WO2014030567A1 - Optical fiber plug and optical fiber connection device - Google Patents

Optical fiber plug and optical fiber connection device Download PDF

Info

Publication number
WO2014030567A1
WO2014030567A1 PCT/JP2013/071778 JP2013071778W WO2014030567A1 WO 2014030567 A1 WO2014030567 A1 WO 2014030567A1 JP 2013071778 W JP2013071778 W JP 2013071778W WO 2014030567 A1 WO2014030567 A1 WO 2014030567A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical fiber
plug
axis direction
recess
optical
Prior art date
Application number
PCT/JP2013/071778
Other languages
French (fr)
Japanese (ja)
Inventor
克己 幸西
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to TW102130400A priority Critical patent/TWI483020B/en
Publication of WO2014030567A1 publication Critical patent/WO2014030567A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/32Optical coupling means having lens focusing means positioned between opposed fibre ends
    • G02B6/325Optical coupling means having lens focusing means positioned between opposed fibre ends comprising a transparent member, e.g. window, protective plate
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4292Coupling light guides with opto-electronic elements the light guide being disconnectable from the opto-electronic element, e.g. mutually self aligning arrangements

Definitions

  • the present invention relates to a plug attached to an end of an optical fiber and an optical fiber connection device including the plug, and more particularly to a plug used for mounting an optical fiber on a receptacle and an optical fiber connection device including the plug.
  • a plug described in Patent Document 1 is known as a plug attached to an end of a conventional optical fiber.
  • the optical fiber 501 is fixed to the plug 500 by inserting the optical fiber 501 from the recess D500 provided on the side surface of the plug 500 and pouring resin into the recess D500. .
  • the plug 500 when resin is poured into the concave portion D500, air is entrained, and air bubbles may remain in the vicinity of the end of the optical fiber 501, that is, between the end face of the optical fiber 501 and the plug 500. . Thereby, in the optical transmission module using the plug 500, there is a possibility that an optical loss occurs near the interface between the optical fiber 501 and the plug 500.
  • an object of the present invention is to provide an optical fiber plug and an optical fiber connection device including the plug, which suppresses bubbles remaining between the end face of the optical fiber and the plug.
  • An optical fiber plug is A plug into which an end of an optical fiber composed of a core wire and a covering material covering the core wire is inserted, Having a first surface and a second surface; An insertion port into which the optical fiber is inserted is provided in the first surface, A first recess into which the transparent resin is injected is provided on the second surface; Furthermore, the first concave portion is provided in a portion where the end portion of the optical fiber where the covering material is peeled off and the core wire is exposed, should be positioned, It is characterized by.
  • An optical fiber connecting device is The optical fiber plug; Optical fiber, Transparent resin, With The transparent resin is a matching agent that is injected into the first recess and reduces the refractive action of light near the interface of the optical fiber; It is characterized by.
  • an insertion port into which the optical fiber is inserted is provided on the first surface of the plug, and the second of the plug
  • a first recess is provided on the surface. That is, the first recess is provided on a surface different from the surface provided with the optical fiber insertion port. Further, the first recess is provided in the vicinity of the end face of the optical fiber.
  • the first concave portion provided separately from the insertion port into which the optical fiber is inserted allows bubbles sandwiched between the end face of the optical fiber and the plug to be blocked by the optical fiber. You can easily get out.
  • the optical fiber plug and the optical fiber connection device including the plug according to one embodiment of the present invention it is possible to suppress the bubbles from remaining between the end face of the optical fiber and the plug.
  • optical fiber plug and the optical fiber connection device including the plug according to one embodiment of the present invention, it is possible to suppress the remaining of bubbles between the end face of the optical fiber and the plug.
  • FIG. 6 is a diagram in which a mounting board and a plug are added to the cross section taken along the line CC or DD of the positioning member illustrated in FIG. 5. It is an external appearance perspective view of a metal cap.
  • FIG. 1 is an external perspective view of an optical fiber connection device according to an embodiment. It is the figure which planarly viewed the plug concerning one embodiment from the negative direction side of the z-axis direction. It is a figure of the manufacturing process of a receptacle. It is an external appearance perspective view of the optical fiber connection device containing the plug provided with the protection part. It is the figure which planarly viewed the optical fiber connection device containing the plug provided with the protection part from the positive direction side of the z-axis direction. It is an external appearance perspective view of the optical fiber connection device containing the plug provided with the alignment member and the protection part. It is the figure which planarly viewed the optical fiber connection device containing the plug provided with the alignment member and the protection part from the positive direction side of the z-axis direction. It is sectional drawing of the same kind of plug as the plug of patent document 1. FIG.
  • optical transmission module including an optical fiber connection device according to an embodiment and a manufacturing method thereof will be described.
  • the vertical direction of the light transmission module 10 is defined as the z-axis direction
  • the direction along the long side of the light transmission module 10 when viewed in plan from the z-axis direction is defined as the x-axis direction
  • the direction along the short side of the optical transmission module 10 is defined as the y-axis direction.
  • the x axis, the y axis, and the z axis are orthogonal to each other.
  • the optical transmission module 10 includes a receptacle 20 and an optical fiber connection device 70 as shown in FIG.
  • the receptacle 20 includes a metal cap 30, a light receiving element array 50, a light emitting element array 100, a positioning member 200, a mounting substrate 22, a sealing resin 24, and a drive circuit 26.
  • the mounting substrate 22 has a rectangular shape when seen in a plan view from the z-axis direction, as shown in FIG.
  • the surface mounting electrode E1 that contacts the land of the circuit board when the optical transmission module 10 is mounted on the circuit board is mounted on the surface on the negative side in the z-axis direction of the mounting board 22 (hereinafter referred to as the lower surface). (Not shown in FIG. 3) is provided.
  • a side L1 located on the negative direction side in the x-axis direction and a side L2 located on the negative direction side in the y-axis direction are formed on the surface on the positive direction side in the z-axis direction (hereinafter referred to as the upper surface) of the mounting substrate 22, a side L1 located on the negative direction side in the x-axis direction and a side L2 located on the negative direction side in the y-axis direction are formed.
  • a ground conductor exposed portion E2 is provided in which a part of the ground conductor provided in the mounting substrate 22 is exposed.
  • the ground conductor exposed portion E2 has a rectangular shape having a long side in the x-axis direction when viewed from the positive side in the z-axis direction.
  • the mounting substrate 22 is provided in the vicinity of an angle formed by the side L1 positioned on the negative side in the x-axis direction and the side L3 positioned on the positive direction side in the y-axis direction.
  • a ground conductor exposed portion E3 in which a part of the ground conductor is exposed is provided.
  • the ground conductor exposed portion E3 has a rectangular shape having a long side in the x-axis direction when viewed from the positive side in the z-axis direction.
  • the light receiving element array 50 and the light emitting element array 100 are provided on the upper side of the mounting substrate 22 on the positive direction side in the x-axis direction.
  • the light receiving element array 50 is an element including a plurality of photodiodes that convert an optical signal into an electric signal.
  • the light emitting element array 100 is an element including a plurality of diodes that convert an electrical signal into an optical signal.
  • the drive circuit 26 is provided further on the positive side in the x-axis direction than the light receiving element array 50 and the light emitting element array 100 in the portion on the positive side in the x-axis direction on the surface of the mounting substrate 22.
  • the drive circuit 26 is a semiconductor circuit element for driving the light receiving element array 50 and the light emitting element array 100.
  • the drive circuit 26 has a rectangular shape having a long side parallel to the y-axis direction when viewed in plan from the z-axis direction.
  • the drive circuit 26 and the light receiving element array 50 are connected through wire U by wire bonding. Further, the drive circuit 26 and the light emitting element array 100 are connected to each other by wire bonding via the wire U.
  • the electrical signal from the drive circuit 26 is transmitted to the light emitting element array 100 via the wire U, and the electrical signal from the light receiving element array 50 is transmitted to the drive circuit 26 via the wire U.
  • the drive circuit 26 and the mounting substrate 22 are connected by wire bonding via the wire U.
  • the sealing resin 24 includes a sealing portion 24a and leg portions 24b to 24e, and is made of a transparent resin such as an epoxy resin.
  • the sealing portion 24 a has a substantially rectangular parallelepiped shape, and is provided on a portion of the upper surface of the mounting substrate 22 on the positive direction side in the x-axis direction.
  • the sealing portion 24 a covers the light receiving element array 50, the light emitting element array 100, and the drive circuit 26.
  • the leg portions 24b and 24c are provided at intervals so as to be arranged in this order from the negative direction side in the x-axis direction to the positive direction side.
  • the leg portions 24b and 24c are rectangular parallelepiped members that protrude toward the side L2 of the mounting substrate 22 from the negative side surface in the y-axis direction of the sealing portion 24a. Further, a space H1 into which a convex portion C3 of a metal cap 30 described later is fitted is provided between the leg portion 24b and the leg portion 24c.
  • the leg portions 24d and 24e are provided at intervals so as to be arranged in this order from the negative direction side to the positive direction side in the x-axis direction.
  • the leg portions 24d and 24e are rectangular parallelepiped members that protrude toward the side L3 of the mounting substrate 22 from the surface on the positive side in the y-axis direction of the sealing portion 24a. Further, a space H2 is provided between the leg portion 24d and the leg portion 24e in which a convex portion C6 of the metal cap 30 described later is fitted.
  • the positioning member 200 is provided across the mounting substrate 22 and the sealing resin 24 so as to cover the upper surface of the mounting substrate 22 and substantially the entire sealing resin 24.
  • the positioning member 200 includes a positioning member 220 for a light emitting element and a positioning member 240 for a light receiving element.
  • the positioning members 220 and 240 are provided so as to be arranged in this order from the negative direction side in the y-axis direction toward the positive direction side.
  • the positioning member 200 is made of, for example, an epoxy or nylon resin.
  • the positioning member 220 for the light emitting element has a rectangular shape when viewed in plan from the z-axis direction. Furthermore, the positioning member 220 includes a plug guide portion 222 and an optical coupling portion 224 as shown in FIG.
  • the plug guide portion 222 constitutes a portion of the positioning member 220 on the negative direction side of the x axis. Further, as shown in FIG. 6, the plug guide portion 222 is a plate-like member having a rectangular shape when viewed in plan from the z-axis direction. Furthermore, the end surface S1 on the positive side in the x-axis direction of the plug guide part 222 faces the surface on the negative direction side in the x-axis direction of the sealing resin 24 as shown in FIG. That is, the plug guide portion 222 is positioned on the negative side in the x-axis direction with respect to the sealing resin 24 on the mounting substrate 22.
  • a groove G1 for guiding a plug 40 to be described later is provided substantially parallel to the x-axis at the approximate center in the y-axis direction on the upper surface of the plug guide portion 222.
  • a portion on the negative direction side in the y-axis direction from the groove G1 is referred to as a flat portion F1
  • a portion on the positive direction side in the y-axis direction from the groove G1 is referred to as a flat portion F2.
  • the height h1 of the groove G1 from the mounting substrate 22 in the z-axis direction is lower than the height h2 of the sealing resin 24 in the z-axis direction.
  • the optical coupling portion 224 constitutes a portion on the positive direction side in the x-axis direction of the positioning member 220 and is placed on the sealing resin 24.
  • the optical coupling part 224 has a main body 226 and an abutting part 228.
  • the main body 226 has a rectangular parallelepiped shape.
  • the abutting portion 228 protrudes from the end surface S2 on the negative side in the x-axis direction of the main body 226 along the flat portion F1 of the plug guide portion 222 to the approximate center of the flat portion F1 in the x-axis direction.
  • the optical coupling part 224 is L-shaped when viewed in plan from the z-axis direction.
  • the end surface of the abutting portion 228 on the negative side in the x-axis direction is referred to as an end surface S3.
  • the optical coupling portion 224 is provided with a concave portion D1 and a convex lens 230.
  • the concave portion D1 is provided in the vicinity of the side L4 on the positive side of the optical coupling portion 224 in the y-axis direction.
  • the recess D1 overlaps the light emitting element array 100 when viewed in plan from the z-axis direction.
  • the recess D1 overlaps with the optical axis of the optical fiber 60 connected to the plug 40 described later when viewed in plan from the x-axis direction.
  • the optical axis of the optical fiber 60 is parallel to the x axis.
  • the concave portion D1 has a rectangular shape when viewed in plan from the z-axis direction.
  • the recess D ⁇ b> 1 has a V shape when viewed in plan from the y-axis direction.
  • the inner peripheral surface on the negative side in the x-axis direction of the recess D1 is a total reflection surface R1.
  • the total reflection surface R1 is parallel to the y-axis and tilted 45 ° counterclockwise with respect to the z-axis when viewed from the negative side in the y-axis direction. Further, the refractive index of the positioning member 200 is sufficiently larger than that of air.
  • the laser beam B1 emitted from the light emitting element array 100 to the positive z-axis direction is incident on the optical coupling unit 224, and is totally reflected by the total reflection surface R1 to the negative x-axis side, thereby causing the plug 40 To the optical fiber 60 via
  • the angle formed by the optical axis of the laser beam B1 emitted from the light emitting element array 100 and the total reflection surface R1 is 45 °
  • the optical fiber 60 The angle formed by the optical axis of the laser beam B1 toward the total reflection surface R1 is 45 °. That is, the angle formed by the total reflection surface R1 and the optical axis of the optical fiber 60 is equal to the angle formed by the total reflection surface R1 and the light emitting element array 100.
  • the convex lens 230 is provided on the lower surface of the optical coupling part 224 as shown in FIGS. Further, the convex lens 230 overlaps the light emitting element array 100 when viewed in plan from the z-axis direction. Thereby, the convex lens 230 faces the light emitting element array 100 and is positioned on the optical path of the laser beam B1. In addition, the convex lens 230 has a semicircular shape that protrudes toward the negative direction side of the z-axis when viewed from a direction orthogonal to the z-axis. Accordingly, the laser beam B1 emitted from the light emitting element array 100 is condensed or collimated by the convex lens 230 and travels toward the total reflection surface R1.
  • the positioning member 240 for the light receiving element has a rectangular shape when viewed in plan from the z-axis direction. Further, as shown in FIG. 5, the positioning member 240 includes a plug guide portion 242 and an optical coupling portion 244.
  • the plug guide portion 242 constitutes a portion of the positioning member 240 on the negative direction side of the x axis. Further, as shown in FIG. 6, the plug guide portion 242 is a plate-like member having a rectangular shape when viewed in plan from the z-axis direction. Furthermore, the end surface S4 on the positive direction side in the x-axis direction of the plug guide portion 242 faces the surface on the negative direction side in the x-axis direction of the sealing resin 24 as shown in FIG. That is, the plug guide part 242 is located on the negative side in the x-axis direction with respect to the sealing resin 24 on the mounting substrate 22.
  • a groove G2 for guiding a plug 40 to be described later is provided substantially parallel to the x-axis at the approximate center in the y-axis direction on the upper surface of the plug guide portion 242.
  • a portion on the negative side in the y-axis direction from the groove G2 is referred to as a flat portion F3
  • a portion on the positive direction side in the y-axis direction from the groove G2 is referred to as a flat portion F4.
  • the height h3 of the groove G2 from the mounting substrate in the z-axis direction is lower than the height h2 of the sealing resin 24 in the z-axis direction.
  • the optical coupling portion 244 constitutes a portion on the positive side in the x-axis direction of the positioning member 240 and is placed on the sealing resin 24.
  • the optical coupling part 244 has a main body 246 and an abutting part 248.
  • the main body 246 has a rectangular parallelepiped shape.
  • the abutting portion 248 protrudes from the end surface S5 on the negative side in the x-axis direction of the main body 246 to the approximate center in the x-axis direction of the flat portion F4 along the flat portion F4 of the plug guide portion 242.
  • the optical coupling unit 244 has an L shape when viewed in plan from the z-axis direction.
  • the end surface on the negative direction side in the x-axis direction of the abutting portion 248 is referred to as an end surface S6.
  • the optical coupling portion 244 is provided with a concave portion D2 and a convex lens 250.
  • the concave portion D2 is provided in the vicinity of the side L5 on the negative side of the optical coupling portion 244 in the y-axis direction.
  • the concave portion D2 overlaps the light receiving element array 50 when viewed in plan from the z-axis direction.
  • the recess D2 overlaps with the optical axis of the optical fiber 60 connected to the plug 40 described later when viewed in plan from the x-axis direction.
  • the optical axis of the optical fiber 60 is parallel to the x axis.
  • the recess D2 has a rectangular shape when viewed in plan from the z-axis direction.
  • the recess D ⁇ b> 2 has a V shape when viewed in plan from the y-axis direction.
  • the inner peripheral surface on the negative direction side in the x-axis direction of the recess D2 is a total reflection surface R2.
  • the total reflection surface R2 is parallel to the y-axis and tilted 45 ° counterclockwise with respect to the z-axis when viewed from the negative side in the y-axis direction.
  • the refractive index of the positioning member 200 is sufficiently larger than that of air. Accordingly, the laser beam B2 emitted from the optical fiber 60 to the positive direction side in the x-axis direction is incident on the optical coupling portion 244, and is totally reflected by the total reflection surface R2 to the negative direction side in the z-axis direction. The process proceeds to the light receiving element array 50 via 24.
  • the angle formed by the optical axis of the laser beam B2 emitted from the optical fiber 60 and the total reflection surface R2 is 45 °
  • the light receiving element array 50 The angle formed by the optical axis of the laser beam B2 heading toward and the total reflection surface R2 is 45 °. That is, the angle formed by the total reflection surface R2 and the optical axis of the optical fiber 60 is equal to the angle formed by the total reflection surface R2 and the light receiving element array 50.
  • the convex lens 250 is provided on the lower surface of the optical coupling portion 244 as shown in FIGS.
  • the convex lens 250 overlaps the light receiving element array 50 when viewed in plan from the z-axis direction.
  • the convex lens 250 faces the light receiving element array 50 and is positioned on the optical path of the laser beam B2.
  • the convex lens 250 has a semicircular shape that protrudes toward the negative direction side of the z-axis when viewed from a direction orthogonal to the z-axis. Therefore, the laser beam B ⁇ b> 2 emitted from the optical fiber 60 is reflected by the total reflection surface R ⁇ b> 2, then condensed or collimated by the convex lens 250, and travels toward the light receiving element array 50.
  • the metal cap 30 is manufactured by bending a single metal plate (for example, SUS301) into a U-shape. Further, as shown in FIG. 1, the metal cap 30 covers the positioning member 200 from the positive direction side in the z-axis direction, the positive direction side in the y-axis direction, and the negative direction side in the y-axis direction. An opening A3 into which a plug 40 described later is inserted is formed on the negative side of the receptacle 20 in the x-axis direction.
  • the metal cap 30 includes a top plate portion 32 and side plate portions 34 and 36 as shown in FIG.
  • the top plate portion 32 is parallel to a plane orthogonal to the z-axis and has a rectangular shape.
  • the side plate portion 34 is formed by bending the metal cap 30 from the long side L6 on the negative direction side in the y-axis direction of the top plate portion 32 to the negative direction side in the z-axis direction.
  • the side plate portion 36 is formed by bending the metal cap 30 from the long side L7 on the positive side in the y-axis direction of the top plate portion 32 to the negative direction side in the z-axis direction.
  • Engaging portions 32 a and 32 b for fixing the plug 40 to the receptacle 20 are provided on the negative side of the top plate portion 32 in the x-axis direction.
  • the engaging portions 32a and 32b are provided in this order from the negative direction side in the y-axis direction toward the positive direction side.
  • the engaging portions 32 a and 32 b are formed by making a U-shaped cut in the top plate portion 32. Specifically, the engaging portions 32a and 32b have a U-shaped notch opened in the positive direction side in the x-axis direction in the top plate portion 32, and a portion surrounded by the U-shaped notch is formed in the z-axis direction. It is formed by bending so as to be dented in the negative direction side. Thus, the engaging portions 32a and 32b have a V-shape that protrudes in the negative direction side in the z-axis direction when viewed in plan from the y-axis direction.
  • engaging portions 32c and 32d for fixing the plug 40 to the receptacle 20 are provided on the short side L8 on the negative side of the top plate portion 32 in the x-axis direction.
  • the engaging portions 32c and 32d are metal pieces that protrude from the top plate portion 32 toward the negative side in the x-axis direction.
  • the engaging portions 32c and 32d are bent so as to be recessed toward the negative direction side in the z-axis direction at a substantially central position in the x-axis direction in the engaging portions 32c and 32d.
  • the engaging portions 32c and 32d have a V-shape protruding in the negative direction side in the z-axis direction when viewed in plan from the y-axis direction.
  • convex portions C1 to C3 projecting toward the negative direction side in the z-axis direction are directed from the negative direction side in the x-axis direction to the positive direction side. They are arranged in this order.
  • the convex portions C1 to C3 are each fixed to the mounting substrate 22 with an adhesive.
  • the convex portion C1 is connected to the ground conductor exposed portion E2 of the mounting substrate 22.
  • the convex portion C3 is fitted into a space H1 provided between the leg portion 24b and the leg portion 24c of the sealing resin 24. Thereby, the metal cap 30 is positioned with respect to the mounting substrate 22.
  • convex portions C4 to C6 projecting toward the negative direction side in the z-axis direction are directed from the negative direction side in the x-axis direction to the positive direction side. They are arranged in this order.
  • the convex portions C4 to C6 are each fixed to the mounting substrate 22 with an adhesive.
  • the convex portion C4 is connected to the ground conductor exposed portion E3 of the mounting substrate 22.
  • the convex portion C6 is fitted into a space H2 provided between the leg portion 24d and the leg portion 24e of the sealing resin 24. Thereby, the metal cap 30 is positioned with respect to the mounting substrate 22.
  • the optical fiber connection device 70 includes an optical fiber 60, a plug 40 (optical fiber plug), and a transparent resin.
  • the optical fiber 60 is composed of a core wire and a covering material that covers the core wire, and the core wire is composed of a core and a clad.
  • the core is made of a glass material
  • the clad is made of a glass material or a glass material covered with a fluorine resin.
  • the covering material is made of a resin such as polyethylene.
  • the plug 40 includes a transmission side plug 42 and a reception side plug 46, both of which are made of epoxy or nylon resin or the like.
  • the transmission side plug 42 is used for fixing the optical fiber 60 to the positioning member 220.
  • the transmission side plug 42 includes an optical fiber insertion portion 42a and a protrusion 42b.
  • the optical fiber insertion portion 42a constitutes a portion on the positive direction side in the y-axis direction of the transmission-side plug 42, and has a rectangular parallelepiped shape extending in the x-axis direction.
  • the thickness of the optical fiber insertion portion 42a in the z-axis direction is thinner than the thickness in the y-axis direction.
  • An opening A1 (second recess) is provided in a portion on the negative side in the x-axis direction of the optical fiber insertion portion 42a.
  • a resin for fixing the optical fiber 60 is injected into the opening A1. Further, when the optical fiber 60 is inserted into the transmission side plug 42, the covered portion of the optical fiber 60 is positioned in the opening A1.
  • the opening A1 is formed by cutting out the surface S7 located on the upper surface of the optical fiber insertion portion 42a and the end surface S8 on the negative side in the x-axis direction. Further, an insertion port H7 for guiding the core wire of the inserted optical fiber 60 to the tip of the transmission side plug 42 is formed on the inner peripheral surface S20 (first surface) on the positive side in the x-axis direction of the opening A1. Is provided. Note that the number of insertion openings H7 corresponds to the number of optical fibers 60, and is two in this embodiment.
  • a concave portion D3 (first concave portion) for injecting a matching agent is provided in a portion on the positive side in the x-axis direction of the surface S7 (second surface) of the optical fiber insertion portion 42a.
  • the matching agent is a transparent resin having a refractive index closer to the refractive index of the optical fiber than air, and matches the refractive index between the optical fiber 60 and the transmission side plug 42 to reduce light reflection. It is a transparent resin. In the recess D3, when the optical fiber 60 is inserted into the transmission-side plug 42, the end portion where the core wire of the optical fiber 60 is exposed is located.
  • the recess D3 is recessed from the surface S7 of the optical fiber insertion portion 42a toward the negative direction side in the z-axis direction. That is, the opening direction from the bottom of the recess D3 toward the opening is the z-axis direction.
  • the depth d1 of the recess D3 in the opening direction is shallower than the insertion depth d2 of the optical fiber 60.
  • An insertion port H7 is provided on the inner peripheral surface of the concave portion D3 on the negative side in the x-axis direction.
  • the insertion port H7 is connected to the inner peripheral surface S20 on the positive direction side in the x-axis direction of the opening A1. Therefore, the core wire of the optical fiber 60 reaches the recess D3 from the opening A1 through the insertion port H7.
  • the end surface of the core wire of the optical fiber 60 that has reached the recess D3 is positioned in the immediate vicinity of the inner peripheral surface S9 on the positive side in the x-axis direction of the recess D3.
  • the optical fiber 60 is fixed to the transmission side plug 42 by a matching agent made of a transparent resin injected into the opening A1 and the recess D3, for example, an epoxy resin.
  • the end face of the core wire of the optical fiber 60 is not in contact with the inner peripheral surface S9. This is to provide a gap that absorbs the expansion and contraction of the optical fiber 60 caused by temperature fluctuations and the like, and also to prevent a decrease in the transmittance of the resin due to white turbidity of the resin and shape deformation.
  • the materials injected into the opening A1 and the recess D3 may be different materials.
  • a matching agent made of a transparent resin as described above is injected into the recess D3, and a resin for firmly fixing the optical fiber 60, that is, a colored resin that does not take into account the refractive index, etc. is injected into the opening A1. Is possible.
  • a convex lens 44 is provided on the end surface S10 on the positive side in the x-axis direction of the optical fiber insertion portion 42a.
  • the convex lens 44 has a semicircular shape protruding in the positive direction side in the x-axis direction when seen in a plan view from a direction orthogonal to the x-axis direction. Accordingly, the laser beam B1 emitted from the light emitting element array 100 and reflected by the total reflection surface R1 is condensed or collimated by the convex lens 44.
  • the convex lens 44 overlaps the optical axis of the optical fiber 60 when viewed in plan from the x-axis direction. Accordingly, the laser beam B1 collected or collimated by the convex lens 44 passes through the resin of the optical fiber insertion portion 42a. The laser beam B ⁇ b> 1 is transmitted to the core of the core of the optical fiber 60.
  • a projection N1 that engages with the engaging portion 32a of the metal cap 30 is provided on the surface S7 of the optical fiber insertion portion 42a.
  • the protrusion N1 is provided between the opening A1 and the recess D3 in the x-axis direction, and extends in the y-axis direction. Further, the protrusion N1 has a triangular shape protruding in the positive direction side in the z-axis direction when viewed in plan from the y-axis direction.
  • a convex portion C7 is provided on the lower surface of the optical fiber insertion portion 42a.
  • the convex portion C7 corresponds to the groove G1 of the plug guide portion 222 of the positioning member 220.
  • the convex portion C7 is provided in parallel to the x-axis from the end surface S8 toward the end surface S10.
  • the protruding portion 42b protrudes from the vicinity of the end portion on the negative side in the x-axis direction of the optical fiber insertion portion 42a toward the negative direction side in the y-axis direction.
  • the transmission side plug 42 is L-shaped.
  • the protruding portion 42b functions as a grip portion when the transmitting side plug 42 is inserted and removed.
  • a substantially rectangular hollow hole is provided at the approximate center of the protrusion 42b when viewed in plan from the z-axis direction.
  • connection work between the transmission side plug 42 and the receptacle 20 is performed by pushing the convex portion C7 along the groove G1 to the positive side in the x-axis direction.
  • the end surface S11 on the positive side in the x-axis direction of the protrusion 42b abuts against the end surface S3 of the abutting portion 228 of the positioning member 220 shown in FIG.
  • the convex lens 44 is not in contact with the end surface S2 of the main body 226, and a gap of about 5 ⁇ m is provided. This is to prevent the transmittance from decreasing due to scratches and dirt on the convex lens 44 and the end surface S2 of the main body 226 due to contact.
  • the engaging portion 32a of the metal cap 30 is engaged with the protrusion N1, and the engaging portion 32c is formed by the surface S7 and the end surface S8 of the transmission side plug 42.
  • the transmission side plug 42 is fixed to the receptacle 20.
  • the receiving side plug 46 is used to fix the optical fiber 60 to the positioning member 240. Moreover, the receiving side plug 46 is provided with the optical fiber insertion part 46a and the projection part 46b, as shown in FIG.
  • the optical fiber insertion portion 46a constitutes a portion on the negative direction side in the y-axis direction of the reception side plug 46, and has a rectangular parallelepiped shape extending in the x-axis direction.
  • the thickness of the optical fiber insertion portion 46a in the z-axis direction is thinner than the thickness in the y-axis direction.
  • An opening A2 (second concave portion) is provided in a portion on the negative direction side in the x-axis direction of the optical fiber insertion portion 46a.
  • a resin for fixing the optical fiber 60 is injected into the opening A2. Further, when the optical fiber 60 is inserted into the receiving side plug 46, the covered portion of the optical fiber 60 is located in the opening A2.
  • the opening A2 is formed by cutting out the surface S12 located on the upper surface of the optical fiber insertion portion 46a and the end surface S13 on the negative side in the x-axis direction.
  • An insertion port H8 for guiding the core wire of the inserted optical fiber 60 to the tip of the receiving side plug 46 is formed on the inner peripheral surface S22 (first surface) on the positive side in the x-axis direction of the opening A2. Is provided.
  • the number of insertion ports H8 corresponds to the number of optical fibers 60, and is two in this embodiment.
  • a concave portion D4 (first concave portion) for injecting a matching agent is provided in a portion on the positive side in the x-axis direction of the surface S12 (second surface) of the optical fiber insertion portion 46a.
  • the recess D4 is recessed from the surface S12 of the optical fiber insertion portion 46a toward the negative side in the z-axis direction. That is, the opening direction from the bottom of the recess D4 toward the opening is the z-axis direction. Further, as shown in FIG. 7, the depth d3 of the recess D4 in the opening direction is shallower than the insertion depth d2 of the optical fiber 60.
  • An insertion port H8 is provided on the inner peripheral surface of the concave portion D4 on the negative side in the x-axis direction.
  • the insertion port H8 is connected to the inner peripheral surface S22 on the positive direction side in the x-axis direction of the opening A2. Therefore, the core wire of the optical fiber 60 reaches the recess D4 from the opening A2 through the insertion port H8.
  • the end surface of the core wire of the optical fiber 60 that has reached the recess D4 is positioned in the immediate vicinity of the inner peripheral surface S14 on the positive direction side in the x-axis direction of the recess D4.
  • the optical fiber 60 is fixed to the receiving side plug 46 by a matching agent made of a transparent resin injected into the opening A2 and the recess D4, for example, an epoxy resin.
  • a matching agent made of a transparent resin injected into the opening A2 and the recess D4, for example, an epoxy resin.
  • the end surface of the core wire of the optical fiber 60 is not in contact with the inner peripheral surface S14.
  • the materials injected into the opening A2 and the recess D4 may be different from each other.
  • a matching agent made of a transparent resin as described above is injected into the concave portion D4, and a resin for firmly fixing the optical fiber 60, that is, a colored resin that does not take into account the refractive index, etc., is injected into the opening A2. Is possible.
  • a convex lens 48 is provided on the end surface S15 on the positive side in the x-axis direction of the optical fiber insertion portion 46a.
  • the convex lens 48 has a semicircular shape protruding in the positive direction side in the x-axis direction when seen in a plan view from a direction orthogonal to the x-axis.
  • the convex lens 48 overlaps the optical axis of the optical fiber 60 when viewed in plan from the x-axis direction. Accordingly, the laser beam B2 emitted from the optical fiber 60 is condensed or collimated by the convex lens 48 and proceeds to the total reflection surface R2. The laser beam B ⁇ b> 2 is reflected by the total reflection surface R ⁇ b> 2 and transmitted to the light receiving element array 50.
  • a protrusion N2 that engages with the engaging portion 32b of the metal cap 30 is provided on the surface S12 of the optical fiber insertion portion 46a.
  • the protrusion N2 is provided between the opening A2 and the recess D4 in the x-axis direction, and extends in the y-axis direction. Further, the protrusion N2 has a triangular shape protruding in the positive direction side in the z-axis direction when viewed in plan from the y-axis direction.
  • a convex portion C8 is provided on the lower surface of the optical fiber insertion portion 46a.
  • the convex portion C8 corresponds to the groove G2 of the plug guide portion 242 of the positioning member 240.
  • the convex portion C8 is provided in parallel to the x-axis from the end surface S13 toward the end surface S15.
  • the protrusion 46 b protrudes from the end on the negative side in the x-axis direction of the optical fiber insertion portion 46 a to the positive side in the y-axis direction.
  • the receiving side plug 46 is L-shaped.
  • the protruding portion 46b functions as a grip portion when the receiving side plug 46 is inserted and removed.
  • a substantially rectangular hollow hole is provided in the approximate center of the protrusion 46b when viewed in plan from the z-axis direction.
  • connection work between the receiving side plug 46 and the receptacle 20 is performed by pushing the convex portion C8 along the groove G2 to the positive side in the x-axis direction.
  • the end surface S16 on the positive side in the x-axis direction of the protruding portion 46b abuts against the end surface S6 of the abutting portion 248 of the positioning member 240 shown in FIG.
  • the convex lens 48 is not in contact with the end surface S5 of the main body 246, and a gap of about 5 ⁇ m is provided. This is to prevent damage and dirt from occurring on the convex lens 48 and the end surface S5 of the main body 246 due to contact with each other, thereby reducing the transmittance.
  • the engaging portion 32b of the metal cap 30 is engaged with the protrusion N2, and the engaging portion 32d is formed by the surface S12 and the end surface S13 of the receiving side plug 46.
  • the receiving side plug 46 is fixed to the receptacle 20 by engaging with the corner.
  • the laser beam B ⁇ b> 1 emitted from the light emitting element array 100 to the positive side in the z-axis direction passes through the sealing resin 24 and the positioning member 220. pass. Further, the laser beam B1 is reflected by the total reflection surface R1 to the negative direction side in the x-axis direction, passes through the plug 40, and is transmitted to the core of the optical fiber 60. Accordingly, the positioning member 220 plays a role of optically coupling the core of the optical fiber 60 and the light emitting element array 100.
  • the laser beam B 2 emitted from the optical fiber 60 to the positive side in the x-axis direction passes through the positioning member 240. Further, the laser beam B ⁇ b> 2 is reflected by the total reflection surface R ⁇ b> 2 to the negative direction side in the z-axis direction, passes through the sealing resin 24, and is transmitted to the light receiving element array 50. Therefore, the positioning member 240 plays a role of optically coupling the core of the optical fiber 60 and the light receiving element array 50.
  • solder is applied to the upper surface of a mother substrate 122 (not shown in the drawing) that is an assembly of the mounting substrates 22. More specifically, cream solder is pressed onto the mother substrate 122 on which the metal mask is placed using a squeegee. Then, the solder is printed on the mother substrate 122 by removing the metal mask from the mother substrate 122.
  • the capacitor is placed on the solder of the mother board 122. Thereafter, heat is applied to the mother substrate 122 to solder the capacitor.
  • Ag paste is applied to a predetermined position on the mother board 122.
  • the drive circuit 26, the light receiving element array 50, and the light emitting element array 100 are mounted on the coated Ag, and die bonding is performed. Further, the drive circuit 26 and the light receiving element array 50 are connected by wire bonding using Au wires, and the drive circuit 26 and the light emitting element array 100 are connected by wire bonding. Further, the drive circuit 26 and the mother substrate 122 are connected by wire bonding.
  • the plurality of mounting boards 22 are obtained by cutting the mother board 122 using a dicer.
  • the positioning member 220 is placed on the mounting substrate 22 and the sealing resin 24. More specifically, a UV curable adhesive is applied to the negative region in the x-axis direction on the upper surface of the sealing portion 24a. After applying the adhesive, as shown in FIG. 11, the position of the center T100 of the light emitting part of the light emitting element array 100 is confirmed by the position recognition camera V1.
  • the mounting machine V2 for placing the positioning member 220 on the sealing resin 24 picks up and picks up the positioning member 220. Then, with the mounting machine V2 adsorbing the positioning member 220, the position recognition camera V3 confirms the position of the lens center T230 of the convex lens 230 of the positioning member 220.
  • the light emitting element array 100 From the position data of the center T100 of the light emitting part of the light emitting element array 100 confirmed by the position recognition camera V1 and the position data of the lens center T230 of the convex lens 230 of the positioning member 220 confirmed by the position recognition camera V3, the light emitting element array 100. The relative position between the light emitting part and the convex lens 230 is calculated. Based on the calculated result, the movement amount of the onboard machine V2 is determined.
  • the positioning member 220 is moved by the determined movement amount by the mounting machine V2. Thereby, the lens center T230 of the convex lens 230 and the optical axis of the light emitting element array 100 coincide.
  • the positioning member 240 is mounted on the mounting substrate 22 and the sealing resin 24. More specifically, after applying a UV curable adhesive to the negative region in the x-axis direction on the upper surface of the sealing portion 24a, as shown in FIG. 11, the center of the light receiving portion of the light receiving element array 50 is obtained. The position T50 is confirmed by the position recognition camera V4.
  • the mounting machine V5 for mounting the positioning member 240 on the sealing resin 24 picks up and picks up the positioning member 240. Then, the position of the lens center T250 of the convex lens 250 of the positioning member 240 is confirmed by the position recognition camera V6 with the mounting machine V5 sucking the positioning member 240.
  • the light receiving element array 50 From the position data of the center T50 of the light receiving unit of the light receiving element array 50 confirmed by the position recognition camera V4 and the position data of the lens center T250 of the convex lens 250 of the positioning member 240 confirmed by the position recognition camera V6, the light receiving element array 50. The relative position between the light receiving unit and the convex lens 250 is calculated. Based on the calculated result, the movement amount of the onboard machine V5 is determined.
  • the positioning member 240 is moved by the determined movement amount by the mounting machine V5. Thereby, the lens center T250 of the convex lens 250 and the optical axis of the light receiving element array 50 coincide.
  • the positioning members 220 and 240 are pressed against the mounting substrate 22 and the sealing resin 24 by the mounting machines V2 and V5.
  • the UV curable adhesive between the positioning members 220 and 240 and the sealing resin 24 is cured, the positioning members 220 and 240 are not displaced and the mounting substrate 22 and the sealing resin are sealed. It is fixed to the resin 24.
  • the metal cap 30 is attached to the mounting substrate 22 on which the positioning member 200 is placed. More specifically, on the upper surface of the mounting substrate 22, the space H1 between the leg portions 24b and 24c of the sealing resin 24, the space H2 between the leg portions 24d and 24e, and the metal cap 30 A thermosetting adhesive such as epoxy is applied to the portion where the convex portions C2 and C5 are in contact. Further, a conductive paste such as Ag is applied to the ground conductor exposed portions E2 and E3 of the mounting substrate 22.
  • the convex portion C3 of the metal cap 30 is fitted into a portion sandwiched between the leg portion 24b and the leg portion 24c of the sealing resin 24 on the mounting substrate 22, that is, the space H1. Further, the convex portion C6 is fitted into a portion sandwiched between the leg portion 24d and the leg portion 24e of the sealing resin 24, that is, the space H2. Thereby, the position of the metal cap 30 with respect to the mounting substrate 22 is determined. Simultaneously with the positioning of the metal cap 30, the convex portions C1 to C6 come into contact with the adhesive or conductive paste on the mounting substrate 22.
  • the metal cap 30 After fitting the metal cap 30, heat is applied to the mounting substrate 22 to cure the adhesive and the conductive paste. Thereby, the metal cap 30 is fixed to the mounting substrate 22. Note that, by attaching the metal cap 30 to the mounting substrate 22, the convex portions C ⁇ b> 1 and C ⁇ b> 4 of the metal cap 30 come into contact with the ground conductor exposed portions E ⁇ b> 2 and E ⁇ b> 3 of the mounting substrate 22. Thereby, the metal cap 30 is connected to the ground conductor in the mounting substrate 22 and is kept at the ground potential.
  • the receptacle 20 is completed by the process as described above.
  • the optical fiber 60 inserted into the plug 40 is cut into a predetermined length.
  • the coating near the tip of the optical fiber 60 is removed using an optical fiber stripper. After removing the coating in the vicinity of the tip, cleaving is performed to bring out the cleavage plane of the core wire of the optical fiber 60.
  • the optical fiber 60 is pushed through the openings A1 and A2 so that the end of the core wire of the optical fiber 60 comes close to the surfaces S9 and S14 of the plug 40. Further, a transparent resin such as an epoxy resin for fixing the optical fiber 60 is injected into the openings A1 and A2 and the recesses D3 and D4 of the plug 40 shown in FIG. Then, the optical fiber 60 is fixed to the plug 40 by curing the transparent resin.
  • a transparent resin such as an epoxy resin for fixing the optical fiber 60 is injected into the openings A1 and A2 and the recesses D3 and D4 of the plug 40 shown in FIG.
  • the plug 40 is connected to the receptacle 20. As described above, the plug 40 is connected to the grooves G1 and G2 of the positioning members 220 and 240 along the protrusions C7 and C8 of the plug 40 and the opening provided between the metal cap 30 and the receptacle 20. This is performed by pushing from A3 toward the positive side in the x-axis direction.
  • the optical transmission module 10 is completed through the manufacturing process as described above.
  • insertion ports H7 and H8 into which the optical fiber 60 is inserted are provided in the inner peripheral surfaces S20 and S22 of the plugs 42 and 46, and concave portions are formed in the surfaces S7 and S12 of the plugs 42 and 46.
  • D3 and D4 are provided. That is, the recesses D3 and D4 are provided on a surface different from the surface where the insertion ports H7 and H8 of the optical fiber 60 are provided. Further, the recesses D3 and D4 are provided in the vicinity of the end face of the optical fiber 60.
  • the bubbles sandwiched between the end face of the optical fiber 60 and the plugs 42 and 46 by the recesses D3 and D4 provided separately from the insertion openings H7 and H8 into which the optical fiber 60 is inserted are converted into the optical fiber 60. It is possible to easily get out of the plugs 42 and 46 without being disturbed. As a result, according to the plug 40, air bubbles are prevented from remaining between the end face of the optical fiber 60 and the plug 40.
  • the depths d1 and d3 of the recesses D3 and D4 in the opening direction from the bottom of the recesses D3 and D4 toward the opening are shallower than the insertion depth d2 of the optical fiber 60. Therefore, the concave portions D3 and D4 are shallow concave portions as compared with the concave portion D501 extending in the extending direction of the optical fiber. Thereby, the air bubbles sandwiched between the end face of the optical fiber 60 and the plug 40 can be more surely escaped.
  • the opening direction of the recesses D3 and D4 is parallel to the z-axis direction and orthogonal to the extending direction of the optical fiber 60.
  • the thickness of the optical fiber insertion portion 42a in the z-axis direction is thinner than the thickness in the y-axis direction.
  • openings A1 and A2 are provided in addition to the recesses D3 and D4 provided in the portion where the end portion of the optical fiber 60 is to be located.
  • the plug 40 is provided with protrusions 42b and 46b.
  • the protrusions 42b and 46b function as gripping portions when the plug 40 is inserted and removed.
  • the optical fiber 60 is gripped and the plug 40 is not inserted / extracted, so that the optical fiber 60 is not damaged and the plug can be inserted / extracted more easily than the optical fiber 60 is gripped.
  • optical fiber plug and the optical fiber connection device according to the present invention are not limited to the above-described embodiments, and can be changed within the scope of the gist thereof.
  • the protective portion P ⁇ b> 1 may be provided by raising the periphery of the convex lenses 44 and 48 in the plug 40. Thereby, since a foreign material is suppressed from contacting the convex lenses 44 and 48 directly from the outside of the plug 40, damage to the convex lenses 44 and 48 can be prevented.
  • the optical fiber connection device 70 may include an alignment member 80 that bundles a plurality of optical fibers 60.
  • the plugs 42 and 46 connected to the plurality of optical fibers 60 also face in one direction. Therefore, when the optical fiber connection device 70 includes the alignment member 80, the connection work between the plug 40 and the receptacle 20 is facilitated.
  • the present invention is useful for a plug attached to an end of an optical fiber and an optical fiber connecting device including the plug, and in particular, air bubbles remain between the end face of the optical fiber and the plug. It is excellent in that it can be suppressed.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Couplings Of Light Guides (AREA)

Abstract

The purpose of the present invention is to provide an optical fiber plug and an optical fiber connection device including the plug capable of minimizing residual bubbles between the end face of the optical fiber and the plug. An end of an optical fiber (60) constituted by a core wire and a coating material covering the core wire may be inserted into the optical fiber plug (40). The optical fiber plug has recessed portions (D3, D4) into which a transparent resin is injected. Further, the recessed portions are provided on surfaces (S7, S12) different from inner peripheral surfaces (S20, S22) where insertion slots (H7, H8) are provided for insertion of the optical fiber. Further, the recessed portions are provided at a section in the plug positioned at the terminal portion of the optical fiber where the core wire is exposed.

Description

光ファイバ用プラグ及び光ファイバ接続デバイスOptical fiber plug and optical fiber connection device
 本発明は、光ファイバの端部に取り付けられるプラグ及び該プラグを含む光ファイバ接続デバイス、特に、光ファイバをレセプタクルに装着するために用いられるプラグ及び該プラグを含む光ファイバ接続デバイスに関する。 The present invention relates to a plug attached to an end of an optical fiber and an optical fiber connection device including the plug, and more particularly to a plug used for mounting an optical fiber on a receptacle and an optical fiber connection device including the plug.
 従来の光ファイバの端部に取り付けられるプラグとしては、例えば、特許文献1に記載のプラグが知られている。この種のプラグ500では、図16に示すように、プラグ500の側面に設けられた凹部D500から光ファイバ501を挿入し、凹部D500に樹脂を流し込むことによって、光ファイバ501をプラグ500に固定する。 For example, a plug described in Patent Document 1 is known as a plug attached to an end of a conventional optical fiber. In this type of plug 500, as shown in FIG. 16, the optical fiber 501 is fixed to the plug 500 by inserting the optical fiber 501 from the recess D500 provided on the side surface of the plug 500 and pouring resin into the recess D500. .
 しかし、プラグ500では、凹部D500に樹脂を流し込む際に、空気を巻き込み、光ファイバ501の端部付近、つまり光ファイバ501の端面とプラグ500との間に気泡が残留してしまう可能性がある。これにより、プラグ500を用いた光伝送モジュールでは、光ファイバ501とプラグ500との界面付近で、光学的な損失が発生する可能性があった。 However, in the plug 500, when resin is poured into the concave portion D500, air is entrained, and air bubbles may remain in the vicinity of the end of the optical fiber 501, that is, between the end face of the optical fiber 501 and the plug 500. . Thereby, in the optical transmission module using the plug 500, there is a possibility that an optical loss occurs near the interface between the optical fiber 501 and the plug 500.
国際公開2012/105354号International Publication No. 2012/105354
 そこで、本発明の目的は、光ファイバの端面とプラグとの間に気泡が残留することを抑制する光ファイバ用プラグ及び該プラグを含む光ファイバ接続デバイスを提供することである。 Therefore, an object of the present invention is to provide an optical fiber plug and an optical fiber connection device including the plug, which suppresses bubbles remaining between the end face of the optical fiber and the plug.
 本発明の一の形態に係る光ファイバ用プラグは、
 芯線及び該芯線を覆う被覆材から構成される光ファイバの端部が挿入されるプラグであって、
 第1の面及び第2の面を有し、
 前記光ファイバが挿入される挿入口が前記第1の面に設けられ、
 透明樹脂が注入される第1の凹部が前記第2の面に設けられ、
 更に、前記第1の凹部は、前記被覆材が剥がされ、前記芯線が露出した前記光ファイバの末端部分が位置すべき部分に設けられていること、
 を特徴とする。
An optical fiber plug according to one aspect of the present invention is
A plug into which an end of an optical fiber composed of a core wire and a covering material covering the core wire is inserted,
Having a first surface and a second surface;
An insertion port into which the optical fiber is inserted is provided in the first surface,
A first recess into which the transparent resin is injected is provided on the second surface;
Furthermore, the first concave portion is provided in a portion where the end portion of the optical fiber where the covering material is peeled off and the core wire is exposed, should be positioned,
It is characterized by.
 本発明の一の形態に係る光ファイバ接続デバイスは、
 前記光ファイバ用プラグと、
 光ファイバと、
 透明樹脂と、
 を備え、
 前記透明樹脂は、前記第1の凹部に注入され、前記光ファイバの界面付近における光の屈折作用を軽減する整合剤であること、
 を特徴とする。
An optical fiber connecting device according to one aspect of the present invention is
The optical fiber plug;
Optical fiber,
Transparent resin,
With
The transparent resin is a matching agent that is injected into the first recess and reduces the refractive action of light near the interface of the optical fiber;
It is characterized by.
 本発明の一の形態に係る光ファイバ用プラグ及び該プラグを含む光ファイバ接続デバイスでは、光ファイバが挿入される挿入口が、該プラグの第1の面に設けられ、該プラグの第2の面に第1の凹部が設けられている。つまり、第1の凹部は、光ファイバの挿入口が設けられた面とは異なる面に設けられている。さらに、第1の凹部は、光ファイバの端面付近に設けられている。以上により、光ファイバが挿入される挿入口とは別に設けられた第1の凹部により、光ファイバの端面とプラグとの間に挟み込まれた気泡が、光ファイバに邪魔されることなく、プラグの外へ容易に抜け出ることできる。結果として、本発明の一の形態に係る光ファイバ用プラグ及び該プラグを含む光ファイバ接続デバイスによれば、光ファイバの端面とプラグとの間に気泡が残留することを抑制することができる。 In the optical fiber plug and the optical fiber connection device including the plug according to one aspect of the present invention, an insertion port into which the optical fiber is inserted is provided on the first surface of the plug, and the second of the plug A first recess is provided on the surface. That is, the first recess is provided on a surface different from the surface provided with the optical fiber insertion port. Further, the first recess is provided in the vicinity of the end face of the optical fiber. As described above, the first concave portion provided separately from the insertion port into which the optical fiber is inserted allows bubbles sandwiched between the end face of the optical fiber and the plug to be blocked by the optical fiber. You can easily get out. As a result, according to the optical fiber plug and the optical fiber connection device including the plug according to one embodiment of the present invention, it is possible to suppress the bubbles from remaining between the end face of the optical fiber and the plug.
 本発明の一の形態に係る光ファイバ用プラグ及び該プラグを含む光ファイバ接続デバイスによれば、光ファイバの端面とプラグとの間における気泡の残留を抑制することができる。 According to the optical fiber plug and the optical fiber connection device including the plug according to one embodiment of the present invention, it is possible to suppress the remaining of bubbles between the end face of the optical fiber and the plug.
一実施形態に係る光ファイバ接続デバイスを備える光伝送モジュールの外観斜視図である。It is an appearance perspective view of an optical transmission module provided with an optical fiber connecting device concerning one embodiment. レセプタクルの分解斜視図である。It is a disassembled perspective view of a receptacle. レセプタクルから金属キャップ及び位置決め部材を除いた外観斜視図である。It is an external appearance perspective view which removed the metal cap and the positioning member from the receptacle. レセプタクルから金属キャップを除いた状態の外観斜視図である。It is an external appearance perspective view of the state which removed the metal cap from the receptacle. 位置決め部材の外観斜視図である。It is an external appearance perspective view of a positioning member. 位置決め部材をz軸方向の負方向側から平面視した図である。It is the figure which planarly viewed the positioning member from the negative direction side of the z-axis direction. 図5に記載の位置決め部材のC-C又はD-Dにおける断面に、実装基板及びプラグを追加した図である。FIG. 6 is a diagram in which a mounting board and a plug are added to the cross section taken along the line CC or DD of the positioning member illustrated in FIG. 5. 金属キャップの外観斜視図である。It is an external appearance perspective view of a metal cap. 一実施形態に係る光ファイバ接続デバイスの外観斜視図である。1 is an external perspective view of an optical fiber connection device according to an embodiment. 一実施形態に係るプラグをz軸方向の負方向側から平面視した図である。It is the figure which planarly viewed the plug concerning one embodiment from the negative direction side of the z-axis direction. レセプタクルの製造工程の図である。It is a figure of the manufacturing process of a receptacle. 保護部が設けられたプラグを含む光ファイバ接続デバイスの外観斜視図である。It is an external appearance perspective view of the optical fiber connection device containing the plug provided with the protection part. 保護部が設けられたプラグを含む光ファイバ接続デバイスをz軸方向の正方向側から平面視した図である。It is the figure which planarly viewed the optical fiber connection device containing the plug provided with the protection part from the positive direction side of the z-axis direction. 整列部材及び保護部が設けられたプラグを含む光ファイバ接続デバイスの外観斜視図である。It is an external appearance perspective view of the optical fiber connection device containing the plug provided with the alignment member and the protection part. 整列部材及び保護部が設けられたプラグを含む光ファイバ接続デバイスをz軸方向の正方向側から平面視した図である。It is the figure which planarly viewed the optical fiber connection device containing the plug provided with the alignment member and the protection part from the positive direction side of the z-axis direction. 特許文献1に記載のプラグと同種のプラグの断面図である。It is sectional drawing of the same kind of plug as the plug of patent document 1. FIG.
 以下に、一実施形態に係る光ファイバ接続デバイスを備える光伝送モジュール、及びその製造方法について説明する。 Hereinafter, an optical transmission module including an optical fiber connection device according to an embodiment and a manufacturing method thereof will be described.
(光伝送モジュールの構成 図1~図3参照)
 以下に、一実施形態に係る光ファイバ接続デバイスを備える光伝送モジュールの構成について、図面を参照しながら説明する。なお、光伝送モジュール10の上下方向をz軸方向と定義し、z軸方向から平面視したときに、光伝送モジュール10の長辺に沿った方向をx軸方向と定義する。さらに、光伝送モジュール10の短辺に沿った方向をy軸方向と定義する。x軸、y軸及びz軸は互いに直交している。
(Configuration of optical transmission module See FIGS. 1 to 3)
Hereinafter, a configuration of an optical transmission module including an optical fiber connection device according to an embodiment will be described with reference to the drawings. Note that the vertical direction of the light transmission module 10 is defined as the z-axis direction, and the direction along the long side of the light transmission module 10 when viewed in plan from the z-axis direction is defined as the x-axis direction. Furthermore, the direction along the short side of the optical transmission module 10 is defined as the y-axis direction. The x axis, the y axis, and the z axis are orthogonal to each other.
 光伝送モジュール10は、図1に示すように、レセプタクル20及び光ファイバ接続デバイス70を備えている。 The optical transmission module 10 includes a receptacle 20 and an optical fiber connection device 70 as shown in FIG.
 レセプタクル20は、図2に示すように、金属キャップ30、受光素子アレイ50、発光素子アレイ100、位置決め部材200、実装基板22、封止樹脂24及び駆動回路26を備えている。 As shown in FIG. 2, the receptacle 20 includes a metal cap 30, a light receiving element array 50, a light emitting element array 100, a positioning member 200, a mounting substrate 22, a sealing resin 24, and a drive circuit 26.
 実装基板22は、図3に示すように、z軸方向から平面視したとき、矩形状を成している。また、実装基板22のz軸方向の負方向側の面(以下で下面と称す)には、光伝送モジュール10を回路基板に実装する際に、回路基板のランドと接触する表面実装用電極E1(図3には図示せず)が設けられている。 The mounting substrate 22 has a rectangular shape when seen in a plan view from the z-axis direction, as shown in FIG. The surface mounting electrode E1 that contacts the land of the circuit board when the optical transmission module 10 is mounted on the circuit board is mounted on the surface on the negative side in the z-axis direction of the mounting board 22 (hereinafter referred to as the lower surface). (Not shown in FIG. 3) is provided.
 実装基板22のz軸方向の正方向側の面(以下で上面と称す)において、x軸方向の負方向側に位置する辺L1とy軸方向の負方向側に位置する辺L2とが成す角の近傍には、実装基板22内に設けられたグランド導体の一部が露出しているグランド導体露出部E2が設けられている。グランド導体露出部E2は、z軸方向の正方向側から平面視したとき、x軸方向を長辺とする長方形状を成している。 On the surface on the positive direction side in the z-axis direction (hereinafter referred to as the upper surface) of the mounting substrate 22, a side L1 located on the negative direction side in the x-axis direction and a side L2 located on the negative direction side in the y-axis direction are formed. In the vicinity of the corner, a ground conductor exposed portion E2 is provided in which a part of the ground conductor provided in the mounting substrate 22 is exposed. The ground conductor exposed portion E2 has a rectangular shape having a long side in the x-axis direction when viewed from the positive side in the z-axis direction.
 さらに、実装基板22の上面において、x軸方向の負方向側に位置する辺L1とy軸方向の正方向側に位置する辺L3とが成す角の近傍には、実装基板22内に設けられたグランド導体の一部が露出しているグランド導体露出部E3が設けられている。グランド導体露出部E3は、z軸方向の正方向側から平面視したとき、x軸方向を長辺とする長方形状を成している。 Further, on the upper surface of the mounting substrate 22, the mounting substrate 22 is provided in the vicinity of an angle formed by the side L1 positioned on the negative side in the x-axis direction and the side L3 positioned on the positive direction side in the y-axis direction. A ground conductor exposed portion E3 in which a part of the ground conductor is exposed is provided. The ground conductor exposed portion E3 has a rectangular shape having a long side in the x-axis direction when viewed from the positive side in the z-axis direction.
 受光素子アレイ50及び発光素子アレイ100は、実装基板22の上面におけるx軸方向の正方向側の部分に設けられている。受光素子アレイ50は、光信号を電気信号に変換する複数のフォトダイオードを含んだ素子である。発光素子アレイ100は、電気信号を光信号に変換する複数のダイオードを含んだ素子である。 The light receiving element array 50 and the light emitting element array 100 are provided on the upper side of the mounting substrate 22 on the positive direction side in the x-axis direction. The light receiving element array 50 is an element including a plurality of photodiodes that convert an optical signal into an electric signal. The light emitting element array 100 is an element including a plurality of diodes that convert an electrical signal into an optical signal.
 また、駆動回路26は、実装基板22の表面におけるx軸方向の正方向側の部分において、受光素子アレイ50及び発光素子アレイ100よりも更にx軸方向の正方向側に設けられている。駆動回路26は、受光素子アレイ50及び発光素子アレイ100を駆動するための半導体回路素子である。 Further, the drive circuit 26 is provided further on the positive side in the x-axis direction than the light receiving element array 50 and the light emitting element array 100 in the portion on the positive side in the x-axis direction on the surface of the mounting substrate 22. The drive circuit 26 is a semiconductor circuit element for driving the light receiving element array 50 and the light emitting element array 100.
 また、駆動回路26は、図3に示すように、z軸方向から平面視したとき、y軸方向に平行な長辺を有する矩形状を成している。駆動回路26と受光素子アレイ50とは、ワイヤーUを介してワイヤーボンディングにより接続されている。また、駆動回路26と発光素子アレイ100とは、ワイヤーUを介してワイヤーボンディングにより接続されている。これにより、駆動回路26からの電気信号が、ワイヤーUを介して発光素子アレイ100に伝送され、受光素子アレイ50からの電気信号が、ワイヤーUを介して駆動回路26に伝送される。また、駆動回路26と実装基板22とは、ワイヤーUを介してワイヤーボンディングにより接続されている。 Further, as shown in FIG. 3, the drive circuit 26 has a rectangular shape having a long side parallel to the y-axis direction when viewed in plan from the z-axis direction. The drive circuit 26 and the light receiving element array 50 are connected through wire U by wire bonding. Further, the drive circuit 26 and the light emitting element array 100 are connected to each other by wire bonding via the wire U. As a result, the electrical signal from the drive circuit 26 is transmitted to the light emitting element array 100 via the wire U, and the electrical signal from the light receiving element array 50 is transmitted to the drive circuit 26 via the wire U. In addition, the drive circuit 26 and the mounting substrate 22 are connected by wire bonding via the wire U.
 封止樹脂24は、図3に示すように、封止部24a及び脚部24b~24eを備えており、エポキシ樹脂などの透明な樹脂からなる。封止部24aは、略直方体状をなしており、実装基板22の上面におけるx軸方向の正方向側の部分に設けられている。そして、封止部24aは、受光素子アレイ50、発光素子アレイ100及び駆動回路26を覆っている。 As shown in FIG. 3, the sealing resin 24 includes a sealing portion 24a and leg portions 24b to 24e, and is made of a transparent resin such as an epoxy resin. The sealing portion 24 a has a substantially rectangular parallelepiped shape, and is provided on a portion of the upper surface of the mounting substrate 22 on the positive direction side in the x-axis direction. The sealing portion 24 a covers the light receiving element array 50, the light emitting element array 100, and the drive circuit 26.
 脚部24b,24cは、x軸方向の負方向側から正方向側にこの順に並ぶように、間隔を空けて設けられている。脚部24b,24cは、封止部24aのy軸方向の負方向側の面から、実装基板22の辺L2に向かって突出する直方体状の部材である。また、脚部24bと脚部24cとの間には、後述する金属キャップ30の凸部C3が嵌め込まれる空間H1が設けられている。 The leg portions 24b and 24c are provided at intervals so as to be arranged in this order from the negative direction side in the x-axis direction to the positive direction side. The leg portions 24b and 24c are rectangular parallelepiped members that protrude toward the side L2 of the mounting substrate 22 from the negative side surface in the y-axis direction of the sealing portion 24a. Further, a space H1 into which a convex portion C3 of a metal cap 30 described later is fitted is provided between the leg portion 24b and the leg portion 24c.
 脚部24d,24eは、x軸方向の負方向側から正方向側にこの順に並ぶように、間隔を空けて設けられている。脚部24d,24eは、封止部24aのy軸方向の正方向側の面から、実装基板22の辺L3に向けて突出する直方体状の部材である。また、脚部24dと脚部24eとの間には、後述する金属キャップ30の凸部C6が嵌めこまれる空間H2が設けられている。 The leg portions 24d and 24e are provided at intervals so as to be arranged in this order from the negative direction side to the positive direction side in the x-axis direction. The leg portions 24d and 24e are rectangular parallelepiped members that protrude toward the side L3 of the mounting substrate 22 from the surface on the positive side in the y-axis direction of the sealing portion 24a. Further, a space H2 is provided between the leg portion 24d and the leg portion 24e in which a convex portion C6 of the metal cap 30 described later is fitted.
(位置決め部材の構成 図4~図7参照)
 次に、位置決め部材200について、図面を参照しながら説明する。
(Configuration of positioning member See FIGS. 4 to 7)
Next, the positioning member 200 will be described with reference to the drawings.
 位置決め部材200は、図4に示すように、実装基板22の上面及び封止樹脂24の略全体を覆うように、実装基板22及び封止樹脂24に跨って設けられている。また、位置決め部材200は、発光素子用の位置決め部材220と受光素子用の位置決め部材240とを備えている。位置決め部材220,240は、y軸方向の負方向側から正方向側に向かってこの順に並ぶように設けられている。なお、位置決め部材200は、例えばエポキシ系やナイロン系の樹脂により構成されている。 As shown in FIG. 4, the positioning member 200 is provided across the mounting substrate 22 and the sealing resin 24 so as to cover the upper surface of the mounting substrate 22 and substantially the entire sealing resin 24. The positioning member 200 includes a positioning member 220 for a light emitting element and a positioning member 240 for a light receiving element. The positioning members 220 and 240 are provided so as to be arranged in this order from the negative direction side in the y-axis direction toward the positive direction side. The positioning member 200 is made of, for example, an epoxy or nylon resin.
 発光素子用の位置決め部材220は、z軸方向から平面視したとき、矩形状を成している。さらに、位置決め部材220は、図5に示すように、プラグガイド部222と光結合部224とを備えている。 The positioning member 220 for the light emitting element has a rectangular shape when viewed in plan from the z-axis direction. Furthermore, the positioning member 220 includes a plug guide portion 222 and an optical coupling portion 224 as shown in FIG.
 プラグガイド部222は、位置決め部材220におけるx軸の負方向側の部分を構成している。また、プラグガイド部222は、図6に示すように、z軸方向から平面視したとき、矩形状を成している板状部材である。さらに、プラグガイド部222のx軸方向の正方向側の端面S1は、図7に示すように、封止樹脂24のx軸方向の負方向側の面と対向している。つまり、プラグガイド部222は、実装基板22上において封止樹脂24よりもx軸方向の負方向側に位置している。 The plug guide portion 222 constitutes a portion of the positioning member 220 on the negative direction side of the x axis. Further, as shown in FIG. 6, the plug guide portion 222 is a plate-like member having a rectangular shape when viewed in plan from the z-axis direction. Furthermore, the end surface S1 on the positive side in the x-axis direction of the plug guide part 222 faces the surface on the negative direction side in the x-axis direction of the sealing resin 24 as shown in FIG. That is, the plug guide portion 222 is positioned on the negative side in the x-axis direction with respect to the sealing resin 24 on the mounting substrate 22.
 また、プラグガイド部222の上面におけるy軸方向の略中央には、図5に示すように、後述するプラグ40をガイドするための溝G1がx軸と略平行に設けられている。なお、プラグガイド部222において、溝G1よりy軸方向の負方向側の部分を平坦部F1と称し、溝G1よりy軸方向の正方向側の部分を平坦部F2と称す。溝G1のz軸方向における実装基板22からの高さh1は、図7に示すように、封止樹脂24のz軸方向の高さh2よりも低い。 Further, as shown in FIG. 5, a groove G1 for guiding a plug 40 to be described later is provided substantially parallel to the x-axis at the approximate center in the y-axis direction on the upper surface of the plug guide portion 222. In the plug guide portion 222, a portion on the negative direction side in the y-axis direction from the groove G1 is referred to as a flat portion F1, and a portion on the positive direction side in the y-axis direction from the groove G1 is referred to as a flat portion F2. As shown in FIG. 7, the height h1 of the groove G1 from the mounting substrate 22 in the z-axis direction is lower than the height h2 of the sealing resin 24 in the z-axis direction.
 光結合部224は、図5に示すように、位置決め部材220におけるx軸方向の正方向側の部分を構成し、封止樹脂24上に載置される。 As shown in FIG. 5, the optical coupling portion 224 constitutes a portion on the positive direction side in the x-axis direction of the positioning member 220 and is placed on the sealing resin 24.
 さらに、光結合部224は、本体226及び突き当て部228を有している。本体226は直方体状を成している。突き当て部228は、本体226のx軸方向の負方向側の端面S2から、プラグガイド部222の平坦部F1に沿って、平坦部F1のx軸方向の略中央まで突出している。これにより、光結合部224は、z軸方向から平面視したときにL字型を成している。なお、突き当て部228のx軸方向の負方向側の端面を端面S3と称す。また、光結合部224には、凹部D1及び凸レンズ230が設けられている。 Furthermore, the optical coupling part 224 has a main body 226 and an abutting part 228. The main body 226 has a rectangular parallelepiped shape. The abutting portion 228 protrudes from the end surface S2 on the negative side in the x-axis direction of the main body 226 along the flat portion F1 of the plug guide portion 222 to the approximate center of the flat portion F1 in the x-axis direction. Thereby, the optical coupling part 224 is L-shaped when viewed in plan from the z-axis direction. Note that the end surface of the abutting portion 228 on the negative side in the x-axis direction is referred to as an end surface S3. The optical coupling portion 224 is provided with a concave portion D1 and a convex lens 230.
 凹部D1は、光結合部224のy軸方向の正方向側の辺L4近傍に設けられている。また、凹部D1は、z軸方向から平面視したとき、発光素子アレイ100と重なっている。さらに、凹部D1は、x軸方向から平面視したとき、後述するプラグ40に接続されている光ファイバ60の光軸と重なっている。なお、光ファイバ60の光軸は、x軸と平行である。また、凹部D1は、z軸方向から平面視したとき、矩形状を成している。さらに、凹部D1は、図7に示すように、y軸方向から平面視したときにV字型を成している。 The concave portion D1 is provided in the vicinity of the side L4 on the positive side of the optical coupling portion 224 in the y-axis direction. In addition, the recess D1 overlaps the light emitting element array 100 when viewed in plan from the z-axis direction. Further, the recess D1 overlaps with the optical axis of the optical fiber 60 connected to the plug 40 described later when viewed in plan from the x-axis direction. The optical axis of the optical fiber 60 is parallel to the x axis. Further, the concave portion D1 has a rectangular shape when viewed in plan from the z-axis direction. Furthermore, as shown in FIG. 7, the recess D <b> 1 has a V shape when viewed in plan from the y-axis direction.
 凹部D1のx軸方向の負方向側の内周面は、全反射面R1である。全反射面R1は、y軸に平行であり、y軸方向の負方向側から平面視したとき、z軸に対して反時計回りに45°傾いている。また、位置決め部材200の屈折率は、空気よりも十分に大きい。従って、発光素子アレイ100からz軸方向の正方向側に出射されたレーザービームB1は、光結合部224に入射し、全反射面R1によりx軸方向の負方向側に全反射され、プラグ40を介して光ファイバ60へと進行する。このとき、レーザービームB1の光跡をy軸方向から平面視すると、発光素子アレイ100から出射されたレーザービームB1の光軸と全反射面R1とが成す角は45°であり、光ファイバ60に向かうレーザービームB1の光軸と全反射面R1とが成す角は45°である。すなわち、全反射面R1と光ファイバ60の光軸とが成す角度と、全反射面R1と発光素子アレイ100とが成す角度は等しい。 The inner peripheral surface on the negative side in the x-axis direction of the recess D1 is a total reflection surface R1. The total reflection surface R1 is parallel to the y-axis and tilted 45 ° counterclockwise with respect to the z-axis when viewed from the negative side in the y-axis direction. Further, the refractive index of the positioning member 200 is sufficiently larger than that of air. Therefore, the laser beam B1 emitted from the light emitting element array 100 to the positive z-axis direction is incident on the optical coupling unit 224, and is totally reflected by the total reflection surface R1 to the negative x-axis side, thereby causing the plug 40 To the optical fiber 60 via At this time, when the light trace of the laser beam B1 is viewed in plan from the y-axis direction, the angle formed by the optical axis of the laser beam B1 emitted from the light emitting element array 100 and the total reflection surface R1 is 45 °, and the optical fiber 60 The angle formed by the optical axis of the laser beam B1 toward the total reflection surface R1 is 45 °. That is, the angle formed by the total reflection surface R1 and the optical axis of the optical fiber 60 is equal to the angle formed by the total reflection surface R1 and the light emitting element array 100.
 凸レンズ230は、図6及び図7に示すように、光結合部224の下面に設けられている。また、凸レンズ230は、z軸方向から平面視したとき、発光素子アレイ100と重なっている。これにより、凸レンズ230は、発光素子アレイ100と対向し、レーザービームB1の光路上に位置している。また、凸レンズ230は、z軸と直交する方向から平面視したとき、z軸の負方向側に向かって突出する半円状を成している。従って、発光素子アレイ100から出射されたレーザービームB1は、凸レンズ230によって集光又はコリメートされて、全反射面R1に向かう。 The convex lens 230 is provided on the lower surface of the optical coupling part 224 as shown in FIGS. Further, the convex lens 230 overlaps the light emitting element array 100 when viewed in plan from the z-axis direction. Thereby, the convex lens 230 faces the light emitting element array 100 and is positioned on the optical path of the laser beam B1. In addition, the convex lens 230 has a semicircular shape that protrudes toward the negative direction side of the z-axis when viewed from a direction orthogonal to the z-axis. Accordingly, the laser beam B1 emitted from the light emitting element array 100 is condensed or collimated by the convex lens 230 and travels toward the total reflection surface R1.
 受光素子用の位置決め部材240は、z軸方向から平面視したとき、矩形状を成している。さらに、位置決め部材240は、図5に示すように、プラグガイド部242と光結合部244とを備えている。 The positioning member 240 for the light receiving element has a rectangular shape when viewed in plan from the z-axis direction. Further, as shown in FIG. 5, the positioning member 240 includes a plug guide portion 242 and an optical coupling portion 244.
 プラグガイド部242は、位置決め部材240におけるx軸の負方向側の部分を構成している。また、プラグガイド部242は、図6に示すように、z軸方向から平面視したとき、矩形状を成している板状部材である。さらに、プラグガイド部242のx軸方向の正方向側の端面S4は、図7に示すように、封止樹脂24のx軸方向の負方向側の面と対向している。つまり、プラグガイド部242は、実装基板22上において封止樹脂24よりもx軸方向の負方向側に位置している。 The plug guide portion 242 constitutes a portion of the positioning member 240 on the negative direction side of the x axis. Further, as shown in FIG. 6, the plug guide portion 242 is a plate-like member having a rectangular shape when viewed in plan from the z-axis direction. Furthermore, the end surface S4 on the positive direction side in the x-axis direction of the plug guide portion 242 faces the surface on the negative direction side in the x-axis direction of the sealing resin 24 as shown in FIG. That is, the plug guide part 242 is located on the negative side in the x-axis direction with respect to the sealing resin 24 on the mounting substrate 22.
 また、プラグガイド部242の上面におけるy軸方向の略中央には、図5に示すように、後述するプラグ40をガイドするための溝G2がx軸と略平行に設けられている。なお、プラグガイド部242において、溝G2よりy軸方向の負方向側の部分を平坦部F3と称し、溝G2よりy軸方向の正方向側の部分を平坦部F4と称す。溝G2のz軸方向における実装基板からの高さh3は、図7に示すように、封止樹脂24のz軸方向の高さh2よりも低い。 Further, as shown in FIG. 5, a groove G2 for guiding a plug 40 to be described later is provided substantially parallel to the x-axis at the approximate center in the y-axis direction on the upper surface of the plug guide portion 242. In the plug guide portion 242, a portion on the negative side in the y-axis direction from the groove G2 is referred to as a flat portion F3, and a portion on the positive direction side in the y-axis direction from the groove G2 is referred to as a flat portion F4. As shown in FIG. 7, the height h3 of the groove G2 from the mounting substrate in the z-axis direction is lower than the height h2 of the sealing resin 24 in the z-axis direction.
 光結合部244は、図5に示すように、位置決め部材240におけるx軸方向の正方向側の部分を構成し、封止樹脂24上に載置される。 As shown in FIG. 5, the optical coupling portion 244 constitutes a portion on the positive side in the x-axis direction of the positioning member 240 and is placed on the sealing resin 24.
 さらに、光結合部244は、本体246及び突き当て部248を有している。本体246は直方体状を成している。突き当て部248は、本体246のx軸方向の負方向側の端面S5から、プラグガイド部242の平坦部F4に沿って、平坦部F4のx軸方向の略中央まで突出している。これにより、光結合部244は、z軸方向から平面視したときにL字型を成している。なお、突き当て部248のx軸方向の負方向側の端面を端面S6と称す。また、光結合部244には、凹部D2及び凸レンズ250が設けられている。 Furthermore, the optical coupling part 244 has a main body 246 and an abutting part 248. The main body 246 has a rectangular parallelepiped shape. The abutting portion 248 protrudes from the end surface S5 on the negative side in the x-axis direction of the main body 246 to the approximate center in the x-axis direction of the flat portion F4 along the flat portion F4 of the plug guide portion 242. Thereby, the optical coupling unit 244 has an L shape when viewed in plan from the z-axis direction. The end surface on the negative direction side in the x-axis direction of the abutting portion 248 is referred to as an end surface S6. The optical coupling portion 244 is provided with a concave portion D2 and a convex lens 250.
 凹部D2は、光結合部244のy軸方向の負方向側の辺L5近傍に設けられている。また、凹部D2は、z軸方向から平面視したとき、受光素子アレイ50と重なっている。さらに、凹部D2は、x軸方向から平面視したとき、後述するプラグ40に接続されている光ファイバ60の光軸と重なっている。なお、光ファイバ60の光軸は、x軸と平行である。また、凹部D2は、z軸方向から平面視したとき、矩形状を成している。さらに、凹部D2は、図7に示すように、y軸方向から平面視したときにV字型を成している。 The concave portion D2 is provided in the vicinity of the side L5 on the negative side of the optical coupling portion 244 in the y-axis direction. The concave portion D2 overlaps the light receiving element array 50 when viewed in plan from the z-axis direction. Further, the recess D2 overlaps with the optical axis of the optical fiber 60 connected to the plug 40 described later when viewed in plan from the x-axis direction. The optical axis of the optical fiber 60 is parallel to the x axis. Further, the recess D2 has a rectangular shape when viewed in plan from the z-axis direction. Further, as shown in FIG. 7, the recess D <b> 2 has a V shape when viewed in plan from the y-axis direction.
 凹部D2のx軸方向の負方向側の内周面は、全反射面R2である。全反射面R2は、y軸に平行であり、y軸方向の負方向側から平面視したとき、z軸に対して反時計回りに45°傾いている。また、位置決め部材200の屈折率は、空気よりも十分に大きい。従って、光ファイバ60からx軸方向の正方向側に出射されたレーザービームB2は、光結合部244に入射し、全反射面R2によりz軸方向の負方向側に全反射され、封止樹脂24を介して受光素子アレイ50へと進行する。このとき、レーザービームB2の光跡をy軸方向から平面視すると、光ファイバ60から出射されたレーザービームB2の光軸と全反射面R2とが成す角は45°であり、受光素子アレイ50に向かうレーザービームB2の光軸と全反射面R2とが成す角は45°である。すなわち、全反射面R2と光ファイバ60の光軸とが成す角度と、全反射面R2と受光素子アレイ50とが成す角度は等しい。 The inner peripheral surface on the negative direction side in the x-axis direction of the recess D2 is a total reflection surface R2. The total reflection surface R2 is parallel to the y-axis and tilted 45 ° counterclockwise with respect to the z-axis when viewed from the negative side in the y-axis direction. Further, the refractive index of the positioning member 200 is sufficiently larger than that of air. Accordingly, the laser beam B2 emitted from the optical fiber 60 to the positive direction side in the x-axis direction is incident on the optical coupling portion 244, and is totally reflected by the total reflection surface R2 to the negative direction side in the z-axis direction. The process proceeds to the light receiving element array 50 via 24. At this time, when the light trace of the laser beam B2 is viewed in plan from the y-axis direction, the angle formed by the optical axis of the laser beam B2 emitted from the optical fiber 60 and the total reflection surface R2 is 45 °, and the light receiving element array 50 The angle formed by the optical axis of the laser beam B2 heading toward and the total reflection surface R2 is 45 °. That is, the angle formed by the total reflection surface R2 and the optical axis of the optical fiber 60 is equal to the angle formed by the total reflection surface R2 and the light receiving element array 50.
 凸レンズ250は、図6及び図7に示すように、光結合部244の下面に設けられている。また、凸レンズ250は、z軸方向から平面視したとき、受光素子アレイ50と重なっている。これにより、凸レンズ250は、受光素子アレイ50と対向し、レーザービームB2の光路上に位置している。また、凸レンズ250は、z軸と直交する方向から平面視したとき、z軸の負方向側に向かって突出する半円状を成している。従って、光ファイバ60から出射されたレーザービームB2は、全反射面R2で反射された後、凸レンズ250によって集光又はコリメートされて、受光素子アレイ50に向かう。 The convex lens 250 is provided on the lower surface of the optical coupling portion 244 as shown in FIGS. The convex lens 250 overlaps the light receiving element array 50 when viewed in plan from the z-axis direction. As a result, the convex lens 250 faces the light receiving element array 50 and is positioned on the optical path of the laser beam B2. Further, the convex lens 250 has a semicircular shape that protrudes toward the negative direction side of the z-axis when viewed from a direction orthogonal to the z-axis. Therefore, the laser beam B <b> 2 emitted from the optical fiber 60 is reflected by the total reflection surface R <b> 2, then condensed or collimated by the convex lens 250, and travels toward the light receiving element array 50.
(金属キャップの構成 図1及び図8参照)
 次に、金属キャップ30について、図面を参照しながら説明する。
(Structure of metal cap See FIGS. 1 and 8)
Next, the metal cap 30 will be described with reference to the drawings.
 金属キャップ30は、一枚の金属板(例えば、SUS301)がコ字型に折り曲げられて作製されている。また、金属キャップ30は、図1に示すように、z軸方向の正方向側、並びにy軸方向の正方向側及びy軸方向の負方向側から位置決め部材200を覆っている。そして、レセプタクル20のx軸方向の負方向側には、後述するプラグ40が挿入される開口部A3が形成されている。 The metal cap 30 is manufactured by bending a single metal plate (for example, SUS301) into a U-shape. Further, as shown in FIG. 1, the metal cap 30 covers the positioning member 200 from the positive direction side in the z-axis direction, the positive direction side in the y-axis direction, and the negative direction side in the y-axis direction. An opening A3 into which a plug 40 described later is inserted is formed on the negative side of the receptacle 20 in the x-axis direction.
 金属キャップ30は、図8に示すように、天板部32及び側板部34,36を含んでいる。天板部32は、z軸に対して直交する面と平行であり、矩形状を成している。側板部34は、天板部32のy軸方向の負方向側の長辺L6からz軸方向の負方向側に金属キャップ30が折り曲げられて形成されている。側板部36は、天板部32のy軸方向の正方向側の長辺L7からz軸方向の負方向側に金属キャップ30が折り曲げられて形成されている。 The metal cap 30 includes a top plate portion 32 and side plate portions 34 and 36 as shown in FIG. The top plate portion 32 is parallel to a plane orthogonal to the z-axis and has a rectangular shape. The side plate portion 34 is formed by bending the metal cap 30 from the long side L6 on the negative direction side in the y-axis direction of the top plate portion 32 to the negative direction side in the z-axis direction. The side plate portion 36 is formed by bending the metal cap 30 from the long side L7 on the positive side in the y-axis direction of the top plate portion 32 to the negative direction side in the z-axis direction.
 天板部32のx軸方向の負方向側の部分には、プラグ40をレセプタクル20に固定するための係合部32a,32bが設けられている。係合部32a,32bは、y軸方向の負方向側から正方向側に向かってこの順に並ぶように設けられている。 Engaging portions 32 a and 32 b for fixing the plug 40 to the receptacle 20 are provided on the negative side of the top plate portion 32 in the x-axis direction. The engaging portions 32a and 32b are provided in this order from the negative direction side in the y-axis direction toward the positive direction side.
 係合部32a,32bは、天板部32にコ字型の切り込みを入れることにより形成されている。具体的には、係合部32a,32bは、天板部32にx軸方向の正方向側に開口するコ字型の切り込みを入れ、コ字型の切り込みに囲まれた部分をz軸方向の負方向側に凹ませるように曲げることにより形成されている。これにより、係合部32a,32bは、y軸方向から平面視したとき、z軸方向の負方向側に突出したV字型の形状を成している。 The engaging portions 32 a and 32 b are formed by making a U-shaped cut in the top plate portion 32. Specifically, the engaging portions 32a and 32b have a U-shaped notch opened in the positive direction side in the x-axis direction in the top plate portion 32, and a portion surrounded by the U-shaped notch is formed in the z-axis direction. It is formed by bending so as to be dented in the negative direction side. Thus, the engaging portions 32a and 32b have a V-shape that protrudes in the negative direction side in the z-axis direction when viewed in plan from the y-axis direction.
 また、天板部32のx軸方向の負方向側の短辺L8には、プラグ40をレセプタクル20に固定するための係合部32c,32dが設けられている。係合部32c,32dは、天板部32からx軸方向の負方向側に突出した金属片である。係合部32c,32dは、係合部32c,32dにおけるx軸方向の略中央の位置で、z軸方向の負方向側に凹ませるように曲げられている。これにより、係合部32c,32dは、y軸方向から平面視したとき、z軸方向の負方向側に突出したV字型の形状を成している。 Further, engaging portions 32c and 32d for fixing the plug 40 to the receptacle 20 are provided on the short side L8 on the negative side of the top plate portion 32 in the x-axis direction. The engaging portions 32c and 32d are metal pieces that protrude from the top plate portion 32 toward the negative side in the x-axis direction. The engaging portions 32c and 32d are bent so as to be recessed toward the negative direction side in the z-axis direction at a substantially central position in the x-axis direction in the engaging portions 32c and 32d. Thus, the engaging portions 32c and 32d have a V-shape protruding in the negative direction side in the z-axis direction when viewed in plan from the y-axis direction.
 側板部34のz軸方向の負方向側の長辺L9には、z軸方向の負方向側に向かって突出する凸部C1~C3が、x軸方向の負方向側から正方向側に向かってこの順に並ぶように設けられている。凸部C1~C3はそれぞれ、実装基板22と接着剤により固定される。なお、凸部C1は、実装基板22のグランド導体露出部E2と接続される。また、凸部C3は、封止樹脂24の脚部24bと脚部24cとの間に設けられた空間H1に嵌め込まれる。これにより、金属キャップ30は、実装基板22に対して位置決めされる。 On the long side L9 on the negative direction side in the z-axis direction of the side plate portion 34, convex portions C1 to C3 projecting toward the negative direction side in the z-axis direction are directed from the negative direction side in the x-axis direction to the positive direction side. They are arranged in this order. The convex portions C1 to C3 are each fixed to the mounting substrate 22 with an adhesive. The convex portion C1 is connected to the ground conductor exposed portion E2 of the mounting substrate 22. Further, the convex portion C3 is fitted into a space H1 provided between the leg portion 24b and the leg portion 24c of the sealing resin 24. Thereby, the metal cap 30 is positioned with respect to the mounting substrate 22.
 側板部36のz軸方向の負方向側の長辺L10には、z軸方向の負方向側に向かって突出する凸部C4~C6が、x軸方向の負方向側から正方向側に向かってこの順に並ぶように設けられている。凸部C4~C6はそれぞれ、実装基板22と接着剤により固定される。なお、凸部C4は、実装基板22のグランド導体露出部E3と接続される。また、凸部C6は、封止樹脂24の脚部24dと脚部24eとの間に設けられた空間H2に嵌め込まれる。これにより、金属キャップ30は、実装基板22に対して位置決めされる。 On the long side L10 on the negative direction side in the z-axis direction of the side plate 36, convex portions C4 to C6 projecting toward the negative direction side in the z-axis direction are directed from the negative direction side in the x-axis direction to the positive direction side. They are arranged in this order. The convex portions C4 to C6 are each fixed to the mounting substrate 22 with an adhesive. The convex portion C4 is connected to the ground conductor exposed portion E3 of the mounting substrate 22. Further, the convex portion C6 is fitted into a space H2 provided between the leg portion 24d and the leg portion 24e of the sealing resin 24. Thereby, the metal cap 30 is positioned with respect to the mounting substrate 22.
(光ファイバ接続デバイスの構成 図7,図9,図10参照)
 以下で、一実施形態に係る光ファイバ接続デバイス70について、図面を参照しながら説明する。光ファイバ接続デバイス70は、光ファイバ60、プラグ40(光ファイバ用プラグ)及び透明樹脂を備えている。
(Configuration of optical fiber connection device See FIGS. 7, 9, and 10)
Hereinafter, an optical fiber connection device 70 according to an embodiment will be described with reference to the drawings. The optical fiber connection device 70 includes an optical fiber 60, a plug 40 (optical fiber plug), and a transparent resin.
 光ファイバ60は、芯線及び該芯線を覆う被覆材から構成されており、該芯線は、コア及びクラッドから構成されている。コアはガラス材からなり、クラッドはガラス材又はガラス材にフッ素系樹脂が被覆された構成からなる。さらに、前記被覆材は、ポリエチレンなどの樹脂からなる。 The optical fiber 60 is composed of a core wire and a covering material that covers the core wire, and the core wire is composed of a core and a clad. The core is made of a glass material, and the clad is made of a glass material or a glass material covered with a fluorine resin. Further, the covering material is made of a resin such as polyethylene.
 プラグ40には、図9に示すように、光ファイバ60の端部が挿入される。また、プラグ40には、送信側プラグ42及び受信側プラグ46があり、双方ともエポキシ系やナイロン系の樹脂等により構成されている。 The end of the optical fiber 60 is inserted into the plug 40 as shown in FIG. Further, the plug 40 includes a transmission side plug 42 and a reception side plug 46, both of which are made of epoxy or nylon resin or the like.
 送信側プラグ42は、光ファイバ60を位置決め部材220に固定するために用いられる。また、送信側プラグ42は、光ファイバ挿入部42a及び突起部42bを備える。 The transmission side plug 42 is used for fixing the optical fiber 60 to the positioning member 220. The transmission side plug 42 includes an optical fiber insertion portion 42a and a protrusion 42b.
 光ファイバ挿入部42aは、送信側プラグ42のy軸方向の正方向側の部分を構成しており、x軸方向に延在する直方体状を成している。また、光ファイバ挿入部42aのz軸方向の厚みは、y軸方向の厚みよりも薄い。光ファイバ挿入部42aのx軸方向の負方向側の部分には、開口部A1(第2の凹部)が設けられている。開口部A1は、光ファイバ60を固定するための樹脂が注入される。また、光ファイバ60が送信側プラグ42に挿入された際には、光ファイバ60の被覆された部分が開口部A1に位置する。 The optical fiber insertion portion 42a constitutes a portion on the positive direction side in the y-axis direction of the transmission-side plug 42, and has a rectangular parallelepiped shape extending in the x-axis direction. The thickness of the optical fiber insertion portion 42a in the z-axis direction is thinner than the thickness in the y-axis direction. An opening A1 (second recess) is provided in a portion on the negative side in the x-axis direction of the optical fiber insertion portion 42a. A resin for fixing the optical fiber 60 is injected into the opening A1. Further, when the optical fiber 60 is inserted into the transmission side plug 42, the covered portion of the optical fiber 60 is positioned in the opening A1.
 開口部A1は、光ファイバ挿入部42aの上面に位置する面S7及びx軸方向の負方向側の端面S8を切り抜くことにより形成されている。また、開口部A1のx軸方向の正方向側の内周面S20(第1の面)には、挿入された光ファイバ60の芯線を送信側プラグ42の先端まで導くための挿入口H7が設けられている。なお、挿入口H7は、光ファイバ60の本数に対応し、本実施形態においては2つである。 The opening A1 is formed by cutting out the surface S7 located on the upper surface of the optical fiber insertion portion 42a and the end surface S8 on the negative side in the x-axis direction. Further, an insertion port H7 for guiding the core wire of the inserted optical fiber 60 to the tip of the transmission side plug 42 is formed on the inner peripheral surface S20 (first surface) on the positive side in the x-axis direction of the opening A1. Is provided. Note that the number of insertion openings H7 corresponds to the number of optical fibers 60, and is two in this embodiment.
 さらに、光ファイバ挿入部42aの面S7(第2の面)におけるx軸方向の正方向側の部分には、整合剤を注入するための凹部D3(第1の凹部)が設けられている。整合剤とは、空気と比較して光ファイバの屈折率により近い屈折率を有する透明樹脂であり、光ファイバ60と送信側プラグ42との間の屈折率を整合させ、光の反射を軽減させる透明樹脂のことである。凹部D3には、光ファイバ60が送信側プラグ42に挿入された際に、該光ファイバ60における芯線が露出した末端部分が位置する。また、凹部D3は、光ファイバ挿入部42aの面S7からz軸方向の負方向側に向かって窪んでいる。つまり、凹部D3の底部から開口部に向かう開口方向は、z軸方向である。また、図7に示すように、開口方向における凹部D3の深さd1は、光ファイバ60の挿入深さd2よりも浅い。 Furthermore, a concave portion D3 (first concave portion) for injecting a matching agent is provided in a portion on the positive side in the x-axis direction of the surface S7 (second surface) of the optical fiber insertion portion 42a. The matching agent is a transparent resin having a refractive index closer to the refractive index of the optical fiber than air, and matches the refractive index between the optical fiber 60 and the transmission side plug 42 to reduce light reflection. It is a transparent resin. In the recess D3, when the optical fiber 60 is inserted into the transmission-side plug 42, the end portion where the core wire of the optical fiber 60 is exposed is located. Further, the recess D3 is recessed from the surface S7 of the optical fiber insertion portion 42a toward the negative direction side in the z-axis direction. That is, the opening direction from the bottom of the recess D3 toward the opening is the z-axis direction. In addition, as shown in FIG. 7, the depth d1 of the recess D3 in the opening direction is shallower than the insertion depth d2 of the optical fiber 60.
 凹部D3のx軸方向の負方向側の内周面には、挿入口H7が設けられている。挿入口H7は、開口部A1のx軸方向の正方向側の内周面S20と繋がっている。従って、光ファイバ60の芯線は、挿入口H7を通って、開口部A1から凹部D3に到達する。凹部D3に到達した光ファイバ60の芯線の端面は、凹部D3のx軸方向の正方向側の内周面S9の直近に位置する。そして、開口部A1及び凹部D3に注入されている透明樹脂から成る整合剤、例えばエポキシ系の樹脂により、光ファイバ60は、送信側プラグ42に固定される。なお、光ファイバ60の芯線の端面は、内周面S9と接していない。これは、温度変動などによって生じる光ファイバ60の伸縮を吸収する隙間を設けるためであり、また、樹脂の白濁化や形状変形による樹脂の透過率低下を防ぐためである。 An insertion port H7 is provided on the inner peripheral surface of the concave portion D3 on the negative side in the x-axis direction. The insertion port H7 is connected to the inner peripheral surface S20 on the positive direction side in the x-axis direction of the opening A1. Therefore, the core wire of the optical fiber 60 reaches the recess D3 from the opening A1 through the insertion port H7. The end surface of the core wire of the optical fiber 60 that has reached the recess D3 is positioned in the immediate vicinity of the inner peripheral surface S9 on the positive side in the x-axis direction of the recess D3. The optical fiber 60 is fixed to the transmission side plug 42 by a matching agent made of a transparent resin injected into the opening A1 and the recess D3, for example, an epoxy resin. The end face of the core wire of the optical fiber 60 is not in contact with the inner peripheral surface S9. This is to provide a gap that absorbs the expansion and contraction of the optical fiber 60 caused by temperature fluctuations and the like, and also to prevent a decrease in the transmittance of the resin due to white turbidity of the resin and shape deformation.
 ここで、開口部A1及び凹部D3に注入する材料をそれぞれ異なる材料としてもよい。例えば、凹部D3には、上記のとおり透明樹脂から成る整合剤を注入し、開口部A1には、光ファイバ60を強固に固定するための樹脂、つまり屈折率等を考慮しない有色の樹脂を注入することが可能である。 Here, the materials injected into the opening A1 and the recess D3 may be different materials. For example, a matching agent made of a transparent resin as described above is injected into the recess D3, and a resin for firmly fixing the optical fiber 60, that is, a colored resin that does not take into account the refractive index, etc. is injected into the opening A1. Is possible.
 光ファイバ挿入部42aのx軸方向の正方向側の端面S10には、図10に示すように、凸レンズ44が設けられている。凸レンズ44は、x軸方向と直交する方向から平面視したとき、x軸方向の正方向側に突出する半円状を成している。これにより、発光素子アレイ100から出射され、かつ、全反射面R1により反射されたレーザービームB1は、凸レンズ44により集光又はコリメートされる。 As shown in FIG. 10, a convex lens 44 is provided on the end surface S10 on the positive side in the x-axis direction of the optical fiber insertion portion 42a. The convex lens 44 has a semicircular shape protruding in the positive direction side in the x-axis direction when seen in a plan view from a direction orthogonal to the x-axis direction. Accordingly, the laser beam B1 emitted from the light emitting element array 100 and reflected by the total reflection surface R1 is condensed or collimated by the convex lens 44.
 また、凸レンズ44は、x軸方向から平面視したとき、光ファイバ60の光軸と重なっている。従って、凸レンズ44で集光又はコリメートされたレーザービームB1は、光ファイバ挿入部42aの樹脂を通過する。そして、レーザービームB1は、光ファイバ60の芯線のコアに伝送される。 Further, the convex lens 44 overlaps the optical axis of the optical fiber 60 when viewed in plan from the x-axis direction. Accordingly, the laser beam B1 collected or collimated by the convex lens 44 passes through the resin of the optical fiber insertion portion 42a. The laser beam B <b> 1 is transmitted to the core of the core of the optical fiber 60.
 光ファイバ挿入部42aの面S7には、図9に示すように、金属キャップ30の係合部32aと係合する突起N1が設けられている。突起N1は、x軸方向において開口部A1と凹部D3との間に設けられ、y軸方向に延在している。また、突起N1は、y軸方向から平面視したとき、z軸方向の正方向側に突出した三角形状を成している。 As shown in FIG. 9, a projection N1 that engages with the engaging portion 32a of the metal cap 30 is provided on the surface S7 of the optical fiber insertion portion 42a. The protrusion N1 is provided between the opening A1 and the recess D3 in the x-axis direction, and extends in the y-axis direction. Further, the protrusion N1 has a triangular shape protruding in the positive direction side in the z-axis direction when viewed in plan from the y-axis direction.
 光ファイバ挿入部42aの下面には、図9及び図10に示すように、凸部C7が設けられている。凸部C7は、位置決め部材220のプラグガイド部222の溝G1に対応している。凸部C7は、端面S8から端面S10に向かって、x軸に平行に設けられている。 As shown in FIGS. 9 and 10, a convex portion C7 is provided on the lower surface of the optical fiber insertion portion 42a. The convex portion C7 corresponds to the groove G1 of the plug guide portion 222 of the positioning member 220. The convex portion C7 is provided in parallel to the x-axis from the end surface S8 toward the end surface S10.
 突起部42bは、図9及び図10に示すように、光ファイバ挿入部42aのx軸方向の負方向側の端部近傍からy軸方向の負方向側に突出している。これにより、送信側プラグ42は、L字型を成している。なお、突起部42bは、送信側プラグ42の挿抜作業の際に、把持部として機能する。また、突起部42bの略中央には、z軸方向から平面視したとき、略矩形状の肉抜き穴が設けられている。 As shown in FIGS. 9 and 10, the protruding portion 42b protrudes from the vicinity of the end portion on the negative side in the x-axis direction of the optical fiber insertion portion 42a toward the negative direction side in the y-axis direction. Thereby, the transmission side plug 42 is L-shaped. The protruding portion 42b functions as a grip portion when the transmitting side plug 42 is inserted and removed. Further, a substantially rectangular hollow hole is provided at the approximate center of the protrusion 42b when viewed in plan from the z-axis direction.
 なお、送信側プラグ42とレセプタクル20との接続作業は、凸部C7を溝G1に沿わせて、x軸方向の正方向側に押し込むことにより行われる。このとき、突起部42bのx軸方向の正方向側の端面S11は、図5で示される位置決め部材220の突き当て部228の端面S3に突き当たる。このとき、凸レンズ44は本体226の端面S2と接しておらず、約5μmの隙間が設けられている。これは、接することで凸レンズ44や本体226の端面S2に傷や汚れが発生して、透過率低下が生じることを防ぐためである。 Note that the connection work between the transmission side plug 42 and the receptacle 20 is performed by pushing the convex portion C7 along the groove G1 to the positive side in the x-axis direction. At this time, the end surface S11 on the positive side in the x-axis direction of the protrusion 42b abuts against the end surface S3 of the abutting portion 228 of the positioning member 220 shown in FIG. At this time, the convex lens 44 is not in contact with the end surface S2 of the main body 226, and a gap of about 5 μm is provided. This is to prevent the transmittance from decreasing due to scratches and dirt on the convex lens 44 and the end surface S2 of the main body 226 due to contact.
 また、送信側プラグ42とレセプタクル20とを接続する際、金属キャップ30の係合部32aが突起N1と係合するとともに、係合部32cが送信側プラグ42の面S7と端面S8とが成す角と係合することにより、送信側プラグ42がレセプタクル20に固定される。 Further, when the transmission side plug 42 and the receptacle 20 are connected, the engaging portion 32a of the metal cap 30 is engaged with the protrusion N1, and the engaging portion 32c is formed by the surface S7 and the end surface S8 of the transmission side plug 42. By engaging with the corner, the transmission side plug 42 is fixed to the receptacle 20.
 受信側プラグ46は、光ファイバ60を位置決め部材240に固定するために用いられる。また、受信側プラグ46は、図9に示すように、光ファイバ挿入部46a及び突起部46bを備える。 The receiving side plug 46 is used to fix the optical fiber 60 to the positioning member 240. Moreover, the receiving side plug 46 is provided with the optical fiber insertion part 46a and the projection part 46b, as shown in FIG.
 光ファイバ挿入部46aは、受信側プラグ46のy軸方向の負方向側の部分を構成しており、x軸方向に延在する直方体状を成している。また、光ファイバ挿入部46aのz軸方向の厚みは、y軸方向の厚みよりも薄い。光ファイバ挿入部46aのx軸方向の負方向側の部分には、開口部A2(第2の凹部)が設けられている。開口部A2は、光ファイバ60を固定するための樹脂が注入される。また、光ファイバ60が受信側プラグ46に挿入された際には、光ファイバ60の被覆された部分が開口部A2に位置する。 The optical fiber insertion portion 46a constitutes a portion on the negative direction side in the y-axis direction of the reception side plug 46, and has a rectangular parallelepiped shape extending in the x-axis direction. The thickness of the optical fiber insertion portion 46a in the z-axis direction is thinner than the thickness in the y-axis direction. An opening A2 (second concave portion) is provided in a portion on the negative direction side in the x-axis direction of the optical fiber insertion portion 46a. A resin for fixing the optical fiber 60 is injected into the opening A2. Further, when the optical fiber 60 is inserted into the receiving side plug 46, the covered portion of the optical fiber 60 is located in the opening A2.
 開口部A2は、光ファイバ挿入部46aの上面に位置する面S12及びx軸方向の負方向側の端面S13を切り抜くことにより形成されている。また、開口部A2のx軸方向の正方向側の内周面S22(第1の面)には、挿入された光ファイバ60の芯線を受信側プラグ46の先端まで導くための挿入口H8が設けられている。なお、挿入口H8は、光ファイバ60の本数に対応し、本実施形態においては2つである。 The opening A2 is formed by cutting out the surface S12 located on the upper surface of the optical fiber insertion portion 46a and the end surface S13 on the negative side in the x-axis direction. An insertion port H8 for guiding the core wire of the inserted optical fiber 60 to the tip of the receiving side plug 46 is formed on the inner peripheral surface S22 (first surface) on the positive side in the x-axis direction of the opening A2. Is provided. The number of insertion ports H8 corresponds to the number of optical fibers 60, and is two in this embodiment.
 さらに、光ファイバ挿入部46aの面S12(第2の面)におけるx軸方向の正方向側の部分には、整合剤を注入するための凹部D4(第1の凹部)が設けられている。凹部D4には、光ファイバ60が受信側プラグ46に挿入された際に、該光ファイバ60の芯線が露出した末端部分が位置する。また、凹部D4は、光ファイバ挿入部46aの面S12からz軸方向の負方向側に向かって窪んでいる。つまり、凹部D4の底部から開口部に向かう開口方向は、z軸方向である。また、図7に示すように、開口方向における凹部D4の深さd3は、光ファイバ60の挿入深さd2よりも浅い。 Furthermore, a concave portion D4 (first concave portion) for injecting a matching agent is provided in a portion on the positive side in the x-axis direction of the surface S12 (second surface) of the optical fiber insertion portion 46a. When the optical fiber 60 is inserted into the receiving side plug 46, the end portion where the core wire of the optical fiber 60 is exposed is located in the recess D4. In addition, the recess D4 is recessed from the surface S12 of the optical fiber insertion portion 46a toward the negative side in the z-axis direction. That is, the opening direction from the bottom of the recess D4 toward the opening is the z-axis direction. Further, as shown in FIG. 7, the depth d3 of the recess D4 in the opening direction is shallower than the insertion depth d2 of the optical fiber 60.
 凹部D4のx軸方向の負方向側の内周面には、挿入口H8が設けられている。挿入口H8は、開口部A2のx軸方向の正方向側の内周面S22と繋がっている。従って、光ファイバ60の芯線は、挿入口H8を通って、開口部A2から凹部D4に到達する。凹部D4に到達した光ファイバ60の芯線の端面は、凹部D4のx軸方向の正方向側の内周面S14の直近に位置する。そして、開口部A2及び凹部D4に注入されている透明樹脂から成る整合剤、例えばエポキシ系の樹脂により、光ファイバ60は、受信側プラグ46に固定される。なお、光ファイバ60の芯線の端面は、内周面S14と接していない。 An insertion port H8 is provided on the inner peripheral surface of the concave portion D4 on the negative side in the x-axis direction. The insertion port H8 is connected to the inner peripheral surface S22 on the positive direction side in the x-axis direction of the opening A2. Therefore, the core wire of the optical fiber 60 reaches the recess D4 from the opening A2 through the insertion port H8. The end surface of the core wire of the optical fiber 60 that has reached the recess D4 is positioned in the immediate vicinity of the inner peripheral surface S14 on the positive direction side in the x-axis direction of the recess D4. The optical fiber 60 is fixed to the receiving side plug 46 by a matching agent made of a transparent resin injected into the opening A2 and the recess D4, for example, an epoxy resin. In addition, the end surface of the core wire of the optical fiber 60 is not in contact with the inner peripheral surface S14.
 ここで、開口部A2及び凹部D4に注入する材料をそれぞれ異なる材料としてもよい。例えば、凹部D4には、上記のとおり透明樹脂から成る整合剤を注入し、開口部A2には、光ファイバ60を強固に固定するための樹脂、つまり屈折率等を考慮しない有色の樹脂を注入することが可能である。 Here, the materials injected into the opening A2 and the recess D4 may be different from each other. For example, a matching agent made of a transparent resin as described above is injected into the concave portion D4, and a resin for firmly fixing the optical fiber 60, that is, a colored resin that does not take into account the refractive index, etc., is injected into the opening A2. Is possible.
 光ファイバ挿入部46aのx軸方向の正方向側の端面S15には、図10に示すように、凸レンズ48が設けられている。凸レンズ48は、x軸と直交する方向から平面視したとき、x軸方向の正方向側に突出する半円状を成している。 As shown in FIG. 10, a convex lens 48 is provided on the end surface S15 on the positive side in the x-axis direction of the optical fiber insertion portion 46a. The convex lens 48 has a semicircular shape protruding in the positive direction side in the x-axis direction when seen in a plan view from a direction orthogonal to the x-axis.
 また、凸レンズ48は、x軸方向から平面視したとき、光ファイバ60の光軸と重なっている。従って、光ファイバ60から出射されたレーザービームB2は、凸レンズ48により集光又はコリメートされ、全反射面R2に進行する。そして、レーザービームB2は、全反射面R2で反射されて、受光素子アレイ50に伝送される。 Further, the convex lens 48 overlaps the optical axis of the optical fiber 60 when viewed in plan from the x-axis direction. Accordingly, the laser beam B2 emitted from the optical fiber 60 is condensed or collimated by the convex lens 48 and proceeds to the total reflection surface R2. The laser beam B <b> 2 is reflected by the total reflection surface R <b> 2 and transmitted to the light receiving element array 50.
 光ファイバ挿入部46aの面S12には、図9に示すように、金属キャップ30の係合部32bと係合する突起N2が設けられている。突起N2は、x軸方向において開口部A2と凹部D4の間に設けられ、y軸方向に延在している。また、突起N2は、y軸方向から平面視したとき、z軸方向の正方向側に突出した三角形状を成している。 As shown in FIG. 9, a protrusion N2 that engages with the engaging portion 32b of the metal cap 30 is provided on the surface S12 of the optical fiber insertion portion 46a. The protrusion N2 is provided between the opening A2 and the recess D4 in the x-axis direction, and extends in the y-axis direction. Further, the protrusion N2 has a triangular shape protruding in the positive direction side in the z-axis direction when viewed in plan from the y-axis direction.
 光ファイバ挿入部46aの下面には、図9及び図10に示すように、凸部C8が設けられている。凸部C8は、位置決め部材240のプラグガイド部242の溝G2に対応している。凸部C8は、端面S13から端面S15に向かって、x軸に平行に設けられている。 As shown in FIGS. 9 and 10, a convex portion C8 is provided on the lower surface of the optical fiber insertion portion 46a. The convex portion C8 corresponds to the groove G2 of the plug guide portion 242 of the positioning member 240. The convex portion C8 is provided in parallel to the x-axis from the end surface S13 toward the end surface S15.
 突起部46bは、図9及び図10に示すように、光ファイバ挿入部46aのx軸方向の負方向側の端部からy軸方向の正方向側に突出している。これにより、受信側プラグ46は、L字型を成している。なお、突起部46bは、受信側プラグ46の挿抜作業の際に、把持部として機能する。また、突起部46bの略中央には、z軸方向から平面視したとき、略矩形状の肉抜き穴が設けられている。 As shown in FIGS. 9 and 10, the protrusion 46 b protrudes from the end on the negative side in the x-axis direction of the optical fiber insertion portion 46 a to the positive side in the y-axis direction. Thereby, the receiving side plug 46 is L-shaped. The protruding portion 46b functions as a grip portion when the receiving side plug 46 is inserted and removed. Further, a substantially rectangular hollow hole is provided in the approximate center of the protrusion 46b when viewed in plan from the z-axis direction.
 なお、受信側プラグ46とレセプタクル20との接続作業は、凸部C8を溝G2に沿わせて、x軸方向の正方向側に押し込むことにより行われる。このとき、突起部46bのx軸方向の正方向側の端面S16は、図5で示される位置決め部材240の突き当て部248の端面S6に突き当たる。このとき、凸レンズ48は本体246の端面S5と接しておらず、約5μmの隙間が設けられている。これは、接することで凸レンズ48や本体246の端面S5に傷や汚れが発生して、透過率低下が生じることを防ぐためである。 Note that the connection work between the receiving side plug 46 and the receptacle 20 is performed by pushing the convex portion C8 along the groove G2 to the positive side in the x-axis direction. At this time, the end surface S16 on the positive side in the x-axis direction of the protruding portion 46b abuts against the end surface S6 of the abutting portion 248 of the positioning member 240 shown in FIG. At this time, the convex lens 48 is not in contact with the end surface S5 of the main body 246, and a gap of about 5 μm is provided. This is to prevent damage and dirt from occurring on the convex lens 48 and the end surface S5 of the main body 246 due to contact with each other, thereby reducing the transmittance.
 また、受信側プラグ46とレセプタクル20とを接続する際、金属キャップ30の係合部32bが突起N2と係合するとともに、係合部32dが受信側プラグ46の面S12と端面S13とが成す角と係合することにより、受信側プラグ46がレセプタクル20に固定される。 Further, when the receiving side plug 46 and the receptacle 20 are connected, the engaging portion 32b of the metal cap 30 is engaged with the protrusion N2, and the engaging portion 32d is formed by the surface S12 and the end surface S13 of the receiving side plug 46. The receiving side plug 46 is fixed to the receptacle 20 by engaging with the corner.
 以上のように構成された光伝送モジュール10では、図7に示すように、発光素子アレイ100からz軸方向の正方向側に出射されたレーザービームB1は、封止樹脂24及び位置決め部材220を通過する。さらに、レーザービームB1は、全反射面R1でx軸方向の負方向側に反射されて、プラグ40を通過し光ファイバ60のコアに伝送される。従って、位置決め部材220は、光ファイバ60のコアと発光素子アレイ100とを光学的に結合させる役割を担っている。 In the optical transmission module 10 configured as described above, as shown in FIG. 7, the laser beam B <b> 1 emitted from the light emitting element array 100 to the positive side in the z-axis direction passes through the sealing resin 24 and the positioning member 220. pass. Further, the laser beam B1 is reflected by the total reflection surface R1 to the negative direction side in the x-axis direction, passes through the plug 40, and is transmitted to the core of the optical fiber 60. Accordingly, the positioning member 220 plays a role of optically coupling the core of the optical fiber 60 and the light emitting element array 100.
 また、光伝送モジュール10において、光ファイバ60からx軸方向の正方向側に出射されたレーザービームB2は、位置決め部材240を通過する。さらに、レーザービームB2は、全反射面R2でz軸方向の負方向側に反射されて、封止樹脂24を通過し受光素子アレイ50に伝送される。従って、位置決め部材240は、光ファイバ60のコアと受光素子アレイ50とを光学的に結合させる役割を担っている。 Further, in the optical transmission module 10, the laser beam B 2 emitted from the optical fiber 60 to the positive side in the x-axis direction passes through the positioning member 240. Further, the laser beam B <b> 2 is reflected by the total reflection surface R <b> 2 to the negative direction side in the z-axis direction, passes through the sealing resin 24, and is transmitted to the light receiving element array 50. Therefore, the positioning member 240 plays a role of optically coupling the core of the optical fiber 60 and the light receiving element array 50.
(製造方法)
 以下に、光伝送モジュール10の製造方法を、レセプタクル20、プラグ40と光ファイバ60の接続方法及び光伝送モジュール10の組み立ての順で説明する。
(Production method)
Below, the manufacturing method of the optical transmission module 10 is demonstrated in order of the assembly of the receptacle 20, the plug 40, and the optical fiber 60, and the assembly of the optical transmission module 10. FIG.
(レセプタクルの製造方法 図11参照)
 レセプタクル20の製造方法について、図面を参照しながら説明する。
(Receptacles Manufacturing Method See FIG. 11)
A method for manufacturing the receptacle 20 will be described with reference to the drawings.
 まず、実装基板22の集合体であるマザー基板122(本図面中には、図示しない)の上面にはんだを塗布する。より具体的には、メタルマスクを載せたマザー基板122上に、スキージを使用してクリームはんだを押し付ける。そして、メタルマスクをマザー基板122から取り除くことにより、はんだをマザー基板122に印刷する。 First, solder is applied to the upper surface of a mother substrate 122 (not shown in the drawing) that is an assembly of the mounting substrates 22. More specifically, cream solder is pressed onto the mother substrate 122 on which the metal mask is placed using a squeegee. Then, the solder is printed on the mother substrate 122 by removing the metal mask from the mother substrate 122.
 次に、コンデンサをマザー基板122のはんだ上に載置する。その後、マザー基板122に熱を加えて、コンデンサをはんだ付けする。 Next, the capacitor is placed on the solder of the mother board 122. Thereafter, heat is applied to the mother substrate 122 to solder the capacitor.
 コンデンサをはんだ付けした後、マザー基板122上の所定位置にAgペーストを塗布する。塗布されたAg上に駆動回路26、受光素子アレイ50及び発光素子アレイ100を載置して、ダイボンドを行う。さらに、Auワイヤーを用いて、駆動回路26と受光素子アレイ50とをワイヤーボンディングにより接続し、さらに、駆動回路26と発光素子アレイ100とをワイヤーボンディングにより接続する。さらに、駆動回路26とマザー基板122とをワイヤーボンディングにより接続する。 After soldering the capacitor, Ag paste is applied to a predetermined position on the mother board 122. The drive circuit 26, the light receiving element array 50, and the light emitting element array 100 are mounted on the coated Ag, and die bonding is performed. Further, the drive circuit 26 and the light receiving element array 50 are connected by wire bonding using Au wires, and the drive circuit 26 and the light emitting element array 100 are connected by wire bonding. Further, the drive circuit 26 and the mother substrate 122 are connected by wire bonding.
 その後、コンデンサ、駆動回路26と、受光素子アレイ50及び発光素子アレイ100に対して樹脂モールドを行う。さらに、ダイサーを用いてマザー基板122をカットすることにより、複数の実装基板22を得る。 Thereafter, resin molding is performed on the capacitor, the drive circuit 26, the light receiving element array 50, and the light emitting element array 100. Furthermore, the plurality of mounting boards 22 are obtained by cutting the mother board 122 using a dicer.
 次に、位置決め部材220を実装基板22及び封止樹脂24上に載置する。より具体的には、封止部24aの上面におけるx軸方向の負方向側の領域にUV硬化型の接着剤を塗布する。接着剤を塗布した後、図11に示すように、発光素子アレイ100の発光部の中心T100の位置を位置認識用カメラV1で確認する。 Next, the positioning member 220 is placed on the mounting substrate 22 and the sealing resin 24. More specifically, a UV curable adhesive is applied to the negative region in the x-axis direction on the upper surface of the sealing portion 24a. After applying the adhesive, as shown in FIG. 11, the position of the center T100 of the light emitting part of the light emitting element array 100 is confirmed by the position recognition camera V1.
 次に、位置決め部材220を封止樹脂24上に載置するための搭載機V2が位置決め部材220を吸着して取り上げる。そして、搭載機V2が位置決め部材220を吸着した状態で、位置認識用カメラV3で位置決め部材220の凸レンズ230のレンズ中心T230の位置を確認する。 Next, the mounting machine V2 for placing the positioning member 220 on the sealing resin 24 picks up and picks up the positioning member 220. Then, with the mounting machine V2 adsorbing the positioning member 220, the position recognition camera V3 confirms the position of the lens center T230 of the convex lens 230 of the positioning member 220.
 位置認識用カメラV1で確認した発光素子アレイ100の発光部の中心T100の位置データ及び、位置認識用カメラV3で確認した位置決め部材220の凸レンズ230のレンズ中心T230の位置データから、発光素子アレイ100の発光部と凸レンズ230との相対的な位置を算出する。算出した結果に基づいて、搭載機V2の移動量を決定する。 From the position data of the center T100 of the light emitting part of the light emitting element array 100 confirmed by the position recognition camera V1 and the position data of the lens center T230 of the convex lens 230 of the positioning member 220 confirmed by the position recognition camera V3, the light emitting element array 100. The relative position between the light emitting part and the convex lens 230 is calculated. Based on the calculated result, the movement amount of the onboard machine V2 is determined.
 次に、搭載機V2により、決定した移動量だけ、位置決め部材220を移動させる。これにより、凸レンズ230のレンズ中心T230と発光素子アレイ100の光軸とが一致する。 Next, the positioning member 220 is moved by the determined movement amount by the mounting machine V2. Thereby, the lens center T230 of the convex lens 230 and the optical axis of the light emitting element array 100 coincide.
 位置決め部材220の載置作業と並行して、位置決め部材240を実装基板22及び封止樹脂24上に載置する作業を行う。より具体的には、封止部24aの上面のx軸方向の負方向側の領域にUV硬化型の接着剤を塗布した後、図11に示すように、受光素子アレイ50の受光部の中心T50の位置を位置認識用カメラV4で確認する。 In parallel with the mounting operation of the positioning member 220, the positioning member 240 is mounted on the mounting substrate 22 and the sealing resin 24. More specifically, after applying a UV curable adhesive to the negative region in the x-axis direction on the upper surface of the sealing portion 24a, as shown in FIG. 11, the center of the light receiving portion of the light receiving element array 50 is obtained. The position T50 is confirmed by the position recognition camera V4.
 次に、位置決め部材240を封止樹脂24上に載置するための搭載機V5が位置決め部材240を吸着して取り上げる。そして、搭載機V5が位置決め部材240を吸着した状態で、位置認識用カメラV6で位置決め部材240の凸レンズ250のレンズ中心T250の位置を確認する。 Next, the mounting machine V5 for mounting the positioning member 240 on the sealing resin 24 picks up and picks up the positioning member 240. Then, the position of the lens center T250 of the convex lens 250 of the positioning member 240 is confirmed by the position recognition camera V6 with the mounting machine V5 sucking the positioning member 240.
 位置認識用カメラV4で確認した受光素子アレイ50の受光部の中心T50の位置データ及び、位置認識用カメラV6で確認した位置決め部材240の凸レンズ250のレンズ中心T250の位置データから、受光素子アレイ50の受光部と凸レンズ250との相対的な位置を算出する。算出された結果に基づいて、搭載機V5の移動量を決定する。 From the position data of the center T50 of the light receiving unit of the light receiving element array 50 confirmed by the position recognition camera V4 and the position data of the lens center T250 of the convex lens 250 of the positioning member 240 confirmed by the position recognition camera V6, the light receiving element array 50. The relative position between the light receiving unit and the convex lens 250 is calculated. Based on the calculated result, the movement amount of the onboard machine V5 is determined.
 次に、搭載機V5により、決定した移動量だけ、位置決め部材240を移動させる。これにより、凸レンズ250のレンズ中心T250と受光素子アレイ50の光軸とが一致する。 Next, the positioning member 240 is moved by the determined movement amount by the mounting machine V5. Thereby, the lens center T250 of the convex lens 250 and the optical axis of the light receiving element array 50 coincide.
 配置された位置決め部材220,240に対して、紫外線を照射する。なお、紫外線照射中、位置決め部材220,240は、搭載機V2,V5により、実装基板22及び封止樹脂24に押しつけられた状態である。これにより、位置決め部材220,240と封止樹脂24との間にあるUV硬化型の接着剤が硬化する際に、位置決め部材220,240が、位置ズレを起こすことなく、実装基板22及び封止樹脂24に固定される。 Irradiate ultraviolet rays to the positioning members 220 and 240 arranged. During ultraviolet irradiation, the positioning members 220 and 240 are pressed against the mounting substrate 22 and the sealing resin 24 by the mounting machines V2 and V5. Thus, when the UV curable adhesive between the positioning members 220 and 240 and the sealing resin 24 is cured, the positioning members 220 and 240 are not displaced and the mounting substrate 22 and the sealing resin are sealed. It is fixed to the resin 24.
 次に、位置決め部材200が載置された実装基板22に対して、金属キャップ30を取り付ける。より具体的には、実装基板22の上面であって、封止樹脂24の脚部24bと24cとの間の空間H1、脚部24dと24eとの間の空間H2、及び、金属キャップ30の凸部C2,C5が接触する部分にエポキシ系などの熱硬化性の接着剤を塗布する。また、実装基板22のグランド導体露出部E2,E3には、Agなどの導電性ペーストを塗布する。 Next, the metal cap 30 is attached to the mounting substrate 22 on which the positioning member 200 is placed. More specifically, on the upper surface of the mounting substrate 22, the space H1 between the leg portions 24b and 24c of the sealing resin 24, the space H2 between the leg portions 24d and 24e, and the metal cap 30 A thermosetting adhesive such as epoxy is applied to the portion where the convex portions C2 and C5 are in contact. Further, a conductive paste such as Ag is applied to the ground conductor exposed portions E2 and E3 of the mounting substrate 22.
 接着剤及び導電性ペーストを塗布後、金属キャップ30の凸部C3を、実装基板22上の封止樹脂24の脚部24bと脚部24cとに挟まれた部分、すなわち空間H1に嵌め合わせる。さらに、凸部C6を封止樹脂24の脚部24dと脚部24eとに挟まれた部分、すなわち空間H2に嵌め合わせる。これにより、金属キャップ30の実装基板22に対する位置が決まる。また、金属キャップ30の位置決めと同時に、凸部C1~C6が実装基板22上の接着剤又は導電性ペーストと接触する。 After applying the adhesive and the conductive paste, the convex portion C3 of the metal cap 30 is fitted into a portion sandwiched between the leg portion 24b and the leg portion 24c of the sealing resin 24 on the mounting substrate 22, that is, the space H1. Further, the convex portion C6 is fitted into a portion sandwiched between the leg portion 24d and the leg portion 24e of the sealing resin 24, that is, the space H2. Thereby, the position of the metal cap 30 with respect to the mounting substrate 22 is determined. Simultaneously with the positioning of the metal cap 30, the convex portions C1 to C6 come into contact with the adhesive or conductive paste on the mounting substrate 22.
 金属キャップ30を嵌め合わせた後、実装基板22に熱を加え、接着剤及び導電性ペーストを硬化させる。これにより、金属キャップ30を、実装基板22に固定する。なお、金属キャップ30を実装基板22に取り付けることにより、金属キャップ30の凸部C1,C4が、実装基板22のグランド導体露出部E2,E3と接触する。これにより、金属キャップ30は、実装基板22内のグランド導体に接続され、グランド電位に保たれる。以上のような工程によりレセプタクル20が完成する。 After fitting the metal cap 30, heat is applied to the mounting substrate 22 to cure the adhesive and the conductive paste. Thereby, the metal cap 30 is fixed to the mounting substrate 22. Note that, by attaching the metal cap 30 to the mounting substrate 22, the convex portions C <b> 1 and C <b> 4 of the metal cap 30 come into contact with the ground conductor exposed portions E <b> 2 and E <b> 3 of the mounting substrate 22. Thereby, the metal cap 30 is connected to the ground conductor in the mounting substrate 22 and is kept at the ground potential. The receptacle 20 is completed by the process as described above.
(プラグと光ファイバの接続方法)
 まず、プラグ40に挿入される光ファイバ60を、所定の長さに切断する。
(Connecting method of plug and optical fiber)
First, the optical fiber 60 inserted into the plug 40 is cut into a predetermined length.
 次に、光ファイバ60の先端付近の被覆を、光ファイバ用ストリッパーを用いて除去する。先端付近の被覆を除去した後、光ファイバ60の芯線の劈開面を出すためにクリーブを行う。 Next, the coating near the tip of the optical fiber 60 is removed using an optical fiber stripper. After removing the coating in the vicinity of the tip, cleaving is performed to bring out the cleavage plane of the core wire of the optical fiber 60.
 次に、光ファイバ60の芯線の先端がプラグ40の面S9,S14の直近にくるように、光ファイバ60を開口部A1,A2から押し込む。さらに、図9に示されるプラグ40の開口部A1,A2及び凹部D3,D4に、光ファイバ60を固定するためのエポキシ樹脂などの透明樹脂を注入する。そして、透明樹脂が硬化することにより、光ファイバ60がプラグ40に固定される。 Next, the optical fiber 60 is pushed through the openings A1 and A2 so that the end of the core wire of the optical fiber 60 comes close to the surfaces S9 and S14 of the plug 40. Further, a transparent resin such as an epoxy resin for fixing the optical fiber 60 is injected into the openings A1 and A2 and the recesses D3 and D4 of the plug 40 shown in FIG. Then, the optical fiber 60 is fixed to the plug 40 by curing the transparent resin.
(光伝送モジュールの組み立て方法)
 レセプタクル20にプラグ40を接続する。プラグ40の接続は、前述したように、位置決め部材220,240の溝G1,G2にプラグ40の凸部C7,C8を沿わせて、金属キャップ30とレセプタクル20との間に設けられた開口部A3から、x軸方向の正方向側に向かって押し込むことにより行われる。以上のような製造工程を経て光伝送モジュール10が完成する。
(Assembling method of optical transmission module)
The plug 40 is connected to the receptacle 20. As described above, the plug 40 is connected to the grooves G1 and G2 of the positioning members 220 and 240 along the protrusions C7 and C8 of the plug 40 and the opening provided between the metal cap 30 and the receptacle 20. This is performed by pushing from A3 toward the positive side in the x-axis direction. The optical transmission module 10 is completed through the manufacturing process as described above.
(効果)
 プラグ40及び光ファイバ接続デバイス70では、光ファイバ60が挿入される挿入口H7,H8が、プラグ42,46の内周面S20,S22に設けられ、プラグ42,46の面S7,S12に凹部D3,D4が設けられている。つまり、凹部D3,D4は、光ファイバ60の挿入口H7,H8が設けられた面とは異なる面に設けられている。さらに、凹部D3,D4は、光ファイバ60の端面付近に設けられている。以上により、光ファイバ60が挿入される挿入口H7,H8とは別に設けられた凹部D3,D4により、光ファイバ60の端面とプラグ42,46との間に挟み込まれた気泡が、光ファイバ60に邪魔されることなく、プラグ42,46の外へ容易に抜け出ることできる。結果として、プラグ40によれば、光ファイバ60の端面とプラグ40との間に気泡が残留することを抑制する。
(effect)
In the plug 40 and the optical fiber connection device 70, insertion ports H7 and H8 into which the optical fiber 60 is inserted are provided in the inner peripheral surfaces S20 and S22 of the plugs 42 and 46, and concave portions are formed in the surfaces S7 and S12 of the plugs 42 and 46. D3 and D4 are provided. That is, the recesses D3 and D4 are provided on a surface different from the surface where the insertion ports H7 and H8 of the optical fiber 60 are provided. Further, the recesses D3 and D4 are provided in the vicinity of the end face of the optical fiber 60. As described above, the bubbles sandwiched between the end face of the optical fiber 60 and the plugs 42 and 46 by the recesses D3 and D4 provided separately from the insertion openings H7 and H8 into which the optical fiber 60 is inserted are converted into the optical fiber 60. It is possible to easily get out of the plugs 42 and 46 without being disturbed. As a result, according to the plug 40, air bubbles are prevented from remaining between the end face of the optical fiber 60 and the plug 40.
 また、凹部D3,D4の底部から開口部に向かう開口方向における凹部D3,D4の深さd1、d3は、光ファイバ60の挿入深さd2よりも浅い。従って、凹部D3,D4は、光ファイバの延在方向に延びる凹部D501と比較して、底の浅い凹部である。これにより、光ファイバ60の端面とプラグ40との間に挟み込まれた気泡が、より確実に抜け出ることできる。 Also, the depths d1 and d3 of the recesses D3 and D4 in the opening direction from the bottom of the recesses D3 and D4 toward the opening are shallower than the insertion depth d2 of the optical fiber 60. Therefore, the concave portions D3 and D4 are shallow concave portions as compared with the concave portion D501 extending in the extending direction of the optical fiber. Thereby, the air bubbles sandwiched between the end face of the optical fiber 60 and the plug 40 can be more surely escaped.
 さらに、凹部D3,D4の開口方向は、z軸方向と平行であり、光ファイバ60の延在方向と直交する方向である。そして、光ファイバ挿入部42aのz軸方向の厚みは、y軸方向の厚みよりも薄い。これにより、凹部D3,D4の底部からプラグの上面に位置する凹部D3,D4の開口部までの距離は、凹部D3,D4の開口方向が他の方向である場合と比較して、最短となる。従って、光ファイバ60の端面とプラグ40との間に挟み込まれた気泡が、凹部D3,D4よりさらに容易に抜け出ることできる。 Furthermore, the opening direction of the recesses D3 and D4 is parallel to the z-axis direction and orthogonal to the extending direction of the optical fiber 60. The thickness of the optical fiber insertion portion 42a in the z-axis direction is thinner than the thickness in the y-axis direction. Thereby, the distance from the bottom part of recessed part D3, D4 to the opening part of recessed part D3, D4 located in the upper surface of a plug becomes the shortest compared with the case where the opening direction of recessed part D3, D4 is another direction. . Therefore, the air bubbles sandwiched between the end face of the optical fiber 60 and the plug 40 can be more easily escaped from the recesses D3 and D4.
 ところで、プラグ40では、光ファイバ60の末端部分が位置すべき部位に設けられた凹部D3,D4以外に、開口部A1、A2(第2の凹部)が設けられている。これにより、開口A1,A2にも整合剤又は接着剤を注入できるため、光ファイバ60をより強固にプラグ40に固定することができる。 By the way, in the plug 40, openings A1 and A2 (second recesses) are provided in addition to the recesses D3 and D4 provided in the portion where the end portion of the optical fiber 60 is to be located. Thereby, since the matching agent or the adhesive can be injected also into the openings A1 and A2, the optical fiber 60 can be more firmly fixed to the plug 40.
 また、凹部D3,D4と開口部A1,A2には、それぞれ異なる材料を注入することができる。これにより、凹部D3,D4には、屈折率を優先した材料を注入し、開口部A1,A2には接着性を優先した材料を注入するといった選択が可能となる。 Further, different materials can be injected into the recesses D3 and D4 and the openings A1 and A2, respectively. Thereby, it is possible to select such that the material giving priority to the refractive index is injected into the recesses D3 and D4 and the material giving priority to the adhesiveness is injected into the openings A1 and A2.
 さらに、プラグ40には、突起部42b,46bが設けられている。突起部42b,46bは、プラグ40の挿抜作業の際に、把持部として機能する。これにより、光ファイバ60を把持してプラグ40の挿抜が行われないため、光ファイバ60を傷つけることがないだけなく、光ファイバ60を把持するよりも、容易にプラグを挿抜することができる。 Furthermore, the plug 40 is provided with protrusions 42b and 46b. The protrusions 42b and 46b function as gripping portions when the plug 40 is inserted and removed. As a result, the optical fiber 60 is gripped and the plug 40 is not inserted / extracted, so that the optical fiber 60 is not damaged and the plug can be inserted / extracted more easily than the optical fiber 60 is gripped.
(その他の実施形態)
 本発明に係る光ファイバ用プラグ及び光ファイバ接続デバイスは、前記実施形態に限らずその要旨の範囲内において変更可能である。
(Other embodiments)
The optical fiber plug and the optical fiber connection device according to the present invention are not limited to the above-described embodiments, and can be changed within the scope of the gist thereof.
 例えば、図12及び図13に示すように、プラグ40における凸レンズ44,48の周囲を盛り上げて保護部P1を設けてもよい。これにより、プラグ40の外部から凸レンズ44,48に対して異物が直接接触することが抑制されるため、凸レンズ44,48の損傷を防ぐことができる。 For example, as shown in FIGS. 12 and 13, the protective portion P <b> 1 may be provided by raising the periphery of the convex lenses 44 and 48 in the plug 40. Thereby, since a foreign material is suppressed from contacting the convex lenses 44 and 48 directly from the outside of the plug 40, damage to the convex lenses 44 and 48 can be prevented.
 さらに、図14及び図15に示すように、光ファイバ接続デバイス70が、複数の光ファイバ60を束ねる整列部材80を備えていていもよい。これにより、複数の光ファイバ60の延在方向が一方向を向くため、該複数の光ファイバ60に接続されたプラグ42,46も一方向を向く。従って、光ファイバ接続デバイス70が整列部材80を備えることによって、プラグ40とレセプタクル20との接続作業が容易になる。 Furthermore, as shown in FIGS. 14 and 15, the optical fiber connection device 70 may include an alignment member 80 that bundles a plurality of optical fibers 60. Thereby, since the extending direction of the plurality of optical fibers 60 faces in one direction, the plugs 42 and 46 connected to the plurality of optical fibers 60 also face in one direction. Therefore, when the optical fiber connection device 70 includes the alignment member 80, the connection work between the plug 40 and the receptacle 20 is facilitated.
 以上のように、本発明は、光ファイバの端部に取り付けられるプラグ及び該プラグを含む光ファイバ接続デバイスに対して有用であり、特に光ファイバの端面とプラグとの間に気泡が残留することを抑制することができる点において優れている。 As described above, the present invention is useful for a plug attached to an end of an optical fiber and an optical fiber connecting device including the plug, and in particular, air bubbles remain between the end face of the optical fiber and the plug. It is excellent in that it can be suppressed.
A1、A2 開口部(第2の凹部)
d1、d3 凹部の深さ
d2 光ファイバの挿入深さ
D3,D4 凹部(第1の凹部)
H7,H8 挿入口
S8、S12 第1の面
S20,S24 内周面(第2の面)
40 プラグ
42b,46b 突起部
60 光ファイバ
70 光ファイバ接続デバイス
A1, A2 opening (second recess)
d1, d3 Depth of recess d2 Depth of insertion of optical fiber D3, D4 Recess (first recess)
H7, H8 insertion slot S8, S12 1st surface S20, S24 Inner peripheral surface (2nd surface)
40 Plugs 42b, 46b Protrusion 60 Optical fiber 70 Optical fiber connection device

Claims (7)

  1.  芯線及び該芯線を覆う被覆材から構成される光ファイバの端部が挿入されるプラグであって、
     第1の面及び第2の面を有し、
     前記光ファイバが挿入される挿入口が前記第1の面に設けられ、
     透明樹脂が注入される第1の凹部が前記第2の面に設けられ、
     更に、前記第1の凹部は、前記被覆材が剥がされ、前記芯線が露出した前記光ファイバの末端部分が位置すべき部分に設けられていること、
     を特徴とする光ファイバ用プラグ。
    A plug into which an end of an optical fiber composed of a core wire and a covering material covering the core wire is inserted,
    Having a first surface and a second surface;
    An insertion port into which the optical fiber is inserted is provided in the first surface,
    A first recess into which the transparent resin is injected is provided on the second surface;
    Furthermore, the first concave portion is provided in a portion where the end portion of the optical fiber where the covering material is peeled off and the core wire is exposed, should be positioned,
    An optical fiber plug characterized by
  2.  前記第1の凹部の底部から該第1の凹部の開口部に向かう開口方向における該第1の凹部の深さは、前記光ファイバの挿入深さよりも浅いこと、
     を特徴とする請求項1に記載の光ファイバ用プラグ。
    The depth of the first recess in the opening direction from the bottom of the first recess toward the opening of the first recess is shallower than the insertion depth of the optical fiber;
    The optical fiber plug according to claim 1.
  3.  前記光ファイバの挿入方向と直交する方向における厚みは、該挿入方向における厚みよりも薄く、
     前記開口方向は、前記挿入方向と直交する方向であること、
     を特徴とする請求項1又は請求項2に記載の光ファイバ用プラグ。
    The thickness in the direction perpendicular to the insertion direction of the optical fiber is thinner than the thickness in the insertion direction,
    The opening direction is a direction orthogonal to the insertion direction;
    The optical fiber plug according to claim 1 or 2.
  4.  前記光ファイバ固定用の樹脂が注入される第2の凹部が更に設けられ、
     前記第2の凹部は、前記光ファイバの被覆材により覆われた部分が位置すべき部分に設けられていること、
     を特徴とする請求項1乃至請求項3のいずれかに記載の光ファイバ用プラグ。
    A second recess into which the optical fiber fixing resin is injected;
    The second recess is provided in a portion where the portion covered with the coating material of the optical fiber is to be located;
    The optical fiber plug according to any one of claims 1 to 3.
  5.  前記光ファイバの挿入方向と直交する方向に突出する突起部を更に設けていること、
     を特徴とする請求項1乃至請求項4のいずれかに記載の光ファイバ用プラグ。
    A protrusion that protrudes in a direction perpendicular to the insertion direction of the optical fiber is further provided;
    The optical fiber plug according to any one of claims 1 to 4, wherein:
  6.  請求項1乃至請求項5のいずれかに記載の光ファイバ用プラグと、
     光ファイバと、
     透明樹脂と、
     を備え、
     前記透明樹脂は、前記第1の凹部に注入され、前記光ファイバの界面付近における光の反射を軽減する整合剤であること、
     を特徴とする光ファイバ接続デバイス。
    An optical fiber plug according to any one of claims 1 to 5,
    Optical fiber,
    Transparent resin,
    With
    The transparent resin is a matching agent that is injected into the first recess and reduces reflection of light near the interface of the optical fiber;
    An optical fiber connecting device.
  7.  光ファイバ固定用の樹脂を更に備え、
     前記光ファイバ固定用の樹脂は、前記第2の凹部に注入され、前記透明樹脂と異なる材質であること、
     を特徴とする請求項6に記載の光ファイバ接続デバイス。
    It further comprises a resin for fixing the optical fiber,
    The optical fiber fixing resin is injected into the second recess and is made of a material different from the transparent resin.
    The optical fiber connecting device according to claim 6.
PCT/JP2013/071778 2012-08-23 2013-08-12 Optical fiber plug and optical fiber connection device WO2014030567A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW102130400A TWI483020B (en) 2012-08-23 2013-08-23 Fiber optic plug and fiber optic connection components

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2012184391 2012-08-23
JP2012-184391 2012-08-23
JP2012-200652 2012-09-12
JP2012200652 2012-09-12
JP2012221552 2012-10-03
JP2012-221552 2012-10-03
JP2013-153713 2013-07-24
JP2013153713 2013-07-24

Publications (1)

Publication Number Publication Date
WO2014030567A1 true WO2014030567A1 (en) 2014-02-27

Family

ID=50149876

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/071778 WO2014030567A1 (en) 2012-08-23 2013-08-12 Optical fiber plug and optical fiber connection device

Country Status (2)

Country Link
TW (1) TWI483020B (en)
WO (1) WO2014030567A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016121177A1 (en) * 2015-01-30 2016-08-04 株式会社村田製作所 Receptacle, connector set, and receptacle production method
WO2016121173A1 (en) * 2015-01-30 2016-08-04 株式会社村田製作所 Connector and connector set

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6063810U (en) * 1983-10-05 1985-05-04 山一電機株式会社 Plug attachment/detachment mechanism
JPH09113763A (en) * 1995-10-13 1997-05-02 Fujikura Ltd Method for assembling optical connector
JP2006184794A (en) * 2004-12-28 2006-07-13 Sumitomo Electric Ind Ltd Optical connector and its assembling method
JP2008151843A (en) * 2006-12-14 2008-07-03 Omron Corp Optical component for optical transmission and method of manufacturing same
JP2009258510A (en) * 2008-04-18 2009-11-05 Fujikura Ltd Optical connector
JP2012013805A (en) * 2010-06-29 2012-01-19 Fujikura Ltd Ferrule and ferrule with optical fiber

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012105354A1 (en) * 2011-02-03 2012-08-09 株式会社村田製作所 Optical module

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6063810U (en) * 1983-10-05 1985-05-04 山一電機株式会社 Plug attachment/detachment mechanism
JPH09113763A (en) * 1995-10-13 1997-05-02 Fujikura Ltd Method for assembling optical connector
JP2006184794A (en) * 2004-12-28 2006-07-13 Sumitomo Electric Ind Ltd Optical connector and its assembling method
JP2008151843A (en) * 2006-12-14 2008-07-03 Omron Corp Optical component for optical transmission and method of manufacturing same
JP2009258510A (en) * 2008-04-18 2009-11-05 Fujikura Ltd Optical connector
JP2012013805A (en) * 2010-06-29 2012-01-19 Fujikura Ltd Ferrule and ferrule with optical fiber

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016121177A1 (en) * 2015-01-30 2016-08-04 株式会社村田製作所 Receptacle, connector set, and receptacle production method
WO2016121173A1 (en) * 2015-01-30 2016-08-04 株式会社村田製作所 Connector and connector set
JPWO2016121173A1 (en) * 2015-01-30 2017-10-12 株式会社村田製作所 Connector and connector set
US10094993B2 (en) 2015-01-30 2018-10-09 Murata Manufacturing Co., Ltd. Connector and connector set with asymmetric coupled surfaces
US10345541B2 (en) 2015-01-30 2019-07-09 Murata Manufacturing Co., Ltd. Receptacle and connector set

Also Published As

Publication number Publication date
TWI483020B (en) 2015-05-01
TW201415107A (en) 2014-04-16

Similar Documents

Publication Publication Date Title
TWI589941B (en) Optical transmission module and method of manufacturing optical transmission module
TWI521250B (en) Electrical-to-optical and optical-to-electrical converter plug
US7543993B2 (en) Fiber-coupled optical device mounted on a circuit board
US9581772B2 (en) Optical electrical module used for optical communication
KR20140146647A (en) Hermetic optical fiber alignment assembly having integrated optical element
JP6070709B2 (en) Optical transmission module
US7329052B2 (en) Method of assembling optoelectronic devices and an optoelectronic device assembled according to this method
JP2013134465A (en) Optical ferrule and optical connector
US10451822B2 (en) Optical module manufacturing method, optical module receptacle and optical module
WO2014030567A1 (en) Optical fiber plug and optical fiber connection device
JPWO2013001925A1 (en) plug
KR101256814B1 (en) All passive aligned optical module and manufacturing method thereof
JP6083437B2 (en) Positioning member, receptacle, and optical transmission module
CN112352173B (en) Optical path bending connector and optical path bending connector assembly
WO2014030566A1 (en) Receptacle and optical transmission module
KR102430632B1 (en) Optical connector member, optical connector kit using same, and optical wiring obtained by same
JP6295709B2 (en) Receptacle and optical transmission module manufacturing method
KR101491598B1 (en) Optical transmission module
JP2010237267A (en) Optical fiber module
US20140023323A1 (en) Optical connector and fitted unit
EP3872546B1 (en) Optical connector and optical connector device
JP2014178598A (en) Optical element module
JP2012203115A (en) Optical coupling element and manufacturing method thereof
JP2010250106A (en) Optical connector, method of manufacturing optical fiber module using the same, and optical fiber module
TW201346365A (en) Photoelectric conversion and transmission module

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13830376

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13830376

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP