WO2014030242A1 - 燃焼システム - Google Patents

燃焼システム Download PDF

Info

Publication number
WO2014030242A1
WO2014030242A1 PCT/JP2012/071327 JP2012071327W WO2014030242A1 WO 2014030242 A1 WO2014030242 A1 WO 2014030242A1 JP 2012071327 W JP2012071327 W JP 2012071327W WO 2014030242 A1 WO2014030242 A1 WO 2014030242A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel
supply pipe
water
nozzle
pump
Prior art date
Application number
PCT/JP2012/071327
Other languages
English (en)
French (fr)
Inventor
敬二郎 塩出
正 田口
Original Assignee
やまと総合環境株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by やまと総合環境株式会社 filed Critical やまと総合環境株式会社
Priority to EP12883174.0A priority Critical patent/EP2889538A1/en
Priority to PCT/JP2012/071327 priority patent/WO2014030242A1/ja
Priority to JP2014531458A priority patent/JPWO2014030242A1/ja
Priority to TW101137431A priority patent/TW201408953A/zh
Publication of WO2014030242A1 publication Critical patent/WO2014030242A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C99/00Subject-matter not provided for in other groups of this subclass
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D11/00Burners using a direct spraying action of liquid droplets or vaporised liquid into the combustion space
    • F23D11/10Burners using a direct spraying action of liquid droplets or vaporised liquid into the combustion space the spraying being induced by a gaseous medium, e.g. water vapour
    • F23D11/16Burners using a direct spraying action of liquid droplets or vaporised liquid into the combustion space the spraying being induced by a gaseous medium, e.g. water vapour in which an emulsion of water and fuel is sprayed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23KFEEDING FUEL TO COMBUSTION APPARATUS
    • F23K5/00Feeding or distributing other fuel to combustion apparatus
    • F23K5/02Liquid fuel
    • F23K5/08Preparation of fuel
    • F23K5/10Mixing with other fluids
    • F23K5/12Preparing emulsions

Definitions

  • the present invention relates to a combustion system that can generate water emulsion fuel and burn it.
  • the fuel pressurized by the eruption pump is maintained at a constant pressure by the relief valve, and the combustion amount is determined by the oil amount adjustment valve, Further, when passing through the mixer, water is injected by a proportional water injection mechanism. Here, water and fuel are mixed and supplied to the burner.
  • the internal pressure of the mixer changes because the passage resistance of the burner (9) fluctuates due to the increase or decrease in the combustion amount or the water addition rate.
  • the internal pressure of the mixer also changes due to fluctuations in the amount of combustion, even in the proportional water injection mechanism, the pressure at the injection point changes significantly, causing a change in the injection amount and causing a fire or the like.
  • an emulsion pump is provided at the outlet of the mixer, and a pressure reducing valve is provided between the mixer outlet and the mixer inlet. It was installed in a direction to keep the pressure of. As a result, even if the combustion amount and the water content change, the pressure before and after the oil amount adjusting valve and the proportional water injection mechanism is kept constant so that smoke and fire do not occur (see, for example, Patent Document 1).
  • the pressure is controlled by the pressure between the jet pump and the discharge amount of the burner nozzle, and the pressure in the pipe is reduced due to the correlation that the fuel amount decreases as the water amount increases. Does not fluctuate significantly. Therefore, it is unlikely that the phenomenon described in Patent Document 1 will occur.
  • the second water emulsion fuel supply device In the second water emulsion fuel supply device, a dedicated emulsion pump and a pressure reducing valve are required. When the fuel mixed with water is sent to the pressure reducing valve side, friction expansion occurs in the pressure reducing valve, resulting in lack of lubricity, and pressure adjustment may become impossible (failure). Further, the second water emulsion fuel supply device basically assumes a large-capacity combustion device (ship, large electric furnace) and cannot be applied to a general combustion device at all.
  • the present invention is a combustion system capable of coping with all liquid fuels in a unified manner, enabling mixed combustion of petroleum fuel (or a mixed fuel of petroleum fuel and other liquid fuel) and water, and is difficult to burn.
  • the purpose is to provide a combustion system that can prevent global warming and reduce harmful exhaust gas by clean combustion of fuel.
  • the combustion system includes a fuel tank, a pump that pressurizes the fuel supplied from the fuel tank, a first nozzle portion that injects the pressurized fuel into the combustion chamber, the first nozzle portion, and the pump.
  • the present invention since water and main liquid fuel are not mixed in advance and only water is injected into the main liquid fuel, the influence of nozzle clogging due to sludge and fine particles in the fuel can be avoided. And the long-term stable operation of a combustion system is securable from the ease of the apparatus which can manage only water independently.
  • the water content can be adjusted only with water according to the type and capacity of the combustion device, the device structure can be simplified, and the size and cost can be reduced. Furthermore, the problem of non-ignition and the failure of the fuel injection pump found in the conventional apparatus can be solved.
  • liquid fuels with different fuel components have been required to be handled as individual water emulsion devices, but according to the present invention, a unified combustion system can be used regardless of the type or standard of the combustion furnace or internal combustion engine. In addition, the versatility can be enhanced and a wider range of environmental measures can be taken.
  • the system diagram which showed typically the whole structure of the combustion system of 1st Embodiment. Sectional drawing which expanded and showed the chamber of the combustion system shown in FIG. The microscope picture of the fuel sample extract
  • a combustion system 11 includes a combustion device 12 (main liquid fuel operation device) constituted by a boiler, a water emulsion fuel device 13 that generates water emulsion fuel, and a water emulsion fuel device.
  • 13 includes a high pressure pump device 14 (supply unit) that supplies water to 13, a combustion device 12, a water emulsion fuel device 13, and a control device 15 that controls the high pressure pump device 14.
  • the combustion system 11 includes a fuel tank 16 in which fuel (main liquid fuel, for example, petroleum fuel) is stored, a fuel injection pump 17 (pump) connected to the fuel tank 16 and receiving fuel supply from the fuel tank 16, a fuel A fuel pipe 18 that connects the tank 16 and the fuel injection pump 17, a first flow meter 21 provided in the fuel pipe 18, and a combustion nozzle 22 that injects fuel pressurized by the fuel injection pump 17 into the combustion chamber (the first 1 nozzle part), a combustion device 12 provided with a combustion chamber, a supply pipe 23 connecting the combustion nozzle 22 and the fuel injection pump 17, a first pressure gauge 24 provided in the middle of the supply pipe 23, and a combustion nozzle A first electromagnetic valve provided in the middle of the supply pipe 23 at a position between the combustion nozzle 22 and the chamber 25 and a chamber 25 (connection portion) provided in the supply pipe 23 in the vicinity of 22.
  • fuel main liquid fuel, for example, petroleum fuel
  • Nozzle portion 32 is a high-pressure pump device 14 (supply unit) for supplying water into the supply pipe 23 via the chamber 25 (connection portion), and a second interposed between the high-pressure pump device 14 and the chamber 25.
  • the fuel injection pump 17 (first pump), the first pressure gauge 24, the chamber 25 (connecting portion), the circulation line 27, the second electromagnetic valve 28, and the flow pressure regulating electromagnetic valve 31 are the water emulsion fuel device. 13 included.
  • the combustion nozzle 22 is included in the combustion device 12.
  • the first solenoid valve 26 turns fuel supply ON / OFF.
  • the pressure of the fuel pressurized by the fuel injection pump 17 and passing through the supply pipe 23 is, for example, 1.0 MPa.
  • the pressure of the fuel in a general combustion furnace is in the range of 0.3 MPa to 10 MPa. Therefore, also in this embodiment, the pressure of the fuel pressurized by the fuel injection pump 17 can be appropriately set in the range of 0.3 MPa to 10 MPa.
  • the fuel stored in the fuel tank 16 is, for example, heavy oil (for example, A heavy oil, C heavy oil), but other fuels (such as light oil) may be used.
  • the flow rate at which the fuel flows through the supply pipe 23 is, for example, 0.2 m / s, but may be 0.2 m / s or more.
  • the high-pressure pump device 14 (supply unit) includes a water tank 33 that stores water therein, water supplied from the water tank 33, and water that is pressurized by the second nozzle portion 32.
  • a high pressure pump 34 (second pump) to be sent, a water supply line 35 connecting the high pressure pump 34 and the second nozzle portion 32, a return circuit 36 returning from the water supply line 35 into the water tank 33, and a return circuit 36
  • a flow rate adjusting valve 37 provided in the middle, a second pressure gauge 39 provided in the middle of the water supply line 35, and a second flow meter 38 provided in the middle of the water supply line 35 are provided.
  • the configuration of the high-pressure pump device 14 is not necessarily integrated.
  • the high-pressure pump device 14 may not include the tank function (water tank 33).
  • the tank function water tank 33 is provided separately from the high-pressure pump device 14.
  • the high-pressure pump device 14 can supply water (main liquid fuel) with water having a pressure higher than that of the pressurized fuel (main liquid fuel).
  • the pressure of water pressurized by the high-pressure pump 34 is, for example, 1.5 MPa, but as appropriate within a range 0.5 MPa to 10 MPa higher than the pressure of fuel pressurized by the fuel injection pump 17 as will be described later. Can be set.
  • a third electromagnetic valve 41 is interposed between the chamber 25 and the high-pressure pump device 14.
  • the high-pressure pump 34 is, for example, a commercially available plunger pump, but may be a commercially available diaphragm pump. Further, a metering pump can be employed as the high-pressure pump 34. In this case, it is possible to supply water at a constant pressure and a constant discharge pressure by directly connecting to the water supply facility without using the water tank 33, so that further compactness can be achieved.
  • the chamber 25 (connection portion) is configured to be detachable from a supply pipe 23 or the like of an existing boiler facility or the like.
  • the chamber 25 is continuous with the first end 42 connected to the upstream side of the supply pipe 23, the second end 43 connected to the downstream side of the supply pipe 23, and the first end 42, and the supply pipe
  • the first portion 44 having an inner diameter larger than the inner diameter of the first portion 44, the second portion 45 that is continuous with the first portion 44 and the second end portion 43 and has a tapered shape, and the second end portion 43.
  • an inspection hole 46 is configured to be detachable from a supply pipe 23 or the like of an existing boiler facility or the like.
  • the chamber 25 is continuous with the first end 42 connected to the upstream side of the supply pipe 23, the second end 43 connected to the downstream side of the supply pipe 23, and the first end 42, and the supply pipe
  • the first portion 44 having an inner diameter larger than the inner diameter of the first portion 44, the second portion 45 that is continuous with the first portion 44 and the second end portion 43 and has
  • the second nozzle portion 32 is connected to the first portion 44 of the chamber 25 in a direction orthogonal to the direction in which the supply pipe 23 extends.
  • the second nozzle part 32 is constituted by one.
  • the second nozzle portion 32 is provided at a position as close as possible to the chamber 25.
  • a standard straight nozzle orifice diameter: CP small hole diameter nozzle 0.3 mm
  • Other types of nozzles can also be used for the second nozzle portion 32.
  • the small hole diameter may be about 0.1 mm to 3 mm, and the shape of the nozzle may be a full cone type or a hollow cone type.
  • the types of the second nozzle section 32 are various, and the selection varies depending on the type of burner, and there are ON / OFF type control, three-position position type control, or proportional control type, which varies depending on the situation of each combustion device. .
  • the installation angle of the second nozzle part 32 is not limited to the direction orthogonal to the direction in which the supply pipe 23 extends. As indicated by a broken line in FIG. 2, the direction may be an oblique direction with respect to the direction in which the supply pipe 23 extends, or may be a direction parallel to the direction in which the supply pipe 23 extends. In particular, when the flow velocity of the fuel (main liquid fuel) in the pipe is slow, the second nozzle portion 32 is attached to be inclined with respect to the direction in which the supply pipe 23 extends (the flow direction of the fuel), so It is better to promote dispersion and mixing.
  • the fuel in the fuel tank 16 is sent to the fuel injection pump 17.
  • the fuel pressurized by the fuel injection pump 17 is supplied to the fuel injection pump 17 through the supply pipe 23.
  • pressurized water is jetted from the second nozzle part 32.
  • the water emulsion fuel produced by the high-pressure injection of water is injected from the combustion nozzle 22 into the combustion chamber of the combustion device 12 and burned.
  • the flow regulating solenoid valve 31 of the circulation line 27 is opened and adjusted to the main liquid fuel amount suitable for the air amount at the time of water emulsion fuel. Avoid black smoke.
  • the main liquid fuel amount increases and smoke generation due to a shortage of air amount is considered (air auto Except when a regulator is installed.)
  • the flow regulating solenoid valve 31 is opened, and the main liquid fuel is reduced to an amount commensurate with the amount of air to prevent black smoke from being generated in an abnormal state.
  • non-ignition is prevented by the following method. That is, during the pre-purge of the fuel injection pump 17 (until the pressure is stabilized), the second electromagnetic valve 28 is opened for several seconds, and the main pipe in the supply pipe 23 to the fuel pipe 18, the fuel injection pump 17, and the chamber 25 is opened. A liquid fuel and a water emulsion fuel having a high water content are mixed. Thereby, non-ignition can be prevented.
  • the moisture content is 20% or more.
  • the moisture content is 20% or less, almost no ignition occurs.
  • the operation adjustment of the combustion device 12, the water emulsion fuel device 13, and the high-pressure pump device 14 is performed by a sequencer of the control device 15.
  • the water atomization in the second nozzle part 32 will be described.
  • water is injected into the fuel flowing through the supply pipe 23 from the second nozzle portion 32 (fine nozzle) at high pressure, and water is finely divided by the discharge speed (or momentum) of the high pressure injection and the reaction force of the main liquid fuel.
  • the water particles are mixed so as to be evenly dispersed in the fuel.
  • the phenomenon of the present invention is obtained by replacing the atomization theory in the air with the liquid, and in the air, the average particle diameter at a point of 300 mm is generally used, but in the liquid, it is much faster than in the air. Fine particles at speed.
  • the inventors of the present invention conducted an experiment to investigate the optimum conditions of the fuel pressure and the pressure of water added to the fuel.
  • the experiment was conducted by examining the relationship between the pressure difference between the pressure of the fuel (main liquid fuel) and the pressure of water and the average particle size (or maximum particle size) of water particles.
  • a sample of water emulsion fuel in each condition was taken from the inspection hole 46 of the chamber 25.
  • the inventors examined the dispersion state of water particles under a microscope (for example, VH5500 manufactured by Keyence) and measured the average particle size (or maximum particle size) of the water particles for each sample.
  • a microscope for example, VH5500 manufactured by Keyence
  • FIG. 3 shows a photomicrograph taken at a magnification of 2000, and the particle size (average particle size) of water particles is measured in such a photomicrograph (image).
  • the portion where the round water particles are not visible is water particles and fuel of 450 nm or less.
  • FIG. 5 is a graph showing the relationship between the pressure difference between the fuel (main liquid fuel) pressure and the water pressure and the average particle size of the water particles.
  • the portion of 1 MPa in the horizontal axis indicates that the pressure of water injected into the fuel (main liquid fuel) by the second nozzle portion 32 is 1 MPa higher than the pressure of the fuel.
  • the water particles in the emulsion fuel it is desirable that the water particles have a particle diameter that is smaller than the fuel injection droplet diameter and is mixed with a uniform water content. Therefore, when the average particle diameter of the fuel injection droplets is 30 ⁇ m to 50 ⁇ m, at least the average diameter of the water particles is theoretically 10 ⁇ m or less. Generally, it can be used as a water emulsion fuel when the average particle diameter of water particles is 14 ⁇ m or less, and the case where the average particle diameter of water particles is 10 ⁇ m or less is ideal as a water emulsion fuel.
  • the water added with respect to the pressurized fuel has a pressure higher than the pressure of the fuel pressurized by the fuel injection pump 17, for example, a pressure higher by about 0.5 MPa to 10 MPa.
  • the combustion system 11 includes a fuel tank 16, a pump that pressurizes the fuel supplied from the fuel tank 16, a first nozzle unit that injects the pressurized fuel into the combustion chamber, A supply pipe 23 that connects the one nozzle part and the pump and through which pressurized fuel passes, a connection part provided in the middle of the supply pipe 23 in the vicinity of the first nozzle part, and a supply pipe 23 via the connection part A supply unit for supplying water therein, and a second nozzle part 32 which is interposed between the supply unit and the connection part and can atomize and inject water into the connection part.
  • high-pressure water is mixed with the pressurized fuel to produce a water-emulsion fuel, and thereafter, the water-emulsion fuel can be maintained in a high-pressure state until it is used in the first nozzle part.
  • the water emulsion fuel is supplied in a pressurized state. Due to the presence in the tube 23, water particles are not vaporized in the water emulsion fuel even when heated.
  • the water emulsion fuel can be generated immediately before being used in the first nozzle portion, there is no time for water to aggregate in the water emulsion fuel as described above. For this reason, it can prevent that the said malfunction arises in water emulsion fuel.
  • the mixer and the water emulsion fuel dedicated pump that are conventionally required are not required, and the apparatus configuration can be simplified, reduced in cost, and made compact.
  • the existing equipment does not require major modifications.
  • the water emulsion fuel can be generated without using an expensive surfactant, the running cost of the apparatus can be reduced.
  • the water pressure is 0.5 MPa to 10 MPa higher than the pressure of the pressurized fuel.
  • water fine particles are sufficiently formed in the water emulsion fuel by the momentum of the water injection force.
  • water particles in the fuel in the combustion chamber receive the heat in the combustion chamber and reach the boiling point to cause a micro explosion, whereby the sprayed oil droplets can be made into secondary particles.
  • the area where the fuel comes into contact with the air is greatly increased, combustion close to complete combustion is achieved, and clean combustion with reduced generation of unburned carbon (soot) and NOx in the combustion exhaust gas can be achieved.
  • connection portion in the vicinity of the first nozzle portion means that the connection portion is in the vicinity of the first nozzle portion, and the end portion on the first nozzle portion (combustion nozzle 22) side in the supply pipe 23.
  • the connecting portion is provided within a range of approximately one third of the total length of the supply pipe 23 (more preferably, 10% to 20% with respect to the total length of the supply pipe 23).
  • the connecting portion is a chamber 25 that can be attached to and detached from the supply pipe 23. According to this configuration, the fuel can be changed to the water emulsion fuel without significantly changing the existing equipment, and the initial cost at the time of introduction can be reduced.
  • the second nozzle part 32 is inclined with respect to the direction in which the supply pipe 23 extends. As a result, water can be injected at a constant angle with respect to the fuel flow direction, turbulent flow can be generated in the connecting portion, and mixing of the main liquid fuel and water particles can be promoted, resulting in high quality. Water emulsion fuel can be produced.
  • the throttle unit 51 of the second embodiment may be provided on the downstream side of the second nozzle unit 32 in the chamber 25 (connection unit).
  • a second embodiment of the combustion system will be described with reference to FIG.
  • the chamber 25 and the second nozzle portion 32 are different from those of the first embodiment, but other parts are common to the first embodiment. For this reason, a different part from 1st Embodiment is mainly demonstrated, and illustration is abbreviate
  • the combustion system 11 of the second embodiment has the same configuration as the overall configuration of the first embodiment shown in FIG.
  • the chamber 25 (connection portion) is configured to be detachable with respect to the supply pipe 23 of the existing boiler equipment or the like.
  • the chamber 25 is continuous with the first end 42 connected to the upstream side of the supply pipe 23, the second end 43 connected to the downstream side of the supply pipe 23, and the first end 42, and the supply pipe
  • the first portion 44 having an inner diameter larger than the inner diameter of the first portion 44, the throttle portion 51 provided in the first portion 44 and having a smaller inner diameter than the other portions of the first portion 44, the first portion 44, and the second portion.
  • a second portion 45 that is continuous with the end portion 43 and has a tapered shape, and an inspection hole 46 provided in the second end portion 43 are included.
  • the second nozzle part 32 has a plurality of (for example, three) second nozzles 32A.
  • the number of second nozzles 32A may be two, or four or more.
  • the second nozzles 32 ⁇ / b> A are provided in the first portion 44, and are alternately provided along the direction in which the supply pipe 23 extends (the fuel flow direction).
  • Each second nozzle 32 ⁇ / b> A is installed obliquely with respect to the direction in which the supply pipe 23 extends.
  • the second nozzle 32A is a standard straight nozzle made by Ikeuchi Co., Ltd. (orifice diameter: CP small hole diameter nozzle 0.3 mm), but other types of nozzles can also be used as in the first embodiment. is there.
  • the fuel pressure and water pressure conditions are the same as in the first embodiment.
  • the throttle part 51 is provided on the downstream side of the second nozzle part 32.
  • the second nozzle portion 32 includes a plurality of second nozzles 32A, and the plurality of second nozzles 32A are arranged alternately along the direction in which the supply pipe 23 extends. According to this configuration, it becomes easier to cause turbulent flow in the connecting portion, and the mixing of the main liquid fuel and water particles can be further promoted.
  • connection portion is provided on the downstream side of the first portion 44 provided with the second nozzle portion 32 and the second nozzle portion 32 of the first portion 44, and has an inner diameter that is smaller than that of other portions in the first portion 44. And a narrowed throttle part 51.
  • Karman vortices can be generated on the downstream side of the throttle portion 51, whereby the main liquid fuel and water particles can be mixed and the water particles can be dispersed in the main liquid fuel.
  • a third embodiment of the combustion system 11 will be described with reference to FIG.
  • the chamber 25 and the second nozzle part 32 are different from those of the first embodiment, but the other parts are common to the first embodiment. For this reason, a different part from 1st Embodiment is mainly demonstrated, and illustration is abbreviate
  • the combustion system 11 of the third embodiment has the same configuration as the overall configuration of the first embodiment shown in FIG.
  • the chamber 25 (connection portion) is configured to be detachable with respect to the supply pipe 23 of the existing boiler equipment or the like.
  • the chamber 25 is continuous with the first end 42 connected to the upstream side of the supply pipe 23, the second end 43 connected to the downstream side of the supply pipe 23, and the first end 42, and the supply pipe
  • a first portion 44 having an inner diameter greater than the inner diameter of the first portion 44
  • a second portion 45 that is continuous with the first portion 44 and the second end portion 43 and is tapered
  • the first portion 44 and the second portion 45 and a collision plate 61 that faces the second nozzle portion 32 and an inspection hole 46 provided in the second end portion 43.
  • the collision plate 61 includes a plate-like portion 62 and a protruding portion 63 that protrudes from the plate-like portion 62 toward the second nozzle portion 32.
  • the protruding portion 63 has, for example, a conical shape with a tip portion facing the second nozzle portion 32 as a whole, and the conical tip portion is removed to form a rounded shape.
  • the second nozzle portion 32 is provided along the direction in which the supply pipe 23 extends. For this reason, the 2nd nozzle part 32 can inject high pressure water along what is called a fuel flow direction.
  • the water jetted at a high pressure from the second nozzle part 32 hits the collision plate 61 and is instantly crushed and diffused into the main liquid fuel while being atomized. Further, mixing / dispersing is further promoted by Karman vortices (schematically indicated by arrows in FIG. 7) generated behind (downstream) the collision plate 61.
  • the collision plate 61 may be required to be installed when the amount of water injection from the nozzle is large and the nozzle diameter needs to be increased. However, if the nozzle injection amount is small and the diameter is small, the collision plate 61 You may atomize by pressure injection like 1st Embodiment, without using 61.
  • the chamber 25 includes the first end 42 connected to the upstream side of the supply pipe 23, the second end 43 connected to the downstream side of the supply pipe 23, and the first end 42. It is continuous, has a larger inner diameter than the inner diameter of the supply pipe 23, is continuous with the first portion 44 provided with the second nozzle portion 32, the first portion 44 and the second end portion 43, and has a tapered shape. And a collision plate 61 provided at the boundary between the first portion 44 and the second portion 45 and facing the second nozzle portion 32.
  • the combustion system 11 of the fourth embodiment is different from the first embodiment in that it has the mixed liquid device 71 and a part of the configuration of the high-pressure pump device 14, but the other parts are the first. This is common with the embodiment. For this reason, a different part from 1st Embodiment is mainly demonstrated, and illustration is abbreviate
  • the combustion system 11 includes a combustion device 12 (main liquid fuel operation device) configured by a boiler, a water emulsion fuel device 13 that generates water emulsion fuel, and a high-pressure pump device 14 that supplies water to the water emulsion fuel device 13. And a liquid mixture device 71 (second supply unit, supply unit), a combustion device 12, a water emulsion fuel device 13, a high-pressure pump device 14, and a control device 15 that controls the liquid mixture device 71.
  • a combustion device 12 main liquid fuel operation device
  • a water emulsion fuel device 13 that generates water emulsion fuel
  • a high-pressure pump device 14 that supplies water to the water emulsion fuel device 13.
  • a liquid mixture device 71 second supply unit, supply unit
  • the combustion system 11 includes a second pipe 70 (second connecting portion, connecting portion) and an injection nozzle 72 that is connected to the liquid mixture device 71 and injects second fuel into the second chamber 70. In the middle of this, it has in the upstream (fuel injection pump 17 side) rather than the chamber 25 (connection part).
  • the mixed liquid device 71 (second supply unit, supply unit) can supply the second fuel different from the fuel (main liquid fuel) into the supply pipe 23.
  • the liquid mixture device 71 receives a second fuel from a storage / stirring tank 73 (a storage / mixing tank, a second fuel tank) in which a second fuel different from the main liquid fuel is stored.
  • a fourth electromagnetic valve 82 is interposed between the second chamber 70 and the mixed liquid device 71.
  • the third pump 74 pressurizes the second fuel passing through the second fuel supply line 75 to make the pressure higher than the fuel passing through the supply pipe 23 (main liquid fuel).
  • a communication line 83 and a fifth electromagnetic valve 84 provided on the communication line 83 are provided between the water supply line 35 of the high-pressure pump device 14 and the second fuel supply line 75 of the mixed liquid device 71.
  • the second fuel include various alcohols typified by ethanol and methanol, glycerin, BDF (registered trademark), crude vegetable oil, waste edible oil, waste oil, and the like.
  • Ethanol includes ethanol obtained from cereals, sugar cane and vegetation.
  • BDF (registered trademark) and crude vegetable oil are obtained from waste edible oil, palm, rapeseed, jatropha, algae and the like.
  • combustion flow of this embodiment will be described.
  • the combustion flow described below differs depending on the type of mixed fuel (second fuel) mixed with the main liquid fuel.
  • the mixed fuel is an alcohol such as ethanol or methanol
  • An alcohol mixed with an arbitrary amount of water in advance is put into the storage / stirring tank 73, and an arbitrary amount is injected into the second chamber 70 while stirring is continued in the storage / stirring tank 73.
  • the injection nozzle 72 is the same as the second nozzle portion 32 of the first embodiment. Accordingly, the pressure of the aqueous alcohol solution from the injection nozzle 72 to the fuel flowing through the supply pipe 23 is appropriately set within a range of 0.5 MPa to 10 MPa higher than the pressure of the fuel pressurized by the fuel injection pump 17.
  • the mixed fuel is alcohol as in this example, water is mixed with alcohol in advance, so that the high-pressure pump device 14 for supplying water as in the first embodiment is not required.
  • the glycerin may contain KOH and NaOH washing residue used in the alkaline catalyst method in the purification process of BDF (registered trademark), and free fatty acids in BDF (registered trademark) purification of waste cooking oil. There is a need for removal of these residual materials or heat treatment.
  • Glycerin is put into the storage / stirring tank 73 under these conditions, and fluidity is secured while heating / stirring.
  • the heating unit is provided in each part of the storage / stirring tank 73 and the second fuel supply line 75. An arbitrary amount of glycerin is injected into the fuel (main liquid fuel) in the second chamber 70.
  • water fuel that has been pressurized by the fuel injection pump 17
  • the water pressure is appropriately set within a range of 0.5 MPa to 10 MPa higher than the pressure of the pressure.
  • water is atomized by the discharge speed (or momentum) of the high pressure injection and the reaction force of the fuel and the second fuel.
  • the water particles are mixed so that they are evenly dispersed in the fuel.
  • the injection nozzle 72 is cleaned with water.
  • the fourth electromagnetic valve 82 is closed and the fifth electromagnetic valve 84 is opened to pass water from the high-pressure pump device 14 to the communication line 83.
  • the inside of the chamber 70 is washed with high-pressure water. Since glycerin has a higher viscosity and less heat than other mixed fuels, a balance between the dilution ratio of water and the combustion effect is required.
  • BDF registered trademark
  • waste edible oil waste oil
  • waste oil waste oil
  • heating is required.
  • these fuels from which dust and the like have been removed are put into the storage / stirring tank 73. Heated by a heating unit (not shown) and sent from the third pump 74 to the second chamber 70 with stirring.
  • These fuels do not greatly affect the main liquid fuel if the viscosity is adjusted by heating.
  • the higher the mixability the more the air management and fuel discharge conditions are constant.
  • the injection nozzle 72 has a larger diameter than the second nozzle part 32, and has a lower pressure than the water injected from the second nozzle part 32 and a higher pressure than the main liquid fuel, and may be dispersed.
  • the particle diameter of the particles ejected from the ejection nozzle 72 need not be too particular. In order to prevent the injection nozzle 72 from being clogged, the same treatment as that for glycerin is performed after the injection is stopped.
  • BDF registered trademark
  • water is supplied from the second nozzle portion 32 to the high pressure (fuel) with respect to the fuel flowing through the supply pipe 23 and the second fuel (BDF (registered trademark)), as in the first embodiment.
  • the water pressure is set appropriately within the range of 0.5 MPa to 10 MPa higher than the pressure of the fuel pressurized by the injection pump 17.)
  • the discharge speed (or momentum) of the high pressure injection and the fuel and the second fuel While the water is atomized by the reaction force, at the same time, the water particles are mixed so that the water particles are evenly dispersed in the fuel to produce a water emulsion fuel.
  • the combustion system 11 is provided in the supply pipe 23 via the second connection part provided in the supply pipe 23 and upstream of the connection part in the vicinity of the connection part and the second connection part.
  • a second supply unit for supplying a second fuel different from the fuel, and the supply unit is also connected to the second connection portion.
  • a different type of second fuel can be mixed with the fuel (main liquid fuel). Furthermore, since the supply unit which can supply water is connected also to a 2nd connection part, the 2nd connection part can be wash
  • the combustion system 11 includes a fuel tank 16, a pump that pressurizes fuel supplied from the fuel tank, a first nozzle unit that injects pressurized fuel into the combustion chamber, A supply pipe 23 that connects the first nozzle part and the pump and through which the pressurized fuel passes, a connection part provided in the middle of the supply pipe 23 in the vicinity of the first nozzle part, and a supply through the connection part A supply unit that supplies an aqueous alcohol solution into the pipe 23, and a second nozzle portion 32 that is interposed between the supply unit and the connection portion and that can atomize the aqueous alcohol solution into the connection portion and spray it.
  • biofuel vegetable oil
  • main liquid fuel main liquid fuel
  • biofuels include ethanol, glycerin, BDF (registered trademark), crude vegetable oils (low-processed products made of palm, jatroha, etc.), waste edible oils, and the like.
  • main liquid fuel light oil, A heavy oil, C heavy oil
  • vegetable ethanol oil are not soluble at all and cannot be simply mixed and burned.
  • glycerin is not soluble in main liquid fuel (light oil, A heavy oil, C heavy oil).
  • a fifth embodiment of the combustion system will be described with reference to FIG.
  • the combustion system 11 of 5th Embodiment differs from the thing of 1st Embodiment by the point whose application object is a ship, the other part is common in 1st Embodiment.
  • a different part is mainly demonstrated and illustration is abbreviate
  • the combustion system 11 includes a fuel tank 16 in which fuel (main liquid fuel, for example, petroleum) is stored, a booster pump 91 that receives fuel supply from the fuel tank 16, and a fuel that connects the fuel tank 16 and the booster pump 91.
  • a fuel injection pump 93 for injecting fuel pressurized by the booster pump 91 into the ship engine 94, a supply pipe 23 for connecting the booster pump 91 and the fuel injection pump 93, and a ship engine 94 having a combustion chamber ( Engine), a fuel return line 95 for returning excess fuel from the fuel injection pump 93, and a fuel return line 95 Water is supplied into the supply pipe 23 via the third flow meter 96 and the chamber 25 (connection part) provided in the middle of the supply pipe 23 in the vicinity of the fuel injection pump 93 and the chamber 25 (connection
  • the configuration of the nozzle portion 97 is substantially the same as the configuration of the second nozzle portion 32 of the first embodiment.
  • a standard straight nozzle orifice diameter: CP small hole diameter nozzle 0.3 mm is employed.
  • the fuel return line 95 is connected to the suction side (upstream side) of the booster pump 91 instead of being connected to the service tank as in a fuel supply system in a conventional ship.
  • the fuel in the water emulsion fuel is prevented from being steamed and accumulated in the service tank in the service tank.
  • the fuel stored in the fuel tank 16 for ship engines is often, for example, heavy oil (for example, C heavy oil).
  • the pressure of the fuel pressurized by the booster pump 91 and passing through the supply pipe 23 is, for example, 0.5 MPa, but may be a pressure in the range of 0.5 MPa to 5 MPa.
  • the fuel pressure is increased to, for example, about 200 MPa.
  • the pressure of the general fuel injection pump 93 is in the range of 5 MPa to 200 MPa, and the pressure of the fuel pressurized by the fuel injection pump 93 of the present embodiment may be set appropriately within these ranges. it can.
  • the supply pipe 23 is heated in the range of 80 ° C. to 150 ° C.
  • the pressure applied by the booster pump 91 prevents the water particles in the water emulsion fuel from being vaporized.
  • the high-pressure pump device 14 includes a water tank 33 in which water is stored, a high-pressure pump 34 (pump) that receives supply of water from the water tank 33 and sends pressurized water to the nozzle unit 97, A water supply line 35 connecting the second nozzle portion 32, a return circuit 36 returning from the water supply line 35 into the water tank 33, a flow rate adjusting valve 37 provided in the middle of the return circuit 36, and a water supply line 35 A second pressure gauge (not shown) provided in the middle and a second flow meter 38 provided in the middle of the water supply line 35 are provided.
  • the pressure of the water pressurized by the high-pressure pump 34 is, for example, 1.5 MPa, but may be appropriately set within a range 0.5 MPa to 10 MPa higher than the pressure of the fuel pressurized by the booster pump 91. it can.
  • a third electromagnetic valve 41 is interposed between the chamber 25 and the high-pressure pump device 14.
  • the fuel in the fuel tank 16 is sent to the booster pump 91.
  • the fuel pressurized by the booster pump 91 undergoes flow rate adjustment by the flow rate adjustment valve 92 and is supplied to the fuel injection pump 93 via the supply pipe 23.
  • pressurized water is jetted from the nozzle portion 97.
  • the discharge speed (or momentum) of the high-pressure jetted water and the reaction force of the main liquid fuel make the water fine and at the same time mix the water and fuel so that the water particles are evenly dispersed in the fuel.
  • the water emulsion fuel generated in this way is sent to the fuel injection pump 93, and is injected into the combustion chamber of the marine engine 94 from an injection nozzle (not shown) and burned.
  • the combustion system 11 injects the fuel tank 16, the booster pump 91 that pressurizes the fuel supplied from the fuel tank 16, and the fuel pressurized by the booster pump 91 into the engine.
  • the fuel injection pump 93, the booster pump 91 and the fuel injection pump 93, and the supply pipe 23 through which the pressurized fuel passes, and the connection portion provided in the middle of the supply pipe 23 in the vicinity of the fuel injection pump 93 And a supply unit that supplies water into the supply pipe 23 via the connection part, and a nozzle part 97 that is interposed between the supply unit and the connection part and that can atomize and inject water into the connection part.
  • the fuel pressure between the booster pump 91 and the fuel injection pump 93 is generally in the range of 0.5 MPa to 1.0 MPa.
  • the supply pipe 23 and the fuel in the meantime are heated, and the heating temperature is approximately 80 ° C. to 150 ° C. although it varies depending on the fuel viscosity.
  • the heating temperature is approximately 80 ° C. to 150 ° C. although it varies depending on the fuel viscosity.
  • water emulsion fuel can be generated immediately before being used in the fuel injection pump 93, there is no time for water to aggregate in the water emulsion fuel as described above. For this reason, it can prevent that the said malfunction arises in water emulsion fuel.
  • the mixer and the water emulsion fuel dedicated pump that are conventionally required are not required, and the apparatus configuration can be simplified and the cost can be reduced. In addition, no major modifications are required to the existing facilities of the ship. Further, since the water emulsion fuel can be generated without using an expensive surfactant, the running cost of the apparatus can be reduced.
  • connection portion in the vicinity of the fuel injection pump 93 means that the connection portion is in the vicinity of the fuel injection pump 93, and the supply pipe 23 is the end of the supply pipe 23 on the fuel injection pump 93 side.
  • the connection portion is provided within a range of approximately one third of the total length of the pipe (more preferably, 10% to 20% of the total length of the supply pipe 23).
  • the technical difficulty to meet the tertiary regulations is extremely high, and what is currently promising is SCR (denitration system) technology and EGR equipment.
  • SCR reduction system
  • the cost of maintenance can be reduced by reducing the amount of maintenance due to the reduction in soot, or by reducing the amount of expensive reducing agent (ammonia) used by reducing NOx.
  • ammonia expensive reducing agent
  • the EGR device in a recent announcement, there is a report that the amount of NOx can be reduced to a level close to the 2016 regulation value by using it together with emulsion fuel.
  • the structure of the device that injects only water makes it extremely small, and can be installed with an installation space of about 0.5 m 2 and is not related to the height difference or distance from the ship engine 94. Or, there is an advantage that it can be retrofitted even on the deck of a ship other than the engine room.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Feeding And Controlling Fuel (AREA)
  • Spray-Type Burners (AREA)

Abstract

 燃焼システムは、燃料タンクと、前記燃料タンクから供給された燃料を加圧するポンプと、加圧された前記燃料を燃焼室内に噴射する第1ノズル部と、前記第1ノズル部と前記ポンプとを接続するとともに前記加圧された燃料が通る供給管と、前記第1ノズル部の近傍で前記供給管の途中に設けられた接続部と、前記接続部を介して前記供給管内に水を供給する供給ユニットと、前記供給ユニットと前記接続部との間に介在され、前記接続部内に水を微粒化して噴射できる第2ノズル部と、を備える。

Description

燃焼システム
 本発明は、水エマルジョン燃料を生成しそれを燃焼できる燃焼システムに関する。
 従来の水エマルジョン燃料供給装置(第1の水エマルジョン燃料供給装置)では、噴燃ポンプにより加圧された燃料はリリーフ弁により一定の圧力に保たれ、油量調整弁により燃焼量が決定され、さらにミキサーを通過する際に、水が比例注水機構により注入される。ここで水と燃料は混合しバーナーに供給される。
 この従来型の水エマルジョン燃料供給装置では、燃焼量や加水率の増減によりバーナー(9)の通過抵抗が変動するためミキサーの内圧が変化するとされていた。また、燃焼量の変動によってもミキサーの内圧が変化するため、比例注水機構においても、注入点の圧力が大幅に変化して注入量の変化が生じて断火等の原因となるとされていた。
 このため、改良された従来型の水エマルジョン燃料供給装置(第2の水エマルジョン燃料供給装置)では、ミキサーの出口にエマルジョンポンプを設け、ミキサーの出口とミキサーの入口の間に減圧弁をミキサー入口の圧力を一定に保つ方向で設置した。これによって、燃焼量や加水率が変化しても油量調整弁や比例注水機構の前後圧力を一定に保ち発煙や断火が起こらないとされる(例えば、特許文献1参照)。
特開平5-157221号公報
 しかしながら、上記第1の水エマルジョン燃料供給装置の構成では、圧力は噴燃ポンプとバーナーノズルの吐出量との圧力に支配され、水量が増えれば燃料量が減るという相関関係により、配管内の圧力が大きく変動することはない。したがって、特許文献1に記載されるような現象を生ずることは考えにくい。
 上記第2の水エマルジョン燃料供給装置では、専用のエマルジョンポンプおよび減圧弁が必要となる。そして、ミキサーで水を混合した燃料を減圧弁側に送ると、減圧弁に摩擦膨張を生じて潤滑性を欠き、圧力調整が不能となる(故障となる)場合がある。また、上記第2の水エマルジョン燃料供給装置は、基本的に大容量の燃焼装置(船、大電炉)を想定したものであり、一般的な燃焼装置には全く適用できない。
 さらに、専用のエマルジョンポンプを設ける場合、エマルジョンポンプの駆動を燃焼装置側からの信号とマッチングさせる必要があり、メーカー側の同意はほとんど得られず、現実的ではない。
 本発明は、全ての液体燃料に対して一元的に対応ができる燃焼システムで、石油燃料(或いは石油燃料と他の液体燃料との混合燃料)と水との混合燃焼を可能にし、燃焼しにくい燃料のクリーン燃焼化による地球温暖化防止・有害排気ガス削減を可能にする燃焼システムを提供することを目的とする。
 燃焼システムは、燃料タンクと、前記燃料タンクから供給された燃料を加圧するポンプと、加圧された前記燃料を燃焼室内に噴射する第1ノズル部と、前記第1ノズル部と前記ポンプとを接続するとともに前記加圧された燃料が通る供給管と、前記第1ノズル部の近傍で前記供給管の途中に設けられた接続部と、前記接続部を介して前記供給管内に水を供給する供給ユニットと、前記供給ユニットと前記接続部との間に介在され、前記接続部内に水を微粒化して噴射できる第2ノズル部と、を備える。
 本発明によれば、水と主液体燃料とを事前に混合せず、水のみを主液体燃料内に噴射するため、燃料中のスラッジや微粒子によるノズルの閉塞性の影響が避けられる。そして、水のみを単独に管理できる装置の容易さから、燃焼システムの長期間の安定稼働を確保できる。また、燃焼装置の種別や能力に応じた含水率の調整を水のみでできるため、装置構造が簡易にしてコンパクト化かつ低コスト化できる。さらに、従来装置で見られた不着火や燃料噴射ポンプの故障の問題を解消できる。また、これまで燃料成分が異なる液体燃料では、個別の水エマルジョン装置として対応を求められていたが、本発明によれば燃焼炉、内燃機関の種別や規格を問わない一元的な燃焼システムで対応でき、汎用性が高められるとともにより広範囲な環境対策を可能にできる。
第1の実施形態の燃焼システムの全体構成を模式的に示した系統図。 図1に示す燃焼システムのチャンバーを拡大して示した断面図。 図2に示すチャンバーの点検孔から採取された燃料サンプルの顕微鏡写真。 図3に示す顕微鏡写真の各水粒子の粒子径の測定結果を示したコンピュータ上の表示画面。 燃料(主液体燃料)と水噴射ノズルから噴射される水との間の圧力差と水粒子の平均粒径との関係を示したグラフ。 第2の実施形態の燃焼システムのチャンバーおよび第2ノズル部を示した断面図。 第3の実施形態の燃焼システムのチャンバーおよび第2ノズル部を示した断面図。 第4の実施形態の燃焼システムの全体構成を模式的に示した系統図。 第5の実施形態の燃焼システムの全体構成を模式的に示した系統図。
 図1から図6を参照して、燃焼システムの第1の実施形態について説明する。
 図1、図2に示すように、燃焼システム11は、ボイラ等で構成される燃焼装置12(主液体燃料稼働装置)と、水エマルジョン燃料を生成する水エマルジョン燃料装置13と、水エマルジョン燃料装置13に水を供給する高圧ポンプ装置14(供給ユニット)と、燃焼装置12、水エマルジョン燃料装置13、および高圧ポンプ装置14を制御するコントロール装置15と、を備える。
 燃焼システム11は、内部に燃料(主液体燃料、例えば石油燃料)が溜められる燃料タンク16と、燃料タンク16に接続されて燃料タンク16から燃料供給を受ける燃料噴射ポンプ17(ポンプ)と、燃料タンク16と燃料噴射ポンプ17とを接続する燃料管18と、燃料管18に設けられる第1流量計21と、燃料噴射ポンプ17で加圧された燃料を燃焼室内に噴射する燃焼ノズル22(第1ノズル部)と、燃焼室が設けられる燃焼装置12と、燃焼ノズル22と燃料噴射ポンプ17とを接続する供給管23と、供給管23の途中に設けられる第1圧力計24と、燃焼ノズル22の近傍で供給管23に設けられたチャンバー25(接続部)と、燃焼ノズル22とチャンバー25との間の位置で供給管23の途中に設けられる第1電磁弁26と、供給管23と燃料管18とを接続する循環ライン27と、循環ライン27の第1分岐27Aに設けられる第2電磁弁28と、循環ライン27の第2分岐27Bに設けられる流量調圧電磁弁31と、チャンバー25(接続部)を介して供給管23内に水を供給する高圧ポンプ装置14(供給ユニット)と、高圧ポンプ装置14とチャンバー25との間に介在される第2ノズル部32と、を備えている。
 これらのうち、燃料噴射ポンプ17(第1ポンプ)、第1圧力計24、チャンバー25(接続部)、循環ライン27、第2電磁弁28、および流量調圧電磁弁31が、水エマルジョン燃料装置13に含まれる。燃焼ノズル22は、燃焼装置12に含まれる。第1電磁弁26は、燃料供給のON/OFFを行う。
 燃料噴射ポンプ17で加圧されて供給管23内を通る燃料の圧力は、例えば、1.0MPaである。一般的な燃焼炉における燃料の圧力は、0.3MPaから10MPaの範囲内である。したがって本実施形態においても、燃料噴射ポンプ17で加圧された燃料の圧力は、0.3MPaから10MPaの範囲で適宜に設定することもできる。燃料タンク16に溜められる燃料は、例えば重油(例えば、A重油、C重油)であるが、それ以外の燃料(軽油等)でもよい。燃料が供給管23内を流れる流速は、例えば0.2m/sであるが、0.2m/s以上であってもよい。
 図1に示すように、高圧ポンプ装置14(供給ユニット)は、内部に水を溜めた水タンク33と、水タンク33から水の供給を受けるとともに第2ノズル部32に加圧された水を送る高圧ポンプ34(第2ポンプ)と、高圧ポンプ34と第2ノズル部32とを接続する水供給ライン35と、水供給ライン35から水タンク33内に戻るリターン回路36と、リターン回路36の途中に設けられる流量調整弁37と、水供給ライン35の途中に設けられる第2圧力計39と、水供給ライン35の途中に設けられる第2流量計38と、を有している。
 なお、高圧ポンプ装置14(供給ユニット)の構成は、必ずしも一体型でなくても良い。例えば、水の浄化が必要な場合などは、高圧ポンプ装置14は、タンク機能(水タンク33)を含まなくても良い。この場合には、タンク機能(水タンク33)は、高圧ポンプ装置14とは分離して設けられる。
 高圧ポンプ装置14は、加圧された燃料(主液体燃料)よりも高い圧力の水を燃料(主液体燃料)に供給できる。高圧ポンプ34で加圧された水の圧力は、例えば、1.5MPaであるが、後述するように燃料噴射ポンプ17で加圧された燃料の圧力よりも0.5MPaから10MPa高い範囲内で適宜に設定できる。チャンバー25と高圧ポンプ装置14との間には、第3電磁弁41が介在されている。高圧ポンプ34は、例えば、市販品されているプランジャーポンプであるが、市販品のダイヤフラムポンプでもよい。また、高圧ポンプ34として、メータリングポンプを採用することもできる。この場合には、水タンク33を用いなくても水道施設直結で定圧、定吐出圧の水供給が可能であり、よりコンパクト化が図れる。
 図2に示すように、チャンバー25(接続部)は、既存のボイラー設備等の供給管23等に対して着脱可能に構成されている。チャンバー25は、供給管23の上流側に接続される第1端部42と、供給管23の下流側に接続される第2端部43と、第1端部42と連続するとともに、供給管23の内径よりも大きい内径を有した第1部分44と、第1部分44と第2端部43とに連続するとともにテーパー形をなした第2部分45と、第2端部43に設けられた点検孔46と、を有している。
 第2ノズル部32は、チャンバー25の第1部分44に対して、供給管23の延びている方向と直交する方向に接続されている。本実施形態では、第2ノズル部32は、一つで構成されている。第2ノズル部32は、チャンバー25に極力近づいた位置に設けられる。なお、本実施形態では、第2ノズル部32には、例えば、株式会社いけうち製の標準直進ノズル(オリフィス径:CP小孔径ノズル0.3mm)を使用した。第2ノズル部32には、他の種類のノズルも使用できる。例えば、小孔径は、0.1mmから3mm程度でもよく、ノズルの形状は、フルコーンタイプおよびホロコーンタイプでもよい。また、第2ノズル部32の種類は多種多様で、バーナの種類によっても選択が異なり、ON/OFF式制御、三位位置式制御、或いは比例制御式があり、それぞれの燃焼装置の状況によって異なる。
 なお、第2ノズル部32の設置角度は、供給管23の延びている方向と直交する方向に限られない。図2に破線で示すように、供給管23の延びている方向に対して斜め方向でもよいし、或いは、供給管23の延びている方向と平行な方向であってもよい。特に、燃料(主液体燃料)の管内流速が遅い場合は、供給管23の延びている方向(燃料の流れ方向)に対して第2ノズル部32を傾けて取り付けて、燃料中の水粒子の分散・混合を促進した方が良い。
 図1に示すように、本実施形態では、燃料タンク16の燃料は燃料噴射ポンプ17に送られる。燃料噴射ポンプ17で加圧された燃料は、供給管23を介して燃料噴射ポンプ17に供給される。チャンバー25では、第2ノズル部32から加圧された水が噴射される。水の高圧噴射によって生成された水エマルジョン燃料は、燃焼ノズル22から燃焼装置12の燃焼室内に噴射されて燃焼される。
 本実施形態の燃焼システム11のいずれかに異常が生じた時、循環ライン27の流量調圧電磁弁31を開放し、水エマルジョン燃料時の空気量に適合した主液体燃料量に調整することで黒煙発生を回避する。例えば、高圧ポンプ34の停止、第2ノズル部32の閉塞、瞬時停電、圧力異常等が生じ注水が停止した場合に、主液体燃料量が多くなり空気量の不足による発煙が考えられる(空気自動調節器が設置される場合を除く。)。その緊急時の対策として流量調圧電磁弁31を開放し、空気量に見合う量に主液体燃料に減少して、異常時の黒煙の発生を防止する。
 また、含水率の高い水エマルジョン燃料の場合には、以下の方法で不着火を防止する。すなわち、燃料噴射ポンプ17のプレパージ(圧力を安定させるまでの間)間に、第2電磁弁28を数秒間開放し、燃料管18、燃料噴射ポンプ17、チャンバー25までの供給管23中の主液体燃料と当該含水率の高い水エマルジョン燃料とを混合させる。これによって、不着火を防止できる。不着火を生じる場合の含水率は20%以上であり、含水率が20%以下の場合には、ほとんど不着火を生じない。これらの燃焼装置12、水エマルジョン燃料装置13、および高圧ポンプ装置14の稼働調整は、コントロール装置15のシーケンサーで行う。
 第2ノズル部32における水の微粒子化について説明する。本発明では、供給管23を流れる燃料に対して第2ノズル部32(微細ノズル)から水を高圧噴射させ、高圧噴射の持つ吐出速度(或いはモーメンタム)と主液体燃料の反力によって水を微粒子化されつつ、同時に水粒子が燃料中に均等に分散するよう混合化される。本発明の現象は、空中の微粒子化論を液中に置き換えたものであり、空中では、一般的に300mmの地点の平均粒子径を用いているが、液中では、空中よりも遥かに速い速度で微粒子化される。
 なお、水エマルジョン燃料の燃焼は、以下のような原理に基づいて、従来型の燃焼よりも改善される。水エマルジョン燃料が燃焼器内に噴霧されると、燃料油滴中に含まれている水粒子が炉内の熱を受けて加熱され沸点に達してミクロ爆発を起こし、噴霧油滴を二次微粒化させる。こうして燃料が瞬時に超微粒化することにより空気との接触面積が大幅に増大して完全燃焼に近い燃焼が達成され、燃焼排ガス中の未燃炭素(煤)やNOxの発生を抑えたクリーンな燃焼が可能となる。また空気との接触面積の増大によって燃焼に必要な過剰空気を低く抑えることができる為、その分、省エネルギー効果も得られる。
 石油燃料が空気中で燃焼した場合、完全燃焼したときに主として生成する燃焼ガス中の成分は二酸化炭素、水、窒素酸化物や硫黄酸化物である。しかしながら、完全燃焼は実際には不可能で、上述した成分以外に煤塵や一酸化炭素が排出される。これらは不完全燃焼によって生成されるが、これらの成分を抑制するには空気との混合を良くすることである。燃料に水を添加し噴霧燃料の質量を増加する事により、燃料噴霧束内への空気巻き込み量を増やし燃焼領域の局部的な空気過剰率を大きくして燃焼効率を改善する事ができる。
 ところで、本発明の発明者らは、上記の燃焼システム11を構築するに先立って、燃料の圧力と燃料に添加する水の圧力との最適な条件を調べる実験を行った。実験は、燃料(主液体燃料)の圧力と水の圧力との間の圧力差と、水粒子の平均粒径(或いは最大粒径)との関係を調べる形で行った。各条件における水エマルジョン燃料のサンプルは、チャンバー25の点検孔46から採取された。
 発明者らは、各サンプルについて顕微鏡(例えば、キーエンス製VH5500)下で水粒子の分散状態を検討するとともに、水粒子の平均粒径(或いは最大粒径)を測定した。例えば、図3は、2000倍で撮影した顕微鏡写真を示しており、このような顕微鏡写真(画像)において水粒子の粒子径(平均粒径)を測定する。丸い水粒子の粒が見えない部分は、450nm以下の水粒子および燃料である。図3中の符号1~5の水粒子の粒子径は、図4のNo.1~No.5の測定結果に対応する。
 図5に燃料(主液体燃料)の圧力と水の圧力との圧力差と、水粒子の平均粒径との関係を表したグラフを示す。図5において、横軸中の1MPaの部分は、第2ノズル部32で燃料(主液体燃料)に注入する水の圧力が、燃料の圧力よりも1MPa高いことを示している。
 なお、エマルジョン燃料における水粒子の形態として、水粒子の粒径は燃料噴射液滴径よりも細く均一な含水率の状態で混合されている状態が望ましい。したがって水粒子は、燃料噴射液滴の平均粒径が30μm~50μmとされる場合、少なくとも水粒子の平均径は10μm以下が理論的とされる。一般的に、水粒子の平均粒径が14μm以下の場合に水エマルジョン燃料として使用可能であり、水粒子の平均粒径が10μm以下の場合が水エマルジョン燃料として理想的であるとされる。
 図5の実験結果によれば、主体燃料の圧力に対して水の圧力を高くすると、水粒子の粒子径が徐々に小さくなることが確認された。このため、加圧した燃料に対して追加される水は、燃料噴射ポンプ17で加圧された燃料の圧力よりも高い圧力、例えば、0.5MPaから10MPa程度高い圧力を有することが好ましい。
 本実施形態によれば、燃焼システム11は、燃料タンク16と、燃料タンク16から供給された燃料を加圧するポンプと、前記加圧された燃料を燃焼室内に噴射する第1ノズル部と、第1ノズル部とポンプとを接続するとともに加圧された燃料が通る供給管23と、第1ノズル部の近傍で供給管23の途中に設けられた接続部と、接続部を介して供給管23内に水を供給する供給ユニットと、供給ユニットと接続部との間に介在され、接続部内に水を微粒化して噴射できる第2ノズル部32と、を備える。
 この構成によれば、加圧された燃料に対してさらに高圧の水を混ぜて水エマルジョン燃料を生成し、その後も水エマルジョン燃料が第1ノズル部で使用されるまで高圧の状態で保持できる。これによって、微粒子化した水粒子において、表面張力による内部圧力が大きくなり、粒子崩壊や粒子結合が防がれて、水エマルジョン燃料中での水の凝集化を防止できる。さらに、燃料として重油を用いた場合には、粘性を低下させるために、供給管23の各部で加熱が必要となるが、本実施形態によれば、水エマルジョン燃料が加圧された状態で供給管23内に存在するために、加熱されたとしても水エマルジョン燃料中で水粒子が蒸気化することもない。
 また、本実施形態よれば、第1ノズル部で使用される直前に水エマルジョン燃料を生成できるため、水エマルジョン燃料中で上記のように水が凝集化する時間がない。このため、水エマルジョン燃料に上記不具合を生ずることを防止できる。さらに、本実施形態よれば、従来必要だったミキサーや水エマルジョン燃料専用ポンプが不要となり、装置構成を簡略化、低コスト化、コンパクト化できる。また、既存設備に大幅な改変を必要としない。また、高価な界面活性剤を用いないで水エマルジョン燃料を生成できるため、装置のランニングコストを低減できる。
 また、前記水の圧力は、前記加圧された燃料の圧力よりも0.5MPaから10MPa高い。この構成によれば、水エマルジョン燃料中において、水の噴射力の持つモーメンタムによって水の微粒子化が十分になされる。これによって、燃焼室内において燃料中の水粒子が燃焼室内の熱を受けて沸点に達してミクロ爆発を起こし、噴霧油滴を二次微粒化できる。このため、燃料が空気と接触する面積が大幅に増大して完全燃焼に近い燃焼が達成され、燃焼排ガス中の未燃炭素(煤)やNOxの発生を抑えたクリーンな燃焼を可能にできる。
 なお、第1ノズル部の近傍に接続部が設けられるとは、第1ノズル部付近に接続部があるという意味であり、供給管23中の第1ノズル部(燃焼ノズル22)側の端部で、供給管23の全長に対して概ね3分の1(より好ましくは供給管23の全長に対して10%から20%)の長さの範囲内に、接続部を設けることを指している。
 また、接続部は、供給管23に着脱可能なチャンバー25である。この構成によれば、既存の設備に大幅な変更を加えることなく、燃料を水エマルジョン燃料に変更することができ、導入時のイニシャルコストを低下することができる。
 第2ノズル部32は、供給管23の延びる方向に対して斜めになっている。これによって、燃料の流れ方向に対して一定の角度をもって水を噴射することができ、接続部内に乱流を起こすことができ、主液体燃料と水粒子との混合化を促進して、高品質の水エマルジョン燃料を生成できる。
 なお、第1実施形態において、チャンバー25(接続部)中の、第2ノズル部32よりも下流側に、第2実施形態の絞り部51を設けてもよい。
 図6を参照して、燃焼システムの第2の実施形態について説明する。第2の実施形態の燃焼システム11は、チャンバー25および第2ノズル部32が第1の実施形態のものと異なっているが、他の部分は第1の実施形態と共通している。このため、主として第1の実施形態と異なる部分について説明し、第1の実施形態と共通する部分については図示を省略するか或いは説明を省略する。第2の実施形態の燃焼システム11は、図1に示す第1実施形態の全体構成と同様の構成を有する。
 チャンバー25(接続部)は、既存のボイラー設備等の供給管23等に対して着脱可能に構成されている。チャンバー25は、供給管23の上流側に接続される第1端部42と、供給管23の下流側に接続される第2端部43と、第1端部42と連続するとともに、供給管23の内径よりも大きい内径を有した第1部分44と、第1部分44に設けられ第1部分44の他の部分よりも内径が小さくなった絞り部51と、第1部分44と第2端部43とに連続するとともにテーパー形をなした第2部分45と、第2端部43に設けられた点検孔46と、を有している。
 第2ノズル部32は、複数(例えば、3個)の第2ノズル32Aを有している。第2ノズル32Aの数は、2個でもよいし、4個以上でも良い。第2ノズル32Aは、第1部分44に設けられ、供給管23の延びている方向(燃料の流れ方向)に沿って互い違いに設けられている。また、各第2ノズル32Aは、供給管23の延びている方向に対して斜め方向に設置されている。第2ノズル32Aは、一例として、株式会社いけうち製の標準直進ノズル(オリフィス径:CP小孔径ノズル0.3mm)を使用したが、他の種類のノズルも使用できることは第1実施形態と同様である。その他、燃料の圧力および水の圧力の条件は第1実施形態と同様である。絞り部51は、第2ノズル部32よりも下流側に設けられている。
 本実施形態によれば、第2ノズル部32は、複数の第2ノズル32Aを含み、複数の第2ノズル32Aは、供給管23の延びる方向に沿って互い違いに配置される。この構成によれば、さらに接続部内に乱流を起こしやすくなり、主液体燃料と水粒子との混合化をさらに促進できる。
 接続部は、第2ノズル部32が設けられた第1部分44と、第1部分44の第2ノズル部32よりも下流側に設けられ、第1部分44中の他の箇所よりも内径が小さくなった絞り部51と、を有する。
 この構成によれば、絞り部51よりも下流側でカルマン渦を発生させることができ、これによって、主液体燃料と水粒子とを混合できるとともに主液体燃料中に水粒子を分散できる。
 図7を参照して、燃焼システム11の第3の実施形態について説明する。第3の実施形態の燃焼システム11は、チャンバー25および第2ノズル部32が第1の実施形態のものと異なっているが、他の部分は第1の実施形態と共通している。このため、主として第1の実施形態と異なる部分について説明し、第1の実施形態と共通する部分については図示を省略するか或いは説明を省略する。第3の実施形態の燃焼システム11は、図1に示す第1の実施形態の全体構成と同様の構成を有する。
 チャンバー25(接続部)は、既存のボイラー設備等の供給管23等に対して着脱可能に構成されている。チャンバー25は、供給管23の上流側に接続される第1端部42と、供給管23の下流側に接続される第2端部43と、第1端部42と連続するとともに、供給管23の内径よりも大きい内径を有した第1部分44と、第1部分44と第2端部43とに連続するとともにテーパー形をなした第2部分45と、第1部分44と第2部分45との境界に設けられるとともに第2ノズル部32に対向する衝突板61と、第2端部43に設けられた点検孔46と、を有している。
 衝突板61は、板状部62と、板状部62から第2ノズル部32に向けて突出した突出部63と、を有している。突出部63は、例えば全体として先端部分が第2ノズル部32を向いた円錐形をなしており、その円錐形の先端部分は除去されて丸みを帯びた形状をなしている。
 第2ノズル部32は、供給管23の延びている方向に沿って設けられている。このため、第2ノズル部32は、いわゆる燃料の流れ方向に沿って高圧の水を噴射することができる。
 第2ノズル部32から高圧で噴射された水は、衝突板61に当たり瞬時に粉砕され、微粒化されつつ主液体燃料中に拡散される。そして、衝突板61の後方(下流側)に発生するカルマン渦(図7中に矢印で模式的に示す)によってさらに混合・分散化が促進される。なお、衝突板61は、ノズルからの水の噴射量が多くノズル口径を大きくしなければならない時に設置が必要となる場合があるが、ノズルからの噴射量が少なく口径が細い場合は、衝突板61を使用せずに第1実施形態のように圧力噴射による微粒化してもよい。
 この構成によれば、チャンバー25は、供給管23の上流側に接続される第1端部42と、供給管23の下流側に接続される第2端部43と、第1端部42と連続し、供給管23の内径よりも大きい内径を有するとともに第2ノズル部32が設けられた第1部分44と、第1部分44と第2端部43とに連続するとともにテーパー形をなした第2部分45と、第1部分44と第2部分45との境界に設けられるとともに第2ノズル部32に対向する衝突板61と、を備える。
 この構成によれば、チャンバー25内に衝突板61が設けられる構造であっても、水を微粒化しつつ主液体燃料中に拡散させた水エマルジョン燃料を生成できる。さらに、衝突板61の後方(下流側)にカルマン渦を発生できるため、水粒子と主液体燃料を効率よく混合できるとともに、主液体燃料中に水粒子を分散できる。
 図8を参照して、燃焼システムの第4の実施形態について説明する。第4の実施形態の燃焼システム11は、混合液体装置71を有する点および高圧ポンプ装置14の一部の構成異なる点で、第1の実施形態とは異なっているが、他の部分は第1の実施形態と共通している。このため、主として第1の実施形態と異なる部分について説明し、第1の実施形態と共通する部分については図示を省略するか或いは説明を省略する。
 燃焼システム11は、ボイラー等で構成される燃焼装置12(主液体燃料稼働装置)と、水エマルジョン燃料を生成する水エマルジョン燃料装置13と、水エマルジョン燃料装置13に水を供給する高圧ポンプ装置14と、混合液体装置71(第2供給ユニット、供給ユニット)と、燃焼装置12、水エマルジョン燃料装置13、高圧ポンプ装置14、および混合液体装置71を制御するコントロール装置15と、を備える。
 さらに、燃焼システム11は、第2チャンバー70(第2接続部、接続部)と、混合液体装置71と接続され第2チャンバー70内に第2燃料を噴射する噴射ノズル72と、を供給管23の途中でチャンバー25(接続部)よりも上流側(燃料噴射ポンプ17側)に有する。
 混合液体装置71(第2供給ユニット、供給ユニット)は、燃料(主液体燃料)とは異なる第2燃料を供給管23内に供給できる。混合液体装置71は、内部に主液体燃料とは異なる第2燃料を溜めた貯留・撹拌タンク73(貯留混合タンク、第2燃料タンク)と、貯留・撹拌タンク73から第2燃料の供給を受けるとともに第2チャンバー70に第2燃料を送る第3ポンプ74と、第3ポンプ74と第2チャンバー70とを接続する第2燃料供給ライン75と、第2燃料供給ライン75から貯留・撹拌タンク73内に戻る第2リターン回路76と、第2リターン回路76の途中に設けられる第2流量調整弁77と、第2燃料供給ライン75の途中に設けられる第3圧力計78と、第2燃料供給ライン75の途中に設けられる第2燃料流量計81と、を有している。第2チャンバー70と混合液体装置71との間には、第4電磁弁82が介在されている。
 第3ポンプ74は、第2燃料供給ライン75内を通る第2燃料を加圧して、供給管23内を通る燃料(主液体燃料)よりも高圧にする。
 また、高圧ポンプ装置14の水供給ライン35と混合液体装置71の第2燃料供給ライン75との間には、連絡用ライン83と連絡用ライン83に設けられる第5電磁弁84が設けられている。第2燃料の例としては、エタノールやメタノールなどに代表される各種アルコールや、グリセリン、BDF(登録商標)、粗製植物性油、廃食用油、廃油などがある。エタノールには、穀類、サトウキビ、草木から得られるエタノールが含まれる。また、BDF(登録商標)および粗製植物性油は、廃食用油、パーム、菜種、ジャトローファ、藻等から得られる。
 続いて、本実施形態の燃焼フローについて説明する。以下に説明する燃焼フローは、主液体燃料に混合する混合燃料(第2燃料)の種別によって異なっている。
 (混合燃料としてアルコールを使用する場合) 
 まず、混合燃料がエタノールやメタノール等のアルコールである場合について説明する。貯留・撹拌タンク73に、あらかじめ任意の量の水と混合したアルコールを投入し、貯留・撹拌タンク73内で撹拌を継続しながら、第2チャンバー70に任意の量を注入する。この例の場合、噴射ノズル72には、第1実施形態の第2ノズル部32と同様のものを使用する。これによって、供給管23を流れる燃料に対して噴射ノズル72からアルコール水溶液を高圧(燃料噴射ポンプ17で加圧された燃料の圧力よりも0.5MPaから10MPa高い範囲内で適宜に設定された圧力)噴射させ、高圧噴射の持つ吐出速度(或いはモーメンタム)と主液体燃料の反力によってアルコール水溶液中の水を微粒子化しつつ、同時に水粒子が燃料中に均等に分散するよう混合化される。
 この場合、水との混合量が極端に少ない場合は、水のミクロ爆発効果が充分得られず水エマルジョン燃料としての所定の効果が得られない場合がある。このため、燃焼データを基に最適含水率を見出す。なお、この例のように混合燃料がアルコールである場合には、予めアルコールに水を混ぜておくので、第1実施形態のように水を供給するための高圧ポンプ装置14を必要としない。
 (混合燃料としてグリセリンを使用する場合) 
 続いて、混合燃料がグリセリンの場合について説明する。グリセリンには、BDF(登録商標)の精製過程のアルカリ触媒法で使用されるKOH、NaOHの水洗残留物や、廃食用油のBDF(登録商標)精製では遊離脂肪酸などが混入している場合があり、これらの残留物質の除去或いは加熱処理が必要とされる。
 これらを前提にした状態で貯留・撹拌タンク73にグリセリンを投入し、加熱・撹拌をしながら流動性を確保する。加熱ユニットは図示しないが、貯留・撹拌タンク73および第2燃料供給ライン75の各部に設けられる。グリセリンは、第2チャンバー70において燃料(主液体燃料)に対して任意の量が注入される。
 この例の場合には、第1実施形態と同様に、供給管23を流れる燃料および第2燃料(グリセリン)に対して、第2ノズル部32から水(燃料噴射ポンプ17で加圧された燃料の圧力よりも0.5MPaから10MPa高い範囲内で適宜に設定された水圧。)を高圧噴射させ、高圧噴射の持つ吐出速度(或いはモーメンタム)と燃料および第2燃料の反力によって水を微粒子化されつつ、同時に水粒子が燃料中に均等に分散するよう混合化される。
 なお、チャンバー25内や供給管23内に、或いは循環ライン27内でグリセリン混合溶液が残留するとトラブルの原因につながる。このため、主液体燃料稼働装置の停止前の数分前にグリセリンの注入を停止し、グリセリンが残留しないようにする。また、噴射ノズル72の詰まりを防止するために、噴射ノズル72を水で清掃する。噴射ノズル72を清掃する際には、第4電磁弁82を閉じ、第5電磁弁84を開放することで高圧ポンプ装置14から連絡用ライン83に通水を行って、噴射ノズル72および第2チャンバー70内を高圧の水で洗浄する。なお、グリセリンは他の混合燃料より粘度が高く熱量が少ないので、水の希釈率と燃焼効果のバランスが求められる。
 (粗製植物性油、BDF(登録商標)、廃食用油、廃油を混合燃料として使用する場合) 
 さらに、混合燃料が粗製植物性油、BDF(登録商標)(Bio Diesel Fuel、バイオディーゼル燃料)、廃食用油、廃油の場合には、これらには加水できないので、加熱を必要とする。まず、ゴミ等を事前に除去したこれらの燃料を貯留・撹拌タンク73に投入する。加熱ユニット(図示せず)によって加熱され、撹拌しながら第3ポンプ74から第2チャンバー70へ送られる。これらの燃料は、加熱により粘度調整すれば主液体燃料に対して大きな影響を与えない。ただし、混合性の高い方が空気管理および燃料吐出条件が一定になる。したがって、噴射ノズル72は第2ノズル部32より大きい口径で、第2ノズル部32から噴射される水よりも低圧で、かつ主液体燃料より高圧であって分散すれば良い。噴射ノズル72から噴射される粒子の粒子径も余りこだわる必要はない。注入停止後の処置は、噴射ノズル72の詰まりを防止するために、グリセリンと同様の処置を行う。
 BDF(登録商標)の注入後は、第1実施形態と同様に、供給管23を流れる燃料および第2燃料(BDF(登録商標))に対して、第2ノズル部32から水を高圧(燃料噴射ポンプ17で加圧された燃料の圧力よりも0.5MPaから10MPa高い範囲内で適宜に設定された水圧。)噴射させ、高圧噴射の持つ吐出速度(或いはモーメンタム)と燃料および第2燃料の反力によって水を微粒子化されつつ、同時に水粒子が燃料中に均等に分散するよう混合化して水エマルジョン燃料を生成する。
 第4実施形態によれば、燃焼システム11は、接続部の近傍で接続部よりも上流側に、供給管23に設けられた第2接続部と、第2接続部を介して供給管23内に燃料とは異なる第2燃料を供給する第2供給ユニットと、を備え、供給ユニットは、第2接続部にも接続される。
 この構成によれば、燃料(主液体燃料)に対して、これとは種類の異なる第2燃料を混ぜることができる。さらに、水を供給できる供給ユニットが第2接続部にも接続されるため、供給ユニットの水を利用して第2接続部を洗浄することができる。これによって、粘性の高い燃料を第2燃料として用いた場合でも、第2接続部の詰まりを防止して、燃焼システム11の長期間の安定稼働および円滑な運用を可能にできる。
 また、第4実施形態によれば、燃焼システム11は、燃料タンク16と、燃料タンクから供給された燃料を加圧するポンプと、加圧された燃料を燃焼室内に噴射する第1ノズル部と、第1ノズル部とポンプとを接続するとともに前記加圧された燃料が通る供給管23と、第1ノズル部の近傍で供給管23の途中に設けられた接続部と、接続部を介して供給管23内にアルコール水溶液を供給する供給ユニットと、供給ユニットと接続部との間に介在され、接続部内にアルコール水溶液を微粒化して噴射できる第2ノズル部32と、を備える。
 この構成によれば、主液体燃料に対してこれとは異なる燃料(アルコール)を混合して燃料として使用する場合に、2種類の燃料の混合と、混合した燃料のエマルジョン化とを一括して行うことができる。これによって、別途に水のみを追加する必要がなく、燃焼システムの構造を簡略化できる。これにより、既存の設備に対してエマルジョン装置を導入する際に、イニシャルコストを低減することができる。
 また、近年、バイオ燃料(植物性油)が注目されているが、バイオ燃料の生産量は、主液体燃料(石油等)に対して絶対的に不足している。このため、環境負荷低減を目的として、今後数十年間は、主液体燃料とバイオ燃料とを混合して燃焼させる混合燃焼が注目される。なお、エタノールは、バイオ燃料中の一つである。バイオ燃料には、エタノール、グリセリン、BDF(登録商標)、粗製植物油(パームやジャトローハ等からなる、低加工品)、廃食用油などがある。
 しかしながら、主液体燃料(軽油、A重油、C重油)と植物性エタノール油とは全く可溶せず単純には混合燃焼させることができない。同様に、グリセリンも主液体燃料(軽油、A重油、C重油)とは可溶しない。上記の構成によれば、燃料(主液体燃料)とアルコール(或いはグリセリン)とを混合した混合燃焼を実現しつつ、さらに水エマルジョン化によって燃焼効率を向上できるという一挙両得を可能にできる。また、今後状況が変化して、植物性油の供給体制が整った際には、燃料(主液体燃料)に対する第2燃料(植物性油)の比を変更するなど、混合比の変更も容易である。
 図9を参照して、燃焼システムの第5の実施形態について説明する。第5の実施形態の燃焼システム11は、適用対象が船舶である点で第1の実施形態のものと異なっているが、他の部分は第1の実施形態と共通している。このため、主として異なる部分について説明し、第1の実施形態と共通する部分については図示を省略するか或いは説明を省略する。
 燃焼システム11は、内部に燃料(主液体燃料、例えば石油類)が溜められる燃料タンク16と、燃料タンク16から燃料供給を受けるブースターポンプ91と、燃料タンク16とブースターポンプ91とを接続する燃料管18と、燃料管18に設けられる第1流量計21と、燃料管18の途中に設けられる第1圧力計24と、ブースターポンプ91から送られる燃料の流量を調節する流量調節弁92と、ブースターポンプ91で加圧された燃料を船舶エンジン94内に向けて噴射する燃料噴射ポンプ93と、ブースターポンプ91と燃料噴射ポンプ93とを接続する供給管23と、燃焼室を有する船舶エンジン94(エンジン)と、燃料噴射ポンプ93から余分な燃料が戻される燃料リターンライン95と、燃料リターンライン95に設けられた第3流量計96と、燃料噴射ポンプ93の近傍で供給管23の途中に設けられたチャンバー25(接続部)と、チャンバー25(接続部)を介して供給管23内に水を供給する高圧ポンプ装置14(供給ユニット)と、高圧ポンプ装置14とチャンバー25との間に介在されるノズル部97と、を備えている。
 ノズル部97の構成は、第1実施形態の第2ノズル部32の構成と概ね同様であり、例えば標準直進ノズル(オリフィス径:CP小孔径ノズル0.3mm)を採用した。
 本実施形態では、燃料リターンライン95は、従来の船舶における燃料供給系のように、サービスタンクに接続されるわけでなく、ブースターポンプ91のサクション側(上流側)に接続されている。これによって、サービスタンク内によって水エマルジョン燃料中の水が水蒸気化してサービスタンク内に溜まってしまうことを防止している。また、船舶エンジン用として燃料タンク16に溜められる燃料は、例えば重油(例えば、C重油)であることが多い。
 ブースターポンプ91で加圧され供給管23内を通る燃料の圧力は、例えば、0.5MPaであるが、0.5MPaから5MPaの範囲内の圧力でもよい。燃料噴射ポンプ93では、燃料の圧力は、例えば200MPa程度にまで高められる。なお、一般的な燃料噴射ポンプ93の圧力は、5MPaから200MPaの範囲内であり、本実施形態の燃料噴射ポンプ93で加圧した燃料の圧力も、これらの範囲内で適宜に設定することもできる。ブースターポンプ91から燃料噴射ポンプ93の間、すなわち供給管23は80℃から150℃の範囲で加熱されている。しかしながら、ブースターポンプ91によってかけられた圧力によって水エマルジョン燃料中の水粒子が蒸気化することが防止される。
 高圧ポンプ装置14は、内部に水を溜めた水タンク33と、水タンク33から水の供給を受けるとともにノズル部97に加圧された水を送る高圧ポンプ34(ポンプ)と、高圧ポンプ34と第2ノズル部32とを接続する水供給ライン35と、水供給ライン35から水タンク33内に戻るリターン回路36と、リターン回路36の途中に設けられる流量調整弁37と、水供給ライン35の途中に設けられる図示しない第2圧力計と、水供給ライン35の途中に設けられる第2流量計38と、を有している。高圧ポンプ34で加圧された水の圧力は、例えば、1.5MPaであるが、ブースターポンプ91で加圧された燃料の圧力よりも0.5MPaから10MPa高い範囲内で適宜に設定することもできる。チャンバー25と高圧ポンプ装置14との間には、第3電磁弁41が介在されている。
 本実施形態では、燃料タンク16の燃料はブースターポンプ91に送られる。ブースターポンプ91で加圧された燃料は、流量調節弁92で流量調節を受けて供給管23を介して燃料噴射ポンプ93に供給される。チャンバー25では、ノズル部97から加圧された水が噴射される。高圧噴射された水が持つ吐出速度(或いはモーメンタム)と主液体燃料の反力によって、水は微粒子化されつつ、同時に水粒子が燃料中に均等に分散するように水と燃料とが混合化される。こうして生成された水エマルジョン燃料は、燃料噴射ポンプ93に送られて、図示しないインジェクションノズルから船舶エンジン94の燃焼室内に噴射されて燃焼される。船舶エンジン94では、水エマルジョン燃料が使用されるために、Noxや煤等の排出が低減される。燃料噴射ポンプ93で使用されなかった水エマルジョン燃料は、燃料リターンライン95を介してブースターポンプ91のサクション側(上流側)に戻される。なお、水エマルジョン燃料の含水量を一定にするために、本実施形態の燃焼システム11では、燃料リターンライン95から戻される水エマルジョン燃料の比率が主液体燃料に対して高くなった場合には、ノズル部97(チャンバー25)で供給する水の量を低減して含水率を一定にする。
 第5実施形態によれば、燃焼システム11は、燃料タンク16と、燃料タンク16から供給された燃料を加圧するブースターポンプ91と、ブースターポンプ91で加圧された燃料をエンジン内に向けて噴射する燃料噴射ポンプ93と、ブースターポンプ91と燃料噴射ポンプ93とを接続するとともに加圧された燃料が通る供給管23と、燃料噴射ポンプ93の近傍で供給管23の途中に設けられた接続部と、接続部を介して供給管23内に水を供給する供給ユニットと、供給ユニットと接続部との間に介在され、接続部内に水を微粒化して噴射できるノズル部97と、を備える。
 この構成によれば、加圧された燃料に対してさらに高圧の水を混ぜて水エマルジョン燃料を生成し、その後も水エマルジョン燃料が燃料噴射ポンプ93で使用されるまで高圧の状態で保持できる。これによって、微粒子化した水粒子において、表面張力による内部圧力が大きくなり、粒子崩壊や粒子結合が防がれて、水エマルジョン燃料中での水の凝集化を防止できる。通常、ブースターポンプ91と燃料噴射ポンプ93との間の燃料圧力は、概ね0.5MPa~1.0MPaの範囲内にある。また、通常、この間にある供給管23および燃料は加熱されており、加熱温度は燃料粘度によって異なるものの、概ね80℃から150℃である。しかしながら、上記圧力範囲にある場合には、水エマルジョン燃料中の水粒子が蒸気化してしまうという不具合を生ずることがない。
 また、本実施形態よれば、燃料噴射ポンプ93で使用される直前に水エマルジョン燃料を生成できるため、水エマルジョン燃料中で上記のように水が凝集化する時間がない。このため、水エマルジョン燃料に上記不具合を生ずることを防止できる。さらに、本実施形態よれば、従来必要だったミキサーや水エマルジョン燃料専用ポンプが不要となり、装置構成を簡略化して低コスト化できる。また、船舶の既存設備に大幅な改変を必要としない。また、高価な界面活性剤を用いないで水エマルジョン燃料を生成できるため、装置のランニングコストを低減できる。
 なお、燃料噴射ポンプ93の近傍に接続部が設けられるとは、燃料噴射ポンプ93付近に接続部があるという意味であり、供給管23中の燃料噴射ポンプ93側の端部で、供給管23の全長に対して概ね3分の1(より好ましくは供給管23の全長に対して10%から20%)の長さの範囲内に、接続部を設けることを指している。
 さらに、船舶においては、NOx削減要望も年々加速し、IMO(世界海事機構)においては、2011年以降に建造される船舶の出力130kW以上のエンジン機関に2次規制(IMO MARPOL条約)の適合を求め、さらに、2016年の3次規制に向け各機関メーカーがしのぎを削っている。
 しかしながら3次規制に適合する技術難度は極めて高く、現在有望視されているものにSCR(脱硝システム)技術やEGR装置がある。本実施形態によれば、SCR装置において、煤量低減に伴うメンテナンス回数の低下、或いは、NOx低減によって高価な還元剤(アンモニア)の使用量を削減して低コスト化できる。また、EGR装置においても、最近の発表で、エマルジョン燃料と併用する事で2016年規制値に近いレベルまでNOx量を低減できるとの報告がある。
 水だけを注入する装置構造から、極めて小型化になり、設置スペースも0.5m程度で設置が可能で船舶エンジン94との高低差や距離も関係しない事から、狭小なエンジンルームにあっても、或いはエンジンルーム以外の船舶の甲板部分等であっても後付けで施工ができる優位性がある。
 このほか、第1から第5の実施形態において、発明の要旨を逸脱しない範囲で本発明を種々変形実施可能であるのは勿論である。また、異なる実施形態の構成を組み合わせて新たな発明を構成することもできる。
11…燃焼システム、14…高圧ポンプ装置、16…燃料タンク、17…燃料噴射ポンプ、22…燃焼ノズル、23…供給管、25…チャンバー、32…第2ノズル部、32A…第2ノズル、42…第1端部、43…第2端部、44…第1部分、45…第2部分、51…絞り部、61…衝突板、70…第2チャンバー、71…混合液体装置、72…噴射ノズル、91…ブースターポンプ、93…燃料噴射ポンプ、97…ノズル部

Claims (10)

  1.  燃料タンクと、
     前記燃料タンクから供給された燃料を加圧するポンプと、
     加圧された前記燃料を燃焼室内に噴射する第1ノズル部と、
     前記第1ノズル部と前記ポンプとを接続するとともに前記加圧された燃料が通る供給管と、
     前記第1ノズル部の近傍で前記供給管の途中に設けられた接続部と、
     前記接続部を介して前記供給管内に水を供給する供給ユニットと、
     前記供給ユニットと前記接続部との間に介在され、前記接続部内に水を微粒化して噴射できる第2ノズル部と、
     を備える燃焼システム。
  2.  前記水の圧力は、前記加圧された燃料の圧力よりも0.5MPaから10MPa高い請求項1に記載の燃焼システム。
  3.  前記接続部は、前記供給管に着脱可能なチャンバーである請求項2に記載の燃焼システム。
  4.  前記第2ノズル部は、前記供給管の延びる方向と直交する方向および前記供給管の延びる方向に対して斜め方向のいずれかの方向で設置される請求項3に記載の燃焼システム。
  5.  前記第2ノズル部は、複数の第2ノズルを含み、
     前記複数の第2ノズルは、前記供給管の延びる方向に沿って互い違いに配置される請求項4に記載の燃焼システム。
  6.  前記接続部は、
     前記第2ノズル部が設けられた第1部分と、
     前記第1部分の前記第2ノズル部よりも下流側に設けられ、前記第1部分中の他の箇所よりも内径が小さくなった絞り部と、
     を有する請求項5に記載の燃焼システム。
  7.  前記接続部の近傍で前記接続部よりも上流側に、前記供給管に設けられた第2接続部と、
     前記第2接続部を介して前記供給管内に前記燃料とは異なる第2燃料を供給する第2供給ユニットと、
     を備え、
     前記供給ユニットは、前記第2接続部にも接続される請求項3に記載の燃焼システム。
  8.  前記チャンバーは、
     前記供給管の上流側に接続される第1端部と、
     前記供給管の下流側に接続される第2端部と、
     前記第1端部と連続し、前記供給管の内径よりも大きい内径を有するとともに前記第2ノズル部が設けられた第1部分と、
     前記第1部分と前記第2端部とに連続するとともにテーパー形をなした第2部分と、
     前記第1部分と前記第2部分との境界に設けられるとともに前記第2ノズル部に対向する衝突板と、
     を備える請求項3に記載の燃焼システム。
  9.  燃料タンクと、
     前記燃料タンクから供給された燃料を加圧するポンプと、
     加圧された前記燃料を燃焼室内に噴射する第1ノズル部と、
     前記第1ノズル部と前記ポンプとを接続するとともに前記加圧された燃料が通る供給管と、
     前記第1ノズル部の近傍で前記供給管の途中に設けられた接続部と、
     前記接続部を介して前記供給管内にアルコール水溶液を供給する供給ユニットと、
     前記供給ユニットと前記接続部との間に介在され、前記接続部内にアルコール水溶液を微粒化して噴射できる噴射ノズルと、
     を備える燃焼システム。
  10.  燃料タンクと、
     前記燃料タンクから供給された燃料を加圧するブースターポンプと、
     前記ブースターポンプで加圧された前記燃料をエンジン内に向けて噴射する燃料噴射ポンプと、
     前記ブースターポンプと前記燃料噴射ポンプを接続するとともに前記加圧された燃料が通る供給管と、
     前記燃料噴射ポンプの近傍で前記供給管の途中に設けられた接続部と、
     前記接続部を介して前記供給管内に水を供給する供給ユニットと、
     前記供給ユニットと前記接続部との間に介在され、前記接続部内に水を微粒化して噴射できるノズル部と、
     を備える燃焼システム。
PCT/JP2012/071327 2012-08-23 2012-08-23 燃焼システム WO2014030242A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP12883174.0A EP2889538A1 (en) 2012-08-23 2012-08-23 Combustion system
PCT/JP2012/071327 WO2014030242A1 (ja) 2012-08-23 2012-08-23 燃焼システム
JP2014531458A JPWO2014030242A1 (ja) 2012-08-23 2012-08-23 燃焼システム
TW101137431A TW201408953A (zh) 2012-08-23 2012-10-11 燃燒系統

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/071327 WO2014030242A1 (ja) 2012-08-23 2012-08-23 燃焼システム

Publications (1)

Publication Number Publication Date
WO2014030242A1 true WO2014030242A1 (ja) 2014-02-27

Family

ID=50149576

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/071327 WO2014030242A1 (ja) 2012-08-23 2012-08-23 燃焼システム

Country Status (4)

Country Link
EP (1) EP2889538A1 (ja)
JP (1) JPWO2014030242A1 (ja)
TW (1) TW201408953A (ja)
WO (1) WO2014030242A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180034147A (ko) * 2016-09-27 2018-04-04 장종규 알콜 연소 장치
US10598131B2 (en) * 2016-01-20 2020-03-24 Bayerische Motoren Werke Aktiengesellschaft Method and device for the open-loop or closed-loop control of the amount of a fuel mixture
JP2021010892A (ja) * 2019-07-09 2021-02-04 京史 寺本 液体のスパイラル型微細化装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102018129954A1 (de) * 2018-11-27 2020-05-28 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Mischvorrichtung für ein Kraftstoffeinspritzsystem einer Verbrennungskraftmaschine

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4959328A (ja) * 1972-10-09 1974-06-08
JPS5435420A (en) * 1977-08-25 1979-03-15 Miura Kogyo Kk Nox generation reducing apparatus
JPH05157221A (ja) 1991-12-10 1993-06-22 Sekiguchi:Kk エマルジョン燃焼用ミキシング装置
JPH06147019A (ja) * 1992-11-05 1994-05-27 Ryoju Shoji Kk 置換混合式エマルジョン燃料生成システム
JPH06173777A (ja) * 1992-12-07 1994-06-21 Ryoju Shoji Kk 高電圧印加エマルジョン燃料油生成装置
JP2001012309A (ja) * 1999-06-29 2001-01-16 Nabco Ltd エマルジョン燃料給油装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4959328A (ja) * 1972-10-09 1974-06-08
JPS5435420A (en) * 1977-08-25 1979-03-15 Miura Kogyo Kk Nox generation reducing apparatus
JPH05157221A (ja) 1991-12-10 1993-06-22 Sekiguchi:Kk エマルジョン燃焼用ミキシング装置
JPH06147019A (ja) * 1992-11-05 1994-05-27 Ryoju Shoji Kk 置換混合式エマルジョン燃料生成システム
JPH06173777A (ja) * 1992-12-07 1994-06-21 Ryoju Shoji Kk 高電圧印加エマルジョン燃料油生成装置
JP2001012309A (ja) * 1999-06-29 2001-01-16 Nabco Ltd エマルジョン燃料給油装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10598131B2 (en) * 2016-01-20 2020-03-24 Bayerische Motoren Werke Aktiengesellschaft Method and device for the open-loop or closed-loop control of the amount of a fuel mixture
KR20180034147A (ko) * 2016-09-27 2018-04-04 장종규 알콜 연소 장치
KR101880811B1 (ko) * 2016-09-27 2018-07-20 장종규 알콜 연소 장치
JP2021010892A (ja) * 2019-07-09 2021-02-04 京史 寺本 液体のスパイラル型微細化装置

Also Published As

Publication number Publication date
JPWO2014030242A1 (ja) 2016-07-28
TW201408953A (zh) 2014-03-01
EP2889538A1 (en) 2015-07-01

Similar Documents

Publication Publication Date Title
Park et al. Experimental and numerical analysis of spray-atomization characteristics of biodiesel fuel in various fuel and ambient temperatures conditions
JP4790066B2 (ja) 水エマルジョン製造装置
JP6317631B2 (ja) 噴霧ノズル、噴霧ノズルを備えた燃焼装置、及びガスタービンプラント
WO2014030242A1 (ja) 燃焼システム
de Azevedo et al. Effects of injector tip design on the spray characteristics of soy methyl ester biodiesel in a blurry injector
Zhao et al. Experimental investigation on spray characteristics of aircraft kerosene with an external-mixing atomizer
Simmons et al. A comparison of air-blast and flow-blurring injectors using phase Doppler particle analyzer technique
Azevedo et al. Effects of nozzle exit geometry on spray characteristics of a blurry injector
JP6491898B2 (ja) 噴霧ノズルおよび噴霧ノズルを用いた燃焼装置、ガスタービンプラント
JP2008031847A (ja) ガスタービン燃焼器とその運転方法、及びガスタービン燃焼器の改造方法
JP2018044549A (ja) Hhoガス混合液体燃料供給装置
JP6173868B2 (ja) 噴霧ノズル及び噴霧ノズルを備えた燃焼装置
JP5941224B2 (ja) 水混合燃料生成装置
JPH08200623A (ja) バーナ
US20040255873A1 (en) System and method for effervescent fuel atomization
Akinyemi et al. Investigation of primary atomization mechanism of a novel twin-fluid atomizer using high spatial resolution shadowgraph
JP2015075097A (ja) 気液混合燃料製造装置
Azevedo et al. Experimental valuation diagnostics of hydrous ethanol sprays formed by a blurry injector
Amirnordin et al. Spray formation in the multi-hole nozzle of twin-fluid atomizers
JPWO2019180796A1 (ja) Hhoガス混合液体燃料供給装置、及びhhoガス混合液体燃料の製造方法
JP3977998B2 (ja) 霧化装置
Kumar et al. Droplet Size Distribution in Twin Fluid Nozzle for Modern FCC Riser
JP2013024438A (ja) ガスタービン燃焼器
Mohan et al. Effervescent spray characterization of jatropha pure plant oil
Xu Experimental investigation on atomization characteristics of a certain type of aero engine fuel nozzle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12883174

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014531458

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2012883174

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012883174

Country of ref document: EP