WO2014026733A1 - Vorrichtung zum feststellen von partikelverschmutzungen in fluiden - Google Patents

Vorrichtung zum feststellen von partikelverschmutzungen in fluiden Download PDF

Info

Publication number
WO2014026733A1
WO2014026733A1 PCT/EP2013/002231 EP2013002231W WO2014026733A1 WO 2014026733 A1 WO2014026733 A1 WO 2014026733A1 EP 2013002231 W EP2013002231 W EP 2013002231W WO 2014026733 A1 WO2014026733 A1 WO 2014026733A1
Authority
WO
WIPO (PCT)
Prior art keywords
fluid
sample preparation
section
particle
path
Prior art date
Application number
PCT/EP2013/002231
Other languages
English (en)
French (fr)
Inventor
Jörg KLEBER
Original Assignee
Hydac Filter Systems Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hydac Filter Systems Gmbh filed Critical Hydac Filter Systems Gmbh
Priority to EP13744438.6A priority Critical patent/EP2885620B1/de
Publication of WO2014026733A1 publication Critical patent/WO2014026733A1/de

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume, or surface-area of porous materials
    • G01N15/06Investigating concentration of particle suspensions
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/26Oils; viscous liquids; paints; inks
    • G01N33/28Oils, i.e. hydrocarbon liquids
    • G01N33/2888Lubricating oil characteristics, e.g. deterioration

Definitions

  • the invention relates to a device for detecting foreign substances such as particles in fluids, which in addition to this particle entry further fluid foreign impurities, such as solid, liquid and gaseous foreign substances, may have, with a measuring path, the kelsensor at least one particelsensor for detecting the Particle entry has.
  • fluids in the present inventive sense means hydraulic fluids, in particular in the form of hydraulic oils of any kind. Accumulating hydraulic fluids are each an important element in so-called tribological systems.
  • a tribological system regularly consists of at least two material surfaces, their friction by a
  • this pressure fluids today have a very high standard of quality and in addition to preventing corrosion, minimize the friction between said material surfaces, provided that they exert a relative movement to each other, while avoiding wear on these surfaces
  • abrasion wear unintentionally leads to a particle entry into the pressurized fluid, whose properties described above suffer from it, at least in the long term drove of hydraulic systems to be able to ensure that costly filter systems are used, for filtering off the particulate contamination from the pressurized fluid, limits are set here and, in particular, it can be at a Failure of the respective filter system, for example, by "blocking" of its filter elements and opening bypass devices for bypassing the respective affected by blocking filter element of
  • particle sensors In order to be able to detect a particularly increased particle entry into the pressurized fluid, so-called particle sensors are used, which can determine at least the number of particles in the fluid primarily via optical or electronic (inductive) electronic means, in order to obtain information about the respectively prevailing quality of the sensor To hit pressurized fluids.
  • the electronic analysis is addressed by a Lichtabschattung, which is also referred to in technical language as Extintechnischsvon.
  • This electronic analysis counts the particles via an optical sensor.
  • the light beam of the optical sensor is shaded more or less depending on the size of the particles.
  • the difference between the emitted light power and the photodiode trapped light power, including the absorption in the fluid medium can then be used as a measure of the size of the particle.
  • the known measuring method can be done online, so that the measurement results are available directly on site.
  • the known sensor device uses an inductive particle counter for this purpose, wherein the device has at least one field coil for generating a magnetic field at least partially covering the magnetic field and has a sensor coil which is connected to an electronic evaluation device, by means of the signal induced in the sensor coil detects or detects the presence of a particle in the fluid stream in the frame outlined.
  • test particles also referred to as test dust in technical terms.
  • newer calibration methods define the mean diameter of an area-like circle as the particle size, which encloses the respectively given test particle at the edge.
  • hydraulic fluids such as hydraulic oil is regularly air
  • the air is dissolved in the hydraulic fluid, as air in the form of an oil dispersion or on the fluid forms a kind of surface foam, as it is regularly found in storage tanks of hydraulic systems.
  • the air dissolved in the pressurized fluid under a prescribable operating pressure of the fluid regularly causes no problems such as malfunction of the hydraulic systems.
  • gaseous impurities such as the air bubbles mentioned occurs as a further foreign matter in the fluid regularly water in liquid form, for example as condensate due to cooling of the hydraulic system.
  • water is the most dangerous contaminant in lubrication and hydraulic systems, as these, as both mineral and synthetic oil, have a temperature-dependent water saturation point that, when exceeded, results in free water (emulsified).
  • water in hydraulic systems promotes corrosion of the components and increases the risk of cavitation of hydraulic pumps.
  • the additives present in the fluids in order to counter oil aging, can react with the free water with the result that oxides, acidic sludges and resins form, which altogether contributes to the "sludge" of the overall hydraulic system.
  • the invention has for its object to further improve a device for detecting or measuring particulate contamination in fluids such that a more reliable detection or measurement of particle contamination is possible. This object is achieved by a device having the features of claim 1 in its entirety.
  • a sample preparation section can be connected to the measuring section in a fluid-conducting manner by means of a connection device, and that the sample preparation section has at least one additional Means for Feststel len each other fluid-foreign contamination and / or their at least partial elimination from the fluid, it is possible me, the other foreign matter from the pressurized fluid of the fluidic circuit of the Automathydraul ischen plant subjected to a separate consideration or even from the Pressure fluid to be separated, whereas preferably at the same time, the actual particle sensor further detects the particle contamination in the pressurized fluid or detected without being affected by the other foreign substances in the detection or Messqual ity.
  • the particle sensor can actually determine the respectively prevailing particle contamination so as to be able to make a statement as to whether a replacement of the pressurized fluid against a new medium is necessary and / or if at least Improvements are to be made on parts of the overall hydraulic system in such a way that an increased particulate contamination input, especially due to abrasive wear particles, does not even occur.
  • the finest contaminants of the fluid can be detected, in which the particles have a mean diameter of greater than 14 / vm, preferably greater than 6 y- / m, more preferably greater than 4 ⁇ , cf. this also ISO 4406.
  • Another advantage of the invention is that even then particles are recognized if they have the same density as the fluid.
  • the foreign substances equally affect the quality of the pressurized fluid, in a preferred embodiment of the device according to the invention it can be provided that by means of suitable devices, which interact with the sample preparation path, the foreign substances can be removed at least partially from the fluid circuit, ie from the measuring path, permanently.
  • the respective device consists of: ⁇ a sample container which, while calming the recorded
  • Fluids from the measuring path serves for the elimination of gaseous medium, and / or
  • a filter device which at least partially reduces the introduction of foreign substances into the fluid and at least partially passes filter-permeable media for detecting or excreting the same, and / or
  • a tempering device i. a heater and / or a
  • Cooler wherein the temperature control device for dissolving or separating temperature-dependent media, such as oil aging products, with temperature-dependent solubility is used.
  • the properties of the fluid can be selectively changed in order to counteract possible distortions of the measurement result of the particle sensor.
  • the sample container can be designed as an air separator.
  • air bubbles present in the fluid can rise slowly in the air separator and escape via an air outlet until the air quantity freely present in the fluid is sufficiently small and can no longer falsify the measurement.
  • the particle sensor initially indicates decreasing values which approach a lower limit value, which then corresponds to the particulate contamination actually present in the pressurized fluid as the one foreign substance in the fluid.
  • the measurement results can also be verified in various applications.
  • particulate oil aging products as soiling would also be taken into account in particle counting by means of the particle sensor and lead to a falsification of the measurement result.
  • One of the objects of the device is to preferably eliminate the influences which distort the particle counting, but at least to reduce them or to recognize as a minimum requirement at least the presence of a corruption as such.
  • Particulate oil aging products are, as the name implies, "particles" and therefore do not belong to a falsification, but very liquid, in particular filterable oil aging products, thus causing a falsification of the particle count.This adulteration can not be eliminated on the merits, but it is recognized if the oil purity does not increase or only slightly improves despite the filtration being switched in. If the oil purity improves when the filtration is switched on, but remains "stuck" at a medium level, it can be seen that there is a falsification, but this can regularly be neglected ,
  • Another possibility is also to provide a so-called coalescer in the context of the filter device, which combines small-droplet water fractions into large-droplets, which can then be removed from the pressurized fluid in a conventional manner by a coalescing device.
  • gas fractions can be separated from the pressurized fluid so as to be able to carry out a pure detection of the solid contamination by means of a particle sensor.
  • the sample preparation section is arranged in a secondary line to the measuring section, so that the fluid can preferably circulate through the measuring section and the sample preparation section in series one after the other once or several times in a circle. The connection of the sample preparation section takes place as required.
  • the sample preparation route can be operated as a bypass to the measuring section or as part of a circuit, wherein the fluid is conveyed through the measuring section and the sample preparation section in the circuit by a pump.
  • a fluid sample from a system and to deliver this sample via the particle sensor and the device alternately or in a circle.
  • the permanent circulation of the fluid at the same time prevents sedimentation of the solid particles, in particular in the sample container. It is intended to empty the sample container after completion of the measurements and only then to start a new measuring cycle.
  • a calming section which preferably consists of at least one extended line section, can advantageously be arranged in front of the particle sensor.
  • this calming section can advantageously be arranged in front of the particle sensor.
  • connection device is expediently formed from electromagnetically controllable switching valves, in particular in the form of 3/2-way valves.
  • switching valves With the switching valves, the fluid to be measured can be transferred after the particle sensor in the measurement path in the sample preparation route and be introduced from the sampling route back into the measuring path with a suitable design.
  • these valves can be switched so that they allow a bypass through the sample preparation path parallel to the measuring path.
  • an assembly consisting of a motor-pump unit, the calming section and the particle sensor as part of the measuring path is arranged between two valves of the connection device.
  • the sample preparation section is connected in front of and behind the valves of the connection device in the bypass to the measuring section.
  • a plurality of devices can be arranged in series one after the other in the sample preparation path.
  • the filter device is preferably connected upstream of the sample container in the direction of fluid flow. This makes it possible to modify the fluid to be examined several times in one pass, in particular to filter and to free gas fractions. In this way, the target limit value can be reached faster by reducing constituents of the fluid which falsify the measurement result, and consequently the particle measurement as a whole can be accelerated and carried out precisely.
  • pressure sensors as well as at least one level sensor can be used.
  • biasing the fluid as well as for the removal of fluid foreign impurities spring-loaded check valves may be provided.
  • the spring-loaded check valves can be designed to be adjustable.
  • the pressure sensors make it possible to prevent a damaging overpressure in the lines, in particular in front of the particle sensor, and in the air separator.
  • the circuit of the connection device can be brought about by the filling level sensor, so that the switching valves of the connecting device allow a transfer of fluid from the sample preparation section into the measuring section or, depending on the filling level, a subsequent flow of fluid into the sample preparation section prevent.
  • the air separator can be equipped with non-return valves to allow intake of air or escape of the same during operation.
  • a ventilation filter can be arranged upstream of the suction valve thus formed.
  • the connection device for activating or deactivating the sample preparation path can be actuated by means of a central control device.
  • media detected and / or rejected by the respective device prescribe the supply and removal times of the sample preparation path.
  • the switching valves of the drive device are switched in a noticeable manner due to the level measured in the sample container or due to the pressures detected with the pressure sensors.
  • FIG. 1 shows a device according to the invention for measuring particulate contaminants in fluids according to a first embodiment
  • FIGS. 2 to 6 are fragmentary illustrations of further embodiments of the device for measuring particles in different operating states.
  • a first device 1 for measuring particulate contamination in fluids is shown.
  • the fluids may also contain further fluid-foreign impurities, such as liquid, solid, gaseous and / or filter-permeable and / or temperature-dependent media, which are reliably detected by the device.
  • the device 1 has a measuring section 3 with a particle sensor 5 for measuring the particle entry in the fluid.
  • a sample preparation section 7 is provided, which can be connected to the measuring section 3 in a fluid-conducting manner by means of a connection device 9.
  • the sample preparation path has at least one additional device 1 1 for detecting the further fluid-foreign impurities and / or for their at least partial separation from the fluid.
  • the device 1 1 may consist of a sample container which serves to settle gaseous media while calming the fluid absorbed from the measuring section 3.
  • a (further) device 1 1 consist of a filter device which at least partially reduces the particle entry in the fluid and at least partially allows filter-passing media to be detected.
  • a device 11 may consist of a tempering device, that is to say a heater or a cooler, wherein the tempering device serves to detect temperature-dependent media, such as oil aging products, with temperature-dependent solubility.
  • FIG. 2 shows a first section of a device 13 according to a second embodiment, which has a measuring path 3 in connection with a connection device 9.
  • This section shows the fluid path in normal operation, ie with negligible distortions due to liquid impurities etc. and a limited amount of air bubbles in the fluid.
  • the measuring section 3 has a particle sensor 5 (Contamination Sensor, CS).
  • CS Content Sensor
  • a sample of a fluid to be analyzed is supplied to the measuring section 3.
  • the fluid of the measuring section 3 is connected via a correspondingly switched first 3/2-way valve 1 7 of the connecting device 9
  • a motor-pump unit 19 is provided, which supplies the fluid to a calming section 21.
  • the calming section 21 consists of an extended line section whose length in a preferred embodiment may even be adjustable, as shown in the drawing
  • Pressure sensor 23 is provided to detect whether fluid or air (container empty) is being conveyed; so the pressure breaks in the presence of air. Downstream of the particle sensor 5, an adjustable pressure relief valve or check valve 25 is provided. Further downstream, a second 3/2-way valve 27 of the connection device 9 is arranged, the is also switched accordingly, so that the fluid can get to the fluid outlet port "OUT".
  • Fig. 3 shows an expanded view of the second embodiment.
  • the fluid which has once passed through the measurement section 3, is transferred to the sample preparation route 7 in a special mode deviating from normal operation instead of to the fluid outlet "OUT" through the second 3/2-way valve 27 of the connection device 9
  • Sample conditioning section 7, a secondary line 28 to the measuring section 3 the fluid is supplied to a sample container 29 in the form of an air separator.Since the first 3/2-way valve 1 7 of the connection device 9 in this operating state, the fluid connection "IN "connects to the measuring section 3, no fluid can still flow from the sample container 29 on. Thus, the fluid accumulates in the sample container 29 and calms down, so that any existing air bubbles can rise to the surface.
  • a pressure sensor 31 and a level sensor 33 (also referred to as a level or level sensor) on the sample container 29 are provided for monitoring the sample container 29.
  • the level sensor mentioned is not absolutely necessary, but contributes significantly to the reliability with.
  • a level monitoring could basically be done via the pressure in the container 31 and the pressure after the pump 23. Should the air pressure or the fluid pressure in the sample container 29 become too large, the air or the fluid can escape via a spring-loaded check valve 35 to the fluid outlet "OUT".
  • the first 3/2-way valve 1 7 switches, as shown in Fig. 4, and makes it possible to use the fluid with the aid of the motor Pump unit 19 through the measuring section 3 and the sample preparation section 7 in a circle to promote.
  • the number of particles which is decisive for the pollution, is determined by the particle sensor 5. Any air bubbles that are not already in the calming section 21 have gone into solution, can escape at each flow of the fluid through the sample container 29 from the fluid and are thus deposited. Accordingly, the number of air bubbles in the fluid decreases, and the particle sensor 5 detects a decreasing number of particles over time since fewer and fewer air bubbles are detected.
  • Fig. 5 is a completed hydraulic plan of the device 1 3 is shown according to the second embodiment.
  • This has in the sample preparation section 7 upstream of the sample container 29 a filter device 37 with a switchable by a 3/2-way valve 39 filter 41.
  • the switchable filter device 37 can be determined whether in a fluidrotary filterbare or filter baine, in particular liquid, impurities are included.
  • the filter device 37 is provided for cleaning the device 13.
  • a tempering 43 for the detection of ⁇ lalterungs- products with temperature-dependent solubility, such as Varnish.
  • a solution of the liquid impurities in the fluid can be effected.
  • the tempering device 43 can also be operated as a cooler in order to deposit liquid impurities from the fluid and thus to make them detectable with the particle sensor 5. Consequently, increasing counting rates at the particle sensor 5 are detected with decreasing oil temperature and subjected to a corresponding evaluation by the evaluation electronics.
  • a control device 47 shown in principle in FIG. 5, is provided to control the overall sequence. This is coupled to the pressure sensors 23, 31 and the level sensor 33 and the connection device 9. Furthermore, the particle sensor 5 may be connected to the control device 47.
  • connection device 9 is switched (see Fig. 6) such that the second 3/2-way valve 27 supplies the fluid from the measuring path 3 to the fluid outlet "OUT."
  • the sample container 29 is discharged and prepared for the admission of a new fluid quantity, whereby air can flow in through a check valve 49 and a ventilation filter 51.
  • devices 1, 13 are shown for measuring particulate contaminants in fluids which make it possible to largely eliminate solid, liquid, gaseous, filter-permeable and / or temperature-dependent contaminants which can falsify the measurement result.
  • a reliable measurement of the particles in the fluid can be carried out.
  • the device according to the invention can be integrated into overall hydraulic systems, such as wind power plants, presses, transfer lines etc., so that an online measuring operation by means of the particle sensor 5 is possible.
  • overall hydraulic systems such as wind power plants, presses, transfer lines etc.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Immunology (AREA)
  • Physics & Mathematics (AREA)
  • Dispersion Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Sampling And Sample Adjustment (AREA)

Abstract

Eine Vorrichtung zum Feststellen von Fremdstoffen wie Partikeln in Fluiden, die neben diesem Partikeleintrag weitere fluidfremde Verunreinigungen, wie feste, flüssige und gasförmige Fremdstoffe, aufweisen können, mit einer Mess-Strecke (3), die einen Partikelsensor (5) zum Fest- stellen des Partikeleintrages aufweist, ist dadurch gekennzeichnet, dass eine Probenaufbereitungs-Strecke (7) mittels einer Anschlusseinrichtung (9) fluidführend an die Mess-Strecke (3) anschließbar ist, und dass die Probenaufbereitungs-Strecke (7) zumindest eine zusätzliche Einrichtung (11) zum Feststellen der jeweils weiteren fluidfremden Verunreinigung und/oder zu deren zumindest teilweisem Ausscheiden aus dem Fluid aufweist.

Description

HYDAC FILTER SYSTEMS GMBH
Vorrichtung zum Feststellen von Partikelverschmutzungen in Fluiden
Die Erfindung betrifft eine Vorrichtung zum Feststellen von Fremdstoffen wie Partikeln in Fluiden, die neben diesem Partikeleintrag weitere fluid- fremde Verunreinigungen, wie feste, flüssige und gasförmige Fremdstoffe, aufweisen können, mit einer Mess-Strecke, die zumindest einen Parti- kelsensor zum Feststellen des Partikeleintrages aufweist.
Der Begriff„Fluide" im vorliegenden erfindungsgemäßen Sinne meint Druckflüssigkeiten, insbesondere in Form von Hydraulikölen jedweder Art. Dahingehende Druckflüssigkeiten stellen jeweils ein wichtiges Element in sogenannten tribologischen Systemen dar. Dabei besteht ein tribologisches System regelmäßig aus mindestens zwei Werkstoff-Flächen, deren Reibung durch einen Schmierstoff, hier die Druckflüssigkeit, vermindert wird. Obwohl dahingehende Druckflüssigkeiten heutzutage einen sehr hohen qualitativen Standard aufweisen und neben dem Verhindern von Korrosion, die Reibung zwischen den genannten Werkstoffflächen minimieren, sofern sie eine Relativbewegung zueinander ausüben, und dabei auch den Verschleiß an diesen Flächen vermeiden helfen, kommt es dennoch zumindest langfristig gesehen durch abrasive Verschleißvorgänge ungewollt zu einem Partikeleintrag in das Druckfluid, dessen vorstehend bezeichneten Eigenschaften darunter leiden. Und obwohl, um einen wartungsarmen Betrieb von hydraulischen Anlagen gewährleisten zu können, aufwendige Filtersysteme zum Einsatz kommen, zum Abfiltrieren der Partikelverschmutzung aus dem Druckfluid, sind hier Grenzen gesetzt und insbesondere kann es bei einem Versagen des jeweiligen Filtersystems, beispielsweise durch„Verblocken" seiner Filterelemente und Öffnen von Bypass-Einrichtungen zum Umgehen des jeweiligen durch Verblocken betroffenen Filterelementes des Filtersystems, zu einem vermehrten Partikeleintrag mit festen Verschleißstoffen kommen, die ein Stilllegen der gesamten hydraulischen Anlage nebst Austauschen des Druckfluides (Hydrauliköl) als notwendig erscheinen lassen.
Um einen insbesondere vermehrten Partikeleintrag in das Druckfluid feststellen zu können, dienen sogenannte Partikelsensoren, die vorrangig optisch oder elektronisch (induktiv) zumindest die Anzahl der Partikel im Flu- id über eine geeignete Messwerteelektronik feststellen können, um dergestalt eine Aussage über die jeweils herrschende Qualität des Druckfluids zu treffen.
Unter dem angesprochenen optischen Messverfahren wird die elektronische Analyse durch eine Lichtabschattung angesprochen, die fachsprachlich auch als Extinktionsverfahren bezeichnet wird. Diese elektronische Analyse zählt die Partikel über einen optischen Sensor. Dabei wird der Lichtstrahl des optischen Sensors je nach Größe der Partikel mehr oder weniger abgeschattet. Die Differenz zwischen der abgesandten Lichtleistung und der in einer Fotodiode aufgefangenen Lichtleistung unter Einbezug der Absorption im Fluidmedium kann dann als Maß für die Größe des Partikels herangezogen werden. Die bekannte Messmethode kann online erfolgen, so dass vor Ort die Messergebnisse dann direkt vorliegen.
Andere moderne Partikelsensoren, wie sie beispielsweise in der WO 2007/08801 5 AI aufgezeigt sind, erlauben derart eine Erhöhung der Emp- findlichkeit hinsichtlich der festzustellenden oder zu detektierenden Partikel, dass nicht nur sehr kleine Partikel ohne Weiteres detektiert werden können, sondern dass neben der eigentlichen Anzahl an auftretenden Feststoff-Partikeln in einer vorgebbaren Volumeneinheit des Druckfluids auch deren Partikelgröße sich bestimmen lässt. Die bekannte Sensoreinrichtung nach der genannten WO-Veröffentlichung setzt hierfür einen induktiven Partikelzähler ein, wobei die Vorrichtung mindestens eine Feldspule zum Erzeugen eines den Fluidstrom mindestens abschnittsweise abdeckenden Magnetfelds aufweist und eine Sensorspule hat, die mit einer elektronischen Auswerteeinrichtung verbunden, mittels dem aus dem in der Sensorspule induzierten Signal die Anwesenheit eines Partikels in den Fluidstrom im skizzierten Rahmen feststellt oder detektiert.
Voraussetzung für die vorstehend beschriebenen Partikel feststell- oder Messverfahren ist eine Kalibrierung des Gerätes anhand von Testpartikeln (fachsprachlich auch als Teststaub bezeichnet). Während frühere Kalibrierungen als Partikelgröße die längste Ausdehnung der Testpartikel eingesetzt haben, definieren neuere Kalibrierverfahren als Partikelgröße den mittleren Durchmesser eines flächengleichen Kreises, der den jeweils vorgegebenen Testpartikel randseitig umschließt. Als weiterer Fremdstoff in Druckflüssigkeiten wie Hydraulikölen kommt regelmäßig Luft vor, wobei die Luft in der Druckflüssigkeit gelöst ist, als Luft in Form einer Öl-Dispersion vorliegt oder auf dem Fluid eine Art Oberflächenschaum ausbildet, wie man ihn regelmäßig in Vorratstanks von hydraulischen Anlagen findet. Die im Druckfluid gelöste Luft unter einem vorgeb- baren Betriebsdruck des Fluids verursacht regelmäßig keine Probleme wie Betriebsstörungen der hydraulischen Anlagen. Erst wenn vermehrt Luft von außen zusätzlich in das Druckfluid gelangt oder die in Druckfluid gelöste Luft durch Druckentspannungsvorgänge, beispielsweise auf der Ableitungsseite von hydraulischen Ventilen oder im Hydrauliktank, meist fein disper- giert im Öl als Luftbläschen austritt, kann es zu Betriebsstörungen kommen, da das dann entstehende Öl-Luft-Gemisch kompressibel wird, insbesondere an heißen Stellen innerhalb des Hydraulikkreises. Im Übrigen wird dergestalt auch nachteilig die Ausbildung des hydrodynamischen Schmierfilms an den zu schmierenden Bauteilen beeinflusst. In ölführenden Systemen kön- nen dann oft erhebliche Störungen auftreten, insbesondere in Bereichen von schnei Häufenden Getrieben und Kompressoren, wie sie in der Wind- kraftanwendung zum Einsatz kommen.
Neben den gasförmigen Fremdstoffen wie den angesprochenen Luftblasen tritt als weiterer Fremdstoff im Fluid regelmäßig Wasser in flüssiger Form auf, beispielsweise als Kondensat bedingt durch Abkühlvorgänge der hydraulischen Anlage. Neben den Feststoffen stellt Wasser die gefährlichste Verunreinigung in Schmier- und Hydrauliksystemen dar, da diese sowohl als Mineral- als auch als Synthetiköl einen temperaturabhängigen Wassersättigungspunkt haben, der bei Überschreiten dazu führt, dass freies Wasser (emulgiert) auftritt. Wasser in Hydrauliksystemen fördert aber die Korrosion der Komponenten und erhöht die Gefahr der Kavitation von Hydraulikpumpen. Des Weiteren können die in den Fluiden vorhandenen Additive, um der Ölalterung zu begegnen, mit dem freien Wasser reagieren mit der Folge, dass sich Oxide, saure Schlämme sowie Harze ausbilden, was insge- samt zur„Verschlammung" des hydraulischen Gesamtsystems mit beiträgt.
Des Weiteren treten im Druckfluid Alterungsprodukte (Varnish) auf, die sich aus der Oxidation des Druckfluids unter Luftsauerstoff ergeben. Hohe Betriebstemperaturen begünstigen die dahingehenden Alterungsprozesse im Öl. Die Alterung eines Öls beginnt in der Regel zunächst sehr langsam, insbesondere wenn Oxidationsinhibitoren (Additive) diesen Prozess bremsen. Die Inhibitoren (Additive) fangen die reaktionsfreudigen Moleküle (Radikale) im Öl ein und neutralisieren die sauerstoffhaltigen Verbindungen. So wird das Druckfluid vor dem schnell zunehmenden Angriff durch die Additive geschützt. Sind diese jedoch verbraucht, läuft die Alterung des Öls ungebremst und damit sehr schnell ab. Das Endprodukt der Ölalterung sind dann jeweils ölunlösliche (Ölschlamm) sowie saure Substanzen, die die Korrosion von Bauteilen im gesamten hydraulischen Kreis erhöhen.
Bei der üblichen, vorstehend beschriebenen Partikelfeststellung oder Parti- keldetektion gelangen all diese Fremdstoffe, die teilweise auch filtergängig sind, d. h. die ungestört ein Filtersystem passieren können, ohne von den Filtermedien aus dem Fluidstrom herausgefiltert zu werden, zu dem jeweiligen Partikelsensor (optisch, induktiv etc.), um dort als Partikel, also als Feststoffverschmutzung detektiert zu werden mit der Folge, dass der Parti- kelsensor nebst angeschlossener Auswerteelektronik die tatsächlich vorliegende Partikelverschmutzung im Druckfluid überhaupt nicht mehr feststellen kann. Dies führt dann zu Falschaussagen über den Partikeleintrag an Feststoffen im Druckfluid und gegebenenfalls zu einem verfrühten Austausch des in insoweit noch gar nicht unbrauchbar gewordenen Öls. Insbe- sondere wird beim Auftreten ständig hoher Partikelverschmutzung in Form von Feststoffen ein Durchschnittsfachmann auf dem Gebiet von Hydrauliksystemen Überlegungen anstellen, wie er durch eine qualitativ verbesserte Komponentenauswahl, insbesondere der zu schmierenden, bewegenden Maschinenteile einen erhöhten Feststoff-Partikeleintrag vermeiden kann, obwohl, wie dargelegt, dies gar nicht notwendig ist, weil die detektierte Verschmutzung nicht von den Feststoffpartikeln als dem einen Fremdstoff herrührt, sondern von den sonstigen genannten weiteren Fremdstoffen in fester Form (Ölalterungsprodukte), in flüssiger Form (Wasser) und/oder in gasförmiger Form (Luftblasen). Ausgehend von diesem Stand der Technik liegt der Erfindung die Aufgabe zugrunde, eine Vorrichtung zum Feststellen oder zum Messen von Partikelverschmutzungen in Fluiden derart weiter zu verbessern, dass eine zuverlässigere Feststellung bzw. Messung der Partikelverschmutzung ermöglicht ist. Eine dahingehende Aufgabe löst eine Vorrichtung mit den Merkmalen des Patentanspruches 1 in seiner Gesamtheit.
Dadurch dass erfindungsgemäß eine Probenaufbereitungs-Strecke mittels einer Anschlusseinrichtung fluidführend an die Messstrecke anschließbar ist, und dass die Probenaufbereitungs-Strecke zumindest eine zusätzliche Einrichtung zum Feststel len der jeweils weiteren fluidfremden Verunreinigung und/oder zu deren zumindest teilweisem Ausscheiden aus dem Fluid aufweist, ist es mögl ich, den jeweils weiteren Fremdstoff aus dem Druckfluid des fluidischen Kreises der gesamthydraul ischen Anlage einer getrennten Betrachtung zu unterziehen oder gar aus dem Druckfluid abzuscheiden, wohingegen vorzugsweise zeitgleich der eigentliche Partikelsensor weiter die Partikelverschmutzung im Druckfluid feststel lt oder detektiert, ohne von den weiteren Fremdstoffen in der Feststell- oder Messqual ität beeinträchtigt zu sein. Die sonst von dem Partikelsensor detektierten Fremdstoffe, wie beispielsweise Ölalterungsprodukte, Wasser oder Luftblasen, werden dann abgeschieden oder in Lösung gebracht und können insoweit auch nicht das Messergebnis betreffend den ungewol lten Partikeleintrag nachteilig beeinflussen, weder was die Partikelanzahl anbelangt, noch deren etwaige Größenfeststel lung. Da die genannten Fremdstoffe mithin nicht die Messung des Partikeleintrages nachtei l ig beeinflussen können, kann der Partikelsensor tatsächlich die jeweils vorherrschende Partikelverschmutzung feststellen, um dergestalt dann eine Aussage treffen zu können, ob ein Ersatz des Druckfluides gegen ein Neumedium notwendig ist und/oder ob zumindest an Teilen der gesamthydraul ischen Anlage dergestalt Verbesse- rungen vorzunehmen sind, dass eben ein erhöhter Partikelverschmutzungseintrag, insbesondere bedingt durch abrasive Verschleißpartikel, erst gar nicht auftritt. Mit der erfindungsgemäßen Vorrichtung können auch feinste Verschmutzungen des Fluids detektiert werden, bei denen die Teilchen einen mittleren Durchmesser von größer als 14 /vm, bevorzugt größer als 6 y-/m, weiter bevorzugt größer als 4 μνη, haben, vgl. hierzu auch ISO 4406. Ein weiterer Vorteil der Erfindung ist, dass auch dann Partikel erkannt werden, wenn sie die gleiche Dichte wie das Fluid haben.
Da die weiteren Fremdstoffe gleichfal ls die Qual ität des Druckfluids beeinträchtigen, kann bei einer bevorzugten Ausführungsform der erfindungsge- mäßen Vorrichtung vorgesehen sein, dass mittels geeigneter Einrichtungen, die mit der Probenaufbereitungs-Strecke zusammenwirken, die Fremdstoffe zumindest teilweise auch aus dem Fluidkreis, sprich aus der Mess-Strecke, bleibend entfernt werden können.
Besonders bevorzugt besteht die jeweilige Einrichtung aus: · einem Probenbehälter, der unter Beruhigung des aufgenommenen
Fluids aus der Mess-Strecke dem Ausscheiden von gasförmigem Medium dient, und/oder
• einer Filtereinrichtung, die den Fremdstoffeintrag im Fluid zumindest teilweise reduziert und filtergängige Medien zum Detektieren oder Ausscheiden derselben zumindest teilweise durchlässt, und/oder
• einer Temperiereinrichtung, d.h. einer Heizung und/oder einem
Kühler, wobei die Temperiereinrichtung zum Auflösen oder Abscheiden von temperaturabhängigen Medien, wie Ölalterungspro- dukten, mit temperaturabhängiger Löslichkeit dient. Durch die jeweiligen Einrichtungen können die Eigenschaften des Fluids gezielt verändert werden, um möglichen Verfälschungen des Messergebnisses des Partikelsensors zu begegnen.
Der Probenbehälter kann dabei als Luftabscheider ausgeführt sein. Dabei können im Fluid vorhandene Luftbläschen im Luftabscheider langsam auf- steigen und über einen Luftablass entweichen, bis die im Fluid frei vorliegende Luftmenge ausreichend klein ist und die Messung nicht mehr verfälschen kann. Insbesondere zeigt der Partikelsensor bei dahingehender Luft- abscheidung zunächst abfallende Werte an, die sich einem unteren Grenzwert annähern, der dann der tatsächlich im Druckfluid vorhandenen Parti- kelverschmutzung als dem einen Fremdstoff im Fluid entspricht.
Mit Hilfe einer zuschaltbaren Filtereinrichtung können in verschiedenen Anwendungsfällen die Messergebnisse gleichfalls verifiziert werden. Treten verschiedentlich, insbesondere bei Windkraftgetrieben, partikuläre Ölalte- rungsprodukte als Verschmutzung auf, würden diese bei der Partikelzählung mittels des Partikelsensors gleichfalls berücksichtigt werden und zu einer Verfälschung des Messergebnisses führen. Eine der Aufgaben der Vor- richtung sind die die Partikelzählung verfälschenden Einflüsse vorzugsweise zu eliminieren, zumindest aber zu reduzieren oder als Minimalforderung zumindest das Vorliegen einer Verfälschung als solche zu erkennen. Partikuläre Ölalterungsprodukte sind wie der Name sagt„Partikel" und gehören daher nicht zu einer Verfälschung; sehr wohl aber flüssige, insbesondere filtergängige Ölalterungsprodukte, die mithin eine Verfälschung der Partikelzählung bewirken. Eine solche Verfälschung kann dem Grunde nach nicht eliminiert werden; sie wird aber erkannt, wenn sich trotz einer zugeschalteten Filtration die Ölreinheit nicht oder nur minimal verbessert. Wenn sich die Ölreinheit bei zugeschalteter Filtration verbessert, aber auf einem mittleren Niveau„hängen" bleibt, erkennt man, dass eine Verfälschung gegeben ist, die aber regelmäßig noch vernachlässigt werden kann.
Eine andere Möglichkeit besteht auch darin, im Rahmen der Filtereinrichtung einen sogenannten Coalescer vorzusehen, der kleintropfige Wasseranteile zu großtropfigen zusammenführt, die dann aus dem Druckfluid in üb- licher Weise durch eine Koalisiereinrichtung abgeführt werden können.
Auch können über sogenannten Zyklonabscheider im Rahmen von konventionellen Filtersystemen Gasanteile aus dem Druckfluid abgetrennt werden, um dergestalt eine reine Detektierung der Feststoffverschmutzung mittels eines Partikelsensors vornehmen zu können. Besonders vorteilhaft ist die Probenaufbereitungs-Strecke in einer Nebenleitung zur Mess-Strecke angeordnet, so dass das Fluid bevorzugt durch die Mess-Strecke und die Probenaufbereitungs-Strecke in Serie hintereinander geschaltet einmalig oder mehrmalig im Kreis umlaufen kann. Die Zuschal- tung der Probenaufbereitungs-Strecke erfolgt nach Bedarf. Durch eine ge- eignete Ausbildung der Anschlusseinrichtung zu Beginn und am Ende der Probenaufbereitungs-Strecke kann die Probenaufbereitungs-Strecke als Bypass zur Mess-Strecke oder als Teil eines Kreislaufs betrieben werden, wobei das Fluid durch die Mess-Strecke und die Probenaufbereitungs-Strecke im Kreis durch eine Pumpe gefördert wird. Mithin ist es möglich, eine Flu- idprobe aus einem System zu entnehmen und diese Probe über den Partikelsensor und die Einrichtung im Wechsel oder im Kreis zu fördern. Durch die permanente Umwälzung des Fluids wird gleichzeitig eine Sedimentation der Feststoffverschmutzung, insbesondere im Probenbehälter, verhindert. Es ist vorgesehen, nach Abschluss der Messungen den Probenbehälter zu leeren und erst anschließend einen neuen Messzyklus zu starten.
Weiterhin kann vor dem Partikelsensor in Fluidströmungsrichtung gesehen vorteilhaft eine Beruhigungsstrecke angeordnet sein, die vorzugsweise aus mindestens einem verlängerten Leitungsabschnitt besteht. Durch diese Beruhigungsstrecke können in begrenztem Umfang weitere Luftbläschen, die im Fluid bestehen, in Lösung gebracht werden, sodass diese die Partikelmessung nicht mehr verfälschen können.
Die Anschlusseinrichtung ist zweckmäßigerweise aus elektromagnetisch ansteuerbaren Schaltventilen, insbesondere in Form von 3/2-Wege-Venti- len gebildet. Mit den Schaltventilen kann bei geeigneter Ausbildung das zu messende Fluid nach dem Partikelsensor in der Mess-Strecke in die Probenaufbereitungs-Strecke überführt und aus der Probeentnahme-Strecke wieder in die Mess-Strecke eingeschleust werden. Darüber hinaus können diese Ventile derart geschaltet sein, dass sie einen Bypass durch die Probenaufbereitungs-Strecke parallel zur Mess-Strecke ermöglichen. Vorzugsweise ist zwischen zwei Ventilen der Anschlusseinrichtung eine Baugruppe bestehend aus einer Motor-Pumpen-Einheit, der Beruhigungsstrecke sowie dem Partikelsensor als Teil der Mess-Strecke angeordnet. Die Probenaufbereitungs-Strecke ist dabei vor und hinter den Ventilen der Anschlusseinrichtung im Bypass an die Mess-Strecke angeschlossen. In einer besonders vorteilhaften Ausführungsform können mehrere Einrichtungen in Reihe hintereinander geschaltet in der Probenaufbereitungs- Strecke angeordnet sein. Hierbei ist vorzugsweise in Fluidströmungsrich- tung gesehen die Filtereinrichtung dem Probenbehälter vorgeschaltet. Dies ermöglicht es, das zu untersuchende Fluid in einem Durchlauf mehrfach zu modifizieren, insbesondere zu filtern und von Gasanteilen zu befreien. Auf diese Weise kann der angestrebte Grenzwert durch Abbau von das Messergebnis verfälschenden Bestandteilen des Fluids schneller erreicht und somit die Partikelmessung insgesamt beschleunigt und präzise durchgeführt wer- den.
Zur Gesamtüberwachung der Mess-Strecke sowie der Probenaufbereitungs- Strecke können Drucksensoren sowie zumindest ein Füllstandssensor dienen. Zum Vorspannen des Fluids sowie zur Abfuhr von fluidfremden Verunreinigungen können federbelastete Rückschlagventile vorgesehen sein. Die federbelasteten Rückschlagventile können dabei einstellbar ausgebildet sein. Die Drucksensoren ermöglichen es, einen schädigenden Überdruck in den Leitungen, insbesondere vor dem Partikelsensor, und im Luftabscheider zu verhindern. Durch den Füllstandssensor kann zudem die Schaltung der Anschlusseinrichtung bewirkt werden, sodass die Schaltventile der An- Schlusseinrichtung abhängig vom Füllstand eine Überleitung von Fluid aus der Probenaufbereitungs-Strecke in die Mess-Strecke ermöglichen bzw. bei Entleerung einen Nachfluss von Fluid in die Probenaufbereitungs-Strecke verhindern. Durch ein stromabwärts des Partikelsensors angeordnetes Rückschlagventil kann eine Vorspannung des Fluids vor dem Partikelsensor und im Bereich desselben erreicht werden. Weiterhin kann der Luftabscheider mit Rückschlagventilen ausgestattet sein, um ein Nachsaugen von Luft bzw. ein Entweichen derselben im laufenden Betrieb zu ermöglichen. Stromauf des so gebildeten Nachsaugventils kann ein Belüftungsfilter angeordnet sein. Besonders bevorzugt kann mittels einer zentralen Steuereinrichtung die Anschlusseinrichtung zum Zu- oder Wegschalten der Probenaufbereitungs- Strecke ansteuerbar sein. Insbesondere geben von der jeweiligen Einrichtung detektierte und/oder ausgeschiedene Medien die Zu- und Wegschalt- zeit der Probenaufbereitungs-Strecke vor. Beispielsweise werden die Schaltventile der Ansteuereinrichtung aufgrund des im Probenbehälter gemessenen Füllstands oder aufgrund der mit den Drucksensoren erfassten Drücke in sinnfälliger Weise geschaltet.
Die Erfindung ist nachfolgend anhand von in den Figuren dargestellten Aus- führungsbeispielen näher erläutert. Es zeigen:
Fig. 1 eine erfindungsgemäße Vorrichtung zum Messen von Partikelverschmutzungen in Fluiden gemäß einer ersten Ausführungsform; und
Fig. 2 bis 6 ausschnittsweise Darstellungen weiterer Ausführungsformen der Vorrichtung zum Messen von Partikeln in verschiedenen Betriebszuständen.
In der Fig. 1 ist eine erste Vorrichtung 1 zum Messen von Partikelverschmutzungen in Fluiden gezeigt. Die Fluide können neben einem Partikeleintrag weitere fluidfremde Verunreinigungen, wie flüssige, feste, gas- förmige und/oder filtergängige und/oder temperaturabhängige Medien aufweisen, die mit der Vorrichtung zuverlässig erfasst werden. Die Vorrichtung 1 weist eine Mess-Strecke 3 mit einem Partikelsensor 5 zur Messung des Partikeleintrages in dem Fluid auf. Ferner ist eine Probenaufbereitungs- Strecke 7 vorgesehen, die mittels einer Anschlusseinrichtung 9 fluidführend an die Mess-Strecke 3 anschließbar ist. Die Probenaufbereitungs-Strecke weist zumindest eine zusätzliche Einrichtung 1 1 zum Detektieren der weiteren fluidfremden Verunreinigungen und/oder zu deren zumindest teilweisem Ausscheiden aus dem Fluid auf. Die Einrichtung 1 1 kann aus einem Probenbehälter bestehen, der unter Beruhigung des aufgenommenen Fluids aus der Mess-Strecke 3 dem Ausscheiden von gasförmigen Medien dient. Alternativ oder zusätzlich kann eine (weitere) Einrichtung 1 1 aus einer Filtereinrichtung bestehen, die den Partikeleintrag im Fluid zumindest teilweise reduziert und filtergängige Medien zum Detektieren derselben zumindest teilweise durchlässt. Weiterhin kann eine Einrichtung 1 1 aus einer Temperiereinrichtung, das heißt einer Heizung oder einem Kühler, bestehen, wobei die Temperiereinrichtung zum Detektieren von temperaturabhängigen Medien, wie Ölalterungspro- dukten, mit temperaturabhängiger Löslichkeit dient.
In Fig. 2 ist ein erster Ausschnitt aus einer Vorrichtung 13 gemäß einer zweiten Ausführungsform gezeigt, die eine Mess-Strecke 3 in Verbindung mit einer Anschlusseinrichtung 9 aufweist. Dieser Ausschnitt zeigt den Fluidweg im Normalbetrieb, das heißt bei vernachlässigbaren Verfälschun- gen durch flüssige Verunreinigungen etc. und einem begrenzten Anteil an Luftbläschen im Fluid. Die Mess-Strecke 3 weist einen Partikelsensor 5 (Contamination Sensor, CS) auf. Am Eingangs-Anschluss„IN" wird eine Probe eines Fluides, das analysiert werden soll, der Mess-Strecke 3 zugeführt. Über ein entsprechend geschaltetes erstes 3/2-Wege-Ventil 1 7 der Anschlusseinrichtung 9 wird das Fluid der Mess-Strecke 3 zugeführt. Um eine Vorspannung des Fluids im Bereich des Partikelsensors 5 zu erzeugen, ist eine Motor-Pumpen-Einheit 19 vorgesehen, die das Fluid einer Beruhigungsstrecke 21 zuführt. Die Beruhigungsstrecke 21 besteht aus einem verlängerten Leitungsabschnitt, dessen Länge in einer bevorzugten Ausfüh- rungsform sogar einstellbar sein kann. Ein in der Zeichnung gezeigter
Drucksensor 23 ist dazu vorgesehen zu erkennen, ob Fluid oder Luft (Behälter leer) gefördert wird; so bricht der Druck bei Vorhandensein von Luft ein. Stromabwärts des Partikelsensors 5 ist ein einstellbares Druckbegrenzungsventil oder Rückschlagventil 25 vorgesehen. Weiter stromabwärts ist ein zweites 3/2-Wege-Ventil 27 der Anschlusseinrichtung 9 angeordnet, das ebenfalls entsprechend geschaltet ist, sodass das Fluid zum Fluid- Ausgangsanschluss„OUT" gelangen kann.
Die Fig. 3 zeigt eine erweiterte Darstellung der zweiten Ausführungsform. Das Fluid, das einmal die Mess-Strecke 3 durchlaufen hat, wird in einem vom Normalbetrieb abweichenden Sonderbetrieb statt zum Fluidausgang „OUT" durch das zweite 3/2-Wege-Ventil 27 der Anschlusseinrichtung 9 in eine Probenaufbereitungs-Strecke 7 übergeleitet. In der Probenaufberei- tungs-Strecke 7, einer Nebenleitung 28 zur Mess-Strecke 3, wird das Fluid einem Probenbehälter 29 in Form eines Luftabscheiders zugeführt. Da das erste 3/2-Wege- Ventil 1 7 der Anschlusseinrichtung 9 in diesem Betriebszustand den Fluidanschluss„IN" mit der Mess-Strecke 3 verbindet, kann noch kein Fluid aus dem Probenbehälter 29 weiter fließen. Mithin sammelt sich das Fluid im Probenbehälter 29 an und beruhigt sich, so dass etwaig vorhandene Luftbläschen zur Oberfläche aufsteigen können. Ein Drucksensor 31 und ein Füllstandssensor 33 (auch als Niveau- oder Levelsensor bezeichnet) am Probenbehälter 29 sind zur Überwachung des Probenbehälters 29 vorgesehen. Der genannten Füllstandssensor ist nicht unbedingt erforderlich, trägt aber zur Betriebssicherheit wesentlich mit bei. Eine Füllstandsüberwachung könnte dem Grunde nach auch über den Druck im Behälter 31 und den Druck nach der Pumpe 23 erfolgen. Sollte der Luftdruck oder der Fluiddruck im Probenbehälter 29 zu groß werden, kann die Luft oder das Fluid über ein federbeaufschlagtes Rückschlagventil 35 zum Fluidausgang„OUT" entweichen.
Wenn der Füllstand im Probenbehälter 29 ein für die Durchführung der Messung hinreichendes Maß erreicht hat, schaltet das erste 3/2 -Wege-Ventil 1 7 um, wie es in Fig. 4 gezeigt ist, und ermöglicht es, das Fluid mit Hilfe der Motor-Pumpen-Einheit 19 durch die Mess-Strecke 3 und die Probenaufbereitungs-Strecke 7 im Kreis zu fördern. Die Anzahl der Partikel, welche ausschlaggebend für die Verschmutzung ist, wird durch den Partikelsensor 5 ermittelt. Etwaige Luftbläschen, die nicht schon in der Beruhigungsstrecke 21 in Lösung gegangen sind, können bei jedem Durchfluss des Fluids durch den Probenbehälter 29 aus dem Fluid entweichen und werden somit abgeschieden. Dementsprechend vermindert sich die Anzahl der Luftbläschen im Fluid und der Partikelsensor 5 stellt über die Zeit eine abnehmende Par- tikelanzahl fest, da immer weniger Luftbläschen detektiert werden. Nach einem oder mehreren Umläufen des Fluids durch die Mess-Strecke 3 und die Probenaufbereitungs-Strecke 7 nähert sich die Anzahl der gemessenen Partikel einem unteren Grenzwert an, der die wahre Partikeleintragrate wiedergibt. In der Fig. 5 ist ein vervollständigte Hydraulikplan der Vorrichtung 1 3 gemäß der zweiten Ausführungsform gezeigt. Diese weist in der Probenaufbereitungs-Strecke 7 stromaufwärts des Probenbehälters 29 eine Filtereinrichtung 37 mit einem durch ein 3/2-Wege-Ventil 39 zuschaltbaren Filter 41 auf. Durch die zuschaltbare Filtereinrichtung 37 kann ermittelt werden, ob in einem Fluid herausfilterbare oder filtergängige, insbesondere flüssige, Verunreinigungen enthalten sind. Wenn die Partikelanzahl im Fluid nach dem Durchfluss durch den Filter 41 absinkt, handelt es sich um herausfilterbare Partikel. Andernfalls ist von filtergängigen Verunreinigungen auszugehen. Darüber hinaus ist die Filtereinrichtung 37 zur Reinigung der Vor- richtung 13 vorgesehen.
Zwischen der zuschaltbaren Filtereinrichtung 37 und dem Probenbehälter 29 ist zudem eine Temperiereinrichtung 43 zur Detektion von Ölalterungs- produkten mit temperaturabhängiger Löslichkeit, wie z.B. Varnish, vorgesehen. Durch das Aufheizen des Fluids kann eine Lösung der flüssigen Verun- reinigungen im Fluid bewirkt werden. Die Temperiereinrichtung 43 kann aber auch als Kühler betrieben werden, um flüssige Verunreinigungen aus dem Fluid abzuscheiden und diese somit mit dem Partikelsensor 5 detek- tierbar zu machen. Mithin werden bei abnehmender Öltemperatur steigende Zählraten am Partikelsensor 5 festgestellt und einer entsprechenden Auswertung durch die Auswertelektronik unterzogen. Weiterhin kann in der Probenaufbereitungs-Strecke 7 ein Vakuumgenerator 45 vorgesehen sein. Der Vakuumgenerator 45 dient der Extraktion von gas¬ förmigen Bestandteilen im Fluid. Diese können dann im stromabwärts gelegenen Probenbehälter 29 abgeschieden werden ( = Mess- und Auswert- elektronik).
Eine prinzipiell in Fig. 5 dargestellte Steuereinrichtung 47 ist zur Steuerung des Gesamtablaufs vorgesehen. Diese ist mit den Drucksensoren 23, 31 und dem Füllstandssensor 33 sowie der Anschlusseinrichtung 9 gekoppelt. Ferner kann der Partikelsensor 5 an die Steuereinrichtung 47 angeschlossen sein.
Nach Abschluss der Messung wird die Anschlusseinrichtung 9 so geschaltet (vgl. Fig. 6), dass das zweite 3/2 -Wege-Ventil 27 das Fluid aus der Mess- Strecke 3 dem Fluidausgang„OUT" zuleitet. Auf diese Weise wird der Probenbehälter 29 entleert und für die Aufnahme einer neuen Fluidmenge vorbereitet. Hierbei kann Luft durch ein Rückschlagventil 49 und einen Belüftungsfilter 51 nachströmen.
Durch die erfindungsgemäßen Ausführungsformen werden Vorrichtungen 1 , 13 zum Messen von Partikelverschmutzungen in Fluiden aufgezeigt, die es ermöglichen, feste, flüssige, gasförmige-, filtergängige und/oder tempera- turabhängige Verunreinigungen, die das Messergebnis verfälschen können, weitgehend zu eliminieren. Insbesondere kann auch bei einem hohen Luftgehalt im Fluid eine zuverlässige Messung der Partikel im Fluid durchgeführt werden.
Über den Fluideingang„IN" und den Fluidausgang„OUT" lässt sich die erfindungsgemäße Vorrichtung in hydraulische Gesamtsysteme, wie Windkraftanlagen, Pressen, Transferstraßen etc. einbinden, so dass ein Online- Messbetrieb mittels des Partikelsensors 5 möglich ist. Mit der erfindungsgemäßen Lösung ist es möglich, Messwert-Verfälschungen, auch wenn sie nicht immer eliminiert werden können, zumindest als solche messtechnisch zu erkennen und bei der Auswertung entsprechend zu berücksichtigen.

Claims

P a t e n t a n s p r ü c h e
1 . Vorrichtung zum Feststellen von Fremdstoffen, wie Partikeln, in Fluiden, die neben diesem Partikeleintrag weitere fluidfremde Verunreinigungen, wie feste, flüssige und gasförmige Fremdstoffe, aufweisen können, mit einer Mess-Strecke (3), die einen Partikelsensor (5) zum Feststellen des Partikeleintrages aufweist, dadurch gekennzeichnet, dass eine Probenaufbereitungs-Strecke (7) mittels einer Anschlusseinrichtung (9) fluidführend an die Mess-Strecke (3) anschließbar ist, und dass die Probenaufbereitungs-Strecke (7) zumindest eine zusätzliche Einrichtung (1 1 , 29, 37, 43, 45) zum Feststellen der jeweils weiteren fluidfremden Verunreinigung und/oder zu deren zumindest teilweisem Ausscheiden aus dem Fluid aufweist.
2. Vorrichtung nach Anspruch 1 , dadurch gekennzeichnet, dass die jeweilige Einrichtung (1 1 )
• aus einem Probenbehälter (29) besteht, der unter Beruhigung des aufgenommenen Fluids aus der Mess-Strecke (3) dem Ausscheiden von gasförmigem Medium dient, und/oder
• aus einer Filtereinrichtung (37) besteht, die den Fremdstoffeintrag im Fluid zumindest teilweise reduziert und filtergängige Medien zum Detektieren oder Ausscheiden derselben aus dem Fluid zumindest teilweise durchlässt, und/oder
• aus einer Temperiereinrichtung (43) (Heizung und/oder Kühler) besteht, die zum Detektieren oder Auflösen oder Abscheiden von temperaturabhängigen Medien, wie Ölalte- rungsprodukten, mit temperaturabhängiger Löslichkeit dient.
3. Vorrichtung nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Probenaufbereitungs-Strecke (7) in einer Nebenleitung (28) zu der Mess-Strecke (3) angeordnet ist, so dass das Fluid bevorzugt durch die Mess-Strecke (3) und die Probenaufbereitungs-Strecke (7) einmalig oder mehrmalig im Kreis umlaufen kann.
4. Vorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass in Fluidströmungsrichtung gesehen vor dem Partikelsensor (5) eine Beruhigungsstrecke (21 ) angeordnet ist, die vorzugsweise aus mindestens einem verlängerten Leitungsabschnitt besteht.
5. Vorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Anschlusseinrichtung (9) aus elektromagnetisch ansteuerbaren Schaltventilen (1 7, 27), insbesondere in Form von 3/2-Wege- Ventilen gebildet ist.
6. Vorrichtung nach Anspruch 5, dadurch gekennzeichnet, dass zwischen zwei Schaltventilen (1 7, 27) der Anschlusseinrichtung (9) eine Baugruppe bestehend aus einer Motor-Pumpen-Einheit (19), dem Partikelsensor (5) sowie der Beruhigungsstrecke (21 ) als Teil der Mess-Strecke (3) angeordnet ist und dass die Probenaufbereitungs- Strecke (7) vor und hinter den Ventilen (1 7, 27) der Anschlusseinrichtung (9) als Bypass an die Mess-Strecke (3) angeschlossen ist.
7. Vorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass mehrere Einrichtungen (1 1 , 29, 37, 43, 45), in Reihe hintereinandergeschaltet, Teil der Probenaufbereitungs-Strecke (7) sind und dass vorzugsweise in Fluidströmungsrichtung gesehen die Filtereinrichtung (37) dem Probenbehälter (29) vorgeschaltet ist.
8. Vorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass zur Gesamtüberwachung von Mess-Strecke sowie Probenaufbereitungs-Strecke (7) Drucksensoren (23, 31 ) sowie zumindest ein Füllstandssensor (33) dienen und dass zum Vorspan- nen des Fluidkreises (3, 7) oder zur Abfuhr von fluidfremden Verunreinigungen federbelastete Rückschlagventile (25, 35) dienen.
9. Vorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass mittels einer zentralen Steuereinrichtung (47) die Anschlusseinrichtung (9) zum Zu- und Wegschalten der Proben- aufbereitungs-Strecke (7) ansteuerbar ist, und dass insbesondere von der jeweiligen Einrichtung (1 1 , 29) detektierte Medien die Zu- und Wegschaltzeit der Probenaufbereitungs-Strecke (7) vorgeben.
PCT/EP2013/002231 2012-08-17 2013-07-27 Vorrichtung zum feststellen von partikelverschmutzungen in fluiden WO2014026733A1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP13744438.6A EP2885620B1 (de) 2012-08-17 2013-07-27 Vorrichtung zum feststellen von partikelverschmutzungen in fluiden

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102012016458.0 2012-08-17
DE102012016458.0A DE102012016458A1 (de) 2012-08-17 2012-08-17 Vorrichtung zum Feststellen von Partikelverschmutzungen in Fluiden

Publications (1)

Publication Number Publication Date
WO2014026733A1 true WO2014026733A1 (de) 2014-02-20

Family

ID=48914210

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2013/002231 WO2014026733A1 (de) 2012-08-17 2013-07-27 Vorrichtung zum feststellen von partikelverschmutzungen in fluiden

Country Status (3)

Country Link
EP (1) EP2885620B1 (de)
DE (1) DE102012016458A1 (de)
WO (1) WO2014026733A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019052872A1 (de) * 2017-09-13 2019-03-21 Hydac Filter Systems Gmbh Filteraggregat

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016223221A1 (de) 2016-11-23 2018-05-24 Filtration Group Gmbh Verfahren und Vorrichtung zum Ermitteln von Feststoffpartikeln in einem Flüssigkeitsstrom

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3931497A1 (de) * 1989-09-21 1991-04-18 Sensoplan Messtechnik Gmbh Vorrichtung zum erfassen von verschmutzungen in fluiden, insbesondere schmierstoffen
DE19628690A1 (de) * 1996-07-17 1998-01-29 Achenbach Buschhuetten Gmbh Verfahren und Meßsysteme zur Messung physikalischer Größen von gering leitenden und nichtleitenden Fluiden
US5968371A (en) * 1998-01-26 1999-10-19 Nelson Industries, Inc. Lubricant circulation diagnostic and modeling system
WO2007088015A1 (de) 2006-02-02 2007-08-09 Hydac Filtertechnik Gmbh Vorrichtung zum detektieren von partikeln in einem fluidstrom sowie zugehöriges system zum kühlen und/oder schmieren
WO2008074559A1 (en) * 2006-12-20 2008-06-26 Ufi Innovation Center S.R.L. A method and sensor for measuring concentration of particulate in lubrification oil in an internal combustion engine
DE102009024561A1 (de) * 2009-06-08 2010-12-16 Hydac Filter Systems Gmbh Verfahren und Vorrichtung zum Erfassen von Verunreinigungen in einem Fluid

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2101330B (en) * 1981-06-22 1985-02-27 Smiths Industries Plc Detecting particles in flowing fluids
JPS62255849A (ja) * 1986-04-28 1987-11-07 Fuji Heavy Ind Ltd 粒子測定装置
US5315243A (en) * 1992-04-06 1994-05-24 Her Majesty The Queen In Right Of Canada, As Represented By The Minister Of National Defence Detection and discrimination between ferromagnetic and non-ferromagnetic conductive particles in a fluid
DE29702315U1 (de) * 1997-02-12 1997-05-28 Tech Hochschule Darmstadt Vorrichtung zur quasi kontinuierlichen Messung von organischen und anorganischen Substanzen in Prozeßgasen, insbesondere von polychlorierten Dibenzo-p-dioxinen und Dibenzofuranen im Abgas von Abfallverbrennungsanlagen

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3931497A1 (de) * 1989-09-21 1991-04-18 Sensoplan Messtechnik Gmbh Vorrichtung zum erfassen von verschmutzungen in fluiden, insbesondere schmierstoffen
DE19628690A1 (de) * 1996-07-17 1998-01-29 Achenbach Buschhuetten Gmbh Verfahren und Meßsysteme zur Messung physikalischer Größen von gering leitenden und nichtleitenden Fluiden
US5968371A (en) * 1998-01-26 1999-10-19 Nelson Industries, Inc. Lubricant circulation diagnostic and modeling system
WO2007088015A1 (de) 2006-02-02 2007-08-09 Hydac Filtertechnik Gmbh Vorrichtung zum detektieren von partikeln in einem fluidstrom sowie zugehöriges system zum kühlen und/oder schmieren
WO2008074559A1 (en) * 2006-12-20 2008-06-26 Ufi Innovation Center S.R.L. A method and sensor for measuring concentration of particulate in lubrification oil in an internal combustion engine
DE102009024561A1 (de) * 2009-06-08 2010-12-16 Hydac Filter Systems Gmbh Verfahren und Vorrichtung zum Erfassen von Verunreinigungen in einem Fluid

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019052872A1 (de) * 2017-09-13 2019-03-21 Hydac Filter Systems Gmbh Filteraggregat
CN111316000A (zh) * 2017-09-13 2020-06-19 Hydac过滤系统有限公司 过滤组件
CN111316000B (zh) * 2017-09-13 2022-04-08 Hydac过滤系统有限公司 过滤组件
US11434944B2 (en) 2017-09-13 2022-09-06 Hydac Filters Systems Gmbh Filter assembly

Also Published As

Publication number Publication date
EP2885620B1 (de) 2020-07-08
DE102012016458A1 (de) 2014-05-15
EP2885620A1 (de) 2015-06-24

Similar Documents

Publication Publication Date Title
EP2208983B1 (de) Kondensationskern-Zähler
DE102012200614A1 (de) Reinigungsanlage für Werkstücke mit Betriebszustands-Überwachung
EP2486400B1 (de) Vorrichtung zur partikelmessung in hydraulik-, getriebe- und schmierölen
DE102015112092B4 (de) Öl/Wasser-Trennvorrichtung mit Druckluftbeaufschlagung
WO2010049411A1 (de) Mobiles reinigungsverfahren und mobiles reinigungsmodul für flüssigkeiten
DE3931497A1 (de) Vorrichtung zum erfassen von verschmutzungen in fluiden, insbesondere schmierstoffen
EP2885620B1 (de) Vorrichtung zum feststellen von partikelverschmutzungen in fluiden
WO2007121879A1 (de) Verfahren und sensorvorrichtung zur bestimmung der partikelzahl in einem ölvolumen
DE10063330B4 (de) System zur Leitung von flüssigen Medien sowie Filtervorrichtung zur Verwendung in diesem System
DE102016005270B4 (de) Ablasssteuerungsvorrichtung für ein Filtersystem sowie Filtersystem mit einer Ablasssteuerungsvorrichtung
DE10343457C5 (de) Vorrichtung zur Partikelmessung
DE102017116269A1 (de) Modulare Sensoranordung
DE10135448B4 (de) Vorrichtung zur Erfassung von Fluidverunreinigungen
DE4438510A1 (de) Anlage zur Überprüfung einer Suspension fluoreszenzfähigen Materials
DE4015782A1 (de) Vorrichtung zur ueberwachung von abriebprodukten
EP2765404A1 (de) Verfahren und Vorrichtung zur Analyse von Flüssigkeiten
DE102016212887B4 (de) Messanordnung für Schmieröl und Messverfahren
DE102011007309A1 (de) Verfahren und Vorrichtung zur Verschmutzungs- und Reinigungsvalidierung einer Anlage
DE102021114726B3 (de) Verfahren und Apparatur zur sensorischen Messung eines Parameters eines Prozessfluids
DE102008034349B4 (de) Leitungsvorrichtung mit einem optischen Partikelzähler zur Verunreinigungsüberwachung und Verfahren dafür
EP2123342B1 (de) Verfahren und Vorrichtung zur Erfassung von Aerosolen und/oder strömenden Flüssigkeiten
DE102017126285A1 (de) Messanordnung für Schmieröl und Messverfahren
EP3327437A2 (de) Verfahren und vorrichtung zum ermitteln von feststoffpartikeln in einem flüssigkeitsstrom
DE102020116788A1 (de) Ölstandsüberwachungsvorrichtung und -verfahren für Kältemaschinen
DE102021102116A1 (de) Vorrichtung zur Filterüberwachung einer Filterstation

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13744438

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2013744438

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE