WO2014030566A1 - Receptacle and optical transmission module - Google Patents

Receptacle and optical transmission module Download PDF

Info

Publication number
WO2014030566A1
WO2014030566A1 PCT/JP2013/071777 JP2013071777W WO2014030566A1 WO 2014030566 A1 WO2014030566 A1 WO 2014030566A1 JP 2013071777 W JP2013071777 W JP 2013071777W WO 2014030566 A1 WO2014030566 A1 WO 2014030566A1
Authority
WO
WIPO (PCT)
Prior art keywords
axis direction
optical
positioning member
optical fiber
receptacle
Prior art date
Application number
PCT/JP2013/071777
Other languages
French (fr)
Japanese (ja)
Inventor
裕史 浅井
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Publication of WO2014030566A1 publication Critical patent/WO2014030566A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4204Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms
    • G02B6/4206Optical features
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4204Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms
    • G02B6/4214Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms the intermediate optical element having redirecting reflective means, e.g. mirrors, prisms for deflecting the radiation from horizontal to down- or upward direction toward a device
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4246Bidirectionally operating package structures
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4274Electrical aspects
    • G02B6/428Electrical aspects containing printed circuit boards [PCB]
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4292Coupling light guides with opto-electronic elements the light guide being disconnectable from the opto-electronic element, e.g. mutually self aligning arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45144Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48135Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/48137Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being arranged next to each other, e.g. on a common substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/19Details of hybrid assemblies other than the semiconductor or other solid state devices to be connected
    • H01L2924/191Disposition
    • H01L2924/19101Disposition of discrete passive components
    • H01L2924/19105Disposition of discrete passive components in a side-by-side arrangement on a common die mounting substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0225Out-coupling of light
    • H01S5/02251Out-coupling of light using optical fibres
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0225Out-coupling of light
    • H01S5/02253Out-coupling of light using lenses
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0225Out-coupling of light
    • H01S5/02255Out-coupling of light using beam deflecting elements

Definitions

  • the present invention relates to a receptacle and an optical transmission module used for optical communication, and more particularly to a receptacle and an optical transmission module including a plurality of optical elements.
  • this type of optical module 500 includes a single case 514 on the plurality of optical element groups 504 arranged on the substrate 511 so as to cover the plurality of optical element groups 504 (the present invention). Positioning member) is provided. As shown in FIG. 24, an optical connector 553 provided at the end of the optical fiber 542 is connected to the case 514.
  • the case 514 plays a role of optically coupling the optical fiber 542 and the plurality of optical element groups 504.
  • the optical fiber 542 and the plurality of optical element groups 504 are optically coupled to the plurality of optical element groups 504 with one case 514. Therefore, in the optical module 500, when the plurality of optical element groups 504 are mounted on the substrate 511, a deviation occurs in the relative positional relationship between the plurality of optical element groups 504 due to variations in the mounting positions.
  • the case 514 cannot be arranged according to the position of each optical element group 504. If the specific optical element group 504 and the case 514 are positioned, a deviation occurs in the positional relationship between the other optical element group 504 and the case 514. As a result, in the optical module 500, there is a possibility that the optical axis of the optical fiber 542 and the optical axis of the optical element group 504 are shifted and an optical loss occurs.
  • an object of the present invention is to provide a receptacle and an optical transmission module that can suppress the influence of positional deviation due to mounting variations of the plurality of optical elements in a receptacle and an optical transmission module including a plurality of optical elements. is there.
  • a receptacle includes a plurality of optical elements, and a plurality of positioning members for optically coupling an optical fiber and the plurality of optical elements. It is provided with respect to the optical element.
  • An optical transmission module includes the receptacle, an optical fiber, and a plug that is provided at an end of the optical fiber and is placed on the positioning member. .
  • each of the plurality of positioning members is provided for each optical element, and optically couples each optical element and the optical fiber.
  • each positioning member can be arranged according to each optical element. That is, in the receptacle and the optical transmission module according to one aspect of the present invention, when a specific optical element and a positioning member are aligned, as in the case where there is one positioning member for a plurality of optical elements, the other There is no deviation in the positional relationship between the optical element and the positioning member.
  • the influence of the positional deviation at the time of mounting each optical element is suppressed as compared with the case where there is one positioning member for the plurality of optical elements. can do.
  • the receptacle and the optical transmission module according to the present invention it is possible to suppress the influence of misalignment due to mounting variations of a plurality of optical elements.
  • FIG. 5 is a cross-sectional view taken along a line EE in FIG. 4.
  • FIG. 6 is a diagram in which a mounting board and a plug are added to the cross section taken along the line CC or DD of the positioning member illustrated in FIG. 5.
  • FIG. 5 is a cross-sectional view in which a metal cap of a receptacle according to a first modification is added to the EE cross section of FIG. 4. It is an external appearance perspective view of the metal plate arrange
  • FIG. 18 is a cross-sectional view taken along the line FF in FIG. 17.
  • FIG. 18 is a cross-sectional view taken along a line GG in FIG. 17.
  • FIG. 18 is a cross-sectional view taken along the line HH in FIG. 17.
  • FIG. 18 is a cross-sectional view taken along the line JJ of FIG. It is sectional drawing of the optical module of the same kind as the optical module of patent document 1. It is sectional drawing of the optical module of the same kind as the optical module of patent document 1.
  • optical transmission module including a positioning member according to an embodiment and a manufacturing method thereof will be described.
  • the vertical direction of the light transmission module 10 is defined as the z-axis direction
  • the direction along the long side of the light transmission module 10 when viewed in plan from the z-axis direction is defined as the x-axis direction
  • the direction along the short side of the optical transmission module 10 is defined as the y-axis direction.
  • the x axis, the y axis, and the z axis are orthogonal to each other.
  • the optical transmission module 10 includes a receptacle 20 and an optical fiber connection device 70 as shown in FIG.
  • the receptacle 20 includes a metal cap 30, a light receiving element 50, a light emitting element 100, a positioning member 200, a mounting board 22, and a drive circuit 26, as shown in FIG.
  • the mounting substrate 22 has a rectangular shape when seen in a plan view from the z-axis direction, as shown in FIG.
  • the surface mounting electrode E1 that contacts the land of the circuit board when the optical transmission module 10 is mounted on the circuit board is mounted on the surface on the negative side in the z-axis direction of the mounting board 22 (hereinafter referred to as the lower surface). (Not shown in FIG. 3) is provided.
  • a side L1 located on the negative direction side in the x-axis direction and a side L2 located on the negative direction side in the y-axis direction are formed on the surface on the positive direction side in the z-axis direction (hereinafter referred to as the upper surface) of the mounting substrate 22, a side L1 located on the negative direction side in the x-axis direction and a side L2 located on the negative direction side in the y-axis direction are formed.
  • a ground conductor exposed portion E2 is provided in which a part of the ground conductor provided in the mounting substrate 22 is exposed.
  • the ground conductor exposed portion E2 has a rectangular shape having a long side in the x-axis direction when viewed from the positive side in the z-axis direction.
  • the mounting substrate 22 is provided in the vicinity of an angle formed by the side L ⁇ b> 1 positioned on the negative side in the x-axis direction and the side L ⁇ b> 3 positioned on the positive direction side in the y-axis direction.
  • a ground conductor exposed portion E3 in which a part of the ground conductor is exposed is provided.
  • the ground conductor exposed portion E3 has a rectangular shape having a long side in the x-axis direction when viewed from the positive side in the z-axis direction.
  • the light receiving element 50 and the light emitting element 100 are provided on a portion on the positive side in the x-axis direction on the upper surface of the mounting substrate 22.
  • the light receiving element 50 is an element including a photodiode that converts an optical signal into an electric signal.
  • the light emitting element 100 is an element including a diode that converts an electrical signal into an optical signal.
  • the light emitting element 100 includes two VCSELs.
  • the drive circuit 26 is provided on the positive side in the x-axis direction on the upper surface of the mounting substrate 22 further on the positive side in the x-axis direction than the light receiving element 50 and the light emitting element 100.
  • the drive circuit 26 is a semiconductor circuit element for driving the light receiving element 50 and the light emitting element 100, and has a rectangular shape having a long side parallel to the y axis direction when viewed in plan from the z axis direction.
  • the drive circuit 26 and the light receiving element 50 are connected by wire bonding via the wire U.
  • the drive circuit 26 and the light emitting element 100 are connected to each other by wire bonding via a wire U. Thereby, the electrical signal from the drive circuit 26 is transmitted to the light emitting element 100 via the wire U, and the electrical signal from the light receiving element 50 is transmitted to the drive circuit 26 via the wire U.
  • the drive circuit 26 and the mounting substrate 22 are connected by wire bonding via the wire U.
  • the positioning member 200 is made of an epoxy-based or nylon-based resin or the like, and is provided so as to cover substantially the entire top surface of the mounting substrate 22 as shown in FIG.
  • the positioning member 200 includes a positioning member 220 for a light emitting element and a positioning member 240 for a light receiving element. That is, each of the positioning members 220 and 240 is provided for each optical element.
  • the positioning members 220 and 240 are provided so as to be arranged in this order from the negative direction side to the positive direction side in the y-axis direction, and the resin 260 is sandwiched between the positioning member 220 and the positioning member 240. Yes.
  • the positioning member 220 for the light emitting element has a substantially rectangular shape when viewed in plan from the z-axis direction. Further, as shown in FIG. 5, the positioning member 220 includes a plug placement portion 222 and an optical coupling portion 224.
  • the plug mounting portion 222 is a plate-like member that constitutes a portion of the positioning member 220 on the negative direction side of the x axis.
  • a portion on the negative side in the y-axis direction from the groove G1 is referred to as a flat portion F1
  • a portion on the positive direction side in the y-axis direction from the groove G1 is referred to as a flat portion F2.
  • the optical coupling portion 224 constitutes a portion of the positioning member 220 on the positive direction side in the x-axis direction. Moreover, the optical coupling part 224 has the main body 226, the abutting part 228, and leg part 232a, 232b, as shown in FIG.
  • the main body 226 has a rectangular parallelepiped shape.
  • the main body 226 is provided with a space SP1, a concave portion D1, and a convex lens 230.
  • the space SP1 is a substantially rectangular space provided on the lower surface of the main body 226, and the positive side in the y-axis direction and the negative direction side in the z-axis direction are openings. Yes.
  • the positioning member 220 is placed on the mounting substrate 22, a part of the light emitting element 100 and the drive circuit 26 are accommodated in the space SP1.
  • the concave portion D1 is provided in the vicinity of the side L4 on the positive side of the main body 226 in the y-axis direction, and overlaps the optical axis of the light emitting element 100 when viewed in plan from the z-axis direction. Further, the recess D1 overlaps with the optical axis of the optical fiber 60 connected to the plug 42 when viewed in plan from the x-axis direction. Furthermore, the concave portion D1 has a rectangular shape when viewed in plan from the z-axis direction. And as shown in FIG. 8, the recessed part D1 has comprised the V shape when planarly viewed from the y-axis direction.
  • the inner peripheral surface on the negative side in the x-axis direction of the recess D1 is a total reflection surface R1.
  • the total reflection surface R1 is parallel to the y-axis and tilted 45 ° counterclockwise with respect to the z-axis when viewed from the negative side in the y-axis direction.
  • the refractive index of the positioning member 220 is sufficiently larger than that of air. Therefore, the laser beam B1 emitted from the light emitting element 100 in the positive z-axis direction is incident on the optical coupling unit 224, and is totally reflected by the total reflection surface R1 in the negative x-axis direction.
  • the angle formed by the optical axis of the laser beam B1 emitted from the light emitting element 100 and the total reflection surface R1 is 45 ° and is directed to the optical fiber 60.
  • the angle formed by the optical axis of the laser beam B1 and the total reflection surface R1 is 45 °. That is, the angle formed by the total reflection surface R1 and the optical axis of the optical fiber 60 is equal to the angle formed by the total reflection surface R1 and the light emitting element 100.
  • the convex lens 230 is provided on the lower surface of the optical coupling part 224 as shown in FIG. Further, the convex lens 230 overlaps the light emitting element 100 when viewed in plan from the z-axis direction. Accordingly, the convex lens 230 faces the light emitting element 100 and is positioned on the optical path of the laser beam B1. In addition, the convex lens 230 has a semicircular shape that protrudes toward the negative direction side of the z-axis when viewed from a direction orthogonal to the z-axis. Accordingly, the laser beam B1 emitted from the light emitting element 100 is condensed or collimated by the convex lens 230 and travels toward the total reflection surface R1.
  • the abutting portion 228 is substantially in the x-axis direction of the flat portion F ⁇ b> 1 along the flat portion F ⁇ b> 1 of the plug placement portion 222 from the negative end surface S ⁇ b> 2 in the x-axis direction of the main body 226. Projects to the center. Note that the end surface of the abutting portion 228 on the negative side in the x-axis direction is referred to as an end surface S3.
  • the leg portions 232a and 232b are rectangular parallelepiped members that protrude from the negative side surface in the y-axis direction of the main body 226 toward the negative direction side in the y-axis direction. Further, the leg portions 232a and 232b are provided at an interval H1 so as to be arranged in this order from the negative direction side to the positive direction side in the x-axis direction. A convex portion C3 of a metal cap 30 described later is fitted into the interval H1.
  • the positioning member 240 for the light receiving element has a rectangular shape when viewed in plan from the z-axis direction. Furthermore, the positioning member 240 includes a plug placement portion 242 and an optical coupling portion 244, as shown in FIG.
  • the plug placement portion 242 is a plate-like member that constitutes a portion of the positioning member 240 on the negative side of the x axis.
  • a groove G2 is provided along the axial direction.
  • a portion on the negative side in the y-axis direction from the groove G2 is referred to as a flat portion F3
  • a portion on the positive direction side in the y-axis direction from the groove G2 is referred to as a flat portion F4.
  • the optical coupling portion 244 constitutes a portion of the positioning member 240 on the positive direction side in the x-axis direction. Moreover, the optical coupling part 244 has the main body 246, the abutting part 248, and leg part 252a, 252b, as shown in FIG.
  • the main body 246 has a rectangular parallelepiped shape.
  • the main body 226 is provided with a space SP2, a concave portion D2, and a convex lens 250.
  • the space SP ⁇ b> 2 is a substantially rectangular space provided on the lower surface of the main body 246, and the negative direction side in the y-axis direction and the negative direction side in the z-axis direction are openings. Yes.
  • the positioning member 240 is placed on the mounting substrate 22, the other portions of the light receiving element 50 and the drive circuit 26 are accommodated in the space SP2.
  • the space SP1 is provided on the lower surface of the main body 226 located on the positive side in the x-axis direction of the positioning member 220
  • the space SP2 is the lower surface of the main body 246 located on the positive direction side in the x-axis direction of the positioning member 240.
  • the space SP1 and the space SP2 face each other at the adjacent positioning members 220 and 240.
  • the positive direction side in the y-axis direction of the space SP1 is an opening
  • the negative direction side in the y-axis direction of the space SP2 is an opening. Therefore, the opposing part in space SP1 and space SP2 is an opening part.
  • a resin 260 is sandwiched between the positioning member 220 and the positioning member 240 around the opening of the space SP1 and the opening of the space SP2.
  • the concave portion D2 is provided in the vicinity of the side L5 on the negative direction side of the main body 246 in the y-axis direction, and overlaps the light receiving element 50 when viewed in plan from the z-axis direction. Further, the recess D2 overlaps with the optical axis of the optical fiber 60 connected to the plug 46 when viewed in plan from the x-axis direction. Further, the recess D2 has a rectangular shape when viewed in plan from the z-axis direction. Further, as shown in FIG. 8, the recess D2 has a V-shape when viewed in plan from the y-axis direction.
  • the inner peripheral surface on the negative direction side in the x-axis direction of the recess D2 is a total reflection surface R2.
  • the total reflection surface R2 is parallel to the y-axis and tilted 45 ° counterclockwise with respect to the z-axis when viewed from the negative side in the y-axis direction.
  • the refractive index of the positioning member 240 is sufficiently larger than that of air. Accordingly, the laser beam B2 emitted from the optical fiber 60 to the positive side in the x-axis direction is incident on the optical coupling unit 244, and is totally reflected by the total reflection surface R2 to the negative direction side in the z-axis direction. Proceed to 50.
  • the angle formed by the optical axis of the laser beam B2 emitted from the optical fiber 60 and the total reflection surface R2 is 45 ° and is directed toward the light receiving element 50.
  • the angle formed by the optical axis of the laser beam B2 and the total reflection surface R2 is 45 °. That is, the angle formed by the total reflection surface R2 and the optical axis of the optical fiber 60 is equal to the angle formed by the total reflection surface R2 and the light receiving element 50.
  • the convex lens 250 is provided on the lower surface of the optical coupling part 244 as shown in FIG.
  • the convex lens 250 overlaps the light receiving element 50 when viewed in plan from the z-axis direction. Thereby, the convex lens 250 faces the light receiving element 50 and is positioned on the optical path of the laser beam B2. Further, the convex lens 250 has a semicircular shape that protrudes toward the negative direction side of the z-axis when viewed from a direction orthogonal to the z-axis. Accordingly, the laser beam B ⁇ b> 2 emitted from the optical fiber 60 is reflected by the total reflection surface R ⁇ b> 2, then condensed or collimated by the convex lens 250, and travels toward the light receiving element 50.
  • the abutting portion 248 substantially extends in the x-axis direction of the flat portion F ⁇ b> 4 along the flat portion F ⁇ b> 4 of the plug placement portion 242 from the negative end surface S ⁇ b> 5 in the x-axis direction of the main body 246. Projects to the center.
  • the end surface on the negative direction side in the x-axis direction of the abutting portion 248 is referred to as an end surface S6.
  • the leg portions 252a and 252b are rectangular parallelepiped members that protrude from the surface on the positive direction side in the y-axis direction of the main body 226 toward the positive direction side in the y-axis direction. Further, the leg portions 252a and 252b are provided at an interval H2 so as to be arranged in this order from the negative direction side to the positive direction side in the x-axis direction. A protrusion C6 of a metal cap 30 described later is fitted into the interval H2.
  • the metal cap 30 is manufactured by bending a single metal plate (for example, SUS301) into a U-shape. Further, as shown in FIG. 1, the metal cap 30 covers the positioning member 200 from the positive direction side in the z-axis direction, the positive direction side in the y-axis direction, and the negative direction side in the y-axis direction. Thus, an opening A3 into which a plug 40 described later is inserted is formed on the negative side of the receptacle 20 in the x-axis direction.
  • the metal cap 30 includes a top plate portion 32 and side plate portions 34 and 36.
  • the top plate portion 32 is parallel to a plane orthogonal to the z-axis and has a rectangular shape.
  • the side plate portion 34 is formed by bending the metal cap 30 from the long side L6 on the negative direction side in the y-axis direction of the top plate portion 32 to the negative direction side in the z-axis direction.
  • the side plate portion 36 is formed by bending the metal cap 30 from the long side L7 on the positive side in the y-axis direction of the top plate portion 32 to the negative direction side in the z-axis direction.
  • Engaging portions 32 a and 32 b for fixing the plug 40 to the receptacle 20 are provided on the negative side of the top plate portion 32 in the x-axis direction.
  • the engaging portions 32a and 32b are provided in this order from the negative direction side in the y-axis direction toward the positive direction side.
  • the engaging portions 32 a and 32 b are formed by making a U-shaped cut in the top plate portion 32. Specifically, the engaging portions 32a and 32b have a U-shaped notch opened in the positive direction side in the x-axis direction in the top plate portion 32, and a portion surrounded by the U-shaped notch is formed in the z-axis direction. It is formed by bending so as to be dented in the negative direction side. Thus, the engaging portions 32a and 32b have a V-shape that protrudes in the negative direction side in the z-axis direction when viewed in plan from the y-axis direction.
  • engaging portions 32c and 32d for fixing the plug 40 to the receptacle 20 are provided on the short side L8 on the negative side of the top plate portion 32 in the x-axis direction.
  • the engaging portions 32c and 32d are metal pieces that protrude from the top plate portion 32 toward the negative side in the x-axis direction.
  • the engaging portions 32c and 32d are bent so as to be recessed toward the negative direction side in the z-axis direction at a substantially central position in the x-axis direction in the engaging portions 32c and 32d.
  • the engaging portions 32c and 32d have a V-shape protruding in the negative direction side in the z-axis direction when viewed in plan from the y-axis direction.
  • convex portions C1 to C3 projecting toward the negative direction side in the z-axis direction are directed from the negative direction side in the x-axis direction to the positive direction side. They are arranged in this order.
  • the convex portions C1 to C3 are each fixed to the mounting substrate 22 with an adhesive.
  • the convex portion C1 is connected to the ground conductor exposed portion E2 of the mounting substrate 22.
  • the convex portion C3 is fitted into a gap H1 provided between the leg portion 226a and the leg portion 226b of the main body 226 in the positioning member 220. Thereby, the metal cap 30 is positioned with respect to the mounting substrate 22.
  • convex portions C4 to C6 projecting toward the negative direction side in the z-axis direction are directed from the negative direction side in the x-axis direction to the positive direction side. They are arranged in this order.
  • the convex portions C4 to C6 are each fixed to the mounting substrate 22 with an adhesive.
  • the convex portion C4 is connected to the ground conductor exposed portion E3 of the mounting substrate 22.
  • the convex portion C6 is fitted into a gap H2 provided between the leg portion 246a and the leg portion 246b of the main body 246 in the positioning member 240. Thereby, the metal cap 30 is positioned with respect to the mounting substrate 22.
  • the optical fiber connection device 70 includes an optical fiber 60 and a plug 40.
  • the optical fiber 60 is composed of a core wire and a covering material that covers the core wire, and the core wire is composed of a core and a clad.
  • the core is made of a glass material
  • the clad is made of a glass material or a glass material covered with a fluorine resin.
  • the covering material is made of a resin such as polyethylene.
  • the plug 40 includes a transmission side plug 42 and a reception side plug 46, both of which are made of epoxy or nylon resin or the like.
  • the transmission side plug 42 is used for fixing the optical fiber 60 to the positioning member 220.
  • the transmission side plug 42 includes an optical fiber insertion portion 42a and a protrusion 42b.
  • the optical fiber insertion portion 42a constitutes a portion on the positive direction side in the y-axis direction of the transmission-side plug 42, and has a rectangular parallelepiped shape extending in the x-axis direction.
  • An opening A1 is provided in a portion on the negative direction side in the x-axis direction of the optical fiber insertion portion 42a. A resin for fixing the optical fiber 60 is injected into the opening A1.
  • the opening A1 is formed by cutting out the surface S7 located on the upper surface of the optical fiber insertion portion 42a and the end surface S8 on the negative side in the x-axis direction. Further, an insertion port H7 for guiding the core wire of the inserted optical fiber 60 to the tip of the transmission side plug 42 is provided on the inner peripheral surface on the positive side in the x-axis direction of the opening A1. Note that the number of insertion openings H7 corresponds to the number of optical fibers 60, and is two in this embodiment.
  • a concave portion D3 for injecting a matching agent is provided in a portion on the positive side in the x-axis direction of the optical fiber insertion portion 42a. Further, the recess D3 is recessed from the upper surface to the lower surface of the optical fiber insertion portion 42a.
  • An insertion port H7 is provided on the inner peripheral surface of the concave portion D3 on the negative side in the x-axis direction.
  • the insertion port H7 is connected to the inner peripheral surface of the opening A1 on the positive direction side in the x-axis direction. Therefore, the core wire of the optical fiber 60 reaches the recess D3 from the opening A1 through the insertion port H7.
  • the end surface of the core wire of the optical fiber 60 that has reached the recess D3 is positioned in the immediate vicinity of the inner peripheral surface S9 on the positive side in the x-axis direction of the recess D3.
  • the optical fiber 60 is fixed to the transmission-side plug 42 by injecting a matching agent made of a transparent resin, for example, an epoxy resin into the opening A1 and the recess D3.
  • a convex lens 44 is provided on the end surface S10 on the positive side in the x-axis direction of the optical fiber insertion portion 42a.
  • the convex lens 44 has a semicircular shape protruding in the positive direction side in the x-axis direction when seen in a plan view from a direction orthogonal to the x-axis direction. Accordingly, the laser beam B1 emitted from the light emitting element 100 and reflected by the total reflection surface R1 is condensed or collimated by the convex lens 44.
  • the convex lens 44 overlaps the optical axis of the optical fiber 60 when viewed in plan from the x-axis direction. Accordingly, the laser beam B1 collected or collimated by the convex lens 44 passes through the resin of the optical fiber insertion portion 42a. The laser beam B ⁇ b> 1 is transmitted to the core of the core of the optical fiber 60.
  • a protrusion N1 that engages with the engaging portion 32a of the metal cap 30 is provided on the surface S7 of the optical fiber insertion portion 42a.
  • the protrusion N1 is provided between the opening A1 and the recess D3 in the x-axis direction, and extends in the y-axis direction. Further, the protrusion N1 has a triangular shape protruding in the positive direction side in the z-axis direction when viewed in plan from the y-axis direction.
  • a convex portion C7 is provided on the lower surface of the optical fiber insertion portion 42a.
  • the convex portion C7 corresponds to the groove G1 of the plug placement portion 222 of the positioning member 220.
  • the convex portion C7 is provided in parallel to the x-axis from the end surface S8 toward the end surface S10.
  • the protrusion 42b protrudes from the vicinity of the end of the optical fiber insertion portion 42a on the negative direction side in the x-axis direction to the negative direction side in the y-axis direction.
  • the transmission side plug 42 is L-shaped.
  • the protruding portion 42b functions as a grip portion when the transmitting side plug 42 is inserted and removed.
  • a substantially rectangular hollow hole is provided at the approximate center of the protrusion 42b when viewed in plan from the z-axis direction.
  • connection work between the transmission side plug 42 and the receptacle 20 is performed by pushing the convex portion C7 along the groove G1 to the positive side in the x-axis direction.
  • the end surface S11 on the positive side in the x-axis direction of the protrusion 42b abuts against the end surface S3 of the abutting portion 228 of the positioning member 220 shown in FIG.
  • the convex lens 44 is not in contact with the end surface S2 of the main body 226, and a gap of about 5 ⁇ m is provided. This is to prevent the transmittance from decreasing due to scratches and dirt on the convex lens 44 and the end surface S2 of the main body 226 due to contact.
  • the engaging portion 32a of the metal cap 30 is engaged with the protrusion N1, and the engaging portion 32c is formed by the surface S7 and the end surface S8 of the transmission side plug 42.
  • the transmission side plug 42 is fixed to the receptacle 20.
  • the receiving side plug 46 is used to fix the optical fiber 60 to the positioning member 240. Moreover, the receiving side plug 46 is provided with the optical fiber insertion part 46a and the projection part 46b, as shown in FIG.
  • the optical fiber insertion portion 46a constitutes a portion on the negative direction side in the y-axis direction of the reception side plug 46, and has a rectangular parallelepiped shape extending in the x-axis direction.
  • An opening A2 is provided in a portion on the negative direction side in the x-axis direction of the optical fiber insertion portion 46a. A resin for fixing the optical fiber 60 is injected into the opening A2.
  • the opening A2 is formed by cutting out the surface S12 located on the upper surface of the optical fiber insertion portion 46a and the end surface S13 on the negative side in the x-axis direction.
  • An insertion port H8 for guiding the core wire of the inserted optical fiber 60 to the tip of the receiving side plug 46 is provided on the inner peripheral surface on the positive side in the x-axis direction of the opening A2.
  • the number of insertion ports H8 corresponds to the number of optical fibers 60, and is two in this embodiment.
  • a concave portion D4 for injecting a matching agent is provided in a portion on the positive side in the x-axis direction in the optical fiber insertion portion 46a. Further, the recess D4 is recessed from the upper surface to the lower surface of the optical fiber insertion portion 46a.
  • An insertion port H8 is provided on the inner peripheral surface of the concave portion D4 on the negative side in the x-axis direction.
  • the insertion port H8 is connected to the inner peripheral surface of the opening A2 on the positive direction side in the x-axis direction. Therefore, the core wire of the optical fiber 60 reaches the recess D4 from the opening A2 through the insertion port H8.
  • the end surface of the core wire of the optical fiber 60 that has reached the recess D4 is positioned in the immediate vicinity of the inner peripheral surface S14 on the positive direction side in the x-axis direction of the recess D4. Then, the optical fiber 60 is fixed to the receiving side plug 46 by pouring a matching agent made of a transparent resin, for example, an epoxy resin into the opening A2 and the recess D4.
  • a convex lens 48 is provided on the end surface S15 on the positive side in the x-axis direction of the optical fiber insertion portion 46a, as shown in FIG.
  • the convex lens 48 has a semicircular shape protruding in the positive direction side in the x-axis direction when seen in a plan view from a direction orthogonal to the x-axis.
  • the convex lens 48 overlaps the optical axis of the optical fiber 60 when viewed in plan from the x-axis direction. Accordingly, the laser beam B2 emitted from the optical fiber 60 is condensed or collimated by the convex lens 48 and proceeds to the total reflection surface R2. Then, the laser beam B ⁇ b> 2 is reflected by the total reflection surface R ⁇ b> 2 and transmitted to the light receiving element 50.
  • a projection N2 that engages with the engaging portion 32b of the metal cap 30 is provided on the surface S12 of the optical fiber insertion portion 46a.
  • the protrusion N2 is provided between the opening A2 and the recess D4 in the x-axis direction, and extends in the y-axis direction. Further, the protrusion N2 has a triangular shape protruding in the positive direction side in the z-axis direction when viewed in plan from the y-axis direction.
  • the protrusion 46b protrudes from the end of the optical fiber insertion portion 46a on the negative direction side in the x-axis direction to the positive direction side in the y-axis direction.
  • the receiving side plug 46 is L-shaped.
  • the protruding portion 46b functions as a grip portion when the receiving side plug 46 is inserted and removed.
  • a substantially rectangular hollow hole is provided in the approximate center of the protrusion 46b when viewed in plan from the z-axis direction.
  • the engaging portion 32b of the metal cap 30 is engaged with the protrusion N2, and the engaging portion 32d is formed by the surface S12 and the end surface S13 of the receiving side plug 46.
  • the receiving side plug 46 is fixed to the receptacle 20 by engaging with the corner.
  • the laser beam B 1 emitted from the light emitting element 100 to the positive side in the z-axis direction passes through the sealing resin 24 and the positioning member 220. To do. Further, the laser beam B1 is reflected by the total reflection surface R1 to the negative direction side in the x-axis direction, passes through the plug 40, and is transmitted to the core of the optical fiber 60.
  • the laser beam B 2 emitted from the optical fiber 60 to the positive side in the x-axis direction passes through the positioning member 240. Further, the laser beam B ⁇ b> 2 is reflected by the total reflection surface R ⁇ b> 2 to the negative direction side in the z-axis direction, passes through the sealing resin 24, and is transmitted to the light receiving element 50.
  • solder is applied to the upper surface of a mother substrate 122 (not shown in the drawing) that is an assembly of the mounting substrates 22. More specifically, cream solder is pressed onto the mother substrate 122 on which the metal mask is placed using a squeegee. Then, the solder is printed on the mother substrate 122 by removing the metal mask from the mother substrate 122.
  • the capacitor is placed on the solder of the mother board 122. Thereafter, heat is applied to the mother substrate 122 to solder the capacitor.
  • Ag paste is applied to a predetermined position on the mother board 122.
  • the drive circuit 26, the light receiving element 50, and the light emitting element 100 are placed on the coated Ag, and die bonding is performed. Further, the drive circuit 26 and the light receiving element 50 are connected by wire bonding using an Au wire, and the drive circuit 26 and the light emitting element 100 are connected by wire bonding. Further, the drive circuit 26 and the mother substrate 122 are connected by wire bonding.
  • the mother substrate 122 is cut using a dicer to obtain a plurality of mounting substrates 22.
  • the positioning member 220 is placed on the mounting substrate 22. More specifically, a UV curable adhesive is applied to a portion where the positioning member 220 and the mounting substrate 22 are in contact with each other. After applying the adhesive, as shown in FIG. 12, the position of the center T100 of the light emitting part of the light emitting element 100 is confirmed by the position recognition camera V1.
  • the mounting machine V2 for placing the positioning member 220 on the mounting substrate 22 picks up and picks up the positioning member 220. Then, with the mounting machine V2 adsorbing the positioning member 220, the position recognition camera V3 confirms the position of the lens center T230 of the convex lens 230 of the positioning member 220.
  • the relative position of the part and the convex lens 230 is calculated. Based on the calculated result, the movement amount of the onboard machine V2 is determined.
  • the positioning member 220 is moved by the determined movement amount by the mounting machine V2. Thereby, the lens center T230 of the convex lens 230 and the optical axis of the light emitting element 100 coincide.
  • the work of placing the positioning member 240 on the mounting substrate 22 is performed. More specifically, after a UV curable adhesive is applied to the portion where the positioning member 240 and the mounting substrate 22 are in contact, the position of the center T50 of the light receiving portion of the light receiving element 50 is positioned as shown in FIG. Confirm with the recognition camera V4.
  • the mounting machine V5 for placing the positioning member 240 on the mounting substrate 22 picks up and picks up the positioning member 240. Then, the position of the lens center T250 of the convex lens 250 of the positioning member 240 is confirmed by the position recognition camera V6 with the mounting machine V5 sucking the positioning member 240.
  • the light receiving element 50 receives light from the position data of the center T50 of the light receiving portion of the light receiving element 50 confirmed by the position recognition camera V4 and the position data of the lens center T250 of the convex lens 250 of the positioning member 240 confirmed by the position recognition camera V6.
  • the relative position of the part and the convex lens 250 is calculated. Based on the calculated result, the movement amount of the onboard machine V5 is determined.
  • the positioning member 240 is moved by the determined movement amount by the mounting machine V5. Thereby, the lens center T250 of the convex lens 250 and the optical axis of the light receiving element 50 coincide.
  • the positioning members 220 and 240 Irradiate ultraviolet rays to the positioning members 220 and 240 arranged. During ultraviolet irradiation, the positioning members 220 and 240 are pressed against the mounting board 22 by the mounting machines V2 and V5. Accordingly, when the UV curable adhesive between the positioning members 220 and 240 and the mounting substrate 22 is cured, the positioning members 220 and 240 are fixed to the mounting substrate 22 without causing positional displacement. .
  • the metal cap 30 is attached to the mounting substrate 22 on which the positioning member 200 is placed. More specifically, on the upper surface of the mounting substrate 22, the distance H ⁇ b> 1 between the leg 232 a and the leg 232 b in the main body 226 of the positioning member 220, and the leg 246 a and the leg 246 b in the main body 226 of the positioning member 220.
  • a thermosetting adhesive such as epoxy is applied to the space H2 and the portion where the convex portions C2 and C5 of the metal cap 30 are in contact.
  • a conductive paste such as Ag is applied to the ground conductor exposed portions E2 and E3 of the mounting substrate 22.
  • the convex portion C3 of the metal cap 30 is fitted into the portion sandwiched between the leg portion 226a and the leg portion 226b, that is, the interval H1. Further, the convex portion C6 is fitted into a portion sandwiched between the leg portion 246a and the leg portion 246b, that is, the interval H2. Thereby, the position of the metal cap 30 with respect to the mounting substrate 22 is determined. Simultaneously with the positioning of the metal cap 30, the convex portions C1 to C6 come into contact with the adhesive or conductive paste on the mounting substrate 22.
  • the metal cap 30 After fitting the metal cap 30, heat is applied to the mounting substrate 22 to cure the adhesive and the conductive paste. Thereby, the metal cap 30 is fixed to the mounting substrate 22. Note that, by attaching the metal cap 30 to the mounting substrate 22, the convex portions C ⁇ b> 1 and C ⁇ b> 4 of the metal cap 30 come into contact with the ground conductor exposed portions E ⁇ b> 2 and E ⁇ b> 3 of the mounting substrate 22. Thereby, the metal cap 30 is connected to the ground conductor in the mounting substrate 22 and is kept at the ground potential.
  • the receptacle 20 is completed by the process as described above.
  • the optical fiber 60 inserted into the plug 40 is cut into a predetermined length.
  • the coating near the tip of the optical fiber 60 is removed using an optical fiber stripper. After removing the coating in the vicinity of the tip, cleaving is performed to bring out the cleavage plane of the core wire of the optical fiber 60.
  • the optical fiber 60 is pushed through the openings A1 and A2 so that the end of the core wire of the optical fiber 60 comes close to the surfaces S9 and S14 of the plug 40. Further, a transparent resin such as an epoxy resin for fixing the optical fiber 60 is injected into the openings A1 and A2 and the recesses D3 and D4 of the plug 40 shown in FIG. Then, the optical fiber 60 is fixed to the plug 40 by curing the transparent resin.
  • a transparent resin such as an epoxy resin for fixing the optical fiber 60 is injected into the openings A1 and A2 and the recesses D3 and D4 of the plug 40 shown in FIG.
  • the positioning member 220 is provided for the light emitting element 100, and the positioning member 240 is provided for the light receiving element 50. Therefore, the positioning member 220 can be arranged according to the mounting position of the light emitting element 100, and the positioning member 240 can be arranged according to the mounting position of the light receiving element 50. That is, since the positioning member 220 and the positioning member 240 can be arranged independently, when a specific optical element and the positioning member are aligned as in the case where there is one positioning member for a plurality of optical elements, The positional relationship between the other optical elements and the positioning member is not shifted. Therefore, in the receptacle 20 and the optical transmission module 10, it is possible to suppress the influence of the positional deviation when each optical element is mounted, as compared with the case where there is one positioning member for the plurality of optical elements.
  • the receptacle 20 and the optical transmission module 10 do not require so-called sealing resin that prevents dust from adhering to the light emitting element 100 and the light receiving element 50 and protects the light emitting element 100 and the light receiving element 50 from dust adhesion.
  • the difference between the receptacle 20 ⁇ / b> A and the receptacle 20, which is the first modification, is the shape of the metal cap 30.
  • Other configurations are the same as those in the above embodiment. Therefore, in the present modification, the description other than the metal cap 30 is as described in the above embodiment.
  • a metal plate portion 38 extending in the x-axis direction is provided at the approximate center in the y-axis direction on the lower surface of the top plate portion 32.
  • the metal plate portion 38 has a substantially rectangular shape when viewed from the y-axis direction. Further, when the metal plate portion 38 is mounted on the receptacle 20 ⁇ / b> A, the metal plate portion 38 fits in the gap between the positioning member 220 and the positioning member 240 as shown in FIG. 14. That is, the metal plate portion 38 extends from the lower surface of the top plate portion 32 toward the gap between the positioning member 220 and the positioning member 240.
  • high-viscosity resin is provided on both surfaces of the metal plate portion 38 in the y-axis direction.
  • the metal plate portion 38 is mounted on the receptacle 20 ⁇ / b> A, the high-viscosity resin together with the metal plate portion 38 fits in the gap between the positioning member 220 and the positioning member 240.
  • FIG. 2 is used for the external perspective view of the receptacle 20A.
  • the metal cap 30 in FIG. 2 is the metal cap 30A shown in FIG. 13 in the receptacle 20A.
  • a metal material is embedded in the positioning member 200.
  • a sheet metal 300 made of phosphor bronze, iron, copper, brass, or the like is bent so as to have the outer shape of the positioning member 200 as shown in FIG. .
  • the sheet metal 300 is placed on a molding die, and a resin is poured therein, whereby the positioning member 200 with the sheet metal 300 embedded therein as shown in FIGS. 17 to 22 is completed. To do.
  • the sheet metal 300 is disposed so as not to overlap the optical path connecting the optical fiber 60 and the light emitting element 100 and the optical path connecting the optical fiber 60 and the light receiving element 50.
  • Other configurations are the same as those in the above embodiment. Accordingly, in the present modification, the description other than the positioning member 200 is as described in the above embodiment.
  • the positioning member 200 has improved rigidity due to the metal material embedded in the positioning member 200. Thereby, since the deformation of the positioning member 200 can be suppressed, the optical coupling between the optical fiber 60 and the light emitting element 100 or the optical coupling between the optical fiber 60 and the light receiving element 50 can be maintained well.
  • the receptacle and the optical transmission module according to the present invention are not limited to the receptacles 20, 20 ⁇ / b> A, 20 ⁇ / b> B and the optical transmission module 10 according to the embodiment, and can be changed within the scope of the gist thereof.
  • the light emitting element 100 may be replaced with an optical element array that is an aggregate of these
  • the light receiving element 50 may be a light receiving element array that is an aggregate of these.
  • A1 to A5 Openings SP1, SP2 Space 10 Optical transmission module 20, 20A, 20B Receptacle 22 Mounting substrate 30 Metal cap 38 Metal plate 50
  • Light receiving element (optical element) 60
  • Optical fiber 100
  • Optical coupling portion 260 Resin

Abstract

The objective of the present invention is to provide a receptacle and optical transmission module that are able to suppress the effect of positional deviation resulting from mounting variations of a plurality of optical elements in the optical transmission module and receptacle provided with a plurality of optical elements. The receptacle (20) is provided with: a light reception element (50), which is an optical element; a light-emitting element (100), which is an optical element; and a positioning member (200). The positioning member (200) optically couples the light reception element (50) and an optical fiber (60), and optically couples the light-emitting element (100) and the optical fiber (60). The positioning member (200) is provided to each light-emitting element.

Description

レセプタクル及び光伝送モジュールReceptacle and optical transmission module
 本発明は、光通信に用いられるレセプタクル及び光伝送モジュール、特に、複数の光素子を備えたレセプタクル及び光伝送モジュールに関する。 The present invention relates to a receptacle and an optical transmission module used for optical communication, and more particularly to a receptacle and an optical transmission module including a plurality of optical elements.
 従来の光通信用の光伝送モジュールとして、例えば、特許文献1に記載の光モジュールが知られている。この種の光モジュール500は、図23に示すように、基板511上に配置された複数の光素子群504の上に、該複数の光素子群504を覆うように1つのケース514(本発明における位置決め部材)が設けられている。ケース514には、図24に示すように、光ファイバ542の端部に設けられた光コネクタ553が接続される。そして、ケース514は、光ファイバ542と複数の光素子群504とを光学的に結合させる役割を担っている。 As a conventional optical transmission module for optical communication, for example, an optical module described in Patent Document 1 is known. As shown in FIG. 23, this type of optical module 500 includes a single case 514 on the plurality of optical element groups 504 arranged on the substrate 511 so as to cover the plurality of optical element groups 504 (the present invention). Positioning member) is provided. As shown in FIG. 24, an optical connector 553 provided at the end of the optical fiber 542 is connected to the case 514. The case 514 plays a role of optically coupling the optical fiber 542 and the plurality of optical element groups 504.
 ところで、光モジュール500では、複数の光素子群504に対して、一つのケース514で光ファイバ542と複数の光素子群504とを光学的に結合させている。従って、光モジュール500では、複数の光素子群504を基板511に対して搭載する際に、その搭載位置のバラつきによって、複数の光素子群504の相対的な位置関係にずれが発生した場合に、各光素子群504の位置に応じてケース514を配置することができない。仮に、特定の光素子群504とケース514とを位置決めすると、他の光素子群504とケース514との位置関係にずれが発生する。結果として、光モジュール500では、光ファイバ542の光軸と光素子群504との光軸がずれ、光学的な損失が発生する可能性があった。 By the way, in the optical module 500, the optical fiber 542 and the plurality of optical element groups 504 are optically coupled to the plurality of optical element groups 504 with one case 514. Therefore, in the optical module 500, when the plurality of optical element groups 504 are mounted on the substrate 511, a deviation occurs in the relative positional relationship between the plurality of optical element groups 504 due to variations in the mounting positions. The case 514 cannot be arranged according to the position of each optical element group 504. If the specific optical element group 504 and the case 514 are positioned, a deviation occurs in the positional relationship between the other optical element group 504 and the case 514. As a result, in the optical module 500, there is a possibility that the optical axis of the optical fiber 542 and the optical axis of the optical element group 504 are shifted and an optical loss occurs.
特開2007-127796号公報JP 2007-127796 A
 そこで、本発明の目的は、複数の光素子を備えたレセプタクル及び光伝送モジュールにおいて、複数の光素子の搭載バラつきによる位置ずれの影響を抑制することができるレセプタクル及び光伝送モジュールを提供することである。 SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide a receptacle and an optical transmission module that can suppress the influence of positional deviation due to mounting variations of the plurality of optical elements in a receptacle and an optical transmission module including a plurality of optical elements. is there.
 本発明の一の形態に係るレセプタクルは、複数の光素子と、光ファイバと前記複数の光素子とを光学的に結合させるための複数の位置決め部材と、を備え、前記位置決め部材それぞれは、各光素子に対して設けられていること、を特徴とする。 A receptacle according to an aspect of the present invention includes a plurality of optical elements, and a plurality of positioning members for optically coupling an optical fiber and the plurality of optical elements. It is provided with respect to the optical element.
 本発明の一の形態に係る光伝送モジュールは、前記レセプタクルと、光ファイバと、前記光ファイバの端部に設けられ、前記位置決め部材に載置されるプラグと、を備えること、を特徴とする。 An optical transmission module according to an aspect of the present invention includes the receptacle, an optical fiber, and a plug that is provided at an end of the optical fiber and is placed on the positioning member. .
 本発明の一の形態に係るレセプタクル及び光伝送モジュールでは、複数の位置決め部材それぞれが、各光素子に対して設けられ、各光素子と光ファイバとを光学的に結合させている。これにより、位置決め部材それぞれは、各光素子に合わせて配置することが可能である。つまり、本発明の一の形態に係るレセプタクル及び光伝送モジュールでは、複数の光素子に対して位置決め部材が一つである場合のように、特定の光素子と位置決め部材とを位置合わせすると、他の光素子と位置決め部材との位置関係にずれが生じることがない。従って、本発明の一の形態に係るレセプタクル及び光伝送モジュールでは、複数の光素子に対して位置決め部材が一つである場合と比較して、各光素子の搭載時の位置ずれの影響を抑制することができる。 In the receptacle and the optical transmission module according to one embodiment of the present invention, each of the plurality of positioning members is provided for each optical element, and optically couples each optical element and the optical fiber. Thereby, each positioning member can be arranged according to each optical element. That is, in the receptacle and the optical transmission module according to one aspect of the present invention, when a specific optical element and a positioning member are aligned, as in the case where there is one positioning member for a plurality of optical elements, the other There is no deviation in the positional relationship between the optical element and the positioning member. Therefore, in the receptacle and the optical transmission module according to one aspect of the present invention, the influence of the positional deviation at the time of mounting each optical element is suppressed as compared with the case where there is one positioning member for the plurality of optical elements. can do.
 本発明に係るレセプタクル及び光伝送モジュールによれば、複数の光素子の搭載バラつきによる位置ずれの影響を抑制することができる。 According to the receptacle and the optical transmission module according to the present invention, it is possible to suppress the influence of misalignment due to mounting variations of a plurality of optical elements.
一実施形態に係る位置決め部材を備える光伝送モジュールの外観斜視図である。It is an appearance perspective view of an optical transmission module provided with a positioning member concerning one embodiment. レセプタクルの分解斜視図である。It is a disassembled perspective view of a receptacle. レセプタクルから金属キャップ及び位置決め部材を除いた外観斜視図である。It is an external appearance perspective view which removed the metal cap and the positioning member from the receptacle. レセプタクルから金属キャップを除いた状態の外観斜視図である。It is an external appearance perspective view of the state which removed the metal cap from the receptacle. 位置決め部材の外観斜視図である。It is an external appearance perspective view of a positioning member. 位置決め部材をz軸方向の負方向側から平面視した図である。It is the figure which planarly viewed the positioning member from the negative direction side of the z-axis direction. 図4のE-E断面における断面図である。FIG. 5 is a cross-sectional view taken along a line EE in FIG. 4. 図5に記載の位置決め部材のC-C又はD-Dにおける断面に、実装基板及びプラグを追加した図である。FIG. 6 is a diagram in which a mounting board and a plug are added to the cross section taken along the line CC or DD of the positioning member illustrated in FIG. 5. 金属キャップの外観斜視図である。It is an external appearance perspective view of a metal cap. 光ファイバ接続デバイスの外観斜視図である。It is an external appearance perspective view of an optical fiber connection device. プラグをz軸方向の負方向側から平面視した図である。It is the figure which planarly viewed the plug from the negative direction side of the z-axis direction. レセプタクルの製造工程の図である。It is a figure of the manufacturing process of a receptacle. 第1変形例に係るレセプタクルの金属キャップの外観斜視図である。It is an external appearance perspective view of the metal cap of the receptacle which concerns on a 1st modification. 図4のE-E断面に第1変形例に係るレセプタクルの金属キャップを追加した断面図である。FIG. 5 is a cross-sectional view in which a metal cap of a receptacle according to a first modification is added to the EE cross section of FIG. 4. 第2変形例に係るレセプタクルの位置決め部材内部に配置される金属板の外観斜視図である。It is an external appearance perspective view of the metal plate arrange | positioned inside the positioning member of the receptacle which concerns on a 2nd modification. 第2変形例に係るレセプタクルの位置決め部材内部に配置される金属板の曲げ加工後の外観斜視図である。It is an external appearance perspective view after the bending process of the metal plate arrange | positioned inside the positioning member of the receptacle which concerns on a 2nd modification. 第2変形例に係るレセプタクルの位置決め部材の外観斜視図である。It is an external appearance perspective view of the positioning member of the receptacle which concerns on a 2nd modification. 図17のF-F断面における断面図である。FIG. 18 is a cross-sectional view taken along the line FF in FIG. 17. 図17のG-G断面における断面図である。FIG. 18 is a cross-sectional view taken along a line GG in FIG. 17. 図17のH-H断面における断面図である。FIG. 18 is a cross-sectional view taken along the line HH in FIG. 17. 図17のI-I断面における断面図である。It is sectional drawing in the II cross section of FIG. 図17のJ-J断面における断面図である。FIG. 18 is a cross-sectional view taken along the line JJ of FIG. 特許文献1に記載の光モジュールと同種の光モジュールの断面図である。It is sectional drawing of the optical module of the same kind as the optical module of patent document 1. 特許文献1に記載の光モジュールと同種の光モジュールの断面図である。It is sectional drawing of the optical module of the same kind as the optical module of patent document 1.
 以下に、一実施形態に係る位置決め部材を備える光伝送モジュール、及びその製造方法について説明する。 Hereinafter, an optical transmission module including a positioning member according to an embodiment and a manufacturing method thereof will be described.
(光伝送モジュールの構成 図1~図3参照)
 以下に、一実施形態に係るレセプタクルを備える光伝送モジュールの構成について、図面を参照しながら説明する。なお、光伝送モジュール10の上下方向をz軸方向と定義し、z軸方向から平面視したときに、光伝送モジュール10の長辺に沿った方向をx軸方向と定義する。さらに、光伝送モジュール10の短辺に沿った方向をy軸方向と定義する。x軸、y軸及びz軸は互いに直交している。
(Configuration of optical transmission module See FIGS. 1 to 3)
Hereinafter, a configuration of an optical transmission module including a receptacle according to an embodiment will be described with reference to the drawings. Note that the vertical direction of the light transmission module 10 is defined as the z-axis direction, and the direction along the long side of the light transmission module 10 when viewed in plan from the z-axis direction is defined as the x-axis direction. Furthermore, the direction along the short side of the optical transmission module 10 is defined as the y-axis direction. The x axis, the y axis, and the z axis are orthogonal to each other.
 光伝送モジュール10は、図1に示すように、レセプタクル20及び光ファイバ接続デバイス70を備えている。 The optical transmission module 10 includes a receptacle 20 and an optical fiber connection device 70 as shown in FIG.
 レセプタクル20は、図2に示すように、金属キャップ30、受光素子50、発光素子100、位置決め部材200、実装基板22及び駆動回路26を備えている。 The receptacle 20 includes a metal cap 30, a light receiving element 50, a light emitting element 100, a positioning member 200, a mounting board 22, and a drive circuit 26, as shown in FIG.
 実装基板22は、図3に示すように、z軸方向から平面視したとき、矩形状を成している。また、実装基板22のz軸方向の負方向側の面(以下で下面と称す)には、光伝送モジュール10を回路基板に実装する際に、回路基板のランドと接触する表面実装用電極E1(図3には図示せず)が設けられている。 The mounting substrate 22 has a rectangular shape when seen in a plan view from the z-axis direction, as shown in FIG. The surface mounting electrode E1 that contacts the land of the circuit board when the optical transmission module 10 is mounted on the circuit board is mounted on the surface on the negative side in the z-axis direction of the mounting board 22 (hereinafter referred to as the lower surface). (Not shown in FIG. 3) is provided.
 実装基板22のz軸方向の正方向側の面(以下で上面と称す)において、x軸方向の負方向側に位置する辺L1とy軸方向の負方向側に位置する辺L2とが成す角の近傍には、実装基板22内に設けられたグランド導体の一部が露出しているグランド導体露出部E2が設けられている。グランド導体露出部E2は、z軸方向の正方向側から平面視したとき、x軸方向を長辺とする長方形状を成している。 On the surface on the positive direction side in the z-axis direction (hereinafter referred to as the upper surface) of the mounting substrate 22, a side L1 located on the negative direction side in the x-axis direction and a side L2 located on the negative direction side in the y-axis direction are formed. In the vicinity of the corner, a ground conductor exposed portion E2 is provided in which a part of the ground conductor provided in the mounting substrate 22 is exposed. The ground conductor exposed portion E2 has a rectangular shape having a long side in the x-axis direction when viewed from the positive side in the z-axis direction.
 さらに、実装基板22の上面において、x軸方向の負方向側に位置する辺L1とy軸方向の正方向側に位置する辺L3とが成す角の近傍には、実装基板22内に設けられたグランド導体の一部が露出しているグランド導体露出部E3が設けられている。グランド導体露出部E3は、z軸方向の正方向側から平面視したとき、x軸方向を長辺とする長方形状を成している。 Further, on the upper surface of the mounting substrate 22, the mounting substrate 22 is provided in the vicinity of an angle formed by the side L <b> 1 positioned on the negative side in the x-axis direction and the side L <b> 3 positioned on the positive direction side in the y-axis direction. A ground conductor exposed portion E3 in which a part of the ground conductor is exposed is provided. The ground conductor exposed portion E3 has a rectangular shape having a long side in the x-axis direction when viewed from the positive side in the z-axis direction.
 受光素子50及び発光素子100は、実装基板22の上面におけるx軸方向の正方向側の部分に設けられている。受光素子50は、光信号を電気信号に変換するフォトダイオードを含んだ素子である。発光素子100は、電気信号を光信号に変換するダイオードを含んだ素子である。発光素子100は2つのVCSELを備えている。 The light receiving element 50 and the light emitting element 100 are provided on a portion on the positive side in the x-axis direction on the upper surface of the mounting substrate 22. The light receiving element 50 is an element including a photodiode that converts an optical signal into an electric signal. The light emitting element 100 is an element including a diode that converts an electrical signal into an optical signal. The light emitting element 100 includes two VCSELs.
 また、駆動回路26は、実装基板22の上面におけるx軸方向の正方向側の部分において、受光素子50及び発光素子100よりも更にx軸方向の正方向側に設けられている。駆動回路26は、受光素子50及び発光素子100を駆動するための半導体回路素子であり、z軸方向から平面視したとき、y軸方向に平行な長辺を有する矩形状を成している。 Further, the drive circuit 26 is provided on the positive side in the x-axis direction on the upper surface of the mounting substrate 22 further on the positive side in the x-axis direction than the light receiving element 50 and the light emitting element 100. The drive circuit 26 is a semiconductor circuit element for driving the light receiving element 50 and the light emitting element 100, and has a rectangular shape having a long side parallel to the y axis direction when viewed in plan from the z axis direction.
 そして、駆動回路26と受光素子50とは、ワイヤーUを介してワイヤーボンディングにより接続されている。また、駆動回路26と発光素子100とは、ワイヤーUを介してワイヤーボンディングにより接続されている。これにより、駆動回路26からの電気信号が、ワイヤーUを介して発光素子100に伝送され、受光素子50からの電気信号が、ワイヤーUを介して駆動回路26に伝送される。また、駆動回路26と実装基板22とは、ワイヤーUを介してワイヤーボンディングにより接続されている。 The drive circuit 26 and the light receiving element 50 are connected by wire bonding via the wire U. The drive circuit 26 and the light emitting element 100 are connected to each other by wire bonding via a wire U. Thereby, the electrical signal from the drive circuit 26 is transmitted to the light emitting element 100 via the wire U, and the electrical signal from the light receiving element 50 is transmitted to the drive circuit 26 via the wire U. In addition, the drive circuit 26 and the mounting substrate 22 are connected by wire bonding via the wire U.
(位置決め部材の構成 図4~図8参照)
 次に、位置決め部材200について、図面を参照しながら説明する。
(Configuration of positioning member See FIGS. 4 to 8)
Next, the positioning member 200 will be described with reference to the drawings.
 位置決め部材200は、エポキシ系やナイロン系の樹脂等により構成され、図4に示すように、実装基板22の上面の略全体を覆うように設けられている。また、位置決め部材200は、発光素子用の位置決め部材220と受光素子用の位置決め部材240とを備えている。つまり、位置決め部材220,240それぞれは、各光素子に対して設けられている。位置決め部材220,240は、y軸方向の負方向側から正方向側に向かってこの順に並ぶように設けられており、位置決め部材220と位置決め部材240との間には、樹脂260が挟み込まれている。 The positioning member 200 is made of an epoxy-based or nylon-based resin or the like, and is provided so as to cover substantially the entire top surface of the mounting substrate 22 as shown in FIG. The positioning member 200 includes a positioning member 220 for a light emitting element and a positioning member 240 for a light receiving element. That is, each of the positioning members 220 and 240 is provided for each optical element. The positioning members 220 and 240 are provided so as to be arranged in this order from the negative direction side to the positive direction side in the y-axis direction, and the resin 260 is sandwiched between the positioning member 220 and the positioning member 240. Yes.
 発光素子用の位置決め部材220は、z軸方向から平面視したとき、略矩形状を成している。さらに、位置決め部材220は、図5に示すように、プラグ載置部222と光結合部224とを備えている。 The positioning member 220 for the light emitting element has a substantially rectangular shape when viewed in plan from the z-axis direction. Further, as shown in FIG. 5, the positioning member 220 includes a plug placement portion 222 and an optical coupling portion 224.
 プラグ載置部222は、位置決め部材220におけるx軸の負方向側の部分を構成している板状部材である。 The plug mounting portion 222 is a plate-like member that constitutes a portion of the positioning member 220 on the negative direction side of the x axis.
 また、プラグ載置部222の上面におけるy軸方向の略中央には、後述するプラグ42を光結合部224に向かって押し込む際の挿入方向、つまり本実施例におけるx軸方向に沿った溝G1が設けられている。なお、プラグ載置部222において、溝G1よりy軸方向の負方向側の部分を平坦部F1と称し、溝G1よりy軸方向の正方向側の部分を平坦部F2と称す。 Further, in the approximate center in the y-axis direction on the upper surface of the plug placement portion 222, a groove G1 along the insertion direction when the plug 42 described later is pushed toward the optical coupling portion 224, that is, the x-axis direction in this embodiment. Is provided. In the plug placement portion 222, a portion on the negative side in the y-axis direction from the groove G1 is referred to as a flat portion F1, and a portion on the positive direction side in the y-axis direction from the groove G1 is referred to as a flat portion F2.
 光結合部224は、位置決め部材220におけるx軸方向の正方向側の部分を構成している。また、光結合部224は、図5に示すように、本体226、突き当て部228及び脚部232a,232bを有している。 The optical coupling portion 224 constitutes a portion of the positioning member 220 on the positive direction side in the x-axis direction. Moreover, the optical coupling part 224 has the main body 226, the abutting part 228, and leg part 232a, 232b, as shown in FIG.
 本体226は直方体状を成している。また、本体226には、空間SP1、凹部D1及び凸レンズ230が設けられている。 The main body 226 has a rectangular parallelepiped shape. In addition, the main body 226 is provided with a space SP1, a concave portion D1, and a convex lens 230.
 空間SP1は、図6及び図7に示すように、本体226の下面に設けられた略矩形状の空間であり、y軸方向の正方向側及びz軸方向の負方向側が開口部になっている。そして、位置決め部材220が実装基板22上に載置された際に、空間SP1内に発光素子100及び駆動回路26の一部が収まる。 As shown in FIGS. 6 and 7, the space SP1 is a substantially rectangular space provided on the lower surface of the main body 226, and the positive side in the y-axis direction and the negative direction side in the z-axis direction are openings. Yes. When the positioning member 220 is placed on the mounting substrate 22, a part of the light emitting element 100 and the drive circuit 26 are accommodated in the space SP1.
 凹部D1は、図5に示すように、本体226のy軸方向の正方向側の辺L4近傍に設けられおり、z軸方向から平面視したとき、発光素子100の光軸と重なっている。また、凹部D1は、x軸方向から平面視したとき、プラグ42に接続されている光ファイバ60の光軸と重なっている。さらに、凹部D1は、z軸方向から平面視したとき、矩形状を成している。そして、凹部D1は、図8に示すように、y軸方向から平面視したときにV字型を成している。 As shown in FIG. 5, the concave portion D1 is provided in the vicinity of the side L4 on the positive side of the main body 226 in the y-axis direction, and overlaps the optical axis of the light emitting element 100 when viewed in plan from the z-axis direction. Further, the recess D1 overlaps with the optical axis of the optical fiber 60 connected to the plug 42 when viewed in plan from the x-axis direction. Furthermore, the concave portion D1 has a rectangular shape when viewed in plan from the z-axis direction. And as shown in FIG. 8, the recessed part D1 has comprised the V shape when planarly viewed from the y-axis direction.
 凹部D1のx軸方向の負方向側の内周面は、全反射面R1である。全反射面R1は、y軸に平行であり、y軸方向の負方向側から平面視したとき、z軸に対して反時計回りに45°傾いている。また、位置決め部材220の屈折率は、空気よりも十分に大きい。従って、発光素子100からz軸方向の正方向側に出射されたレーザービームB1は、光結合部224に入射し、全反射面R1により、x軸方向の負方向側に全反射され、プラグ40を介して光ファイバ60へと進行する。なお、レーザービームB1の光跡をy軸方向から平面視すると、発光素子100から出射されたレーザービームB1の光軸と全反射面R1とが成す角は45°であり、光ファイバ60に向かうレーザービームB1の光軸と全反射面R1とが成す角は45°である。すなわち、全反射面R1と光ファイバ60の光軸とが成す角度と、全反射面R1と発光素子100とが成す角度は等しい。 The inner peripheral surface on the negative side in the x-axis direction of the recess D1 is a total reflection surface R1. The total reflection surface R1 is parallel to the y-axis and tilted 45 ° counterclockwise with respect to the z-axis when viewed from the negative side in the y-axis direction. Further, the refractive index of the positioning member 220 is sufficiently larger than that of air. Therefore, the laser beam B1 emitted from the light emitting element 100 in the positive z-axis direction is incident on the optical coupling unit 224, and is totally reflected by the total reflection surface R1 in the negative x-axis direction. To the optical fiber 60 via Note that, when the light trace of the laser beam B1 is viewed in plan from the y-axis direction, the angle formed by the optical axis of the laser beam B1 emitted from the light emitting element 100 and the total reflection surface R1 is 45 ° and is directed to the optical fiber 60. The angle formed by the optical axis of the laser beam B1 and the total reflection surface R1 is 45 °. That is, the angle formed by the total reflection surface R1 and the optical axis of the optical fiber 60 is equal to the angle formed by the total reflection surface R1 and the light emitting element 100.
 凸レンズ230は、図8に示すように、光結合部224の下面に設けられている。また、凸レンズ230は、z軸方向から平面視したとき、発光素子100と重なっている。これにより、凸レンズ230は、発光素子100と対向し、レーザービームB1の光路上に位置している。また、凸レンズ230は、z軸と直交する方向から平面視したとき、z軸の負方向側に向かって突出する半円状を成している。従って、発光素子100から出射されたレーザービームB1は、凸レンズ230によって集光又はコリメートされて、全反射面R1に向かう。 The convex lens 230 is provided on the lower surface of the optical coupling part 224 as shown in FIG. Further, the convex lens 230 overlaps the light emitting element 100 when viewed in plan from the z-axis direction. Accordingly, the convex lens 230 faces the light emitting element 100 and is positioned on the optical path of the laser beam B1. In addition, the convex lens 230 has a semicircular shape that protrudes toward the negative direction side of the z-axis when viewed from a direction orthogonal to the z-axis. Accordingly, the laser beam B1 emitted from the light emitting element 100 is condensed or collimated by the convex lens 230 and travels toward the total reflection surface R1.
 突き当て部228は、図5に示すように、本体226のx軸方向の負方向側の端面S2から、プラグ載置部222の平坦部F1に沿って、平坦部F1のx軸方向の略中央まで突出している。なお、突き当て部228のx軸方向の負方向側の端面を端面S3と称す。 As shown in FIG. 5, the abutting portion 228 is substantially in the x-axis direction of the flat portion F <b> 1 along the flat portion F <b> 1 of the plug placement portion 222 from the negative end surface S <b> 2 in the x-axis direction of the main body 226. Projects to the center. Note that the end surface of the abutting portion 228 on the negative side in the x-axis direction is referred to as an end surface S3.
 脚部232a,232bは、本体226のy軸方向の負方向側の面から、y軸方向の負方向側に向かって突出する直方体状の部材である。また、脚部232a,232bは、x軸方向の負方向側から正方向側にこの順に並ぶように、間隔H1を空けて設けられている。間隔H1には、後述する金属キャップ30の凸部C3が嵌め込まれる。 The leg portions 232a and 232b are rectangular parallelepiped members that protrude from the negative side surface in the y-axis direction of the main body 226 toward the negative direction side in the y-axis direction. Further, the leg portions 232a and 232b are provided at an interval H1 so as to be arranged in this order from the negative direction side to the positive direction side in the x-axis direction. A convex portion C3 of a metal cap 30 described later is fitted into the interval H1.
 受光素子用の位置決め部材240は、z軸方向から平面視したとき、矩形状を成している。さらに、位置決め部材240は、図5に示すように、プラグ載置部242と光結合部244とを備えている。 The positioning member 240 for the light receiving element has a rectangular shape when viewed in plan from the z-axis direction. Furthermore, the positioning member 240 includes a plug placement portion 242 and an optical coupling portion 244, as shown in FIG.
 プラグ載置部242は、位置決め部材240におけるx軸の負方向側の部分を構成している板状部材である。 The plug placement portion 242 is a plate-like member that constitutes a portion of the positioning member 240 on the negative side of the x axis.
 また、プラグ載置部242の上面におけるy軸方向の略中央には、図5に示すように、後述するプラグ46を光結合部244に向かって押し込む際の挿入方向、つまり本実施例におけるx軸方向に沿った溝G2が設けられている。なお、プラグ載置部242において、溝G2よりy軸方向の負方向側の部分を平坦部F3と称し、溝G2よりy軸方向の正方向側の部分を平坦部F4と称す。 Further, at the approximate center in the y-axis direction on the upper surface of the plug mounting portion 242, as shown in FIG. 5, the insertion direction when the plug 46 described later is pushed toward the optical coupling portion 244, that is, x in this embodiment. A groove G2 is provided along the axial direction. In the plug placement portion 242, a portion on the negative side in the y-axis direction from the groove G2 is referred to as a flat portion F3, and a portion on the positive direction side in the y-axis direction from the groove G2 is referred to as a flat portion F4.
 光結合部244は、図5に示すように、位置決め部材240におけるx軸方向の正方向側の部分を構成している。また、光結合部244は、図5に示すように、本体246、突き当て部248及び脚部252a,252bを有している。 As shown in FIG. 5, the optical coupling portion 244 constitutes a portion of the positioning member 240 on the positive direction side in the x-axis direction. Moreover, the optical coupling part 244 has the main body 246, the abutting part 248, and leg part 252a, 252b, as shown in FIG.
 本体246は直方体状を成している。また、本体226には、空間SP2、凹部D2及び凸レンズ250が設けられている。 The main body 246 has a rectangular parallelepiped shape. The main body 226 is provided with a space SP2, a concave portion D2, and a convex lens 250.
 空間SP2は、図6及び図7に示すように、本体246の下面に設けられた略矩形状の空間であり、y軸方向の負方向側及びz軸方向の負方向側が開口部になっている。そして、位置決め部材240が実装基板22上に載置された際に、空間SP2内に受光素子50及び駆動回路26の他部が収まる。 As shown in FIGS. 6 and 7, the space SP <b> 2 is a substantially rectangular space provided on the lower surface of the main body 246, and the negative direction side in the y-axis direction and the negative direction side in the z-axis direction are openings. Yes. When the positioning member 240 is placed on the mounting substrate 22, the other portions of the light receiving element 50 and the drive circuit 26 are accommodated in the space SP2.
 ところで、空間SP1は、位置決め部材220におけるx軸方向の正方向側に位置する本体226の下面に設けられ、空間SP2は、位置決め部材240におけるx軸方向の正方向側に位置する本体246の下面に設けられている。つまり、空間SP1と空間SP2とは、隣り合う位置決め部材220,240において対向している。また、空間SP1のy軸方向の正方向側は開口部であり、空間SP2のy軸方向の負方向側は開口部である。従って、空間SP1と空間SP2とにおける対向する部分は、開口部である。また、位置決め部材220と位置決め部材240との隙間であって、空間SP1の開口部及び空間SP2の開口部の周囲には、該隙間を埋めるために樹脂260が挟み込まれている。 By the way, the space SP1 is provided on the lower surface of the main body 226 located on the positive side in the x-axis direction of the positioning member 220, and the space SP2 is the lower surface of the main body 246 located on the positive direction side in the x-axis direction of the positioning member 240. Is provided. That is, the space SP1 and the space SP2 face each other at the adjacent positioning members 220 and 240. Further, the positive direction side in the y-axis direction of the space SP1 is an opening, and the negative direction side in the y-axis direction of the space SP2 is an opening. Therefore, the opposing part in space SP1 and space SP2 is an opening part. In addition, a resin 260 is sandwiched between the positioning member 220 and the positioning member 240 around the opening of the space SP1 and the opening of the space SP2.
 凹部D2は、図5に示すように、本体246のy軸方向の負方向側の辺L5近傍に設けられており、z軸方向から平面視したとき、受光素子50と重なっている。さらに、凹部D2は、x軸方向から平面視したとき、プラグ46に接続されている光ファイバ60の光軸と重なっている。また、凹部D2は、z軸方向から平面視したとき、矩形状を成している。さらに、凹部D2は、図8に示すように、y軸方向から平面視したときにV字型を成している。 As shown in FIG. 5, the concave portion D2 is provided in the vicinity of the side L5 on the negative direction side of the main body 246 in the y-axis direction, and overlaps the light receiving element 50 when viewed in plan from the z-axis direction. Further, the recess D2 overlaps with the optical axis of the optical fiber 60 connected to the plug 46 when viewed in plan from the x-axis direction. Further, the recess D2 has a rectangular shape when viewed in plan from the z-axis direction. Further, as shown in FIG. 8, the recess D2 has a V-shape when viewed in plan from the y-axis direction.
 凹部D2のx軸方向の負方向側の内周面は、全反射面R2である。全反射面R2は、y軸に平行であり、y軸方向の負方向側から平面視したとき、z軸に対して反時計回りに45°傾いている。また、位置決め部材240の屈折率は、空気よりも十分に大きい。従って、光ファイバ60からx軸方向の正方向側に出射されたレーザービームB2は、光結合部244に入射し、全反射面R2により、z軸方向の負方向側に全反射され、受光素子50へと進行する。なお、レーザービームB2の光跡をy軸方向から平面視すると、光ファイバ60から出射されたレーザービームB2の光軸と全反射面R2とが成す角は45°であり、受光素子50に向かうレーザービームB2の光軸と全反射面R2とが成す角は45°である。すなわち、全反射面R2と光ファイバ60の光軸とが成す角度と、全反射面R2と受光素子50とが成す角度は等しい。 The inner peripheral surface on the negative direction side in the x-axis direction of the recess D2 is a total reflection surface R2. The total reflection surface R2 is parallel to the y-axis and tilted 45 ° counterclockwise with respect to the z-axis when viewed from the negative side in the y-axis direction. Further, the refractive index of the positioning member 240 is sufficiently larger than that of air. Accordingly, the laser beam B2 emitted from the optical fiber 60 to the positive side in the x-axis direction is incident on the optical coupling unit 244, and is totally reflected by the total reflection surface R2 to the negative direction side in the z-axis direction. Proceed to 50. Note that, when the light trace of the laser beam B2 is viewed in plan from the y-axis direction, the angle formed by the optical axis of the laser beam B2 emitted from the optical fiber 60 and the total reflection surface R2 is 45 ° and is directed toward the light receiving element 50. The angle formed by the optical axis of the laser beam B2 and the total reflection surface R2 is 45 °. That is, the angle formed by the total reflection surface R2 and the optical axis of the optical fiber 60 is equal to the angle formed by the total reflection surface R2 and the light receiving element 50.
 凸レンズ250は、図8に示すように、光結合部244の下面に設けられている。また、凸レンズ250は、z軸方向から平面視したとき、受光素子50と重なっている。これにより、凸レンズ250は、受光素子50と対向し、レーザービームB2の光路上に位置している。また、凸レンズ250は、z軸と直交する方向から平面視したとき、z軸の負方向側に向かって突出する半円状を成している。従って、光ファイバ60から出射されたレーザービームB2は、全反射面R2で反射された後、凸レンズ250によって集光又はコリメートされて、受光素子50に向かう。 The convex lens 250 is provided on the lower surface of the optical coupling part 244 as shown in FIG. The convex lens 250 overlaps the light receiving element 50 when viewed in plan from the z-axis direction. Thereby, the convex lens 250 faces the light receiving element 50 and is positioned on the optical path of the laser beam B2. Further, the convex lens 250 has a semicircular shape that protrudes toward the negative direction side of the z-axis when viewed from a direction orthogonal to the z-axis. Accordingly, the laser beam B <b> 2 emitted from the optical fiber 60 is reflected by the total reflection surface R <b> 2, then condensed or collimated by the convex lens 250, and travels toward the light receiving element 50.
 突き当て部248は、図5に示すように、本体246のx軸方向の負方向側の端面S5から、プラグ載置部242の平坦部F4に沿って、平坦部F4のx軸方向の略中央まで突出している。なお、突き当て部248のx軸方向の負方向側の端面を端面S6と称す。 As shown in FIG. 5, the abutting portion 248 substantially extends in the x-axis direction of the flat portion F <b> 4 along the flat portion F <b> 4 of the plug placement portion 242 from the negative end surface S <b> 5 in the x-axis direction of the main body 246. Projects to the center. The end surface on the negative direction side in the x-axis direction of the abutting portion 248 is referred to as an end surface S6.
 脚部252a,252bは、本体226のy軸方向の正方向側の面から、y軸方向の正方向側に向かって突出する直方体状の部材である。また、脚部252a,252bは、x軸方向の負方向側から正方向側にこの順に並ぶように、間隔H2を空けて設けられている。間隔H2には、後述する金属キャップ30の凸部C6が嵌めこまれる。 The leg portions 252a and 252b are rectangular parallelepiped members that protrude from the surface on the positive direction side in the y-axis direction of the main body 226 toward the positive direction side in the y-axis direction. Further, the leg portions 252a and 252b are provided at an interval H2 so as to be arranged in this order from the negative direction side to the positive direction side in the x-axis direction. A protrusion C6 of a metal cap 30 described later is fitted into the interval H2.
(金属キャップの構成 図1及び図9参照)
 次に、金属キャップ30について、図面を参照しながら説明する。
(Structure of metal cap See FIGS. 1 and 9)
Next, the metal cap 30 will be described with reference to the drawings.
 金属キャップ30は、一枚の金属板(例えば、SUS301)がコ字型に折り曲げられて作製されている。また、金属キャップ30は、図1に示すように、位置決め部材200をz軸方向の正方向側、並びにy軸方向の正方向側及びy軸方向の負方向側から覆っている。これにより、レセプタクル20のx軸方向の負方向側には、後述するプラグ40が挿入される開口部A3が形成されている。 The metal cap 30 is manufactured by bending a single metal plate (for example, SUS301) into a U-shape. Further, as shown in FIG. 1, the metal cap 30 covers the positioning member 200 from the positive direction side in the z-axis direction, the positive direction side in the y-axis direction, and the negative direction side in the y-axis direction. Thus, an opening A3 into which a plug 40 described later is inserted is formed on the negative side of the receptacle 20 in the x-axis direction.
 金属キャップ30は、図9に示すように、天板部32及び側板部34,36を含んでいる。天板部32は、z軸に対して直交する面と平行であり、矩形状を成している。側板部34は、天板部32のy軸方向の負方向側の長辺L6からz軸方向の負方向側に金属キャップ30が折り曲げられて形成されている。側板部36は、天板部32のy軸方向の正方向側の長辺L7からz軸方向の負方向側に金属キャップ30が折り曲げられて形成されている。 As shown in FIG. 9, the metal cap 30 includes a top plate portion 32 and side plate portions 34 and 36. The top plate portion 32 is parallel to a plane orthogonal to the z-axis and has a rectangular shape. The side plate portion 34 is formed by bending the metal cap 30 from the long side L6 on the negative direction side in the y-axis direction of the top plate portion 32 to the negative direction side in the z-axis direction. The side plate portion 36 is formed by bending the metal cap 30 from the long side L7 on the positive side in the y-axis direction of the top plate portion 32 to the negative direction side in the z-axis direction.
 天板部32のx軸方向の負方向側の部分には、プラグ40をレセプタクル20に固定するための係合部32a,32bが設けられている。係合部32a,32bは、y軸方向の負方向側から正方向側に向かってこの順に並ぶように設けられている。 Engaging portions 32 a and 32 b for fixing the plug 40 to the receptacle 20 are provided on the negative side of the top plate portion 32 in the x-axis direction. The engaging portions 32a and 32b are provided in this order from the negative direction side in the y-axis direction toward the positive direction side.
 係合部32a,32bは、天板部32にコ字型の切り込みを入れることにより形成されている。具体的には、係合部32a,32bは、天板部32にx軸方向の正方向側に開口するコ字型の切り込みを入れ、コ字型の切り込みに囲まれた部分をz軸方向の負方向側に凹ませるように曲げることにより形成されている。これにより、係合部32a,32bは、y軸方向から平面視したとき、z軸方向の負方向側に突出したV字型の形状を成している。 The engaging portions 32 a and 32 b are formed by making a U-shaped cut in the top plate portion 32. Specifically, the engaging portions 32a and 32b have a U-shaped notch opened in the positive direction side in the x-axis direction in the top plate portion 32, and a portion surrounded by the U-shaped notch is formed in the z-axis direction. It is formed by bending so as to be dented in the negative direction side. Thus, the engaging portions 32a and 32b have a V-shape that protrudes in the negative direction side in the z-axis direction when viewed in plan from the y-axis direction.
 また、天板部32のx軸方向の負方向側の短辺L8には、プラグ40をレセプタクル20に固定するための係合部32c,32dが設けられている。係合部32c,32dは、天板部32からx軸方向の負方向側に突出した金属片である。係合部32c,32dは、係合部32c,32dにおけるx軸方向の略中央の位置で、z軸方向の負方向側に凹ませるように曲げられている。これにより、係合部32c,32dは、y軸方向から平面視したとき、z軸方向の負方向側に突出したV字型の形状を成している。 Further, engaging portions 32c and 32d for fixing the plug 40 to the receptacle 20 are provided on the short side L8 on the negative side of the top plate portion 32 in the x-axis direction. The engaging portions 32c and 32d are metal pieces that protrude from the top plate portion 32 toward the negative side in the x-axis direction. The engaging portions 32c and 32d are bent so as to be recessed toward the negative direction side in the z-axis direction at a substantially central position in the x-axis direction in the engaging portions 32c and 32d. Thus, the engaging portions 32c and 32d have a V-shape protruding in the negative direction side in the z-axis direction when viewed in plan from the y-axis direction.
 側板部34のz軸方向の負方向側の長辺L9には、z軸方向の負方向側に向かって突出する凸部C1~C3が、x軸方向の負方向側から正方向側に向かってこの順に並ぶように設けられている。凸部C1~C3はそれぞれ、実装基板22と接着剤により固定される。なお、凸部C1は、実装基板22のグランド導体露出部E2と接続される。また、凸部C3は、位置決め部材220における本体226の脚部226aと脚部226bとの間に設けられた間隔H1に嵌め込まれる。これにより、金属キャップ30は、実装基板22に対して位置決めされる。 On the long side L9 on the negative direction side in the z-axis direction of the side plate portion 34, convex portions C1 to C3 projecting toward the negative direction side in the z-axis direction are directed from the negative direction side in the x-axis direction to the positive direction side. They are arranged in this order. The convex portions C1 to C3 are each fixed to the mounting substrate 22 with an adhesive. The convex portion C1 is connected to the ground conductor exposed portion E2 of the mounting substrate 22. Further, the convex portion C3 is fitted into a gap H1 provided between the leg portion 226a and the leg portion 226b of the main body 226 in the positioning member 220. Thereby, the metal cap 30 is positioned with respect to the mounting substrate 22.
 側板部36のz軸方向の負方向側の長辺L10には、z軸方向の負方向側に向かって突出する凸部C4~C6が、x軸方向の負方向側から正方向側に向かってこの順に並ぶように設けられている。凸部C4~C6はそれぞれ、実装基板22と接着剤により固定される。なお、凸部C4は、実装基板22のグランド導体露出部E3と接続される。また、凸部C6は、位置決め部材240における本体246の脚部246aと脚部246bとの間に設けられた間隔H2に嵌め込まれる。これにより、金属キャップ30は、実装基板22に対して位置決めされる。 On the long side L10 on the negative direction side in the z-axis direction of the side plate 36, convex portions C4 to C6 projecting toward the negative direction side in the z-axis direction are directed from the negative direction side in the x-axis direction to the positive direction side. They are arranged in this order. The convex portions C4 to C6 are each fixed to the mounting substrate 22 with an adhesive. The convex portion C4 is connected to the ground conductor exposed portion E3 of the mounting substrate 22. Further, the convex portion C6 is fitted into a gap H2 provided between the leg portion 246a and the leg portion 246b of the main body 246 in the positioning member 240. Thereby, the metal cap 30 is positioned with respect to the mounting substrate 22.
(光ファイバ接続デバイスの構成 図10及び図11参照)
 以下で、一実施形態に係る光ファイバ接続デバイス70について、図面を参照しながら説明する。光ファイバ接続デバイス70は、光ファイバ60とプラグ40を備えている。
(Configuration of optical fiber connection device See FIGS. 10 and 11)
Hereinafter, an optical fiber connection device 70 according to an embodiment will be described with reference to the drawings. The optical fiber connection device 70 includes an optical fiber 60 and a plug 40.
 光ファイバ60は、芯線及び該芯線を覆う被覆材から構成されており、該芯線は、コア及びクラッドから構成されている。コアはガラス材からなり、クラッドはガラス材又はガラス材にフッ素系樹脂が被覆された構成からなる。さらに、前記被覆材は、ポリエチレンなどの樹脂からなる。 The optical fiber 60 is composed of a core wire and a covering material that covers the core wire, and the core wire is composed of a core and a clad. The core is made of a glass material, and the clad is made of a glass material or a glass material covered with a fluorine resin. Further, the covering material is made of a resin such as polyethylene.
 プラグ40には、図10に示すように、光ファイバ60の端部が挿入される。また、プラグ40には、送信側プラグ42及び受信側プラグ46があり、双方ともエポキシ系やナイロン系の樹脂等により構成されている。 The end of the optical fiber 60 is inserted into the plug 40 as shown in FIG. Further, the plug 40 includes a transmission side plug 42 and a reception side plug 46, both of which are made of epoxy or nylon resin or the like.
 送信側プラグ42は、光ファイバ60を位置決め部材220に固定するために用いられる。また、送信側プラグ42は、光ファイバ挿入部42a及び突起部42bを備える。 The transmission side plug 42 is used for fixing the optical fiber 60 to the positioning member 220. The transmission side plug 42 includes an optical fiber insertion portion 42a and a protrusion 42b.
 光ファイバ挿入部42aは、送信側プラグ42のy軸方向の正方向側の部分を構成しており、x軸方向に延在する直方体状を成している。光ファイバ挿入部42aのx軸方向の負方向側の部分には、開口部A1が設けられている。開口部A1は、光ファイバ60を固定するための樹脂が注入される。 The optical fiber insertion portion 42a constitutes a portion on the positive direction side in the y-axis direction of the transmission-side plug 42, and has a rectangular parallelepiped shape extending in the x-axis direction. An opening A1 is provided in a portion on the negative direction side in the x-axis direction of the optical fiber insertion portion 42a. A resin for fixing the optical fiber 60 is injected into the opening A1.
 開口部A1は、光ファイバ挿入部42aの上面に位置する面S7及びx軸方向の負方向側の端面S8を切り抜くことにより形成されている。また、開口部A1のx軸方向の正方向側の内周面には、挿入された光ファイバ60の芯線を送信側プラグ42の先端まで導くための挿入口H7が設けられている。なお、挿入口H7は、光ファイバ60の本数に対応し、本実施形態においては2つである。 The opening A1 is formed by cutting out the surface S7 located on the upper surface of the optical fiber insertion portion 42a and the end surface S8 on the negative side in the x-axis direction. Further, an insertion port H7 for guiding the core wire of the inserted optical fiber 60 to the tip of the transmission side plug 42 is provided on the inner peripheral surface on the positive side in the x-axis direction of the opening A1. Note that the number of insertion openings H7 corresponds to the number of optical fibers 60, and is two in this embodiment.
 さらに、光ファイバ挿入部42aにおけるx軸方向の正方向側の部分には、整合剤を注入するための凹部D3が設けられている。また、凹部D3は、光ファイバ挿入部42aの上面から下面に向けて窪んでいる。 Furthermore, a concave portion D3 for injecting a matching agent is provided in a portion on the positive side in the x-axis direction of the optical fiber insertion portion 42a. Further, the recess D3 is recessed from the upper surface to the lower surface of the optical fiber insertion portion 42a.
 凹部D3のx軸方向の負方向側の内周面には、挿入口H7が設けられている。挿入口H7は、開口部A1のx軸方向の正方向側の内周面と繋がっている。従って、光ファイバ60の芯線は、挿入口H7を通って、開口部A1から凹部D3に到達する。凹部D3に到達した光ファイバ60の芯線の端面は、凹部D3のx軸方向の正方向側の内周面S9の直近に位置する。そして、透明樹脂から成る整合剤、例えばエポキシ系の樹脂を開口部A1及び凹部D3に注入することにより、光ファイバ60は、送信側プラグ42に固定される。 An insertion port H7 is provided on the inner peripheral surface of the concave portion D3 on the negative side in the x-axis direction. The insertion port H7 is connected to the inner peripheral surface of the opening A1 on the positive direction side in the x-axis direction. Therefore, the core wire of the optical fiber 60 reaches the recess D3 from the opening A1 through the insertion port H7. The end surface of the core wire of the optical fiber 60 that has reached the recess D3 is positioned in the immediate vicinity of the inner peripheral surface S9 on the positive side in the x-axis direction of the recess D3. The optical fiber 60 is fixed to the transmission-side plug 42 by injecting a matching agent made of a transparent resin, for example, an epoxy resin into the opening A1 and the recess D3.
 光ファイバ挿入部42aのx軸方向の正方向側の端面S10には、図11に示すように、凸レンズ44が設けられている。凸レンズ44は、x軸方向と直交する方向から平面視したとき、x軸方向の正方向側に突出する半円状を成している。これにより、発光素子100から出射され、かつ、全反射面R1により反射されたレーザービームB1は、凸レンズ44により集光又はコリメートされる。 As shown in FIG. 11, a convex lens 44 is provided on the end surface S10 on the positive side in the x-axis direction of the optical fiber insertion portion 42a. The convex lens 44 has a semicircular shape protruding in the positive direction side in the x-axis direction when seen in a plan view from a direction orthogonal to the x-axis direction. Accordingly, the laser beam B1 emitted from the light emitting element 100 and reflected by the total reflection surface R1 is condensed or collimated by the convex lens 44.
 また、凸レンズ44は、x軸方向から平面視したとき、光ファイバ60の光軸と重なっている。従って、凸レンズ44で集光又はコリメートされたレーザービームB1は、光ファイバ挿入部42aの樹脂を通過する。そして、レーザービームB1は、光ファイバ60の芯線のコアに伝送される。 Further, the convex lens 44 overlaps the optical axis of the optical fiber 60 when viewed in plan from the x-axis direction. Accordingly, the laser beam B1 collected or collimated by the convex lens 44 passes through the resin of the optical fiber insertion portion 42a. The laser beam B <b> 1 is transmitted to the core of the core of the optical fiber 60.
 光ファイバ挿入部42aの面S7には、図10に示すように、金属キャップ30の係合部32aと係合する突起N1が設けられている。突起N1は、x軸方向において開口部A1と凹部D3との間に設けられ、y軸方向に延在している。また、突起N1は、y軸方向から平面視したとき、z軸方向の正方向側に突出した三角形状を成している。 As shown in FIG. 10, a protrusion N1 that engages with the engaging portion 32a of the metal cap 30 is provided on the surface S7 of the optical fiber insertion portion 42a. The protrusion N1 is provided between the opening A1 and the recess D3 in the x-axis direction, and extends in the y-axis direction. Further, the protrusion N1 has a triangular shape protruding in the positive direction side in the z-axis direction when viewed in plan from the y-axis direction.
 光ファイバ挿入部42aの下面には、図10及び図11に示すように、凸部C7が設けられている。凸部C7は、位置決め部材220のプラグ載置部222の溝G1に対応している。凸部C7は、端面S8から端面S10に向かって、x軸に平行に設けられている。 As shown in FIGS. 10 and 11, a convex portion C7 is provided on the lower surface of the optical fiber insertion portion 42a. The convex portion C7 corresponds to the groove G1 of the plug placement portion 222 of the positioning member 220. The convex portion C7 is provided in parallel to the x-axis from the end surface S8 toward the end surface S10.
 突起部42bは、図10及び図11に示すように、光ファイバ挿入部42aのx軸方向の負方向側の端部近傍からy軸方向の負方向側に突出している。これにより、送信側プラグ42は、L字型を成している。なお、突起部42bは、送信側プラグ42の挿抜作業の際に、把持部として機能する。また、突起部42bの略中央には、z軸方向から平面視したとき、略矩形状の肉抜き穴が設けられている。 As shown in FIGS. 10 and 11, the protrusion 42b protrudes from the vicinity of the end of the optical fiber insertion portion 42a on the negative direction side in the x-axis direction to the negative direction side in the y-axis direction. Thereby, the transmission side plug 42 is L-shaped. The protruding portion 42b functions as a grip portion when the transmitting side plug 42 is inserted and removed. Further, a substantially rectangular hollow hole is provided at the approximate center of the protrusion 42b when viewed in plan from the z-axis direction.
 なお、送信側プラグ42とレセプタクル20との接続作業は、凸部C7を溝G1に沿わせて、x軸方向の正方向側に押し込むことにより行われる。このとき、突起部42bのx軸方向の正方向側の端面S11は、図5で示される位置決め部材220の突き当て部228の端面S3に突き当たる。なお、凸レンズ44は本体226の端面S2と接しておらず、約5μmの隙間が設けられている。これは、接することで凸レンズ44や本体226の端面S2に傷や汚れが発生して、透過率低下が生じることを防ぐためである。 Note that the connection work between the transmission side plug 42 and the receptacle 20 is performed by pushing the convex portion C7 along the groove G1 to the positive side in the x-axis direction. At this time, the end surface S11 on the positive side in the x-axis direction of the protrusion 42b abuts against the end surface S3 of the abutting portion 228 of the positioning member 220 shown in FIG. The convex lens 44 is not in contact with the end surface S2 of the main body 226, and a gap of about 5 μm is provided. This is to prevent the transmittance from decreasing due to scratches and dirt on the convex lens 44 and the end surface S2 of the main body 226 due to contact.
 また、送信側プラグ42とレセプタクル20とを接続する際、金属キャップ30の係合部32aが突起N1と係合するとともに、係合部32cが送信側プラグ42の面S7と端面S8とが成す角と係合することにより、送信側プラグ42がレセプタクル20に固定される。 Further, when the transmission side plug 42 and the receptacle 20 are connected, the engaging portion 32a of the metal cap 30 is engaged with the protrusion N1, and the engaging portion 32c is formed by the surface S7 and the end surface S8 of the transmission side plug 42. By engaging with the corner, the transmission side plug 42 is fixed to the receptacle 20.
 受信側プラグ46は、光ファイバ60を位置決め部材240に固定するために用いられる。また、受信側プラグ46は、図10に示すように、光ファイバ挿入部46a及び突起部46bを備える。 The receiving side plug 46 is used to fix the optical fiber 60 to the positioning member 240. Moreover, the receiving side plug 46 is provided with the optical fiber insertion part 46a and the projection part 46b, as shown in FIG.
 光ファイバ挿入部46aは、受信側プラグ46のy軸方向の負方向側の部分を構成しており、x軸方向に延在する直方体状を成している。光ファイバ挿入部46aのx軸方向の負方向側の部分には、開口部A2が設けられている。開口部A2は、光ファイバ60を固定するための樹脂が注入される。 The optical fiber insertion portion 46a constitutes a portion on the negative direction side in the y-axis direction of the reception side plug 46, and has a rectangular parallelepiped shape extending in the x-axis direction. An opening A2 is provided in a portion on the negative direction side in the x-axis direction of the optical fiber insertion portion 46a. A resin for fixing the optical fiber 60 is injected into the opening A2.
 開口部A2は、光ファイバ挿入部46aの上面に位置する面S12及びx軸方向の負方向側の端面S13を切り抜くことにより形成されている。また、開口部A2のx軸方向の正方向側の内周面には、挿入された光ファイバ60の芯線を受信側プラグ46の先端まで導くための挿入口H8が設けられている。なお、挿入口H8は、光ファイバ60の本数に対応し、本実施形態においては2つである。 The opening A2 is formed by cutting out the surface S12 located on the upper surface of the optical fiber insertion portion 46a and the end surface S13 on the negative side in the x-axis direction. An insertion port H8 for guiding the core wire of the inserted optical fiber 60 to the tip of the receiving side plug 46 is provided on the inner peripheral surface on the positive side in the x-axis direction of the opening A2. The number of insertion ports H8 corresponds to the number of optical fibers 60, and is two in this embodiment.
 さらに、光ファイバ挿入部46aにおけるx軸方向の正方向側の部分には、整合剤を注入するための凹部D4が設けられている。また、凹部D4は、光ファイバ挿入部46aの上面から下面に向けて窪んでいる。 Furthermore, a concave portion D4 for injecting a matching agent is provided in a portion on the positive side in the x-axis direction in the optical fiber insertion portion 46a. Further, the recess D4 is recessed from the upper surface to the lower surface of the optical fiber insertion portion 46a.
 凹部D4のx軸方向の負方向側の内周面には、挿入口H8が設けられている。挿入口H8は、開口部A2のx軸方向の正方向側の内周面と繋がっている。従って、光ファイバ60の芯線は、挿入口H8を通って、開口部A2から凹部D4に到達する。凹部D4に到達した光ファイバ60の芯線の端面は、凹部D4のx軸方向の正方向側の内周面S14の直近に位置する。そして、透明樹脂から成る整合剤、例えばエポキシ系の樹脂を開口部A2及び凹部D4に流し込むことにより、光ファイバ60は、受信側プラグ46に固定される。 An insertion port H8 is provided on the inner peripheral surface of the concave portion D4 on the negative side in the x-axis direction. The insertion port H8 is connected to the inner peripheral surface of the opening A2 on the positive direction side in the x-axis direction. Therefore, the core wire of the optical fiber 60 reaches the recess D4 from the opening A2 through the insertion port H8. The end surface of the core wire of the optical fiber 60 that has reached the recess D4 is positioned in the immediate vicinity of the inner peripheral surface S14 on the positive direction side in the x-axis direction of the recess D4. Then, the optical fiber 60 is fixed to the receiving side plug 46 by pouring a matching agent made of a transparent resin, for example, an epoxy resin into the opening A2 and the recess D4.
 光ファイバ挿入部46aのx軸方向の正方向側の端面S15には、図11に示すように、凸レンズ48が設けられている。凸レンズ48は、x軸と直交する方向から平面視したとき、x軸方向の正方向側に突出する半円状を成している。 A convex lens 48 is provided on the end surface S15 on the positive side in the x-axis direction of the optical fiber insertion portion 46a, as shown in FIG. The convex lens 48 has a semicircular shape protruding in the positive direction side in the x-axis direction when seen in a plan view from a direction orthogonal to the x-axis.
 また、凸レンズ48は、x軸方向から平面視したとき、光ファイバ60の光軸と重なっている。従って、光ファイバ60から出射されたレーザービームB2は、凸レンズ48により集光又はコリメートされ、全反射面R2に進行する。そして、レーザービームB2は、全反射面R2で反射されて、受光素子50に伝送される。 Further, the convex lens 48 overlaps the optical axis of the optical fiber 60 when viewed in plan from the x-axis direction. Accordingly, the laser beam B2 emitted from the optical fiber 60 is condensed or collimated by the convex lens 48 and proceeds to the total reflection surface R2. Then, the laser beam B <b> 2 is reflected by the total reflection surface R <b> 2 and transmitted to the light receiving element 50.
 光ファイバ挿入部46aの面S12には、図10に示すように、金属キャップ30の係合部32bと係合する突起N2が設けられている。突起N2は、x軸方向において開口部A2と凹部D4の間に設けられ、y軸方向に延在している。また、突起N2は、y軸方向から平面視したとき、z軸方向の正方向側に突出した三角形状を成している。 As shown in FIG. 10, a projection N2 that engages with the engaging portion 32b of the metal cap 30 is provided on the surface S12 of the optical fiber insertion portion 46a. The protrusion N2 is provided between the opening A2 and the recess D4 in the x-axis direction, and extends in the y-axis direction. Further, the protrusion N2 has a triangular shape protruding in the positive direction side in the z-axis direction when viewed in plan from the y-axis direction.
 光ファイバ挿入部46aの下面には、図10及び図11に示すように、凸部C8が設けられている。凸部C8は、位置決め部材240のプラグ載置部242の溝G2に対応している。凸部C8は、端面S13から端面S15に向かって、x軸に平行に設けられている。 As shown in FIGS. 10 and 11, a convex portion C8 is provided on the lower surface of the optical fiber insertion portion 46a. The convex portion C8 corresponds to the groove G2 of the plug placement portion 242 of the positioning member 240. The convex portion C8 is provided in parallel to the x-axis from the end surface S13 toward the end surface S15.
 突起部46bは、図10及び図11に示すように、光ファイバ挿入部46aのx軸方向の負方向側の端部からy軸方向の正方向側に突出している。これにより、受信側プラグ46は、L字型を成している。なお、突起部46bは、受信側プラグ46の挿抜作業の際に、把持部として機能する。また、突起部46bの略中央には、z軸方向から平面視したとき、略矩形状の肉抜き穴が設けられている。 As shown in FIGS. 10 and 11, the protrusion 46b protrudes from the end of the optical fiber insertion portion 46a on the negative direction side in the x-axis direction to the positive direction side in the y-axis direction. Thereby, the receiving side plug 46 is L-shaped. The protruding portion 46b functions as a grip portion when the receiving side plug 46 is inserted and removed. Further, a substantially rectangular hollow hole is provided in the approximate center of the protrusion 46b when viewed in plan from the z-axis direction.
 なお、受信側プラグ46とレセプタクル20との接続作業は、凸部C8を溝G2に沿わせて、x軸方向の正方向側に押し込むことにより行われる。このとき、突起部46bのx軸方向の正方向側の端面S16は、図5で示される位置決め部材240の突き当て部248の端面S6に突き当たる。なお、凸レンズ48は本体246の端面S5と接しておらず、約5μmの隙間が設けられている。これは、接することで凸レンズ48や本体246の端面S5に傷や汚れが発生して、透過率低下が生じることを防ぐためである。 Note that the connection work between the receiving side plug 46 and the receptacle 20 is performed by pushing the convex portion C8 along the groove G2 to the positive side in the x-axis direction. At this time, the end surface S16 on the positive side in the x-axis direction of the protruding portion 46b abuts against the end surface S6 of the abutting portion 248 of the positioning member 240 shown in FIG. The convex lens 48 is not in contact with the end surface S5 of the main body 246, and a gap of about 5 μm is provided. This is to prevent damage and dirt from occurring on the convex lens 48 and the end surface S5 of the main body 246 due to contact with each other, thereby reducing the transmittance.
 また、受信側プラグ46とレセプタクル20とを接続する際、金属キャップ30の係合部32bが突起N2と係合するとともに、係合部32dが受信側プラグ46の面S12と端面S13とが成す角と係合することにより、受信側プラグ46がレセプタクル20に固定される。 Further, when the receiving side plug 46 and the receptacle 20 are connected, the engaging portion 32b of the metal cap 30 is engaged with the protrusion N2, and the engaging portion 32d is formed by the surface S12 and the end surface S13 of the receiving side plug 46. The receiving side plug 46 is fixed to the receptacle 20 by engaging with the corner.
 以上のように構成された光伝送モジュール10では、図8に示すように、発光素子100からz軸方向の正方向側に出射されたレーザービームB1は、封止樹脂24及び位置決め部材220を通過する。さらに、レーザービームB1は、全反射面R1でx軸方向の負方向側に反射されて、プラグ40を通過し光ファイバ60のコアに伝送される。 In the optical transmission module 10 configured as described above, as shown in FIG. 8, the laser beam B 1 emitted from the light emitting element 100 to the positive side in the z-axis direction passes through the sealing resin 24 and the positioning member 220. To do. Further, the laser beam B1 is reflected by the total reflection surface R1 to the negative direction side in the x-axis direction, passes through the plug 40, and is transmitted to the core of the optical fiber 60.
 また、光伝送モジュール10において、光ファイバ60からx軸方向の正方向側に出射されたレーザービームB2は、位置決め部材240を通過する。さらに、レーザービームB2は、全反射面R2でz軸方向の負方向側に反射されて、封止樹脂24を通過し受光素子50に伝送される。 Further, in the optical transmission module 10, the laser beam B 2 emitted from the optical fiber 60 to the positive side in the x-axis direction passes through the positioning member 240. Further, the laser beam B <b> 2 is reflected by the total reflection surface R <b> 2 to the negative direction side in the z-axis direction, passes through the sealing resin 24, and is transmitted to the light receiving element 50.
(製造方法)
 以下に、光伝送モジュール10の製造方法を、レセプタクル20、プラグ40と光ファイバ60の接続方法及び光伝送モジュール10の組み立ての順で説明する。
(Production method)
Below, the manufacturing method of the optical transmission module 10 is demonstrated in order of the assembly of the receptacle 20, the plug 40, and the optical fiber 60, and the assembly of the optical transmission module 10. FIG.
(レセプタクルの製造方法 図12参照)
 レセプタクル20の製造方法について、図面を参照しながら説明する。
(Refer to Receptacle Manufacturing Method FIG. 12)
A method for manufacturing the receptacle 20 will be described with reference to the drawings.
 まず、実装基板22の集合体であるマザー基板122(本図面中には、図示しない)の上面にはんだを塗布する。より具体的には、メタルマスクを載せたマザー基板122上に、スキージを使用してクリームはんだを押し付ける。そして、メタルマスクをマザー基板122から取り除くことにより、はんだをマザー基板122に印刷する。 First, solder is applied to the upper surface of a mother substrate 122 (not shown in the drawing) that is an assembly of the mounting substrates 22. More specifically, cream solder is pressed onto the mother substrate 122 on which the metal mask is placed using a squeegee. Then, the solder is printed on the mother substrate 122 by removing the metal mask from the mother substrate 122.
 次に、コンデンサをマザー基板122のはんだ上に載置する。その後、マザー基板122に熱を加えて、コンデンサをはんだ付けする。 Next, the capacitor is placed on the solder of the mother board 122. Thereafter, heat is applied to the mother substrate 122 to solder the capacitor.
 コンデンサをはんだ付けした後、マザー基板122上の所定位置にAgペーストを塗布する。塗布されたAg上に駆動回路26、受光素子50及び発光素子100を載置して、ダイボンドを行う。さらに、Auワイヤーを用いて、駆動回路26と受光素子50とをワイヤーボンディングにより接続し、さらに、駆動回路26と発光素子100とをワイヤーボンディングにより接続する。さらに、駆動回路26とマザー基板122とをワイヤーボンディングにより接続する。 After soldering the capacitor, Ag paste is applied to a predetermined position on the mother board 122. The drive circuit 26, the light receiving element 50, and the light emitting element 100 are placed on the coated Ag, and die bonding is performed. Further, the drive circuit 26 and the light receiving element 50 are connected by wire bonding using an Au wire, and the drive circuit 26 and the light emitting element 100 are connected by wire bonding. Further, the drive circuit 26 and the mother substrate 122 are connected by wire bonding.
 その後、ダイサーを用いてマザー基板122をカットすることにより、複数の実装基板22を得る。 Thereafter, the mother substrate 122 is cut using a dicer to obtain a plurality of mounting substrates 22.
 次に、位置決め部材220を実装基板22上に載置する。より具体的には、位置決め部材220と実装基板22とが接触する部分にUV硬化型の接着剤を塗布する。接着剤を塗布した後、図12に示すように、発光素子100の発光部の中心T100の位置を位置認識用カメラV1で確認する。 Next, the positioning member 220 is placed on the mounting substrate 22. More specifically, a UV curable adhesive is applied to a portion where the positioning member 220 and the mounting substrate 22 are in contact with each other. After applying the adhesive, as shown in FIG. 12, the position of the center T100 of the light emitting part of the light emitting element 100 is confirmed by the position recognition camera V1.
 次に、位置決め部材220を実装基板22上に載置するための搭載機V2が位置決め部材220を吸着して取り上げる。そして、搭載機V2が位置決め部材220を吸着した状態で、位置認識用カメラV3で位置決め部材220の凸レンズ230のレンズ中心T230の位置を確認する。 Next, the mounting machine V2 for placing the positioning member 220 on the mounting substrate 22 picks up and picks up the positioning member 220. Then, with the mounting machine V2 adsorbing the positioning member 220, the position recognition camera V3 confirms the position of the lens center T230 of the convex lens 230 of the positioning member 220.
 位置認識用カメラV1で確認した発光素子100の発光部の中心T100の位置データ及び、位置認識用カメラV3で確認した位置決め部材220の凸レンズ230のレンズ中心T230の位置データから、発光素子100の発光部と凸レンズ230との相対的な位置を算出する。算出した結果に基づいて、搭載機V2の移動量を決定する。 The light emission of the light emitting element 100 from the position data of the center T100 of the light emitting part of the light emitting element 100 confirmed by the position recognition camera V1 and the position data of the lens center T230 of the convex lens 230 of the positioning member 220 confirmed by the position recognition camera V3. The relative position of the part and the convex lens 230 is calculated. Based on the calculated result, the movement amount of the onboard machine V2 is determined.
 次に、搭載機V2により、決定した移動量だけ、位置決め部材220を移動させる。これにより、凸レンズ230のレンズ中心T230と発光素子100の光軸とが一致する。 Next, the positioning member 220 is moved by the determined movement amount by the mounting machine V2. Thereby, the lens center T230 of the convex lens 230 and the optical axis of the light emitting element 100 coincide.
 位置決め部材220の載置作業と並行して、位置決め部材240を実装基板22上に載置する作業を行う。より具体的には、位置決め部材240と実装基板22とが接触する部分にUV硬化型の接着剤を塗布した後、図12に示すように、受光素子50の受光部の中心T50の位置を位置認識用カメラV4で確認する。 In parallel with the placement work of the positioning member 220, the work of placing the positioning member 240 on the mounting substrate 22 is performed. More specifically, after a UV curable adhesive is applied to the portion where the positioning member 240 and the mounting substrate 22 are in contact, the position of the center T50 of the light receiving portion of the light receiving element 50 is positioned as shown in FIG. Confirm with the recognition camera V4.
 次に、位置決め部材240を実装基板22上に載置するための搭載機V5が位置決め部材240を吸着して取り上げる。そして、搭載機V5が位置決め部材240を吸着した状態で、位置認識用カメラV6で位置決め部材240の凸レンズ250のレンズ中心T250の位置を確認する。 Next, the mounting machine V5 for placing the positioning member 240 on the mounting substrate 22 picks up and picks up the positioning member 240. Then, the position of the lens center T250 of the convex lens 250 of the positioning member 240 is confirmed by the position recognition camera V6 with the mounting machine V5 sucking the positioning member 240.
 位置認識用カメラV4で確認した受光素子50の受光部の中心T50の位置データ及び、位置認識用カメラV6で確認した位置決め部材240の凸レンズ250のレンズ中心T250の位置データから、受光素子50の受光部と凸レンズ250との相対的な位置を算出する。算出された結果に基づいて、搭載機V5の移動量を決定する。 The light receiving element 50 receives light from the position data of the center T50 of the light receiving portion of the light receiving element 50 confirmed by the position recognition camera V4 and the position data of the lens center T250 of the convex lens 250 of the positioning member 240 confirmed by the position recognition camera V6. The relative position of the part and the convex lens 250 is calculated. Based on the calculated result, the movement amount of the onboard machine V5 is determined.
 次に、搭載機V5により、決定した移動量だけ、位置決め部材240を移動させる。これにより、凸レンズ250のレンズ中心T250と受光素子50の光軸とが一致する。 Next, the positioning member 240 is moved by the determined movement amount by the mounting machine V5. Thereby, the lens center T250 of the convex lens 250 and the optical axis of the light receiving element 50 coincide.
 配置された位置決め部材220,240に対して、紫外線を照射する。なお、紫外線照射中、位置決め部材220,240は、搭載機V2,V5により、実装基板22に押しつけられた状態である。これにより、位置決め部材220,240と実装基板22との間にあるUV硬化型の接着剤が硬化する際に、位置決め部材220,240が、位置ズレを起こすことなく、実装基板22に固定される。 Irradiate ultraviolet rays to the positioning members 220 and 240 arranged. During ultraviolet irradiation, the positioning members 220 and 240 are pressed against the mounting board 22 by the mounting machines V2 and V5. Accordingly, when the UV curable adhesive between the positioning members 220 and 240 and the mounting substrate 22 is cured, the positioning members 220 and 240 are fixed to the mounting substrate 22 without causing positional displacement. .
 さらに、固定された位置決め部材220,240との隙間に、樹脂を埋め込む。 Furthermore, resin is embedded in the gap between the fixed positioning members 220 and 240.
 次に、位置決め部材200が載置された実装基板22に対して、金属キャップ30を取り付ける。より具体的には、実装基板22の上面であって、位置決め部材220の本体226における脚部232aと脚部232bとの間隔H1、位置決め部材220の本体226における脚部246aと脚部246bとの間隔H2、及び、金属キャップ30の凸部C2,C5が接触する部分にエポキシ系などの熱硬化性の接着剤を塗布する。また、実装基板22のグランド導体露出部E2,E3には、Agなどの導電性ペーストを塗布する。 Next, the metal cap 30 is attached to the mounting substrate 22 on which the positioning member 200 is placed. More specifically, on the upper surface of the mounting substrate 22, the distance H <b> 1 between the leg 232 a and the leg 232 b in the main body 226 of the positioning member 220, and the leg 246 a and the leg 246 b in the main body 226 of the positioning member 220. A thermosetting adhesive such as epoxy is applied to the space H2 and the portion where the convex portions C2 and C5 of the metal cap 30 are in contact. Further, a conductive paste such as Ag is applied to the ground conductor exposed portions E2 and E3 of the mounting substrate 22.
 接着剤及び導電性ペーストを塗布後、金属キャップ30の凸部C3を脚部226aと脚部226bとに挟まれた部分、すなわち間隔H1に嵌め合わせる。さらに、凸部C6を脚部246aと脚部246bとに挟まれた部分、すなわち間隔H2に嵌め合わせる。これにより、金属キャップ30の実装基板22に対する位置が決まる。また、金属キャップ30の位置決めと同時に、凸部C1~C6が実装基板22上の接着剤又は導電性ペーストと接触する。 After applying the adhesive and the conductive paste, the convex portion C3 of the metal cap 30 is fitted into the portion sandwiched between the leg portion 226a and the leg portion 226b, that is, the interval H1. Further, the convex portion C6 is fitted into a portion sandwiched between the leg portion 246a and the leg portion 246b, that is, the interval H2. Thereby, the position of the metal cap 30 with respect to the mounting substrate 22 is determined. Simultaneously with the positioning of the metal cap 30, the convex portions C1 to C6 come into contact with the adhesive or conductive paste on the mounting substrate 22.
 金属キャップ30を嵌め合わせた後、実装基板22に熱を加え、接着剤及び導電性ペーストを硬化させる。これにより、金属キャップ30を、実装基板22に固定する。なお、金属キャップ30を実装基板22に取り付けることにより、金属キャップ30の凸部C1,C4が、実装基板22のグランド導体露出部E2,E3と接触する。これにより、金属キャップ30は、実装基板22内のグランド導体に接続され、グランド電位に保たれる。以上のような工程によりレセプタクル20が完成する。 After fitting the metal cap 30, heat is applied to the mounting substrate 22 to cure the adhesive and the conductive paste. Thereby, the metal cap 30 is fixed to the mounting substrate 22. Note that, by attaching the metal cap 30 to the mounting substrate 22, the convex portions C <b> 1 and C <b> 4 of the metal cap 30 come into contact with the ground conductor exposed portions E <b> 2 and E <b> 3 of the mounting substrate 22. Thereby, the metal cap 30 is connected to the ground conductor in the mounting substrate 22 and is kept at the ground potential. The receptacle 20 is completed by the process as described above.
(プラグと光ファイバの接続方法)
 まず、プラグ40に挿入される光ファイバ60を、所定の長さに切断する。
(Connecting method of plug and optical fiber)
First, the optical fiber 60 inserted into the plug 40 is cut into a predetermined length.
 次に、光ファイバ60の先端付近の被覆を、光ファイバ用ストリッパーを用いて除去する。先端付近の被覆を除去した後、光ファイバ60の芯線の劈開面を出すためにクリーブを行う。 Next, the coating near the tip of the optical fiber 60 is removed using an optical fiber stripper. After removing the coating in the vicinity of the tip, cleaving is performed to bring out the cleavage plane of the core wire of the optical fiber 60.
 次に、光ファイバ60の芯線の先端がプラグ40の面S9,S14の直近にくるように、光ファイバ60を開口部A1,A2から押し込む。さらに、図10に示されるプラグ40の開口部A1,A2及び凹部D3,D4に、光ファイバ60を固定するためのエポキシ樹脂などの透明樹脂を注入する。そして、透明樹脂が硬化することにより、光ファイバ60がプラグ40に固定される。 Next, the optical fiber 60 is pushed through the openings A1 and A2 so that the end of the core wire of the optical fiber 60 comes close to the surfaces S9 and S14 of the plug 40. Further, a transparent resin such as an epoxy resin for fixing the optical fiber 60 is injected into the openings A1 and A2 and the recesses D3 and D4 of the plug 40 shown in FIG. Then, the optical fiber 60 is fixed to the plug 40 by curing the transparent resin.
(光伝送モジュールの組み立て方法)
 レセプタクル20にプラグ40を接続する。プラグ40の接続は、前述したように、位置決め部材220,240の溝G1,G2にプラグ40の凸部C7,C8を沿わせて、金属キャップ30とレセプタクル20との間に設けられた開口部A3から、x軸方向の正方向側に向かって押し込むことにより行われる。以上のような製造工程を経て光伝送モジュール10が完成する。
(Assembling method of optical transmission module)
The plug 40 is connected to the receptacle 20. As described above, the plug 40 is connected to the grooves G1 and G2 of the positioning members 220 and 240 along the protrusions C7 and C8 of the plug 40 and the opening provided between the metal cap 30 and the receptacle 20. This is performed by pushing from A3 toward the positive side in the x-axis direction. The optical transmission module 10 is completed through the manufacturing process as described above.
(効果)
 レセプタクル20及び光伝送モジュール10では、位置決め部材220が発光素子100に対して設けられ、位置決め部材240が、受光素子50に対して設けられている。従って、位置決め部材220は、発光素子100の搭載位置に合わせて配置することが可能であり、位置決め部材240は、受光素子50の搭載位置に合わせて配置することが可能である。つまり、位置決め部材220と位置決め部材240とは独立に配置可能であるから、複数の光素子に対して位置決め部材が一つである場合のように、特定の光素子と位置決め部材とを位置合わせすると、他の光素子と位置決め部材との位置関係にずれが生じるようなことがない。従って、レセプタクル20及び光伝送モジュール10では、複数の光素子に対して位置決め部材が一つである場合と比較して、各光素子の搭載時の位置ずれの影響を抑制することができる。
(effect)
In the receptacle 20 and the optical transmission module 10, the positioning member 220 is provided for the light emitting element 100, and the positioning member 240 is provided for the light receiving element 50. Therefore, the positioning member 220 can be arranged according to the mounting position of the light emitting element 100, and the positioning member 240 can be arranged according to the mounting position of the light receiving element 50. That is, since the positioning member 220 and the positioning member 240 can be arranged independently, when a specific optical element and the positioning member are aligned as in the case where there is one positioning member for a plurality of optical elements, The positional relationship between the other optical elements and the positioning member is not shifted. Therefore, in the receptacle 20 and the optical transmission module 10, it is possible to suppress the influence of the positional deviation when each optical element is mounted, as compared with the case where there is one positioning member for the plurality of optical elements.
 また、位置決め部材220に設けられた空間SP1と位置決め部材240に設けられた空間SP2とは対向しており、空間SP1と空間SP2とにおける対向する部分は、開口部である。これにより、空間SP1と空間SP2とは、互いの開口部で繋がっている。従って、位置決め部材220,240を実装基板22上に載置した際に、位置決め部材220と位置決め部材240とに跨って設けられている部品、本実施例においては駆動回路26と位置決め部材220,240とが接触することがない。つまり、レセプタクル20及び光伝送モジュール10では、複数の位置決め部材に跨って設けられている部品を搭載することができる。 Further, the space SP1 provided in the positioning member 220 and the space SP2 provided in the positioning member 240 are opposed to each other, and the facing portion in the space SP1 and the space SP2 is an opening. Thereby, space SP1 and space SP2 are connected by the mutual opening part. Therefore, when the positioning members 220 and 240 are placed on the mounting substrate 22, components provided across the positioning member 220 and the positioning member 240, in this embodiment, the drive circuit 26 and the positioning members 220 and 240 are provided. There is no contact. That is, in the receptacle 20 and the optical transmission module 10, it is possible to mount components provided across a plurality of positioning members.
 さらに、位置決め部材220と位置決め部材240との隙間であって、空間SP1の開口部及び空間SP2の開口部の周囲には、該隙間を埋めるために樹脂が挟み込まれている。これにより、レセプタクル20及び光伝送モジュール10では、発光素子100及び受光素子50へのダストの付着を防ぐと共に、発光素子100及び受光素子50をダストの付着から守るいわゆる封止樹脂が不要となる。 Furthermore, resin is sandwiched between the positioning member 220 and the positioning member 240 around the opening of the space SP1 and the opening of the space SP2 in order to fill the gap. Thus, the receptacle 20 and the optical transmission module 10 do not require so-called sealing resin that prevents dust from adhering to the light emitting element 100 and the light receiving element 50 and protects the light emitting element 100 and the light receiving element 50 from dust adhesion.
(第1変形例、図13,図14参照)
 図13に示すように、第1変形例であるレセプタクル20Aとレセプタクル20との相違点は、金属キャップ30の形状である。他の構成は前記実施例と同様である。従って、本変形例において金属キャップ30以外の説明は前記実施例での説明のとおりである。
(Refer to the first modification, FIGS. 13 and 14)
As shown in FIG. 13, the difference between the receptacle 20 </ b> A and the receptacle 20, which is the first modification, is the shape of the metal cap 30. Other configurations are the same as those in the above embodiment. Therefore, in the present modification, the description other than the metal cap 30 is as described in the above embodiment.
 第1変形例であるレセプタクル20Aの金属キャップ30Aでは、天板部32の下面におけるy軸方向の略中央に、x軸方向に延在する金属板部38が設けられている。金属板部38は、y軸方向から見ると略矩形状を成している。また、金属板部38は、レセプタクル20Aに搭載されると、図14に示すように、位置決め部材220と位置決め部材240との隙間に収まる。つまり、金属板部38は、天板部32の下面から位置決め部材220と位置決め部材240との隙間に向かって延びている。 In the metal cap 30A of the receptacle 20A that is the first modification, a metal plate portion 38 extending in the x-axis direction is provided at the approximate center in the y-axis direction on the lower surface of the top plate portion 32. The metal plate portion 38 has a substantially rectangular shape when viewed from the y-axis direction. Further, when the metal plate portion 38 is mounted on the receptacle 20 </ b> A, the metal plate portion 38 fits in the gap between the positioning member 220 and the positioning member 240 as shown in FIG. 14. That is, the metal plate portion 38 extends from the lower surface of the top plate portion 32 toward the gap between the positioning member 220 and the positioning member 240.
 さらに、金属板部38におけるy軸方向の両面には、高粘度の樹脂が設けられている。そして、金属板部38がレセプタクル20Aに搭載されると、前記高粘度の樹脂が、金属板部38と共に、位置決め部材220と位置決め部材240との隙間に収まる。 Furthermore, high-viscosity resin is provided on both surfaces of the metal plate portion 38 in the y-axis direction. When the metal plate portion 38 is mounted on the receptacle 20 </ b> A, the high-viscosity resin together with the metal plate portion 38 fits in the gap between the positioning member 220 and the positioning member 240.
 上記のように構成されたレセプタクル20Aでは、金属板部38がレセプタクル20Aに搭載されると、前記高粘度の樹脂が、金属板部38と共に、位置決め部材220と位置決め部材240との隙間に収まる。これにより、空間SP1と空間SP2とが封止され、外気による発光素子100及び受光素子50へのダストの付着を防ぐ。さらに、位置決め部材220と位置決め部材240との隙間に収まった金属板部38によって、位置決め部材220と位置決め部材240とを実装基板22上に搭載した際の剛性が向上する。なお、レセプタクル20Aの外観斜視図については、図2を援用する。ただし、図2の金属キャップ30は、レセプタクル20Aにおいては、図13に示される金属キャップ30Aである。 In the receptacle 20A configured as described above, when the metal plate portion 38 is mounted on the receptacle 20A, the high-viscosity resin together with the metal plate portion 38 fits in the gap between the positioning member 220 and the positioning member 240. Thereby, space SP1 and space SP2 are sealed, and adhesion of the dust to the light emitting element 100 and the light receiving element 50 by external air is prevented. Furthermore, the rigidity when the positioning member 220 and the positioning member 240 are mounted on the mounting board 22 is improved by the metal plate portion 38 that is accommodated in the gap between the positioning member 220 and the positioning member 240. In addition, FIG. 2 is used for the external perspective view of the receptacle 20A. However, the metal cap 30 in FIG. 2 is the metal cap 30A shown in FIG. 13 in the receptacle 20A.
(第2変形例、図15~図22参照)
 第2変形例であるレセプタクル20Bとレセプタクル20との相違点は、位置決め部材200の内部に金属材料が埋め込まれている点である。具体的には、図15に示すように、リン青銅、鉄、銅及び真鍮等からなる板金300に対して、図16に示すように、位置決め部材200の外形形状となるように曲げ加工を施す。さらに、位置決め部材200を成形する際に、板金300を成形型に載置し、樹脂を流し込むことによって、図17~図22に示すような、板金300が内部に埋め込まれた位置決め部材200が完成する。なお、板金300は光ファイバ60と発光素子100とを結ぶ光路及び光ファイバ60と受光素子50とを結ぶ光路には重ならないように配置される。他の構成は前記実施例と同様である。従って、本変形例において位置決め部材200以外の説明は前記実施例での説明のとおりである。
(Second modification, see FIGS. 15 to 22)
The difference between the receptacle 20B and the receptacle 20 as the second modification is that a metal material is embedded in the positioning member 200. Specifically, as shown in FIG. 15, a sheet metal 300 made of phosphor bronze, iron, copper, brass, or the like is bent so as to have the outer shape of the positioning member 200 as shown in FIG. . Further, when the positioning member 200 is molded, the sheet metal 300 is placed on a molding die, and a resin is poured therein, whereby the positioning member 200 with the sheet metal 300 embedded therein as shown in FIGS. 17 to 22 is completed. To do. The sheet metal 300 is disposed so as not to overlap the optical path connecting the optical fiber 60 and the light emitting element 100 and the optical path connecting the optical fiber 60 and the light receiving element 50. Other configurations are the same as those in the above embodiment. Accordingly, in the present modification, the description other than the positioning member 200 is as described in the above embodiment.
 上記のように構成されたレセプタクル20Bでは、位置決め部材200の内部に金属材料が埋め込まれていることによって、位置決め部材200の剛性が向上する。これにより、位置決め部材200の変形を抑えることができるため、光ファイバ60と発光素子100との光学的結合、又は光ファイバ60と受光素子50との光学的結合を良好に保つことができる。 In the receptacle 20B configured as described above, the positioning member 200 has improved rigidity due to the metal material embedded in the positioning member 200. Thereby, since the deformation of the positioning member 200 can be suppressed, the optical coupling between the optical fiber 60 and the light emitting element 100 or the optical coupling between the optical fiber 60 and the light receiving element 50 can be maintained well.
(その他の実施形態)
 本発明に係るレセプタクル及び光伝送モジュールは、前記実施形態に係るレセプタクル20,20A,20B及び光伝送モジュール10に限らずその要旨の範囲内において変更可能である。例えば、発光素子100をこれらの集合体である光素子アレイに代え、受光素子50をこれらの集合体である受光素子アレイとしてもよい。
(Other embodiments)
The receptacle and the optical transmission module according to the present invention are not limited to the receptacles 20, 20 </ b> A, 20 </ b> B and the optical transmission module 10 according to the embodiment, and can be changed within the scope of the gist thereof. For example, the light emitting element 100 may be replaced with an optical element array that is an aggregate of these, and the light receiving element 50 may be a light receiving element array that is an aggregate of these.
 以上のように、本発明は、光ファイバと光素子とを光学的に結合させるための位置決め部材を含むレセプタクル及び光伝送モジュールに対して有用であり、特に光ファイバの一端に設けられたプラグの強度を確保しつつ、該プラグが接続されるレセプタクルの低背化を図ることができる点において優れている。 As described above, the present invention is useful for the receptacle and the optical transmission module including the positioning member for optically coupling the optical fiber and the optical element, and in particular, the plug provided at one end of the optical fiber. This is excellent in that the receptacle to which the plug is connected can be reduced in height while ensuring strength.
A1~A5 開口部
SP1,SP2 空間
10 光伝送モジュール
20,20A,20B レセプタクル
22 実装基板
30 金属キャップ
38 金属板部
50 受光素子(光素子)
60 光ファイバ
100 発光素子(光素子)
200,200A,200B 位置決め部材
222,242 プラグ載置部
224,244 光結合部
260 樹脂
A1 to A5 Openings SP1, SP2 Space 10 Optical transmission module 20, 20A, 20B Receptacle 22 Mounting substrate 30 Metal cap 38 Metal plate 50 Light receiving element (optical element)
60 Optical fiber 100 Light emitting element (optical element)
200, 200A, 200B Positioning member 222, 242 Plug mounting portion 224, 244 Optical coupling portion 260 Resin

Claims (6)

  1.  複数の光素子と、
     光ファイバと前記複数の光素子とを光学的に結合させるための複数の位置決め部材と、
     を備え、
     前記位置決め部材それぞれは、各光素子に対して設けられていること、
     を特徴とするレセプタクル。
    A plurality of optical elements;
    A plurality of positioning members for optically coupling an optical fiber and the plurality of optical elements;
    With
    Each of the positioning members is provided for each optical element;
    A receptacle characterized by.
  2.  実装基板を更に備え、
     前記複数の光素子は、前記実装基板の上面に設けられ、
     前記複数の位置決め部材の下面側には、前記複数の光素子が収まる空間が設けられ、
     前記空間は、隣り合う位置決め部材において対向し、
     前記空間の対向する部分には、開口部が設けられていること、
     を特徴とする請求項1に記載のレセプタクル。
    A mounting board,
    The plurality of optical elements are provided on an upper surface of the mounting substrate,
    On the lower surface side of the plurality of positioning members, a space for accommodating the plurality of optical elements is provided,
    The space is opposed to the adjacent positioning member,
    An opening is provided in the opposite part of the space,
    The receptacle according to claim 1.
  3.  前記複数の位置決め部材間における隙間であって前記開口部の周囲には、樹脂が挟み込まれていること、
     を特徴とする請求項2に記載のレセプタクル。
    Resin is sandwiched between the plurality of positioning members and around the opening,
    The receptacle according to claim 2.
  4.  前記位置決め部材の一部は、金属により構成され、かつ、前記光ファイバと前記光素子とを結ぶ光路に重ならないこと、
     を特徴とする請求項2又は請求項3に記載のレセプタクル。
    A part of the positioning member is made of metal and does not overlap an optical path connecting the optical fiber and the optical element;
    The receptacle according to claim 2 or 3, characterized by the above.
  5.  前記複数の位置決め部材を覆う金属キャップを更に備え、
     前記金属キャップには、前記隙間に向かって延びる金属板部が設けられていること、
     を特徴とする請求項2乃至請求項4のいずれかに記載のレセプタクル。
    A metal cap that covers the plurality of positioning members;
    The metal cap is provided with a metal plate portion extending toward the gap,
    The receptacle according to any one of claims 2 to 4, wherein:
  6.  請求項1乃至請求項5のいずれかに記載のレセプタクルと、
     光ファイバと、
     前記光ファイバの端部に設けられ、前記位置決め部材に載置されるプラグと、
     を備えること、
     を特徴とする光伝送モジュール。
    A receptacle according to any one of claims 1 to 5;
    Optical fiber,
    A plug provided at an end of the optical fiber and placed on the positioning member;
    Providing
    An optical transmission module characterized by the above.
PCT/JP2013/071777 2012-08-23 2013-08-12 Receptacle and optical transmission module WO2014030566A1 (en)

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2012-184391 2012-08-23
JP2012184391 2012-08-23
JP2012-200652 2012-09-12
JP2012200652 2012-09-12
JP2012221552 2012-10-03
JP2012-221552 2012-10-03
JP2013153715 2013-07-24
JP2013-153715 2013-07-24

Publications (1)

Publication Number Publication Date
WO2014030566A1 true WO2014030566A1 (en) 2014-02-27

Family

ID=50149875

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/071777 WO2014030566A1 (en) 2012-08-23 2013-08-12 Receptacle and optical transmission module

Country Status (2)

Country Link
TW (1) TW201416747A (en)
WO (1) WO2014030566A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110770555A (en) * 2017-04-20 2020-02-07 特里纳米克斯股份有限公司 Optical detector

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6240639A (en) * 1985-08-15 1987-02-21 Olympus Optical Co Ltd Optical pickup
JPH118413A (en) * 1997-06-18 1999-01-12 Sumitomo Electric Ind Ltd Optical link
JP2007199461A (en) * 2006-01-27 2007-08-09 Seiko Epson Corp Optical module
JP2007264411A (en) * 2006-03-29 2007-10-11 Suzuka Fuji Xerox Co Ltd Optical module
JP2009164308A (en) * 2007-12-28 2009-07-23 Opnext Japan Inc Optical transmission/reception module
JP2011248243A (en) * 2010-05-28 2011-12-08 Fujitsu Component Ltd Photoelectric conversion module and photoelectric conversion device
US20120189306A1 (en) * 2011-01-21 2012-07-26 Finisar Corporation Multi-laser transmitter optical subassemblies for optoelectronic modules

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6240639A (en) * 1985-08-15 1987-02-21 Olympus Optical Co Ltd Optical pickup
JPH118413A (en) * 1997-06-18 1999-01-12 Sumitomo Electric Ind Ltd Optical link
JP2007199461A (en) * 2006-01-27 2007-08-09 Seiko Epson Corp Optical module
JP2007264411A (en) * 2006-03-29 2007-10-11 Suzuka Fuji Xerox Co Ltd Optical module
JP2009164308A (en) * 2007-12-28 2009-07-23 Opnext Japan Inc Optical transmission/reception module
JP2011248243A (en) * 2010-05-28 2011-12-08 Fujitsu Component Ltd Photoelectric conversion module and photoelectric conversion device
US20120189306A1 (en) * 2011-01-21 2012-07-26 Finisar Corporation Multi-laser transmitter optical subassemblies for optoelectronic modules

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110770555A (en) * 2017-04-20 2020-02-07 特里纳米克斯股份有限公司 Optical detector

Also Published As

Publication number Publication date
TW201416747A (en) 2014-05-01

Similar Documents

Publication Publication Date Title
US7543993B2 (en) Fiber-coupled optical device mounted on a circuit board
JP6083401B2 (en) Manufacturing method of optical transmission module
TWI521250B (en) Electrical-to-optical and optical-to-electrical converter plug
KR20140146647A (en) Hermetic optical fiber alignment assembly having integrated optical element
JP6070709B2 (en) Optical transmission module
US7329052B2 (en) Method of assembling optoelectronic devices and an optoelectronic device assembled according to this method
US8337098B2 (en) Optical connector
JP2007294523A (en) Surface packaging type optical coupler, packaging method therefor and manufacturing method therefor
US20140105549A1 (en) Plug
WO2014030566A1 (en) Receptacle and optical transmission module
WO2007091733A2 (en) Photoelectric converting device, manufacturing method of the same, and external waveguide
WO2014030567A1 (en) Optical fiber plug and optical fiber connection device
KR101256814B1 (en) All passive aligned optical module and manufacturing method thereof
JP6083437B2 (en) Positioning member, receptacle, and optical transmission module
WO2014030562A1 (en) Receptacle and optical transmission module
JP2015169772A (en) Optical module and cable with optical module
JP6295709B2 (en) Receptacle and optical transmission module manufacturing method
US20140023323A1 (en) Optical connector and fitted unit
KR101491598B1 (en) Optical transmission module
JP5892292B2 (en) Optical plug and optical connector
JP2014178598A (en) Optical element module
EP3872546B1 (en) Optical connector and optical connector device
WO2018105370A1 (en) Connector
JP2012203115A (en) Optical coupling element and manufacturing method thereof
JP2013061478A (en) Optical module and manufacturing method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13831389

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13831389

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP