WO2014027299A2 - Traitement de surface d'une couche en un materiau fluore pour la rendre hydrophile - Google Patents

Traitement de surface d'une couche en un materiau fluore pour la rendre hydrophile Download PDF

Info

Publication number
WO2014027299A2
WO2014027299A2 PCT/IB2013/056584 IB2013056584W WO2014027299A2 WO 2014027299 A2 WO2014027299 A2 WO 2014027299A2 IB 2013056584 W IB2013056584 W IB 2013056584W WO 2014027299 A2 WO2014027299 A2 WO 2014027299A2
Authority
WO
WIPO (PCT)
Prior art keywords
layer
hydroxide
fluorinated
oxo
aluminum
Prior art date
Application number
PCT/IB2013/056584
Other languages
English (en)
Other versions
WO2014027299A3 (fr
Inventor
Mohammed Benwadih
Olivier Poncelet
Original Assignee
Commissariat A L'energie Atomique Et Aux Energies Alternatives
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Commissariat A L'energie Atomique Et Aux Energies Alternatives filed Critical Commissariat A L'energie Atomique Et Aux Energies Alternatives
Priority to US14/421,665 priority Critical patent/US20150194620A1/en
Priority to EP13779362.6A priority patent/EP2883255A2/fr
Priority to JP2015527051A priority patent/JP2015525004A/ja
Publication of WO2014027299A2 publication Critical patent/WO2014027299A2/fr
Publication of WO2014027299A3 publication Critical patent/WO2014027299A3/fr

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
    • H10K10/80Constructional details
    • H10K10/88Passivation; Containers; Encapsulations
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
    • H10K10/40Organic transistors
    • H10K10/46Field-effect transistors, e.g. organic thin-film transistors [OTFT]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
    • H10K10/40Organic transistors
    • H10K10/46Field-effect transistors, e.g. organic thin-film transistors [OTFT]
    • H10K10/462Insulated gate field-effect transistors [IGFETs]
    • H10K10/468Insulated gate field-effect transistors [IGFETs] characterised by the gate dielectrics
    • H10K10/474Insulated gate field-effect transistors [IGFETs] characterised by the gate dielectrics the gate dielectric comprising a multilayered structure
    • H10K10/476Insulated gate field-effect transistors [IGFETs] characterised by the gate dielectrics the gate dielectric comprising a multilayered structure comprising at least one organic layer and at least one inorganic layer
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass

Definitions

  • the invention relates to a treatment method for hydrophilizing a surface of a layer of a fluorinated material, a method of depositing a layer of a metallic or semiconductor material on the surface of a layer made of a fluorinated material, and a device comprising a layer of a fluorinated material, a surface of which has been treated by the treatment method of the invention, and a layer of a metallic material.
  • Many devices include layers of a fluorinated material such as a fluoropolymer (also referred to herein as fluoropolymer) or a material containing at least one fluorine atom.
  • a fluorinated material such as a fluoropolymer (also referred to herein as fluoropolymer) or a material containing at least one fluorine atom.
  • fluoropolymers are used in the manufacture of electronic components such as organic transistors, for electrical insulation, or in the manufacture of mechanical parts subjected to extreme conditions of use, in terms of temperature or aggressiveness of solvents.
  • fluoropoîymomme and in particular the Cytop ®, which is a fluoropolymer, exhibit properties particularly suited to form the dielectric material of the gate of a transistor or a capacitance or the encapsulation layers used in this field.
  • Patent FR 2 919 521 proposes a device comprising a fluoropolymer layer of which at least part of the surface is covered with a polymer comprising at least one fluorinated function and at least one acid or base function and forming a layer of hooked on said fluoropolymer, said hook layer being covered by another layer.
  • the hook layer is an ionic conductive material that disrupts the proper operation of the transistor.
  • the aim of the invention is to provide a process which makes it possible to render the hydrophilic layer of a fluorinated material hydrophilic, in order to allow the deposition of other layers on this layer of fluorinated material,
  • the invention proposes a treatment process for rendering a hydrophilic surface of a layer made of a fluorinated material, characterized in that it comprises a step a) of depositing a layer of a (oxo) hydroxide d an element of the alcalino-terrous metal group or group II or group III of the periodic table of the elements or of a rare earth, or a mixture thereof on said surface.
  • said element is magnesium or aluminum and Mg (OH) 2 magnesium hydroxide or Al (OH) 3 aluminum hydroxide is deposited.
  • the thickness of the (oxo) hydroxide layer is between 10 nm and 1 ⁇ m, more preferably, this thickness is between 10 and 300 nm, inclusive. Even more preferably, it is equal to 50 nm.
  • step a) of depositing on said surface is a step of hydrolysis, on said surface, of a salt of said element.
  • step a) is a step of depositing said (oxo) hydroxide of said element in suspension in a solvent.
  • said suspension is a colloidal sol of said (oxo) hydroxide of said element.
  • the layer of a fluorinated material is a layer of a fluorinated polymer or fluorinated silane.
  • the invention also proposes a method for depositing a layer of a material chosen from a metallic material, an electrically conductive material, a semiconductor material and an insulating material, on the surface of a layer made of a fluorinated material. characterized in that it comprises a step of treating said surface of the layer with a fluorinated material to make it hydrophilic, by the process according to the invention, followed by a step of depositing said layer of a metallic material, or conductor of electricity, or semiconductor, or insulator.
  • the material is a metallic material selected from silver, chromium, gold, titanium, aluminum, platinum, palladium, copper, nickel, molybdenum, an ink conductor, in particular comprising metal nanoparticles.
  • the material is a metallic electrically conductive material
  • it is preferably selected from a conductive polymer, such as PEDOT / PSS: sodium poly (3,4-ethylenedioxythiophene) (PEDOT) / polystyrene sulfonate (PSS), polyaniline, the conductive metal oxides chosen from ⁇ (indium-tin-oxide), ⁇ (conducting alloy of aluminum oxide and zinc), WO 3 (tungsten oxide), carbon nanopipes, graphene , silver / graphene mixtures, or even copper / graphene mixtures.
  • PEDOT / PSS sodium poly (3,4-ethylenedioxythiophene) (PEDOT) / polystyrene sulfonate (PSS), polyaniline
  • the conductive metal oxides chosen from ⁇ (indium-tin-oxide), ⁇ (conducting alloy of aluminum oxide and zinc), WO 3 (tungsten oxide), carbon nanopipes, graphene , silver / graphene
  • the invention also proposes a device characterized in that it comprises a layer made of a fluorinated material, one surface of which is coated with an (oxo) hydroxide layer of an element selected from the group of alkaline earth metals or from the group II or III of the periodic table of the elements, or a rare earth, and a layer of a material selected from a metal material, an electrically conductive material, a semiconductor material, and an insulating material, deposited on the surface of the (oxo) hydroxide layer not in contact with the layer of a fluorinated material.
  • an (oxo) hydroxide layer of an element selected from the group of alkaline earth metals or from the group II or III of the periodic table of the elements, or a rare earth
  • a layer of a material selected from a metal material, an electrically conductive material, a semiconductor material, and an insulating material, deposited on the surface of the (oxo) hydroxide layer not in contact with the layer of a fluorinated
  • the (oxo) hydroxide is an (oxo) hydroxide of a member selected from among beryllium, magnesium, calcium, strontium, indium, barium, radium , aluminum, zinc, scandium, yttrium, and mixtures thereof.
  • the (oxo) hydroxide is Mg (OH) 2 magnesium hydroxide or Al (OH) 3 aluminum hydroxide.
  • the thickness of the (oxo) hydroxide layer is between 10 and 300 nm, inclusive. Preferably, it is equal to 50 nm.
  • the layer of a fluorinated material is a layer of a fluorinated polymer or a fluorinated silane.
  • the layer made of a metallic material it is preferably made of a material chosen from among silver, chromium, gold, titanium, aluminum, platinum, palladium, copper, nickel and molybdenum. , a conductive ink, in particular comprising metal nanoparticles.
  • the layer made of an electrically conductive material is preferably made of a material chosen from a conductive polymer such as PEDOT / PSS: sodium poly (3,4-ethylenedioxythiophene) (PEDOT) / poly (styrene sulphonate) ( PSS), polyaniline, conductive metal oxides selected from ⁇ (indium-tin-oxide), AZO (alloy of aluminum oxide and zinc), WO 3 (tungsten oxide), carbon nanotubes graphene, silver / graphene mixtures, or copper / graphene mixtures.
  • PEDOT / PSS sodium poly (3,4-ethylenedioxythiophene) (PEDOT) / poly (styrene sulphonate) ( PSS), polyaniline, conductive metal oxides selected from ⁇ (indium-tin-oxide), AZO (alloy of aluminum oxide and zinc), WO 3 (tungsten oxide), carbon nanotubes graphene, silver / graphene mixtures, or copper
  • a preferred device according to the invention is an organic transistor.
  • FIG. 1 schematically represents the structure of an organic transistor before depositing the gate
  • FIG. 2 represents the transistor of FIG. 1 being processed by the method of the invention before depositing the gate
  • FIG. 3 diagrammatically represents the transistor obtained after the treatment carried out as shown in FIG. 2,
  • FIG. 4 represents the transistor of FIG. 3 with the gate deposited
  • FIG. 5 represents the increase in the thickness of the layer obtained during the treatment of the surface of a fluoropolymer by the process of the invention as a function of time
  • FIG. 6 shows a photograph taken with an optical microscope at a magnification x 5 of the surface of a layer of fluorinated polymer, Cytop ® of the prior art on which an electrode was printed with a silver ink to P ,
  • FIG. 7 shows a photograph taken with an optical microscope at a magnification x 5 of the surface of a layer of fluorinated polymer, Cytop ®, treated according to the invention wherein an electrode was printed with an ink to money, and
  • FIG. 8 represents the variation of the gate voltage, Vg, in volts, of a transistor of the prior art and of a transistor according to the invention.
  • the invention proposes to cover the surface of the layer made of a fluorinated material with the aid of an additional layer called "hooked" layer which makes it possible to obtain a hydrophilic surface on which a layer may be deposited, in particular of a metal such as silver, chromium, gold, titanium, aluminum, platinum, palladium, copper, nickel, molybdenum, a conductive ink, in particular comprising metal nanoparticles.
  • a metal such as silver, chromium, gold, titanium, aluminum, platinum, palladium, copper, nickel, molybdenum
  • the electrically conductive material it is preferably chosen from a conducting polymer such as PEDOT / PSS: poly (3,4-ethylenedioxythiophene) (PEDOT) / sodium polystyrene sulphonate (PSS), polyaniline, conductive metal oxides selected from PITO (indium-tin-oxide), AZO (alloy of aluminum oxide and zinc), WO 3 (tungsten oxide), carbon nanotubes, graphene, silver mixtures graphene or copper / graphene mixtures. An adherent structure is then obtained.
  • a conducting polymer such as PEDOT / PSS: poly (3,4-ethylenedioxythiophene) (PEDOT) / sodium polystyrene sulphonate (PSS), polyaniline, conductive metal oxides selected from PITO (indium-tin-oxide), AZO (alloy of aluminum oxide and zinc), WO 3 (tungsten oxide), carbon nanotubes, graphene, silver mixtures graphene or
  • the invention proposes to modify the wettability of the surface of the layer in a fluorinated material by creating a layer of hook formed of an alkaline earth metal hydroxide or oxohydroxide, or an element of the group II or group III of the periodic table of the elements, or of a rare earth.
  • this layer will be called "(oxo) hydroxide layer” to mean both a layer of a hydroxide of the element and a layer of an oxohydroxide of the element. .
  • This element may be beryllium, magnesium, calcium, strontium, indium, barium, radium, aluminum, zinc, scandium, yttrium, and mixtures thereof.
  • Magnesium or aluminum will preferably be used as the element, in which case the layer formed will be a brucite, Mg (OH) 2 or gibbsite, Al (OH) 3 layer, respectively.
  • the layers of brucite or gibbsite have the advantage of being electrically insulating and have a fairly high permittivity of the order of 8 and more.
  • brucite and gibbsite grow on fluoropolymer layers and have the ability to adhere to both fluorinated polymers such as Tefion ® or Cytop ® , as a layer of fluorinated silane, than to other materials, for example, fluorine glues.
  • this ink adheres to brucite or gibbsite, which allows to deposit, particularly in the case of transistors where the layer of dielectric material is often a fluorinated polymer, another layer of a metal, for example to form the gate electrode, by techniques such as printing, spin coating, or gluing.
  • the invention finds application more particularly in the field of organic transistors. Indeed, it is now accepted that in order to obtain organic transistors which have little hysteresis and high mobility, it is necessary for the dielectric material of the gate to consist of a polymer having a low value of c (called low K ) (J. Veres et al., "Gaste Insulators in Organic Field-Effect Transistors", Chem Mater 2004, 16, 4543-4555).
  • fluoropolymers are materials of choice. It is therefore necessary to deposit the other layers that constitute the stack of a transistor on this layer.
  • FIG. 1 schematically represents the structure of an organic transistor before the deposition of the gate.
  • such a transistor consists of a substrate, denoted 1 in FIG. 1, generally made of polyethylene naphthalate (PEN) having a thickness generally of 125 ⁇ m.
  • PEN polyethylene naphthalate
  • silica silicon, polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polyimide (PI), polyetherimide ( PEI), polyether sulphone (PES), polysulfone (PSF), polyphenylene sulphide (PPS), polyether ether ketone (PEEK), polyacrylate (PA), polyamide imide (PAI), polystyrene, polyethylene polypropylene, a polyamine resin, a carbonate resin or a cellulosic resin.
  • source electrode and drain electrode On this substrate is deposited two electrodes noted 2 in Figure 1, called source electrode and drain electrode.
  • Electrodes are structured, that is to say that their surface is not flat. These electrodes are structured by a laser treatment or by photolithography.
  • Electrodes are generally made of gold, have a thickness of 30 nm and are deposited by evaporation.
  • these electrodes 2 and a portion of the substrate 1 are coated with a layer, denoted 3 in FIG. 1, of a semiconductor material, generally of the TIPS PENTACENE type, which is a small semiconductor molecule deposited by a printing technique such as gravure, or tetracene or anthracene.
  • a semiconductor material generally of the TIPS PENTACENE type, which is a small semiconductor molecule deposited by a printing technique such as gravure, or tetracene or anthracene.
  • a layer denoted 3 in FIG. 1
  • a semiconductor material generally of the TIPS PENTACENE type, which is a small semiconductor molecule deposited by a printing technique such as gravure, or tetracene or anthracene.
  • organic semi-conducting materials considered in the context of the present invention. These may be molecules of low molecular weight (commonly called "small molecules"), and especially molecules with a molecular weight of less than 1000 g / mol, or poly
  • organic semiconductors have the common point to present a conjugate system from ⁇ alternating single and double carbon-carbon bonds.
  • organic semiconductor of low molecular weight there may be mentioned, for example, those of the polyacene, oligothiophene or phthalocyanine type.
  • polymeric organic semiconductors that may be mentioned are those of polyacetylene, polyphenylene, polythiophene or poly (phenylene / vinylene) type.
  • It may especially be an organic semiconductor selected from pentacene, tetracene, anthracene, naphthalene, alpha-6-thiophene, alpha-4-thiophene, perylene and its derivatives, rubrene and its derivatives, coronene and its derivatives, perylene tetracarboxylic diimide and its derivatives, perylene tetracarboxylic dianhydride and its derivatives, polythiophene and its derivatives, polyparaphenylene-vinylene and its derivatives, polyparaphenylene and its derivatives, polyfluorene and its derivatives, a polyfluorene-oligothiophene copolymer and its derivatives, polythiophene-vinylene and its derivatives, a polythiophene heterocyclic aromatic copolymer and its derivatives, an oligonaphthalene and its derivatives, alpha-5-thiophene oligothiophene and its derivatives, phthalo
  • the gate electrode must then be deposited.
  • a layer, denoted 4 in FIG. 1, of fluoropolymer is deposited on the layer 3.
  • the fluoropolymer used is generally a fluoropolymer CYTOP ® with a thickness between 500 and 800 nm, inclusive.
  • this gate electrode denoted 6 in FIG. 4, It is then necessary to deposit the gate electrode, denoted 6 in FIG. 4, on this layer 4 made of fluoropolymer.
  • This gate electrode has a thickness of between 50 nm and 1 ⁇ , inclusive. Due to the evoked difficulties of deposition on the fluoropolymer layer 4, there is a lack of adhesion between the layer 4 and the upper layer 6, namely the gate electrode. These layers are not uniform.
  • the treatment method of the invention for rendering the surface of the layer 4 hydrophilic in a fluorinated material is diagrammatically shown in FIG.
  • a drop, denoted 10 in FIG. 2 of a liquid solution of one element of the group is deposited.
  • This drop 10 covers the entire layer 4.
  • a layer, noted in FIG. 2, of hydroxide or oxohydroxide of the element is then obtained after drying in order to evaporate the solvent from the deposited solution.
  • the element when the element is magnesium or aluminum, due to brucite's affinity, Mg (OH) 2 , and gibbsite, Al (OH) 3 , with the fluorinated surface of layer 4 it a sheet of brucite or gibbsite forms on the entire exposed surface of layer 4.
  • This layer 5 varies as a function of the contact time between the solution of the element of the group of alkaline-earth metals or of group II or III of the periodic table or of the rare earth, on the surface of layer 4 .
  • the layer 5, said hooked, has a thickness generally between 10 nm and 1 ⁇ , inclusive. It is preferably between 10 and 300 nm, inclusive. But in a transistor, it is preferably 50 nm.
  • the solution deposited on the layer 4 may be a solution of the element to be deposited itself, for example a colloidal sol of the hydroxide of the element or of the oxohydroxide of the element.
  • a colloidal sol of magnesium hydroxide Mg (OH) 2 or aluminum hydroxide Al (OH) 3 can be used ,
  • magnesium chloride MgCl 2 or magnesium fluoride MgF 2 or aluminum chloride may be used and dissolved in water. This solution will be deposited on layer 4 and a sodium hydroxide solution will then be poured on the magnesium chloride solution. The formation reaction of the brucite film on layer 4 starts from pH 9.
  • Figure 5 shows the variation in thickness of a layer of brucite Mg (OH) 2 as a function of immersion time of a Cytop ® layer in a solution containing 100 mg of MgCl 2 in 200 mL of water, which was added sodium hydroxide solution, NaOH concentration of 0.5 mol / l, until a pH of 9.
  • the invention also proposes a process for depositing a layer 6 made of a metallic material, or an electrically conductive material such as a conductive polymer such as PEDOT / PSS, (poly (3,4-ethylenedioxythiophene) ) (PEDOT) and sodium polystyrene sulfonate (PSS), or a semiconductor material such as one of those mentioned above, or an insulating material, on the surface of a layer 4 in a fluorinated material, this process comprising a step of treating the surface of the layer 4 to create the hook layer 5, as shown above, by the treatment method of the invention, then the deposition of said layer 6 of a metal or semiconductor material.
  • a conductive polymer such as PEDOT / PSS, (poly (3,4-ethylenedioxythiophene) ) (PEDOT) and sodium polystyrene sulfonate (PSS), or a semiconductor material such as one of those mentioned above, or an insulating material
  • the metallic material is preferably selected from silver, chromium, gold, titanium, aluminum, platinum, palladium, copper, nickel, molybdenum, a conductive ink, in particular comprising metal nanoparticles.
  • the electrically conductive material it is preferably chosen from a conducting polymer such as PEDOT / PSS: poly (3,4-ethylenedioxythiophene) (PEDOT) / sodium polystyrene sulfonate (PSS), polyaniline, the conductive metal oxides chosen from ⁇ (indium-tin-oxide), AZO (alloy of aluminum oxide and zinc), WO 3 (tungsten oxide), carbon nanotubes, graphene, mixtures silver / graphene, or copper / graphene mixtures.
  • a conducting polymer such as PEDOT / PSS: poly (3,4-ethylenedioxythiophene) (PEDOT) / sodium polystyrene sulfonate (PSS), polyaniline, the conductive metal oxides chosen from ⁇ (indium-tin-oxide), AZO (alloy of aluminum oxide and zinc), WO 3 (tungsten oxide), carbon nanotubes, graphene, mixtures silver / graphene, or copper
  • the devices obtained by these methods are also an object of the invention.
  • a device comprises a layer 4 made of a fluorinated material, such as a fluorinated polymer or a fluorinated silane, one surface of which is coated with a layer of an elemental hydroxide or oxohydroxide. of the alkaline earth metal group or group II or III of the Periodic Table of the Elements or rare earth, or mixtures thereof.
  • a fluorinated material such as a fluorinated polymer or a fluorinated silane, one surface of which is coated with a layer of an elemental hydroxide or oxohydroxide. of the alkaline earth metal group or group II or III of the Periodic Table of the Elements or rare earth, or mixtures thereof.
  • the device of the invention may further comprise a layer 6 of a metallic or electrically conductive or semiconductor or insulating material deposited on all or part of the surface of the layer 5.
  • a gold layer 2 30 nm thick, was deposited by evaporation or by vapor deposition (PVD). This layer 2 of gold is etched to form the source and drain electrodes. This can be done by photolithography or laser ablation.
  • PEN polyethylene naphthalate
  • PVD vapor deposition
  • a layer 3 of 100% thick TIPS PENTACENE semiconducting material is then deposited by gravure printing.
  • a dielectric material which is here a fluorinated polymer, Cytop ®, with a thickness of 800 nm.
  • This layer 4 was formed by screen printing.
  • This layer 4 is then treated by the treatment method of the invention.
  • a second solution of NaOH is made in water at a concentration of 100 mg / mL.
  • the device obtained is immersed in the MgCl 2 solution.
  • the NaOH solution is slowly added until a pH of 9 is reached.
  • the hydrolysis reaction starts on the fluorine of layer 4 due to the difference in electronegativity between fluorine, which is electronegative, and magnesium, which is electropositive.
  • a brucite germ Mg (OH) 2 is formed on the surface of layer 4.
  • the device is kept in the solution.
  • the water drop contact angle is less than 5 °.
  • the grid electrode 6 still containing silver nanoparticles is then deposited by ink jet on the surface of this layer 5.
  • the device shown in FIG. 6 is then obtained.
  • the electrode 6 has a thickness of 1 ⁇ .
  • Figure 6 is a photograph taken from above of the device. As can be seen, the grid formed does not dew and has sharp contours.
  • the contact angle of the drop of water on the surface obtained was measured.
  • the contact angle was 110 °.
  • the device obtained is shown in FIG. 7 where the layer 4 represents the device seen from above, the fluoropolymer layer being marked 4 and the ink layer of silver nanoparticles being denoted 6.
  • the treatment method of the invention for rendering the surface of a hydrophilic fluorinated material is quite effective. .
  • Examples 1 and 2 were then electrically tested by plotting the characteristic curves of a field effect transistor.
  • the curve has a larger current.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Thin Film Transistor (AREA)
  • Chemically Coating (AREA)
  • Treatments Of Macromolecular Shaped Articles (AREA)

Abstract

L'invention concerne un procédé de traitement pour rendre hydrophile une surface d'une couche en un matériau fluoré, un procédé de dépôt d'une couche en un matériau métallique ou semi-conducteur sur la surface d'une couche en un matériau fluoré, ainsi qu'un dispositif comprenant une couche en un matériau fluoré, dont une surface a été traitée par le procédé de traitement de l'invention, et une couche en un matériau métallique. Le procédé de l'invention comprend une étape a) de dépôt d'une couche d'un (oxo)hydroxyde d'un élément du groupe des métaux alcalino-terreux ou du groupe II ou III du tableau périodique des éléments ou d'une terre rare ou d'un mélange de ceux-ci, sur ladite surface. Le procédé de l'invention trouve application dans le domaine de l'électronique, en particulier.

Description

TRAITEMENT DE SURFACE D'UNE COUCHE EN UN MATERIAU FLUORE POUR LA RENDRE HYDROPHILE
L'invention concerne un procédé de traitement pour rendre hydrophile une surface d'une couche en un matériau fluoré, un procédé de dépôt d'une couche en un matériau métallique ou semi-conducteur sur la surface d'une couche en un matériau fluoré, ainsi qu'un dispositif comprenant une couche en un matériau fluoré, dont une surface a été traitée par le procédé de traitement de l'invention, et une couche en un matériau métallique.
De nombreux dispositifs comprennent des couches en un matériau fluoré tel qu'un polymère fluoré (également appelé ici fluoropolymère) ou en un matériau contenant au moins un atome de fluor.
Par exemple, les fluoropoîymères sont utilisés dans la fabrication de composants électroniques tels que les transistors organiques, pour l'isolation électrique, ou dans la fabrication de pièces mécaniques soumises à des conditions extrêmes d'utilisation, en termes de température ou d'agressivité de solvants.
Dans le cas particulier de l'électronique organique, les fluoropoîymères, et notamment le Cytop®, qui est un polymère fluoré, présentent des propriétés particulièrement adaptées pour constituer le matériau diélectrique de la grille d'un transistor ou d'une capacité ou encore les couches d'encapsulations utilisées dans ce domaine.
Toutefois, l'utilisation de tels matériaux fluorés, en particulier de tels polymères fluorés, qui sont hydrophobes, pose un problème, à la connaissance des inventeurs non résolu à ce jour : lorsque l'on veut déposer d'autres couches en d'autres matériaux sur la couche de matériau fluoré préalablement déposée en couche mince, il est impossible de déposer par voie humide ces couches, que ce soit par la méthode dite "à la tournette" (« spin coating » en anglais) ou par diverses méthodes d'impression.
Il est également impossible de coller entre elles deux pièces en fluoropoîymères, ou de coller un matériau plastique sur un fluoropolymère.
Ceci rend donc très délicate la fabrication de dispositifs complexes comprenant différents éléments indispensables à leur fonctionnement. C'est par exemple le cas pour un transistor complet, dans lequel la mise en place du matériau diélectrique (le matériau fluoré) requiert des étapes ultérieures de fabrication. Le brevet FR 2 919 521 propose un dispositif comprenant une couche en polymère fluoré dont une partie au moins de la surface est recouverte d'un polymère comportant au moins une fonction fluorée et au moins une fonction acide ou base et formant une couche d'accroché sur ledit polymère fluoré, ladite couche d'accroché étant recouverte par une autre couche.
Cependant, la couche d'accroché est en un matériau conducteur ionique qui perturbe le bon fonctionnement du transistor.
L'invention vise à fournir un procédé qui permette de rendre hydrophile la couche naturellement hydrophobe d'un matériau fluoré, afin de permettre le dépôt d'autres couches sur cette couche en matériau fluoré,
A cet effet, l'invention propose un procédé de traitement pour rendre hydrophile une surface d'une couche en un matériau fluoré caractérisé en ce qu'il comprend une étape a) de dépôt d'une couche d'un (oxo)hydroxyde d'un élément du groupe des métaux al calino -terreux ou du groupe II ou du groupe III du tableau périodique des éléments ou d'une terre rare, ou d'un mélange de ceux-ci sur ladite surface.
De préférence, à l'étape a), on dépose un (oxo)hydroxyde d'un élément choisi parmi le béryllium, le magnésium, le calcium, le strontium, l'indium, le baryum, le radium, l'aluminium, le zinc, le scandium, l'yttrium, et les mélanges de ceux-ci.
Plus préférablement, à l'étape a), ledit élément est du magnésium ou de l'aluminium et on dépose un hydroxyde de magnésium Mg(OH)2 ou un hydroxyde d'aluminium Al(OH)3.
Encore de préférence, l'épaisseur de la couche en (oxo)hydroxyde est comprise entre 10 nm et 1 μιτι, plus préférablement, cette épaisseur est comprise entre 10 et 300 nm, inclus. Encore plus préférablement, elle est égale à 50 nm.
Selon un premier mode de mise en oeuvre du procédé de traitement de l'invention, l'étape a) de dépôt sur ladite surface est une étape d'hydrolyse, sur ladite surface, d'un sel dudit élément.
Lorsque l'élément est le magnésium, de préférence ledit sel est du
MgCl2 et l'hydrolyse est effectuée à pH 9. Selon un second mode de mise en œuvre du procédé de traitement de l'invention, l'étape a) est une étape de dépôt dudit (oxo)hydroxyde dudit élément en suspension dans un solvant.
Dans ce second mode de réalisation, de préférence, ladite suspension est un sol colloïdal dudit (oxo)hydroxyde dudit élément.
De préférence, la couche en un matériau fluoré est une couche en un polymère fluoré ou en silane fluoré.
L'invention propose également un procédé de dépôt d'une couche en un matériau choisi parmi un matériau métallique, un matériau conducteur d'électricité, un matériau semi-conducteur et un matériau isolant, sur la surface d'une couche en un matériau fluoré, caractérisé en ce qu'il comprend une étape de traitement de ladite surface de la couche en un matériau fluoré pour la rendre hydrophile, par le procédé selon l'invention, suivie d'une étape de dépôt de ladite couche en un matériau métallique, ou conducteur d'électricité, ou semi-conducteur, ou isolant.
De préférence, dans ce procédé, le matériau est un matériau métallique choisi parmi l'argent, le chrome, l'or, le titane, l'aluminium, le platine, le palladium, le cuivre, le nickel, le molybdène, une encre conductrice, en particulier comprenant des nanoparticules métalliques.
Lorsque le matériau est un matériau conducteur d'électricité métallique, il est de préférence choisi parmi un polymère conducteur, tel que le PEDOT/PSS : poly(3,4-éthylènedioxythiophène) (PEDOT) / polystyrène sulfonate) de sodium (PSS), la polyaniline, les oxydes métalliques conducteurs choisis parmi ΓΙΤΟ (indium-étain-oxyde), ΓΑΖΟ (alliage conducteur d'oxyde d'aluminium et de zinc), le W03 (oxyde de tungstène), les nano tubes de carbone, le graphène, les mélanges argent/graphène, ou encore, les mélanges cuivre/graphène.
L'invention propose aussi un dispositif caractérisé en ce qu'il comprend une couche en un matériau fluoré dont une surface est revêtue d'une couche en (oxo)hydroxyde d'un élément choisi dans le groupe des métaux alcalino-terreux ou du groupe II ou du groupe III du tableau périodique des éléments, ou d'une terre rare, et une couche en un matériau choisi parmi un matéiiau métallique, un matériau conducteur d'électricité, un matériau semi-conducteur, et un matériau isolant, déposée sur la surface de la couche en (oxo)hydroxyde non en contact avec la couche en un matériau fluoré.
De préférence, dans le dispositif de l'invention, l'(oxo)hydroxyde est un (oxo)hydroxyde d'un élément choisi parmi le béryllium, le magnésium, le calcium, le strontium, l'indium, le baryum, le radium, l'aluminium, le zinc, le scandium, l'yttrium, et les mélanges de ceux-ci.
Plus préférablement, l'(oxo)hydroxyde est un hydroxyde de magnésium Mg(OH)2 ou un hydroxyde d'aluminium Al(OH)3.
De préférence, dans le dispositif de l'invention, l'épaisseur de la couche en (oxo)hydroxyde est comprise entre 10 et 300 nm, inclus. De préférence, elle est égale à 50 nm.
Toujours de préférence, la couche en un matériau fluoré est une couche en un polymère fluoré ou en un silane fluoré.
Quant à la couche en un matériau métallique, elle est de préférence en un matériau choisi parmi l'argent, le chrome, l'or, le titane, l'aluminium, le platine, le palladium, le cuivre, le nickel, le molybdène, une encre conductrice, en particulier comprenant des nanoparticules métalliques.
Quant à la couche en un matériau conducteur d'électricité, elle est de préférence en un matériau choisi parmi un polymère conducteur tel que PEDOT/PSS : poly(3,4-éthylènedioxythiophène) (PEDOT) / poly(styrène sulfonate) de sodium (PSS), la polyaniline, les oxydes métalliques conducteurs choisis parmi ΓίΤΟ (indium-étain-oxyde), l'AZO (alliage d'oxyde d'aluminium et de zinc), le W03 (oxyde de tungstène), les nanotubes de carbone, le graphène, les mélanges argent/graphène, ou encore, les mélanges cuivre/graphène.
Un dispositif préféré selon l'invention est un transistor organique.
L'invention sera mieux comprise, et d'autres caractéristiques et avantages de celle-ci apparaîtront plus clairement à la lecture de la description explicative qui suit et qui est faite en référence aux figures annexées dans lesquelles :
- la figure 1 représente schématiquement la structure d'un transistor organique avant le dépôt de la grille,
- la figure 2 représente le transistor de la figure 1 en cours de traitement par le procédé de l'invention avant le dépôt de la grille, - la figure 3 représente schématiquement le transistor obtenu après le traitement réalisé comme montré en figure 2,
- la figure 4 représente le transistor de la figure 3 avec la grille déposée,
- la figure 5 représente l'augmentation de l'épaisseur de la couche obtenue lors du traitement de la surface d'un polymère fluoré par le procédé de l'invention, en fonction du temps,
- la figure 6 montre une photographie prise au microscope optique à un grossissement x 5 de la surface d'une couche en un polymère fluoré, le Cytop®, de l'art antérieur sur laquelle une électrode a été imprimée avec une encre à P argent,
- la figure 7 montre une photographie prise au microscope optique à un grossissement x 5 de la surface d'une couche en un polymère fluoré, le Cytop®, traitée selon l'invention, sur laquelle une électrode a été imprimée avec une encre à l'argent, et
- la figure 8 représente la variation de la tension de grille, Vg, en volt, d'un transistor de l'art antérieur et d'un transistor selon l'invention.
Pour permettre le dépôt de couches, en particulier en un matériau métallique ou en un matériau conducteur d'électricité ou en un matériau semiconducteur, ou un matériau isolant, sur la surface d'une couche en un matériau fluoré, l'invention propose de recouvrir la surface de la couche en un matériau fluoré à l'aide d'une couche additionnelle dite couche "d'accroché" qui permet d'obtenir une surface hydrophile sur laquelle peut être déposée une couche, en particulier en un métal tel que l'argent, le chrome, l'or, le titane, l'aluminium, le platine, le palladium, le cuivre, le nickel, le molybdène, une encre conductrice, en particulier comprenant des nanoparticules métalliques.
Quant au matériau conducteur d'électricité, il est de préférence choisi parmi un polymère conducteur tel que PEDOT/PSS : poly(3,4- éthylènedioxythiophène) (PEDOT) / poly(styrène sulfonate) de sodium (PSS), la polyaniline, les oxydes métalliques conducteurs choisis parmi PITO (indium-étain- oxyde), l'AZO (alliage d'oxyde d'aluminium et de zinc), le W03 (oxyde de tungstène), les nanotubes de carbone, le graphène, les mélanges argent/graphène, ou encore, les mélanges cuivre/graphène. On obtient alors une structure adhérente.
L'invention propose de modifier la mouillabilité de la surface de la couche en un matériau fluoré en créant une couche d'accroché formée d'un hydroxyde ou d'un oxohydroxyde d'un métal alcalino-terreux, ou d'un élément du groupe II ou du groupe III du tableau périodique des éléments, ou d'une terre rare.
Selon l'élément, on formera soit un hydroxyde pur, soit un oxohydroxyde, c'est-à-dire un oxyde hydraté.
Ainsi, dans ce qui suit, d'une manière générale, on appellera cette couche "couche d'(oxo)hydroxyde" pour signifier aussi bien une couche en un hydroxyde de l'élément qu'une couche en un oxohydroxyde de l'élément.
Cet élément peut être le béryllium, le magnésium, le calcium, le strontium, l'indium, le baryum, le radium, l'aluminium, le zinc, le scandium, 1'yttrium, et les mélanges de ceux-ci.
On préférera tout particulièrement utiliser, en tant qu'élément, le magnésium ou l'aluminium, auquel cas la couche formée sera une couche de brucite, Mg(OH)2 ou de gibbsite, Al(OH)3, respectivement.
En effet, les couches de brucite ou de gibbsite présentent l'intérêt d'être électriquement isolantes et possèdent une permittivité assez élevée de l'ordre de 8 et plus.
Mais surtout, la brucite et la gibbsite croissent sur des couches en polymères fluorés et présentent des aptitudes à adhérer tant aux polymères fluorés tels que le Téfion® ou le Cytop®, qu'à une couche en un silane fluoré, qu'à d'autres matériaux, par exemple, des colles fluorées.
De plus, lorsque l'on utilise une encre conductrice, c'est-à-dire une encre contenant un métal, cette encre adhère à la brucite ou à la gibbsite, ce qui permet de déposer, en particulier dans le cas des transistors où la couche en matériau diélectrique est souvent en un polymère fluoré, une autre couche en un métal, par exemple pour former l'électrode de grille, par des techniques telles que l'impression, le dépôt à la tournette, ou le collage.
Ainsi, l'invention trouve application plus particulièrement dans le domaine des transistors organiques. En effet, il est maintenant admis que pour obtenir des transistors organiques qui présentent peu d'hystérésis et de fortes mobilités, il est nécessaire que le matériau diélectrique de la grille soit constitué d'un polymère présentant une faible valeur de c (dit low K) (J. Veres et al « Gâte Insulators in Organic Field-Effect Transistors », Chem. Mater. 2004, 16, 4543-4555).
Parmi les polymères low K, les fluoropolymères sont des matériaux de choix. Il faut donc déposer les autres couches qui constituent l'empilement d'un transistor sur cette couche.
La figure 1 représente schématiquement la structure d'un transistor organique avant le dépôt de la grille.
Comme on le voit en figure 1, un tel transistor est constitué d'un substrat, noté 1 en figure 1 , généralement en polyéthylène naphthalate (PEN) ayant une épaisseur généralement de 125μπι.
A titre d'exemple de matériaux susceptibles de former un tel substrat, on peut notamment citer la silice, le silicium, le téraphtalate de polyéthylène (PET), le naphtaîate de polyéthyle (PEN), le polyimide (PI), le polyéther imide (PEI), le polyéther sulfone (PES), le polysulfone (PSF), le sulfure de polyphényîène (PPS), le polyéther éther cétone (PEEK), le polyacrylate (PA), le polyamide imide (PAÎ), le polystyrène, le polyéthylène, le polypropylène, une résine polyamine, une résine carbonate ou encore une résine cellulosique.
Sur ce substrat on dépose deux électrodes notées 2 en figure 1, appelées électrode source et électrode drain.
Ces électrodes sont structurées, c'est-à-dire que leur surface n'est pas plane. Ces électrodes sont structurées par un traitement au laser ou par photolithographie.
Ces électrodes sont généralement en or, ont une épaisseur de 30nm et sont déposées par évaporation.
Comme montré en figure 1, ces électrodes 2 et une partie du substrat 1 sont revêtues d'une couche, notée 3 en figure 1 , en un matériau semi- conducteur, généralement du type TIPS PENTACENE, qui est une petite molécule semi-conductrice déposée par une technique d'impression telle que l'héliogravure, ou en tétracène ou en anthracène. A titre d'autres exemples de tels matériaux on peut citer deux types de matériaux semi -conducteurs organiques considérés dans le cadre de la présente invention. Il peut s'agir de molécules de faible masse moléculaire (couramment appelées « petites molécules »), et notamment de molécules de masse moléculaire inférieure à 1000 g/mol, ou de polymères constitués de macromolécules de plus grande masse moléculaire. Ces deux types de semi-conducteurs organiques ont pour point commun de présenter un système conjugué provenant de Γ alternance de simples et de doubles liaisons carbone-carbone. A titre de semi-conducteur organique de faible masse moléculaire, on peut par exemple citer ceux de type polyacène, oligothiophène ou phtalocyanine. A titre de semi-conducteur organique polymère, on peut par exemple citer ceux de type polyacétylène, poîyphénylène, polythiophène ou poly(phénylène/vinylène). Il pourra notamment s'agir d'un semi-conducteur organique choisi parmi le pentacène, le tétracène, l'anthracène, le naphthalène, l'alpha-ô-thiophène, l'alpha-4-thiophène, le pérylène et ses dérivés, le rubrène et ses dérivés, le coronène et ses dérivés, le diimide tétracarboxylique de pérylène et ses dérivés, le dianhydride tétracarboxylique de pérylène et ses dérivés, le polythiophène et ses dérivés, le polyparaphenylène-vinylène et ses dérivés, le polyparaphénylène et ses dérivés, le polyfluorène et ses dérivés, un copolymère de polyfluorène- oligothiophène et ses dérivés, le polythiophène-vinylène et ses dérivés, un copolymère aromatique hétérocyclique de polythiophène et ses dérivés, un oligonaphthalène et ses dérivés, l'alpha-5-thiophène oligothiophène et ses dérivés, la phthalocyanine qui ne contient pas de métal et ses dérivés, le dianhydride pyromellitique et ses dérivés, le diimide pyromellitique et ses dérivés, le dianhydride d'acide tétracarboxylique de pérylène et ses dérivés, le diimide tétracarboxylique de pérylène et ses dérivés, le diimide tétracarboxylique de naphtalène et ses dérivés ou le dianhydride-acide tétracarboxylique de naphtalène et ses dérivés.
L'électrode grille doit ensuite être déposée. Pour cela, une couche, notée 4 en figure 1, en polymère fluoré est déposée sur la couche 3.
Le polymère fluoré utilisé est généralement un fluoropolymère CYTOP® d'une épaisseur comprise entre 500 et 800 nm, inclus.
II faut alors déposer l'électrode grille, notée 6 en figure 4, sur cette couche 4 en polymère fluoré. Cette électrode grille a une épaisseur comprise entre 50 nm et 1 μηι, inclus. En raison des difficultés évoquées de dépôt sur la couche 4 en polymère fluoré, il existe un défaut d'adhérence entre la couche 4 et la couche 6 supérieure, à savoir l'électrode grille. Ces couches ne sont donc pas uniformes.
Grâce au procédé de l'invention de traitement d'une surface pour rendre hydrophile la surface d'une couche en un matériau fluoré, il est possible de déposer des encres conductrices par sérigraphie ou par impression jet d'encre, ou par héliogravure, ou par flexogravure, ou par toute autre technique de dépôt d'une solution liquide. Il est alors possible d'imprimer la grille d'un transistor.
Le procédé de traitement de l'invention pour rendre hydrophile la surface de la couche 4 en un matériau fluoré est schématiquement représenté en figure 2.
Comme on le voit en figure 2, où les couches identiques à celles montrées en figure 1 portent les mêmes numéros qu'en figure 1, on dépose une goutte, notée 10 en figure 2, d'une solution liquide d'un élément du groupe des métaux al calino -terreux, ou du groupe III du tableau périodique des éléments, ou d'une terre rare, sur la surface de la couche fluorée 4.
Cette goutte 10 recouvre l'ensemble de la couche 4.
On obtient alors une couche, notée 5 en figure 2, d'hydroxyde ou d'oxohydroxyde de l'élément, après un séchage pour évaporer le solvant de la solution déposée.
En particulier, lorsque l'élément est le magnésium ou l'aluminium, en raison de raffinité de la brucite, Mg(OH)2, et de la gibbsite, Al(OH)3, avec la surface fluorée de la couche 4, il se forme un feuillet de brucite ou de gibbsite sur toute la surface exposée de la couche 4.
L'épaisseur de cette couche 5 varie en fonction du temps de contact entre la solution de l'élément du groupe des métaux alcalino -terreux ou du groupe II ou III du tableau périodique ou de la terre rare, sur la surface de la couche 4.
On peut alors déposer une encre conductrice d'électricité pour former l'électrode de grille sur la couche 5 ainsi formée, comme montré en figure 4, où l'électrode de grille est notée 6. La couche 5, dite d'accroché, a une épaisseur généralement comprise entre 10 nm et 1 μτη, inclus. Elle est de préférence comprise entre 10 et 300 nm, inclus. Mais dans un transistor, elle est de préférence de 50 nm.
La solution déposée sur la couche 4 peut être une solution de l'élément à déposer lui-même, par exemple un sol colloïdal de l'hydroxyde de l'élément ou de l'oxohydroxyde de l'élément. En particulier, dans le cas de la brucite et de la gibbsite, on pourra utiliser respectivement un sol colloïdal d'hydroxyde de magnésium Mg(OH)2 ou d'hydroxyde d'aluminium Al(OH)3,
Mais, on pourra également utiliser une solution aqueuse d'un sel de cet élément et procéder à l'hydrolyse in situ, c'est-à-dire directement sur la couche 4, de ce sel pour obtenir l'(oxo)hydroxyde de l'élément voulu.
Par exemple, on pourra utiliser du chlorure de magnésium MgCl2 ou du fluorure de magnésium MgF2 ou du chlorure d'aluminium que l'on mettra en solution dans de l'eau. Cette solution sera déposée sur la couche 4 et une solution de soude sera alors versée sur la solution de chlorure de magnésium. La réaction de formation du film de brucite sur la couche 4 démarre à partir de pH 9.
Puis l'épaisseur de la couche de brucite croît sur la couche 4.
La figure 5 montre la variation d'épaisseur d'une couche de brucite Mg(OH)2 en fonction du temps de trempage d'une couche en Cytop® dans une solution contenant 100 mg de MgCl2 dans 200 mL d'eau, à laquelle on a ajouté une solution de soude, NaOH de concentration 0,5 mol/1, jusqu'à obtenir un pH de 9.
Comme on le voit en figure 5, on obtient une couche 5 de brucite d'une épaisseur de 50 nm en 5 minutes.
Pour obtenir un transistor, il faut ensuite de déposer l'électrode 6 de grille sur cette couche 5 d'accroché.
Ainsi, l'invention propose également un procédé de dépôt d'une couche 6 en un matériau métallique, ou en un matériau conducteur d'électricité tel qu'un polymère conducteur tel que le PEDOT/PSS, (poly(3,4- éthylènedioxythiophène) (PEDOT) et le poly(styrène sulfonate) de sodium (PSS)), ou en un matériau semi-conducteur tels que l'un de ceux cités précédemment, ou en un matériau isolant, sur la surface d'une couche 4 en un matériau fluoré, ce procédé comprenant une étape de traitement de la surface de la couche 4, pour y créer la couche d'accroché 5, comme montré ci-dessus, par le procédé de traitement de l'invention, puis le dépôt de ladite couche 6 en un matériau métallique ou semiconducteur.
Le matériau métallique est de préférence choisi parmi l'argent, le chrome, l'or, le titane, raluminium, le platine, le palladium, le cuivre, le nickel, le molybdène, une encre conductrice, en particulier comprenant des nanoparticules métalliques.
Quant au matériau conducteur d'électricité, il est de préférence choisi parmi un polymère conducteur tel que le PEDOT/PSS : poly(3,4- éthylènedioxythiophène) (PEDOT) / poly(styrène sulfonate) de sodium (PSS), la polyaniline, les oxydes métalliques conducteurs choisis parmi ΓΙΤΟ (indium-étain- oxyde), l'AZO (alliage d'oxyde d'aluminium et de zinc), le W03 (oxyde de tungstène), les nanotubes de carbone, le graphène, les mélanges argent/graphène, ou encore, les mélanges cuivre/graphène.
Les dispositifs obtenus par ces procédés sont également un objet de l'invention.
Ainsi, un dispositif selon l'invention comprend une couche 4 en un matériau fluoré, tel qu'un polymère fluoré ou un silane fluoré, dont une surface est revêtue d'une couche d'un hydroxyde ou d'un oxohydroxyde d'un élément du groupe des métaux alcalino-terreux ou du groupe II ou III du tableau périodique des éléments ou d'une terre rare, ou de mélanges de ceux-ci.
Le dispositif de l'invention peut de plus comprendre une couche 6 en un matériau métallique ou conducteur d'électricité ou semi- conducteur, ou isolant, déposée sur toute ou partie de la surface de la couche 5.
Afin de mieux faire comprendre l'invention, on va maintenant en décrire, à titre d'exemple purement illustratif et non limitatif, un mode de mise en œuvre.
Exemple 1
Sur un substrat 1 en polyéthylène naphtalate (PEN) d'une épaisseur de 125 μτη, on a déposé une couche 2 en or, de 30 nm d'épaisseur, par évaporation ou par dépôt en phase vapeur (PVD). Cette couche 2 d'or est gravée pour former les électrodes source et drain. Cela peut être fait par photolithographie ou par ablation laser.
On dépose ensuite une couche 3 d'un matériau s emi -conducteur TIPS PENTACENE d'une épaisseur de 100 nm, par héliogravure.
On procède ensuite au dépôt de la couche 4 en un matériau diélectrique, qui est ici un polymère fluoré, le Cytop®, d'une épaisseur de 800 nm.
Cette couche 4 a été formée par sérigraphie.
On procède ensuite au traitement de la surface de cette couche 4 par le procédé de traitement de l'invention.
A cet effet, on a utilisé une solution constituée de 100 mg de chlorure de magnésium, MgCl2, que l'on dissout dans de l'eau à une concentration de 100 mg/mL.
On fabrique une seconde solution de NaOH dans de l'eau à une concentration de 100 mg/mL.
On plonge le dispositif obtenu dans la solution de MgCÎ2.
On ajoute doucement la solution de NaOH jusqu'à obtenir un pH de 9.
Lorsque le pH est inférieur à 9, par exemple égal à 8, la réaction est très lente à démarrer. Lorsque le pH est supérieur à 10, la réaction est très rapide mais les autres couches pourraient être endommagées.
La réaction d'hydrolyse démarre sur le fluor de la couche 4 en raison de la différence d'électronégativité entre le fluor, qui est électronégatif, et du magnésium, qui est électropositif.
Un germe de brucite Mg(OH)2 se forme sur la surface de la couche 4.
On maintient le dispositif dans la solution.
On obtient au final un dépôt sous forme de feuillets en brucite qui recouvrent toute la surface de la couche 4. Au bout de 5 minutes, on obtient une couche transparente d'une épaisseur de 50 nm.
La brucite cristallise dans le système rhomboédrique.
On lave ensuite à l'eau et on sèche à la souflette ou on procède à un léger recuit à 100°C pendant 5min. On mesure l'angle de contact de goutte d'eau de la surface de la couche 5 ainsi formée.
L'angle de contact de goutte d'eau est inférieur à 5°.
On procède ensuite au dépôt de l'électrode 6 de grille encore contenant des nanoparticules d'argent, par jet d'encre sur la surface de cette couche 5.
On obtient alors le dispositif montré en figure 6. L'électrode 6 a une épaisseur de 1 μηι.
La Figure 6 est une photographie vue de dessus du dispositif. Comme on le voit, la grille formée ne démouille pas et présente des contours nets.
Exemple 2 (comparatif)
On a fabriqué le même dispositif qu'à l'exemple 1 mais sans traiter la couche 4 avec le procédé de traitement de l'invention.
On a mesuré l'angle de contact de goutte d'eau sur la surface obtenue.
L'angle de contact était de 110°.
Le dispositif obtenu est montré en figure 7 où la couche 4 représente le dispositif vu de dessus, la couche de polymère fluoré étant notée 4 et la couche d'encre de nanoparticules d'argent étant notée 6.
Comme on le voit d'après les figures 6 et 7 et d'après les mesures d'angle de goutte d'eau, le procédé de traitement de l'invention pour rendre la surface d'un matériau fluoré hydrophile est tout à fait efficace.
On a alors testé électriquement les dispositifs obtenus aux exemples 1 et 2 en traçant les courbes caractéristiques d'un transistor à effet de champ.
Les courbes obtenues sont montrées en figure 8.
Comme on le voit en figure 8, avec la couche de traitement selon l'invention, la courbe présente un plus grand courant.

Claims

REVENDICATIONS
1. Procédé de traitement pour rendre hydrophile une surface d'une couche (4) en un matériau fluoré caractérisé en ce qu'il comprend une étape a) de dépôt d'une couche (5) d'un (oxo)hydroxyde d'un élément du groupe des métaux alcalino-terreux ou du groupe II ou du groupe III du tableau périodique des éléments ou d'une terre rare ou d'un mélange de ceux-ci, sur ladite surface,
2. Procédé selon la revendication 1, caractérisé en ce qu'à l'étape a), on dépose un (oxo)hydroxyde d'un élément choisi parmi le béryllium, le magnésium, le calcium, le strontium, l'indium, le baryum, le radium, l'aluminium, le zinc, le scandium, l'yttrium, et les mélanges de ceux-ci.
3. Procédé selon la revendication 1 ou 2, caractérisé en ce qu'à l'étape a), ledit élément est du magnésium ou de l'aluminium et en ce qu'on dépose un hydroxyde de magnésium Mg(OH)2 ou un hydroxyde d'aluminium Al(OH)3.
4. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que l'épaisseur de la couche (5) est comprise entre 10 nm et 1 μηι, inclus, de préférence entre 10 et 300 nm, inclus, plus préférablement est égale à 50 nm.
5. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que l'étape a) de dépôt sur ladite surface est une étape d'hydrolyse, sur ladite surface, d'un sel dudit élément.
6. Procédé selon la revendication 5, caractérisé en ce que le sel de l'élément est MgCl2 et en ce que l'hydrolyse est effectuée à pH 9.
7. Procédé selon l'une quelconque des revendications 1 à 4, caractérisé en ce que l'étape a) est une étape de dépôt dudit (oxo)hydroxyde dudit élément en suspension dans un solvant.
8. Procédé selon la revendication 7, caractérisé en ce que ladite suspension est un sol colloïdal dudit (oxo)hydroxyde dudit élément.
9. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que la couche (4) en un matériau fluoré est une couche en un polymère fluoré ou en silane fluoré.
10. Procédé de dépôt d'une couche (6) en un matériau choisi parmi un matériau métallique ou conducteur d'électricité ou semi- conducteur, ou isolant, sur la surface d'une couche (4) en un matériau fluoré, caractérisé en ce qu'il comprend une étape de traitement de ladite surface de la couche (4) pour la rendre hydrophile par le procédé selon l'une quelconque des revendications précédentes, pour former une couche (5) suivie d'une étape de dépôt de ladite couche (6) en un matériau métallique ou conducteur d'électricité ou s emi -conducteur, ou isolant, sur la couche (5).
11. Procédé selon la revendication 10, caractérisé en ce que le matériau est en un matériau métallique est choisi parmi l'argent, le chrome, l'or, le titane, l'aluminium, le platine, le palladium, le cuivre, le nickel, le molybdène, une encre conductrice, en particulier comprenant des nanoparticules métalliques.
12. Procédé selon la revendication 10, caractérisé en ce que le matériau est un matériau conducteur d'électricité choisi parmi le PEDOT/PSS (poly(3,4-éthylènedioxythiophène) (PEDOT) / poly(styrène suifonate) de sodium (PSS)), la polyaniline, ΓΙΤΟ (indium-étain-oxyde), ΓΑΖΟ (alliage conducteur d'oxyde d'aluminium et de zinc), le W03, les nanotubes de carbone, le graphène, les mélanges argent/graphène, et les mélanges cuivre/graphène.
13. Dispositif caractérisé en ce qu'il comprend une couche (4) en un matériau fluoré dont une surface est revêtue d'une couche (5) en (oxo)hydroxyde d'un élément choisi dans le groupe des métaux al calino -terreux, ou du groupe II ou du groupe III du tableau périodique des éléments, ou d'une terre rare, et d'une couche (6) en un matériau choisi parmi un matériau métallique ou conducteur d'électricité ou semi-conducteur, ou isolant, déposée sur la surface de la couche (5) non en contact avec la couche (4).
14. Dispositif selon la revendication 13, caractérisé en ce que l'(oxo)hydroxyde est un (oxo)hydroxyde choisi parmi le béryllium, le magnésium, le calcium, le strontium, l'indium, le baryum, le radium, l'aluminium, le zinc, le scandium, l'yttrium, et les mélanges de ceux-ci.
15. Dispositif selon la revendication 13 ou 14, caractérisé en ce que l'(oxo)hydroxyde est un hydroxyde de magnésium Mg(OH)2 ou un hydroxyde d'aluminium Al(OH)3.
16. Dispositif selon l'une quelconque des revendications 13 à 15, caractérisé en ce que l'épaisseur de la couche (5) est comprise entre 10 nm et 1 μιη, inclus, de préférence entre 10 et 300 nm, inclus, plus préférablement est égale à 50 nm.
17. Dispositif selon l'une quelconque des revendications 13 à 16, caractérisé en ce que la couche (4) en un matériau fluoré est une couche en un polymère fluoré ou en un silane fluoré.
18. Dispositif selon l'une quelconque des revendications 13 à 17, caractérisé en ce que la couche (6) est en un matériau métallique choisi parmi l'argent, le chrome, l'or, le titane, l'aluminium, le platine, le palladium, le cuivre, le nickel, le molybdène, une encre conductrice, en particulier comprenant des nanoparticules métalliques.
19. Dispositif selon l'une quelconque des revendications 13 à 17, caractérisé en ce que la couche (6) est en un matériau conducteur d'électricité choisi parmi le PEDOT/PSS (poly(3,4-éthylènedioxythiophène) (PEDOT) / poIy(styrène sulfonate) de sodium (PSS)), la polyaniline, ΓΙΤΟ (indium-étain-oxyde), PAZO (alliage d'oxyde d'aluminium et de zinc), l'oxyde de tungstène, les nanotubes de carbone, le graphène, les mélanges argent/graphène et les mélanges cuivre/graphène.
20. Dispositif selon l'une quelconque des revendications 14 à 19, caractérisé en ce qu'il s'agît d'un transistor organique.
PCT/IB2013/056584 2012-08-13 2013-08-12 Traitement de surface d'une couche en un materiau fluore pour la rendre hydrophile WO2014027299A2 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US14/421,665 US20150194620A1 (en) 2012-08-13 2013-08-12 Surface Treatment for a Layer Made From a Fluorinated Material to Make it Hydrophilic
EP13779362.6A EP2883255A2 (fr) 2012-08-13 2013-08-12 Traitement de surface d'une couche en un materiau fluore pour la rendre hydrophile
JP2015527051A JP2015525004A (ja) 2012-08-13 2013-08-12 フッ素化材料から作られた層を親水化するための表面処理

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1257781A FR2994395B1 (fr) 2012-08-13 2012-08-13 Traitement de surface d'une couche en un materiau fluore pour la rendre hydrophile
FR1257781 2012-08-13

Publications (2)

Publication Number Publication Date
WO2014027299A2 true WO2014027299A2 (fr) 2014-02-20
WO2014027299A3 WO2014027299A3 (fr) 2014-04-10

Family

ID=47429871

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2013/056584 WO2014027299A2 (fr) 2012-08-13 2013-08-12 Traitement de surface d'une couche en un materiau fluore pour la rendre hydrophile

Country Status (5)

Country Link
US (1) US20150194620A1 (fr)
EP (1) EP2883255A2 (fr)
JP (1) JP2015525004A (fr)
FR (1) FR2994395B1 (fr)
WO (1) WO2014027299A2 (fr)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2919521A1 (fr) 2007-08-01 2009-02-06 Commissariat Energie Atomique Couche d'accroche sur des polymeres fluores

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4007059A (en) * 1975-08-20 1977-02-08 General Motors Corporation Electrochemical cell electrode separator and method of making it and fuel cell containing same
AU6249898A (en) * 1997-04-03 1998-10-22 W.L. Gore & Associates, Inc. Method to improve adhesion of a thin submicron fluoropolymer film on an electronic device
KR101291320B1 (ko) * 2009-03-23 2013-07-30 한국전자통신연구원 유기 박막 트랜지스터 및 그 형성방법

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2919521A1 (fr) 2007-08-01 2009-02-06 Commissariat Energie Atomique Couche d'accroche sur des polymeres fluores

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
J. VERES ET AL.: "Gate Insulators in Organic Field-Effect Transistors", CHEM. MATER., vol. 16, 2004, pages 4543 - 4555

Also Published As

Publication number Publication date
FR2994395A1 (fr) 2014-02-14
WO2014027299A3 (fr) 2014-04-10
JP2015525004A (ja) 2015-08-27
US20150194620A1 (en) 2015-07-09
FR2994395B1 (fr) 2015-09-25
EP2883255A2 (fr) 2015-06-17

Similar Documents

Publication Publication Date Title
US8274084B2 (en) Method and structure for establishing contacts in thin film transistor devices
TWI286386B (en) Transistor, wiring board, display and electronic equipment
US7306969B2 (en) Methods to minimize contact resistance
TW200836352A (en) Metal-insulator-metal (MIM) devices and their methods of fabrication
WO2012141224A1 (fr) Procédé pour fabriquer élément semi-conducteur organique, et élément semi-conducteur organique
EP2022816B1 (fr) Couche d'accroche sur des polymères fluorés
RU2475893C2 (ru) Электронное переключающее устройство и способ изготовления этого устройства
FR2971369A1 (fr) Procede de fabrication d'une monocouche autoassemblee d'injection
US20140183516A1 (en) Electronic device
US9058981B2 (en) Dielectric composition for thin-film transistors
US8691621B1 (en) Thiol bond formation concurrent with silver nanoparticle ink thermal treatment
CA2675083C (fr) Dispositif et procede mettant en oeuvre une zone de trou d'insertion a contre-depouille
JP2009239033A (ja) 有機薄膜トランジスタまたは/および有機薄膜トランジスタアレイの製造方法と有機薄膜トランジスタ、有機薄膜トランジスタアレイ
JP5810650B2 (ja) 有機半導体素子の製造方法および有機半導体素子
KR20140027391A (ko) 재료의 배향 결정화 방법
EP2883255A2 (fr) Traitement de surface d'une couche en un materiau fluore pour la rendre hydrophile
KR20160033262A (ko) 절연체 표면 개질용 조성물, 절연체의 표면 개질 방법, 절연체, 및 박막 트랜지스터
EP2756531B1 (fr) Transistor organique a effet de champ
JP5630364B2 (ja) 有機半導体素子の製造方法および有機半導体素子
US20140070197A1 (en) Method for forming patterned organic electrode
WO2014080575A1 (fr) Procédé de traitement d'une surface métallique avec du thiol
WO2014128607A1 (fr) Dispositif electronique comprenant une couche en un materiau semi-conducteur et son procede de fabrication
WO2016055951A1 (fr) Procede de fabrication d'un dispositif electronique, en particulier a base de nanotubes de carbone
EP3552254A1 (fr) Procede de formation d'un empilement et empilement
FR2989827A1 (fr) Dispositif semi-conducteur comportant un transistor a effet de champ et un condensateur de protection dudit transistor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13779362

Country of ref document: EP

Kind code of ref document: A2

ENP Entry into the national phase

Ref document number: 2015527051

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14421665

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2013779362

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013779362

Country of ref document: EP