WO2014029063A1 - 优化ZnO基透明导电膜表面性能的方法及获得的产品 - Google Patents

优化ZnO基透明导电膜表面性能的方法及获得的产品 Download PDF

Info

Publication number
WO2014029063A1
WO2014029063A1 PCT/CN2012/080360 CN2012080360W WO2014029063A1 WO 2014029063 A1 WO2014029063 A1 WO 2014029063A1 CN 2012080360 W CN2012080360 W CN 2012080360W WO 2014029063 A1 WO2014029063 A1 WO 2014029063A1
Authority
WO
WIPO (PCT)
Prior art keywords
zno
based transparent
transparent conductive
conductive film
battery
Prior art date
Application number
PCT/CN2012/080360
Other languages
English (en)
French (fr)
Inventor
陈光羽
雷志芳
谷士斌
Original Assignee
新奥光伏能源有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新奥光伏能源有限公司 filed Critical 新奥光伏能源有限公司
Priority to PCT/CN2012/080360 priority Critical patent/WO2014029063A1/zh
Publication of WO2014029063A1 publication Critical patent/WO2014029063A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/086Oxides of zinc, germanium, cadmium, indium, tin, thallium or bismuth
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5826Treatment with charged particles
    • C23C14/5833Ion beam bombardment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5873Removal of material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022466Electrodes made of transparent conductive layers, e.g. TCO, ITO layers
    • H01L31/022483Electrodes made of transparent conductive layers, e.g. TCO, ITO layers composed of zinc oxide [ZnO]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1884Manufacture of transparent electrodes, e.g. TCO, ITO
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention relates to a method for optimizing the surface properties of a ZnO-based transparent conductive film and a product obtained by the method. Background technique
  • Transparent conductive glass is one of the main raw materials for thin film solar cells.
  • the electrode of the thin film solar cell and the light incident window the conductivity, light transmittance and light scattering ability of the transparent conductive film layer are the main technical indexes.
  • the surface of the transparent conductive film is made into a rough surface which is uneven, which is advantageous for increasing the scattering of light, thereby improving the absorption of light in the photoelectric conversion layer and improving the conversion efficiency of the battery.
  • the industrialized suede-containing tin oxide-doped fluorine (FTO) transparent conductive glass is expensive and costly, and the exhaust gas formed in the production process causes air pollution, and the controllability of the film suede is poor.
  • the ZnO-based transparent conductive film has good photoelectric properties, rich and non-toxic raw materials, strong process controllability and low cost, and will gradually replace the traditional FTO front electrode material.
  • PVD Physical Vapor Deposition
  • Corrosion is a commonly used process for preparing ZnO-based transparent conductive films.
  • the preparation process is a glass substrate, a magnetron sputtering aluminum or gallium doped (AZO or GZO) oxidized ceramic target or a reactive sputtering aluminum target, and the obtained film has a dense structure and good photoelectric performance. .
  • the surface of the film forms a undulating suede surface, which is beneficial to increase the scattering of the incident light by the front electrode.
  • This surface light scattering characteristic is typically expressed in terms of Haze parameters, which is equal to the ratio of the ratio of the diffused luminous flux to the luminous flux through the material.
  • the haze of the ZnO-based transparent conductive film prepared by PVD (physical vapor deposition) + etching method is adjustable from 10% to 60%. The greater the haze is within a certain range, the stronger the scattering ability of the film surface to light, and the longer the optical path of light in the battery, the better the improvement of the conversion efficiency of the battery.
  • the ZnO-based transparent conductive film prepared by the existing PVD (physical vapor deposition) + etching method is prone to short circuit during battery deposition, resulting in low battery filling factor and low conversion efficiency.
  • the prior art still does not disclose the causes of the defects of these technologies, resulting in these technical defects. The solution is difficult. Summary of the invention
  • the present invention improves the process for preparing a ZnO-based transparent conductive film by the existing PVD (Physical Vapor Deposition) + etching method.
  • the inventors have found that the ZnO-based transparent conductive film prepared by the existing PVD (physical vapor deposition) + etching method is prone to short circuit during battery deposition because the surface of the film formed by the texturing process is 0.2 ⁇ m wide. 2 ⁇ m, depth 20nm-400nm etch pit, the edge of the pit will produce sharp peak-like bumps, these sharp peak-like bumps are prone to the front electrode is not covered by the battery material during battery deposition Short circuit, resulting in low battery fill factor and low conversion efficiency.
  • the present invention relates to a method for optimizing the surface properties of a ZnO-based transparent conductive film which makes the etch pits and projections on the surface of the ZnO-based transparent conductive film after etching smooth.
  • the ZnO-based transparent conductive film after etching is subjected to surface treatment by plasma bombardment or ultrasonic cleaning before the deposition of the battery, so that surface etch pits and bumps are smoothed, and battery short-circuit phenomenon is reduced.
  • the present invention relates to a method for optimizing the surface properties of a ZnO-based transparent conductive film, comprising the following steps:
  • the process parameters for plasma bombardment in CVD or PVD equipment can be selected from chamber temperature 100-300 °C, vacuum lmtorr, Ar pressure l ⁇ 5torr, power: 200 500W; preferably, chamber temperature 200 °C , vacuum lmtorr, Ar pressure 2torr, power: 400W, processing time: 30 minutes.
  • the process parameters for ultrasonic treatment can be selected as follows: water temperature 25 ⁇ 80 °C, processing time 10 ⁇ 30 minutes, ultrasonic power 200 ⁇ 600W.
  • the water temperature is 60 ° C
  • the treatment time is 20 minutes
  • the ultrasonic power is 360 W.
  • the present invention also relates to a ZnO-based transparent conductive film which is surface-optimized using any of the above methods.
  • the present invention also relates to a solar cell fabricated using the above ZnO-based transparent conductive film.
  • the invention has excellent industrial applicability at least because of the following beneficial technical effects: the application of the invention, that is, after the etching process, before the deposition of the silicon material, the front electrode oxidized surface is subjected to ultrasonic cleaning or plasma bombardment treatment, Under the premise of affecting the haze, the sharper IHJ protrusion formed on the surface after corrosion becomes smooth, which can greatly improve the short circuit of the battery and the low filling factor caused by the silicon battery material not covering the front electrode, thereby improving the battery. Conversion efficiency.
  • the technology used in the present invention does not need to make major changes to the equipment, and only needs to change the ordinary industrial cleaning after the front electrode oxidation and corrosion to ultrasonic cleaning, or add a step of inert gas plasma bombardment process in PECVD to achieve the purpose. . Therefore, for industrial production, the technology has the characteristics of low additional cost and remarkable battery performance improvement.
  • FIG. 1 Comparison of surface topography and roughness before and after plasma treatment (right) and after treatment (right).
  • the substrate glass was fed into a magnetron sputtering vacuum chamber, and the Si target was sputtered by a DC reaction to deposit a SiOxNy barrier layer having a film thickness of 80 nm.
  • Chamber temperature 100 300 °C, vacuum lmtorr, Ar pressure l ⁇ 5torr, power: 200 ⁇ 500W.
  • the chamber temperature is 200 ° C
  • the vacuum degree is lmtorr
  • the Ar pressure is 2 torr
  • the power is 400 W
  • the treatment time is 30 minutes.
  • the experimental results show that the method provided in the present embodiment makes the surface of the ZnO-based transparent conductive film sample sharper and sharper, and after the battery is fabricated, compared with the battery prepared from the untreated sample, the battery current density and filling Factors have been improved to improve battery conversion efficiency.
  • the substrate glass was fed into a magnetron sputtering vacuum chamber, and the Si target was sputtered by a DC reaction to deposit a SiOxNy barrier layer having a film thickness of 80 nm.
  • a ZnO:Ga transparent conductive film layer was deposited by a DC sputtering sputtering target having a Ga content of 0.5%, and the film thickness was 850 nm.
  • Back bottom vacuum 1.0 ⁇ 1 (T 3 Pa, deposition temperature 300 ° C, sputtering pressure 1.0 Pa, power density 5 W/cm 2 .
  • the corroded sample is sonicated in deionized water.
  • the process parameters for sonication can be selected as follows: water temperature 25 ⁇ 80 °C, processing time 10 ⁇ 30 minutes, ultrasonic power 200 ⁇ 600W.
  • the water temperature is 60 ° C
  • the treatment time is 20 minutes
  • the ultrasonic power is 360 W.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electromagnetism (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Manufacturing Of Electric Cables (AREA)
  • Photovoltaic Devices (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

本发明涉及一种优化ZnO基透明导电膜表面性能的方法,其特征在于,该方法包括使腐蚀后的ZnO基透明导电膜表面的蚀坑及凸起变得平滑的步骤。本发明还涉及使用前述方法进行表面优化的ZnO基透明导电膜及使用该ZnO基透明导电膜的太阳电池。本发明涉及优化ZnO基透明导电膜表面性能的方法,使得腐蚀后的ZnO基透明导电膜表面的蚀坑及凸起变得平滑。降低了电池短路现象的发生。

Description

优化 ZnO基透明导电膜表面性能的方法及获得的产品 技术领域
本发明涉及一种优化 ZnO基透明导电膜表面性能的方法及该方法获得的 产品。 背景技术
随着全球对环境的保护和对可再生清洁能源的巨大需求, 太阳能电池为 人类大规模地利用丰富、 安全、 清洁的太阳能开辟了广阔的前景。 薄膜太阳 电池具有成本低、 技术成熟、 污染较小的优势, 是太阳能电池发展的必然之 路, 代表了未来的发展方向。 透明导电玻璃是薄膜太阳电池的主要原料之一, 作为薄膜太阳电池的电极和光入射窗口, 其透明导电膜层的导电性、 透光性 及光散射能力是主要的技术指标。 通常, 将透明导电膜的表面制成凹凸不平 的粗糙面, 有利于增加光的散射, 从而提高光在光电转换层的吸收, 改善电 池转换效率。 目前, 已经产业化的绒面二氧化锡掺氟(FTO )透明导电玻璃价 格昂贵, 成本高, 生产过程形成的废气会造成大气污染, 且薄膜绒面的可控 性较差。
ZnO基透明导电薄膜光电性能好、 原料丰富无毒、 工艺可控性强、 成本 低, 将会逐渐取代传统的 FTO前电极材料。 PVD (物理气相沉积) +腐蚀法是制 备 ZnO基透明导电薄膜普遍釆用的工艺。 其制备过程是以玻璃为衬底, 磁控 溅射铝或镓掺杂 (AZO或 GZO)的氧化辞陶瓷靶材或反应溅射辞铝合金靶材, 得到的薄膜结构致密, 光电性能较好。 经过盐酸腐蚀过程后, 薄膜表面形成 凹凸起伏的绒面, 有利于增加前电极对入射光的散射。 这种表面光散射特性 通常用雾度 (Haze)参数来表示,它等于漫射的光通量与透过材料的光通量之比 的百分率。 PVD (物理气相沉积) +腐蚀法制备的 ZnO基透明导电薄膜的雾度在 10% ~ 60%范围可调。雾度在一定范围内越大,薄膜表面对光的散射能力越强, 光在电池中的光程越长, 最终对电池转换效率的提升越有利。
利用现有的 PVD (物理气相沉积) +腐蚀法制备的 ZnO基透明导电薄膜,在 电池沉积过程中容易发生短路, 使得电池填充因子低, 转换效率低。 但是, 现有技术中仍然没有公开导致这些技术缺陷存在的原因, 导致这些技术缺陷 的解决存在困难。 发明内容
为了解决现有技术中存在的上述缺陷, 本发明对现有的 PVD (物理气相沉 积) +腐蚀法制备 ZnO基透明导电薄膜工艺进行了改进。
发明人发现,利用现有的 PVD (物理气相沉积) +腐蚀法制备的 ZnO基透明 导电薄膜, 在电池沉积过程中容易发生短路的原因是, 经制绒过程的薄膜表 面形成宽 0.2 μ nm-2 μ m、 深 20nm-400nm的蚀坑, 蚀坑边缘会产生较尖的峰 状凸起, 这些较尖的峰状凸起在电池沉积过程中容易发生前电极未被电池材 料覆盖所导致的短路, 使得电池填充因子低, 转换效率低。
为此, 本发明涉及一种优化 ZnO基透明导电膜表面性能的方法, 该方法 使得腐蚀后的 ZnO基透明导电膜表面的蚀坑及凸起变得平滑。 比如, 在电池 沉积前将腐蚀后的 ZnO基透明导电薄膜用等离子体轰击或超声清洗等方法进 行表面处理, 使表面蚀坑及凸起变得平滑, 降低电池短路现象的发生。
具体地讲, 本发明涉及一种优化 ZnO基透明导电膜表面性能的方法, 包 括如下步骤:
( 1 ) PVD法制备氧化辞基透明导电薄膜;
( 2 )对薄膜进行酸腐蚀, 形成蚀坑状绒面;
( 3 )对上述样品在 CVD或 PVD设备中进行等离子体轰击, 或将样品放 入超声清洗设备进行超声处理, 以达到去除样品表面的凸起, 使蚀坑边缘更 加平滑的目的。
在 CVD或 PVD设备中进行等离子体轰击的工艺参数可选为, 腔室温度 100-300 °C , 真空度 lmtorr, Ar压强 l~5torr, 功率: 200 500W; 优选为, 腔 室温度 200 °C , 真空度 lmtorr, Ar压强 2torr, 功率: 400W, 处理时间: 30分 钟。
进行超声处理的工艺参数可选为: 水温 25~80 °C , 处理时间 10~30分钟 , 超声波功率 200~600W。 优选为: 水温 60°C , 处理时间 20分钟, 超声波功率 360W。
本发明还涉及使用以上任一项方法进行表面优化的 ZnO基透明导电膜。 本发明还涉及使用上述的 ZnO基透明导电膜制成的太阳电池。 本发明至少因为具有如下有益技术效果而具有极好的工业应用性: 本发明的应用, 即在腐蚀工艺后、 硅材料沉积前对前电极氧化辞表面进 行超声清洗或等离子体轰击处理, 在不影响其雾度的前提下使得腐蚀后表面 形成的较尖锐的 IHJ凸变得平滑, 这样可以大大改善由于硅电池材料未覆盖前 电极所导致的电池短路、 填充因子低的现象, 从而提高电池的转换效率。
本发明所釆用的技术无需对设备进行较大改动, 只需将前电极氧化辞腐 蚀后的普通工业清洗改为超声清洗,或在 PECVD中加一步惰性气体等离子体 轰击工艺, 即可达到目的。 因此对于产业化生产来讲, 该技术具有附加成本 低、 电池性能提升效果显著的特点。 附图说明
图 1. 实施例 1 等离子体处理前 (左)和处理后 (右)样品表面形貌及粗糙度对比 图。
图 2. 实施例 1未经处理 (左)及处理过 (右)的样品制备的电池性能对比图。
图 3. 实施例 2超声处理前 (左)和处理后 (右)样品表面形貌及粗糙度对比图。 图 4. 实施例 2未经处理 (左)及处理过 (右)的样品制备的电池性能对比图。 具体实施方式 于下述实施例。
实施例 1.
(1) 将超白玻璃衬底清洗干净, 干燥;
(2) 将衬底玻璃送入磁控溅射真空室内, 直流反应溅射 Si 靶, 沉积 SiOxNy阻挡层, 膜厚 80nm。
(3) 直流溅射 A1含量为 1%的氧化辞陶瓷靶沉积 ΖηΟ:Α1透明导电膜层, 膜厚 850nm。 背底真空 1.0 χ 1(T3 Pa, 沉积温度 300 °C , 溅射压强 1.0 Pa,功率 密度 5W/cm2
(4) 盐酸腐蚀制绒。 所用盐酸质量分数为 0.5%, 腐蚀时间 30s。 (5) 样品送入 PECVD沉积电池材料前进行等离子体轰击处理, 工艺参 数如下:
腔室温度 100 300 °C , 真空度 lmtorr, Ar压强 l~5torr, 功率: 200~500W。 优选为, 腔室温度 200°C , 真空度 lmtorr, Ar压强 2torr, 功率: 400W, 处理 时间: 30分钟。
(6) 将处理后及未经处理的样品继续在 PECVD中进行电池材料的沉积。 对所得到的产品进行检测, 结果如图 1和图 2所示。 其中, Sq: 均方根 粗糙度, Voc: 电池开路电压, Jsc: 电池电流密度, Fill Factor: 电池填充因 子, Efficiency: 电池转换效率。
实验结果表明, 本实施例提供的方法, 使得 ZnO基透明导电膜样品表面 较尖锐的凹凸变得平滑, 制成电池后, 与未进行处理的样品制备成的电池相 对比, 电池电流密度和填充因子都有所提升, 从而提高了电池转换效率。
实施例 2.
(1) 将超白玻璃衬底清洗干净, 干燥;
(2) 将衬底玻璃送入磁控溅射真空室内, 直流反应溅射 Si 靶, 沉积 SiOxNy阻挡层, 膜厚 80nm。
(3) 直流溅射 Ga含量为 0.5%的氧化辞陶瓷靶沉积 ZnO:Ga透明导电膜 层, 膜厚 850nm。 背底真空 1.0 χ 1(T3 Pa, 沉积温度 300 °C , 溅射压强 1.0 Pa, 功率密度 5W/cm2
(4) 盐酸腐蚀制绒。 所用盐酸质量分数为 0.5%, 腐蚀时间 30s。
(5) 将腐蚀后的样品在去离子水中进行超声处理。 进行超声处理的工艺 参数可选为: 水温 25~80 °C , 处理时间 10~30分钟, 超声波功率 200~600W。 优选为: 水温 60 °C , 处理时间 20分钟, 超声波功率 360W。
(6) 将处理后及未经处理的样品继续在 PECVD中进行电池材料的沉积。 对所得到的产品进行检测, 结果如图 3和图 4所示。 其中, Sq: 均方根 粗糙度, Voc: 电池开路电压, Jsc: 电池电流密度, Fill Factor: 电池填充因 子, Efficiency: 电池转换效率。
实验结果表明, 本实施例提供的方法, 使得 ZnO基透明导电膜样品表面 较尖锐的凹凸变得平滑。 制成电池后, 与未进行处理的样品制备成的电池相 对比, 电池电流密度和填充因子都有所提升, 从而提高了电池转换效率。 发明的构思和范围。 这样, 倘若本发明的这些修改和变型属于本发明权利要 求及其等同技术的范围之内, 则本发明也意图包含这些改动和变型在内。

Claims

权 利 要 求
1、 一种优化 ZnO基透明导电膜表面性能的方法, 其特征在于, 该方法包 括使腐蚀后的 ZnO基透明导电膜表面的蚀坑及凸起变得平滑的步骤。
2、 根据权利要求 1所述的方法, 其特征在于, 所述方法包括在电池沉积 前将腐蚀后的 ZnO基透明导电薄膜用等离子体轰击和 /或超声清洗方法进行表 面处理。
3、 根据权利要求 2所述的方法, 其特征在于, 所述方法包括如下步骤: ( 1 ) PVD法制备氧化辞基透明导电薄膜;
( 2 )对薄膜进行酸腐蚀, 形成蚀坑状绒面;
( 3 )对上述样品在 CVD或 PVD设备中进行等离子体轰击和 /或将样品放 入超声清洗设备进行超声处理。
4、 根据权利要求 3所述的方法, 其特征在于, 所述在 CVD或 PVD设备 中进行等离子体轰击的工艺参数为, 腔室温度 100~300 °C , 真空度 lmtorr, Ar压强 l~5torr, 功率: 200~500W。
5、 根据权利要求 4所述的方法, 其特征在于, 所述在 CVD或 PVD设备 中进行等离子体轰击的工艺参数为, 腔室温度 200 °C , 真空度 lmtorr, Ar压 强 2torr, 功率: 400W, 处理时间: 30min。
6、 根据权利要求 3所述的方法, 其特征在于, 所述进行超声处理的工艺 参数可选为, 水温 25~80 °C , 处理时间 10~30分, 超声波功率 200~600W。
7、 根据权利要求 6所述的方法, 其特征在于, 所述进行超声处理的工艺 参数可选为, 水温 60 °C , 处理时间 20分钟, 超声波功率 360W。
8、使用权利要求 1-7任一项所述方法进行表面优化的 ZnO基透明导电膜。
9、 太阳电池, 其特征在于, 使用权利要求 8所述的 ZnO基透明导电膜。
PCT/CN2012/080360 2012-08-20 2012-08-20 优化ZnO基透明导电膜表面性能的方法及获得的产品 WO2014029063A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2012/080360 WO2014029063A1 (zh) 2012-08-20 2012-08-20 优化ZnO基透明导电膜表面性能的方法及获得的产品

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2012/080360 WO2014029063A1 (zh) 2012-08-20 2012-08-20 优化ZnO基透明导电膜表面性能的方法及获得的产品

Publications (1)

Publication Number Publication Date
WO2014029063A1 true WO2014029063A1 (zh) 2014-02-27

Family

ID=50149331

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/080360 WO2014029063A1 (zh) 2012-08-20 2012-08-20 优化ZnO基透明导电膜表面性能的方法及获得的产品

Country Status (1)

Country Link
WO (1) WO2014029063A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101281949A (zh) * 2008-05-16 2008-10-08 北京工业大学 一种提高氧化锌薄膜紫外光致发光强度的方法
CN101488455A (zh) * 2009-02-23 2009-07-22 东南大学 用于平板显示器件的氧化锌透明电极的制备方法
WO2011026455A1 (de) * 2009-09-02 2011-03-10 Forschungszentrum Jülich GmbH Verfahren zur herstellung und strukturierung einer zinkoxidschicht und zinkoxidschicht
WO2011036161A1 (en) * 2009-09-23 2011-03-31 Ecole Polytechnique Federale De Lausanne (Epfl) Solar cell and its production process

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101281949A (zh) * 2008-05-16 2008-10-08 北京工业大学 一种提高氧化锌薄膜紫外光致发光强度的方法
CN101488455A (zh) * 2009-02-23 2009-07-22 东南大学 用于平板显示器件的氧化锌透明电极的制备方法
WO2011026455A1 (de) * 2009-09-02 2011-03-10 Forschungszentrum Jülich GmbH Verfahren zur herstellung und strukturierung einer zinkoxidschicht und zinkoxidschicht
WO2011036161A1 (en) * 2009-09-23 2011-03-31 Ecole Polytechnique Federale De Lausanne (Epfl) Solar cell and its production process

Similar Documents

Publication Publication Date Title
US20090194157A1 (en) Front electrode having etched surface for use in photovoltaic device and method of making same
EP2717320B1 (en) Preparation method for surface-textured conductive glass and its application for solar cells
Hongsingthong et al. Development of textured ZnO-coated low-cost glass substrate with very high haze ratio for silicon-based thin film solar cells
CN102569433A (zh) 薄膜太阳电池用复合背反射金属电极及其制备方法和应用
WO2012102845A2 (en) Textured coating with various feature sizes made by using multiple-agent etchant for thin-film solar cells and/or methods of making the same
WO2012138458A1 (en) Methods of making a textured coating for thin- film solar cells
CN105714262A (zh) 一种择优生长ito透明导电薄膜的制备方法
Zhang et al. Thin-film silicon solar cells on dry etched textured glass
Kim et al. Anti-reflection porous SiO2 thin film deposited using reactive high-power impulse magnetron sputtering at high working pressure for use in a-Si: H solar cells
CN101497992A (zh) 用等离子体轰击制备绒面氧化锌透明导电镀膜玻璃的方法
CN104377261B (zh) 一种制备CdTe薄膜太阳能电池板方法
CN102034901B (zh) 透明导电薄膜及其制备方法
Huang et al. HAZO/AZO structure with improved full spectrum performance for high-efficiency thin-film solar cells
Wang et al. Management of light trapping capability of AZO film for Si thin film solar cells-via tailoring surface texture
Marins et al. Flexible nip thin film silicon solar cells on polyimide foils with textured ZnO: Ga back reflector
JP5533448B2 (ja) 透明導電膜積層体及びその製造方法、並びに薄膜太陽電池及びその製造方法
Minami et al. Textured surface structures formed using new techniques on transparent conducting Al-doped zinc oxide films prepared by magnetron sputtering
CN102891217B (zh) 一种金刚石/CdTe薄膜太阳能电池的制备方法
CN101540345B (zh) 纳米硅薄膜三叠层太阳电池及其制备方法
CN104409528B (zh) 一种宽光谱特性改善的hazo/azo复合透明导电前电极及应用
CN105957924A (zh) 一种利用ZnO缓冲层制备择优取向ITO光电薄膜的方法
WO2014029063A1 (zh) 优化ZnO基透明导电膜表面性能的方法及获得的产品
Park et al. Influence on the haze effect of Si thin-film solar cell on multi-surface textures of periodic honeycomb glass
CN103972321B (zh) 一种纤维状硅基薄膜太阳电池及其制备方法
CN102891216B (zh) 一种双结构绒面ZnO基透明导电薄膜的制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12883425

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 03/07/2015).

122 Ep: pct application non-entry in european phase

Ref document number: 12883425

Country of ref document: EP

Kind code of ref document: A1