WO2014029522A1 - Système de recirculation des gaz d'échappement pour un moteur à combustion interne - Google Patents

Système de recirculation des gaz d'échappement pour un moteur à combustion interne Download PDF

Info

Publication number
WO2014029522A1
WO2014029522A1 PCT/EP2013/062677 EP2013062677W WO2014029522A1 WO 2014029522 A1 WO2014029522 A1 WO 2014029522A1 EP 2013062677 W EP2013062677 W EP 2013062677W WO 2014029522 A1 WO2014029522 A1 WO 2014029522A1
Authority
WO
WIPO (PCT)
Prior art keywords
exhaust gas
line
gas recirculation
pressure
pressure wave
Prior art date
Application number
PCT/EP2013/062677
Other languages
German (de)
English (en)
Inventor
Michael Breuer
Original Assignee
Pierburg Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pierburg Gmbh filed Critical Pierburg Gmbh
Priority to EP13730869.8A priority Critical patent/EP2888468A1/fr
Publication of WO2014029522A1 publication Critical patent/WO2014029522A1/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/02EGR systems specially adapted for supercharged engines
    • F02M26/04EGR systems specially adapted for supercharged engines with a single turbocharger
    • F02M26/07Mixed pressure loops, i.e. wherein recirculated exhaust gas is either taken out upstream of the turbine and reintroduced upstream of the compressor, or is taken out downstream of the turbine and reintroduced downstream of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B33/00Engines characterised by provision of pumps for charging or scavenging
    • F02B33/32Engines with pumps other than of reciprocating-piston type
    • F02B33/42Engines with pumps other than of reciprocating-piston type with driven apparatus for immediate conversion of combustion gas pressure into pressure of fresh charge, e.g. with cell-type pressure exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/02EGR systems specially adapted for supercharged engines
    • F02M26/09Constructional details, e.g. structural combinations of EGR systems and supercharger systems; Arrangement of the EGR and supercharger systems with respect to the engine
    • F02M26/10Constructional details, e.g. structural combinations of EGR systems and supercharger systems; Arrangement of the EGR and supercharger systems with respect to the engine having means to increase the pressure difference between the exhaust and intake system, e.g. venturis, variable geometry turbines, check valves using pressure pulsations or throttles in the air intake or exhaust system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/34Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with compressors, turbines or the like in the recirculation passage

Definitions

  • the invention relates to an exhaust gas recirculation system for an internal combustion engine having an exhaust pipe, an intake pipe, a turbocharger with a compressor disposed in the intake pipe and a turbine disposed in the exhaust pipe, o an exhaust gas recirculation pipe branching from the exhaust pipe downstream of the turbine and opens into the suction line downstream of the compressor and means for increasing the pressure of the exhaust gas in the exhaust gas recirculation line.
  • the high-pressure exhaust gas recirculation in which exhaust gas is taken in front of the turbine and fed back to the suction line downstream of the compressor, has the advantage of rapid controllability, but has, among other things, the problems that either the exhaust gas is introduced downstream of the charge air cooler, which leads to a reduced filling by increased temperatures or sooting of the intercooler arises. For this reason, mixing systems have been developed that are equipped with both a low-pressure exhaust line and a high-pressure exhaust line. However, this leads to an increased piping and thus installation effort, so that significantly higher costs.
  • an exhaust gas recirculation system with a high-pressure line and another exhaust gas recirculation line is known, which branches off behind an exhaust gas purification device and thus behind the turbine of the turbocharger and opens downstream of the compressor in the intake.
  • an exhaust gas pump driven by an electric motor is arranged in the exhaust gas recirculation train to overcome the pressure gradient.
  • clean exhaust gas can be made available to the internal combustion engine in a cooled state without fear of excessive inertia of the mass flow and temperature control.
  • the disadvantage is that additional drive power for the EGR pump must be introduced into the system, which reduces the overall efficiency.
  • pressure wave chargers has been tested as an alternative to the supercharging of internal combustion engines by exhaust gas turbochargers, which are particularly resistant to contamination by the exhaust gas, because due to the operation of a regular flushing of the chambers takes place by the fresh air to be compressed, so that a growing sooting not is afraid.
  • a pressure wave loader is described for example in DE 10 2010 049 361 AI. Due to the high pressure in the Exhaust line can be compressed in the chambers of the pressure wave supercharger exhaust gas to almost the pressure in the exhaust pipe so at the outlet of the cylinder. Special exhaust gas recirculation systems for such engines are not yet known.
  • an exhaust gas recirculation system having the features of claim 1. Characterized in that a pressure wave supercharger is arranged as means for increasing the pressure in the exhaust gas recirculation line, no additional drive energy is required to increase the pressure of the exhaust gas to the charge air level. Thus, high volume flows of clean exhaust gas can be promoted.
  • a delivery inlet of the pressure wave supercharger is connected via the exhaust gas recirculation line to the exhaust pipe downstream of the turbine, a delivery outlet connected via the exhaust gas recirculation line to the intake line downstream of the compressor, a pressure inlet via a bypass line to the exhaust line upstream of the turbine and a pressure wave outlet via the bypass line with the Exhaust pipe connected downstream of the turbine.
  • the exhaust gas recirculation line connected to the delivery inlet of the pressure wave supercharger branches off from the exhaust gas line downstream of a particle filter, thus ensuring that particles of free exhaust gas are mixed with the charge air. This reduces the load on the subsequent components and cables and thus increases their service life.
  • the exhaust gas recirculation line connected to the delivery inlet of the pressure wave supercharger also branches off from the exhaust line downstream of a catalyst, so that clean exhaust gas is returned. Deposits of hydrocarbons on cool walls of subsequent parts, such as the intercooler be significantly reduced in this way.
  • the exhaust gas recirculation line connected to the delivery outlet of the pressure wave supercharger opens into the intake line upstream of a charge air cooler, so that the entire combustion gas is mixed and fed to the combustion process at a uniform temperature. Furthermore, a charge air cooler is sufficient for cooling the exhaust gas and the air. Thus, high fillings can be achieved by low temperatures of the cylinder fresh air charge.
  • the bypass line of the pressure wave supercharger connected to the pressure wave outlet opens into the exhaust gas line upstream of the particle filter. Accordingly, the exhaust gas used to increase the pressure is cleaned before leaving the engine.
  • a cellular wheel of the pressure wave supercharger is driven by an electric motor. The energy input in this arrangement is extremely low, since no significant power must be transmitted, 5 but only the gas-dynamic processes in the individual cells are synchronized. Thus, the system can be set to varying speeds of sound in the gas.
  • the cell wheel of the o Druckwelienladers is driven via the crankshaft or the camshaft of the internal combustion engine. This creates a synchronous drive to the gas exchange processes, without any external energy input. It is thus an exhaust gas recirculation system with an exact controllability created in the clean exhaust gas is fed back directly into the charge air line without having to make an increased energy input. On additional coolers or piping can be omitted.
  • the efficiency of the internal combustion engine is improved by the introduction of the air exhaust mixture with low temperature and elevated pressure level.
  • FIG. 1 shows a circuit diagram of the air and exhaust system of a supercharged internal combustion engine with an exhaust gas recirculation system according to the invention in a schematic representation.
  • Figure 2 shows a development of a Druckwelienladers in the exhaust gas recirculation system according to the invention of Figure 1 in a schematic representation.
  • FIG. 1 shows an internal combustion engine 10 which is supplied with combustion gas via an intake line 12.
  • a compressor 14 of a turbocharger 16 is arranged. Downstream of the compressor 14 is located in the intake manifold 12, a charge air cooler 18 for reducing the temperature of the combustion gases.
  • the combustion gases leave the internal combustion engine 10 via an exhaust pipe 20, in which a turbine 22 of the turbocharger 16 is arranged. Downstream of the turbine 22 are located in the exhaust pipe 20, a particulate filter 24 and a catalytic converter 26, from which the exhaust gas continues to flow and leaves the exhaust pipe 20 via an exhaust gas outlet 28.
  • This pressure wave supercharger 32 is driven by an electric motor 34, this drive not giving off any power for compressing the exhaust gas, but merely synchronizing the 5 gas-dynamic processes in the cells 36 of the pressure wave supercharger 32. This means that it only applies a drive power for moving a cellular wheel 38 of the pressure wave supercharger 32, but without spending energy for compressing the exhaust gas. Compared to a belt or chain drive of the cellular wheel 38 of the lo blast loader 32 when driving with the electric motor 34 is possible to optimally adapt its speed to the variable sound velocities of the exhaust gas.
  • Such pressure wave chargers 32 are known as Suprex or Hyprexlader.
  • the exhaust gas is both conveyed and used to increase the pressure.
  • a delivery inlet 40 of the pressure wave loader 32 is connected to the exhaust gas recirculation line 30, which of the exhaust pipe 20th
  • a delivery outlet 42 is connected to the intake passage 12 downstream of the compressor 14 via the exhaust gas recirculation line 30.
  • the pressure wave loader 32 On the approximately axially opposite to the feed inlet 40 side of the cellular wheel 38 is the pressure wave loader 32 with a pressure wave outlet
  • bypass line 46 which opens into the exhaust pipe 20 downstream of the turbine 22 and upstream of the particulate filter 24, so that this exhaust gas is cleaned in the following.
  • This bypass line 46 branches from the exhaust pipe 20 in front of the turbine 22 thus at a position at which there is a high exhaust gas pressure, and is connected to 0 a pressure wave inlet 48 of the pressure wave supercharger 32, which is arranged approximately axially opposite to the delivery outlet 42 of the pressure wave supercharger 32.
  • the mode of operation of the pressure wave loader 32 will be explained below with reference to FIG.
  • a single cell 36 is considered, which was initially filled with clean exhaust gas from the delivery inlet 40.
  • this reaches the opening of the pressure wave inlet 48.
  • the pressure of the non-purified exhaust gas in the high-pressure region thus lies upstream of the turbine 22.
  • This significantly increased pressure compared to exhaust gas from the low pressure area in the cell 36 causes a pressure wave to propagate in the cell 36 to the right, resulting in compression of the clean gas present in the cell 36.
  • the outlet window opens to the delivery outlet 42.
  • the clean exhaust gas flows out and enters the suction line 12.
  • the delivery outlet 42 is closed before the non-purified exhaust gas can flow out.
  • the pressure wave outlet 44 arranged on the same side as the pressure wave inlet 48 is opened in the following. This means that the cell 38 reaches the pressure wave outlet 44, whereby the untreated exhaust gas can flow back into the area behind the turbine 22 via the bypass line 46 and is subsequently cleaned in the particle filter 26 and in the catalytic converter 28.
  • This extension leads to a vacuum wave in the cell 36.
  • the cell 36 is in communication with the delivery inlet 40, through which the cell 36 is again filled with clean exhaust gas due to the vacuum wave, while the uncleaned exhaust gas is ejected becomes. Now, the cell 36 is again filled with clean exhaust gas, so that the process described starts again.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Exhaust-Gas Circulating Devices (AREA)
  • Supercharger (AREA)

Abstract

On connaît des systèmes de recirculation des gaz d'échappement qui sont destinés à un moteur à combustion interne et qui comportent une conduite de gaz d'échappement (20), une conduite d'admission (12), un turbocompresseur (16) pourvu d'une unité de compression (14) disposée dans la conduite d'admission (12) et d'une turbine disposée dans la conduite de gaz d'échappement (20), une conduite de recirculation des gaz d'échappement (30) laquelle bifurque en aval de la turbine (22) depuis la conduite de gaz d'échappement (20) et débouche en aval de l'unité de compression (14) dans la conduite d'admission (12), et des moyens permettant d'augmenter la pression des gaz d'échappement au sein de la conduite de recirculation des gaz d'échappement (30). Pour surmonter le gradient de pression, on utilise habituellement des pompes de recirculation des gaz d'échappement pourvues d'un dispositif d'entraînement dédié. Dans l'objectif de recirculer, vers la partie d'admission sous haute pression, des gaz d'échappement dont la dépollution a été réalisée avec le meilleur rendement énergétique possible, le moyen permettant d'augmenter la pression au sein de la conduite de recirculation des gaz d'échappement (30) est réalisé, selon l'invention, sous forme d'un compresseur à ondes de pression (32).
PCT/EP2013/062677 2012-08-21 2013-06-19 Système de recirculation des gaz d'échappement pour un moteur à combustion interne WO2014029522A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP13730869.8A EP2888468A1 (fr) 2012-08-21 2013-06-19 Système de recirculation des gaz d'échappement pour un moteur à combustion interne

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102012107649.9A DE102012107649B4 (de) 2012-08-21 2012-08-21 Abgasrückführsystem für eine Verbrennungskraftmaschine
DE102012107649.9 2012-08-21

Publications (1)

Publication Number Publication Date
WO2014029522A1 true WO2014029522A1 (fr) 2014-02-27

Family

ID=48672613

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2013/062677 WO2014029522A1 (fr) 2012-08-21 2013-06-19 Système de recirculation des gaz d'échappement pour un moteur à combustion interne

Country Status (3)

Country Link
EP (1) EP2888468A1 (fr)
DE (1) DE102012107649B4 (fr)
WO (1) WO2014029522A1 (fr)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014118813A1 (de) 2014-12-17 2016-06-23 Tenneco Gmbh AGR-System mit Partikelfilter für Ottomotor
DE102015108224A1 (de) 2014-12-17 2016-06-23 Tenneco Gmbh AGR-System mit Partikelfilter für Ottomotor
US10480460B2 (en) 2014-12-17 2019-11-19 Tenneco Gmbh EGR system with particle filter for a gasoline engine
DE102019208046B4 (de) 2019-06-03 2021-03-11 Ford Global Technologies, Llc Brennkraftmaschine mit Comprex-Lader und Abgasrückführung und Verfahren zum Betreiben einer derartigen Brennkraftmaschine
DE102019208045B4 (de) 2019-06-03 2023-05-11 Ford Global Technologies, Llc Mittels Comprex-Lader aufgeladene Brennkraftmaschine

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005058726A1 (de) * 2004-12-09 2006-07-06 Renault S.A.S. Vorrichtung zur Aufladung und zur Schichtung von wiederaufbereiteten Abgasen für einen Verbrennungsmotor, insbesondere für ein Kraftfahrzeug und zugehöriges Verfahren
DE102009027639A1 (de) 2009-07-13 2011-01-20 Ford Global Technologies, LLC, Dearborn Abgasanlage mit Abgasrückführung
DE102010049361A1 (de) 2010-10-26 2012-04-26 Benteler Automobiltechnik Gmbh Druckwellenladeranordnung und Verfahren zum Betreiben einer Druckwellenladeranordnung
US20120204559A1 (en) * 2009-10-30 2012-08-16 Toyota Jidosha Kabushiki Kaisha Supercharging system for internal combustion engine

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6248930A (ja) * 1985-08-26 1987-03-03 Mazda Motor Corp 圧力波過給機付エンジン
JP2008280975A (ja) * 2007-05-14 2008-11-20 Toyota Motor Corp 排気ガス還流装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005058726A1 (de) * 2004-12-09 2006-07-06 Renault S.A.S. Vorrichtung zur Aufladung und zur Schichtung von wiederaufbereiteten Abgasen für einen Verbrennungsmotor, insbesondere für ein Kraftfahrzeug und zugehöriges Verfahren
DE102009027639A1 (de) 2009-07-13 2011-01-20 Ford Global Technologies, LLC, Dearborn Abgasanlage mit Abgasrückführung
US20120204559A1 (en) * 2009-10-30 2012-08-16 Toyota Jidosha Kabushiki Kaisha Supercharging system for internal combustion engine
DE102010049361A1 (de) 2010-10-26 2012-04-26 Benteler Automobiltechnik Gmbh Druckwellenladeranordnung und Verfahren zum Betreiben einer Druckwellenladeranordnung

Also Published As

Publication number Publication date
DE102012107649B4 (de) 2014-05-15
DE102012107649A1 (de) 2014-02-27
EP2888468A1 (fr) 2015-07-01

Similar Documents

Publication Publication Date Title
DE102018218665B4 (de) Sekundärlufteinspritzsystem
WO2008125579A1 (fr) Moteur à combustion interne suralimenté et procédé
DE102009028354A1 (de) Gasführungssystem für eine Peripherie einer Brennkraftmaschine zur Führung von Gas der Brennkraftmaschine, Brennkraftmaschine und Verfahren zum Betrieb der Brennkraftmaschine
DE3532345A1 (de) Verfahren und einrichtung zum betrieb eines dieselmotors mit abgaspartikelfilter
DE102012107649B4 (de) Abgasrückführsystem für eine Verbrennungskraftmaschine
EP1722080B1 (fr) Moteur à combustion interne et procédé pour son fonctionnement
DE102016212249A1 (de) Zweistufig aufladbare direkteinspritzende Brennkraftmaschine mit Abgasnachbehandlung und Verfahren zum Betreiben einer derartigen Brennkraftmaschine
DE102007019060A1 (de) Brennkraftmaschine mit kombinierter Aufladung durch Abgasturbolader und mechanischer Lader
EP3441587B1 (fr) Procédé de fonctionnement d'un moteur à combustion interne
DE102017205697A1 (de) Abgasnachbehandlungssystem für einen Verbrennungsmotor sowie Verbrennungsmotor
DE102012009315A1 (de) Verbrennungsmotor
WO2009115405A1 (fr) Procédé pour la régénération d’un filtre à particules diesel d’un moteur à combustion interne ainsi que dispositif correspondant
DE102009031845A1 (de) Brennkraftmaschine mit Turbokühlung
WO2010072227A1 (fr) Système de recirculation des gaz d'échappement et procédé de recirculation des gaz d'échappement
DE102013008827A1 (de) Aufgeladene Brennkraftmaschine
DE102014211127B4 (de) Aufgeladene Brennkraftmaschine mit in Reihe angeordneten Abgasturboladern und Abgasrückführung und Verfahren zum Betreiben einer derartigen Brennkraftmaschine
DE102004061613A1 (de) Verfahren zum Betreiben einer Verbrennungskraftmaschine mit Ladeluftaufladung und Verbrennungskraftmaschine
DE102009047355B4 (de) Verbrennungsmaschine mit einem Gasspeicherraum mit variablem Volumen und Verfahren zum Betrieb einer solchen Verbrennungsmaschine
DE202014102710U1 (de) Aufgeladene Brennkraftmaschine mit in Reihe angeordneten Abgasturboladern
DE102019003576A1 (de) Verfahren zum Betreiben einer Verbrennungskraftmaschine für einen Kraftwagen und Verbrennungskraftmaschine für einen Kraftwagen
DE102019207912B4 (de) Motoranordnung mit stirnseitig angeordnetem Lader
DE202016103676U1 (de) Zweistufig aufladbare Brennkraftmaschine mit Abgasnachbehandlung
DE102016215862A1 (de) Brennkraftmaschine mit Verdichter, Abgasrückführung und einer mit dem Verdichter verbundenen Ventileinheit
DE102016212251A1 (de) Zweistufig aufladbare Brennkraftmaschine mit Abgasnachbehandlung und Verfahren zum Betreiben einer derartigen Brennkraftmaschine
DE102015207545A1 (de) Zweistufig aufladbare Brennkraftmaschine mit Abgasnachbehandlung und Verfahren zum Betreiben einer derartigen Brennkraftmaschine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13730869

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2013730869

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE