 셀에서 하향링크 신호를 수신하는 다중 사용자ᅳ MIMO (Multi User-MIMO; MIHIIMO) 방식으로 나눌 수 있다.
[4] 한편, 다중-셀 환경에서 개선된 MIM0 전송을 적용함으로써 셀 경계에 있는 사용자의 처리량을 개선하기 위한 협력 멀티 포인트 (Coordinated Multi-Point: CoMP) 시스템에 대한 연구가 활발히 진행되고 있다. CoMP 시스템을 적용하면 다중ᅳ셀 환경 에서 샐 간 간섭 (Inter-Cell Interference)을 줄일 수 있고 시스템 전체적인 성능을 향상시킬 수 있다.
[5] 채널 추정 (channel estimation)은 페이딩 (fading)에 의하여 생기는 신호의 왜 곡을 보상함으로써 수신된 신호를 복원하는 과정을 말한다/ 여기서 페이딩이란 무선 통신 시스렘 환경에서 다중경로 (multi path)-시간지연 (time delay)으로 인하여 신호의 강도가 급격히 변동되는 현상을 말한다. 채널추정을 위하여는 송신기와 수신기가 모 두 알고 있는 참조신호 (reference signal)가 필요하다. 또한, 참조 신호는 간단히 RS(Reference Signal) 또는 적용되는 표준에 따라 파일럿 (Pi lot)으로 지칭될 수도 있 디-.
[6] 하향링크 참조신호 (downlink reference signal)는 PDSCH(Physical Downlink Shared CHannel ) , PCFICH(Physical Control Format Indicator CHannel), PHICH(Physical Hybrid Indicator CHannel), PDCCH (Physical Downlink Control CHannel ) 등의 코히어 런트 (coherent) 복조를 위한 파일럿 신호이다. 하향링크 참조신호는 셀 내의 모든 단 말이 공유하는 공용 참조신호 (Co誦 on Reference Signal; CRS)와 특정 단말만을 위한 전용 참조신호 (Dedicated Reference Signal; DRS)가 있다. 4 전송 안테나를 지원하는 기존의 통신 시스템 (예를 들어, LTE release (릴리즈) 8 또는 9 표준에 따른 시스템) 애 비하여 확장된 안테나 구성을 갖는 시스템 (예를 들어, 8 전송 안테나를 지원하는 LTE-A 표준에 따른 시스템)에서는, 효율적인 참조신호의 운용과 발전된 전송 방식을 지원하기 위하여 DRS 기반의 데이터 복조를 고려하고 있다. 즉, 확장된 안테나를 통 한 데이터 전송을 지원하기 위하여 2 이상의 레이어에 대한 DRS 를 정의할 수 있다. DRS 는 데이터와 동일한 프리코더에 의하여 프리코딩되므로 별도의 프라코딩 정보 없 이 수신측에서 데이터를 복조하기 위한 채널 정보를 용이하게 추정할 수 있다.
[7] 한편, 하향링크 수신측에서는 DRS를 통해서 확장된 안테나 구성애 대하여 프 리코딩된 채널 정보를 획득할 수 있는 반면, 프리코딩되지 않은 채널 정보를 획득하 기 위하여 DRS 이외의 별도의 참조신호가 요구된다. 이에 따라, LTE-A 표준에 따른 시스템에서는 수신측에서 채널 상태 정보 (Channel State Information; CSI)를 획득하 기 위한 참조신호, 즉 CSIᅳ RS를 정의할 수 있다.
【발명의 상세한 설명】
【기술적 과제】
[8] 상술한 바와 같은 논의를 바탕으로 이하에서는 무선 통신 시스템에서 채널상 태정보를 보고하는 방법 및 이를 위한 장치를 제안하고자 한다.
[9] 본 발명에서 이루고자 하는 기술적 과제들은 상기 기술적 과제로 제한되지 않으며, 언급하지 않은 또 다른 기술적 과제들은 아래의 기재로부터 본 발명이 속하 는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
【기술적 해결방법】 [10] 상기 문제점을 해결하기 위하예 본 발명의 일 실시예에 따른 무선 통신 시 스템에서 단말이 채널상태정보 (CSI)를 전송하는 방법은, 채널상태정보-참조신호 (CSI-RS)를 수신하는 단계; 상기 CSI-RS 와 연관된 안테나 포트 수와 동일한 안테나 포트 수에 기반하여 공통 참조신호 (CRS) 자원요소의 오버헤드 (overhead)를 결정하는 단계 ; 및 상기 CSI— RS 및 상기 CRS 자원요소의 오버헤드를 기초로 산출된 상기 채널 상태정보를 전송하는 단계를 포함한다.
[11] 본 발명의 다른 실시예에 따른 무선 통신 시스템에서 기지국이 채널상태정보 (CSI)를 수신하는 방법은, 채널상태정보ᅳ참조신호 (CSI-RS)를 전송하는 단계; 및 CRS 자원요소의 오버헤드 및 상기 CSI-RS 를 기초로 산출된 상기 채널상태정보를 수신하 는 단계를 포함하되, 상기 CRS 자원요소의 오버헤드는 상기 CSI-RS 와 연관된 안테나 포트 수와 동일한 안테나 포트 수에 기반하여 결정된디-.
[12] 본 발명의 또 다른 실시예에 따른 무선 통신 시스템에서 채널상태정보 (CSI) 를 전송하는 단말은, RKRadio Frequency) 유닛 ; 및 프로세서를 포함하고, 상기 프로 세서는, 채널상태정보ᅳ참조신호 (CSIᅳ RS)를 수신하고, 상기 CSI— RS 와 연관된 안테나 포트 수와 동일한 안테나 포트 수에 기반하여 공통 참조신호 (CRS) 자원요소의 오버헤 드 (overhead)를 결정하고, 상기 CSI RS 및 상기 CRS 자원요소의 오버해드를 기초로 산출된 상기 채널상태정보를 전송하도록 구성된다.
[13] 본 발명의 또 다른 실시예에 따른 무선 통신 시스템에서 채널상태정보 (CSI) 를 수신하는 기지국은, I^(Radio Frequency) 유닛; 및 프로세서를 포함하고, 상기 프 로세서는, 채널상태정보ᅳ참조신호 (CSI-RS)를 전송하고, CRS 자원요소의 오버헤드 및 상기 CSI-RS 를 기초로 산출된 상기 채널상태정보를 수신하고, 상기 CRS 자원요소의 오버헤드는 상기 CSI-RS 와 연관된 안테나 포트 수와 동일한 안테나 포트 수에 기반 하여 결정되도록 구성된다.
[14] 본 발명의 실시예들에 대해서 이하의 사항이 공통으로 적용될 수 있다.
[15] 상기 CSI 의 보고를 위한 CSI 설정 (configuration) 정보를 수신하는 단계를 더 포함할 수 있다.
[16] 상기 CSI 설정 정보는 프리코딩 행렬 지시자 (PMI) 및 랭크 지시자 (RI)를 보 고하지 않고 채널 품질 지시자 (CQI)를 보고하도록 설정될 수 있다.
[17] 상기 CSI 설정 정보는 RRC (Radio Resource Control) 시그널링을 통하여 전송 될 수 있다. [18] 상기 CSI— RS와 연관된 상기 안테나 포트 수는 4이하로 설정될 수 있다.
[19] 상기 CSI 는 채널 가역성 (reciprocity)을 만족하는 협력 다중 포인트 (CoMP) 시분할 (TDD) 시스템에서의 채널 상태를 나타낼 수 있다.
[20] 본 발명에 대하여 전술한 일반적인 설명과 후술하는 상세한 설명은 예시적인 것이며, 청구항 기재 발명에 대한 추가적인 설명을 위한 것이다.
【유리한 효과】
[21] 본 발명의 실시예에 따르면 무선 통신 시스템에서 채널 상태 정보를 보다 효 과적으로 보고할 수 있디-.
[22] 또힌-, 본 발명의 실시예에 따르면, 협력 멀티 포인트 (CoMP)를 지원하는 무선 통신 시스템에서 효율적으로 공통 참조신호 (CRS) 오버헤드 (overhead)를 결정하여 채 널상태정보를 산출할 수 있다.
[23] 본 발명에서 얻은 수 있는 효과는 이상에서 언급한 효과들로 제한되지 않으 며, 언급하지 않은 또 다른 효과들은 아래의 기재로부터 본 발명이 속하는 기술분야 에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
【도면의 간단한 설명】
[24] 본 발명애 관한 이해를 돕기 위해 상세한 설명의 일부로 포함되는, 첨부 도 면은 본 발명에 대한 실시예를 제공하고, 상세한 설명과 함께 본 발명의 기술적 사상 을 설명한다.
[25] 도 1은 하향링크 무선 프레임의 구조를 나타내는 도면이다.
[26] 도 2 는 하나의 하향링크 슬롯에 대한 자원 그리드 (resource grid)의 일례를 나타낸 예시도이디-.
[27] 도 3은 하향링크 서브프레임의 구조를 나타내는 도면이다.
[28] 도 4는 상향링크 서브프레임의 구조를 나타내는 도면이다.
[29] 도 5는 다중안테나를 갖는 무선 통신 시스템의 구성도이다.
[30] 도 6은 기존의 CRS 및 DRS의 패턴을 나타내는 도면이다.
[31] 도 7 은 DM RS 패턴의 일례를 나타내는 도면이다.
[32] 도 8 은 CSI— RS 패턴의 예시돌을 나타내는 도면이다.
[33] 도 9 는 CSI-RS 가 주기적으로 전송되는 방식의 일례를 설명하기 위한 도면이 디-. [34] 도 10 은 CSI-RS 가 비주기적으로 전송되는 방식의 일례를 설명하기 위한 도 면이다.
[35] 도 11 은 2 개의 CSI-RS 설정 (configuration)이 사용되는 예를 설명하기 위 한 도면이다.
[36] 도 12 는 본 발명의 일 실시예에 따른 채널상태정보 전송 방법을 나타내는 흐 름도이다.
[37] 도 13 은 본 발명의 일 실시예에 적용될 수 있는 기지국 및 단말의 구성을 도 시한 도면이다.
【발명을 실시를 위한 형태】 [38] 이하의 실시예들은 본 발명의 구성요소들과 특징들을 소정 형태로 결합한 것 들이다. 각 구성요소 또는 특징은 별도의 명시적 언급이 없는 한 선택적인 것으로 고 려될 수 있다. 각 구성요소 또는 특징은 다른 구성요소나특징과 결합되지 않은 형태 로 실시될 수 있디-. 또한, 일부 구성요소들 및 /또는 특징들을 결합하여 본 발명의 실 시예를 구성할 수도 있다. 본 발명의 실시예들에서 설명되는 동작들의 순서는 변경될 수 있다. 어느 실시예의 일부 구성이나 특징은 다른 실시예에 포함될 수 있고, 또는 다른 실시예의 대응하는 구성 또는 특징과 교체될 수 있다.
[39] 본 명세서에서 본 발명의 실시예들을 기지국과 단말 간의 데이터 송신 및 수 신의 관계를 중심으로 설명한다. 여기서, 기지국은 단말과 직접적으로 통신을 수행하 는 네트워크의 종단 노드 (terminal node)로서의 의미를 갖는다. 본 문서에서 기지국 에 의해 수행되는 것으로 설명된 특정 동작은 경우에 따라서는 기지국의 상위 노드 (upper node)에 의해 수행될 수도 있다.
[40] 즉, 기지국을 포함하는 다수의 네트워크 노드들 (network nodes)로 이루어지는 네트워크에서 단말과의 통신을 위해 수행되는 다양한 동작들은 기지국 또는 기지국 이외의 다른 네트워크 노드들에 의해 수행될 수 있음은 자명하다. '기지국 (BS: Base Station)'은 고정국 (fixed stat ion), Node B, eNode B(eNB) , 액세스 포인트 (AP: Access Point) 등의 용어에 의해 대체될 수 있다. 중계기는 Relay Node(RN), Relay Station(RS) 등외 용어에 의해 대체될 수 있다. 또한, '단말 (Terminal )'은 UE(User Equipment) , MS(Mobi le Station), MSS(Mobi le Subscriber Station), SS(Subscr iber Station) 등의 용어로 대체될 수 있다. [41] 이하의 설명에서 사용되는 특정 용어들은 본 발명의 이해를 돕기 위해서 제 공된 것이며, 이러한 특정 용어의 사용은 본 발명의 기술적 사상을 벗어나지 않는 범 위에서 다른 형태로 변경될 수 있다.
[42] 몇몇 경우, 본 발명의 개념이 모호해지는 것을 피하기 위하여 공지의 구조 및 장치는 생략되거나, 각 구조 및 장치의 핵심기능을 중심으로 한 블록도 형식으로 도시될 수 있다. 또한, 본 명세서 전체에서 동일한 구성요소에 대해서는 동일한 도면 부호를 사용하여 설명한다.
[43] 본 발명의 실시예들은 무선 접속 시스템들인 IEEE 802 시스템, 3GPP 시스템, 3GPP LTE 및 LTE—A(LTE— Advanced)시스템 및 3GPP2 시스템 중 적어도 하나에 개시된 표준 문서들에 의해 뒷받침될 수 있다. 즉, 본 발명의 실시예들 중 본 발명의 기술적 사상을 명확히 드러내기 위해 설명하지 않은 단계들 또는 부분들은 상기 문서들에 의 해 뒷받침될 수 있다. 또한, 본 문서에서 개시하고 있는 모든 용어들은 상기 표준 문 서에 의해 설명될 수 있다.
[44] 이하의 기술은 CDMA(Code Division Multiple Access), FDMA(Frequency Division Mul t iple Access) , TDMA(Time Division Multiple Access), 0FDMA( Orthogonal Frequency Division Mult iple Access) , SC-FDMA( Single Carrier Frequency Division Mult iple Access) 등과 같은 다양한 무선 접속 시스템에 사용될 수 있다. CDMA 는 UTRA(Universal Terrestrial Radio Access)나 CDMA2000 과 같은 무선 기술 (radio, technology)로 구현될 수 있다. TDMA 는 GSM(Global System for Mobile communi cat i ons ) / GPRS(Gener a 1 Packet Radio Service)/EDGE(Enhanced Data Rates for GSM Evolut ion)와 같은 무선 기술로 구현될 수 있다. 0FDMA 는 IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX) , IEEE 802-20, E-UTRA( Evolved UTRA) 등과 같은 무선 기술로 구 현될 수 있다. UTRA 는 UMTSCUniversal Mobile Telecommunications System)의 일부이 다. 3GPP(3rd Generation Partnership Project) LTE( long term evolut ion)는 E-UTRA 를 사용하는 E-UMTS(EvolvedUMTS)의 일부로써, 하향링크에서 0FDMA를 채용하고 상향 링크에서 SC-FDMA 를 채용한다. LTE— A (Advanced)는 3GPP LTE 의 진화이다. WiMAX 는 IEEE 802.16e 규격 (WirelessMAN-OFDMA Reference System) 및 발전된 IEEE 802.16m 규 격 (WirelessMAN-OFDMA Advanced system)에 의하여 설명될 수 있디-. 명확성을 위하여 이하애서는 3GPP LTE 및 LTE-A 표준을 위주로 설명하지만 본 발명의 기술적 사상이 이에 제한되는 것은 아니다. . [45] 도 1을 참조하여 하향링크 무선 프레임의 구조에 대하여 설명한다.
[46] 셀롤라 OFDM 무선 패킷 통신 시스템에서, 상 /하향링크 데이터 패킷 전송은 서브프레임 (Subframe) 단위로 이루어지며, 한 서브프레임은 다수의 OFDM 심볼을 포 함하는 일정 시간 구간으로 정의된다. 3GPP LTE 표준에서는 FDD (Frequency Division Duplex)에 적용 가능한 타입 1 무선 프레임 (radio frame) 구조와 TDD(Time Division Duplex)에 적용 가능한 타입 2의 무선 프레임 구조를 지원한다.
[47] 도 1 은 타입 1 무선 프레임의 구조를 나타내는 도면이다. 하향링크 무선 프 레임 (radio frame)은 10개의 서브프레임 (subframe)으로 구성되고, 하나의 서브프레임 은 시간 영역 (time domain)에서 2 개의 슬롯 (slot)으로 구성된다. 하나의 서브프레임 이 전송되는 데 걸리는 시간을 TTKtransmission time interval)이라 하고, 예를 들어 하나의 서브프레임의 길이는 1ms 이고, 하나의 슬롯의 길이는 0.5ms 일 수 있다. 하 나의 슬롯은 시간 영역에서 복수의 0FDM 심볼을 포함하고, 주파수 영역에서 다수의 자원블록 (Resource Block; RB)을 포함한다.3GPPLTE 시스템에서는 하향링크에서 0FDMA 를 사용하므로, 0FDM 심볼이 하나의 심볼 구간을 나타낸다.0FDM 심볼은 또한 SC-FDMA 심볼 또는 심볼 구간으로 칭하여질 수도 있다. 자원 블록 (Resource Block; RB)은 자원 할당 단위이고, 하나의 슬롯애서 복수개의 연속적인 부반송파 (sL1bcarrier)를 포함할 수 있다.
[48] 하나의 슬롯에 포함되는 0FDM 심볼의 수는 CPCCyclic Prefix)의 구성 (configuration)에 따라 달라질 수 있다. CP 에는 확장된 CP(extended CP)와 일반 CPCnormal CP)가 있다. 예를 들어 , 0FDM 심볼이 일반 CP에 의해 구성된 경우, 하나의 슬롯에 포함되는 0FDM 심볼의 수는 7개일 수 있다.0FDM심볼이 확장된 CP에 의해 구 성된 경우, 한 0FDM 심볼의 길이가 늘어나므로 한 슬롯에 포함되는 0FDM 심볼의 수 는 일반 CP 인 경우보다 적다. 확장된 CP 의 경우에 , 예를 들어 , 하나의 슬롯에 포함 되는 0FDM 심볼의 수는 6 개일 수 있다. 단말이 빠른 속도로 이동하는 등의 경우와 같이 채널상태가 불안정한 경우, 심볼간 간섭을 더욱 줄이기 위해 확장된 CP 가 사용 될 수 있다.
[49] 일반 CP 가사용되는 경우 하나의 슬롯은 7 개의 OFDM 심볼을 포함하므로, 하 나의 서브프레임은 14 개의 0FDM 심볼을 포함한다. 이때 각 서브프레임의 처음 2 개 또는 3 개의 0FDM 심볼은 PDCCH(physical downlink control channel)에 할당되고, 나 머지 0FDM 심볼은 PDSCH(physical downlink shared channel)에 할당될 수 있다. [50] 무선 프레임의 구조는 예시에 불과하고, 무선 프레임에 포함되는 서브프레임 의 수 또는 서브프레임에 포함되는 슬롯의 수, 슬롯애 포함되는 심볼의 수는 다양하 게 변경될 수 있다.
[51] 도 2 는 하나의 하향링크 슬롯에 대한 자원 그리드 (resource grid)의 일례를 나타낸 예시도이다. 이는 OFDM심볼이 일반 CP로 구성된 경우이다. 도 2를 참조하면, 하향링크 슬롯은 시간 영역에서 복수의 OFDM 심볼을 포함하고, 주파수 영역에서 다수 의 자원블록을 포함한다. 여기서, 하나의 하향링크 슬롯은 7 OFDM 심볼을 포함하고, 하나의 자원블록은 12 부반송파를 포함하는 것을 예시적으로 기술하니-, 이에 제한되 는 것은 아니다. 자원 그리드 상의 각 요소 (element)를 자원요소 (RE)라 한다. 예를 들어, 자원 요소 a(k,l)은 k번째 부반송파와 1번째 0FDM 심볼에 위치한 자원 요소가 된다. 일반 CP 의 경우에, 하나의 자원블록은 12X7 자원요소를 포함한다 (확장된 CP 의 경우에는 12X6 자원요소를 포함한다). 각 부반송파의 간격은 15kHz 이므로, 하나 의 자원블록은 주파수영역에서 약 180kHz을 포함한다. NDL은 하향링크 슬롯에 포함되 는 자원블록의 수이다. NDL 의 값은 기지국의 스케즐링에 의해 설정되는 하향링크 전 송 대역폭 (bandwidth)에 따라 결정될 수 있다.
[52] 도 3 은 하향링크 서브프레임의 구조를 나타내는 도면이다. 하나의 서브프레 임 내에서 첫 번째 슬롯의 앞 부분의 최대 3 개의 0FDM 심볼은 제어 채널이 할당되는 제어 영역에 해당한다. 나머지 0FDM 심볼들은 물리하향링크공유채널 (Physical Downlink Shared Chancel; PDSCH)이 할당되는 데이터 영역에 해당한다. 전송의 기본 단위는 하나의 서브프레임이 된디-. 즉, 2 개의.슬롯에 걸쳐 PDCCH 및 PDSCH가 할당된 디-.3GPP LTE 시스템에서 사용되는 하향링크 제어 채널들에는, 예를 들어, 물리제어포 맷지시자채널 (Physical Control Format Indicator Channel; PCFICH), 물리하향링크제 어채널 (Physical Downlink Control Channel; PDCCH) , 물리 HARQ 지시자채널 (Physical Hybrid automatic repeat request Indicator Channel; PHICH) 등이 있다. PCFICH는 서 브프레임의 첫 번째 0FDM 심볼에서 전송되고 서브프레임 내의 제어 채널 전송에 사용 되는 OFDM 심볼의 개수에 대한 정보를 포함한다. PHICH 는 상향링크 전송의 응답으 로서 HARQACK/NACK 신호를 포함한다 . PDCCH를 통하여 전송되는 제어 정보를 하향링 크제어정보 (Downlink Control Information; DCI)라 한다. DCI는 상향링크 또는 하향 링크 스케줄링 정보를 포함하거나 임의의 단말 그룹에 대한 상향링크 전송 전력 제어 명령을' 포함한다. PDCCH 는 하향링크공유채널 (DL-SCH)의 자원 할당 및 전송 포맷, 상향링크공유채널 (UL-SCH)의 자원 할당 정보, 페이징채널 (PCH)의 페이징 정보, DL-SCH 상의 시스템 정보, PDSCH 상으로 전송되는 임의접속웅답 (Random Access Response)과 같은 상위계층 제어 메시지의 자원 할당, 임의의 단말 그룹 내의 개별 단말에 대한 전송 전력 제어 명령의 세트, 전송 전력 제어 정보, VoIP(Voice over IP) 의 활성화 등을 포함할 수 있다. 복수의 PDCCH 가 제어 영역 내에서 전송될 수 있다. 단말은 복수의 PDCCH를 모니터링할 수 있다. PDCCH는 하나 이상의 연속하는 제어채 널요소 (Control Channel Element; CCE)의 조합으로 전송된다. CCE는 무선 채널의 상 태에 기초한 코딩 레이트로 PDCCH 를 제공하기 위해 사용되는 논리 할당 단위이다. CCE는 복수개의 자원 요소 그룹에 대웅한다. PDCCH의 포맷과 이용가능한 비트 수는 CCE 의 개수와 CCE 에 의해 제공되는 코딩 레이트 간와상관관계에 따라서 결정된다. 기지국은 단말에게 전송되는 DCI 에 따라서 PDCCH 포맷을 결정하고, 제어 정보에 순 환잉여검사 (Cycl ic Redundancy Check; CRC)를 부가한다. CRC는 PDCCH의 소유자 또는 용도에 따라 무선 네트워크 임시 식별자 (Radio Network Temporary Identifier; RNTI) 라 하는 식별자로 마스킹된다. PDCCH 7} 특정 단말에 대한 것이면, 단말의 cell -RNTI (C-RNTI) 식별자가 CRC에 마스킹될 수 있디-. 또는, PDCCH가 페이징 메시지 에 대한 것이면, 페이징 지시자 식별자 (Paging Indicator Identifier; P-RNTI)가 CRC 에 마스킹될 수 있다. PDCCH 가 시스템 정보 (보다 구체적으로, 시스템 정보 블록 (SIB))에 대한 것이면, 시스템 정보 식별자 및 시스템 정보 RNTI (SI— RNTI)가 CRC 에 마스킹될 수 있다. 단말의 임의 접속 프리앰블의 전송에 대한 응답인 임의접속응답 을 나타내기 위해, 임의접속ᅳ RNTI(RA-RNTI)가 CRC에 마스킹될 수 있다.
[53] 도 4 는 상향링크 서브프레임의 구조를 나타내는 도면이다. 상향링크 서브프 레임은 주파수 영역에서 제어 영역과 데이터 영역으로 분할될 수 있다. 제어 영역에 는 상향링크 제어 정보를 포함하는 물리상향링크제어채널 (Physical Uplink Control Channel; PUCCH)이 할당된디-. 데이터 영역에는 사용자 데이터를 포함하는 물리상향 링크공유채널 (Physical uplink shared channel; PUSCH)이 할당된다. 단일 반송파 특 성을 유지하기 위해세 하나의 단말은 PUCCH 와 PUSCH 를 동시에 전송하지 않는다. 하나의 단말에 대한 PUCCH 는 서브프레임에서 자원블록 쌍 (RB pair)에 할당된다. 자 원블톡 쌍에 속하는 자원블록들은 2 슬롯에 대하여 상이한 부반송파를 차지한다. 이 를 PUCCH 에 할당되는 자원블록 쌍이 슬롯 경계에서 주파수—호핑 (frequency-hopped) 된다고 한다. [54] 다중안테나 (MIMO) 시스템의 모델링
[55] MIM0( (Multiple Input Multiple Output) 시스템은 다중 송신 안테나와 다중 수 신 안테나를 사용하여 데이터의 송수신 효율을 향상시키는 시스템이다. MIM0 기술은 전체 메시지를 수신하기 위해 단일 안테나 경로에 의존하지 않고, 복수개의 안테나를 통해 수신되는 복수개의 데이터 조각들을 조합하여 전체 데이터를 수신할 수 있다.
[56] MIM0 기술에는 공간 다이버시티 (Spatial diversity) 기법과 공간 다중화 (Spatial multiplexing) 기법 등이 있다. 공간 다이버시티 기법은 다이버시티 이득 (gain)을 통해 전송 신뢰도 (reli ability)를 높이거나 셀 반경을 넓힐 수 있어, 고속 으로 이동하는 단말에 대한 데이터 전송에 적합하다. 공간 다중화 기법은 서로 다른 데이터를 동시에 전송함으로써 시스템의 대역폭을 증가시키지 않고 데이터 전송률을 증가시킬 수 있다.
[57] 도 5 는 다중안테나를 갖는 무선 통신 시스템의 구성도이다. 도 5(a)에 도시 된 바와 같이 송신 안테나의 수를 NT 개로, 수신 안테나의 수를 NR 개로 늘리면, 송 신기나 수신기에서만 다수의 안테나를 사용하게 되는 경우와 달리 안테나 수에 비례 하여 이론적인 채널 전송 용량이 증가한다. 따라서 , 전송 레이트를 향상시키고 주파 수 효율을 획기적으로 향상시킬 수 있다. 채널 전송 용량이 증가함에 따라, 전송 레 이트는 이론적으로 단일 안테나 이용시의 최대 전송 레이트 (Ro)에 레이트 증가율 (Ri) 이 곱해진 만큼 증가할 수 있다.
[58] 【수학식 1】 [59] ^ =min(^V7, Vj
[60] 예를 들어, 4 개의 송신 안테나와 4 개의 수신 안테나를 이용하는 MIM0 통신 시스템에서는 단일 안테나 시스템에 비해 이론상 4 배의 전송 레이트를 획득할 수 있 다. 다중안테나 시스템의 이론적 용량 증가가 90 년대 중반에 증명된 이후 이를 실질 적인 데이터 전송률 향상으로 이끌어 내기 위한 다양한 기술들이 현재까지 활발히 연 구되고 있다. 또한, 몇몇 기술들은 이미 3 세대 이동 통신과 차세대 무선랜 등의 다 양한 무선 통신의 표준에 반영되고 있다.
[61] 현재까지의 다중안테나 관련 연구 동향을 살펴보면 다양한 채널 환경 및 다 중접속 환경에서의 다중안테나 통신 용량 계산 등과 관련된 정보 이론 측면 연구, 다 중안테나 시스템의 무선 채널 측정 및 모형 도출 연구, 전송 신뢰도 향상 및 전송를 향상을 위한 시공간 신호 처리 기술 연구 등 다양한 관점에서 활발히 연구가 진행되 고 있다.
[62] 다중안테나 시스템에서의 통신 방법을 수학적 모델링을 이용하여 보다 구체 적으로 설명한디-. 상기 시스템에는 NT 개와송신 안테나와 NR 개의 수신 안테나가 존 재한다고 가정한다.
[63] 송신 신호를 살펴보면, NT개의 송신 안테나가 있는 경우 전송 가능한 최대 정 보는 NT개이다. 전송 정보는 다음과 같이 표현될 수 있다.
[64] 【수학식 2】
S
[65] S\, S2: Nr J
[66] 각각의 전송 정보 에, ^는 전송 전력이 다를 수 있다. 각각의 전 전력이 조정된 전송 정보는 다음과 같이 표
Figure imgf000013_0001
[67] 【수학식 3】
Figure imgf000013_0002
[69] 또한, S는 전송 전력의 대각행렬 P를 이용해 다음과 같이 표현될 수 있다.
[70] 【수학식 4】
Figure imgf000013_0003
[72] 전송전력이 조정된 정보 백터 (information vector) S에 가증치 행렬 W가 적 용되어 실제 전송되는 NT 개의 송신신호 , 2''r가 구성되는 경우를 고려해 보자. 가중치 행렬 W는 전송 정보를 전송 채널 상황 등에 따라 각 안테나에 적절히 분배해 주는 역할을 한다. ,^2'''»" \^는 백터 X를 이용하여 다음과 같이 표현 될 수 있다.
[73] 【수학식 5】 Ws-WPs
Figure imgf000014_0001
Figure imgf000014_0003
[75] 여기에서, 1 는 i 번째 송신 안테나와 j 번째 정보간의 가증치를 의미한다. W는 프리코딩 행렬이라고도 불린다.
[76] 한편, 송신신호 X 는 2 가지 경우 (예를 를어, 공간 다이버시티 및 공간 다중 화)에 따라 다른 방법으로 고려될 수 있다. 공간 다중화의 경우, 상이한 신호가 다중 화되고 다중화된 신호가 수신측으로 전송되어, 정보 백터 (들)의 요소 (element)가 상 이한 값을 가진다. 한편, 공간 다이버시티의 경우에는, 동일한 신호가 복수개의 채널 경로를 통하여 반복적으로 전송되어, 정보 백터 (들)의 요소가 동일한 값을 가진다. 물론, 공간 다중화 및 공간 다이버시티 기법의 조합 역시 고려할 수 있다. 즉, 동일 한 신호기ᅳ 예를 들어 3 개의 전송 안테나를 통해 공간 다이버시티 기법에 따라 전송 되고, 나머지 신호들은 공간 다중화되어 수신측으로 전송될 수도 있다.
[77] NR 개의 수신 안테나가 있는 경우 각 안테나의 수신신호 , ^^,^^은 백터로 다음과 같이 표현될 수 있다.
[78] 【수학식 6】
Figure imgf000014_0002
[80] 다중안테나 무선 통신 시스템에서 채널을 모델링하는 경우, 채널은 송수신 안테니- 인덱스에 따라 구분될 수 있다. 송신 안테나 j 로부터 수신 안테나 i 를 거치 해널을 "ϋ로 표시하기로 한다. ^에서, 인덱스의 순서기- 수신 안테나 인덱스가 먼저 , 송신 안테나의 인덱스가 나중임에 유의한다.
[81] 도 5(b)에 NT 개의 송신 안테나에서 수신 안테나 i 로의 채널을 도시하였다. 상기 채널을 묶어서 백터 및 행렬 형태로 표시할 수 있다. 도 5(b)에서, 총 NT 개의 송신 안테나로부터 수신 안테나 i로 도착하는 채널은 다음과 같이 나타낼 수 있다.
[82] 【수학식 71
Figure imgf000015_0001
[84] 따라서, NT 개의 송신 안테나로부터 NR 개의 수신 안테나로 도착하는 모든 채 널은 다음과 같이 표현될 수 있다.
[85] r수하시 8]
Figure imgf000015_0002
[87] 실제 채널에는 채널 행렬 H를 거친 후에 백색잡음 ( GN; Additive White
Gaussian Noise)이 더해진다. NR 개의 수신 안테나 각각에 더해지는 백색잡음 " '··''« ^은 다음과 같이 표현될 수 있다.
[88] 【수학식 9】 η = [ηι2,·-·,ηΝκ}
L [889J] L ^i ' , NR J
[[9900]] 상상술술한한 수수식식 모모델델링링을을 통통해 수신신호는 다음과 같이 표현될 수 있다
[91] 【수학식 10】
[92]
Figure imgf000015_0003
[[9933]] 채채널널 상상태태를를 나나타타내내는는 채채널 행렬 H의 행과 열의 수는 송수신 안테나의 수에 의 I해해 결결정정된된다다.. 채채널널 행행렬렬 B H에서서 행의 수는 수신 안테나의 수 NR 과 같고, 열의 수 는 송신 안테나의 수 NT와 같다. 즉, 채널 행렬 H는 행렬이 NRXNT된다.
[94] 행렬의 랭크 (rank)는 서로 독립인 (independent) 행 또는 열의 개수 중에서 최소 개수로 정의된다. 따라서, 행렬의 탱크는 행 또는 열의 개수 보다 클 수 없다. 채널 행렬 H의 랭크 (rawfe(H))는 다음과 같이 제한된다.
[95] 【수학식 11】 [96] rank R)≤ min(iVr , NR )
[97] MIMO 전송에 있어서 '랭크 (Rank)' 는 독립적으로 신호를 전송할 수 있는 경 로의 수를 나타내며, '레이어 (layer)의 개수' 는 각 경로를 통해 전송되는 신호 스 트림의 개수를 나타낸다. 일반적으로 송신단은 신호 전송에 이용되는 행크 수에 대응 하는 개수의 레이어를 전송하기 때문에 특별한 언급이 없는 한 탱크는 레이어 개수와 동일한 의미를 가진다.
[98] 참조 신호 (Reference Signal; RS)
[99] 무선 통신 시스템에서 패킷을 전송할 띠ᅵ, 전송되는 패킷은 무선 채널을 통해 서 전송되기 때문에 전송과정에서 신호의 왜곡이 발생할 수 있다. 왜곡된 신호를 수 신측에서 올바로 수신하기 위해서는 채널 정보를 이용하여 수신 신호에서 왜곡을 보 정하여야 한디-ᅳ 채널 정보를 알아내기 위해서, 송신측과 수신측에서 모두 알고 있는 신호를 전송하여, 상기 신호가 채널을 통해 수신될 때의 왜곡 정도를 가지고 채널 정 보를 알아내는 방법을 주로 사용한다. 상기 신호를 파일럿 신호 (Pilot Signal) 또는 참조 신호 (Reference Signal)라고 한다.
[100] 다중안테나를 사용하여 데이터를 송수신하는 경우에는 각 송신 안테나와 수 신 안테나 사이의 채널 상황을 알아야 올바른 신호를 수신할 수 있디-. 따라서, 각 송 신 안테나 별로 별도의 참조 신호가 존재하여야 한다.
[101] 이동 통신 시스템애서 참조신호 (RS)는 그 목적에 따라 크게 두 가지로 구분 될 수 있다. 하나는 채널 정보 획득을 위해 사용되는 RS 이고, 다른 하나는 데이터 복조를 위해 사용되는 RS 이다. 전자는 단말이 하향 링크 채널 정보를 획득하도록 하 기 위한 RS 이므로 광대역으로 전송되어야 하고, 특정 서브프레임에서 하향링크 데이 터를 수신하지 않는 단말이라도 해당 RS 를 수신하고 측정할 수 있어야 한다. 이러한 RS 는 핸드 오버 등을 위한 측정 등을 위해서도 사용된다. 후자는 기지국이 하향링크 를 보낼 때 해당 자원에 함께 보내는 RS 로서, 단말은 해당 RS 를 수신함으로써 채널 추정을 할 수 있고, 따라서 데이터를 복조할 수 있게 된다. 이러한 RS 는 데이터가 전송되는 영역에 전송되어야 한다.
[102] 기존의 3GPP LTE (예를 들어, 3GPP LTE 릴리즈 -8) 시스템에서는 유니캐스트 (unicast) 서비스를 위해서 2 가지 종류의 하향링크 RS 를 정의한다. 그 중 하나는 공용 참조신호 (Co隱 on RS; CRS)이고, 다른 하나는 전용 참조신호 (Dedicated RS; DRS) 이디-. CRS 는 채널 상태에 대한 정보 획득 및 핸드오버 등을 위한 측정 등을 위해서 사용되고, 셀 -특정 (cell— specific) RS 라고 칭할 수도 있다. DRS 는 데이터 복조를 위 해 사용되고, 단말 -특정 (UE— specific) RS 라고 칭할 수도 있다. 기존의 3GPPLTE 시스 템에서 DRS 는 데이터 복조용으로만 사용되며 CRS 는 채널 정보 획득 및 데이터 복조 의 두 가지 목적으로 다 사용될 수 있다.
[103] CRS 는 셀-특정으로 전송되는 RS 이며, 광대역 (wideband)에 대해서 매 서브프 레임마다 전송된다. CRS 는 기지국의 전송 안테나 개수애 따라서 최대 4 개의 안테나 포트에 대해서 전송될 수 있디ᅳ. 예를 들어 기지국의 송신 안테나의 개수가 두 개일 경우, 0번과 1번 안테나 포트에 대한 CRS가 전송되고, 네 개인 경우 0~3 번 안테나 포트에 대한 CRS가 각각 전송된다.
[104] 도 6 은 기지국이 4 개의 전송 안테나를 지원하는 시스템에서 하나의 자원블 록 (일반 CP 의 경우, 시간 상으로 14 개의 OFDM 심볼 X 주파수 상으로 12 부반송파) 상에서 CRS 및 DRS의 패턴을 나타내는 도면이다. 도 6에서 'R01, 'Rl' , 'R2' 및 'R3' 로 표시된 자원 요소 (RE)는, 각각 안테나 포트 인덱스 0, 1, 2 및 3에 대한 CRS의 위 치를 나타낸다. 한편, 도 6 에서 'D'로 표시된 자원 요소는 LTE 시스템에서 정의되는 DRS의 위치를 나타낸다.
[105] LTE 시스템의 진화 발전된 형태의 LTE-A 시스템에서는, 하향링크에서 최대 8 개의 송신 안테나를 지원할 수 있다. 따라서, 최대 8 개 송신 안테나에 대한 RS 역시 지원되어야 한다 . LTE 시스템에서의 하향링크 RS는 최대 4개의 안테나 포트에 대해서 만 정의되어 있으므로, LTE-A 시스템에서 기지국이 4 7)1 이상 최대 8 개의 하향 링크 송신 안테나를 가질 경우 이들 안테나 포트들에 대한 RS 가 추가적으로 정의되어야 한디. 최대 8개의 송신 안테나 포트에 대한 RS로서 , 채널 측정을 위한 RS와 데이터 복조를 위한 RS 두 가지가 모두 고려되어야 한다.
[106] LTE-A 시스템을 설계함에 있어서 중요한 고려 사항 중 하나는 역방향 호환성 (backward compatibi lity)이다. 역방향 호환성이란, 기존의 LTE 단말이 LTE— A 시스템 애서도 올바르게 동작하도록 지원하는 것을 의미한다. RS 전송 관점에서 보았을 때, LTE 표준에서 정의되어 있는 CRS 가 전 대역으로 매 서브프레임마다 전송되는 시간- 주파수 영역에 최대 8개의 송신 안테나 포트에 대한 RS를 추가하는 경우, RS 오버헤 드가 지나치게 커지게 된다. 따라서, 최대 8 안테나 포트에 대한 RS 를 새롭게 설계 함에 있어서 RS 오버헤드를 줄이는 것이 고려되어야 한다. [107] LTE-A 시스템에서 새롭게 도입되는 RS 는 크게 2 가지로 분류할 수 있다. 그 증 하나는 전송 랭크, 변조및코딩기법 (Modulation and Coding Scheme; MCS), 프리코딩 행렬인덱스 (Precoding Matrix Index; PMI) 등의 선택을 위한 채널 측정 목적의 RS 인 채널상태정보—참조신호 (Channel State Information RS; CSI-RS)이고, 다른 하나는 최 대 8 개의 전송 안테나를 통해 전송되는 데이터를 복조하기 위한 목적의 RS 인 복조- 참조신호 (DeModulation RS; DM RS)이다.
[108] 채널 측정 목적의 CSI-RS 는, 기존의 LTE 시스템에서의 CRS 가 채널 측정, 핸 드오버 등의 측정 등의 목적과 동시에 데이터 복조를 위해 사용되는 것과 달리, 채널 측정 위주의 목적을 위해서 설계되는 특징이 있다. 물론 CSI-RS 역시 핸드오버 등의 측정 등의 목적으로도 사용될 수도 있다. CSI-RS가 채널 상태에 대한 정보를 얻는 목 적으로만 전송되므로, 기존의 LTE 시스템에서의 CRS 와 달리, 매 서브프레임마다 전 송되지 않아도 된다. 따라서, CSI-RS의 오버헤드를 줄이기 위하여 CSI-RS는 시간 축 상에서 간헐적으로 (예를 들어, 주기적으로) 전송되도록 설계될 수 있다.
[109] 만약 어떤 하향링크 서브프레임 상에서. 데이터가 전송되는 경우에는, 데이터 전송이 스케줄링된 단말에게 전용으로 (dedicated) DM RS가 전송된다. 특정 단말 전용 의 DM RS 는, 해당 단말이 스케즐링된 자원영역, 즉 해당 단말에 대한 데이터가 전송 되는 시간—주파수 영역에서만 전송되도록 설계될 수 있다.
[110] 도 7 은 LTE-A 시스템에서 정의되는 DM RS 패턴의 일례를 나타내는 도면이다. 도 7 에서는 하향링크 데이터가 전송되는 하나의 자원블록 (일반 CP 의 경우, 시간 상 으로 14 개의 0FDM 심볼 X 주파수 상으로 12 부반송파) 상에서 DM RS 가 전송되는 자원요소의 위치를 나타낸디-. DM RS 는 LTE-A 시스템에서 추가적으로 정의되는 4 개의 안테나 포트 (안테나 포트 인덱스 7, 8, 9 및 10)에 대하여 전송될 수 있다. 서로 다른 안테나 포트에 대한 DM RS 는 상이한 주파수 자원 (부반송파) 및 /또는 상이한 시간 자 원 (0FDM 심볼)에 위치하는 것으로 구분될 수 있다 (즉, FDM 및 /또는 TDM 방식으로 다 중화될 수 있다). 또한, 동일한 시간—주파수 자원 상에 위치하는 서로 다른 안테나 포트에 대한 DM RS 들은 서로 직교 코드 (orthogonal code)에 의해서 구분될 수 있다 (즉, CDM 방식으로 다중화될 수 있다). 도 7 의 예시에서 DMRSCDM 그룹 1 로 표시된 자원요소 (RE) 들에는 안테나 포트 7 및 8 에 대한 DM RS 들이 위치할 수 있고, 이들 은 직교 코드에 의해 다중화될 수 있다. 마찬가지로, 도 7 의 예시에서 DM RS 그룹 2 로 표시된 자원요소들에는 안테나 포트 9 및 10 에 대한 DM RS 들이 위치할 수 있고, 이들은 직교 코드에 의해 다중화될 수 있다.
[111] 도 8 은 LTE-A 시스템에서 정의되는 CSI-RS 패턴의 예시들을 나타내는 도면 이다. 도 8 에서는 하향링크 데이터가 전송되는 하나의 자원블록 (일반 CP 의 경우, 시간 상으로 14 개의 OFDM 심볼 X 주파수 상으로 12 부반송파) 상에서 CSI-RS 가 전 송되는 자원요소의 위치를 나타낸다. 어떤 하향링크 서브프레임에서 도 8(a) 내지 8(e) 중 하나의 CSI-RS 패턴이 이용될 수 있다. CSI-RS 는 LTE-A 시스템에서 추가적 으로 정의되는 8 개의 안테나 포트 (안테나 포트 인덱스 15, 16, 17., 18, 19, 20, 21 및 22) 에 대하여 전송될 수 있다. 서로 다른 안테나 포트에 대한 CSI-RS 는 상이한 주 파수 자원 (부반송파) 및 /또는 상이한 시간 자원 (OFDM 심볼)에 위치하는 것으로 구분 될 수 있디- (즉, FDM 및 /또는 TDM 방식으로 다중화될 수 있다). 또한, 동일한 시간-주 파수 자원 상에 위치하는 서로 다른 안테나 포트에 대한 CSI-RS 들은 서로 직교 코드 (orthogonal code)에 의해서 구분될 수 있다 (즉, CDM 방식으로 다중화될 수 있다). 도 8(a) 의 예시에서 CSI-RS CDM 그룹 1 로 표시된 자원요소 (RE) 들에는 안테나 포트 15 및 16 애 대한 CSI-RS 들이 위치할 수 있고, 이들은 직교 코드에 의해 다중화될 수 있디-. 도 8(a) 의 예시에서 CSI-RS CDM 그룹 2 로 표시된 자원요소들에는 안테나 포 트 17 및 18 에 대한 CSI-RS 들이 위치할 수 있고, 이들은 직교 코드에 의해 다중화 될 수 있디-. 도 8(a) 의 예시에서 CSI-RS CDM 그룹 3 으로 표시된 자원요소들에는 안 테나 포트 19 및 20 에 대한 CSI-RS 들이 위치할 수 있고, 이들은 직교 코드에 의해 다중화될 수 있다. 도 8(a) 의 예시에서 CSI-RS CDM 그룹 4 로 표시된 자원요소들에 는 안테나 포트 21 및 22 에 대한 CSI-RS 들이 위치할 수 있고, 이들은 직교 코드에 의해 다중화될 수 있다. 도 8(a)를 기준으로 설명한 동일한 원리가 도 8(b) 내지 8(e) 에 적용될 수 있디-.
[112] 도 6 내지 8 의 RS 패턴들은 단지 예시적인 것이며, 본 발명의 다양한 실시 예들을 적용함에 있어서 특정 RS 패턴에 한정되는 것이 아니다. 즉, 도 6 내지 8 과 다른 RS 패턴이 정의 및 사용되는 경우에도 본 발명의 다양한 실시예들은 동일하게 적용될 수 있다.
[113] 협력형 다중-포인트 (Cooperative Mult i -Point; CoMP)
[114] 3GPP LTE-A 시스템의 개선된 시스템 성능 요구조건에 따라서, CoMP 송수신 기 술 (co-MIM0, 공동 (collaborative) MIM0 또는 네트워크 MIM0 등으로 표현되기도 함) 이 제안되고 있다. CoMP 기술은 셀 -경계 (cell-edge)에 위치한 단말의 성능을 증가시 키고 평균 섹터 수율 (throughput)을 증가시킬 수 있다.
[115] 일반적으로 주파수 재사용 인자 (frequency reuse factor)가 1 인 다중-샐 환 경에서, 셀-간 간섭 (Inter-Cell Interference; ICI)으로 인하여 셀-경계에 위치한 단 말의 성능과 평균 섹터 수율이 감소될 수 있다. 이러한 ICI 를 저감하기 위하여, 기 존의 LTE 시스템애서는 단말 특정 전력 제어를 통한 부분 주파수 재사용 (fractional frequency reuse; FFR)과 같은 단순한 수동적인 기법을 이용하여 간섭에 의해 제한을 받은 환경에서 셀-경계에 위치한 단말이 적절한 수율 성능을 가지도록 하는 방법이 적용되었다. 그러나, 셀 당 주파수 자원 사용을 낮추기보다는, ICI를 저감하거나 ICI 를 단말이 원하는 신호로 재사용하는 것이 보다 바람직할 수 있다. 위와 같은 목적을 달성하기 위하여, CoMP 전송 기법이 적용될 수 있다.
[116] 하향링크의 경우에 적용될 수 있는 CoMP 기법은 크게 조인트—프로세싱 (joint processing; JP) 기법 및 조정 스케줄링 /빔포밍 (coordinated scheduling I beamforming; CS/CB) 기법으로 분류할 수 있다.
[117] JP 기법은 CoMP 협력 단위의 각각의 포인트 (기지국)에서 데이터를 이용할 수 있다. CoMP 협력 단위는 협력 전송 기법에 이용되는 기지국들의 집합을 의미한다. JP 기법은 조인트 전송 (Joint Transmission) 기법과 동적 셀 선택 (Dynamic cell selection) 기법으로 분류할 수 있다.
[118] 조인트 전송 기법은, PDSCH 가 한번에 복수개의 포인트 (CoMP 협력 단위의 일 부 또는 전부)로부터 전송되는 기법을 말한다. 즉, 단일 단말로 전송되는 데이터는 복수개의 전송 포인트 (transmission point, TP)로부터 동시에 전송될 수 있다. 조인트 전송 기법에 의하면, 코히어런트하게 (coherently) 또는 년-코히어런트하게 (non-coherent ly) 수신 신호의 품질이 향상될 수 있고, 또한, 다른 단말에 대한 간섭 을 능동적으로 소거할 수도 있다.
[119] 동적 셀 선택 기법은, PDSCH가 한번에 (CoMP 협력 단위의) 하나의 포인트로부 터 전송되는 기법을 말한다. 즉, 특정 시점에서 단일 단말로 전송되는 데이터는 하나 의 포인트로부터 전송되고, 그 시점에 협력 단위 내의 다른 포인트는 해당 단말에 대 하여 데이터 전송을 하지 않으며, 해당 단말로 데이터를 전송하는 포인트는 동적으로 선택될 수 있다. [120] 한편, CS/CB 기법에 의하면 CoMP 협력 단위들이 단일 단말에 대한 데이터 전 송의 빔포밍을 협력적으로 수행할 수 있다. 여기서, 데이터는 서빙 셀에서만 전송되 지만, 사용자 스케줄링 /빔포밍은 해당 CoMP 협력 단위의 셀들의 조정에 의하여 결정 될 수 있다.
[121] 한편, 상향링크의 경우에, 조정 (coordinated) 다중-포인트 수신은 지리적으 로 떨어진 복수개의 포인트들의 조정에 의해서 전송된 신호를 수신하는 것을 의미한 디-. 상향링크의 경우에 적용될 수 있는 CoMP 기법은 조인트 수신 (Joint Reception; JR) 및 조정 스케줄링 /빔포밍 (coordinated schedunng/beamfoming; CS/CB)으로 분류할 수 있다.
[122] JR 기법은 PUSCH 를 통해 전송된 신호가 복수개의 수신 포인트에서 수신되는 것을 의미하고, CS/CB 기법은 PUSCH가 하나의 포인트에서만 수신되지만 사용자 스케 줄링 /빔포밍은 CoMP 협력 단위의 샐들의 조정에 의해 결정되는 것을 의미한다.
[123] CSI-RS설정 (configuration)
[124] 전술한 바외- 같이, 하향링크애서 최대 8 개의 전송 안테나를 지원하는 LTE-A 시스템에서 기지국은 모든 안테나 포트에 대한 CSI-RS를 전송해야 한다. 최대 8개의 송신 안테나 포트애 대한 CSI-RS를 매 서브프레임마다 전송하는 것은 오버헤드가 너 무 큰 단점이 있으므로, CSI-RS는 매 서브프레임마다 전송되지 않고 시간 축에서 간 헐적으로 전송되어야 그 오버해드를 줄일 수 있다. 이에 따라, CSIᅳ RS는 한 서브프레 임의 정수 배의 주기를 가지고 주기적으로 전송되거나, 특정 전송 패턴으로 전송될 수 있다.
[125] 이 때 CSI-RS 가 전송되는 주기나 패턴은 기지국이 설정 (configuration) 할 수 있디-. CSI-RS를 측정하기 위해서 단말은 반드시 자신이 속한 셀의 각각의 CSI-RS 안테나 포트에 대한 CSI— RS설정 (configuration)을 알고 있어야 한다. CSI-RS설정에 는, CSI-RS가 전송되는 하향링크 서브프레임 인텍스, 전송 서브프레임 내에서 CSI-RS 자원요소 (RE)의 시간ᅳ주파수 위치 (예를 들어, 도 8(a) 내지 8(e)와 같은 CSI-RS 패 턴), 그리고 CSI-RS 시퀀스 (CSI-RS 용도로 사용되는 시뭔스로서, 슬롯 번호, 셀 ID, CP 길이 등에 기초하여 소정의 규칙에 따라 유사ᅳ랜덤 (pseudo-random)하게 생성됨) 등이 포함될 수 있다. 즉, 임의의 (given) 기지국에서 복수개의 CSI-RS 설정 (configuration)이 사용될 수 있고, 기지국은 복수개의 CSI-RS 설정 중에서 셀 내의 단말 (들)에 대해 사용될 CSI-RS설정을 알려줄 수 있다. [126] 또한; 각각의 안테나 포트에 대한 CSI-RS 는 구별될 필요가 있으므로, 각각 의 안테나 포트에 대한 CSI-RS 가 전송되는 자원은 서로 직교 (orthogonal)해야 한다. 도 8 과 관련하여 설명한 바와 같이, 각각의 안테나 포트에 대한 CSI-RS 들은 직교하 는 주파수 자원, 직교하는 시간 자원 및 /또는 직교하는 코드 자원을 이용하여 FDM, TDM 및 /또는 CDM 방식으로 다중화될 수 있다.
[127] CSI-RS 에 관한 정보 (CSI-RS 설정 (conf igurat ion))를 기지국이 셀 내의 단말 들에게 알려줄 띠 1, 먼저 각 안테나 포트에 대한 CSI-RS 가 매핑되는 시간-주파수에 대한 정보를 알려줘야 한디-. 구체적으로, 시간에 대한 정보에는, CSI-RS 가 전송되는 서브프레임 번호들, CSI— RS 가 전송되는 주기, CSI-RS가 전송되는 서브프레임 오프셋 , 특정 안테나의 CSI-RS자원요소 (RE)가 전송되는 0FDM 심볼 번호 등이 포함될 수 있다. 주파수에 대한 정보에는 특정 안테나의 CSI-RS 자원요소 (RE)가 전송되는 주파수 간격 (spacing), 주파수 축에서의 RE의 오프셋 또는 쉬프트 값 등이 포함될 수 있다.
[128] 도 9 는 CSI-RS 가 주기적으로 전송되는 방식의 일례를 설명하기 위한 도면이 디-. CSI— RS는 한 서브프레임의 정수 배의 주기 (예를 들어, 5 서브프레임 주기 10 서 브프레임 주기, 20 서브프레임 주기, 40 서브프레임 주기 또는 80 서브프레임 주기) 를 가지고 주기적으로 전송될 수 있다.
[129] 도 9 에서는 하나의 무선 프레임이 10 개의 서브프레임 (서브프레임 번호 0 내지 9)로 구성되는 것을 도시한다. 도 9 에서는, 예를 들어, 기지국의 CSI-RS 의 전 송 주기가 10ms (즉, 10 서브프레임) 이고, CSI-RS 전송 오프셋 (Offset)은 3 인 경우 를 도시한디-. 여러 셀들의 CSI-RS 가 시간 상에서 고르게 분포할 수 있도록 상기 오 프셋 값은 기지국마다 각각 다른 값을 가질 수 있다.10ms의 주기로 CSI-RS가 전송되 는 경우, 오프셋 값은 0~9 중 하나를 가질 수 있다. 이와 유사하게, 예를 들어 5ms 의 주기로 CSI-RS 가 전송되는 경우 오프셋 값은 0~4 중 하나의 값을 가질 수 있고, 20ms 의 주기로 CSI— RS 가 전송되는 경우 오프셋 값은 0~19 중 하나의 값을 가질 수 있고, 40ms 의 주기로 CSI-RS 가 전송되는 경우 오프셋 값은 0~39 중 하나의 값을 가 질 수 있으며, 80ms 의 주기로 CSI-RS 가 전송되는 경우 오프셋 값은 0~79 중 하나의 값을 가질 수 있다. 이 오프셋 값은, 소정의 주기로 CSI-RS 를 전송하는 기지국이 CSI-RS 전송을 시작하는 서브프레임의 값을 나타낸다. 기지국이 CSI— RS 의 전송 주기 와 오프셋 값을 알려주면, 단말은 그 값을 이용하여 해당 서브프레임 위치에서 기지 국의 CSI-RS 를 수신할 수 있다. 단말은 수신한 CSI-RS 를 통해 채널을 측정하고 그 결과로서 CQI, PMI 및 /또는 RI (Rank Indicator) 와 같은 정보를 기지국에게 보고할 수 있디-. 본 문서에서 CQI, PMI 및 RI 를 구별하여 설명하는 경우를 제외하고, 이들을 통칭하여 CQI (또는 CSI) 라 칭할 수 있다. 또한, CSI-RS 전송 주기 및 오프셋은 CSI-RS 설정 (configuration) 별로 별도로 지정될 수 있다.
[130] 도 10 은 CSI-RS 가 비주기적으로 전송되는 방식의 일례를 설명하기 위한 도 면이다. 도 10 에서는 하나의 무선 프레임이 10 개의 서브프레임 (서브프레임 번호 0 내지 9)으로 구성되는 것을 도시한다. 도 10 에서와 같이 CSI-RS 가 전송되는 서브프 레임은 특정 패턴으로 나타날 수 있다. 예를 들어, CSI-RS 전송 패턴이 10 서브프레 임 단위로 구성될 수 있고, 각각의 서브프레임에서 CSI-RS 전송 여부를 1 비트 지시 자로 지정할 수 있다. 도 10 의 예시에서는 10 개의 서브프레임 (서브프레임 인텍스 0 내지 9) 내의 서브프레임 인덱스 3 및 4 에서 전송되는 CSI-RS 패턴을 도시하고 있다. 이러한 지시자는 상위 계층 시그널링을 통해 단말에게 제공될 수 있다.
[131] CSI-RS 전송에 대한 설정 (configuration)은 전술한 바와 같이 다양하게 구성 될 수 있으며 , 단말이 올바르게 CSI-RS 를 수신하여 채널 측정을 수행하도록 하기 위 해서는, 기지국-이 CSI-RS 설정을 단말애게 알려줄 필요가 있디-. CSI-RS 설정을 단말 에게 알려주는 본 발명의 실시예들에 대해서 이하에서 설명한다.
[132] CSI-RS 설정을 알려주는 방식
[133] 일반적으로 기지국이 단말에게 CSI-RS 설정 (configuration)을 알려주는 방식 으로 다음 두 가지 방식이 고려될 수 있다.
[134] 첫 번째 방식은, 동적 브로드캐스트 채널 (Dynamic Broadcast Channel; DBCH) 시그널링을 이용하여 CSI-RS 설정 (configuration)에 관한 정보를 기지국이 단말들에 게 브로드캐스팅하는 방식이다.
[135] 기존의 LTE 시스템에서 시스템 정보에 대한 내용을 기지국이 단말들에게 알 려줄 때 보통 BOKBroadcasting Channel)를 통해서 해당 정보를 전송할 수 있다. 만 약 단말에게 알려줄 시스템 정보에 대한 내용이 많아서 BCH 만으로는 다 전송할 수 없는 경우에는, 기지국은 일반 하향링크 데이터와 같은 방식으로 시스템 정보를 전송 하되, 해딩- 데이터의 PDCCH CRC를 특정 단말 식별자 (예를 들어, C-RNTI)가 아닌 시스 템 정보 식별자 (SIᅳ RNTI)를 이용하여 마스킹하여 시스템 정보를 전송할 수 있디-. 이 경우애, 실제 시스템 정보는 일반 유니캐스트 데이터와 같이 PDSCH 영역 상에서 전송 된다. 이에 따라, 셀 안의 모든 단말들은 SI-RNTI를 이용하여 PDCCH를 디코딩 한 후, 해당 PDCCH가 가리키는 PDSCH를 디코딩하여 시스템 정보를 획득할 수 있다. 이와 같 은 방식의 브로드캐스팅 방식을 일반적인 브로드캐스팅 방식인 PBCH(Physical BCH)와 구분하여 DBCH(Dynamic BCH) 라고 칭할 수 있다.
[136] 한편, 기존의 LTE 시스템에서 브로드캐스팅되는 시스템 정보는 크게 두 가지 로 나눌 수 있다. 그 중 하나는 PBCH를 통해 전송되는 MIB(Master Information Block) 이고, 다른 하나는 PDSCH 영역 상에서 일반 유니캐스트 데이터와 다중화되어 전송되 는 SIB(System Information Block)이다. 기존의 LTE시스템에서 SIB 타입 1 내지 SIB 타입 8 (SIB1 내지 SIB8) 으로서 전송되는 정보들을 정의하고 있으므로, 기존의 SIB 타입에 정의되지 않는 새로운 시스템 정보인 CSI-RS 설정 (configuration)에 대한 정 보를 위해서 새로운 SIB타입을 정의할 수 있다. 예를 들어 , SIB9또는 SIB10을 정의 하고 이를 통해서 CSI-RS 설정 (configuration )에 대한 정보를 기지국이 DBCH 방식으 로 셀 내 단말들에게 알려줄 수 있다.
[137] 두 번째 방식은 RRC(Radio Resource Control) 시그널링을 이용하여 CSI— RS설 정 (configuration)에 관한 정보를 기지국이 각각의 단말에게 알려주는 방식이다. 즉, 전용 (dedicated) RRC 시그널링을 사용하여 CSI-RS 설정에 대한 정보가 셀 내의 단말 들 각각에게 제공될 수 있다. 예를 들어, 단말이 초기 액세스 또는 핸드오버를 통해 서 기지국과 연결 (connect ion)을 확립 (establish)하는 과정에서, 기지국이 해당 단말 에게 RRC 시그널링을 통해 CSI— RS 설정 (configuration)을 알려 주도록 할 수 있디-. 또는 기지국이 단말에게 CSI-RS 측정에 기반한 채널 상태 피드백을 요구하는 RRC 시 그널링 메시지를 전송할 때에, 해당 RRC 시그널링 메시지를 통해 CSI— RS 설정 (configuration)을 해당 단말에게 알려 주도록 할 수도 있다.
[138] CSI-RS설정의 지시 (indication)
[139] 임의의 기지국에서 다수의 CSI-RS 설정 (configuration)이 이용될 수 있고, 기지국은 각각의 CSI-RS 설정에 따른 CSI-RS 를 미리 결정된 서브프레임 상에서 단말 에게 전송할 수 ' 있다. 이 경우, 기지국은 단말에게 다수의 CSI-RS 설정 (configuration)을 알려주며, 그 중에서 CQKChannel Quality Information) 또는 CSI (Channel State Information) 피드백을 위한 채널 상태 측정에 사용될 CSI— RS 가 무엇인지를 단말에게 알려즐 수 있다. ' [140] 이외-' 같이 기지국이 단말애서 사용될 CSI-RS 설정 (configuration) 및 채널 측정애 이용될 CSI— RS 를 지시 (indication)하는 것에 대한 실시예를 이하에서 설명한 디-.
[141] 도 11 은 2 개의 CSI— RS 설정 (conf igurat ion)이 사용되는 예를 설명하기 위 한 도면이다. 도 11 에서는 하나의 무선 프레임이 10 개의 서브프레임 (서브프레임 번 호 0 내지 9)으로 구성되는 것을 도시한다. 도 11 에서 제 1 CSI— RS 설정 (configuration), 즉, CSI-RS1은 CSI-RS의 전송 주기가 10ms 이고, CSI-RS 전송 오프 셋이 3 이디-. 도 11 에서 제 2 CSI-RS 설정 (configuration), 즉, CSI-RS2 는 CSI-RS 와 전송 주기가 10ms 이고, CSI-RS 전송 오프셋이 4 이디-. 기지국은 단말에게 두 개 의 CSI-RS 설정 (conf igurat ion)에 대한 정보를 알려주며, 그 중에서 어떤 CSI-RS 설 정 (conf igurat ion)을 CQI (또는 CSI) 피드백을 위해 사용할지를 알려줄 수 있다.
[142] 단말은 특정 CSI— RS 설정 (conf igurat ion)에 대한 CQI 피드백을 기지국으로부 터 요청 받으면, 해당 CSI-RS 설정 (conf igurat ion)에 속하는 CSI-RS 만을 이용하여 채널 상태 측정을 수행할 수 있다. 구체적으로, 채널 상태는 CSI— RS 수신 품질과 잡 음 /간섭의 양과 상관계수의 함수로 결정되는데, CSI— RS 수신 품질 측정은 해당 CSI-RS 설정 (configuration)에 속하는 CSI-RS 만을 이용하여 수행되고, 잡음 /간섭의 양과 상관계수 (예를 들어, 간섭의 방향을 나타내는 간섭 공분산 행렬 (Interference Covariance Matrix) 등)를 측정하기 위해서는 해당 CSI-RS 전송 서브프레임에서 또는 지정된 서브프레임들에서 측정이 수행될 수 있다. 예를 들어, 도 11 의 실시예에서 단말이 제 1 CSI-RS 설정 (CSI— RSI) 에 대한 피드백을 기지국으로부터 요청 받았을 경 우에 , 단말은 하나의 무선 프레임의 4 번째 서브프레임 (서브프레임 인텍스 3)에서 전 송되는 CSI-RS 를 이용하여 수신 품질 측정을 수행하며, 잡음 /간섭의 양과 상관계수 측정을 위해서는 별도로 홀수 번째 서브프레임을 사용하도록 지정 받을 수 있다. 또 는, CSI-RS 수신 품질 측정과 잡음 /간섭의 양과 상관계수 측정을 특정 단일 서브프레 임 (예를 들어 , 서브프레임 인덱스 3)에 한정하여 측정하도록 지정할 수도 있다.
[143] 예를 들어, CSI-RS 를 이용하여 측정된 수신 신호 품질은 신호 -대—간섭및잡음 비 (Signal-to— Interference plus Noise Ratio; SINR)로서 간략하게 S/(I+N) (여기서 S 는 수신신호의 강도, I 는 간섭의 양, N 은 노이즈의 양)으로 표현될 수 있다. S 는 해당 단말에게 전송되는 신호를 포함하는 서브프레임에서 CSI-RS 를 포함하는 서브프 레임에서 CSI-RS 를 통해서 측정될 수 있다. I 및 N 은 주변 셀로부터의 간섭의 양, 주변 셀로부터의 신호의 방향 등애 따라 변화하므로, s를 측정하는 서브프레임 또는 별도로 지정되는 서브프레임에서 전송되는 CRS등을 통해서 측정할 수 있다.
[144] 여기서, 잡음 /간섭의 양과 상관계수의 측정은, 해당 서브프레임내의 CRS 또 는 CSI-RS 가 전송되는 자원요소 (Resource Element, RE)에서 이루어질 수도 있고, 또 는 잡음 /간섭의 측정을 용이하게 하기 위하여 설정된 널 자원요소 (Null RE)를 통해 이루어 질 수도 있다. CRS또는 CSI-RSRE에서 잡음 /간섭을 측정하기 위하여, 단말은 먼저 CRS 또는 CSI-RS 를 복구 (recover)한 뒤, 그 결과를 수신신호에서 빼서 (subtract) 잡음과 간섭 신호만 남겨서, 이로부터 잡음 /간섭의 통계치를 얻을 수 있 디-. Null RE는 해당 기지국이 어떠한 신호도 전송하지 않고 비워둔 (즉, 전송 전력이 0 (zero) 인) RE 를 의미하고, 해당 기지국을 제외한 다른 기지국으로부터의 신호 측 정을 용이하게 하여준다. 잡음 /간섭의 양과 상관계수의 측정을 위하여 CRSRE, CSI-RS RE 및 Null RE를 모두 사용 할 수도 있으나, 기지국은 그 중에서 어떤 RE들을 사용하 여 잡음 /간섭을 측정할지에 대해서 단말기에게 지정해줄 수도.있다. 이는, 단말이 측 정을 수행하는 RE 위치에 전송되는 이웃 셀의 신호가 데이터 신호인지 제어 신호인지 등에 따리- 해당 단말이 측정할 RE 를 적절하게 지정하는 것이 필요하기 때문이며, 해 당 RE 위치에서 전송되는 이웃 셀의 신호가 무엇인지는 셀간 동기가 맞는지 여부 그 리고 CRS 설정 (configuration)과 CSI-RS 설정 (configuration) 등에 따라 달라지므로 기지국에서 이를 파악하여 단말에게 측정을 수행할 RE 를 지정해줄 수 있다. 즉 기 지국은 CRS RE, CSI-RS RE 및 Null RE중에서 전부 또는 일부를 사용하여 잡음 /간섭을 측정하도록 단말기에 지정해 줄 수 있다.
[145] 예를 들어, 기지국은 복수개의 CSI-RS 설정 (configuration)을 사용할 수 있 고, 기지국은 단말기에 하나 이상의 CSI-RS 설정 (configuration)을 알려주면서 그 중 에서 CQI 피드백에 이용될 CSI-RS설정 (configuration) 및 Null RE위치에 대해서 알 려줄 수 있다. 단말기가 CQI 피드백에 이용할 CSI-RS 설정 (configuration)은, 0 의 전송 전력으로 전송되는 Null RE 와 구별하는 측면에서 표현하자면, 0 이 아닌 (non-zero) 전송 전력으로 전송되는 CSI-RS 설정 (configuration)이라고 할 수 있다. 예를 들어, 기지국은 단말이 채널측정을 수행할 하나의 CSI-RS 설정 (configuration) 을 알려주고, 단말은 상기 하나의 CSI-RS 설정 (configuration)에서 CSI-RS 가 0 이 아닌 (non— zero) 전송 전력으로 전송되는 것으로 가정 (assume)할 수 있다. 이에 추가 적으로, 기지국은 0 의 전송 전력으로 전송되는 CSI-RS 설정 (configuration)에 대해 서 (즉, Null RE 위치에 대해서) 알려주고, 단말은 해당 CSI-RS 설정 (configuration) 의 자원요소 (RE) 위치에 대해 0 의 전송 전력임을 가정 (assume)할 수 있다. 달리 표 현하자면, 기지국은 0 이 아닌 전송 전력의 하나의 CSI-RS설정( )11^^^ 01 을 단 말에게 알려주면서 , 0의 전송 전력의 CSI-RS설정 (configuration)이 존재하는 경우에 는 해당 Null RE 위치를 단말에게 알려줄 수 있다.
[146] 위외- 같은 CSI-RS 설정 (configuration)의 지시 방안에 대한 변형예로서, 기 지국은 단말기애 다수의 CSI-RS 설정 (configuration)을 알려주고, 그 중에서 CQI 피 드백에 이용될 전부 또는 일부의 CSI-RS설정 (configuration)에 대해서 알려줄 수 있 다. 이에 따라, 다수의 CSI-RS 설정 (configuration)에 대한 CQI 피드백을 요청 받은 단말은, 각각의 CSI-RS 설정 (configuration)에 해당하는 CSI-RS 를 이용하여 CQI 를 측정하고, 측정된 다수의 CQI 정보들을 함께 기지국으로 전송할 수 있다.
[147] 또는, 단말이 다수의 CSIᅳ RS 설정 (configuration) 각각에 대한 CQI 를 기지 국으로 전송할 수 있도록, 기지국은 단말의 CQI 전송에 필요한 상향링크 자원을 각각 의 CSI-RS설정 (configuration) 별로 미리 지정할 수 있고 이러한 상향링크 자원 지 정에 대한 정보는 RRC시그널링을 통하여 미리 단말에게 제공될 수 있다.
[148] 또는, 기지국은 단말로 하여금 다수의 CSI— RS 설정 (configuration) 각각에 대한 CQI 를 기지국으로 전송하도록 동적으로 트리거링 (trigger) 할 수 있다. CQI 전 송의 동적인 트리거링은 PDCCH 를 통해서 수행될 수 있다. 어떤 CSI-RS 설정 (configuration)애 대한 CQI 측정을 수행할지가 PDCCH 를 통해 단말에게 알려질 수 있다. 이러한 PDCCH 를 수신하는 단말은 해당 PDCCH 에서 지정된 CSIᅳ RS 설정 (configuration) 에 대한 CQI 측정 결과를 기지국으로 피드백할 수 있다.
[149] 다수의 CSI-RS 설정 (configuration)의 각각에 해당하는 CSI-RS 의 전송 시점 은 다른 서브프레임에서 전송되도특 지정될 수도 있고, 또는 동일한 서브프레임에서 전송되도록 지정될 수도 있다. 동일 서브프레임에서 서로 다른 CSI-RS 설정 (configuration)에 따른 CSI-RS 의 전송이 지정되는 경우, 이들을 서로 구별하는 것 이 필요하다. 서로 다른 CSI— RS 설정 (configuration)에 따른 CSI— RS 들을 구별하기 위해서, CSI-RS 전송의 시간 자원, 주파수 자원 및 코드 자원 중 하나 이상을 다르게 적용할 수 있다. 예를 들어, 해당 서브프레임에서 CSI-RS 의 전송 RE 위치가 CSI-RS 설정 (configuration) 별로 다르게 (예를 들어, 하나의 CSI-RS설정에 따른 CSI-RS는 도 8(a) 의 RE 위치에서 전송되고, 다른 하나의 CSI-RS 설정에 따른 CSI-RS 는 동일 한 서브프레임에서 도 8(b)의 RE 위치에서 전송되도록) 지정할 수 있다 (시간 및 주파 수 자원을 이용한 구분). 또는, 서로 다른 CSI-RS 설정 (configuration)에 따른 CSI-RS 들이 동일한 RE 위치에서 전송되는 경우에, 서로 다른 CSIᅳ RS 설정 (configuration)에서 CSI-RS 스크램블링 코드를 상이하게 사용함으로써 서로 구분되 게 할 수도 있다 (코드 자원을 이용한 구분).
[150] CoMP 시스템에서 채널상태정보 산출 방법
[151] 이하에서는, 단말이 CSI-RS를 수신하여 채널상태정보 (예를 들면, CQI)를 산출 할 띠 1, CRS의 오버헤드 (overhead)를 결정하는 방법을 상세히 설명한다.
[152] CoMP 시스템에서 동일 셀 식별자 (ID)를 공유하는 복수의 전송 포인트 간에 단말이 셀 식별자를 기반으로 CRS 로부터 채널을 측정하는 경우, 각 전송 포인트의 채널을 구분할 수 없는 문제점이 있다. 동일한 셀 식별자를 공유하는 복수의 전송 포인트는 동일한 CRS 를 동시에 전송하고, 이 때 CRS 로부터 측정되는 채널은 복수의 전송 포인트의 채널이 합쳐진 하나의 채널이 되기 때문이다. 따라서, 단말이 전송 포 인트 각각의 독립적인 채널을 측정하기 위해서는 각 전송 포인트 별로 전송되는 CSI—RS를 측정하는 것이 효율적이다.
[153] TDD CoMP 시스템에서 채널 가역성 (reciprocity)을 이용하는 경우에도, 상술한 CSI-RS 기반의 채널 측정 방법을 이용하는 것이 효과적이다. 채널 가역성이 존재하는 경우, 기지국은 상향링크 사운딩 참조신호 (Sounding Reference Signal, SRS)를 이용하 여 하향링크 채널의 일부 정보를 추정할 수 있다. 구체적으로, 기지국은 채널상태정 보 중 RI 또는 PMI 정보를 단말의 피드백 없이 SRS 로부터 추정할 수 있다. 하지만, 이 경우에도 채널상태정보 중 CQI 는 하향링크와 상향링크 사이의 채널 차이로 인하 여 SRS로부터 추정되기 어렵다. 따라서 , TDD >ΜΡ 시스템에서 단말은 필수적으로 CQI 를 기지국으로 전송해야 한다. 이때 상술한 바와 같이 CQI 는 CRS 가 아닌 CSI-RS 를 기반으로 생성하여 , 동일 셀 식별자를 공유하는 전송 포인트 각각의 채널을 구별하는 것이 바람직하다.
[154] 즉, TDD CoMP 시스템에서 기지국은 단말에게 RI 및 PMI는 보고하지 않도록 설 정하고, 각 전송 포인트에 해당하는 CSIᅳ RS를 기반으로 CQI를 산출하도록 설정할 수 있다. 일반적으로, 단말은 CQI 를 산출할 때, 해당 셀의 CRS 오버헤드를 가정하고, CRS가 전송되는 RE로부터는 데이터 신호가 전송되는 않는다고 판단한다. 하지만, 단 말이 CSI— RS를 기반으로 CQI를 산출할 때 , 단말은 복수의 전송 포인트 중 어느 전송 포인트로부터 CSI— RS 를 수신한 것인지 알 수 없으므로, CRS 오버헤드를 결정하는 방 법이 문제가 된다. 예를 들면, 단말이 수신한 CSI-RS 가 서빙 전송 포인트의 CSI-RS 인 경우에는 서빙 전송 포인트의 CRS에 해당하는 CRS 오버헤드를 가정하여 CQI를 산 출할 수 있지만, 단말이 수신한 CSI— RS 가 비 -서빙 (non-serving) 전송 포인트의 CSI-RS인 경우에는 CQI 산출을 위한 CRS오버헤드를 어떻게 결정할 지가 문제된다.
[155] 본 발명에 따르면, 단말은 PMI 및 RI의 보고 없이 CSI-RS를 기반으로 CQI를 산출하여 피드백할 때 아래의 실시예들에 따라 CRS 오버헤드를 결정할 수 있다.
[156] 첫번째 실시예로서 , 단말은 CSI-RS를 기반으로 CQI를 산출할 띠ᅵᅳ CQI 산출에 이용된 CSI-RS 의 포트 수에 따라 CRS 오버헤드를 결정할 수 있다. 즉, 단말이 N 포 트의 CSI-RS를 이용하여 CQI를 산출하는 경우, N 포트의 CRS 오버헤드를 가정한다.
[157] 예를 들면, 단말에 1 포트의 CSI-RS 가 설정된 경우, 단말은 1 포트의 CRS 에 해당하는 CRS오버헤드를 가정하여 CQI를 산출한다. 즉, 단말은 CSI— RS의 포트 수가 1이므로 CRS의 포트 수를 1로 가정하고, 1 포트의 CRS오버헤드를 기초로 CQI를 산 출한다.
[158] 또한, 단말에 2 포트의 CSI-RS 가 설정된 경우, 단말은 2 포트의 CRS 에 해당 하는 CRS 오버헤드를 가정하여 CQI를 산출한다. 즉, 단말은 CSI— RS의 포트 수가 2이 므로 CRS의 포트 수를 2로 가정하고, 2포트의 CRS 오버헤드를 기초로 CQI를 산출한 다ᅳ
[159] 또한, 단말에 4 포트의 CSI-RS 가 설정된 경우, 단말은 4포트의 CRS 에 해당 하는 CRS오버헤드를 가정하여 CQI를 산출한다. 즉, 단말은 CSIᅳ RS의 포트 수가 4이 므로 CRS의 포트 수를 4로 가정하고, 4포트의 CRS오버헤드를 기초로 CQI를 산출한 다.
[160] 한편, N 포트의 CSI-RS가 설정되었으나, N 포트의 안테나용 전송 모드가 존재 하지 않는 경우, 단말은 N 포트 중 특정 M (M<N) 포트의 전송 모드를 가정하여 M 포 트의 CRS오버헤드를 기초로 CQI를 산출할 수 있다.
[161] 예를 들면, 현재 LTE 시스템 (예를 들면, 릴리즈 8)에서 최대 4 포트의 CRS 가 존재하는 경우, 최대 4 포트의 CRS 오버헤드를 가정하예 CQI 를 산출할 수 있다. 구체적으로, 단말에 8 포트의 CSI-RS가 설정된 경우, 단말은 4 포트의 CRS에 대웅하 는 CRS 오버헤드를 가정하여 CQI를 산출할 수 있다. 8포트 안테나를 위한 전송 모드 가 존재하지 않으므로 단말은 8 포트 중 4포트 만을 이용한 전송모드를 가정한 것이 다ᅳ
[162] 첫번째 실시예에 따라 CQI 를 산출하는 경우, 단말은 현재 LTE 시스템 (예를 들면, 릴리즈 8)에서 전송모드 2 의 CQI 산출 방법을 이용할 수 있는 장점이 있다. 전송모드 2는 CRS로부터 채널을 추정하며, CRS포트가 M 개인 경우, M포트를 이용한 하향링크 전송 방법을 가정하여 CQI를 산출한다. 이때, CRS오버헤드는 M포 의 CRS 오버헤드로 가정한다. 마찬가지로, 본 발명에서 N 포트의 CSI-RS 포트를 이용하여 CQI 를 산출하는 경우, CSI-RS 의 포트 수를 CRS 포트 수로 가정하여 CRS오버헤드를 결정할 수 있다. 즉, N포트의 CRS오버해드를 가정하고 CQI를 산출할 수 있다. 첫번 째 실시에애 따르는 경우 TM2 의 CQI 산출 방법을 활용함으로써 단말 구현의 복잡도 를 줄일 수 있다.
[163] 두번째 실시예로서, 단말은 CSI-RS를 기반으로 CQI 를 산출할 때, 서빙 전송 포인트의 CRS 포트에 해당하는 CRS오버헤드를 가정하여 CQI 를 산출할 수 있다. 즉, 단말에 N 포트의 CSI-RS 가 설정되고 서빙 전송 포인트의 CRS포트 수는 M 인 경우, 단말은 CSI-RS의 포트 수에 무관하게 M포트의 CRS오버헤드를 가정하여 CQI를 산출 한디-.
[164] 예를 돌면, 단말에 1 포트의 CSI-RS 가 설정되고 서빙 전송 포인트의 CRS 포 트 수는 2 인 경우, 단말은 2포트의 CRS오버헤드를 가정하여 CQI 를 산출한다. 즉, 단말은 CSI-RS 의 포트 수와 무관하게 서빙 전송포인트의 CRS포트 수에 따라 2포트 의 CRS오버헤드를 기초로 CQI를 산출한다.
[165] 또한, 단말에 2 포트의 CSI-RS 가 설정되고 서빙 전송 포인트의 CRS 포트 수 는 4 인 경우, 단말은 4포트의 CRS오버헤드를 가정하여 CQI 를 산출한다. 즉, 단말 은 CSI-RS 의 포트 수와 무관하게 서빙 전송포인트의 CRS 포트 수에 따라 4 포트의 C S오버헤드를 기초로 CQI를 산출한다.
[166] 한편ᅳ N포트 안테나용 전송 모드가 존재하지 않을 경우 단말은 N포트 중 특 정 M(M<N) 포트만을 이용한 전송 모드를 가정하여 CQI를 산출한다. 예를 들면 , 현재 LTE 시스템 (예를 들면, 릴리즈 8)에서 최대 4포트의 CRS가 존재하므로, 최대 4포 트의 CRS오버해드를 가정하여 CQI를 산출할 수 있다.
[167] 두번째 실시예에 따리- CQI 를 산출하는 경우, 단말은 첫번째 방법에 비하여 비교적 단순한 절차를 통하여 CRS오버해드를 결정할 수 있디-. [168] 도 12 는 본 발명의 일 실시예에 따른 병합 CSI 피드백 방법을 나타내는 흐름 도이디-.
[169] 먼저, 단말은 기지국으로부터 CSI 설정 정보를 수신한다 (S1210).
[170] 상술한 바와 같이, 단말은 CSI-RS 가 전송되는 주기나 패턴에 대한 CSI 설정 정보를 기지국으로부터 수신할 수 있다. CSI-RS를 측정하기 위해서 단말은 반드시 자 신이 속한 셀의 각각의 CSI-RS 안테나 포트에 대한 CSI-RS 설정 (configuration)을 알 고 있어야 한디-. 기지국은 상위계층 시그널링 (예를 들면, RRC 시그널링)을 통하여 CSI 설정 정보를 단말로 전송할 수 있다.
[171] 다음으로, 단말은 CSI 설정 정보에 따라 CSI-RS를 수신한다 (S1230).
[172] 상술한 바와 같이 , CSIᅳ RS는 LTE— A 시스템에서 새롭게 도입되는 RS 중 하나이 다. CSI-RS는 전송 탱크, 변조및코딩기법 (Modulation and Coding Scheme; MCS) , 프리 코딩행렬인덱스 (Precoding Matrix Index; PM I) 등의 선택을 위한 채널 측정 목적의 RS 이다. 셀 식별자를 공유하는 복수의 전송 포인트 각각은 상이한 자원을 통하여 CSIᅳ RS를 전송한다 .
[178] 다음으로, 단말은 CSI— RS 와 연관된 안테나 포트 수와 동일한 안테나 포트 수 에 기반하여 공통 참조신호 (CRS) 자원요소의 오버헤드 (overhead)를 결정한다 (S1250).
[174] 상술한 바와 같이, 단말이 CSI-RS를 기반으로 CQI를 산출할 띠ᅵ, 단말은 복수 의 전송 포인트 중 어느 전송 포인트로부터 CSI-RS 를 수신한 것인지 알 수 없으므로,
CRS오버헤드를 결정하는 방법이 문제가 된다.
[175] 첫번째 실시예로서, 단말은 CSI-RS를 기반으로 CQI를 산출할 띠ᅵ, CQI 산출에 이용된 CSI-RS 의 포트 수에 따라 CRS 오버헤드를 결정할 수 있다. 즉, 단말이 N 포 트의 CSI-RS를 이용하여 CQI를 산출하는 경우, N 포트의 CRS 오버헤드를 가정한다.
[176] 두번째 실시예로서, 단말은 CSI-RS 를 기반으로 CQI 를 산출할 때, 서빙 전송 포인트의 CRS 포트에 해당하는 CRS 오버헤드를 가정하여 CQI 를 산출할 수 있다. 즉, 단말에 N 포트의 CSI-RS 가 설정되고 서빙 전송 포인트의 CRS 포트 수는 M 인 경우, 단말은 CSI-RS의 포트 수에 무관하게 M 포트의 CRS 오버헤드를 가정하여 CQI를 산출 한다.
[177] 다음으로, 단말은 CSI— RS 및 CRS 자원요소의 오버헤드를 기초로 산출된 채널 상태정보를 전송한다 (S1270).
[178] 도 13은 본 발명에 일 실시예에 적용될 수 있는 기지국- 및 단말을 예시한다. [179] 무선 통신 시스템애 릴레이가 포함되는 경우, 백홀 링크에서 통신은 기지국 괴- 릴레이 사이에 이뤄지고 억세스 링크에서 통신은 릴레이와 단말 사이에 이뤄진다. 따라서, 도면에 예시된 기지국- 또는 단말은 상황에 맞춰 릴레이로 대체될 수 있다.
[180] 도 13 을 참조하면, 무선 통신 시스템은 기지국 (1310) 및 단말 (1320)을 포함 한다. 기지국 (1310)은 프로세서 (1313), 메모리 (1314) 및 무선 주파수 (Radio Frequency, RF) 유닛 (1311, 1312)을 포함한다. 프로세서 (1313)는 본 발명에서 제안한 절차 및 /또는 방법들을 구현하도록 구성될 수 있다. 메모리 (1314)는 프로세서 (1313) 와 연결되고 프로세서 (1313)의 동작과 관련한 다양한 정보를 저장한다. F 유닛 (1316) 은 프로세서 (1313)와 연결되고 무선 신호를 송신 및 /또는 수신한다. 단말 (1320)은 프 로세서 (1323), 메모리 (1324) 및 RF 유닛 (1321, 1322)을 포함한다. 프로세서 (1323)는 본 발명에서 제안한 절차 및 /또는 방법들을 구현하도록 구성될 수 있다. 메모리 (1324) 는 프로세서 (1323)와 연결되고 프로세서 (1323)의 동작과 관련한 다양한 정보를 저장 한다. RF 유닛 (1321, 1322)은 프로세서 (1323)와 연결되고 무선 신호를 송신 및 /또는 수신한다. 기지국 (1310) 및 /또는 단말 (1320)은 단일 안테나 또는 다중 안테나를 가질 수 있다.
[181] 이상에서 설명된 실시예들은 본 발명의 구성요소들과 특징들이 소정 형태로 결합된 것들이다. 각 구성요소 또는 특징은 별도의 명시적 언급이 없는 한 선택적인 것으로 고려되어야 한다. 각 구성요소 또는 특징은 다른 구성요소나 특징과 결합되지 않은 형태로 실시될 수 있다. 또한, 일부 구성요소들 및 /또는 특징들을 결합하여 본 발명의 실시예를 구성하는 것도 가능하다. 본 발명의 실시예돌에서 설명되는 동작들 의 순서는 변경될 수 있디-. 어느 실시예의 일부 구성이나 특징은 다른 실시예에 포함 될 수 있고, 또는 다른 실시예의 대응하는 구성 또는 특징과 교체될 수 있다. 특허청 구범위에서 명시적인 인용 관계가 있지 않은 청구항들을 결합하여 실시예를 구성하거 나 출원 후의 보정에 의해 새로운 청구항으로 포함시킬 수 있음은 자명하다.
[182] 본 문서에서 기지국에 의해 수행된다고 설명된 특정 동작은 경우에 따라서는 그 상위 노드 (upper node)에 의해 수행될 수 있다. 즉, 기지국을 포함하는 복수의 네 트워크 노드들 (network nodes)로 이루어지는 네트워크에서 단말과의 통신을 위해 수 행되는 다양한 동작들은 기지국 또는 기지국 이외의 다른 네트워크 노드들에 의해 수 행될 수 있음은 자명하디ᅳ. 기지국은 고정국 (fixed station), Node B, eNc)deB(eNB) , 억 세스 포인트 (access point) 등의 용어에 의해 대체될 수 있다. [183] 본 발명에 따른 실시예는 다양한 수단, 예를 들어, 하드웨어, 펌웨어 (fir画 are), 소프트웨어 또는 그것들의 결합 등에 의해 구현될 수 있다. 하드웨어에 의한 구현의 경우, 본 발명의 일 실시예는 하나 또는 그 이상의 ASICs(application specific integrated circuits) , DSPs(digital signal processors) , DSPDs(digital signal processing devices) , . PLDs( programmable logic devices) , FPGAs (field programmable gate arrays), 프로세서, 콘트롤러, 마이크로 콘트롤러, 마이크로 프로 세서 등에 의해 구현될 수 있다.
[184] 펌웨어나 소프트웨어에 의한 구현의 경우, 본 발명의 일 실시예는 이상에서 설명된 기능 또는 동작들을 수행하는 모듈, 절차, 함수 등의 형태로 구현될 수 있다. 소프트웨어 코드는 메모리 유닛에 저장되어 프로세서에 의해 구동될 수 있다.
[185] 상기 메모리 유닛은 상기 프로세서 내부 또는 외부에 위치하여, 이미 공지된 다양한 수단에 의해 상기 프로세서와 데이터를 주고 받을 수 있다.
[186] 상술한 바외- 같이 개시된 본 발명의 바람직한 실시예들에 대한 상세한 설명 은 당업자가 본 발명을 구현하고 실시할 수 있도록 제공되었다. 상기에서는 본 발명 의 바람직한 실시예돌을 참조하여 설명하였지만, 해당 기술 분야의 숙련된 당업자는 본 발명의 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변 경시킬 수 있음을 이해할 수 있을 것이다. 예를 들어, 당업자는 상술한 실시예들에 기재된 각 구성을 서로 조합하는 방식으로 이용할 수 있다. 따라서, 본 발명은 여기 에 나타난 실시형태들에 제한되려는 것이 아니라, 여기서 개시된 원리들 및 신규한 특징들과 일치하는 최광의 범위를 부여하려는 것이다.
[187] 본 발명은 본 발명의 정신 및 필수적 특징을 벗어나지 않는 범위에서 다른 특정한 형태로 구체화될 수 있다. 따라서, 상기의 상세한 설명은 모든 면에서 제한적 으로 해석되어서는 아니 되고 예시적인 것으로 고려되어야 한다. 본 발명의 범위는 첨부된 청구항의 합리적 해석에 의해 결정되어야 하고, 본 발명의 등가적 범위 내에 서의 모든 변경은 본 발명의 범위에 포함된다. 본 발명은 여기에 나타난 실시형태들 에 제한되려는 것이 아니라, 여기서 개시된 원리들 및 신규한 특징들과 일치하는 최 광의 범위를 부여하려는 것이다. 또한, 특허청구범위에서 명시적인 인용 관계가 있지 않은 청구항들을 결합하여 실시예를 구성하거나 출원 후의 보정에 의해 새로운 청구 항으로 포함할 수 있다.
【산업상 이용가능성】 우 [188] 본 발명은 단말, 릴레이, 기지국 등과 같은 무선 통신 장치에 사용될 수 있 다. -

Claims

【청구의 범위】
【청구항 1】
무선 통신 시스템에서 단말이 채널상태정보 (CSI)를 전송하는 방법애 있어서, 채널상태정보-참조신호 (CSIᅳ RS)를 수신하는 단계;
상기 CSI-RS와 연관된 안테나 포트 수와 동일한 안테나 포트 수에 기반하여 공통 참조신호 (CRS) 자원요소의 오버헤드 (overhead)를 결정하는 단계; 및
상기 CSI-RS 및 상기 CRS 자원요소의 오버헤드를 기초로 산출된 상기 채널상 태정보를 전송하는 단계
를 포함하는, 채널상태정보 전송 방법.
【청구항 2】
거11항에 있어서,
상기 CSI의 보고를 위한 CSI 설정 (configuration) 정보를 수신하는 단계를 더 포함하는, 채널상태정보 전송 방법.
【청구항 3】
게 2항에 있어서,
상기 CSI 설정 정보는 프리코딩 행렬 지시자 (PMI) 및 랭크 지시자 (RI)를 보 고하지 않고 채널 품질 지시자 (CQI)를 보고하도록 설정되는, 채널상태정보 전송 방 법.
【청구항 4]
제 2항에 있어서,
상기 CSI 설정 정보는 RRC (Radio Resource Control) 시그널링을 통하여 전송 되는, 채널상태정보 전송 방법.
【청구항 5】
거 U항에 있어서,
상기 CSI-RS와 연관된 상기 안테나 포트 수는 4이하로 설정되는, 채널상태정 보 전송 방법 .
【청구항 6】
제 1항애 있어서,
상기 CSI는 채널 가역성 (reciprocity)을 만족하는 협력 다중 포인트 (CoMP) 시분할 (TDD) 시스템에서의 채널 상태를 나타내는, 채널상태정보 전송 방법. 【청구항 71
무선 통신 시스템에서 기지국이 채널상태정보 (CSI)를 수신하는 방법에 있어 서,
채널상태정보-참조신호 (CSI-RS)를 전송하는 단계; 및
CRS 자원요소의 오버헤드 및 상기 CSI-RS를 기초로 산출된 상기 채널상태정 보를 수신하는 단계를 포함하되,
상기 CRS 자원요소의 오버헤드는 상기 CSI-RS와 연관된 안테나 포트 수와 동 일한 안테나 포트 수에 기반하여 결정되는, 채널상태정보 수신 방법.
【청구항 8]
제 7항에 있어서,
상기 CSI의 보고를 위한 CSI 설정 (configuration) 정보를 전송하는 단계를 더 포함하는, 채널상태정보 수신 방법 .
【청구항 9]
거】 8항에 있어서ᅳ
상기 CSI 설정 정보는 프리코딩 행렬 지시자 (PMI) 및 랭크 지시자 (RI)를 보 고하지 않고 채널 품질 지시자 (CQI)를 보고하도록 설정되는, 채널상태정부 수신 방
【청구항 10】
' 제 8항에 있어서,
상기 CSI 설정 정보는 RRC (Radio Resource Control) 시그널링을 통하여 전송 되는, 채널상태정보 수신 방법.
【청구항 11】
제 7항애 있어서'
상기 CSI-RS와 연관된 상기 안테나 포트 수는 4이하로 설정되는, 채널상태정 보 수신 방법 .
【청구항 12]
제 7항에 있어서,
상기 CSI는 채널 가역성 (reciprocity)을 만족하는 협력 다중 포인트 (CoMP) 시분할 (TDD) 시스템에서의 채널 상태를 나타내는, 채널상태정보 수신 방법.
【청구항 13】 무선 통신 시스템에서 채널상태정보 (CSI)를 전송하는 단말에 있어서,
RF( Radio Frequency) 유닛 ; 및
프로세서를 포함하고,
상기 프로세서는,
채널상태정보ᅳ참조신호 (CSI-RS)를 수신하고,
상기 CSI-RS와 연관된 안테나 포트 수와 동일한 안테나 포트 수에 기반하여 공통 참조신호 (CRS) 자원요소의 오버헤드 (overhead)를 결정하고,
상기 CSI— RS 및 상기 CRS 자원요소의 오버해드를 기초로 산출된 상기 채널상 태정보를 전송하도록 구성되는, 단말.
【청구항 14】
무선 통신 시스템에서 채널상태정보 (CSI)를 수신하는 기지국에 있어서,
RF (Radio Frequency) 유닛 ; 및
프로세서를 포함하고,
상기 프로세서는,
채널상태정보-참조신호 (CSI-RS)를 전송하고,
C S 자원요소의 오버헤드 및 상기 CSI-RS를 기초로 산출된 상기 채널상태정 보를 수신하고, '
상기 CRS 자원요소의 오버헤드는 상기 CSI-RS와 연관된 안테나 포트 수와 동 일한 안테나 포트 수에 기반하여 결정되도록 구성되는, 기지국.
PCT/KR2013/007454 2012-08-21 2013-08-20 무선 통신 시스템에서 채널상태정보(csi) 전송 방법 및 장치 WO2014030904A1 (ko)

Priority Applications (8)

Application Number Priority Date Filing Date Title
EP13831761.5A EP2890177B1 (en) 2012-08-21 2013-08-20 Transmission of channel state information in wireless communication system
AU2013306572A AU2013306572B2 (en) 2012-08-21 2013-08-20 Method and device for transmitting channel state information in wireless communication system
CN201380044429.4A CN104584625B (zh) 2012-08-21 2013-08-20 在无线通信系统中发送信道状态信息csi的方法和装置
US14/384,137 US9509471B2 (en) 2012-08-21 2013-08-20 Method and device for transmitting channel state information in wireless communication system
JP2015527394A JP5953436B2 (ja) 2012-08-21 2013-08-20 無線通信システムにおいてチャネル状態情報(csi)送信方法及び装置
KR1020157003204A KR101662088B1 (ko) 2012-08-21 2013-08-20 무선 통신 시스템에서 채널상태정보(csi) 전송 방법 및 장치
RU2015109624/07A RU2600569C2 (ru) 2012-08-21 2013-08-20 Способ и устройство для передачи информации о состоянии канала в беспроводной системе связи
US15/343,816 US9749106B2 (en) 2012-08-21 2016-11-04 Method and device for transmitting channel state information in wireless communication system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201261691767P 2012-08-21 2012-08-21
US61/691,767 2012-08-21

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US14/384,137 A-371-Of-International US9509471B2 (en) 2012-08-21 2013-08-20 Method and device for transmitting channel state information in wireless communication system
US15/343,816 Continuation US9749106B2 (en) 2012-08-21 2016-11-04 Method and device for transmitting channel state information in wireless communication system

Publications (1)

Publication Number Publication Date
WO2014030904A1 true WO2014030904A1 (ko) 2014-02-27

Family

ID=50150153

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/007454 WO2014030904A1 (ko) 2012-08-21 2013-08-20 무선 통신 시스템에서 채널상태정보(csi) 전송 방법 및 장치

Country Status (8)

Country Link
US (2) US9509471B2 (ko)
EP (1) EP2890177B1 (ko)
JP (2) JP5953436B2 (ko)
KR (1) KR101662088B1 (ko)
CN (1) CN104584625B (ko)
AU (1) AU2013306572B2 (ko)
RU (1) RU2600569C2 (ko)
WO (1) WO2014030904A1 (ko)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018511271A (ja) * 2015-04-08 2018-04-19 株式会社Nttドコモ 基地局、ユーザ装置、及びプリコーディングマトリックス決定方法
JP2019513317A (ja) * 2016-03-11 2019-05-23 華為技術有限公司Huawei Technologies Co.,Ltd. チャネル品質インデックス測定方法及び装置
RU2745111C1 (ru) * 2017-09-22 2021-03-22 Виасат, Инк. Гибкие внутриспутниковые маршруты сигналов

Families Citing this family (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014030904A1 (ko) * 2012-08-21 2014-02-27 엘지전자 주식회사 무선 통신 시스템에서 채널상태정보(csi) 전송 방법 및 장치
JP6102606B2 (ja) * 2013-07-26 2017-03-29 富士通株式会社 無線基地局
US10034283B2 (en) * 2013-08-23 2018-07-24 Qualcomm Incorporated CSI and ACK reporting enhancements in LTE/LTE-A with unlicensed spectrum
CN105765878B (zh) * 2013-09-27 2019-05-10 瑞典爱立信有限公司 用于在CoMP情形中操作的方法、无线装置和介质
JP6649268B2 (ja) * 2014-11-06 2020-02-19 シャープ株式会社 基地局装置、端末装置および通信方法
EP3518435A1 (en) * 2015-01-07 2019-07-31 LG Electronics Inc. Method for reporting channel quality information in tdd type wireless communication system, and device therefor
KR102401000B1 (ko) * 2015-03-27 2022-05-23 삼성전자주식회사 대규모 안테나 시스템에서 자원 할당 장치 및 방법
CN112865847B (zh) * 2015-04-10 2023-09-12 Lg 电子株式会社 在无线通信系统中报告信道状态信息的方法及其设备
CN107359916B (zh) * 2015-05-15 2020-12-01 索尼公司 无线通信系统中的装置和方法
US11218261B2 (en) * 2015-06-01 2022-01-04 Qualcomm Incorporated Channel state information reference signals in contention-based spectrum
WO2017006871A1 (ja) * 2015-07-03 2017-01-12 シャープ株式会社 端末装置、基地局装置、通信方法、および、集積回路
US10439691B2 (en) 2015-07-23 2019-10-08 Lg Electronics Inc. Codebook-based signal transmission/reception method in multi-antenna wireless communication system, and device for same
KR102486805B1 (ko) * 2015-09-18 2023-01-11 삼성전자 주식회사 무선 통신 시스템에서 피드백 신호를 송수신하는 방법 및 장치
US10476570B2 (en) 2015-12-03 2019-11-12 Lg Electronics Inc. Method by which terminal reports channel status information to base station in wireless communication system, and apparatus therefor
WO2017136761A1 (en) * 2016-02-03 2017-08-10 Docomo Innocations, Inc. User equipment and method for selection of csi reference signal and csi reporting in a beam forming system with multiple beams
WO2018010162A1 (en) * 2016-07-15 2018-01-18 Qualcomm Incorporated Port indexing for csi-rs with larger number of antenna ports for efd-mimo
BR112019002369B1 (pt) * 2016-08-05 2023-01-31 Lg Electronics Inc Método para um equipamento de usuário para realizar um tipo adicional de operação e equipamento de usuário configurado para realizar um tipo adicional de operação
EP3282624B1 (en) * 2016-08-10 2019-05-15 Alcatel Lucent Device and user equipment to process a channel state information reference signal
US11071125B2 (en) 2016-08-11 2021-07-20 Lg Electronics Inc. Method for transmitting or receiving channel state information reference signal in wireless communication system and device therefor
ES2908050T3 (es) 2016-11-04 2022-04-27 Ericsson Telefon Ab L M Señalización de señales de medición con base en una estructura en árbol
CN109964435B (zh) 2016-11-18 2021-05-25 Oppo广东移动通信有限公司 传输参考信号的方法和通信设备
JP2020502929A (ja) * 2016-12-20 2020-01-23 テレフオンアクチーボラゲット エルエム エリクソン(パブル) 無線通信ネットワークにおける参照信号の管理
US11005547B2 (en) * 2017-01-04 2021-05-11 Lg Electronics Inc. Method for channel state reporting in wireless communication system and apparatus for same
US10090980B2 (en) 2017-01-08 2018-10-02 At&T Intellectual Property I, L.P. Transmission of demodulation reference signals for a 5G wireless communication network or other next generation network
BR112019017763A2 (pt) 2017-02-28 2020-03-31 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Método de comunicação sem fio e dispositivo terminal que compreende uma unidade de transceptor e uma unidade de processamento
CN108631989B (zh) * 2017-03-24 2021-11-30 中兴通讯股份有限公司 端口码分复用的信道状态信息导频的传输方法和装置
KR102523434B1 (ko) * 2017-11-17 2023-04-19 삼성전자주식회사 무선 통신 시스템에서 기준 신호 설정 방법 및 장치
EP3729672A1 (en) * 2017-12-20 2020-10-28 Telefonaktiebolaget LM Ericsson (publ) Method and network node for generating and selecting a codebook in a mimo communication network
CN110190941B (zh) * 2018-01-12 2022-05-10 华为技术有限公司 一种用于终端设备能力传输的方法、装置及系统
CN113630228A (zh) 2018-06-27 2021-11-09 华为技术有限公司 一种通信方法及装置
EP3834455A4 (en) * 2018-08-10 2022-05-04 Telefonaktiebolaget LM Ericsson (publ.) CHANNEL STATE INFORMATION REPORTING METHOD AND APPARATUS
WO2020061952A1 (en) * 2018-09-27 2020-04-02 Qualcomm Incorporated Sounding reference signal (srs) guided downlink channel state information-reference signal (csi-rs) scan
WO2021226928A1 (en) * 2020-05-14 2021-11-18 Nokia Shanghai Bell Co., Ltd. Enhanced csi feedback in ntn with long propagation delay

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070100101A (ko) * 2006-04-06 2007-10-10 엘지전자 주식회사 다중 안테나 시스템에서 채널 상태 정보 귀환 방법 및데이터 송신 방법
US20090054093A1 (en) * 2007-08-15 2009-02-26 Qualcomm Incorporated Antenna switching and uplink sounding channel measurement
US20090257388A1 (en) * 2008-04-07 2009-10-15 Qualcomm Incorporated Systems and methods to define control channels using reserved resource blocks
EP2157751A1 (en) * 2008-08-22 2010-02-24 Nokia Siemens Networks OY Channel re-estimation in communication systems
KR20110075031A (ko) * 2008-10-24 2011-07-05 콸콤 인코포레이티드 무선 통신 시스템에서 분리가능한 채널 상태 피드백을 위한 방법 및 장치

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100909539B1 (ko) 2004-11-09 2009-07-27 삼성전자주식회사 다중 안테나를 사용하는 광대역 무선 접속 시스템에서 다양한 다중안테나 기술을 지원하기 위한 장치 및 방법
KR100856207B1 (ko) * 2005-09-13 2008-09-03 삼성전자주식회사 시분할 이중화 방식과 주파수분할 이중화 방식을 이용하는 통신 방법 및 시스템
EP2137917A2 (en) * 2007-03-21 2009-12-30 Interdigital Technology Corporation Mimo wireless communication method and apparatus for transmitting and decoding resource block structures based on a dedicated reference signal mode
US20110194504A1 (en) * 2009-08-12 2011-08-11 Qualcomm Incorporated Method and apparatus for supporting single-user multiple-input multiple-output (su-mimo) and multi-user mimo (mu-mimo)
CN102742238A (zh) * 2010-02-17 2012-10-17 中兴通讯(美国)公司 用于lte-advance系统中csi-rs传输的方法和系统
US9072083B2 (en) * 2010-02-24 2015-06-30 Zte Corporation Methods and systems for CSI-RS resource allocation in LTE-advance systems
JP5466060B2 (ja) * 2010-03-25 2014-04-09 セイコーインスツル株式会社 スイッチ構造体並びにこれを用いたクロノグラフ機構及び電子時計
KR101253197B1 (ko) 2010-03-26 2013-04-10 엘지전자 주식회사 참조신호 수신 방법 및 사용자기기, 참조신호 전송 방법 및 기지국
JP5876880B2 (ja) * 2010-08-16 2016-03-02 ゼットティーイー(ユーエスエー)インコーポレイテッド Lte−advanceシステムにおけるcsi−rsリソース割り振り方法およびシステム
CN102595469B (zh) * 2011-01-12 2016-11-16 中兴通讯股份有限公司 一种信道质量指示信息的确定方法
US9485075B2 (en) * 2011-04-29 2016-11-01 Futurewei Technologies Inc. Method and system for transmission and reception of signals and related method of signaling
WO2013025558A1 (en) * 2011-08-12 2013-02-21 Interdigital Patent Holdings, Inc. Interference measurement in wireless networks
KR101872980B1 (ko) * 2011-08-12 2018-07-02 인터디지탈 패튼 홀딩스, 인크 확장 반송파 및 반송파 세그먼트에 대한 기준 신호 구성
EP2681853B1 (en) * 2012-01-27 2016-12-14 Nec Corporation Coordinated multiple point transmission and reception
WO2013112972A1 (en) * 2012-01-27 2013-08-01 Interdigital Patent Holdings, Inc. Systems and/or methods for providing epdcch in a multiple carrier based and/or quasi-collated network
CN104247301B (zh) * 2012-03-16 2017-10-17 英特尔公司 用于新载波类型(nct)的小区特定参考信号(crs)的下采样
US20130250879A1 (en) * 2012-03-22 2013-09-26 Samsung Electronics Co., Ltd Method and apparatus for transmission mode design for extension carrier of lte advanced
US9088315B2 (en) * 2012-04-18 2015-07-21 Intel Mobile Communications GmbH Radio communications system and method performed therein
US9083479B2 (en) * 2012-05-11 2015-07-14 Intel Corporation Signaling for downlink coordinated multipoint in a wireless communication system
US20130343300A1 (en) * 2012-06-21 2013-12-26 Lg Electronics Inc. Method and apparatus for transmitting and receiving data
US9736828B2 (en) * 2012-07-17 2017-08-15 Telefonaktiebolaget Lm Ericsson (Publ) Network node and a method therein for scheduling a downlink data transmission to a UE, and a UE and a method therein for receiving a downlink data transmission
WO2014030904A1 (ko) * 2012-08-21 2014-02-27 엘지전자 주식회사 무선 통신 시스템에서 채널상태정보(csi) 전송 방법 및 장치

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070100101A (ko) * 2006-04-06 2007-10-10 엘지전자 주식회사 다중 안테나 시스템에서 채널 상태 정보 귀환 방법 및데이터 송신 방법
US20090054093A1 (en) * 2007-08-15 2009-02-26 Qualcomm Incorporated Antenna switching and uplink sounding channel measurement
US20090257388A1 (en) * 2008-04-07 2009-10-15 Qualcomm Incorporated Systems and methods to define control channels using reserved resource blocks
EP2157751A1 (en) * 2008-08-22 2010-02-24 Nokia Siemens Networks OY Channel re-estimation in communication systems
KR20110075031A (ko) * 2008-10-24 2011-07-05 콸콤 인코포레이티드 무선 통신 시스템에서 분리가능한 채널 상태 피드백을 위한 방법 및 장치

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018511271A (ja) * 2015-04-08 2018-04-19 株式会社Nttドコモ 基地局、ユーザ装置、及びプリコーディングマトリックス決定方法
JP2019513317A (ja) * 2016-03-11 2019-05-23 華為技術有限公司Huawei Technologies Co.,Ltd. チャネル品質インデックス測定方法及び装置
RU2745111C1 (ru) * 2017-09-22 2021-03-22 Виасат, Инк. Гибкие внутриспутниковые маршруты сигналов
US11463160B2 (en) 2017-09-22 2022-10-04 Viasat, Inc. Flexible intra-satellite signal pathways

Also Published As

Publication number Publication date
JP2015531211A (ja) 2015-10-29
JP6263578B2 (ja) 2018-01-17
AU2013306572A1 (en) 2014-10-16
CN104584625A (zh) 2015-04-29
JP5953436B2 (ja) 2016-07-20
JP2016197871A (ja) 2016-11-24
RU2600569C2 (ru) 2016-10-27
US9749106B2 (en) 2017-08-29
KR101662088B1 (ko) 2016-10-04
EP2890177B1 (en) 2019-10-02
US20150063177A1 (en) 2015-03-05
CN104584625B (zh) 2018-08-03
KR20150043308A (ko) 2015-04-22
RU2015109624A (ru) 2016-10-10
EP2890177A1 (en) 2015-07-01
US20170085350A1 (en) 2017-03-23
US9509471B2 (en) 2016-11-29
EP2890177A4 (en) 2016-03-30
AU2013306572B2 (en) 2015-04-16

Similar Documents

Publication Publication Date Title
US11368858B2 (en) Method and apparatus for feeding back aggregated channel state information in cooperative multipoint communication system
JP6263578B2 (ja) 無線通信システムにおいてチャネル状態情報(csi)送信方法及び装置
JP6208309B2 (ja) 無線通信システムにおいてチャネルを推定する方法および装置
KR101741554B1 (ko) 협력적 송신을 지원하는 무선 통신 시스템에서 채널 상태 정보 송수신 방법및 장치
CA2784274C (en) Method and apparatus for providing channel state information-reference signal (csi-rs) configuration information in a wireless communication system supporting multiple antennas
WO2014148811A1 (ko) 무선 통신 시스템에서 간섭을 제거하고 데이터를 수신하는 방법 및 장치
WO2015064976A2 (ko) 무선 통신 시스템에서 간섭을 제거하고 신호를 수신하는 방법 및 장치
KR102318545B1 (ko) 무선 통신 시스템에서 간섭을 제거하고 신호를 수신하는 방법 및 장치
KR101868629B1 (ko) 무선 통신 시스템에서 간섭 신호를 제거하는 방법 및 장치
KR102318546B1 (ko) 무선 통신 시스템에서 간섭을 제거하고 신호를 수신하는 방법 및 장치
WO2015080459A1 (ko) 무선 통신 시스템에서 간섭을 제거하고 신호를 수신하는 방법 및 장치
WO2014137154A2 (ko) 무선 통신 시스템에서 물리 자원 블록(prb) 번들링을 적용하는 방법 및 장치
KR101615242B1 (ko) 무선 통신 시스템에서 인접 기지국의 간섭을 측정하는 방법 및 간섭 측정을 지원하는 방법
KR20130106260A (ko) 다중 사용자 mimo(mu-mimo) 방식을 지원하는 무선 통신 시스템에서 신호 수신 방법 및 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13831761

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14384137

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2013831761

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2013306572

Country of ref document: AU

Date of ref document: 20130820

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20157003204

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2015527394

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: IDP00201501556

Country of ref document: ID

ENP Entry into the national phase

Ref document number: 2015109624

Country of ref document: RU

Kind code of ref document: A