WO2014029182A1 - 集成带通滤波功能的非等分功率分配器 - Google Patents

集成带通滤波功能的非等分功率分配器 Download PDF

Info

Publication number
WO2014029182A1
WO2014029182A1 PCT/CN2012/086904 CN2012086904W WO2014029182A1 WO 2014029182 A1 WO2014029182 A1 WO 2014029182A1 CN 2012086904 W CN2012086904 W CN 2012086904W WO 2014029182 A1 WO2014029182 A1 WO 2014029182A1
Authority
WO
WIPO (PCT)
Prior art keywords
microstrip line
resonator
band pass
twenty
microstrip
Prior art date
Application number
PCT/CN2012/086904
Other languages
English (en)
French (fr)
Inventor
章秀银
王凯旭
余枫林
李聪
胡斌杰
Original Assignee
华南理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华南理工大学 filed Critical 华南理工大学
Publication of WO2014029182A1 publication Critical patent/WO2014029182A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P5/00Coupling devices of the waveguide type
    • H01P5/12Coupling devices having more than two ports
    • H01P5/16Conjugate devices, i.e. devices having at least one port decoupled from one other port
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/20Frequency-selective devices, e.g. filters
    • H01P1/201Filters for transverse electromagnetic waves
    • H01P1/203Strip line filters
    • H01P1/20327Electromagnetic interstage coupling

Definitions

  • the invention relates to a power splitter with filtering function, in particular to a non-divided power splitter which can be applied to an integrated single-band pass filtering function of a radio frequency front end circuit.
  • the power splitter is a fundamental part of the microwave circuit, and because it has the function of separating and combining signals, it is used in many antenna arrays and balanced circuits.
  • the bandpass filter circuit is another indispensable part of the wireless communication system because it can separate the required frequency bands. These two components are present simultaneously in many microwave systems.
  • power splitters and filter circuits typically need to be connected together to separate and filter out signals.
  • all of the above-mentioned power splitters and filter circuits have been studied with a focus on their own characteristics, and there is little possibility of considering the combination of the two.
  • discrete devices are often used to implement these two functions, but this size can be large.
  • a dual-function single device can have two functions at the same time to meet the requirements of miniaturization. Dual-function devices with separate/combined power signals and frequency selection have been studied by some researchers.
  • a Wilkinson power divider with both bandpass response and harmonic rejection is designed in the literature P. Cheong, K. Lai, and K. Tam, 'Compact Wilkinson Power Divider with Simultaneous Bandpass Response and Harmonic Suppression,' in 2010 IEEE MTT-S International Microwave Symposium Digest, Snaheim, USA, 2010 . It is proposed that in this design, the interdigitated step impedance coupling line is used to implement the function. Also, in the literature X. Y. Tang and K.
  • non-divided microstrip power splitter has important application value in the actual RF circuit. Relative to the aliquot, The design of non-division microstrip power dividers is more complicated. It requires the power divider to be as small as possible and easy to integrate while achieving power imbalance distribution.
  • D. Hawatmeh, K.A. Shamaileh And N. Dib 'Design and Analysis of Compact Unequal-Split Wilkinson Power Divider Using Non-Uniform Transmission Lines,' Applied Electrical Engineering And Computing Technologies, pp.1-6, Dec, 2011 .
  • the present invention proposes a novel non-divided power splitter that integrates bandpass filtering. Compared with the traditional Wilkinson power divider, a quarter-wavelength impedance transform segment needs to be added at the output port, and the design proposed by the present invention can omit the quarter-wavelength impedance transform segment, effectively reducing the size and simultaneously reducing the size. A power imbalance is achieved.
  • the object of the present invention is to overcome the above-mentioned deficiencies of the prior art, and to provide a non-divided power splitter with integrated band pass filtering function.
  • a single band pass filter circuit is used as an impedance converter instead of a conventional quarter wave transmission line.
  • the input impedance of the single-band pass filter circuit located above and the single-band pass filter circuit located below is different, so that unequal power distribution can be realized.
  • the input and output impedances of the two single-band pass filter circuits can be adjusted by changing the coupling strength and port position between the resonators to perform different ratios of power distribution and achieve matching, compared to the filter circuit and the non-equal splitter.
  • This structure can eliminate the quarter-wavelength impedance transform segment required by the traditional Wilkinson non-divided power splitter at the output port, effectively reducing the size.
  • a resistor, capacitor or inductor is connected as an isolation element to the open ends of the two single-band pass filter circuits for good isolation. Because of the special position of the isolation device, the proposed structure has a smaller size and can improve the integration of the circuit. Since the single-band pass filter circuit is integrated in the power splitter and the input impedances of the two single-band pass filter circuits are different, the functions of frequency selection and non-equal power allocation can be realized at the same time.
  • a non-divided power divider integrated with a bandpass filtering function comprising an upper microstrip structure, an isolating component, an intermediate layer dielectric substrate and a lower grounded metal plate, the upper microstrip structure being attached to the surface of the intermediate layer dielectric plate, and the intermediate layer dielectric plate
  • the surface is a grounded metal
  • the upper layer microstrip structure includes two single-band pass filter circuits, and the two single-band pass filter circuits have different input impedances to achieve unequal power distribution, and the two single-band pass filter circuits share one Input port as input port I/P for non-divided power splitter with integrated bandpass filtering
  • the output ports of the two single-band pass filter circuits serve as the first output port O/P1 and the second output port O/P2 of the non-divided power splitter integrated with the band pass filtering function.
  • the single-band pass filter circuit located above is composed of three quarter-wave resonators, which are respectively a first resonator, a second resonator and a third resonance
  • the first resonator is a first microstrip line, a second microstrip line, a third microstrip line, and a fourth microstrip line, which are sequentially connected to each other, and an end-grounded microstrip line;
  • the second resonator The grounding end of the fifth microstrip line, the sixth microstrip line, the seventh microstrip line, the eighth microstrip line, the ninth microstrip line, and the tenth microstrip line connected in turn, the open end microstrip line
  • the third resonator is grounded at the beginning end of the eleventh microstrip line, the twelfth microstrip line, the thirteenth microstrip line, the fourteenth microstrip line and the fifteenth microstrip line connected in sequence, and the
  • the above-mentioned non-divided power splitter with integrated band-pass filtering function has different input impedances of the single-band pass filter circuit located above and the single-band pass filter circuit located below, so that unequal power distribution can be realized.
  • the input and output impedance of each single-band pass filter circuit can be adjusted by changing the coupling strength between the resonators and the port position to perform different ratios of power distribution and matching, and compared to the filter circuit and the non-divided power divider.
  • Cascade structure This structure can eliminate the quarter-wavelength impedance transform segment required by the traditional Wilkinson non-divided power splitter at the output port, effectively reducing the size.
  • the length L of the quarter wave resonator is one quarter of the wavelength ⁇ corresponding to the resonance frequency f of the single band pass filter circuit; wherein L is Actual microstrip line length.
  • the single-band pass filter circuit passband left and right transmission zero point is generated by cross coupling between the resonators.
  • the non-divided power divider integrated with the bandpass filtering function, the isolation component 36 is a resistor, a capacitor or an inductor.
  • the present invention has the following advantages:
  • the bandpass filtering function is integrated in the traditional power splitter, which can simultaneously realize the functions of power distribution and filtering signals.
  • the input impedance of the single-frequency filter circuit can be changed by changing the coupling strength and the port position between the resonators to obtain different ratios of power distribution, and compared to the cascade structure of the filter circuit and the non-divided power divider, This structure can eliminate the quarter-wavelength impedance transform segment required by the traditional Wilkinson non-divided power splitter at the output port, and the size is greatly reduced, which is beneficial to the integration and miniaturization of the RF front-end system. .
  • Non-divided power splitters with integrated bandpass filtering have lower insertion loss than systems with traditional discrete power splitters and filters.
  • Figure 1 is a block diagram of a non-divided power splitter with a 2:1 integrated bandpass filtering function
  • 2 is a transmission characteristic diagram of a single-band pass filter circuit
  • FIG. 3 is a structural diagram of a non-divided power splitter with a 4:1 integrated band pass filtering function
  • Figure 4a is a transmission characteristic diagram of a non-divided power splitter with a 2:1 integrated band pass filtering function
  • Figure 4b is the output return loss and isolation factor of a non-divided power splitter with a 2:1 integrated bandpass filtering function
  • Figure 5a is a transmission characteristic diagram of a non-divided power splitter with a 4:1 integrated band pass filtering function
  • Figure 5b is the output return loss and isolation factor of a 4:1 integrated bandpass filtering function for a non-divided power splitter.
  • the upper layer microstrip structure, the isolation element, the intermediate layer dielectric substrate and the lower grounded metal plate are disposed, and the upper microstrip structure is attached to the surface of the intermediate layer dielectric plate, and the lower surface of the intermediate layer dielectric plate is a grounded metal;
  • the upper layer microstrip structure includes two single-band pass filter circuits, and the input impedances of the two single-band pass filter circuits are different to achieve unequal power distribution.
  • the two single-band pass filter circuits share one input port as integrated band pass filter.
  • the output ports of the two single-band pass filter circuits are the first output port O/P1 and the second output port O/P2 of the non-divided power splitter integrated with the band pass filtering function; one end of the first isolation element 36 is located above The open end of the second resonator 2 is connected, and the other end is connected to the open end of the fifth resonator 5 located below.
  • the first isolation element 36 can be a resistor, a capacitor or an inductor.
  • each single-band pass filter circuit is composed of three quarter-wave resonators coupled; the length L of the quarter-wave resonator is corresponding to the resonance frequency f of the single-band pass filter circuit.
  • the single-band pass filter circuit located above is composed of three quarter-wave resonators, which are respectively a first resonator 1, a second resonator 2 and a third resonator 3;
  • the resonator 1 is an initial open circuit formed by the first microstrip line 7, the second microstrip line 8, the third microstrip line 9 and the fourth microstrip line 10 connected in sequence, and the microstrip line grounded at the end;
  • the second resonator 2 is a grounding end of the fifth microstrip line 11, the sixth microstrip line 12, the seventh microstrip line 13, the eighth microstrip line 14, the ninth microstrip line 15, and the tenth microstrip line 16 which are sequentially connected.
  • the third resonator 3 is an eleventh microstrip line 17 and a twelfth microstrip line 18 that are sequentially connected,
  • the thirteenth microstrip line 19, the fourteenth microstrip line 20 and the fifteenth microstrip line 21 are formed with a grounded end and an open-ended microstrip line; wherein the second microstrip line 8 and the thirteenth microstrip line 19 Coupling, the third microstrip line 9 and the twelfth microstrip line 18 are coupled, the fourth microstrip line 10 and the fifth microstrip line 11 are coupled, one end of the fifth microstrip line 11 and the eleventh microstrip line 17 One end is coupled; the open end of the first resonator 1 is connected to the input port I/P, and the thirteenth microstrip line 19 of the third resonator 3 is connected to the first output port O/P1;
  • the filter circuit is composed of three quarter-wave resonators, which are a fourth resonator 4, a fifth resonator 5
  • the microstrip line 26, the twenty-first microstrip line 27, the twenty-second microstrip line 28, the twenty-third microstrip line 29, the twenty-fourth microstrip line 30, and the twenty-fifth microstrip line 31 constitute Beginning a grounded, open-ended microstrip line; the sixth resonator 6 is a second sixteen microstrip line 31 and a twenty-seventh microstrip line 32 that are sequentially connected.
  • the twenty-eighth microstrip line 33, the twenty-ninth microstrip line 34 and the thirtieth microstrip line 35 are formed with a grounded end and an open-ended microstrip line; wherein the seventeenth microstrip line 23 and the twenty-ninth The microstrip line 34 is coupled, the eighteenth microstrip line 24 is coupled to the twenty-eighth microstrip line 33, the nineteenth microstrip line 25 is coupled to the twentieth microstrip line 26, and one end of the twentieth microstrip line 26 is coupled.
  • the single-band pass filter circuit in the upper box has an input impedance of 150 ohms and an output impedance of 50 ohms.
  • Figure 2 is the amplitude simulation response of this single band pass filter circuit.
  • each single-band pass filter circuit can be adjusted by changing the coupling strength and port position between the resonators to perform different ratios of power distribution and matching, and compared to the filter circuit and the non-divided power divider Cascade structure, This configuration eliminates the quarter-wavelength impedance transform required by the traditional Wilkinson unequal splitter at the output port.
  • the single-band pass filter circuit shown above in Figure 1 has an input impedance of 75 ohms and an output impedance of 50 ohms.
  • the single-band pass filter circuit located below has an input impedance of 150 ohms and an output impedance of 50 ohms. .
  • the two single-band pass filter circuits are equivalent to parallel, so the input impedance of the circuit after parallel connection is exactly matched with 50 ohms, and the power distribution ratio is 2:1.
  • a single-band pass filter circuit (its input and output ports corresponding to FIG. 1) having an input impedance of 62.5 ohms and an output impedance of 50 ohms; a single-band pass filter circuit located below The input impedance is 250 ohms, the output impedance is 50 ohms, and the power distribution ratio is 4:1.
  • the quarter-wavelength transmission line realizes the function of impedance transformation, and can achieve the matching state only by adjusting the input and output impedance, which can eliminate the need of a quarter of the required output of the traditional Wilkinson non-divided power divider at the output port.
  • the impedance transform segment of the wavelength can be adjusted by changing the coupling strength and port position between the resonators to obtain different ratios of power distribution and matching, so it can be used instead of the conventional power splitter.
  • the structure of the non-divided power splitter with integrated bandpass filtering function with a power distribution ratio of 2:1 is shown in Fig. 1.
  • the dielectric substrate has a thickness of 0.81 mm and a relative dielectric constant of 3.38.
  • the isolation element 36 connected between the single band pass filter circuits employs a 5.1 k ohm resistor to enhance isolation.
  • the structure of the non-divided power splitter with integrated bandpass filtering function of 4:1 is shown in Fig. 3.
  • the dielectric substrate has a thickness of 0.81 mm and a relative dielectric constant of 3.38.
  • the second isolation element 37 connected between the single band pass filter circuits employs a 12 k ohm resistor to enhance isolation.
  • the power splitter is designed in accordance with Figures 1 and 3 to achieve the desired input and output impedance characteristics, in-band transmission characteristics, and out-of-band attenuation characteristics.
  • FIG. 4a is a simulation result of the transmission characteristics of a non-divided power splitter with an integrated band pass filtering function according to the above FIG. 1; the horizontal axis represents the frequency and the vertical axis represents the transmission characteristic, wherein S11 represents Return loss of the non-divided power divider integrated with bandpass filtering, S21 represents the insertion loss from the input port I/P to the first output port O/P1, and S31 represents the input port I/P to the second output port O/P2 insertion loss; as shown by the simulation results, the center frequency of the passband is 2 GHz, the insertion loss S21 at the center frequency is -2.7 dB, and S31 is -5.7 dB.
  • the insertion loss of the non-divided power splitter with integrated bandpass filtering is slightly larger than that of the standard power splitter.
  • the return loss S11 of the non-divided power splitter with integrated bandpass filtering is -44dB, and a transmission zero on each side of the passband, greatly improving the roll-off characteristics of the filtering function in the power divider.
  • Figure 4b is an output return loss S22, S33 and isolation coefficient S23 of a non-divided power splitter with integrated bandpass filtering function designed according to Figure 1 above. Simulation results.
  • the output return loss S22 at the center frequency is -17 dB
  • S33 is -25 dB
  • the isolation coefficient S23 of port 2 and port 3 is -20 dB.
  • Figure 5a is a simulation result of the transmission characteristics of a non-divided power splitter with an integrated band pass filtering function according to the above Fig. 3; the horizontal axis represents the frequency and the vertical axis represents the transmission characteristic, wherein S11 represents Return loss of the non-divided power splitter with integrated bandpass filtering, S21 indicates the insertion loss from the first output port to the input port when the input port is matched, and S31 indicates the input port is matched from the second output port to the input.
  • the insertion loss of the port as can be seen from the simulation results, the center frequency of the pass band is 2 GHz, the insertion loss S21 at the center frequency is -2.2 dB, and S31 is -8.2 dB.
  • the insertion loss of the non-divided power splitter with integrated bandpass filtering is slightly larger than that of the standard power splitter.
  • the return loss S11 of the non-divided power splitter with integrated bandpass filtering is -36dB, and a transmission zero on each side of the passband, greatly improving the roll-off characteristics of the filtering function in the power divider.
  • Figure 5b is an output return loss S22, S33 and isolation coefficient S23 of a non-divided power splitter with integrated bandpass filtering function designed according to Figure 3 above. Simulation results.
  • the output return loss S22 at the center frequency is -13 dB
  • S33 is -27 dB
  • the isolation coefficient S23 of port 2 and port 3 is -21 dB.
  • the simulation results of the embodiment show that the device of the present invention has two functions, which can not only distribute the input energy evenly, but also filter out the required frequency band.

Abstract

本发明公开了集成带通滤波功能的非等分功率分配器,包括上层微带结构,隔离元件,中间层介质基板和下层接地金属板。每一个集成带通滤波功能的非等分功率分配器包括两个单频带通滤波电路以及连接在该两个单频带通滤波电路之间的隔离元件。非等分功率分配器的输入阻抗与输出阻抗相同,每一个单频带通滤波电路的输入输出阻抗可通过改变谐振器之间的耦合强度和端口位置进行调节以进行不同比率的功率分配并实现匹配。本发明可以省去传统威尔金森非等分功分器在输出端口处所需要的四分之一波长的阻抗变换段,有效减小了尺寸。本发明可用于各类射频前端系统中,同时具有功率分配和频率选择的功能,有利于器件的集成化与小型化。

Description

集成带通滤波功能的非等分功率分配器
技术领域
本发明涉及一种具有滤波功能的功率分配器,特别涉及一种可应用于射频前端电路的集成单频带通滤波功能的非等分功率分配器。
背景技术
功率分配器是微波电路中一个基础的部分,因为其有分离和组合信号的功能,所以在很多天线阵列和平衡电路中都要用到。而带通滤波电路是无线通信系统中另一种不可缺少的部分,因其可以分离出需要的频带。这两种元件在许多微波系统中同时存在。
在过去的几十年,有大量关于功率分配器的研究。研究的焦点在于拓宽频带,减小面积,双频响应以及谐波抑制。与此同时,带通滤波电路也是无源电路设计中重要的研究领域。单通带和多通带滤波电路是两个不同的研究方向。研究的焦点在于减小体积、提高频率选择性、灵活控制多个通带的工作频率及带宽、增加传输零点等方面。
在很多的射频子系统中,功率分配器以及滤波电路通常需要连接在一起以实现分离和滤除信号的功能。然而,所有上面提到的功率分配器以及滤波电路的研究都只是注重他们本身的特性,很少有考虑两者结合的可能性。传统的系统中通常应用离散器件实现这两个功能,但是这样尺寸会很大。
而具有双重功能的单一器件能同时具有两种功能,可以满足小型化的要求。同时具备分离/组合功率信号以及频率选择的双功能器件已经有一些学者研究过。一种兼具带通响应和谐波抑制的威尔金森功率分配器设计在文献P. Cheong, K. Lai, and K. Tam, 'Compact Wilkinson Power Divider with Simultaneous Bandpass Response and Harmonic Suppression,' in 2010 IEEE MTT-S International Microwave Symposium Digest, Snaheim, USA, 2010 . 中被提出,在这个设计中,交叉指阶梯阻抗耦合线被用于实现功能。另外,在文献X. Y. Tang and K. Mouthaan, 'Filter Integrated Wilkinson Power Dividers,' Microwave and Optical Technology Letters, vol. 52, no. 12, pp. 2830-2833, Dec, 2010 . 中提到, Π- 型传输线可以被集成到功率分配器中,然而,文章中只是用 Π- 型传输线,其滤波功能有待提高。
此外,在射频电路中 , 经常会有射频功率不平衡分配的需求 , 因此非等分微带功分器在实际射频电路中有着重要的应用价值。相对于等分功分器 , 非等分微带功分器的设计要更复杂一些,在实现功率不平衡分配的同时要求功分器的体积尽量小,易集成。在文献D. Hawatmeh,K.A. Shamaileh and N. Dib, 'Design and Analysis of Compact Unequal-Split Wilkinson Power Divider Using Non-Uniform Transmission Lines,' Applied Electrical Engineering and Computing Technologies, pp.1-6, Dec, 2011 . 中作者用非均匀输线路代替传统的均匀传输线,有效减少了尺寸,但是这种结构仍然需要在输出端口位置加一段四分之一波长阻抗变换段,尺寸没能进一步减小,而且没有滤波功能。
考虑到小尺寸和射频功率不平衡分配的需求,本发明提出了一种新型的集成带通滤波功能的非等分功率分配器。相对于传统的威尔金森功分器需要在输出端口处加入四分之一波长阻抗变换段,本发明提出的设计可以省去该四分之一波长阻抗变换段,有效减小了尺寸,同时实现了功率的不平衡分配。
发明内容
本发明的目的在于克服现有技术存在的上述不足,提出了集成带通滤波功能的非等分功率分配器。本发明中,单频带通滤波电路用作阻抗转换器以代替传统的四分之一波长传输线。位于上方的单频带通滤波电路和位于下方的单频带通滤波电路的输入阻抗不同,从而可以实现不等分的功率分配。且两个单频带通滤波电路的输入输出阻抗可通过改变谐振器之间的耦合强度和端口位置进行调节以进行不同比率的功率分配并实现匹配,相比于滤波电路与非等分功分器的级联结构, 这种结构可以省去传统威尔金森非等分功分器在输出端口处所需要的四分之一波长的阻抗变换段,有效减小了尺寸。电阻,电容或电感作为隔离元件连接于两个单频带通滤波电路的开路端以得到良好的隔离效果。因为隔离器件摆放的特殊位置,所提出的结构有较小的尺寸,能提高电路的集成度。因为功率分配器中集成了单频带通滤波电路,且两个单频带通滤波电路的输入阻抗不同,所以可以同时实现频率选择和非等分的功率分配的功能。
为实现本发明目的,本发明所采用的技术方案如下:
集成带通滤波功能的非等分功率分配器,包括上层微带结构,隔离元件,中间层介质基板和下层接地金属板,上层微带结构附着在中间层介质板上表面,中间层介质板下表面为接地金属;其特征在于:上层微带结构包括两个单频带通滤波电路,两个单频带通滤波电路输入阻抗不同,以实现功率的不等分配,两个单频带通滤波电路共用一个输入端口作为集成带通滤波功能的非等分功率分配器的输入端口I/P , 两个单频带通滤波电路的输出端口作为 集成带通滤波功能的非等分功率分配器的第一输出端口O/P1和第二输出端口O/P2。
上述集成带通滤波功能的非等分功率分配器,位于上方的单频带通滤波电路由三个四分之一波长谐振器耦合组成,分别为第一谐振器、第二谐振器和第三谐振器;其中第一谐振器为依次连接的第一微带线、第二微带线、第三微带线和第四微带线构成的始端开路,末端接地的微带线;第二谐振器为依次连接的第五微带线、第六微带线、第七微带线、第八微带线、第九微带线和第十微带线构成的始端接地,末端开路的微带线;第三谐振器为依次连接的第十一微带线、第十二微带线、第十三微带线、第十四微带线和第十五微带线构成的始端接地,末端开路的微带线;其中第二微带线和第十三微带线耦合,第三微带线和第十二微带线耦合,第四微带线和第五微带线耦合,第五微带线的一端和第十一微带线的一端耦合;第一谐振器的开路端与输入端口I/P相连接,第三谐振器的第十三微带线与第一输出端口O/P相连接;位于下方的单频带通滤波电路由三个四分之一波长谐振器耦合组成,分别为第四谐振器、第五谐振器和第六谐振器;其中第四谐振器为依次连接的第十六微带线、第十七微带线、第十八微带线和第十九微带线构成的始端开路,末端接地的微带线;第五谐振器为依次连接的第二十微带线、第二十一微带线、第二十二微带线、第二十三微带线、第二十四微带线和第二十五微带线构成的始端接地,末端开路的微带线;第六谐振器为依次连接的第二十六微带线、第二十七微带线、第二十八微带线、第二十九微带线和第三十微带线构成的始端接地,末端开路的微带线;其中第十七微带线和第二十九微带线耦合,第十八微带线和第二十八微带线耦合,第十九微带线和第二十微带线耦合,第二十微带线的一端和第二十七微带线的一端耦合;第四谐振器的开路端与输入端口I/P相连接,第六谐振器的第二十八微带线与第二输出端口O/P相连接;隔离元件的一端与位于上方的第二谐振器的开路端连接,另一端与位于下方的第五谐振器的开路端连接。
上述集成带通滤波功能的非等分功率分配器,位于上方的单频带通滤波电路和位于下方的单频带通滤波电路的输入阻抗不同,从而可以实现不等分的功率分配。每一个单频带通滤波电路的输入输出阻抗可通过改变谐振器之间的耦合强度和端口位置进行调节以进行不同比率的功率分配和实现匹配,并且相比于滤波电路与非等分功分器的级联结构, 这种结构可以省去传统威尔金森非等分功分器在输出端口处所需要的四分之一波长的阻抗变换段,有效减小了尺寸。
上述集成带通滤波功能的非等分功率分配器,四分之一波长谐振器 的长度L为所述单频带通滤波电路的谐振频率f对应的波长λ的四分之一;其中,L为实际微带线长度。
上述集成带通滤波功能的非等分功率分配器,单频带通滤波电路通带左右传输零点由谐振器间的交叉耦合产生。
上述集成带通滤波功能的非等分功率分配器,隔离元件36为电阻、电容或电感。
相对于现有技术,本发明具有如下优点:
(1)在传统的功率分配器中集成了带通滤波功能,可以同时实现功率分配和过滤信号的功能。
(2)可通过改变谐振器之间的耦合强度和端口位置改变单频滤波电路的输入阻抗以获得不同比率的功率分配,并且相比于滤波电路与非等分功分器的级联结构, 这种结构可以省去传统威尔金森非等分功分器在输出端口处所需要的四分之一波长的阻抗变换段,尺寸有较大减小,有利于射频前端系统的集成化以及小型化。
(3)集成带通滤波功能的非等分功率分配器有比传统的分立的功率分配器和滤波器组合而成的系统有更低的插入损耗。
附图说明
图1是2:1的集成带通滤波功能的非等分功率分配器的结构图;
图2是单频带通滤波电路的传输特性曲线图;
图3是4:1的集成带通滤波功能的非等分功率分配器的结构图;
图4a是2:1的集成带通滤波功能的非等分功率分配器的传输特性曲线图;
图4b是2:1的集成带通滤波功能的非等分功率分配器的输出回波损耗和隔离系数;
图5a是4:1的集成带通滤波功能的非等分功率分配器的传输特性曲线图;
图5b是4:1的集成带通滤波功能的非等分功率分配器的输出回波损耗和隔离系数。
具体实施方式
下面结合附图对本发明作进一步详细的说明,但本发明要求保护的范围并不局限于下例表述的范围。
如图1所示,包括上层微带结构,隔离元件,中间层介质基板和下层接地金属板,上层微带结构附着在中间层介质板上表面,中间层介质板下表面为接地金属;其特征在于:上层微带结构包括两个单频带通滤波电路,两个单频带通滤波电路输入阻抗不同,以实现功率的不等分配,两个单频带通滤波电路共用一个输入端口作为集成带通滤波功能的非等分功率分配器的输入端口I/P, 两个单频带通滤波电路的输出端口作为集成带通滤波功能的非等分功率分配器的第一输出端口O/P1和第二输出端口O/P2;第一隔离元件36的一端与位于上方的第二谐振器2的开路端连接,另一端与位于下方的第五谐振器5的开路端连接。其中,第一隔离元件36可以是电阻,电容或电感。
如图1所示,每个单频带通滤波电路由三个四分之一波长谐振器耦合组成;四分之一波长谐振器的长度L为所述单频带通滤波电路的谐振频率f对应的波长λ的四分之一;其中,L为实际微带线长度。
如图1所示,位于上方的单频带通滤波电路由三个四分之一波长谐振器耦合组成,分别为第一谐振器1、第二谐振器2和第三谐振器3;其中第一谐振器1为依次连接的第一微带线7、第二微带线8、第三微带线9和第四微带线10构成的始端开路,末端接地的微带线;第二谐振器2为依次连接的第五微带线11、第六微带线12、第七微带线13、第八微带线14、第九微带线15和第十微带线16构成的始端接地,末端开路的微带线;第三谐振器3为依次连接的第十一微带线17、第十二微带线18、 第十三微带线19、第十四微带线20和第十五微带线21构成的始端接地,末端开路的微带线;其中第二微带线8和第十三微带线19耦合,第三微带线9和第十二微带线18耦合,第四微带线10和第五微带线11耦合,第五微带线11的一端和第十一微带线17的一端耦合;第一谐振器1的开路端与输入端口I/P相连接,第三谐振器3的第十三微带线19与第一输出端口O/P1相连接;位于下方的单频带通滤波电路由三个四分之一波长谐振器耦合组成,分别为第四谐振器4、第五谐振器5和第六谐振器6;其中第四谐振器4为依次连接的第十六微带线22、第十七微带线23、第十八微带线24和第十九微带线25构成的始端开路,末端接地的微带线;第五谐振器5为依次连接的第二十微带线26、第二十一微带线27、第二十二微带线28、第二十三微带线29、第二十四微带线30和第二十五微带线31构成的始端接地,末端开路的微带线;第六谐振器6为依次连接的第二十六微带线31、第二十七微带线32、 第二十八微带线33、第二十九微带线34和第三十微带线35构成的始端接地,末端开路的微带线;其中第十七微带线23和第二十九微带线34耦合,第十八微带线24和第二十八微带线33耦合,第十九微带线25和第二十微带线26耦合,第二十微带线26的一端和第二十七微带线32的一端耦合;第四谐振器4的开路端与输入端口I/P相连接,第六谐振器6的第二十八微带线与第二输出端口O/P2相连接。
如图1所示,位于上方的方框内的单频带通滤波电路输入阻抗为150欧姆,输出阻抗为50欧姆。图2是这个单频带通滤波电路的幅度仿真响应。
每一个单频带通滤波电路的输入输出阻抗可通过改变谐振器之间的耦合强度和端口位置进行调节以进行不同比率的功率分配并实现匹配,并且相比于滤波电路与非等分功分器的级联结构, 这种结构可以省去传统威尔金森非等分功分器在输出端口处所需要的四分之一波长的阻抗变换段。如图1中所示的位于上方的单频带通滤波电路,其输入阻抗为75欧姆,输出阻抗为50欧姆;位于下方的单频带通滤波电路,其输入阻抗为150欧姆,输出阻抗为50欧姆。这两个单频带通滤波电路相当于并联,那么并联后的电路输入阻抗刚好与50欧姆匹配,功率分配比率为2:1。又如图3中所示位于上方的单频带通滤波电路(其输入、输出端口与图1对应),其输入阻抗为62.5欧姆,输出阻抗为50欧姆;位于下方的单频带通滤波电路,其输入阻抗为250欧姆,输出阻抗为50欧姆,功率分配比率为4:1。正是因为单频带通滤波电路的输入输出阻抗可通过改变谐振器之间的耦合强度和端口位置进行调节以获得不同比率的功率分配并实现匹配,因此可以用来代替传统功率分配器中用到的四分之一波长传输线,实现阻抗变换的功能,并且仅通过调节输入输出阻抗便可以达到匹配状态,可以省去传统威尔金森非等分功分器在输出端口处所需要的四分之一波长的阻抗变换段。所以,当集成了单频带通滤波器的功率分配器的输入阻抗与输出阻抗相同时,并联两个单频带通滤波电路,且在两个电路间并接一个隔离电阻,即构成一个典型的威尔金森功率分配器。
实施例
功率分配比率为2:1的集成带通滤波功能的非等分功率分配器的结构如图1所示,介质基板的厚度为0.81mm,相对介电常数为3.38。连接在单频带通滤波电路之间的隔离元件36采用5.1k欧姆的电阻,以增强隔离度。功率分配比率为4:1的集成带通滤波功能的非等分功率分配器的结构如图3所示,介质基板的厚度为0.81mm,相对介电常数为3.38。连接在单频带通滤波电路之间的第二隔离元件37采用12k欧姆的电阻,以增强隔离度。按照图1和图3设计功率分配器,以获得所需的输入、输出阻抗特性、频带内传输特性和频带外衰减特性。
图4a是按照上述图1设计出来的一个集成带通滤波功能的非等分功率分配器的传输特性的仿真结果;传输特性曲线图中的横轴表示频率,纵轴表示传输特性,其中S11表示集成带通滤波功能的非等分功率分配器的回波损耗,S21表示从输入端口I/P到第一输出端口O/P1的插入损耗,S31表示从输入端口I/P到第二输出端口O/P2的插入损耗;由仿真结果可见,通带的中心频率在2GHz,在中心频点的插入损耗S21为-2.7dB,S31为-5.7dB。由于集成了单频带通滤波电路的缘故,集成带通滤波功能的非等分功率分配器的插入损耗要稍大于标准的功率分配器。在中心频点,集成带通滤波功能的非等分功率分配器的回波损耗S11为 -44dB,并且在通带两边各有一个传输零点,大大的改善了功率分配器中滤波功能的滚降特性。图4b是按照上述图1设计出来的一个集成带通滤波功能的非等分功率分配器的输出回波损耗S22,S33和隔离系数S23 的仿真结果。在中心频点上的输出回波损耗S22为-17dB,S33为-25dB,端口2与端口3的隔离系数S23为-20dB。
图5a是按照上述图3设计出来的一个集成带通滤波功能的非等分功率分配器的传输特性的仿真结果;传输特性曲线图中的横轴表示频率,纵轴表示传输特性,其中S11表示集成带通滤波功能的非等分功率分配器的回波损耗,S21表示输入端口匹配时,从第一输出端口到输入端口的插入损耗,S31表示输入端口匹配时,从第二输出端口到输入端口的插入损耗;由仿真结果可见,通带的中心频率在2GHz,在中心频点的插入损耗S21为-2.2dB,S31为-8.2dB。由于集成了单频带通滤波电路的缘故,集成带通滤波功能的非等分功率分配器的插入损耗要稍大于标准的功率分配器。在中心频点,集成带通滤波功能的非等分功率分配器的回波损耗S11为 -36dB,并且在通带两边各有一个传输零点,大大的改善了功率分配器中滤波功能的滚降特性。图5b是按照上述图3设计出来的一个集成带通滤波功能的非等分功率分配器的输出回波损耗S22,S33和隔离系数S23 的仿真结果。在中心频点上的输出回波损耗S22为-13dB,S33为-27dB,端口2与端口3的隔离系数S23为-21dB。
实施例的仿真结果表明本发明器件有两个功能,不但可以平均分配输入能量,还可以筛选出所需要的频段。
以上所述仅为本发明的较佳实例而已,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (6)

  1. 集成带通滤波功能的非等分功率分配器,包括上层微带结构,隔离元件,中间层介质基板和下层接地金属板,上层微带结构附着在中间层介质板上表面,中间层介质板下表面为接地金属;其特征在于:上层微带结构包括两个单频带通滤波电路,两个单频带通滤波电路输入阻抗不同,以实现功率的不等分配,两个单频带通滤波电路共用一个输入端口作为集成带通滤波功能的非等分功率分配器的输入端口(I/P),两个单频带通滤波电路的输出端口作为集成带通滤波功能的非等分功率分配器的第一输出端口(O/P1)和第二输出端口(O/P2)。
  2. 根据权利要求1所述集成带通滤波功能的非等分功率分配器,其特征在于位于上方的单频带通滤波电路和位于下方的单频带通滤波电路的输入阻抗不同,从而实现不等分的功率分配;每一个单频带通滤波电路的输入输出阻抗可通过改变谐振器之间的耦合强度和端口位置进行调节以进行不同比率的功率分配和实现匹配。
  3. 根据权利要求1所述集成带通滤波功能的非等分功率分配器,其特征在于位于上方的单频带通滤波电路由三个四分之一波长谐振器耦合组成,分别为第一谐振器(1)、第二谐振器(2)和第三谐振器(3);其中第一谐振器(1)为依次连接的第一微带线(7)、第二微带线(8)、第三微带线(9)和第四微带线(10)构成的始端开路,末端接地的微带线;第二谐振器(2)为依次连接的第五微带线(11)、第六微带线(12)、第七微带线(13)、第八微带线(14)、第九微带线(15)和第十微带线(16)构成的始端接地,末端开路的微带线;第三谐振器(3)为依次连接的第十一微带线(17)、第十二微带线(18)、第十三微带线(19)、第十四微带线(20)和第十五微带线(21)构成的始端接地,末端开路的微带线;其中第二微带线(8)和第十三微带线(19)耦合,第三微带线(9)和第十二微带线(18)耦合,第四微带线(10)和第五微带线(11)耦合,第五微带线(11)的一端和第十一微带线(17)的一端耦合;第一谐振器(1)的开路端与输入端口(I/P)相连接,第三谐振器(3)的第十三微带线(19)与第一输出端口(O/P1)相连接;位于下方的单频带通滤波电路由三个四分之一波长谐振器耦合组成,分别为第四谐振器(4)、第五谐振器(5)和第六谐振器(6);其中第四谐振器(4)为依次连接的第十六微带线(22)、第十七微带线(23)、第十八微带线(24)和第十九微带线(25)构成的始端开路,末端接地的微带线;第五谐振器(5)为依次连接的第二十微带线(26)、第二十一微带线(27)、第二十二微带线(28)、第二十三微带线(29)、第二十四微带线(30)和第二十五微带线(31)构成的始端接地,末端开路的微带线;第六谐振器(6)为依次连接的第二十六微带线(31)、第二十七微带线(32)、 第二十八微带线(33)、第二十九微带线(34)和第三十微带线(35)构成的始端接地,末端开路的微带线;其中第十七微带线(23)和第二十九微带线(34)耦合,第十八微带线(24)和第二十八微带线(33)耦合,第十九微带线(25)和第二十微带线(26)耦合,第二十微带线(26)的一端和第二十七微带线(32)的一端耦合;第四谐振器(4)的开路端与输入端口(I/P)相连接,第六谐振器(6)的第二十八微带线与第二输出端口(O/P2)相连接;隔离元件的一端与位于上方的第二谐振器(2)的开路端连接,另一端与位于下方的第五谐振器(5)的开路端连接。
  4. 根据权利要求1所述集成带通滤波功能的非等分功率分配器,其特征在于四分之一波长谐振器的长度L为所述单频带通滤波电路的谐振频率f对应的波长λ的四分之一;其中,L为实际微带线长度。
  5. 根据权利要求1所述集成带通滤波功能的非等分功率分配器,其特征在于单频带通滤波电路通带左右传输零点由谐振器间的交叉耦合产生。
  6. 根据权利要求1~5任一项所述的集成带通滤波功能的非等分功率分配器,其特征在于隔离元件(36)为电阻、电容或电感。
PCT/CN2012/086904 2012-08-21 2012-12-19 集成带通滤波功能的非等分功率分配器 WO2014029182A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210298068.3 2012-08-21
CN201210298068.3A CN102832433B (zh) 2012-08-21 2012-08-21 集成带通滤波功能的非等分功率分配器

Publications (1)

Publication Number Publication Date
WO2014029182A1 true WO2014029182A1 (zh) 2014-02-27

Family

ID=47335464

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/086904 WO2014029182A1 (zh) 2012-08-21 2012-12-19 集成带通滤波功能的非等分功率分配器

Country Status (2)

Country Link
CN (1) CN102832433B (zh)
WO (1) WO2014029182A1 (zh)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109546280A (zh) * 2018-12-12 2019-03-29 南京米乐为微电子科技有限公司 一种宽带紧凑型射频功率分配器
CN110061336A (zh) * 2019-05-17 2019-07-26 云南大学 封装的集成基片间隙波导四功分器
CN110266284A (zh) * 2019-06-27 2019-09-20 大连海事大学 具有低信号衰减和任意频率比的双频负群时延微波电路
CN112255466A (zh) * 2020-10-18 2021-01-22 河南师范大学 一种基于混合左右手传输线的相消型传感器
CN114824715A (zh) * 2022-03-29 2022-07-29 中国人民解放军国防科技大学 基于矩形微同轴结构的w波段滤波功分器
CN115360487A (zh) * 2022-09-05 2022-11-18 重庆邮电大学 一种具有宽带外抑制的平面滤波功率分配器
CN115360491A (zh) * 2022-07-18 2022-11-18 郝艺益 一种一分九功分器
CN115458892A (zh) * 2022-10-10 2022-12-09 南京邮电大学 基于圆形siw谐振腔的四路同相不等功分器
CN115473019A (zh) * 2022-08-09 2022-12-13 华南理工大学 一种任意通道数量可重构的滤波功分器及射频前端
CN115498386A (zh) * 2022-09-26 2022-12-20 昆山立讯射频科技有限公司 功分器

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104466335B (zh) * 2014-11-29 2017-06-06 华南理工大学 一种具有滤波功能的电调功率分配器
CN105098311A (zh) * 2015-08-28 2015-11-25 华南理工大学 一种频率大范围可重构的不等分功率分配器
TWI628843B (zh) * 2016-05-20 2018-07-01 新加坡商雲網科技新加坡有限公司 功率分配電路及應用所述功率分配電路的功率分配器
TWI637553B (zh) * 2016-05-20 2018-10-01 新加坡商雲網科技新加坡有限公司 功率分配電路及應用所述功率分配電路的功率分配器
CN106299560A (zh) * 2016-08-22 2017-01-04 淮阴工学院 一种高选择性宽带功分滤波器
CN107578082A (zh) * 2017-09-03 2018-01-12 电子科技大学 一种基于功分原理的射频识别标签
CN107732433B (zh) * 2017-10-26 2023-09-26 华南理工大学 一种双工工字形槽天线
CN109066039B (zh) * 2018-06-25 2020-09-22 南京师范大学 一种新型的微带功分双工器
WO2022047626A1 (en) * 2020-09-01 2022-03-10 Telefonaktiebolaget Lm Ericsson (Publ) Radio frequency power divider and circuit including the same
CN113224045B (zh) * 2021-04-19 2022-04-29 中国电子科技集团公司第二十九研究所 一种基于折叠线圈的紧凑功分器芯片
CN113992280B (zh) * 2021-10-25 2023-06-30 广州通则康威智能科技有限公司 一种宽频信道产测夹具的插入损耗校准装置及其工作方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080068113A1 (en) * 2006-09-15 2008-03-20 Kabushiki Kaisha Toshiba Filter circuit
US20110140804A1 (en) * 2009-12-15 2011-06-16 Microelectronics Technology Inc. Band pass filter combiner
EP2337145A1 (en) * 2009-12-18 2011-06-22 Thales Compact and adjustable power divider and filter device
CN102403563A (zh) * 2011-11-02 2012-04-04 华南理工大学 集成了单频带通滤波器的功率分配器
CN202308258U (zh) * 2011-11-02 2012-07-04 华南理工大学 集成了单频带通滤波器的功率分配器

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102403562A (zh) * 2011-11-02 2012-04-04 华南理工大学 集成了双频带通滤波器的功率分配器
CN202997024U (zh) * 2012-08-21 2013-06-12 华南理工大学 集成带通滤波功能的非等分功率分配器

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080068113A1 (en) * 2006-09-15 2008-03-20 Kabushiki Kaisha Toshiba Filter circuit
US20110140804A1 (en) * 2009-12-15 2011-06-16 Microelectronics Technology Inc. Band pass filter combiner
EP2337145A1 (en) * 2009-12-18 2011-06-22 Thales Compact and adjustable power divider and filter device
CN102403563A (zh) * 2011-11-02 2012-04-04 华南理工大学 集成了单频带通滤波器的功率分配器
CN202308258U (zh) * 2011-11-02 2012-07-04 华南理工大学 集成了单频带通滤波器的功率分配器

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109546280B (zh) * 2018-12-12 2023-10-27 南京米乐为微电子科技有限公司 一种宽带紧凑型射频功率分配器
CN109546280A (zh) * 2018-12-12 2019-03-29 南京米乐为微电子科技有限公司 一种宽带紧凑型射频功率分配器
CN110061336A (zh) * 2019-05-17 2019-07-26 云南大学 封装的集成基片间隙波导四功分器
CN110061336B (zh) * 2019-05-17 2023-12-15 云南大学 封装的集成基片间隙波导四功分器
CN110266284B (zh) * 2019-06-27 2023-02-10 大连海事大学 具有低信号衰减和任意频率比的双频负群时延微波电路
CN110266284A (zh) * 2019-06-27 2019-09-20 大连海事大学 具有低信号衰减和任意频率比的双频负群时延微波电路
CN112255466A (zh) * 2020-10-18 2021-01-22 河南师范大学 一种基于混合左右手传输线的相消型传感器
CN114824715A (zh) * 2022-03-29 2022-07-29 中国人民解放军国防科技大学 基于矩形微同轴结构的w波段滤波功分器
CN114824715B (zh) * 2022-03-29 2023-09-29 中国人民解放军国防科技大学 基于矩形微同轴结构的w波段滤波功分器
CN115360491A (zh) * 2022-07-18 2022-11-18 郝艺益 一种一分九功分器
CN115473019A (zh) * 2022-08-09 2022-12-13 华南理工大学 一种任意通道数量可重构的滤波功分器及射频前端
CN115473019B (zh) * 2022-08-09 2023-09-26 华南理工大学 一种任意通道数量可重构的滤波功分器及射频前端
CN115360487B (zh) * 2022-09-05 2023-08-11 重庆邮电大学 一种具有宽带外抑制的平面滤波功率分配器
CN115360487A (zh) * 2022-09-05 2022-11-18 重庆邮电大学 一种具有宽带外抑制的平面滤波功率分配器
CN115498386A (zh) * 2022-09-26 2022-12-20 昆山立讯射频科技有限公司 功分器
CN115498386B (zh) * 2022-09-26 2024-01-26 苏州立讯技术有限公司 功分器
CN115458892A (zh) * 2022-10-10 2022-12-09 南京邮电大学 基于圆形siw谐振腔的四路同相不等功分器
CN115458892B (zh) * 2022-10-10 2023-12-12 南京邮电大学 基于圆形siw谐振腔的四路同相不等功分器

Also Published As

Publication number Publication date
CN102832433A (zh) 2012-12-19
CN102832433B (zh) 2015-01-28

Similar Documents

Publication Publication Date Title
WO2014029182A1 (zh) 集成带通滤波功能的非等分功率分配器
US5489880A (en) Power divider/combiner with lumped element bandpass filters
WO2012162972A1 (zh) 具有恒定绝对带宽的平衡式射频电调带通滤波器
Guyette et al. Perfectly-matched bandstop filters using lossy resonators
CN109066039B (zh) 一种新型的微带功分双工器
Hunter et al. Passive microwave receive filter networks using low-Q resonators
Sajadi et al. Analysis, simulation, and implementation of dual-band filtering power divider based on terminated coupled lines
Chang et al. Miniature multi-band absorptive bandstop filter designs using bridged-T coils
Zhang et al. Multifunctional filtering circuits: 3D multifunctional filtering circuits based on high-Q dielectric resonators and coaxial resonators
CN108682926B (zh) 一种高选择性双通带功分滤波器
Zhu et al. Novel dual-band bandpass-to-bandstop filter using shunt PIN switches loaded on the transmission line
You et al. Miniature on-chip bandpass power divider with equal-ripple response and wide upper stopband
Lee et al. A band-stop filter with wide stop band using T-shaped stepped impedance resonator and L-shaped open stub
JPS62110301A (ja) 同調形帯域通過フイルタ
Chuang et al. Design of three-pole single-to-balanced bandpass filters
Wang et al. Dual-band bandpass filter type Wilkinson power divider with microstrip composite resonators
Mandal et al. Compact Low-pass Filtering-response Wilkinson Power Divider with Wide Harmonic Suppression
CN115332755B (zh) 一种双频等分Gysel功分滤波器
JP2006253877A (ja) 高周波フィルタ
CN110572130A (zh) 一种用于扩频的双端口平面谐波混频器
JPH0730304A (ja) 高次数高周波フィルタ
Zahari et al. An investigation of switchable matched bandstop to bandpass filter based on lossy resonator
CN113422182B (zh) 基于阻抗调谐的可调低通滤波器
Kada et al. Dual-band SHF reconfigurable bandpass filter using λ/4 microstrip resonators and chip inductor coupling
CN113381142B (zh) 一种具有高频率选择性的三通带功分滤波器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12883220

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12883220

Country of ref document: EP

Kind code of ref document: A1