WO2014027129A1 - Producción de bioplásticos - Google Patents
Producción de bioplásticos Download PDFInfo
- Publication number
- WO2014027129A1 WO2014027129A1 PCT/ES2013/070595 ES2013070595W WO2014027129A1 WO 2014027129 A1 WO2014027129 A1 WO 2014027129A1 ES 2013070595 W ES2013070595 W ES 2013070595W WO 2014027129 A1 WO2014027129 A1 WO 2014027129A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- acid
- microorganism
- hydroxy acids
- culture
- cect
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/14—Hydrolases (3)
- C12N9/16—Hydrolases (3) acting on ester bonds (3.1)
- C12N9/18—Carboxylic ester hydrolases (3.1.1)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N1/00—Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
- C12N1/20—Bacteria; Culture media therefor
- C12N1/205—Bacterial isolates
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12P—FERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
- C12P7/00—Preparation of oxygen-containing organic compounds
- C12P7/62—Carboxylic acid esters
- C12P7/625—Polyesters of hydroxy carboxylic acids
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12R—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
- C12R2001/00—Microorganisms ; Processes using microorganisms
- C12R2001/01—Bacteria or Actinomycetales ; using bacteria or Actinomycetales
- C12R2001/38—Pseudomonas
- C12R2001/40—Pseudomonas putida
Definitions
- the present invention relates to the production of plastic polymers and their monomers from cultures of a microorganism in the presence of different carbon sources.
- plastics obtained from renewable sources In recent years there has been a great development of plastics obtained from renewable sources.
- the European Commission in its "Lead Markets Initiative” (Final Evaluation of the Lead Market Initiative, 2011) has identified plastics obtained from renewable sources as one of the most important markets.
- the high price of oil and pollution problems generated by traditional plastics has led to the development of new technologies to produce materials with similar characteristics to petrochemical products, which offer other ways of recovery and recycling to help reduce the impact on the environment ambient.
- PHAs polyhydroxyalkanoates
- lactones certain aliphatic polyesters
- some petroleum-derived polysaccharides and copolymers Shen et al. 2010. Biofuels Bioprod. Bioref, 4, 25-40; Gavrilescu et al. 2005. Biotechnol Adv., 23, 471-499).
- the PHAs constitute a family of polyesters of 3, 4, 5 and 6 hydroxy acids synthesized by different groups of microorganisms that accumulate inside the cell in the form of granules whose number and size varies between different species and serve as carbon reserve compounds and energy (Chen GQ. 2010. Plastics from Bacteria: Natural Functions and applications, GQ Chen Ed., Springer, 17-37). He 30% of soil bacteria have the ability to synthesize PHA (Wu et al., 2000. Acta Polym. Sin. 6, 751-756). Depending on the number of carbon atoms in the monomer unit, the PHAs are classified into short chain PHAs (containing 3-5 carbon atoms) and medium chain PHAs (containing 6-14 carbon atoms).
- the cluster is composed of two genes that code for PHA synthases (phaCl and phaC2), the phaZ gene that codes for a depolymerase responsible for the mobilization of PHA and the phaD gene that encodes a transcriptional regulator.
- phaCl and phaC2 the genes that code for PHA synthases
- phaF and phal that encode fasines.
- the present invention aims to solve from the strategic, economic and technical point of view the production of plastic polymers of microbial origin (polyhydroxyalkanoates) and the monomers that form them (3-hydroxy acids).
- the authors of the present invention have developed a process for the production of plastic polymers of microbial origin (bioplastics) and the monomers that form them.
- the procedure is based on the use of a new microorganism, which turns out to be a super-producer and that, naturally, is capable of: a) metabolizing different carbon sources including aromatic derivatives, b) growing at high cell concentrations, and c) produce a large amount of polyhydroxyalkanoates or 3-hydroxy acids. Both production processes achieve high yields quickly, easily and with a low production cost.
- the invention relates to a microorganism of the species Pseudomonas putida deposited in the Spanish Type Culture Collection (CECT) with accession number CECT 8092.
- the invention also relates to a microorganism of the Pseudomonas putida CECT 8092 species that has a deletion in the fadB and fadA genes and, finally, with a microorganism of the Pseudomonas putida CECT 8092 species, which has a deletion in the fadB and fadA genes, and which contains at least one additional copy of the phaZ gene itself or, expressed in another way, that has a higher gene dose of the phaZ gene itself.
- the invention relates to a biologically pure culture of each of the microorganisms referred to in the previous paragraph.
- the invention relates to a process for obtaining bioplastics comprising the following steps:
- the invention relates to a process for obtaining 3-hydroxy acids comprising the following steps:
- the invention relates to the use of a microorganism of the species Pseudomonas putida deposited in the Spanish Type Culture Collection (CECT) with access number CECT 8092 and that of said microorganism that has a deletion in the fadB genes and fadA, in obtaining biopolymers.
- the invention relates to the use of the deleted anterior microorganism that contains a higher gene dose of the phaZ gene itself in obtaining 3-hydroxy acids.
- the invention relates to a polynucleotide having the nucleotide sequence shown in SEQ ID NO 5.
- the invention relates to the use of the phaZ gene itself to increase the yield in obtaining 3-hydroxy acids by a microorganism of the Pseudomonas putida CECT 8092 species and by a Pseudomonas putida CECT 8092 microorganism that has a deletion in the fadB and fadA genes.
- the first aspect of the invention relates to a microorganism of the Pseudomonas putida species deposited in the Spanish Type Culture Collection (CECT) with accession number CECT 8092.
- CECT Spanish Type Culture Collection
- the selection of this super-producing strain of Pseudomonas putida was performed using standard procedures (Gómez et al. 1996. Appl. Microbiol. Biotecnol. 45, 785-791) of a sample of soils, plant debris, etc.
- This strain was identified by sequencing the rpoB gene (SEQ ID NO 1) and the 16S subunit of the ribosomal DNA (SEQ ID NO 2) as Pseudomonas putida showing differences against other sequences of this species deposited in the databases consulted.
- the microorganism has been deposited in the Spanish Type Culture Collection as Pseudomonas putida CECT 8092.
- the present strain of Pseudomonas putida is able to metabolize different carbon sources including aromatic derivatives (n-phenylalcanoic acids); of growing at high cell concentrations (DO600nm greater than 250 and densities of 60 g / 1 of biomass) and, finally, to produce a large amount of polyhydroxyalkanoates and 3- hydroxy acids quickly, easily and at a low production cost.
- this strain accumulates more than 50% of its dry weight in the form of polyhydroxyalkanoates, with a conversion yield of the acid used in PHA of 0.5.
- bioplastics means those plastics obtained from natural sources (microbial origin) or renewable (totally or partially), as well as biodegradable plastics, those that can decompose under conditions that occur in nature, by The enzymatic action of microorganisms such as bacteria, fungi and algae.
- the polyhydroxyalkanoates obtained by the microorganisms of the present invention are bioplastics.
- plastics are synthetic materials obtained by phenomena of polymerization or semi-natural multiplication of carbon atoms in the long molecular chains of organic compounds derived from petroleum and other natural substances.
- the invention relates to the microorganism Pseudomonas putida CECT 092 AfadBA.
- This microorganism corresponds to Pseudomonas putida CECT 8092 that has a deletion of the genes fadA (SEQ ID NO 3) and fadB (SEQ ID NO 4), involved in the metabolism of fatty acids. For this reason the strain or microorganism deleted increases the production of polyhydroxyalkanoates (polymers or bioplastics).
- Pseudomonas putida CECT S092AfadBA is between 5 and 32% higher than that obtained by the microorganism or strain parental PhaZ gen
- the invention relates to another new microorganism corresponding to Pseudomonas putida CECT 8092AfadBA that contains a higher gene dose of the phaZ gene itself (SEQ ID NO 5). That is, they contain at least one additional copy of the phaZ gene itself.
- At least one additional copy means, in the context of the present invention, the presence of one or more additional copies; preferably between 1 and 20; more preferably between 5 and 20 additional copies.
- This gene encodes a depolymerase whose expression prevents the formation and intracellular accumulation of polyhydroxyalkanoates, favoring, on the contrary, the release of 3-hydroxy acids to the culture medium (Ren et al.
- the presence of several copies of this gene in the referred microorganism results in an increase in the production yield of 3-hydroxycarboxylic acids.
- the number of additional copies of the phaZ gene itself present in the microorganism is 5 to 20 copies.
- the yield in the conversion of an n-phenylalkylcarboxylic acid into 3 -OH-phenylalkylcarboxylic acid may be greater than 75%.
- the invention in a second aspect relates to a biologically pure culture of each of the new microorganisms described in the present invention.
- biologically pure culture is understood as that culture in which the microorganism of the invention is in a proportion equal to or greater than 95% with respect to the rest of microorganisms present in the culture.
- Biologically pure cultures of the microorganisms of the invention are exemplified in the text of the present application.
- the invention relates to a process for obtaining bioplastics, in particular polyhydroxyalkanoates, comprising the following steps:
- the cultivation of the microorganism in stage a) implies the growth of the producing microorganism, either Pseudomonas putida CECT 8092 or Pseudomonas Futida CECT S092AfadBA, preferably in flasks or bioreactors until reaching a polyhydroxyalkanoate content that is preferably between 20% and 70 % dry weight.
- the microorganism is grown in culture media in which at least one source of carbon that includes a carboxylic acid, and at least one source of nitrogen is present.
- the carbon source includes a carboxylic acid.
- the carboxylic acid has an alkyl chain, which can have between 3 and 13 preferably between 5 and 11 carbon atoms, be linear or branched, and can have at least one hydrogen substituted by an OH group, an ester group or an amino group .
- the chain may also contain thiol groups, halogen groups and have one or more unsaturations.
- Said chain may also have aryl substituents (arylcarboxylic acid), in particular at the n-position of the chain (n-arylcarboxylic acid), that is, at the position opposite the carboxyl group.
- aryl group is understood as an aromatic group having between 6 and 18, more preferably 6 or 10 carbon atoms, comprising 1, 2 or 3 aromatic nuclei linked through carbon-carbon bond or fused together .
- aryl groups include phenyl, naphthyl, diphenyl, indenyl, etc.
- the carboxylic acid has a linear chain.
- the carboxylic acid is an arylcarboxylic acid, preferably n-arylcarboxylic acid; or a fatty acid.
- the carbon source is a carboxylic acid of between 4 and 14 carbon atoms, more preferably between 6 and 12 carbon atoms; or an aryl carboxylic acid, preferably n-arylcarboxylic acid, of between 10 and 32 carbon atoms, more preferably n-phenyl carboxylic acid.
- the carbon source additionally includes glucose, lactose, glycerol, molasses, mannose, fructose, acetate or combinations thereof; in particular glucose or glycerin or combinations thereof.
- the carbon source used is a mixture of glycerin and a carboxylic acid, preferably straight chain, containing between 6 and 12 carbon atoms.
- Glycerin is used in an amount between 0.1% (w / v) and 10% (w / v), preferably between 2% (w / v) and 6% (w / v) and more preferably between 3% (p / v) and 5% (p / v).
- the carbon source used is a mixture of glucose and a carboxylic acid, preferably straight chain, containing between 6 and 12 carbon atoms.
- the glucose is used in an amount between 0.1% (w / v) and 10% (w / v), preferably between 2% (w / v) and 6% (w / v) and more preferably between 3% (p / v) and 5% (p / v).
- the carboxylic acid used as a carbon source is selected from hexanoic acid, heptanoic acid, octanoic acid, nonanoic acid and decanoic acid. These acids are used in a concentration between 5 mM and 500 mM, preferably between 10 and 400 mM, and more preferably between 20 and 250 mM.
- the n-phenylcarboxylic acid used as a carbon source is selected from 6-phenylhexanoic acid, 7-phenylheptanoic acid and 8-phenyloctanoic acid. These acids are used in a concentration between 5 mM and 200 mM, preferably between 10 and 150 mM, and more preferably between 15 and 100 mM.
- the microorganism is initially fed using glycerin and / or glucose as a carbon source, to subsequently use a carboxylic acid as a carbon source.
- the carbon source is in excess in relation to mass with the nitrogen source present in the same medium.
- the nitrogen source can be selected from the group consisting of yeast extract, peptone, corn steep liquor, urea, sodium glutamate and inorganic nitrogen sources, such as different ammonium salts (chloride, nitrate, sulfate) ), and combinations of them.
- the culture of the microorganisms is carried out for 2 to 5 days at a temperature between 18 ° C and 37 ° C, preferably between 25 ° C and 35 ° C, and more preferably between 28 ° C and 32 ° C, with constant agitation.
- the microbial or cellular biomass is separated from the culture broth. This separation is carried out by any of the procedures commonly used for this purpose, such as filtration, microfiltration, centrifugation, or combinations thereof, among others.
- the biomass is dried in an oven or oven, preferably at about 50-70 ° C and for 48-72 hours, or a separate lyophilization of the biomass is performed.
- the third stage of the process comprises the extraction of the bioplastic from the cellular or microbial biomass obtained in the previous stage of the process.
- said extraction is performed by a solid-liquid extraction process.
- the solvent any water-immiscible organic solvent can be used, for example, n-hexane, toluene, acetone, ethyl acetate or dimethoxymethane, among others.
- W097 / 15681 and W093 / 11656 describe the extraction with acetone of poly-3-hydroxyoctanoate from Pseudomonas oleovorans; WO2005 / 052175 describes a process for the extraction with different types of solvents of PHB and PHBV (polyhydroxybutyrate co-hydroxivalerate).
- EP 1781721 describes the extraction of the PHB-co-PHH copolymer by the use of acetone, methyl ethyl ketones, or mixtures between them.
- the polymers extracted in step c) can be subjected, according to their degree of purity and subsequent use, to a purification process (step d).
- This last stage of the process is generally based on the precipitation of the impurities included in the product resulting from step c) and can be carried out by the addition of a precipitating agent in which the polyhydrixyalkanoates are not soluble as, by example, water or different types of alcohols, such as methanol, ethanol, isopropanol or n-butanol (WO00 / 68409, WO2005 / 052175); by the addition of hydrogen peroxide and chelating agents (US 5,691,174), or by the addition of ozone (W099 / 51760).
- a precipitating agent in which the polyhydrixyalkanoates are not soluble as, by example, water or different types of alcohols, such as methanol, ethanol, isopropanol or n-butanol (WO00 / 68409, WO2005 / 052175)
- WO00 / 68409, WO2005 / 052175 WO00 / 6
- the polyhydroxyalkanoates (bioplastics) obtained by the process of the invention are copolymers formed from carboxylic acid derivatives used as a carbon source.
- the carbon source is octanoic acid
- copolymers formed by 3-hydroxyoctanoate (80-90%) and 3-hydroxyhexanoate (20-10%) will be obtained.
- Such polyhydroxyalkanoates (bioplastic) can serve as raw material for the production of different products such as, for example, packaging, packaging films, biomedical devices, personal hygiene products, bags, etc. (Philip et al. 2007. J. Chem. Technol. Biotechnol, 82, 233; Mikova et al. 2006. Chem. Listy, 100, 1075; Chen et al. 2005. Biomaterials, 67, 592; Chen GQ. 2009. Chem. Soc. Rev., 38, 2434-2446). Procedure for obtaining 3-hydroxy acids
- the invention relates to a process for obtaining 3-hydroxy acids comprising the following steps:
- the number of additional copies of the phaZ gene itself present in the deleted microorganism is 1 to 20 copies, more preferably 5 to 20 copies.
- the culture of the microorganism is carried out in a manner similar to that of step a) of the procedure for obtaining bioplastics described above.
- the carbon source in this process necessarily includes an arylcarboxylic acid, preferably an n-arylcarboxylic acid, preferably having between 10 and 32 carbon atoms, more preferably n-phenyl carboxylic acid.
- the source of nitrogen is the same as that used in the bioplastic process described above.
- the culture of the microorganisms is carried out for 2 to 5 days at a temperature between 18 ° C and 37 ° C, preferably between 25 ° C and 35 ° C, and more preferably between 28 ° C and 32 ° C, with constant agitation.
- the microbial or cellular biomass is separated from the culture broth in step b by any of the procedures commonly used for this purpose, such as, for example, filtration, microfiltration, centrifugation or combinations of The same, among others.
- the culture broth obtained in step b is subjected to an extraction to recover the 3-hydroxy acids (step c).
- this Extraction consists of an extraction of said culture broth (aqueous phase) with an organic solvent. Suitable organic solvents for this extraction are, among others, diethyl ether, methyl tert-butyl ether, methylene chloride and ethyl acetate.
- the 3-hydroxy acids obtained in the process described in the present invention are those derived from the alkylcarboxylic acid used as a carbon source.
- the carbon source is phenylhexanoic acid
- the product obtained will be 3- hydroxyhenanoic acid.
- the 3-hydroxy acids obtained can serve as precursors in the pharmaceutical industry for the synthesis of compounds such as antibiotics, vitamins, or pheromones (Chen GQ 2009, Chem. Soc. Rev. 38, 2434-2446).
- the invention relates to the use in obtaining biopolymers, in particular polyhydroxyalkanoates, of microorganisms:
- the invention relates to the use in obtaining 3- hydroxy acids of the microorganism:
- At least one additional copy of the phaZ gene itself is understood by the expression "more than one copy of the phaZ 'gene itself that the microorganism contains a higher gene dose of the phaZ gene itself, that is, of the sequence polynucleotide ID SEQ NO 5.
- Said copy (s) s) additional (s) of the phaZ gene itself are introduced into the aforementioned microorganism following standard methods (Sambrook J. and Russell DW 2001., Cold Spring Harbor laboratory press, Cold Spring Harbor, NY), as illustrated in the example 5.
- the number of additional copies of the phaZ gene itself is preferably 1 to 20, more preferably 5 to 20 additional copies.
- the invention relates to a polynucleotide having the nucleotide sequence shown in SEQ ID NO 5.
- This polynucleotide corresponds to the phaZ gene of the microorganism of the invention Pseudomonas putida CECT 8092.
- the invention relates to the use of a polynucleotide having the sequence of nucleotides shown in SEQ ID NO 5 to increase the yield in obtaining 3-hydroxy acids by a microorganism of the species Pseudomonas putida CECT 8092 that has a deletion in the fadB and fadA genes.
- Transconjugants were analyzed by PCR using their genomic DNA. For this, specific oligonucleotides corresponding to the outer regions of the fragments cloned in the pJQ200KS vector were used.
- P. putida CECT 8092 and P. putida CECT 8092 AfadBA were grown in two flasks in a defined minimum medium (Mart ⁇ nez-Blanco H. 1990, J. Biol. Chem. 265, 7084-7090), whose composition in gl _1 is: KP0 4 H 2 , 13.6; (NH 4 ) 2 S0 4 , 2.0; MgSO 4 7H 2 0, 0.25; FeS0 4 7H 2 0, 0.0005.
- a mixture consisting of octanoic acid at a final concentration of 30 mM and 1% glucose (w / v) was used as the carbon source. 500 mL of medium was inoculated with a cell suspension of the corresponding strain.
- the flasks were incubated at 30 ° C and 250 rpm for the required time.
- the bacteria were collected by centrifugation and, after removing the supernatant, frozen at -80 ° C. Subsequently, the bacteria were lyophilized and this material was used to extract PHAs as described in example 1.
- the results obtained in the different media are shown in Table 1.
- the final amount of PHA obtained by the P. putida CECT 8092 AfadBA strain was 53.1% of its dry weight, that is, approximately 5% higher than that obtained. with the parental strain.
- P. putida CECT 8092 and P. putida CECT 8092 AfadBA were grown in two flasks in a defined minimum medium described in example 3.
- a mixture consisting of different n-phenylalcanoic acids (6-phenylhexanoic acid, 7- phenylheptanoic acid and 7) was used as carbon sources 8-phenyloctanoic acid) at a final concentration of 15 mM and 1% glucose (w / v).
- 500 mL of medium was inoculated with a cell suspension of the corresponding strain. The flasks were incubated at 30 ° C and 250 rpm for the required time.
- the bacteria When the culture reached the stationary phase, the bacteria were collected by centrifugation and, after removing the supernatant, they were frozen at -80 ° C. Subsequently, the bacteria were lyophilized and this material was used to extract PHAs following the procedure described in Example 1. The results obtained in the different media are shown in Table 1 as% of the dry weight of the microorganism.
- the P. putida CECT 8092 phaZ gene was amplified by PCR (SEQ ID NO 5) and cloned into plasmid pBBRl-MCS3 (Tc R ).
- the construct was transferred to E. coli DH10B by transformation and it was verified by sequencing the phaZ gene that the plasmid had been incorporated. Subsequently, the plasmid was transferred to P. putida strain CECT 8092 AfadBA by conjugation. To verify the success of the construction, plasmid was extracted from the transconjugants and this was used to transform E. coli DH10B. The plasmid was then extracted from the E. coli strain and the phaZ gene was amplified by PCR. Sequencing of the fragment obtained confirmed that the Pseudomonas strain contained the desired construct.
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Zoology (AREA)
- Wood Science & Technology (AREA)
- Genetics & Genomics (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Biotechnology (AREA)
- General Engineering & Computer Science (AREA)
- Microbiology (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- Biomedical Technology (AREA)
- Medicinal Chemistry (AREA)
- Virology (AREA)
- Tropical Medicine & Parasitology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Molecular Biology (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
Abstract
Se ha aislado e identificado microorganismo de la especie Pseudomonas putidaque resulta ser súper-productor y que, de manera natural, es capaz: a) de metabolizar diferentes fuentes de carbono incluyendo derivados aromáticos, b) crecer a elevadas concentraciones celulares, y c) producir una gran cantidad de polihidroxialcanoatos o 3- hidroxiácidos.
Description
PRODUCCIÓN DE BIOPLÁSTICOS DESCRIPCIÓN CAMPO DE LA INVENCIÓN
La presente invención se refiere a la producción de polímeros plásticos y sus monómeros a partir de cultivos de un microrganismo en presencia de diferentes fuentes de carbono.
ANTECEDENTES DE LA INVENCIÓN
En los últimos años se ha producido un gran desarrollo de los plásticos obtenidos a partir de fuentes renovables. La Comisión Europea en su "Lead Markets Iniciative" (Final Evaluation of the Lead Market Iniciative, 2011) ha identificado a los plásticos obtenidos a partir de fuentes renovables como uno de los mercados de mayor importancia. El elevado precio del petróleo y los problemas de polución que generan los plásticos tradicionales ha provocado que se desarrollen nuevas tecnologías para producir materiales con características similares a los productos petroquímicos, que ofrezcan otras vías de recuperación y reciclado para ayudar a reducir el impacto sobre el medio ambiente.
Entre estos materiales se incluyen los polihidroxialcanoatos (PHAs), las polilactonas, ciertos poliésteres alifáticos, algunos polisacáridos y copolímeros derivados del petróleo (Shen et al. 2010. Biofuels Bioprod. Bioref, 4, 25-40; Gavrilescu et al. 2005. Biotechnol. Adv., 23, 471-499).
Los PHAs constituyen una familia de poliésteres de 3, 4, 5 y 6 hidroxiácidos sintetizados por diferentes grupos de microorganismos que se acumulan en el interior celular en forma de gránulos cuyo número y tamaño varía entre diferentes especies y sirven como compuestos de reserva de carbono y energía (Chen GQ. 2010. Plastics from Bacteria: Natural Functions and applications, GQ Chen Ed., Springer, 17-37). El
30% de las bacterias del suelo tienen la capacidad de sintetizar PHA (Wu et al., 2000. Acta Polym. Sin. 6, 751-756). Dependiendo del número de átomos de carbono de la unidad monomérica los PHAs se clasifican en PHAs de cadena corta (contienen de 3-5 átomos de carbono) y PHAs de cadena media (contienen 6-14 átomos de carbono).
La biosíntesis de polihidroxialcanoatos depende principalmente del microorganismo y de la fuente de carbono utilizada, diferentes rutas metabólicas están relacionadas con la formación de moléculas de hidroxiacil-CoA, principal precursor de los PHA. Por otra parte, sus propiedades físico-químicas varían considerablemente dependiendo de su composición monomérica y su estructura química. Hasta el momento se han descrito más de 150 monómeros diferentes producidos por bacterias a partir de diferentes fuentes de carbono (Steinbüchel y Valentín. 1995. FEMS Microbiol. Lett. 128, 219- 228), lo que da una idea de la gran diversidad de PHAs que pueden ser sintetizados y el amplio rango de propiedades físicas y mecánicas que pueden llegar a tener. Además, éstos bioplásticos son biodegradables y biocompatibles, lo que lo hacen muy adecuados para aplicaciones médicas y los 3-hidroxiácidos obtenidos de su despolimerización son compuestos con el elevado potencial biotecnológico.
Se han descrito las rutas metabólicas para la síntesis de PHA en diversos grupos de bacterias (Cupriavidus necátor, Rhodosporillum rubrum, Pseudomonads). Uno de los grupos más estudiados son las especies del género Pseudomonas, las cuales son capaces de acumular PHA a partir de ácidos grasos obtenidos a partir de las rutas de β- oxidación y síntesis de novo (Rhem. 2010. Nature 8, 578-592; Koller et al. 2010. Food Technoí. Biotechnol. 48, 255 -269) Los genes implicados en la biosíntesis de PHAmcl han sido caracterizados en varias especies de Pseudomonas y en todas ellas los genes están agrupados en el cluster pha, el cual está muy conservado entre cepas. El cluster está compuesto por dos genes que codifican para PHA sintasas (phaCl y phaC2), el gen phaZ que codifica para una despolimerasa responsable de la movilización de PHA y el gen phaD que codifica un regulador transcripcional. Además existen otros dos genes en el cluster, phaF y phal que codifican las fasinas.
A pesar de la gran variabilidad de PHA que pueden ser sintetizados por los microorganismos, tan solo unos pocos se producen a escala industrial para su comercialización debido a los elevados costes de producción. La producción de PHA involucra pasos de fermentación, separación de la biomasa del caldo de cultivo, secado de la biomasa y la extracción, purificación y secado del PHA (Queiroz et al. 2009. Polymer Reviews. 49„65-78; Shen et al. 2010. Biofuels, Bioprod. Bioref. 4, 25-40.). El aislamiento de cepas superproductoras de PHA, el aumento de la tasa de conversión de sustrato en PHA, el diseño de un buen proceso de fermentación o la optimización de los procesos de extracción y purificación son factores claves para conseguir un proceso rentable a nivel industrial para la producción de PHA
SUMARIO DE LA INVENCIÓN
La presente invención tiene por objetivo resolver desde el punto de vista estratégico, económico y técnico la producción de polímeros plásticos de origen microbiano (polihidroxialcanoatos) y los monómeros que los forman (3-hidroxiácidos).
Los autores de la presente invención han desarrollado un procedimiento para la producción de polímeros plásticos de origen microbiano (bioplásticos) y de los monómeros que los forman. El procedimiento se basa en la utilización de un nuevo microorganismo, que resulta ser súper-productor y que, de manera natural, es capaz: a) de metabolizar diferentes fuentes de carbono incluyendo derivados aromáticos, b) crecer a elevadas concentraciones celulares, y c) producir una gran cantidad de polihidroxialcanoatos o 3-hidroxiácidos. Ambos procesos de producción alcanzan elevados rendimientos de forma rápida, sencilla y con un bajo coste de producción.
En un primer aspecto la invención se relaciona con un microorganismo de la especie Pseudomonas putida depositado en la Colección Española de Cultivos Tipo (CECT) con número de acceso CECT 8092. Dentro de dicho primer aspecto, la invención también se relaciona con un microorganismo de la especie Pseudomonas putida CECT 8092 que presenta una deleción en los genes fadB y fadA y, finalmente, con un microorganismo de la especie Pseudomonas putida CECT 8092, que presenta una
deleción en los genes fadB y fadA, y que contiene al menos una copia adicional del propio gen phaZ o, expresado de otra manera, que presenta una mayor dosis génica del propio gen phaZ. En un segundo aspecto la invención se relaciona con un cultivo biológicamente puro de cada uno de los microorganismos referidos en el párrafo anterior.
En un tercer aspecto la invención se relaciona con un procedimiento para la obtención de bioplásticos que comprende las siguientes etapas:
a. cultivo de un microorganismo seleccionado entre Pseudomonas putida
CECT 8092 y Pseudomonas putida CECT &092AfadBA, en presencia de al menos una fuente de carbono que incluye un ácido carboxílico, y de al menos una fuente de nitrógeno,
b. separación de la biomasa microbiana del caldo de cultivo,
c. extracción del bioplástico de la biomasa microbiana obtenida en la etapa anterior y, opcionalmente,
d. purificación del bioplástico
En un cuarto aspecto la invención se relaciona con un procedimiento para la obtención de 3-hidroxiácidos que comprende las siguientes etapas:
a. cultivo de Pseudomonas putida CECT &092AfadBA que contiene al menos una copia adicional del propio gen phaZ, en presencia de al menos una fuente de carbono que incluye un ácido arilcarboxílico, y de al menos una fuente de nitrógeno,
b. separación de la biomasa microbiana del caldo de cultivo, y
c. extracción de los 3-hidroxiácidos del caldo de cultivo obtenido en la etapa anterior.
En un aspecto adicional, la invención se relaciona con el uso de un microorganismo de la especie Pseudomonas putida depositado en la Colección Española de Cultivos Tipo (CECT) con número de acceso CECT 8092 y el de dicho microorganismo que presenta una deleción en los genes fadB y fadA, en la obtención de biopolímeros.
En otro aspecto adicional, la invención se relaciona con el uso del microorganismo anterior delecionado que contiene una mayor dosis génica del propio gen phaZ en la obtención de 3-hidroxiácidos.
En otro aspecto adicional, la invención se relaciona con un polinucleótido que presenta la secuencia de nucleótidos mostrada en la SEQ ID NO 5.
Finalmente, en un último aspecto, la invención se relaciona con el uso del propio gen phaZ para aumentar el rendimiento en la obtención de 3-hidroxiácidos por un microorganismo de la especie Pseudomonas putida CECT 8092 y por un microorganismo Pseudomonas putida CECT 8092 que presenta una deleción en los genes fadB y fadA.
DESCRIPCIÓN DETALLADA DE LA INVENCIÓN
Pseudomonas putida CECT 8092
El primer aspecto de la invención se relaciona con un microorganismo de la especie Pseudomonas putida depositado en la Colección Española de Cultivos Tipo (CECT) con número de acceso CECT 8092. La selección de esta cepa súper-productora de Pseudomonas putida se realizó aplicando procedimientos estándares (Gómez et al. 1996. Appl. Microbiol. Biotecnol. 45, 785-791) de una muestra de suelos, restos vegetales, etc. Dicha cepa se identificó mediante la secuenciación del gen rpoB (SEQ ID NO 1) y de la subunidad 16S del ADN ribosómico (SEQ ID NO 2) como Pseudomonas putida mostrando diferencias frente a otras secuencias de esta especie depositadas en las bases de datos consultadas. El microorganismo se ha depositado en la Colección Española de Cultivos Tipo como Pseudomonas putida CECT 8092. La presente cepa de Pseudomonas putida es capaz de metabolizar diferentes fuentes de carbono incluyendo derivados aromáticos (ácidos n-fenilalcanoicos); de crecer a elevadas concentraciones celulares (DO600nm superiores a 250 y densidades de 60 g/1
de biomasa) y, finalmente, de producir una gran cantidad de polihidroxialcanoatos y 3- hidroxiácidos de forma rápida, sencilla y a un bajo coste de producción. Como se demuestra en los ejemplos incluidos en el texto de la presente solicitud (ejemplo 1 y tabla 1 en el ejemplo 4), esta cepa llega a acumular más de un 50% de su peso seco en forma de polihidroxialcanoatos, con un rendimiento de conversión del ácido utilizado en PHA de 0,5.
En la presente invención se entiende por "bioplásticos" aquellos plásticos obtenidos a partir de fuentes naturales (origen microbiano) o renovables (total o parcialmente), así como los plásticos biodegradables, aquellos que pueden descomponerse en condiciones que se dan en la naturaleza, mediante la acción enzimática de microorganismos como bacterias, hongos y algas. En particular, los polihidroxialcanoatos obtenidos mediante los microorganismos de la presente invención son bioplásticos. De manera general, los "plásticos" son materiales sintéticos obtenidos mediante fenómenos de polimerización o multiplicación semi-natural de los átomos de carbono en las largas cadenas moleculares de compuestos orgánicos derivados del petróleo y otras sustancias naturales.
Pseudomonas putida CECT &092AfadBA
Dentro del primer aspecto, y en una realización particular, la invención se relaciona con el microorganismo Pseudomonas putida CECT 092 AfadBA. Este microorganismo corresponde a Pseudomonas putida CECT 8092 que presenta una deleción de los genes fadA (SEQ ID NO 3) y fadB (SEQ ID NO 4), implicados en el metabolismo de los ácidos grasos. Por este motivo la cepa o microorganismo delecionado ve aumentada la producción de polihidroxialcanoatos (polímeros o bioplásticos). Así, según se muestra en los ejemplos de la presente solicitud (ver tabla 1), la producción de polihidroxialcanoatos (PHA) producidos por el microorganismo Pseudomonas putida CECT S092AfadBA es entre un 5 y un 32% superior a la obtenida por el microorganismo o cepa parental. Gen phaZ
También dentro del primer aspecto, y en otra realización particular, la invención se relaciona con otro nuevo microorganismo que corresponde a Pseudomonas putida
CECT 8092AfadBA que contiene una mayor dosis génica del propio gen phaZ (SEQ ID NO 5). Esto es, que contienen al menos una copia adicional del propio gen phaZ. Por "al menos una copia adicional" se entiende, en el contexto de la presente invención, la presencia de una o más copias adicionales; preferiblemente entre 1 y 20; más preferiblemente entre 5 y 20 copias adicionales. Este gen codifica una despolimerasa cuya expresión evita la formación y acumulación intracelular de polihidroxialcanoatos, favoreciendo, por el contrario, la liberación de 3-hidroxiácidos al medio de cultivo (Ren et al. 2005, Biomacromolecules 6:2290-2298; Prieto et al. 2007, Ramos JL y Filloux A (eds) Pseudomonas, 5. Springer, Amsterdam, 397-428; Sandoval et al. 2005, Appl. Microbiol. Biotechnol 67, 97-105). La presencia de varias copias de este gen en el microorganismo referido resulta en un aumento en el rendimiento de la producción de ácidos 3-hidroxicarboxílicos. En una realización preferida de la invención el número de copias adicionales del propio gen phaZ presente en el microorganismo es de 5 a 20 copias Así, según muestran los ejemplos de la presente solicitud, el rendimiento en la conversión de un ácido n-fenilalquilcarboxílico en 3-OH-fenilalquilcarboxílico puede ser superior al 75%.
En un segundo aspecto la invención se relaciona con un cultivo biológicamente puro de cada uno de los nuevos microorganismos descritos en la presente invención. En la presente invención se entiende por "cultivo biológicamente puro", aquel cultivo en el que el microorganismo de la invención se encuentra en una proporción igual o superior al 95% respecto al resto de microorganismos presentes en el cultivo. En el texto de la presente solicitud se ejemplifican cultivos biológicamente puros de los microorganismos de la invención.
Procedimiento para la obtención de bioplásticos
En un tercer aspecto, la invención se relaciona con un procedimiento para la obtención de bioplásticos, en particular polihidroxialcanoatos, que comprende las siguientes etapas:
a. cultivo de un microorganismo seleccionado entre Pseudomonas putida CECT
8092 y Pseudomonas Putida CECT &092AfadBA en presencia de al menos
una fuente de carbono que incluye un ácido carboxílico, y de al menos una fuente de nitrógeno,
b. separación de la biomasa microbiana del caldo de cultivo,
c. extracción del bioplástico de la biomasa microbiana obtenida en la etapa anterior y, opcionalmente,
d. purificación del bioplástico
El cultivo del microorganismo en la etapa a) implica el crecimiento del microorganismo productor, bien Pseudomonas putida CECT 8092 o bien Pseudomonas Futida CECT S092AfadBA, preferentemente en matraces o biorreactores hasta alcanzar un contenido en polihidroxialcanoatos que preferiblemente se encuentra entre el 20% y el 70% del peso seco.
El microorganismo se crece en medios de cultivo en los que está presente al menos una fuente de carbono que incluye un ácido carboxílico, y al menos una fuente de nitrógeno. La fuente de carbono incluye un ácido carboxílico. El ácido carboxílico presenta una cadena alquílica, la cual puede presentar entre 3 y 13 preferiblemente entre 5 y 11 átomos de carbono, ser lineal o ramificada, y puede presentar al menos un hidrógeno sustituido por un grupo OH, un grupo éster o un grupo amino. La cadena también puede contener grupos tiol, grupos halógeno y presentar una o más insaturaciones. Dicha cadena también puede presentar sustituyentes arilo (ácido arilcarboxílico), en particular en la posición n de la cadena (ácido n-arilcarboxílico), esto es, en la posición opuesta al grupo carboxilo. En la presente invención se entiende por grupo "arilo" un grupo aromático que presenta entre 6 y 18, más preferiblemente 6 ó 10 átomos de carbono, comprendiendo 1, 2 ó 3 núcleos aromáticos unidos a través de enlace carbono-carbono o fusionados entre sí. Ejemplos ilustrativos de grupos arilo incluyen fenilo, naftilo, difenilo, indenilo, etc. Preferentemente, el ácido carboxílico presenta una cadena lineal. En una realización particular, el ácido carboxílico es un ácido arilcarboxílico, preferiblemente n- arilcarboxílico; o un ácido graso.
En una realización preferida, la fuente de carbono es un ácido carboxílico de entre 4 y 14 átomos de carbono, más preferiblemente de entre 6 y 12 átomos de carbono; o un ácido aril-carboxílico, preferiblemente n-arilcarboxílico, de entre 10 y 32 átomos de carbono, más preferiblemente n-fenil-carboxílico. En una realización preferida, la fuente de carbono incluye adicionalmente glucosa, lactosa, glicerol, melazas, mañosa, fructosa, acetato o combinaciones de los mismos; en particular glucosa o glicerina o combinaciones de las mismas.
En otra realización preferida de la invención, la fuente de carbono utilizada es una mezcla de glicerina y un ácido carboxílico, preferiblemente de cadena lineal, conteniendo entre 6 y 12 átomos de carbono. La glicerina se emplea en una cantidad entre el 0, 1% (p/v) y el 10% (p/v), preferiblemente entre el 2% (p/v) y el 6% (p/v) y más preferiblemente entre el 3% (p/v) y el 5% (p/v). En otra realización preferida de la invención, la fuente de carbono utilizada es una mezcla de glucosa y un ácido carboxílico, preferiblemente de cadena lineal, conteniendo entre 6 y 12 átomos de carbono. La glucosa se emplea en una cantidad entre el 0, 1% (p/v) y el 10% (p/v), preferiblemente entre el 2% (p/v) y el 6% (p/v) y más preferiblemente entre el 3% (p/v) y el 5% (p/v). En otra realización de la invención, el ácido carboxílico utilizado como fuente de carbono se selecciona entre ácido hexanoico, ácido heptanoico, ácido octanoico, ácido nonanoico y ácido decanoico. Estos ácidos se emplean en una concentración entre 5 mM y 500 mM, preferentemente entre 10 y 400 mM, y más preferentemente entre 20 y 250 mM.
En otra realización de la invención, el ácido n-fenilcarboxílico utilizado como fuente de carbono se selecciona entre ácido 6-fenilhexanoico, ácido 7-fenilheptanoico y ácido 8- feniloctanoico. Estos ácidos se emplean en una concentración entre 5 mM y 200 mM, preferentemente entre 10 y 150 mM, y más preferentemente entre 15 y 100 mM.
En una realización particular, el microorganismo se alimenta inicialmente empleando glicerina y/o glucosa como fuente de carbono, para posteriormente emplear un ácido carboxílico como con fuente de carbono.
Normalmente, la fuente de carbono se encuentra en exceso en relación de masa con la fuente de nitrógeno presente en el mismo medio. La fuente de nitrógeno puede seleccionarse del grupo formado por extracto de levadura, peptona, corn steep liquor (líquido de macerado de maíz), urea, glutamato sódico y fuentes de nitrógeno inorgánico, como por ejemplo diferentes sales de amonio (cloruro, nitrato, sulfato), y combinaciones de ellos. En una realización de la invención, el cultivo de los microorganismos se realiza durante 2 a 5 días a una temperatura entre 18°C y 37°C, preferiblemente entre 25°C y 35°C, y más preferiblemente entre 28°C y 32°C, con agitación constante.
Una vez realizado el cultivo de los microorganismos, preferiblemente hasta alcanzar la máxima cantidad intracelular de polihidroxialcanoatos, la biomasa microbiana o celular se separa del caldo de cultivo. Esta separación se realiza mediante alguno de los procedimientos habitualmente utilizados para este fin como, por ejemplo, filtración, microfiltración, centrifugación, o combinaciones de los mismos, entre otros. En una realización preferente, tras realizar la etapa de separación de la biomasa microbiana del caldo de cultivo (etapa b), y antes de realizar la extracción del bioplástico de la biomasa (etapa c), la biomasa se seca en estufa u horno, preferentemente a unos 50-70 °C y durante 48-72 horas, o se realiza una liofilización de la biomasa separada.
La tercera etapa del procedimiento (etapa c) comprende la extracción del bioplástico de la biomasa celular o microbiana obtenida en la etapa anterior del procedimiento. En una realización particular, dicha extracción se realiza mediante un proceso de extracción sólido-líquido. Como disolvente puede emplearse cualquier disolvente orgánico inmiscible con el agua como, por ejemplo, n-hexano, tolueno, acetona, acetato de etilo o dimetoximetano, entre otros. Ejemplos conocidos de extracción de polihidroxialcanoatos de una biomasa con disolventes orgánicos se describen en documentos como US 4,310,684 y US 4,705,604, en particular sobre la extracción de PHB (poli-hidroxibutirato) con disolventes clorados; US 4,968,611 sobre el uso de
dioles, butirolactona o ésteres de ácidos di o tricarboxilicos para la extracción de PHB y copolímeros de éste; US 5,213,976 describe la extracción de PHB con cloruro de metileno seguido de precipitación con agua. Los documentos W097/15681 y W093/11656 describen la extracción con acetona de poli-3-hidroxioctanoato a partir de Pseudomonas oleovorans; WO2005/052175 describe un proceso para la extracción con diferentes tipos de disolventes de PHB y PHBV (poli-hidroxibutirato-co- hidroxivalerato). Finalmente, EP 1781721 describe la extracción del copolímero PHB- co-PHH mediante el uso de acetona, metil-etil cetonas, o mezclas entre ambos. Los polímeros extraídos en la etapa c) pueden someterse, en función de su grado de pureza y utilización posterior, a un proceso de purificación (etapa d). Esta última etapa del procedimiento, que es opcional, se basa generalmente en la precipitación de las impurezas incluidas en el producto resultante de la etapa c) y puede realizarse mediante la adición de un agente precipitante en el que los polihidrixialcanoatos no son solubles como, por ejemplo, agua o diferentes tipos de alcoholes, como metanol, etanol, isopropanol o n-butanol (WO00/68409, WO2005/052175); mediante la adición de peróxido de hidrógeno y agentes quelantes (US 5,691,174), o mediante la adición de ozono (W099/51760). Los polihidroxialcanoatos (bioplásticos) obtenidos por el procedimiento de la invención son copolímeros formados a partir de derivados del ácido carboxílico empleado como fuente de carbono. Así, si la fuente de carbono es ácido octanoico, se obtendrán copolímeros formados por 3-hidroxioctanoato (80-90%) y 3-hidroxihexanoato (20- 10%). Dichos polihidroxialcanoatos (bioplástico) pueden servir como materia prima para la producción de diferentes productos como, por ejemplo, envases, films para embalaje, dispositivos biomédicos, productos para higiene personal, bolsas, etc. (Philip et al. 2007. J. Chem. Technol. Biotechnol, 82, 233; Mikova et al. 2006. Chem. Listy, 100, 1075; Chen et al. 2005. Biomaterials, 67, 592; Chen GQ. 2009. Chem. Soc. Rev., 38, 2434-2446).
Procedimiento para la obtención de 3-hidroxiácidos
En un cuarto aspecto, la invención se relaciona con un procedimiento para la obtención de 3-hidroxiácidos que comprende las siguientes etapas:
a. cultivo de Pseudomonas putida CECT &092AfadBA que contiene al menos una copia adicional del propio gen phaZ en presencia de al menos una fuente de carbono que incluye un ácido arilcarboxílico, y de al menos una fuente de nitrógeno,
b. separación de la biomasa microbiana del caldo de cultivo, y
c. extracción de los 3-hidroxiácidos del caldo de cultivo de la etapa anterior.
En una realización preferida de la invención, el número de copias adicionales del propio gen phaZ presente en el microorganismo delecionado es de 1 a 20 copias, más preferiblemente de 5 a 20 copias. El cultivo del microorganismo se realiza de manera similar al de la etapa a) del procedimiento para la obtención de bioplásticos descrito más arriba. Sin embargo, la fuente de carbono en este procedimiento incluye necesariamente un ácido arilcarboxílico, preferiblemente un ácido n-arilcarboxílico, que presenta preferiblemente de entre 10 y 32 átomos de carbono, más preferiblemente n-fenil-carboxílico. La fuente de nitrógeno es la misma que la empleada en el procedimiento para la obtención de bioplásticos descrito más arriba.
En una realización de la invención, el cultivo de los microorganismos se realiza durante 2 a 5 días a una temperatura entre 18°C y 37°C, preferiblemente entre 25°C y 35°C, y más preferiblemente entre 28°C y 32°C, con agitación constante.
Preferiblemente una vez alcanzada la máxima producción de 3-hidroxiácidos, la biomasa microbiana o celular se separa del caldo de cultivo en la etapa b mediante alguno de los procedimientos habitualmente utilizados para este fin como, por ejemplo, filtración, microfiltración, centrifugación o combinaciones de los mismos, entre otros. A continuación, el caldo de cultivo obtenido en la etapa b se somete a una extracción para recuperar los 3-hidroxiácidos (etapa c). En una realización particular, esta
extracción consiste en una extracción de dicho caldo de cultivo (fase acuosa) con un disolvente orgánico. Disolventes orgánicos adecuados para esta extracción son, entre otros, dietil-éter, metil-terc-butil-éter, cloruro de metileno y acetato de etilo. Los 3-hidroxiácidos obtenidos en el procedimiento descrito en la presente invención son aquellos derivados del ácido alquilcarboxíloco empleado como fuente de carbono. Así, si la fuente de carbono es ácido fenilhexanoico, el producto obtenido será el ácido 3- hidroxihenanoico. Los 3-hidroxiácidos obtenidos pueden servir como precursores en la industria farmacéutica para la síntesis de compuestos como antibióticos, vitaminas, o feromonas (Chen G.Q. 2009, Chem. Soc. Rev. 38, 2434-2446).
En un aspecto adicional, la invención se relaciona con el uso en la obtención de biopolímeros, en particular de polihidroxialcanoatos, de los microorganismos:
- Pseudomonas putida CECT 8092 y
- Pseudomonas putida CECT 8092 que presenta una deleción en los genes fadB y fadA.
En otro aspecto adicional, la invención se relaciona con el uso en la obtención de 3- hidroxiácidos del microorganismo:
- Pseudomonas putida CECT 8092 que presenta una deleción en los genes fadB y fadA que contiene
al menos una copia adicional del propio gen phaZ. En la presente solicitud se entiende por la expresión "más de una copia del propio gen phaZ' que el microorganismo contiene una mayor dosis génica del propio gen phaZ, esto es, del polinucleótido de secuencia ID SEQ NO 5. Dicha(s) copia(s) adicional(es) del propio gen phaZ se introducen en los referidos microorganismo siguiendo métodos estándar (Sambrook J. y Russell D. W. 2001., Cold Spring Harbor laboratory press, Cold Spring Harbor, NY), tal y como se ilustra en el ejemplo 5 de la solicitud. El número de copias adicionales del propio gen phaZ es preferentemente de 1 a 20, más preferentemente de 5 a 20 copias adicionales.
En otro aspecto adicional, la invención se relaciona con un polinucleótido que presenta
la secuencia de nucleótidos mostrada en la SEQ ID NO 5. Este polinucleótido corresponde al gen phaZ del microorganismo de la invención Pseudomonas putida CECT 8092. Finalmente, en un último aspecto, la invención se relaciona con el uso de un polinucleótido que presenta la secuencia de nucleótidos mostrada en la SEQ ID NO 5 para aumentar el rendimiento en la obtención de 3-hidroxiácidos por un microorganismo de la especie Pseudomonas putida CECT 8092 que presenta una deleción en los genes fadB y fadA.
EJEMPLOS 1. Producción de PHA
La síntesis de PHA en biorreactores de 30 litros con la cepa P. putida CECT 8092 se realizó en medio M9 suplementado con una solución de elementos traza (Abril et al. 1989, J. Bacteriol. 171, 6782-6790) con glicerina (30 g/L) como fuente de carbono inicial. El cultivo se creció hasta una DOóOOnm de 20 y a partir de ese momento se inició una fase de alimentación con ácido octanoico. Después de 60 h de cultivo se obtuvieron 60 g/L de biomasa con un contenido de PHA superior al 50% de su peso seco.
Una vez separada la biomasa celular del caldo de cultivo mediante microfiltración, ésta se secó a 65°C durante 3-5 días. La biomasa seca se sometió a un proceso de extracción con acetato de etilo. La mezcla se mantuvo en el Shoxlet a 35-40°C durante 20 horas. Una vez finalizada la extracción se evaporó el disolvente y el PHA obtenido (copolímero formado por aproximadamente 90% de 3-hidroxioctanoico y 10% de 3- hidroxihexanóico) se purificó con isopropanol. La cantidad final de PHA purificado obtenido fue de 625 g, lo que supone un rendimiento de conversión de ácido octanoico en PHA de 47,60%.
2. Construcción de la cepa P putida CECT8092 AfadBA
Una vez obtenida la secuencia de los genes fadA (SEQ ID NO 3) y fadB (SEQ ID NO 4) de la cepa P. putida CECT 8092, se llevó a cabo el diseño de la construcción que iba a ser utilizada para la deleción. Para ello se amplificaron por PCR dos fragmentos situados en los extremos de los genes fadB A. Uno de ellos -de 665 pb- se localiza en el extremo 5' del gen fadB y el otro -de 667 pb- en el extremo 3 ' del gen fadA. Estos dos fragmentos se ligaron, y la construcción resultante se clonó en el plásmido pGEM- Teasy, desde aquí se liberaron los fragmentos y se clonaron en el pJQ200KS (plásmido que contiene el marcador de resistencia a gentamicina y el gen sacB que codifica una sacarasa). Esa construcción se transfirió a E. coli y posteriormente a P. putida CECT 8092 mediante conjugación.
Para conseguir un mutante delecionado mediante una doble recombinación, en primer lugar se hizo una selección en medio LB suplementado con ampicilina y gentamicina. Posteriormente, los transformantes seleccionados en este medio se crecieron en medio LB suplementado con ampicilina y sacarosa al 10%.
El análisis de los transconjugantes se realizó mediante PCR utilizando el DNA genómico de los mismos. Para ello se utilizaron oligonucleótidos específicos correspondientes a las regiones exteriores de los fragmentos clonados en el vector pJQ200KS.
3. Producción de PHA a partir de P putida CECT8092 AfadBA
P. putida CECT 8092 y P. putida CECT 8092 AfadBA se crecieron en sendos matraces en medio mínimo definido (Martínez-Blanco H. 1990, J. Biol. Chem. 265, 7084-7090), cuya composición en g l_1es: KP04H2, 13,6; (NH4)2S04, 2,0; MgS04 7H20, 0,25; FeS04 7H20, 0,0005. Se utilizó como fuente de carbono una mezcla compuesta por ácido octanoico a una concentración final de 30 mM y glucosa al 1% (p/v). 500 mL de medio se inocularon con una suspensión celular de la cepa correspondiente. Los matraces se incubaron a 30°C y 250 rpm durante el tiempo requerido. Cuando el cultivo alcanzó la fase estacionaria, las bacterias se recogieron por centrifugación y, tras eliminar el
sobrenadante, se congelaron a -80 °C. Posteriormente, las bacterias se liofilizaron y este material fue el utilizado para extraer PHAs como se describe en el ejemplo 1.
Los resultados obtenidos en los distintos medios se muestran en la tabla 1. La cantidad final de PHA obtenido por la cepa P. putida CECT 8092 AfadBA fue de 53, 1% de su peso seco, es decir, aproximadamente un 5% superior al obtenido con la cepa parental.
4. Producción de PHA conteniendo residuos aromáticos
P. putida CECT 8092 y P. putida CECT 8092 AfadBA se crecieron en sendos matraces en medio mínimo definido descrito en ejemplo 3. Se utilizaron como fuentes de carbono una mezcla compuesta por diferentes ácidos n-fenilalcanoicos (6-fenilhexanoico, 7- fenilheptanoico y 8-feniloctanoico) a una concentración final de 15 mM y glucosa al 1% (p/v). 500 mL de medio se inocularon con una suspensión celular de la cepa correspondiente. Los matraces se incubaron a 30°C y 250rpm durante el tiempo requerido. Cuando el cultivo alcanzó la fase estacionaria, las bacterias se recogieron por centrifugación y, tras eliminar el sobrenadante, se congelaron a -80 °C. Posteriormente, las bacterias se liofilizaron y este material fue el utilizado para extraer PHAs siguiendo el procedimiento descrito en el ejemplo 1. Los resultados obtenidos en los distintos medios se muestran en la tabla 1 como % del peso seco del microorganismo.
Tabla 1. Producción de PHA en las cepas en medio definido suplementado con distintos ácidos grasos
MM + glucosa 1%
+ Octanoico ό-φ-Hexanoico 7-cj)-Heptanoico 8-(j)-Octanoico 30mM 15 mM 15 mM 15 mM
P. putida
47,60% 17,3% 36,2% 40,6%
CECT 8092
P. putida
CECT 8092 53, 1% 49,7% 55,9% 61,3%
AfadBA
Dependiendo del precursor utilizado, la cantidad final de PHA producido por la cepa P. putida CECT 8092 AfadBA fue entre un 19% y un 32% superior al obtenido con la cepa parental. 5. Producción de 3-hidroxiácidos
El gen phaZ de P. putida CECT 8092 se amplificó mediante PCR (SEQ ID NO 5) y se clonó en el plásmido pBBRl-MCS3 (TcR).
La construcción se transfirió a E. coli DH10B mediante transformación y se comprobó mediante secuenciación del gen phaZ que el plásmido había sido incorporado. Posteriormente el plásmido fue transferido a la cepa P. putida CECT 8092 AfadBA mediante conjugación. Para comprobar el éxito de la construcción, se extrajo plásmido de los transconjugantes y éste se utilizó para transformar E. coli DH10B. A continuación se extrajo el plásmido de la cepa de E. coli y se amplificó mediante PCR el gen phaZ. La secuenciación del fragmento obtenido confirmó que la cepa de Pseudomonas contenía la construcción deseada.
Para analizar la producción de 3-hidroxiácidos por la cepa P. putida CECT 8092 AfadBA conteniendo al menos una copia adicional del propio gen phaZ, ésta se cultivó en medio descrito en ejemplo 3 , pero empleando glicerina en vez de glucosa y ácido 6- fenilhexanoico en lugar de ácido octanoico. Los matraces se incubaron a 30°C y 250 rpm durante 72 h. Las células se recogieron por centrifugación y el caldo de cultivo se filtró a través de un filtro de 0,2 μιη. La obtención de los 3-OH-monómeros se realizó mediante extracción líquido/líquido con disolventes orgánicos, como cloruro de metileno, dietil éter o acetato de etilo (Sandoval et al. 2005, Appl. Microbiol. Biotechnol, 67, 97-105). La fase orgánica (extracto de acetato de etilo) obtenida se secó con sulfato sódico anhidro y una alícuota se analizó mediante HPLC/Masas y por RMN, confirmándose que los compuestos contenidos en la misma consistían en una mezcla formada por ácido 3-hidroxi-6-fenilhexanoico (más de un 90%), trazas de ácidos libres y de ácido 3-hidroxi-4-fenilbutanoico, así como ésteres de ambos ácidos. El resto del extracto obtenido se evaporó hasta sequedad bajo corriente de nitrógeno y luego se secó en un liofilizador durante 12 horas.
La separación y caracterización de los componentes de este extracto, se llevó a cabo mediante HPLC semipreparativo (columna Zorbax RX-C8, 9.4 X 250 mm, 5 um, gradiente 5- 100% ACN/Agua con 0.1 % de TFA, flujo 3.6 ml/min, detección en UV a 210 y 340 nm). El análisis de la fracción mayoritaria del extracto (más de un 90% del total) mediante RMN CDC13 confirmó la estructura correspondiente al ácido 3-hidroxi- fenilhexanoico. El rendimiento total de conversión a partir del ácido 6-fenilhexanoico fue del 75%.
Claims
1. Un microorganismo de la especie Pseudomonas putida depositado en la Colección Española de Cultivos Tipo (CECT) con número de acceso CECT 8092.
2. Un microorganismo según la reivindicación 1 que presenta una deleción en los genes fadB y fadA.
3. Un microorganismo según la reivindicación 2 que contiene al menos una copia adicional del propio gen phaZ
4. Cultivo biológicamente puro de un microorganismo según cualquiera de las reivindicaciones 1 a 3.
5. Procedimiento para la obtención de bioplásticos que comprende las siguientes etapas:
a. cultivo de un microorganismo según cualquiera de las reivindicaciones 1 ó 2 en presencia de al menos una fuente de carbono que incluye un ácido carboxílico, y de al menos una fuente de nitrógeno,
b. separación de la biomasa microbiana del caldo de cultivo,
c. extracción del bioplástico de la biomasa microbiana obtenida en la etapa anterior y, opcionalmente,
d. purificación del bioplástico.
6. Procedimiento según la reivindicación 5 en el que el ácido carboxílico presenta una cadena lineal.
7. Procedimiento según cualquiera de las reivindicaciones 5 y 6 en el que el ácido carboxílico es un ácido arilcarboxílico, preferiblemente n-arilcarboxílco o un ácido graso.
8. Procedimiento según cualquiera de las reivindicaciones 5 a 7 en el que el ácido carboxílico sin sustitución aromática tiene entre 4 y 14, preferiblemente entre 6 y 12 átomos de carbono, y el ácido arilcarboxílico tiene entre 10 y 32 átomos de carbono y preferiblemente es n-fenilcarboxílico.
9. Procedimiento según cualquiera de las reivindicaciones 5 a 8 en que la fuente de carbono también incluye glucosa, lactosa, glicerol, melazas, mañosa, fructosa, acetato, o combinaciones de los mismos.
10. Procedimiento según cualquiera de las reivindicaciones 5 a 9 en donde los polímeros obtenidos contienen 3-hidroxiácidos con cadenas alifáticas de longitud de entre 3 y 13, preferiblemente entre 5 y 11 átomos de carbono.
11. Procedimiento según cualquiera de las reivindicaciones 5 a 9 en el que los polímeros obtenidos contienen al menos un residuo aromático, preferiblemente fenilo.
12. Procedimiento para la obtención de 3-hidroxiácidos que comprende las siguientes etapas:
a. cultivo de un microorganismo según la reivindicación 3 en presencia de al menos una fuente de carbono que incluye un ácido arilcarboxílico, y de al menos una fuente de nitrógeno,
b. separación de la biomasa microbiana del caldo de cultivo, y
c. extracción de los 3-hidroxiácidos del caldo de cultivo de la etapa anterior.
13. Procedimiento según la reivindicación 12 en el que el ácido arilcarboxílico presenta una cadena alquílica lineal.
14. Procedimiento según la reivindicación 13 en la que el ácido arilcarboxílico es un ácido n-arilcarboxílico.
15. Procedimiento según la reivindicación 14 en el que el ácido n-arilcarboxílico tiene entre 10 y 32 átomos de carbono, preferiblemente es un n-fenilcarboxílico.
16. Procedimiento según cualquiera de las reivindicaciones 12 a 15 en el que la fuente de carbono también incluye glucosa, lactosa, glicerol, melazas, mañosa, fructosa, acetato o combinaciones de los mismos.
17. Procedimiento según cualquiera de las reivindicaciones 12 a 16 en el que los hidroxiácidos obtenidos contienen al menos un residuo aromático, preferiblemente fenilo, y una cadena alifática de longitud entre 3 y 10, preferiblemente entre 4 y 8 átomos de carbono.
18. Uso de un microorganismo según cualquiera de las reivindicaciones 1 ó 2 en la obtención de biopolí meros.
19. Uso de un microorganismo según la reivindicación 3 en la obtención de 3- hidroxiácidos.
20. Polinucleótido que presenta la secuencia de nucleótidos mostrada en la SEQ ID NO: 5.
21. Uso del polinucleótido según la reivindicación 20 para aumentar el rendimiento en la obtención de 3 -hidroxiácidos por un microorganismo según la reivindicación 2.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP13829939.1A EP2886643A4 (en) | 2012-08-14 | 2013-08-13 | PREPARATION OF BIO-PLASTICS |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
ES201231305A ES2448823B1 (es) | 2012-08-14 | 2012-08-14 | Producción de bioplásticos |
ESP201231305 | 2012-08-14 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014027129A1 true WO2014027129A1 (es) | 2014-02-20 |
Family
ID=50101265
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/ES2013/070595 WO2014027129A1 (es) | 2012-08-14 | 2013-08-13 | Producción de bioplásticos |
Country Status (3)
Country | Link |
---|---|
EP (1) | EP2886643A4 (es) |
ES (1) | ES2448823B1 (es) |
WO (1) | WO2014027129A1 (es) |
Citations (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4310684A (en) | 1979-01-22 | 1982-01-12 | Solvay & Cie. | Process for separating poly-β-hydroxybutyrates from a biomass |
US4705604A (en) | 1984-07-06 | 1987-11-10 | Solvay & Cie. (Societe Anonyme) | Process for extracting poly-beta-hydroxybutyrates by means of a solvent from an aqueous suspension of microorganisms |
US4968611A (en) | 1988-07-07 | 1990-11-06 | Petrochemie Danubia Gesellschaft M.B.H. | Extracting agents for poly-D(-)-3-hydroxybutyric acid |
US5213976A (en) | 1990-10-05 | 1993-05-25 | Pcd Polymere Gesellschaft M.B.H. | Process for obtaining a polyhydroxyalkanoate from the cell material of a microogranism |
WO1993011656A1 (fr) | 1991-11-29 | 1993-06-10 | Firmenich S.A. | PROCEDE POUR L'OBTENTION D'ACIDE POLY-β-HYDROXY-OCTANOIQUE |
WO1997015681A1 (en) | 1995-10-26 | 1997-05-01 | Metabolix, Inc. | Methods for isolating polyhydroxyalkanoates from plants |
US5691174A (en) | 1993-04-14 | 1997-11-25 | Zeneca Limited | Production of plastics materials from microorganisms |
ES2125184A1 (es) * | 1997-02-20 | 1999-02-16 | Antibioticos Sa | Procedimiento de obtencion de polimeros plasticos de origen natural que contienen en su estructura un anillo aromatico. |
WO1999051760A1 (en) | 1998-04-08 | 1999-10-14 | Metabolix, Inc. | Methods for separation and purification of biopolymers |
WO2000068409A1 (en) | 1999-05-12 | 2000-11-16 | Metabolix, Inc. | Methods for purifying polyhydroxyalkanoates |
WO2005052175A2 (en) | 2003-11-28 | 2005-06-09 | Phb Industrial S.A. | Process for recovering polyhydroxialkanoates ('phas') from cellular biomass |
EP1781721A1 (en) | 2004-06-29 | 2007-05-09 | The Procter and Gamble Company | Improved process for the solvent-based extraction of polyhydroxyalkanoates from biomass |
WO2012038572A1 (es) * | 2010-09-21 | 2012-03-29 | Consejo Superior De Investigaciones Científicas (Csic) | Síntesis de polihidroxialcanoatos (pha) con grupos tioesteres en la cadena lateral |
-
2012
- 2012-08-14 ES ES201231305A patent/ES2448823B1/es not_active Expired - Fee Related
-
2013
- 2013-08-13 WO PCT/ES2013/070595 patent/WO2014027129A1/es active Application Filing
- 2013-08-13 EP EP13829939.1A patent/EP2886643A4/en not_active Withdrawn
Patent Citations (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4310684A (en) | 1979-01-22 | 1982-01-12 | Solvay & Cie. | Process for separating poly-β-hydroxybutyrates from a biomass |
US4705604A (en) | 1984-07-06 | 1987-11-10 | Solvay & Cie. (Societe Anonyme) | Process for extracting poly-beta-hydroxybutyrates by means of a solvent from an aqueous suspension of microorganisms |
US4968611A (en) | 1988-07-07 | 1990-11-06 | Petrochemie Danubia Gesellschaft M.B.H. | Extracting agents for poly-D(-)-3-hydroxybutyric acid |
US5213976A (en) | 1990-10-05 | 1993-05-25 | Pcd Polymere Gesellschaft M.B.H. | Process for obtaining a polyhydroxyalkanoate from the cell material of a microogranism |
WO1993011656A1 (fr) | 1991-11-29 | 1993-06-10 | Firmenich S.A. | PROCEDE POUR L'OBTENTION D'ACIDE POLY-β-HYDROXY-OCTANOIQUE |
US5691174A (en) | 1993-04-14 | 1997-11-25 | Zeneca Limited | Production of plastics materials from microorganisms |
WO1997015681A1 (en) | 1995-10-26 | 1997-05-01 | Metabolix, Inc. | Methods for isolating polyhydroxyalkanoates from plants |
ES2125184A1 (es) * | 1997-02-20 | 1999-02-16 | Antibioticos Sa | Procedimiento de obtencion de polimeros plasticos de origen natural que contienen en su estructura un anillo aromatico. |
WO1999051760A1 (en) | 1998-04-08 | 1999-10-14 | Metabolix, Inc. | Methods for separation and purification of biopolymers |
WO2000068409A1 (en) | 1999-05-12 | 2000-11-16 | Metabolix, Inc. | Methods for purifying polyhydroxyalkanoates |
WO2005052175A2 (en) | 2003-11-28 | 2005-06-09 | Phb Industrial S.A. | Process for recovering polyhydroxialkanoates ('phas') from cellular biomass |
EP1781721A1 (en) | 2004-06-29 | 2007-05-09 | The Procter and Gamble Company | Improved process for the solvent-based extraction of polyhydroxyalkanoates from biomass |
WO2012038572A1 (es) * | 2010-09-21 | 2012-03-29 | Consejo Superior De Investigaciones Científicas (Csic) | Síntesis de polihidroxialcanoatos (pha) con grupos tioesteres en la cadena lateral |
Non-Patent Citations (25)
Title |
---|
"Lead Markets Initiative", FINAL EVALUATION OF THE LEAD MARKET INITIATIVE, 2011 |
ABRIL ET AL., J. BACTERIOL., vol. 171, 1989, pages 6782 - 6790 |
CHEN ET AL., BIOMATERIALS, vol. 67, 2005, pages 592 |
CHEN G.Q., CHEM. SOC. REV., vol. 38, 2009, pages 2434 - 2446 |
CHEN GQ, CHEM. SOC. REV., vol. 38, 2009, pages 2434 - 2446 |
CHEN GQ.: "Plastics from Bacteria: Natural Functions and applications", 2010, SPRINGER, pages: 17 - 37 |
GAVRILESCU ET AL., BIOTECHNOL. ADV., vol. 23, 2005, pages 471 - 499 |
GOMEZ ET AL., APPL. MICROBIOL. BIOTECNOL., vol. 45, 1996, pages 785 - 791 |
KOLLER ET AL., FOOD TECHNOL. BIOTECHNOL., vol. 48, 2010, pages 255 - 269 |
MARTINEZ-BLANCO H., J. BIOL. CHEM., vol. 265, 1990, pages 7084 - 7090 |
MIKOVA ET AL., CHEM. LISTY, vol. 100, 2006, pages 1075 |
OF EUGENIO ET AL.: "Biochemical Evidence That phaZ Gene Encodes a Specific Intracellular Medium Chain Length Polyhydroxyalkanoate Depolymerase in Pseudomonas putida KT2442.", THE JOURNAL OF BIOLOGICAL CHEMISTRY, vol. 282, no. 7, 2007, pages 4951 - 4962, XP055197143 * |
OUYANG SP ET AL.: "Production of Polyhydroxyalkanoates with High 3-Hydroxydodecanoate Monomer Content by fadB and fadA Knockout Mutant of Pseudomonas putida KT2442.", BIOMACROMOLECULES, vol. 8, 2007, pages 2504 - 2511, XP055019220 * |
PHILIP ET AL., J. CHEM. TECHNOL. BIOTECHNOL., vol. 82, 2007, pages 233 |
PRIETO ET AL.: "Pseudomonas", vol. 5, 2007, SPRINGER, pages: 397 - 428 |
QUEIROZ ET AL., POLYMER REVIEWS., vol. 49, 2009, pages 65 - 78 |
REN ET AL., BIOMACROMOLECULES, vol. 6, 2005, pages 2290 - 2298 |
RHEM., NATURE, vol. 8, 2010, pages 578 - 592 |
SANDOVAL ET AL., APPL. MICROBIOL. BIOTECHNOL, vol. 67, 2005, pages 97 - 105 |
See also references of EP2886643A4 * |
SHEN ET AL., BIOFUELS BIOPROD. BIOREF., vol. 4, 2010, pages 25 - 40 |
SHEN ET AL., BIOFUELS, BIOPROD. BIOREF., vol. 4, 2010, pages 25 - 40 |
STEINBUCHEL; VALENTIN, FEMS MICROBIOL. LETT., vol. 128, 1995, pages 219 - 228 |
WANG HH ET AL.: "Production and characterization of homopolymer polyhydroxyheptanoate (P3HHp) by a fadBA knockout mutant Pseudomonas putida KTOY06 derived from P. putida KT2442", PROCESS BIOCHEMISTRY, vol. 44, 2009, pages 106 - 111, XP025860168 * |
WU ET AL., ACTA POLYM. SIN., vol. 6, 2000, pages 751 - 756 |
Also Published As
Publication number | Publication date |
---|---|
EP2886643A4 (en) | 2016-03-16 |
ES2448823A1 (es) | 2014-03-17 |
ES2448823B1 (es) | 2014-10-13 |
EP2886643A1 (en) | 2015-06-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Fu et al. | Development of Halomonas TD01 as a host for open production of chemicals | |
Moorkoth et al. | Production and characterization of poly (3-hydroxy butyrate-co-3 hydroxyvalerate)(PHBV) by a novel halotolerant mangrove isolate | |
Muhammadi et al. | Bacterial polyhydroxyalkanoates-eco-friendly next generation plastic: production, biocompatibility, biodegradation, physical properties and applications | |
Cho et al. | Polyhydroxyalkanoates (PHAs) degradation by the newly isolated marine Bacillus sp. JY14 | |
Thakor et al. | Biosynthesis of medium chain length poly (3-hydroxyalkanoates)(mcl-PHAs) by Comamonas testosteroni during cultivation on vegetable oils | |
Bera et al. | Microbial synthesis of polyhydroxyalkanoate using seaweed-derived crude levulinic acid as co-nutrient | |
Mohapatra et al. | Structural and thermal characterization of PHAs produced by Lysinibacillus sp. through submerged fermentation process | |
Mohandas et al. | Biosynthesis and characterization of polyhydroxyalkanoate from marine Bacillus cereus MCCB 281 utilizing glycerol as carbon source | |
Salgaonkar et al. | Biosynthesis of poly (3-hydroxybutyrate-co-3-hydroxyvalerate) by Halogeometricum borinquense strain E3 | |
Shen et al. | Production and characterization of homopolymer poly (3-hydroxyvalerate)(PHV) accumulated by wild type and recombinant Aeromonas hydrophila strain 4AK4 | |
JP5696036B2 (ja) | 微生物の培養方法、及び微生物による物質の製造方法 | |
Mayeli et al. | Production of polyhydroxybutyrate by Bacillus axaraqunsis BIPC01 using petrochemical wastewater as carbon source | |
Yamaguchi et al. | Production of poly (3-hydroyxybutylate) by a novel alginolytic bacterium Hydrogenophaga sp. strain UMI-18 using alginate as a sole carbon source | |
WO2016021604A1 (ja) | 糖質原料からの共重合ポリヒドロキシアルカン酸の製造法 | |
WO2017056442A1 (ja) | Pha合成酵素をコードする遺伝子を有する微生物、およびそれを用いたphaの製造方法 | |
Xin et al. | An experimental study on molecular weight of poly-3-hydroxybutyrate (PHB) accumulated in Methylosinus trichosporium IMV 3011 | |
JP2015006182A (ja) | 中鎖pha/長鎖phaの効率的な高収量製造のための新規な環境分離微生物であるシュードモナス属微生物ipb−b26及びn−128の使用 | |
Lin et al. | Development of polyhydroxybutyrate biosynthesis in Bacillus subtilis with combination of PHB-associated genes derived from Ralstonia eutropha and Bacillus megaterium | |
JP6274494B2 (ja) | 微生物によるポリヒドロキシアルカン酸の生産方法 | |
Tabandeh et al. | Biosynthesis of poly-β-hydroxybutyrate as a biodegradable polymer | |
Akmal et al. | Biosynthesis of copolymer poly (3-hydroxybutyrate-co-3-hydroxyvalerate) from palm oil and n-pentanol in a 10 L bioreactor | |
Peña et al. | Bioprocess design: fermentation strategies for improving the production of alginate and poly-β-hydroxyalkanoates (PHAs) by Azotobacter vinelandii | |
WO2014027129A1 (es) | Producción de bioplásticos | |
EP2963119A1 (en) | Production method for copolymer polyhydroxyalkanoate using genetically modified strain of fatty acid -oxidation pathway | |
Masood et al. | Production and characterization of Tailor-made polyhydroxyalkanoates by Bacillus cereus FC11 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13829939 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
REEP | Request for entry into the european phase |
Ref document number: 2013829939 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2013829939 Country of ref document: EP |