WO2014027833A1 - Transparent conductive film coating composition, transparent conductive film, and method for manufacturing said transparent conductive film - Google Patents

Transparent conductive film coating composition, transparent conductive film, and method for manufacturing said transparent conductive film Download PDF

Info

Publication number
WO2014027833A1
WO2014027833A1 PCT/KR2013/007312 KR2013007312W WO2014027833A1 WO 2014027833 A1 WO2014027833 A1 WO 2014027833A1 KR 2013007312 W KR2013007312 W KR 2013007312W WO 2014027833 A1 WO2014027833 A1 WO 2014027833A1
Authority
WO
WIPO (PCT)
Prior art keywords
transparent conductive
conductive film
coating composition
graphene
film coating
Prior art date
Application number
PCT/KR2013/007312
Other languages
French (fr)
Korean (ko)
Inventor
유관태
이성현
김경은
이병욱
김성배
Original Assignee
주식회사 동진쎄미켐
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 동진쎄미켐 filed Critical 주식회사 동진쎄미켐
Publication of WO2014027833A1 publication Critical patent/WO2014027833A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/24Electrically-conducting paints
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/24Conductive material dispersed in non-conductive organic material the conductive material comprising carbon-silicon compounds, carbon or silicon
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/61Additives non-macromolecular inorganic
    • C09D7/62Additives non-macromolecular inorganic modified by treatment with other compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances

Definitions

  • the present invention relates to a transparent conductive film coating composition, a transparent conductive film and a method for preparing the same, more specifically, a transparent conductive material including a graphene oxide, a surface treatment agent for selectively removing only epoxide groups on the graphene surface, and a polar solvent.
  • a transparent conductive material including a graphene oxide, a surface treatment agent for selectively removing only epoxide groups on the graphene surface, and a polar solvent.
  • ITO indium tin oxide
  • ZnO zinc oxide
  • ATO antimony tin oxide
  • the transparent conductive film may be manufactured by a dry method or a wet method
  • the transparent conductive film prepared by the wet method has excellent electric shielding and antistatic effects, although its electrical conductivity and permeability are lower than those of the dry method.
  • a method of manufacturing a graphene-based transparent conductive film through the wet method a method of obtaining a transparent conductive film by reducing graphene oxide to graphene by mainly coating graphene oxide ink on a substrate and immersing it in hydrazine vapor or high temperature
  • hydrazine vapors are harmful to the human body, and afterwards, at a temperature of 400 ° C. or higher, they may exhibit a conductivity of 10 8 ⁇ / ⁇ or less, which is possible at an antistatic level. Removes all the epoxide, hydroxyl and carboxyl groups from the fin surface, leaving only pure graphene, but excessively damaging the graphene surface in the reduction process to lower the conductivity There is this.
  • the Republic of Korea Patent Publication No. 2011-0110067 uses a method of reducing or reacting electricity with high efficiency by using HI or HCl vapor as a reducing agent containing a halogen element. Although it discloses a method of expressing conductivity, there is a difficulty in proceeding with reduction of the strong acid vapor harmful to the human body.
  • the present invention provides a transparent conductive film coating composition that is environmentally friendly, shorter reaction time, capable of firing at a relatively low temperature while showing a high transmittance and excellent conductivity compared to the conventional wet method. It aims to do it.
  • the present invention also aims to provide a method for producing a transparent conductive film using the coating composition and a transparent conductive film prepared therefrom.
  • the present invention to achieve the above object
  • It provides a transparent conductive film coating composition comprising a.
  • the transparent conductive film coating composition may further include an amine compound.
  • the present invention also provides a method for producing a transparent conductive film, characterized in that the coating and baking the transparent conductive film coating composition on a substrate.
  • the present invention also provides a transparent conductive film prepared by coating and firing the coating composition according to the above method.
  • the present invention has excellent dispersibility and is not toxic.
  • a surface treatment agent that treats only epoxide groups, and optionally using amine additives
  • the graphene oxide composition is coated on a desired substrate and then lower in temperature than conventional methods. It can be reduced by applying various firing methods in.
  • a transparent conductive film having high permeability and low resistance can be obtained by reducing the surface damage of graphene itself, which is safer than the conventional method using hydrazine vapor, and thus can be widely used for electromagnetic shielding or antistatic. have.
  • the conductive film can be easily obtained in one step by selectively removing the epoxide group from the graphene surface.
  • XPS X-ray photoelectron spectroscopy
  • the transparent conductive film coating composition of the present invention is 1) graphene oxide; 2) a surface treatment agent for selectively removing only the epoxy group on the graphene surface; And 3) a polar solvent.
  • the transparent conductive film coating composition of the present invention may further comprise an amine compound.
  • the present invention uses graphene oxide as the conductive material.
  • known graphene oxide may be used, including commercially available graphene oxide, and is preferably added in an amount of 0.01 to 0.5% by weight based on the total weight of the composition. .
  • the graphene oxide may be added to the composition of the present invention in the form of a powder or in the form of a dispersion, and the solvent used in the dispersion may be a polar solvent such as water or an organic polar solvent.
  • a polar solvent such as water or an organic polar solvent.
  • alcohol solvents or amide solvents are preferred, especially when used with surface treatment agents. It is assumed that the solvents accelerate the pyrolysis behavior of the epoxide group.
  • the surface treatment agent serves to selectively remove only epoxide groups on the graphene surface.
  • the surface treatment agent uses one or more compounds selected from the group consisting of amino acids, monosaccharides, and antioxidants.
  • amino acid surface treatment agents that can be used in the present invention include glycine, glutamine, glutamine, glutamic acid, aspartic acid, lysine, histidine, arginine, arginine.
  • Serine, Threonine, Asparagine, Asparagine, Cysteine, Proline, Alanine, Valine, Isoleucine, Leucine, Leucine, Methionine , Tyrosine (Throsine) is preferably at least one selected from the group consisting of.
  • the monosaccharide surface treatment agent that can be used in the present invention is glycoaldehyde (Glycoaldehyde), glyceraldehyde (Glyeraldehye), dihydroxyacetone (Dihydroxyacetone), threose (therose), erythrose (erythrose), erythrulose ), Ribose, arabinose, xylose, fructose, fructose, glucose, galactose and mannose are one or more selected from the group consisting of desirable.
  • the antioxidant surface treatment agent that can be used in the present invention is hydroxy quinone (Hydroxyquinone), catechol (Catechol), ascorbic acid (ascorbic acid), xylitol (xylitol), sorbitol (Sorbitol), Arbitol (Arbitol), etc. It is preferable that it is 1 or more types chosen from the group which consists of.
  • the graphene surface treatment agent is preferably 0.5 to 20 times, more preferably 1 to 10 times the amount of graphene oxide added by weight.
  • the addition amount of the graphene surface treatment agent 20 of the graphene oxide addition amount If more than doubled, rather, the surface treatment agent may precipitate during the added heat treatment, leaving contaminants on the substrate.
  • the transparent conductive film coating composition of the present invention comprises a polar solvent.
  • the polar solvent usable in the present invention includes water or a polar organic solvent, and a mixed solvent of water and a polar organic solvent is preferable. More preferably, polar solvents of alcohols, glycols and amides may be used as the polar organic solvent.
  • the polar organic solvent of the present invention includes alcohols such as methanol, ethanol, isopropanol, butanol, isobutanol, hexanol and the like;
  • alcohols such as methanol, ethanol, isopropanol, butanol, isobutanol, hexanol and the like;
  • glycols ethylene glycol, diethylene glycol, triethylene glycol, tetraethylene glycol, ethylene glycol mono methyl ether, ethylene glycol monoethyl ether, ethylene glycol monobutyl ether, propylene glycol monomethyl ether, diethylene glycol methyl ether, diethylene Glycol ethyl ether, diethylene glycol butyl ether, dipropylene glycol methyl ether, glycerol and the like;
  • a polar solvent one or more combinations of terpinol, n-methylpyrrolidone, gamma butyrolactone, di
  • the polar solvent is included in the remaining amount excluding the components 1) and 2) described above with respect to the whole composition, and more preferably 5 to 50% by weight of the polar organic solvent. % Is good.
  • the polar organic solvent is added less than 5% by weight, there is a phenomenon that the coating is not coated and agglomerates when heat is applied to the substrate.
  • the amount of the organic solvent exceeds 50% by weight, the solubility of the surface treating agent dissolved in water is affected. There may be a problem of re-deposition.
  • composition of the present invention may further include an amine-based compound capable of improving the conductivity by helping to ensure coating property and effective removal of epoxide groups.
  • amine additives usable in the present invention diamines such as ethylenediamine and DCC (N, N'-Dicyclohexylcarbodiimide) or triamines such as diethylaminopropylamine and diethylene triamine can be used.
  • the additive is preferably 0.1 to 10 times the amount of graphene oxide added, and more preferably 0.5 to 5 times by weight.
  • the amount of the additive is more than 10 times, the pH of the coating composition is rapidly increased while re-precipitating the added amino acids or monosaccharides, so that excellent conductivity cannot be obtained.
  • the method for producing a transparent conductive film coating composition of the present invention may be prepared by mixing the components of 1) to 3), optionally 4, together and stirring for 5 to 60 minutes.
  • the temperature is preferably maintained at room temperature to 60 ° C., and when it exceeds 60 ° C., all hydroxyl groups or carboxyl groups on the graphene surface may be removed to damage the graphene surface.
  • the present invention also provides a method for producing a transparent conductive film using the coating composition.
  • the transparent conductive film coating composition may be coated on a substrate and baked according to a conventional method in the art to prepare a transparent conductive film.
  • any coating method commonly used in the art may be used without limitation, but preferably, spin coating or slit coating method may be used.
  • a known method may be applied to the firing method in the present invention.
  • a hot plate or hot air, preferably nitrogen is circulated for 1 to 120 minutes at 120 to 350 ° C. Firing in a drying furnace;
  • MIR medium-infrared
  • the graphene oxide reacts at a high temperature with the amino acid graphene surface treatment agent in a state in which the composition in the solution state is coated on a desired substrate, thereby selectively reducing only the epoxide group on the surface thereof.
  • Graphene oxide is uniformly stacked on the surface of the substrate to about 1 to 10 layers to show the conductivity. That is, amine groups and hydroxyl groups of amino acids, monosaccharides and antioxidants induce ring-opening reactions of epoxide groups on the graphene surface, and epoxides whose bond strength with graphene is weakened by the highly polar carboxyl groups are dropped from the surface. Will go through.
  • the present invention also provides a transparent conductive film prepared according to the above method.
  • the transparent conductive film prepared by using the composition and method of the present invention exhibits excellent transmittance and excellent conductivity of 10 3 to 10 8 ⁇ / ⁇ , it is applied to various substrates to provide electromagnetic shielding (EMI), antistatic (ESD) It can be applied for the purpose.
  • EMI electromagnetic shielding
  • ESD antistatic
  • the present invention unlike the use of toxic materials such as hydrazine or post-treatment at a high temperature of 400 ° C. or higher for the reduction of conventional graphene oxide inks, the present invention is excellent in dispersibility and non-toxic. After coating a graphene oxide composition containing a graphene surface treatment agent on a desired substrate and applying various firing methods at a lower temperature than conventional methods, a transparent conductive film having a higher reduction efficiency, higher permeability and lower resistance than conventional hydrazine reduction can be obtained.
  • a commercially available two-dimensional plate-shaped graphene oxide (Angstron, USA, 5.0 g of N002-PS (0.5 wt% hydrate) was added 20 g of ultrapure water and 3 g of glycine (5.0 wt% hydrate) as a graphene surface treatment agent) The mixture was stirred for 30 minutes at 1,000 rpm, and 16 g of ethanol was added thereto to further prepare a coating composition after stirring.
  • Dispersibility was adjusted in ultrapure water so that the total amount of the coating composition was 100 g, and then coated on a glass substrate or a plastic substrate, and the coated specimen was dried for 10 minutes on a 200 ° C. hot plate to prepare a coating film.
  • Dispersibility was adjusted in ultrapure water so that the total amount of the coating composition was 100 g, and then coated on a glass substrate or a plastic substrate, and the coated specimen was dried for 10 minutes on a 200 ° C. hot plate to prepare a coating film.
  • a coating composition and a coating film were prepared in the same manner as in Example 1 except that the ethanol content was changed to 20 g of ultrapure water 16g ethanol.
  • a coating composition and a coating film were prepared in the same manner as in Example 1 except that glutamine was used as a graphene surface treatment agent.
  • a coating composition and a coating film were prepared in the same manner as in Example 1 except that L-lysine was used as the graphene surface treatment agent.
  • a coating composition and a coating film were prepared in the same manner as in Example 1 except for using L-arginine as a graphene surface treatment agent.
  • a coating composition and a coating film were prepared in the same manner as in Example 1 except that L-serine was used as a graphene surface treatment agent.
  • a coating composition and a coating film were prepared in the same manner as in Example 1 except that L-alanine was used as a graphene surface treatment agent.
  • a coating composition and a coating film were prepared in the same manner as in Example 1 except that L-valine was used as a graphene surface treatment agent.
  • a coating composition and a coating film were prepared in the same manner as in Example 1 except that L-methionine was used as the graphene surface treatment agent.
  • a coating composition and a coating film were prepared in the same manner as in Example 1 except that L-cysteine was used as a graphene surface treatment agent.
  • a coating composition and a coating film were prepared in the same manner as in Example 1 except that glucose was used as the graphene surface treatment agent.
  • a coating composition and a coating film were prepared in the same manner as in Example 1, except that ascorbic acid was used as a graphene surface treatment agent.
  • the coated specimen was dried for 10 minutes in a 200 °C drying furnace to prepare a coating film.
  • the transparent conductive film coating composition prepared in Example 1 was coated on a glass substrate or plastic, and then dried for several minutes with a mid-infrared (MIR, litzen, MS 3054 H) lamp to prepare a coating film.
  • MIR mid-infrared
  • the transparent conductive film coating composition prepared in Example 1 was coated on a glass substrate or plastic, and then dried for several minutes with a pulsed light (Nova Centrix) to prepare a coating film.
  • a commercially available two-dimensional plate-type graphene oxide (Nongstron, USA, N002-PS (0.5 wt% hydrate)) was added to 20 g of ultrapure water and dispersed for 10 minutes using an ultrasonic sprayer. 17.5 g of ethanol was added thereto, followed by mixing at 1,000 rpm for 10 minutes to prepare a coating composition.
  • the glass substrate was immersed in a solution of sulfuric acid / fruit tree 10: 1 to undergo surface modification and then coated thereon.
  • the coated specimen was dried in a 200 ° C. drying furnace for 10 minutes to sufficiently remove water and solvent, and then the hydrated vapor at about 80 ° C. was sufficiently touched on the graphene oxide-coated specimen for 10 minutes to reduce graphene. Prepared.
  • the coated specimen was dried for 10 minutes on a 200 °C hot plate to prepare a coating film.
  • Sheet resistance The surface area term per unit area was measured by a sheet resistance meter.
  • Transmittance Visible light transmittance was measured using a spectrophotometer in the wavelength range of 400 nm to 800 nm.
  • Adhesion was evaluated according to ASTM D3359.
  • the membrane prepared using the composition according to the present invention was confirmed to be superior to Comparative Examples 1 and 2 in all aspects, such as sheet resistance, permeability, adhesion, coating uniformity and dispersion stability.
  • Example 3 when the content of alcohol is increased, it was confirmed that a better conductivity can be obtained compared to Example 1.
  • Example 1 The surfaces of the coating films prepared according to Example 1 and Comparative Example 1 were analyzed by X-ray photoelectron spectroscopy, and the results are shown in FIG. 1.
  • the conventional graphene oxide has a wide peak from 285.0 eV to 289.0 eV, whereas the coating film prepared according to the present invention shows a strong CC binding peak at 284.5 eV, and at 285.7 eV and 288.2 eV, respectively.
  • Weak hydroxyl group peaks and weak carboxyl group peaks were observed, whereas no peak near 289.1 eV, representing an epoxide group, was found, indicating that most of the epoxide groups were removed.
  • the graphene oxide surface treatment agent according to the present invention plays a decisive role in forming the conductive film by effectively removing only the epoxide group.
  • the present invention has excellent dispersibility and is not toxic.
  • a surface treatment agent that treats only epoxide groups, and optionally using amine additives
  • the graphene oxide composition is coated on a desired substrate and then lower in temperature than conventional methods. It can be reduced by applying various firing methods in.
  • a transparent conductive film having high permeability and low resistance can be obtained by reducing the surface damage of graphene itself, which is safer than the conventional method using hydrazine vapor, and thus can be widely used for electromagnetic shielding or antistatic. have.
  • the conductive film can be easily obtained in one step by selectively removing the epoxide group from the graphene surface.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Dispersion Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Inorganic Chemistry (AREA)
  • Paints Or Removers (AREA)
  • Manufacturing Of Electric Cables (AREA)

Abstract

The present invention relates to a transparent conductive film coating composition, to a transparent conductive film, and to a method for manufacturing same. More particularly, the present invention relates to a transparent conductive film coating composition comprising graphene oxide, a surface-treatment agent which removes an epoxide group from the graphene surface, and a polar solvent, to a method for manufacturing a transparent conductive film using the composition, and to the transparent conductive film manufactured by the method. Since a film having excellent conductivity can be obtained using the coating composition of the present invention, the composition and the transparent conductive film manufactured using the composition can be used for electromagnetic shielding, preventing static electricity, etc.

Description

투명 전도성 막 코팅 조성물, 투명 전도성 막 및 투명 전도성 막의 제조 방법Transparent conductive membrane coating composition, transparent conductive membrane and method for producing transparent conductive membrane
본 발명은 투명 전도성 막 코팅 조성물, 투명 전도성 막 및 이의 제조방법에 관한 것으로, 더욱 상세하게는 그래핀 옥사이드, 그래핀 표면의 에폭사이드기 만을 선택적으로 제거하는 표면처리제 및 극성 용매를 포함하는 투명 전도성 막 코팅 조성물, 이를 이용하여 투명 전도성 막을 제조하는 방법 및 이로부터 제조된 투명 전도성 막에 관한 것이다. The present invention relates to a transparent conductive film coating composition, a transparent conductive film and a method for preparing the same, more specifically, a transparent conductive material including a graphene oxide, a surface treatment agent for selectively removing only epoxide groups on the graphene surface, and a polar solvent. Membrane coating compositions, methods of making transparent conductive films using the same, and transparent conductive films prepared therefrom.
투명 전도성 막 제조를 위해서는 산화인듐주석(ITO) 및 아연산화물(ZnO), 안티몬 주석 산화물(ATO) 등의 금속 산화물이 많이 이용되어 왔다. 금속 산화물을 이용한 투명 전도성 막은 고압에서 물리적 증착을 통해서 제조되어 왔지만, 이렇게 제조된 투명 전도성 막은 제조비용이 비싸고, 대전방지 및 전자파 차폐제로써 유연기판에 제조될 경우 용액 공정을 통해 코팅을 하는 공정에 비해 활용도가 떨어지는 단점이 있다. 또한 구부릴 수 있는 유연기판에서는 금속 산화물이 깨지면서 전도도가 변하여 활용이 제한적이다. Metal oxides such as indium tin oxide (ITO), zinc oxide (ZnO), and antimony tin oxide (ATO) have been widely used for the production of transparent conductive films. Although transparent conductive films using metal oxides have been prepared through physical vapor deposition at high pressure, the transparent conductive films thus prepared are expensive to manufacture, and when prepared on flexible substrates as antistatic and electromagnetic shielding agents, compared to the process of coating through solution process There is a drawback of poor utilization. In addition, the flexible substrate that can be bent is limited in utilization because the conductivity changes as the metal oxide is broken.
최근에는 이러한 투명 전도성 막의 대체제로써 탄소나노튜브, 그래핀 및 전도성 고분자 등을 이용한 습식 또는 건식방법을 통해 투명 전도성 막을 제조하는 방법이 개발되고 있다. Recently, a method of manufacturing a transparent conductive film through a wet or dry method using carbon nanotubes, graphene, conductive polymers, etc. has been developed as an alternative to such a transparent conductive film.
투명 전도성 막은 건식방법 또는 습식방법으로 제조되기도 하지만, 습식방법으로 제조된 투명 전도성 막은 건식방법에 비해 전기전도도 및 투과도는 떨어지지만 전자파 차폐 및 정전기방지 등의 효과가 우수하다.Although the transparent conductive film may be manufactured by a dry method or a wet method, the transparent conductive film prepared by the wet method has excellent electric shielding and antistatic effects, although its electrical conductivity and permeability are lower than those of the dry method.
상기 습식방법을 통한 그래핀 기반 투명 전도성막의 제조법으로는 주로 그래핀 옥사이드 잉크를 기판에 코팅한 후 하이드라진(Hydrazine) 증기 또는 고온에서 침지시켜 그래핀 옥사이드를 그래핀으로 환원하여 투명 전도성 막을 얻는 방법이 많이 사용되어 왔다. 하지만, 하이드라진 증기는 인체에 유해하고, 추후에 400℃ 이상의 온도에서 후처리를 진행하여야 정전기 방지 수준이 가능한 108 Ω/□ 이하의 전도도를 나타낼 수 있으며, 이러한 기존의 환원제를 사용하는 방법은 그래핀 표면의 에폭사이드(Epoxide) 그룹, 하이드록실(Hydroxyl) 그룹, 카르복실(Carboxyl) 그룹 등을 모두 제거하여 순수한 그래핀만을 남게 하지만 환원과정에서 과도하게 그래핀 표면을 손상시켜 오히려 전도도를 낮추는 문제점이 있다.As a method of manufacturing a graphene-based transparent conductive film through the wet method, a method of obtaining a transparent conductive film by reducing graphene oxide to graphene by mainly coating graphene oxide ink on a substrate and immersing it in hydrazine vapor or high temperature This has been used a lot. However, hydrazine vapors are harmful to the human body, and afterwards, at a temperature of 400 ° C. or higher, they may exhibit a conductivity of 10 8 Ω / □ or less, which is possible at an antistatic level. Removes all the epoxide, hydroxyl and carboxyl groups from the fin surface, leaving only pure graphene, but excessively damaging the graphene surface in the reduction process to lower the conductivity There is this.
이러한 습식방법의 환원을 이용해 보다 효율적인 그래핀 기반 투명 전도성 막의 제조를 위해 대한민국 특허공개 제 2011-0110067호에서는 할로겐 원소가 포함된 환원제인 HI 또는 HCl 증기를 사용하는 방법으로 높은 효율의 환원 반응 및 전기전도도를 나타낼 수 있는 방법을 개시하고 있으나, 인체에 유해한 강산의 증기로 환원을 진행해야 하는 어려움이 있다.In order to manufacture a more efficient graphene-based transparent conductive film using the reduction of the wet method, the Republic of Korea Patent Publication No. 2011-0110067 uses a method of reducing or reacting electricity with high efficiency by using HI or HCl vapor as a reducing agent containing a halogen element. Although it discloses a method of expressing conductivity, there is a difficulty in proceeding with reduction of the strong acid vapor harmful to the human body.
상기와 같은 문제점을 해결하기 위해, 본 발명은 기존의 습식방법에 비해 친환경적이고, 반응시간이 짧고, 비교적 낮은 온도에서 소성이 가능하면서도 높은 투과도 및 우수한 전도도를 나타낼 수 있는 투명 전도성 막 코팅 조성물을 제공하는 것을 목적으로 한다.In order to solve the above problems, the present invention provides a transparent conductive film coating composition that is environmentally friendly, shorter reaction time, capable of firing at a relatively low temperature while showing a high transmittance and excellent conductivity compared to the conventional wet method. It aims to do it.
본 발명은 또한 상기 코팅 조성물을 이용하여 투명 전도성 막을 제조하는 방법 및 이로부터 제조된 투명 전도성 막을 제공하는 것을 목적으로 한다.The present invention also aims to provide a method for producing a transparent conductive film using the coating composition and a transparent conductive film prepared therefrom.
상기 목적을 달성하기 위해 본 발명은 The present invention to achieve the above object
1) 그래핀 옥사이드;1) graphene oxide;
2) 그래핀 표면의 에폭사이드기 만을 선택적으로 제거하는 표면처리제; 및2) a surface treatment agent for selectively removing only epoxide groups on the graphene surface; And
3) 극성 용매3) polar solvent
를 포함하는 것을 특징으로 하는 투명 전도성 막 코팅 조성물을 제공한다.It provides a transparent conductive film coating composition comprising a.
상기 투명 전도성 막 코팅 조성물은 아민계 화합물을 더욱 포함할 수 있다.The transparent conductive film coating composition may further include an amine compound.
본 발명은 또한 상기 투명 전도성 막 코팅 조성물을 기판에 코팅하고 소성하는 것을 특징으로 하는 투명 전도성 막의 제조방법을 제공한다.The present invention also provides a method for producing a transparent conductive film, characterized in that the coating and baking the transparent conductive film coating composition on a substrate.
본 발명은 또한 상기 코팅 조성물을 상기 방법에 따라 코팅 및 소성하여 제조되는 투명 전도성 막을 제공한다.The present invention also provides a transparent conductive film prepared by coating and firing the coating composition according to the above method.
기존의 그래핀 옥사이드 코팅 조성물의 환원을 위해 하이드라진 등의 유독한 물질을 사용하거나 400℃ 이상의 높은 온도에서의 후처리가 필요하였던 것과 달리, 본 발명은 분산성이 우수하면서도 유독하지 않은 그래핀 표면의 에폭사이드기 만을 처리하는 표면처리제를 사용하여 그래핀 옥사이드 표면의 에폭사이드 그룹을 그래핀 표면에서 제거하고, 선택적으로 아민류 첨가제를 사용함으로써, 그래핀 옥사이드 조성물을 원하는 기판에 코팅 후 기존 방법보다 낮은 온도에서 다양한 소성방법을 적용하여 환원시킬 수 있다. Unlike the use of toxic materials such as hydrazine or post-treatment at a high temperature of 400 ° C. or higher for the reduction of the conventional graphene oxide coating composition, the present invention has excellent dispersibility and is not toxic. By removing the epoxide groups on the graphene oxide surface from the graphene surface using a surface treatment agent that treats only epoxide groups, and optionally using amine additives, the graphene oxide composition is coated on a desired substrate and then lower in temperature than conventional methods. It can be reduced by applying various firing methods in.
따라서, 본 발명에 따르면, 기존의 하이드라진 증기를 이용한 방법보다 안전하고 그래핀 자체의 표면 손상을 줄임으로써, 투과도가 높고 저항이 낮은 투명 전도성 막을 얻을 수 있으므로, 전자파 차폐 또는 정전기 방지 등에 광범위하게 사용될 수 있다.Therefore, according to the present invention, a transparent conductive film having high permeability and low resistance can be obtained by reducing the surface damage of graphene itself, which is safer than the conventional method using hydrazine vapor, and thus can be widely used for electromagnetic shielding or antistatic. have.
또한, 그래핀 옥사이드 잉크를 먼저 코팅한 뒤에 하이드라진 또는 강산의 증기를 가하는 복잡한 공정 대신 그래핀 표면에서 에폭사이드기를 선택적으로 제거하여 한번의 공정으로 쉽게 전도성막을 얻을 수 있는 장점이 있다.In addition, instead of the complicated process of coating the graphene oxide ink first and then applying the vapor of hydrazine or strong acid, there is an advantage that the conductive film can be easily obtained in one step by selectively removing the epoxide group from the graphene surface.
도 1은 본 발명에 따라 형성된 그래핀 코팅막의 표면을 X선 광전자 분광법(XPS)을 이용하여 분석한 결과이다.1 is a result of analyzing the surface of the graphene coating film formed according to the present invention using X-ray photoelectron spectroscopy (XPS).
본 발명의 투명 전도성 막 코팅 조성물은 1) 그래핀 옥사이드; 2) 그래핀 표면의 에폭사이기 만을 선택적으로 제거하는 표면처리제; 및 3) 극성 용매를 포함하는 것을 특징으로 한다. 본 발명의 투명 전도성 막 코팅 조성물은 아민계 화합물을 더우 포함할 수 있다. The transparent conductive film coating composition of the present invention is 1) graphene oxide; 2) a surface treatment agent for selectively removing only the epoxy group on the graphene surface; And 3) a polar solvent. The transparent conductive film coating composition of the present invention may further comprise an amine compound.
이하 각 성분들에 대하여 설명한다. Each component is demonstrated below.
1) 그래핀 옥사이드1) graphene oxide
본 발명은 도전성 물질로서 그래핀 옥사이드를 사용한다. The present invention uses graphene oxide as the conductive material.
본 발명의 투명 전도성 막 코팅 조성물에 있어서, 상기 그래핀 옥사이드는 시판되는 그래핀 옥사이드를 포함하여 공지의 그래핀 옥사이드가 사용될 수 있으며, 전체 조성물 중량에 대하여 0.01 내지 0.5 중량%로 첨가되는 것이 바람직하다. In the transparent conductive film coating composition of the present invention, known graphene oxide may be used, including commercially available graphene oxide, and is preferably added in an amount of 0.01 to 0.5% by weight based on the total weight of the composition. .
상기 그래핀 옥사이드가 0.01 중량% 미만으로 첨가될 경우, 표면에 환원된 그래핀 옥사이드 막을 고르게 형성 할 수 없어 원하는 전도도를 얻을 수 없으며, 상기 함량이 0.5 중량%를 초과할 경우, 코팅성 및 투명도가 급격히 저하되어 투명 전도성 막으로서의 기능을 상실하게 된다. 상기 그래핀 옥사이드는 분말의 형태 또는 분산액의 형태로 본 발명의 조성물에 첨가 가능하며, 상기 분산액에 사용되는 용매는 물 또는 유기극성용매와 같은 극성 용매가 사용될 수 있다. 바람직하기로는 알콜류의 용매 또는 아마이드류 용매가 좋으며, 특히 표면처리제와 함께 쓰일 경우 높은 전도도를 나타낸다. 이것은 상기 용매류들로 인하여 에폭사이드 그룹의 열분해 거동이 가속화되는 것으로 추정된다.When the graphene oxide is added in less than 0.01% by weight, it is not possible to form a reduced graphene oxide film evenly on the surface can not obtain the desired conductivity, when the content exceeds 0.5% by weight, coating and transparency It is rapidly lowered and loses its function as a transparent conductive film. The graphene oxide may be added to the composition of the present invention in the form of a powder or in the form of a dispersion, and the solvent used in the dispersion may be a polar solvent such as water or an organic polar solvent. Preferably alcohol solvents or amide solvents are preferred, especially when used with surface treatment agents. It is assumed that the solvents accelerate the pyrolysis behavior of the epoxide group.
2) 표면처리제2) Surface treatment agent
본 발명은 표면처리제는 그라핀 표면의 에폭사이드기 만을 선택적으로 제거하는 작용을 한다. 일예로 상기 표면처리제는 아미노산, 단당류 및 항산화제로 이루어진 군에서 선택된 1종 이상의 화합물을 사용한다.In the present invention, the surface treatment agent serves to selectively remove only epoxide groups on the graphene surface. In one embodiment, the surface treatment agent uses one or more compounds selected from the group consisting of amino acids, monosaccharides, and antioxidants.
구체적으로, 본 발명에서 사용가능한 아미노산 표면처리제로는 글리신(glycine), 글루타민(Glutamine), 글루타민산(Glutamic acid), 아스파르트산(Aspartic acid), 리신(Lysine), 히스티딘(Histidine), 아르기닌(Arginine), 세린(Serine), 트레오닌(Threonine), 아스파라긴(Asparagine), 시스테인(Cysteine), 프롤린(Proline), 알라닌(Alanine), 발린(Valine), 이소류신(Isoleucine), 류신(Leucine), 메티오닌(Methionine), 티로신(Throsine) 등으로 이루어진 군에서 선택되는 1종 이상인 것이 바람직하다.Specifically, amino acid surface treatment agents that can be used in the present invention include glycine, glutamine, glutamine, glutamic acid, aspartic acid, lysine, histidine, arginine, arginine. , Serine, Threonine, Asparagine, Asparagine, Cysteine, Proline, Alanine, Valine, Isoleucine, Leucine, Leucine, Methionine , Tyrosine (Throsine) is preferably at least one selected from the group consisting of.
또한 본 발명에서 사용가능한 상기 단당류 표면처리제로는 글리코알데히드(Glycoaldehyde), 글리세르알데히드(Glyeraldehye), 디하이드록시아세톤(Dihydroxyacetone), 트레오스(therose), 에리트로스(erythrose), 에리트루로스(erythrulose), 리보스(ribose), 아라비노스(arabinose), 자일로스(xylose), 프럭토스(fructose), 글루코스(glucose), 갈락토스(galactose) 및 만노스(mannose) 등으로 이루어진 군에서 선택되는 1종 이상인 것이 바람직하다.In addition, the monosaccharide surface treatment agent that can be used in the present invention is glycoaldehyde (Glycoaldehyde), glyceraldehyde (Glyeraldehye), dihydroxyacetone (Dihydroxyacetone), threose (therose), erythrose (erythrose), erythrulose ), Ribose, arabinose, xylose, fructose, fructose, glucose, galactose and mannose are one or more selected from the group consisting of desirable.
또한 본 발명에서 사용가능한 항산화 표면처리제로는 하이드록시 퀴논(Hydroxyquinone), 카테콜(Catechol), 아스코르빈산(ascorbic acid), 자일리톨(xylitol), 소비톨(Sorbitol), 아르비톨 (Arbitol) 등으로 이루어진 군에서 선택되는 1종 이상인 것이 바람직하다.In addition, the antioxidant surface treatment agent that can be used in the present invention is hydroxy quinone (Hydroxyquinone), catechol (Catechol), ascorbic acid (ascorbic acid), xylitol (xylitol), sorbitol (Sorbitol), Arbitol (Arbitol), etc. It is preferable that it is 1 or more types chosen from the group which consists of.
본 발명의 투명 전도성 막 코팅 조성물에 있어서, 상기 그래핀 표면처리제는 중량기준으로 그래핀 옥사이드 첨가량의 0.5 내지 20배인 것이 바람직하고, 1 내지 10배인 것이 더욱 바람직하다.In the transparent conductive film coating composition of the present invention, the graphene surface treatment agent is preferably 0.5 to 20 times, more preferably 1 to 10 times the amount of graphene oxide added by weight.
상기 그래핀 표면처리제가 그래핀 옥사이드 첨가량의 0.5배 미만으로 첨가될 경우, 그라핀 표면의 에폭사이드의 제거가 너무 적어 환원력을 기대할 수 없으며, 상기 그래핀 표면처리제의 첨가량이 그래핀 옥사이드 첨가량의 20배를 초과할 경우, 오히려 첨가된 열처리시 표면처리제가 석출되면서 기판에 오염물을 남길 수 있다.When the graphene surface treatment agent is added at less than 0.5 times the graphene oxide addition amount, the removal of epoxide on the graphene surface is too small to expect a reducing power, the addition amount of the graphene surface treatment agent 20 of the graphene oxide addition amount If more than doubled, rather, the surface treatment agent may precipitate during the added heat treatment, leaving contaminants on the substrate.
3) 극성 용매3) polar solvent
본 발명의 투명 전도성 막 코팅 조성물은 극성 용매를 포함한다.The transparent conductive film coating composition of the present invention comprises a polar solvent.
본 발명에서 사용가능한 극성 용매로는 물 또는 극성유기용매를 들 수 있으며, 물과 극성유기용매의 혼합용매가 바람직하다. 더욱 바람직하게는 상기 극성유기용매로서 알코올류, 글리콜류 및 아미드류의 극성용매가 사용될 수 있다.The polar solvent usable in the present invention includes water or a polar organic solvent, and a mixed solvent of water and a polar organic solvent is preferable. More preferably, polar solvents of alcohols, glycols and amides may be used as the polar organic solvent.
보다 구체적으로, 본 발명의 극성유기용매로는 알콜류로써 메탄올, 에탄올, 이소프로판올, 부탄올, 이소부탄올, 헥산올 등; 글리콜류로써 에틸렌글리콜, 디에틸렌글리콜, 트리에틸렌글리콜, 테트라에틸렌 글리콜, 에틸렌글리콜 모노 메틸에테르, 에틸렌글리콜 모노에틸에테르, 에틸렌글리콜 모노부틸에테르, 프로필렌글리콜 모노메틸에테르, 디에틸렌글리콜 메틸에테르, 디에틸렌글리콜 에틸에테르, 디에틸렌글리콜 부틸에테르, 디프로필렌글리콜 메틸에테르, 글리세롤 등; 또는 극성용매로써 테르핀올, n-메틸피롤리돈, 감마부티로락톤, 디메틸설폭사이드, 프로필렌카보네이트, 에틸렌카보네이트, 디메틸포름아미드, 모노메틸포름아마이드, 포름아마이드 등의 1종 이상의 조합을 사용할 수 있다.More specifically, the polar organic solvent of the present invention includes alcohols such as methanol, ethanol, isopropanol, butanol, isobutanol, hexanol and the like; As glycols, ethylene glycol, diethylene glycol, triethylene glycol, tetraethylene glycol, ethylene glycol mono methyl ether, ethylene glycol monoethyl ether, ethylene glycol monobutyl ether, propylene glycol monomethyl ether, diethylene glycol methyl ether, diethylene Glycol ethyl ether, diethylene glycol butyl ether, dipropylene glycol methyl ether, glycerol and the like; Or as a polar solvent, one or more combinations of terpinol, n-methylpyrrolidone, gamma butyrolactone, dimethyl sulfoxide, propylene carbonate, ethylene carbonate, dimethylformamide, monomethylformamide, formamide and the like can be used. .
본 발명의 투명 전도성 막 코팅 조성물에 있어서, 상기 극성 용매는 전체 조성물에 대하여 상기 기재한 1), 및 2) 성분을 제외한 잔량으로 포함되며, 더욱 바람직하게는 극성유기용매의 함량이 5 내지 50 중량%가 좋다. 상기 극성유기용매가 5 중량% 미만으로 첨가될 경우 코팅이 되지 않고 기판에 열을 가할 경우 응집되는 현상이 있으며, 상기 첨가량이 50 중량%를 초과할 경우 물에 녹아져 있는 표면처리제의 용해도에 영향을 미쳐 재석출시키는 문제가 있을 수 있다.In the transparent conductive film coating composition of the present invention, the polar solvent is included in the remaining amount excluding the components 1) and 2) described above with respect to the whole composition, and more preferably 5 to 50% by weight of the polar organic solvent. % Is good. When the polar organic solvent is added less than 5% by weight, there is a phenomenon that the coating is not coated and agglomerates when heat is applied to the substrate. When the amount of the organic solvent exceeds 50% by weight, the solubility of the surface treating agent dissolved in water is affected. There may be a problem of re-deposition.
4) 아민계 화합물4) Amine Compound
본 발명의 조성물은 코팅성 확보, 및 에폭사이드 그룹의 효과적인 제거를 도와 전도도를 개선시킬 수 있는 아민계 화합물을 더욱 포함할 수 있다.The composition of the present invention may further include an amine-based compound capable of improving the conductivity by helping to ensure coating property and effective removal of epoxide groups.
본 발명에서 사용가능한 아민류 첨가제로는 에틸렌디아민, DCC(N,N'-Dicyclohexylcarbodiimide) 등의 디아민류 또는 디에틸아미노프로필아민, 디에틸렌 트리아민 등의 트리아민류를 사용할 수 있다.As the amine additives usable in the present invention, diamines such as ethylenediamine and DCC (N, N'-Dicyclohexylcarbodiimide) or triamines such as diethylaminopropylamine and diethylene triamine can be used.
본 발명의 투명 전도성 막 코팅 조성물에 있어서, 상기 첨가제는 중량기준으로 그래핀 옥사이드 첨가량의 0.1 내지 10배인 것이 바람직하고, 0.5 내지 5배인 것이 더욱 바람직하다. In the transparent conductive film coating composition of the present invention, the additive is preferably 0.1 to 10 times the amount of graphene oxide added, and more preferably 0.5 to 5 times by weight.
상기 첨가제의 첨가량이 10배를 초과할 경우 코팅 조성물의 pH가 급격히 상승하면서 첨가된 아미노산 또는 단당류를 재석출시켜 우수한 전도도를 얻을 수 없다.When the amount of the additive is more than 10 times, the pH of the coating composition is rapidly increased while re-precipitating the added amino acids or monosaccharides, so that excellent conductivity cannot be obtained.
본 발명의 투명 전도성 막 코팅 조성물을 제조하는 방법은 상기 1) 내지 3)의 성분, 선택적으로 4의 성분을 같이 혼합하고 5 내지 60분간 교반하여 제조될 수 있다. 교반시 온도는 상온 내지 60℃로 유지시키는 것이 좋으며, 60℃를 초과할 경우 그라핀 표면의 하이드록실 그룹, 또는 카르복실 그룹까지 모두 제거되어 그라핀 표면이 손상될 우려가 있다.The method for producing a transparent conductive film coating composition of the present invention may be prepared by mixing the components of 1) to 3), optionally 4, together and stirring for 5 to 60 minutes. When stirring, the temperature is preferably maintained at room temperature to 60 ° C., and when it exceeds 60 ° C., all hydroxyl groups or carboxyl groups on the graphene surface may be removed to damage the graphene surface.
본 발명은 또한 상기 코팅 조성물을 이용하여 투명 전도성 막을 제조하는 방법을 제공한다.The present invention also provides a method for producing a transparent conductive film using the coating composition.
본 발명에서는 상기 투명 전도성 막 코팅 조성물을 당분야의 통상의 방법에 따라 기판에 코팅하고 소성하여 투명 전도성 막을 제조할 수 있다.In the present invention, the transparent conductive film coating composition may be coated on a substrate and baked according to a conventional method in the art to prepare a transparent conductive film.
본 발명에서 사용가능한 코팅방법으로는 당분야에서 통상적으로 사용하는 코팅방법이라면 제한 없이 사용될 수 있지만, 바람직하게는 스핀 코팅 또는 슬릿 코팅방법을 사용할 수 있다.As a coating method usable in the present invention, any coating method commonly used in the art may be used without limitation, but preferably, spin coating or slit coating method may be used.
본 발명에서 소성방법으로는 공지의 방법이 적용될 수 있음은 물론이며, 바람직하기로는 1) 120 내지 350℃에서 1 내지 120분 동안 핫플레이트(hot plate) 또는 뜨거운 공기, 바람직하게는 질소가 순환하는 건조로에서 소성하는 방법; 또는 2) 120 내지 500℃에서 1 내지 120분 동안 코팅된 기판 표면에 에너지를 조사하는 방법을 사용할 수 있다.Of course, a known method may be applied to the firing method in the present invention. Preferably, 1) a hot plate or hot air, preferably nitrogen, is circulated for 1 to 120 minutes at 120 to 350 ° C. Firing in a drying furnace; Or 2) a method of irradiating energy on the surface of the coated substrate at 120 to 500 ° C. for 1 to 120 minutes.
표면에 에너지를 높게 조사할 수 있는 방법으로는 파장대가 2 내지 6 ㎛인 중적외선(MIR) 램프 소성, 적외선 전파장대인 IR 램프 소성, 높은 에너지 빛을 0.0001 내지 0.01초 동안 순간적으로 가하는 동작을 여러 번 실행하는 펄스드 라이트(Pulsed light)에 의한 소성을 들 수 있다.As a method of irradiating high energy on the surface, there are various methods of firing a medium-infrared (MIR) lamp with a wavelength band of 2 to 6 µm, firing an IR lamp with an infrared radio band, and instantaneously applying high energy light for 0.0001 to 0.01 seconds. Firing by pulsed light which is performed once.
본 발명에 따른 투명 전도성 막 제조방법에 따르면, 용액 상태의 조성물이 원하는 기판에 코팅된 상태에서 그래핀 옥사이드가 아미노산 그래핀 표면처리제와 고온에서 반응하여 표면의 에폭사이드 그룹만이 선택적으로 제거되면서 환원된 그래핀 옥사이드가 기판의 표면에 균일하게 1 내지 10 층 정도로 쌓이면서 전도도를 나타내게 된다. 즉, 아미노산, 단당류 및 항산화제의 아민기 및 하이드록실기는 그라핀 표면의 에폭사이드 그룹의 개환반응을 유도하며, 극성이 우수한 카르복실기에 의해서 그래핀과의 결합력이 약해진 에폭사이드가 표면에서 떨어지는 과정을 거치게 된다.According to the method for preparing a transparent conductive film according to the present invention, the graphene oxide reacts at a high temperature with the amino acid graphene surface treatment agent in a state in which the composition in the solution state is coated on a desired substrate, thereby selectively reducing only the epoxide group on the surface thereof. Graphene oxide is uniformly stacked on the surface of the substrate to about 1 to 10 layers to show the conductivity. That is, amine groups and hydroxyl groups of amino acids, monosaccharides and antioxidants induce ring-opening reactions of epoxide groups on the graphene surface, and epoxides whose bond strength with graphene is weakened by the highly polar carboxyl groups are dropped from the surface. Will go through.
이러한 결과로, 그래핀과 그래핀 사이의 접촉 저항이 감소되어 전체적인 저항치가 감소되는 효과를 얻을 수 있다. As a result, the contact resistance between the graphene and the graphene is reduced, thereby reducing the overall resistance.
본 발명은 또한 상기 방법에 따라 제조된 투명 전도성 막을 제공한다.The present invention also provides a transparent conductive film prepared according to the above method.
본 발명의 조성물 및 방법을 이용하여 제조된 투명 전도성 막은 우수한 투과율 및 103 내지 108 Ω/□의 우수한 전도도를 나타내므로, 각종 기판에 도포되어 전자파차폐 (EMI), 정전기방지 (ESD) 등의 용도로 응용될 수 있다.Since the transparent conductive film prepared by using the composition and method of the present invention exhibits excellent transmittance and excellent conductivity of 10 3 to 10 8 Ω / □, it is applied to various substrates to provide electromagnetic shielding (EMI), antistatic (ESD) It can be applied for the purpose.
본 발명에 따르면, 기존의 그래핀 옥사이드 잉크의 환원을 위해 하이드라진 등의 유독한 물질을 사용하거나 400℃ 이상의 높은 온도에서의 후처리가 필요하였던 것과 달리, 본 발명은 분산성이 우수하면서도 유독하지 않은 그래핀 표면처리제가 포함된 그래핀 옥사이드 조성물을 원하는 기판에 코팅 후 기존 방법보다 낮은 온도에서 다양한 소성방법을 적용하여 기존의 하이드라진 환원보다 환원효율 및 투과도가 높고 저항이 낮은 투명 전도성 막을 얻을 수 있다.According to the present invention, unlike the use of toxic materials such as hydrazine or post-treatment at a high temperature of 400 ° C. or higher for the reduction of conventional graphene oxide inks, the present invention is excellent in dispersibility and non-toxic. After coating a graphene oxide composition containing a graphene surface treatment agent on a desired substrate and applying various firing methods at a lower temperature than conventional methods, a transparent conductive film having a higher reduction efficiency, higher permeability and lower resistance than conventional hydrazine reduction can be obtained.
이하, 본 발명의 이해를 돕기 위하여 바람직한 실시예를 제시하나, 하기 실시예는 본 발명을 예시하는 것일 뿐 본 발명의 범위가 하기 실시예에 한정되는 것은 아니다.Hereinafter, preferred examples are provided to help understanding of the present invention, but the following examples are merely to illustrate the present invention, and the scope of the present invention is not limited to the following examples.
실시예 1Example 1
시판되고 있는 2차원 판상의 그래핀 옥사이드(미국 옹스트론(Angstron) 사, N002-PS(0.5 중량% 수화물) 5.0g 을 초순수 20g 및 그래핀 표면처리제로서 글리신(5.0중량% 수화물) 3g을 첨가하여 1,000 rpm에서 30분간 교반하였다. 여기에 에탄올 16g 을 첨가하여 추가로 교반 후 코팅 조성물을 제조하였다.A commercially available two-dimensional plate-shaped graphene oxide (Angstron, USA, 5.0 g of N002-PS (0.5 wt% hydrate) was added 20 g of ultrapure water and 3 g of glycine (5.0 wt% hydrate) as a graphene surface treatment agent) The mixture was stirred for 30 minutes at 1,000 rpm, and 16 g of ethanol was added thereto to further prepare a coating composition after stirring.
제조된 코팅 조성물에 대하여 총 100 g이 되도록 초순수로 분산성 조절 후, 유리기판 또는 플라스틱 기판에 코팅하고, 코팅된 시편을 200℃ 핫플레이트에서 10분간 건조하여 코팅막을 제조하였다.Dispersibility was adjusted in ultrapure water so that the total amount of the coating composition was 100 g, and then coated on a glass substrate or a plastic substrate, and the coated specimen was dried for 10 minutes on a 200 ° C. hot plate to prepare a coating film.
실시예 2Example 2
시판되고 있는 2차원 판상의 그래핀 옥사이드(미국 옹스트론(Angstron) 사, N002-PS(0.5 중량% 수화물)을 증발기(Evaporator)를 이용하여 DMF(디메틸 포름아마이드)로 치환하여 물을 완전히 제거하여 0.5 중량% 용매 분산물로 제조하였다.Commercially available two-dimensional plate-shaped graphene oxide (Angstron, USA, N002-PS (0.5 wt% hydrate) was replaced by DMF (dimethyl formamide) using an evaporator to completely remove water. Prepared with 0.5 wt% solvent dispersion.
이러한 용매 분산된 그래핀 옥사이드 5.0g 을 DMF(디메틸 포름아마이드) 20g 및 그래핀 표면처리제로서 아스코르빈산 0.13g을 첨가하여 1,000 rpm에서 30분간 교반하였다. 여기에 에탄올 16g 을 첨가하여 추가로 교반 후 코팅 조성물을 제조하였다.5.0 g of this solvent-dispersed graphene oxide was added with 20 g of DMF (dimethyl formamide) and 0.13 g of ascorbic acid as a graphene surface treatment agent, followed by stirring at 1,000 rpm for 30 minutes. 16 g of ethanol was added thereto, followed by further stirring to prepare a coating composition.
제조된 코팅 조성물에 대하여 총 100 g이 되도록 초순수로 분산성 조절 후, 유리기판 또는 플라스틱 기판에 코팅하고, 코팅된 시편을 200℃ 핫플레이트에서 10분간 건조하여 코팅막을 제조하였다.Dispersibility was adjusted in ultrapure water so that the total amount of the coating composition was 100 g, and then coated on a glass substrate or a plastic substrate, and the coated specimen was dried for 10 minutes on a 200 ° C. hot plate to prepare a coating film.
실시예 3Example 3
조성물 중 초순수 16g 에탄올 20g으로 에탄올 함량을 변경한 것을 제외하고 상기 실시예1과 동일한 방법으로 코팅 조성물 및 코팅막을 제조하였다.A coating composition and a coating film were prepared in the same manner as in Example 1 except that the ethanol content was changed to 20 g of ultrapure water 16g ethanol.
실시예 4Example 4
그래핀 표면처리제로서 글루타민을 사용하는 것을 제외하고는 상기 실시예 1과 동일한 방법으로 코팅 조성물 및 코팅막을 제조하였다.A coating composition and a coating film were prepared in the same manner as in Example 1 except that glutamine was used as a graphene surface treatment agent.
실시예 5Example 5
그래핀 표면처리제로서 L-리신을 사용하는 것을 제외하고는 상기 실시예 1과 동일한 방법으로 코팅 조성물 및 코팅막을 제조하였다.A coating composition and a coating film were prepared in the same manner as in Example 1 except that L-lysine was used as the graphene surface treatment agent.
실시예 6Example 6
그래핀 표면처리제로서 L-아르기닌을 사용하는 것을 제외하고는 상기 실시예 1과 동일한 방법으로 코팅 조성물 및 코팅막을 제조하였다.A coating composition and a coating film were prepared in the same manner as in Example 1 except for using L-arginine as a graphene surface treatment agent.
실시예 7Example 7
그래핀 표면처리제로서 L-세린을 사용하는 것을 제외하고는 상기 실시예 1과 동일한 방법으로 코팅 조성물 및 코팅막을 제조하였다.A coating composition and a coating film were prepared in the same manner as in Example 1 except that L-serine was used as a graphene surface treatment agent.
실시예 8Example 8
그래핀 표면처리제로서 L-알라닌을 사용하는 것을 제외하고는 상기 실시예 1과 동일한 방법으로 코팅 조성물 및 코팅막을 제조하였다.A coating composition and a coating film were prepared in the same manner as in Example 1 except that L-alanine was used as a graphene surface treatment agent.
실시예 9Example 9
그래핀 표면처리제로서 L-발린을 사용하는 것을 제외하고는 상기 실시예 1과 동일한 방법으로 코팅 조성물 및 코팅막을 제조하였다.A coating composition and a coating film were prepared in the same manner as in Example 1 except that L-valine was used as a graphene surface treatment agent.
실시예 10Example 10
그래핀 표면처리제로서 L-메티오닌을 사용하는 것을 제외하고는 상기 실시예 1과 동일한 방법으로 코팅 조성물 및 코팅막을 제조하였다.A coating composition and a coating film were prepared in the same manner as in Example 1 except that L-methionine was used as the graphene surface treatment agent.
실시예 11Example 11
그래핀 표면처리제로서 L-시스테인을 사용하는 것을 제외하고는 상기 실시예 1과 동일한 방법으로 코팅 조성물 및 코팅막을 제조하였다.A coating composition and a coating film were prepared in the same manner as in Example 1 except that L-cysteine was used as a graphene surface treatment agent.
실시예 12Example 12
그래핀 표면처리제로서 글루코스를 사용하는 것을 제외하고는 상기 실시예 1과 동일한 방법으로 코팅 조성물 및 코팅막을 제조하였다.A coating composition and a coating film were prepared in the same manner as in Example 1 except that glucose was used as the graphene surface treatment agent.
실시예 13Example 13
그래핀 표면처리제로서 아스코르빈산을 사용하는 것을 제외하고는 상기 실시예 1과 동일한 방법으로 코팅 조성물 및 코팅막을 제조하였다.A coating composition and a coating film were prepared in the same manner as in Example 1, except that ascorbic acid was used as a graphene surface treatment agent.
실시예 14Example 14
시판되고 있는 2차원 판상의 그래핀 옥사이드(미국 옹스트론사, N002-PS(0.5 중량% 수화물) 5.0 g을 초순수 19 g에 넣고, 초음파 분사기를 이용하여 10분간 분산시켰다. 이러한 그래핀 옥사이드 분산용매에 그래핀 표면처리제로서 글리신 0.125 g 및 첨가제로서 DCC(N,N'-Dicyclohexylcarbodiimide) 0.025 g을 첨가하여 60℃, 1000 rpm에서 30분 동안 교반하였다. 여기에 에탄올 15 g을 첨가하여 1000 rpm에서 10분간 혼합하여 코팅 조성물을 제조하였다.5.0 g of commercially available two-dimensional plate-shaped graphene oxide (Nongstron, USA, N002-PS (0.5 wt% hydrate)) was added to 19 g of ultrapure water and dispersed for 10 minutes using an ultrasonic sprayer. 0.125 g of glycine as a graphene surface treatment agent and 0.025 g of N, N'-Dicyclohexylcarbodiimide (DCC) as an additive were added thereto and stirred for 30 minutes at 1000 ° C. at 60 ° C. 15 g of ethanol was added thereto at 10 rpm at 1000 rpm. Mixing for minutes gave a coating composition.
제조된 코팅 조성물에 대하여 총 100 g이 되도록 초순수로 분산성 조절 후, 유리기판 또는 플라스틱 기판에 일정한 두께가 되도록 코팅하고, 코팅된 시편을 200℃ 건조로에서 10분간 건조하여 코팅막을 제조하였다.After adjusting the dispersibility with ultrapure water to a total of 100g to the prepared coating composition, and coated to a predetermined thickness on a glass substrate or a plastic substrate, the coated specimen was dried for 10 minutes in a 200 ℃ drying furnace to prepare a coating film.
실시예 15Example 15
실시예 1에서 제조된 투명 전도성 막 코팅 조성물을 유리기판 또는 플라스틱에 코팅 후 중적외선(MIR, 리트젠 사, MS 3054 H) 램프로 수분간 건조하여 코팅막을 제조하였다.The transparent conductive film coating composition prepared in Example 1 was coated on a glass substrate or plastic, and then dried for several minutes with a mid-infrared (MIR, litzen, MS 3054 H) lamp to prepare a coating film.
실시예 16Example 16
실시예 1에서 제조된 투명 전도성 막 코팅 조성물을 유리기판 또는 플라스틱에 코팅 후 펄스드 라이트(Pulsed light, 노바 센트릭스 사)로 수분간 건조하여 코팅막을 제조하였다.The transparent conductive film coating composition prepared in Example 1 was coated on a glass substrate or plastic, and then dried for several minutes with a pulsed light (Nova Centrix) to prepare a coating film.
비교예 1Comparative Example 1
시판되고 있는 2차원 판상의 그래핀 옥사이드(미국 옹스트론사, N002-PS(0.5 중량% 수화물) 5.0 g을 초순수 20 g에 넣고, 초음파 분사기를 이용하여 10분간 분산시켰다. 이러한 그래핀 옥사이드 분산용매에 에탄올 17.5 g을 첨가하여 1,000 rpm에서 10분간 혼합하여 코팅 조성물을 제조하였다.5.0 g of a commercially available two-dimensional plate-type graphene oxide (Nongstron, USA, N002-PS (0.5 wt% hydrate)) was added to 20 g of ultrapure water and dispersed for 10 minutes using an ultrasonic sprayer. 17.5 g of ethanol was added thereto, followed by mixing at 1,000 rpm for 10 minutes to prepare a coating composition.
제조된 코팅 조성물은 코팅성이 매우 좋지 않으므로 유리기판을 황산/과수 10 대 1의 용액에 침지시켜 표면 개질을 진행 한 후 그 위에 코팅을 진행하였다.Since the coating composition was very poor in coating property, the glass substrate was immersed in a solution of sulfuric acid / fruit tree 10: 1 to undergo surface modification and then coated thereon.
코팅된 시편을 200℃ 건조로에서 10분간 건조하여 물과 용매를 충분히 제거 한 뒤에 약 80℃의 하이드라진 증기를 그래핀 옥사이드가 코팅된 시편 위에 10분간 충분히 닿게 하여 그래핀을 환원시키는 공정을 거쳐 코팅막을 제조하였다.The coated specimen was dried in a 200 ° C. drying furnace for 10 minutes to sufficiently remove water and solvent, and then the hydrated vapor at about 80 ° C. was sufficiently touched on the graphene oxide-coated specimen for 10 minutes to reduce graphene. Prepared.
비교예 2Comparative Example 2
시판되고 있는 2차원 판상의 그래핀 옥사이드(미국 옹스트론사, N002-PS(0.5 중량% 수화물) 5.0 g을 초순수 1,000 g에 넣고, 초음파 분사기를 이용하여 10분간 분산시켰다. 이러한 그래핀 옥사이드 분산용매에 L-시스테인 0.125 g을 첨가하여 80℃, 1,000 rpm에서 120분간 균일하게 온도를 가하면서 교반하였다. 시간이 지나면서 L-시스테인에 의해 환원된 그래핀 입자가 형성되기 시작하고 원심분리 및 물로 세정공정을 거친 뒤 0.02 g의 그래핀 분말를 얻었다.5.0 g of a commercially available two-dimensional plate-type graphene oxide (Nongstron, USA, N002-PS (0.5 wt% hydrate)) was added to 1,000 g of ultrapure water and dispersed for 10 minutes using an ultrasonic sprayer. 0.125 g of L-cysteine was added to the mixture, and the mixture was stirred while applying a uniform temperature for 120 minutes at 1,000 rpm at 80 ° C. Over time, graphene particles reduced by L-cysteine began to form and were centrifuged and washed with water. After the process, 0.02 g of graphene powder was obtained.
이러한 그래핀 분말를 디메틸 포름아마이드 및 에탄올 혼합용매에 1 중량% 첨가하고 초음파 분산을 실시하여 최종적으로 그래핀 잉크를 얻었다.1 wt% of the graphene powder was added to the mixed solvent of dimethyl formamide and ethanol, and ultrasonic dispersion was performed to finally obtain graphene ink.
이러한 그래핀 잉크를 유리기판 또는 플라스틱 기판에 일정한 두께가 되도록 코팅 후, 코팅된 시편을 200℃ 핫플레이트에서 10분간 건조하여 코팅막을 제조하였다.After coating the graphene ink to a predetermined thickness on a glass substrate or a plastic substrate, the coated specimen was dried for 10 minutes on a 200 ℃ hot plate to prepare a coating film.
시험예 1Test Example 1
상기 실시예 1 내지 14 및 비교예 1 및 2에 따른 코팅 조성물이 코팅된 시편의 물성 및 성능 평가를 하기와 같이 수행하였으며, 그 결과를 하기 표 1에 기재하였다.Evaluation of physical properties and performance of the specimens coated with the coating compositions according to Examples 1 to 14 and Comparative Examples 1 and 2 were performed as follows, and the results are shown in Table 1 below.
1) 면저항: 면저항 측정기를 통해 단위면적당 표면적항을 측정하였다.1) Sheet resistance: The surface area term per unit area was measured by a sheet resistance meter.
2) 투과도: 400 nm 내지 800 nm 파장 영역에서 분광광도계를 이용하여 가시광 투과도를 측정하였다.2) Transmittance: Visible light transmittance was measured using a spectrophotometer in the wavelength range of 400 nm to 800 nm.
3) 접착력: ASTM D3359에 따라 테이프 접착력 평가를 실시하였다.3) Adhesion: Tape adhesion was evaluated according to ASTM D3359.
4) 코팅 균일성: 육안으로 관찰하여 평가하였다.4) Coating uniformity: evaluated by visual observation.
5) 보관안정성: 제조된 코팅 조성물을 상온(25℃)에서 24시간 동안 보관하면서 입자의 침강을 육안 관찰하였다.5) Storage stability: The precipitation of the particles was visually observed while storing the prepared coating composition at room temperature (25 ° C.) for 24 hours.
표 1
내산화성 접착력(%) 코팅균일성 분산안정성
면저항(Ω/□) 투과도(%)
실시예 1 10E5.3 92 100% 양호 양호
실시예 2 10E4.5 91 100% 양호 양호
실시예 3 10E5.1 90 100% 양호 양호
실시예 4 10E5.2 91 100% 양호 양호
실시예 5 10E5.3 91 100% 양호 양호
실시예 6 10E5.4 92 100% 양호 양호
실시예 7 10E5.5 90 100% 양호 양호
실시예 8 10E5.2 91 100% 양호 양호
실시예 9 10E5.3 92 100% 양호 양호
실시예 10 10E5.5 92 100% 양호 양호
실시예 11 10E5.4 91 100% 양호 양호
실시예 12 10E6.2 92 100% 양호 양호
실시예 13 10E4.8 88 100% 양호 양호
실시예 14 10E5.3 92 100% 양호 양호
실시예 15 10E5.2 91 100% 양호 양호
실시예 16 10E4.5 90 100% 양호 양호
비교예 1 10E8.5 98 90% 불균일 양호
비교예 2 10E11.2 90 100% 불균일 침전
Table 1
Oxidation resistance Adhesion (%) Coating uniformity Dispersion stability
Sheet resistance (Ω / □) Permeability (%)
Example 1 10E5.3 92 100% Good Good
Example 2 10E4.5 91 100% Good Good
Example 3 10E5.1 90 100% Good Good
Example 4 10E5.2 91 100% Good Good
Example 5 10E5.3 91 100% Good Good
Example 6 10E5.4 92 100% Good Good
Example 7 10E5.5 90 100% Good Good
Example 8 10E5.2 91 100% Good Good
Example 9 10E5.3 92 100% Good Good
Example 10 10E5.5 92 100% Good Good
Example 11 10E5.4 91 100% Good Good
Example 12 10E6.2 92 100% Good Good
Example 13 10E4.8 88 100% Good Good
Example 14 10E5.3 92 100% Good Good
Example 15 10E5.2 91 100% Good Good
Example 16 10E4.5 90 100% Good Good
Comparative Example 1 10E8.5 98 90% Heterogeneity Good
Comparative Example 2 10E11.2 90 100% Heterogeneity Sedimentation
상기 표 1에 나타난 바와 같이, 본 발명에 따른 조성물을 이용하여 제조된 막은 면저항, 투과도, 접착력, 코팅균일성 및 분산 안정성 등 모든 면에서 비교예 1 및 2에 비하여 우수함을 확인할 수 있었다.As shown in Table 1, the membrane prepared using the composition according to the present invention was confirmed to be superior to Comparative Examples 1 and 2 in all aspects, such as sheet resistance, permeability, adhesion, coating uniformity and dispersion stability.
또한, 초순수 대신 용매를 이용한 코팅액의 경우도 마찬가지로 전도도 및 코팅성에서 양호한 결과를 보이고 있어, 용매의 활용이 가능함을 확인하였다. 또한 실시예 3에서는 알콜의 함량을 높인 경우 실시예 1과 비교하여 좀 더 양호한 전도도를 얻을 수 있음을 확인하였다.In addition, the coating solution using a solvent instead of ultrapure water showed good results in conductivity and coating properties, it was confirmed that the solvent can be utilized. In addition, in Example 3, when the content of alcohol is increased, it was confirmed that a better conductivity can be obtained compared to Example 1.
그러나, 동일한 농도의 그래핀 옥사이드를 하이드라진 증기로 환원하는 비교예 1의 경우에는 전도도가 10E8.5로 전자파 차폐 및 정전기방지용 투명 전도성 막으로 적용하기에는 무리가 있었으며, 아미노산으로 미리 표면처리를 실시한 그래핀 입자를 재분산하여 잉크를 재조하는 복잡한 공정을 거친 비교예 2의 조성물의 경우 분산안정성 및 코팅성 및 면저항 등이 좋지 않음을 확인하였다.However, in the case of Comparative Example 1 in which the same concentration of graphene oxide is reduced to hydrazine vapor, the conductivity was 10E8.5, which makes it difficult to apply a transparent conductive film for shielding electromagnetic waves and preventing static electricity. It was confirmed that the dispersion stability, coating property, sheet resistance, etc. of the composition of Comparative Example 2, which went through a complicated process of re-dispersing the particles to prepare ink.
시험예 2Test Example 2
상기 실시예 1 및 비교예 1에 따라 제조된 코팅막의 표면을 X선 광전자 분광법으로 분석하였으며, 그 결과를 도 1에 나타내었다.The surfaces of the coating films prepared according to Example 1 and Comparative Example 1 were analyzed by X-ray photoelectron spectroscopy, and the results are shown in FIG. 1.
도 1에 나타난 바와 같이, 통상의 그래핀 옥사이드는 285.0 eV에서 289.0 eV 까지 피크가 넓게 나타나는 반면, 본 발명에 따라 제조된 코팅막에서는 284.5 eV에서 강한 C-C 결합 피크가 나타나고, 285.7 eV 및 288.2 eV에서 각각 약한 하이드록실 그룹 피크 및 약한 카르복실 그룹 피크가 나타난 반면, 엑폭사이드 그룹을 나타내는 289.1 eV 부근의 피크는 전혀 나타나지 않아 대부분의 에폭사이드 그룹이 제거된 것을 확인하였다.As shown in FIG. 1, the conventional graphene oxide has a wide peak from 285.0 eV to 289.0 eV, whereas the coating film prepared according to the present invention shows a strong CC binding peak at 284.5 eV, and at 285.7 eV and 288.2 eV, respectively. Weak hydroxyl group peaks and weak carboxyl group peaks were observed, whereas no peak near 289.1 eV, representing an epoxide group, was found, indicating that most of the epoxide groups were removed.
이러한 결과로 볼 때, 본 발명에 따른 그래핀 옥사이드 표면처리제는 에폭사이드 그룹만을 효과적으로 제거함으로써 전도성막 형성에 결정적인 역할을 함을 알 수 있다.As a result, it can be seen that the graphene oxide surface treatment agent according to the present invention plays a decisive role in forming the conductive film by effectively removing only the epoxide group.
기존의 그래핀 옥사이드 코팅 조성물의 환원을 위해 하이드라진 등의 유독한 물질을 사용하거나 400℃ 이상의 높은 온도에서의 후처리가 필요하였던 것과 달리, 본 발명은 분산성이 우수하면서도 유독하지 않은 그래핀 표면의 에폭사이드기 만을 처리하는 표면처리제를 사용하여 그래핀 옥사이드 표면의 에폭사이드 그룹을 그래핀 표면에서 제거하고, 선택적으로 아민류 첨가제를 사용함으로써, 그래핀 옥사이드 조성물을 원하는 기판에 코팅 후 기존 방법보다 낮은 온도에서 다양한 소성방법을 적용하여 환원시킬 수 있다. Unlike the use of toxic materials such as hydrazine or post-treatment at a high temperature of 400 ° C. or higher for the reduction of the conventional graphene oxide coating composition, the present invention has excellent dispersibility and is not toxic. By removing the epoxide groups on the graphene oxide surface from the graphene surface using a surface treatment agent that treats only epoxide groups, and optionally using amine additives, the graphene oxide composition is coated on a desired substrate and then lower in temperature than conventional methods. It can be reduced by applying various firing methods in.
따라서, 본 발명에 따르면, 기존의 하이드라진 증기를 이용한 방법보다 안전하고 그래핀 자체의 표면 손상을 줄임으로써, 투과도가 높고 저항이 낮은 투명 전도성 막을 얻을 수 있으므로, 전자파 차폐 또는 정전기 방지 등에 광범위하게 사용될 수 있다.Therefore, according to the present invention, a transparent conductive film having high permeability and low resistance can be obtained by reducing the surface damage of graphene itself, which is safer than the conventional method using hydrazine vapor, and thus can be widely used for electromagnetic shielding or antistatic. have.
또한, 그래핀 옥사이드 잉크를 먼저 코팅한 뒤에 하이드라진 또는 강산의 증기를 가하는 복잡한 공정 대신 그래핀 표면에서 에폭사이드기를 선택적으로 제거하여 한번의 공정으로 쉽게 전도성막을 얻을 수 있는 장점이 있다.In addition, instead of the complicated process of coating the graphene oxide ink first and then applying the vapor of hydrazine or strong acid, there is an advantage that the conductive film can be easily obtained in one step by selectively removing the epoxide group from the graphene surface.

Claims (15)

1) 그래핀 옥사이드;1) graphene oxide;
2) 그래핀 표면의 에폭사이드기 만을 선택적으로 제거하는 표면처리제; 및2) a surface treatment agent for selectively removing only epoxide groups on the graphene surface; And
3) 극성 용매3) polar solvent
를 포함하는 것을 특징으로 하는 투명 전도성 막 코팅 조성물.Transparent conductive film coating composition comprising a.
제1항에 있어서,The method of claim 1,
1) 그래핀 옥사이드 0.01 내지 0.5 중량%;1) 0.01 to 0.5 wt% graphene oxide;
2) 중량기준으로 상기 그래핀 옥사이드 첨가량의 0.5 내지 20배의 그래핀 표면처리제; 및 2) a graphene surface treatment agent of 0.5 to 20 times the amount of graphene oxide added by weight; And
3) 잔량의 용매3) residual amount of solvent
를 포함하는 것을 특징으로 하는 투명 전도성 막 코팅 조성물.Transparent conductive film coating composition comprising a.
제1항에 있어서,The method of claim 1,
상기 2)의 표면처리제는 아미노산, 단당류 및 항산화제로 이루어진 군에서 선택된 1종 이상의 화합물인 것을 특징으로 하는 투명 전도성 막 코팅 조성물.The surface treatment agent of 2) is a transparent conductive film coating composition, characterized in that at least one compound selected from the group consisting of amino acids, monosaccharides and antioxidants.
제3항에 있어서,The method of claim 3,
상기 그래핀 표면처리제로서의 아미노산이 글리신(glycine), 글루타민(Glutamine), 글루타민산(Glutamic acid), 아스파르트산(Aspartic acid), 리신(Lysine), 히스티딘(Histidine), 아르기닌(Arginine), 세린(Serine), 트레오닌(Threonine), 아스파라긴(Asparagine), 시스테인(Cysteine), 프롤린(Proline), 알라닌(Alanine), 발린(Valine), 이소류신(Isoleucine), 류신(Leucine), 메티오닌(Methionine) 및 티로신(Throsine)으로 이루어진 군에서 선택되는 1종 이상의 것임을 특징으로 하는 투명 전도성 막 코팅 조성물.The amino acid as the graphene surface treatment agent is glycine, glutamine, glutamine, glutamic acid, aspartic acid, lysine, histidine, arginine, arginine, serine. , Threonine, Asparagine, Cysteine, Proline, Alanine, Valine, Isoleucine, Leucine, Methionine, and Throsine Transparent conductive film coating composition, characterized in that at least one selected from the group consisting of.
제3항에 있어서,The method of claim 3,
상기 그래핀 표면처리제로서의 단당류가 글리코알데히드(Glycoaldehyde), 글리세르알데히드(Glyeraldehye), 디하이드록시아세톤(Dihydroxyacetone), 트레오스(therose), 에리트로스(erythrose), 에리트루로스(erythrulose), 리보스(ribose), 아라비노스(arabinose), 자일로스(xylose), 프럭토스(fructose), 글루코스(glucose), 갈락토스(galactose), 만노스(mannose) 및 하이드록시 퀴논(Hydroxyquinone)으로 이루어진 군에서 선택되는 1종 이상의 것임을 특징으로 하는 투명 전도성 막 코팅 조성물.Monosaccharides as the graphene surface treatment agent is glycoaldehyde (Glycoaldehyde), glyceraldehyde (Glyeraldehye), dihydroxyacetone (Dihydroxyacetone), threose (therose), erythrose (erythrose), erythrulose, ribose ( ribose, arabinose, xylose, fructose, fructose, glucose, galactose, mannose, and hydroxy quinone selected from the group consisting of Transparent conductive film coating composition, characterized in that more than.
제3항에 있어서,The method of claim 3,
상기 그래핀 표면처리제로서의 항산화제가 하이드록시 퀴논(Hydroxyquinone), 카테콜(Catechol), 아스코르빈산(ascorbic acid), 자일리톨(xylitol), 소비톨(Sorbitol) 및 아르비톨 (Arbitol)로 이루어진 군에서 선택되는 1종 이상의 것임을 특징으로 하는 투명 전도성 막 코팅 조성물.The antioxidant as graphene surface treatment agent is selected from the group consisting of hydroxy quinone (Hydroxyquinone), catechol (Catechol), ascorbic acid (ascorbic acid), xylitol, sorbitol (Sorbitol) and Arbitol (Arbitol) Transparent conductive film coating composition, characterized in that at least one.
제1항에 있어서,The method of claim 1,
아민류 화합물을 더욱 포함하는 특징으로 하는 투명 전도성 막 코팅 조성물.A transparent conductive film coating composition further comprising an amine compound.
제1항에 있어서,The method of claim 1,
상기 아민류 첨가제가 디아민류 또는 트리아민류인 것을 특징으로 하는 투명 전도성 막 코팅 조성물.The amine additive is a transparent conductive film coating composition, characterized in that diamines or triamines.
제1항에 있어서,The method of claim 1,
상기 극성 용매가 물 및 극성유기용매의 혼합물로 이루어진 것을 특징으로 하는 투명 전도성 막 코팅 조성물.Transparent conductive film coating composition, characterized in that the polar solvent consists of a mixture of water and polar organic solvent.
제9항에 있어서,The method of claim 9,
상기 극성유기용매가 전체 조성물의 5 내지 50 중량%인 것을 특징으로 하는 투명 전도성 막 코팅 조성물.The polar organic solvent is a transparent conductive film coating composition, characterized in that 5 to 50% by weight of the total composition.
제1항의 투명 전도성 막 코팅 조성물을 기판에 코팅하고 소성하는 것을 특징으로 하는 투명 전도성 막의 제조방법.A method for producing a transparent conductive film, comprising coating and baking the transparent conductive film coating composition of claim 1 on a substrate.
제10항에 있어서,The method of claim 10,
상기 소성이 하기 방법에 따라 수행되는 것을 특징으로 하는 투명 전도성 막의 제조방법:Method for producing a transparent conductive film, characterized in that the firing is carried out according to the following method:
1) 120 내지 350℃에서 1 내지 120분 동안 핫플레이트(hot plate) 또는 건조로에서 소성하는 방법; 또는1) firing in a hot plate or drying furnace at 120 to 350 ° C. for 1 to 120 minutes; or
2) 120 내지 500℃에서 1 내지 120분 동안 코팅된 기판 표면에 에너지를 전달하는 방법.2) A method of transferring energy to the coated substrate surface at 120 to 500 ° C. for 1 to 120 minutes.
제11항에 있어서,The method of claim 11,
상기 표면에 에너지를 전달하는 방법이 중적외선(MIR) 램프 소성, 적외선(IR) 램프 소성 또는 펄스드 라이트(Pulsed light) 소성인 것을 특징으로 하는 투명 전도성 막의 제조방법.Method for transmitting energy to the surface is a method for producing a transparent conductive film, characterized in that the medium infrared (MIR) lamp firing, infrared (IR) lamp firing or Pulsed light firing.
제1항의 조성물을 제11항의 방법에 따라 코팅 및 소성하여 제조되는 것을 특징으로 하는 투명 전도성 막.A transparent conductive film prepared by coating and firing the composition of claim 1 according to the method of claim 11.
제12항에 있어서,The method of claim 12,
103 내지 108 Ω/□의 전도도를 갖는 것을 특징으로 하는 투명 전도성 막.A transparent conductive film having a conductivity of 10 3 to 10 8 Ω / □.
PCT/KR2013/007312 2012-08-17 2013-08-14 Transparent conductive film coating composition, transparent conductive film, and method for manufacturing said transparent conductive film WO2014027833A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2012-0090082 2012-08-17
KR1020120090082A KR20140023730A (en) 2012-08-17 2012-08-17 Coating composition for transparent conductive film, transparent conductive film and method for fabricating the same

Publications (1)

Publication Number Publication Date
WO2014027833A1 true WO2014027833A1 (en) 2014-02-20

Family

ID=50101323

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/007312 WO2014027833A1 (en) 2012-08-17 2013-08-14 Transparent conductive film coating composition, transparent conductive film, and method for manufacturing said transparent conductive film

Country Status (2)

Country Link
KR (1) KR20140023730A (en)
WO (1) WO2014027833A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105062473A (en) * 2015-07-17 2015-11-18 山西大同大学 Preparation method of fluorescent functional graphene oxide
CN107604367A (en) * 2017-08-25 2018-01-19 华东理工大学 A kind of amino-acid oxidase graphene composite corrosion inhibitor and its application
CN107686990A (en) * 2017-08-25 2018-02-13 华东理工大学 A kind of amino acid molybdenum disulfide composite corrosion inhibitor and its application
CN112694770A (en) * 2019-10-07 2021-04-23 三星显示有限公司 Coating composition and method for manufacturing display device
CN114410223A (en) * 2020-10-28 2022-04-29 中国科学院理化技术研究所 Graphene electromagnetic shielding coating and preparation method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110052813A1 (en) * 2008-01-03 2011-03-03 Peter Ho Functionalised graphene oxide
KR20110110067A (en) * 2010-03-29 2011-10-06 성균관대학교산학협력단 A reducing agent for graphene oxide comprising halogen, process for reduced graphene oxide using the same and uses of the reduced graphene oxide

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110052813A1 (en) * 2008-01-03 2011-03-03 Peter Ho Functionalised graphene oxide
KR20110110067A (en) * 2010-03-29 2011-10-06 성균관대학교산학협력단 A reducing agent for graphene oxide comprising halogen, process for reduced graphene oxide using the same and uses of the reduced graphene oxide

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
BOSE, S. ET AL.: "Dual role of glycine as a chemical functionalizer and a reducing agent in the preparation of graphene: an environmentally friendly method.", JOURNAL OF MATERIALS CHEMISTRY, vol. 22, 2012, pages 9696 - 9703 *
ZHANG, J. ET AL.: "Reduction of graphene oxide via L-ascorbic acid.", CHEMICAL COMMUNICATIONS, vol. 46, no. 7, 2010, pages 1112 - 1114 *
ZHU, C. ET AL.: "Reducing sugar: New Functional Molecules for the Green Synthesis of Graphene Nanosheets.", ACS NANO, vol. 4, no. 4, 2010, pages 2429 - 2437 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105062473A (en) * 2015-07-17 2015-11-18 山西大同大学 Preparation method of fluorescent functional graphene oxide
CN107604367A (en) * 2017-08-25 2018-01-19 华东理工大学 A kind of amino-acid oxidase graphene composite corrosion inhibitor and its application
CN107686990A (en) * 2017-08-25 2018-02-13 华东理工大学 A kind of amino acid molybdenum disulfide composite corrosion inhibitor and its application
CN112694770A (en) * 2019-10-07 2021-04-23 三星显示有限公司 Coating composition and method for manufacturing display device
CN112694770B (en) * 2019-10-07 2024-04-05 三星显示有限公司 Coating composition and method for manufacturing display device
CN114410223A (en) * 2020-10-28 2022-04-29 中国科学院理化技术研究所 Graphene electromagnetic shielding coating and preparation method thereof
CN114410223B (en) * 2020-10-28 2023-02-03 中国科学院理化技术研究所 Graphene electromagnetic shielding coating and preparation method thereof

Also Published As

Publication number Publication date
KR20140023730A (en) 2014-02-27

Similar Documents

Publication Publication Date Title
WO2014027833A1 (en) Transparent conductive film coating composition, transparent conductive film, and method for manufacturing said transparent conductive film
JP6870351B2 (en) Conductive compositions and their uses
EP2594613B1 (en) Conductive coating composition and method for manufacturing a conductive layer using same
KR101307303B1 (en) Transparent electroconductive thin film and process for producing the transparent electroconductive thin film
KR101738175B1 (en) Method for producing semiconducting indium oxide layers, indium oxide layers produced according to said method and their use
WO2012064102A2 (en) Graphene-coated steel sheet, and method for manufacturing same
WO2017052064A1 (en) Carbon nanotube dispersion and method for producing same
WO2013100502A1 (en) Insulating adhesive composition for metal-based copper clad laminate (mccl), coated metal plate using same, and method for manufacturing same
WO2007089114A1 (en) Basic solution washable antistatic composition and polymer products manufactured by using the same
WO2013137654A1 (en) Metal-plate graphene powder, and electromagnetic interference shielding coating composition containing same
WO2011013927A2 (en) Thermosetting electrode paste fireable at a low temperature
TWI713705B (en) Metal nanowire ink, transparent conductive substrate and transparent antistatic substrate
Wu et al. Efficiently enhancing the tracking and erosion resistance of silicone rubber by the synergism of fluorine-containing polyphenylsilsesquioxane and ureido-containing MQ silicone resin
Yang et al. Enhanced actuated strain of titanium dioxide/nitrile-butadiene rubber composite by the biomimetic method
WO2023013834A1 (en) Heat sink paint composition, preparation method therefor, heat sink coating film formed therefrom, and heat sink comprising same
EP3373354A1 (en) Composition for hole trapping layer of organic photoelectric conversion element
KR20140056045A (en) Copper paste composition for printed electronics
JP6626709B2 (en) ITO conductive film and paint for forming the ITO conductive film
KR100810413B1 (en) Adhesive composition for surface protective film and surface protective film using the same
CN109867786B (en) Black polyimide film and preparation method and application thereof
CN111762776A (en) High-strength functionalized graphene waterproof anti-reflection film and application thereof
CN114149582B (en) Novel efficient chelate antioxidant and preparation method and application thereof
KR20060078766A (en) Manufacturing method of anti-static polyester film
WO2015099411A1 (en) Conductive polymer film
WO2013002564A2 (en) Anti-releasing composition, graphene laminate including the composition, and preparation method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13829608

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13829608

Country of ref document: EP

Kind code of ref document: A1