WO2014026618A1 - 离心分离装置 - Google Patents

离心分离装置 Download PDF

Info

Publication number
WO2014026618A1
WO2014026618A1 PCT/CN2013/081508 CN2013081508W WO2014026618A1 WO 2014026618 A1 WO2014026618 A1 WO 2014026618A1 CN 2013081508 W CN2013081508 W CN 2013081508W WO 2014026618 A1 WO2014026618 A1 WO 2014026618A1
Authority
WO
WIPO (PCT)
Prior art keywords
drum
centrifugal
spiral
excitation
slurry
Prior art date
Application number
PCT/CN2013/081508
Other languages
English (en)
French (fr)
Inventor
张传忠
彭勃
Original Assignee
钦州鑫能源科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 钦州鑫能源科技有限公司 filed Critical 钦州鑫能源科技有限公司
Priority to US14/422,145 priority Critical patent/US20150209804A1/en
Priority to AU2013304459A priority patent/AU2013304459A1/en
Publication of WO2014026618A1 publication Critical patent/WO2014026618A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B04CENTRIFUGAL APPARATUS OR MACHINES FOR CARRYING-OUT PHYSICAL OR CHEMICAL PROCESSES
    • B04BCENTRIFUGES
    • B04B9/00Drives specially designed for centrifuges; Arrangement or disposition of transmission gearing; Suspending or balancing rotary bowls
    • B04B9/10Control of the drive; Speed regulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B04CENTRIFUGAL APPARATUS OR MACHINES FOR CARRYING-OUT PHYSICAL OR CHEMICAL PROCESSES
    • B04BCENTRIFUGES
    • B04B1/00Centrifuges with rotary bowls provided with solid jackets for separating predominantly liquid mixtures with or without solid particles
    • B04B1/20Centrifuges with rotary bowls provided with solid jackets for separating predominantly liquid mixtures with or without solid particles discharging solid particles from the bowl by a conveying screw coaxial with the bowl axis and rotating relatively to the bowl
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B04CENTRIFUGAL APPARATUS OR MACHINES FOR CARRYING-OUT PHYSICAL OR CHEMICAL PROCESSES
    • B04BCENTRIFUGES
    • B04B15/00Other accessories for centrifuges
    • B04B15/12Other accessories for centrifuges for drying or washing the separated solid particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B04CENTRIFUGAL APPARATUS OR MACHINES FOR CARRYING-OUT PHYSICAL OR CHEMICAL PROCESSES
    • B04BCENTRIFUGES
    • B04B5/00Other centrifuges
    • B04B5/04Radial chamber apparatus for separating predominantly liquid mixtures, e.g. butyrometers
    • B04B5/0407Radial chamber apparatus for separating predominantly liquid mixtures, e.g. butyrometers for liquids contained in receptacles
    • B04B5/0414Radial chamber apparatus for separating predominantly liquid mixtures, e.g. butyrometers for liquids contained in receptacles comprising test tubes
    • B04B5/0421Radial chamber apparatus for separating predominantly liquid mixtures, e.g. butyrometers for liquids contained in receptacles comprising test tubes pivotably mounted
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B04CENTRIFUGAL APPARATUS OR MACHINES FOR CARRYING-OUT PHYSICAL OR CHEMICAL PROCESSES
    • B04BCENTRIFUGES
    • B04B5/00Other centrifuges
    • B04B5/10Centrifuges combined with other apparatus, e.g. electrostatic separators; Sets or systems of several centrifuges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B04CENTRIFUGAL APPARATUS OR MACHINES FOR CARRYING-OUT PHYSICAL OR CHEMICAL PROCESSES
    • B04BCENTRIFUGES
    • B04B1/00Centrifuges with rotary bowls provided with solid jackets for separating predominantly liquid mixtures with or without solid particles
    • B04B1/20Centrifuges with rotary bowls provided with solid jackets for separating predominantly liquid mixtures with or without solid particles discharging solid particles from the bowl by a conveying screw coaxial with the bowl axis and rotating relatively to the bowl
    • B04B2001/205Centrifuges with rotary bowls provided with solid jackets for separating predominantly liquid mixtures with or without solid particles discharging solid particles from the bowl by a conveying screw coaxial with the bowl axis and rotating relatively to the bowl with special construction of screw thread, e.g. segments, height

Definitions

  • the present invention relates to a centrifugal apparatus for separating fine particles of different densities in a slurry. Background technique
  • a centrifugal apparatus having a bowl-shaped rotating drum having a fine particle having different densities in a separate slurry which has been put into commercial use which was first disclosed in Canadian Patent No. 1111 809 A1, and a series of patents or patent applications thereafter. It is continuously improved and improved, and is called a Knelson centrifugal separator or a Falcon centrifugal separator, which is continuously improved and improved, including US 4608040, US 484678 US 5338284, US5462513, US 5586965, US 5,601, 523, US 6, 619, 572, US 6, 796, 334, 338.
  • the main structure of this type of separation device includes a vertical bowl rotating drum that can rotate at a high speed and one or more annular chutes on the outer peripheral wall of the drum.
  • One feeding tube leads to the bottom of the drum, and the bottom of the drum is provided.
  • Some technical solutions provide a liquid spraying device in the chute to prevent the material from being deposited in the chute, and some technical solutions provide a throttling nozzle that can continuously discharge heavy materials. .
  • the working principle is as follows: The slurry material to be treated enters the rotating drum from the vertical feeding tube in the center of the machine. Under the action of the enhanced gravity field of up to 50-300G, the mineral moves along the drum while moving at an upward density.
  • the inner wall is layered.
  • the heaviest part is enriched at the bottom of the chute or continuously flows out of the drum through a series of throttling nozzles, entering the heavy material collection and output channel, and other lighter components fly out from the upper edge of the drum. Enter the light material collection output channel.
  • the particle grading of this type of equipment follows the rule of separation and delamination, that is, the stratification of particles with different density and particle size is from the bottom to the top according to heavier small particles, heavier large particles, lighter small particles and Light large particles are distributed.
  • 201010123864.4 discloses a centrifugal separation device, the technical solution comprising a separation chamber, a feed inlet, at least one heavy material outlet with a chute and at least one light material outlet, a feed passage between the feed port and the separation chamber
  • a material acceleration device such as a radial baffle or a turbine is arranged, and a differential rotation propulsion device is formed in accordance with different forms of the separation chamber, and the device allows the slurry material entering the separation chamber to rotate with the separation chamber to maintain the rotation speed and the separation chamber. The rotation speed is appropriately varied and the slurry material is finally pushed out of the chamber through the outlet of each material.
  • the device makes full use of the separation effect and can be used to stratify and achieve effective separation of finer slurry particles according to their density without increasing the centrifugal acceleration.
  • the disadvantage of this device is that: due to the high concentration of the slurry material, even if the flow speed is fast, the laminar flow tends to form, and the deposition is formed on the outer wall of the separation chamber, so that the high-density material is difficult to continuously and smoothly. Discharge the separation chamber. This situation makes it possible to use a lower slurry concentration or a higher difference between the slurry and the separation chamber when setting the separation operation parameters, thereby reducing the working efficiency and the separation precision, and raising the lower limit of the sorting granularity.
  • the invention discloses a similar principle to the separation of the centrifugal separation device, and the manner of driving the slurry material and the separation chamber relative to each other is driven by the inertial driving of the material to be driven by the mechanical device, so as to accurately control the relative movement of the slurry material and the separation chamber. .
  • the centrifugal separation device for sorting different particle components in the slurry material by specific gravity includes a centrifugal device that rotates to generate a centrifugal force field, and the slurry material is placed in a centrifugal force field or continuously through a centrifugal force field.
  • a mechanical excitation device is also provided which applies a dynamic excitation capable of controlling the strength of the slurry material in the centrifugal field, enabling the slurry material to produce a laminar flow having an appropriate velocity gradient with respect to the centrifugal device.
  • the laminar flow motion of the slurry with the appropriate velocity gradient in the centrifugal force field produces the largest Begnor effect, which causes the particles of the slurry material to have a separation and stratification effect according to different specific gravities and particle sizes.
  • the slurry flow rate is too fast, it is easy to generate turbulence, destroy the stratification, and the slurry flow rate is too slow, it is easy to precipitate.
  • the technical solution of placing the material in the centrifugal force field is intermittent, and the device structure is relatively simple, and is suitable for application in a small laboratory device.
  • the specific technical solution is to set a centrifugal cup in the flattening rotor centrifuge to rotate the material in the cup during the centrifugation process.
  • the blade is implemented.
  • the flattening rotor centrifuge is a centrifugal device, and the blade device is a mechanical excitation device.
  • the technical scheme of continuously passing the material through the centrifugal force field has continuous operation mode and is more practical in production application.
  • the centrifugal device in the centrifugal separation device comprises a rotating drum, a feeding port, a heavy material outlet and a light material outlet.
  • the rotating drum can be rotated around its own central axis under power driving, and one end or both ends are open, or both ends can be Closed, when it rotates around the central axis, it can accommodate the rotary motion of the slurry on the inner side thereof, and the feed port is located inside the drum for conveying the slurry material to be separated into the drum, and the heavy material and the light material outlet are respectively located at the turn
  • the outer side and the opposite inner side of the drum, or respectively located at the two ends of the drum, the mechanical excitation device is a drum-like drum-like device which is disposed on the inner side of the drum and is in contact with the slurry material and rotates relative to the drum about the central axis of the drum.
  • the drum-like device is also called the inner drum, and the drum is also called the outer drum.
  • the feeding port can be set at one end of the rotating drum, and the light and heavy material outlets are arranged at the other end, so that the light and heavy materials move in the same direction during the separation process;
  • the feed port is arranged in the middle of the drum, and the light and heavy material outlets are respectively arranged at the two ends, so that the light and heavy materials move in opposite directions during the separation process, so that the separation effect is more remarkable, and the separation ratio is easy to control.
  • the light material refers to a slurry containing a relatively large proportion of light particles.
  • the heavy material refers to a slurry containing a relatively large proportion of particles.
  • Light materials and heavy materials are relatively in the same separation process.
  • the slurry containing the specific gravity of the particles or the proportion of particles with light and heavy specific gravity is called the intermediate material.
  • Light materials, heavy materials and medium materials are sometimes referred to in the industry as light materials, heavy materials and intermediate materials.
  • the invention can also provide a heavy material anti-adhesion device on the rotating drum, so as to avoid accumulation of heavy materials in the wall after stratification, resulting in continuous operation interruption.
  • a heavy material anti-adhesion device is arranged on the drum, and a mechanical pushing device such as a screw pushing device can be used, and the structure is similar to the screw pushing device of the existing horizontal screw centrifuge.
  • the anti-adhesion device can also employ a vibrating device.
  • the vibration device may be a mechanical vibration device that acts on the drum, or an ultrasonic vibration device that applies an action to the slurry material.
  • the ultrasonic vibration device can dispose the ultrasonic transmitter on the inner side of the drum and immerse in the slurry material, and emit ultrasonic waves outward to the slurry material, and the vibration of the slurry material can prevent the slurry particles from rotating on the drum Adhesion on the outer wall.
  • the mechanical vibration device for the drum may be a knocking device or a high frequency oscillating device.
  • the striking device is a device that actively or passively strikes the drum in the circumferential direction or the central axis direction of the drum during the rotation of the drum, so that a relative acceleration is generated between the drum and the material.
  • the tapping device itself has no power, but is called a passive striking device by the power of the drum, and the tapping device itself is powered by an active striking device.
  • the passive striking device may specifically be provided with one or more protrusions on the outer circumference of the drum, and one or more weights having elastic reset means are provided on the frame. Thus, a tap is generated each time the protrusion of the drum passes the weight.
  • the frequency at which the passive tapping device strikes is determined by the number of protrusions and weights and the rotational speed of the drum.
  • the active striking device itself has power to strike the drum at the desired frequency. It is more advantageous to actively strike the device to apply a tap in the direction of the central axis.
  • the vibration direction may be in the direction of the central axis of the drum or in the circumferential direction of the drum.
  • the mechanical structure of the vibration direction in the direction of the central axis of the drum can be referred to the Mozley centrifuge. Only the Mozley centrifuge has a low oscillation frequency, and the main effect is not to prevent the heavy material from depositing on the wall.
  • the mechanical vibration device itself has a reinforcing effect on the stratification of the slurry particles by specific gravity.
  • grooves or ribs which are substantially perpendicular to the flow direction of the slurry may be provided on the inner wall of the rotating drum on which the high-frequency oscillating device is disposed.
  • the working principle can refer to the working principle of the beneficiation shaker.
  • FIG. 1 is a schematic perspective view showing the main structure of a small centrifugal separation device for intermittent operation
  • FIG. 2 is a perspective cross-sectional view showing a centrifugal cup with a rotary excitation device for a small centrifugal separation device with intermittent operation;
  • Figure 3 is a schematic cross-sectional view of a central portion of a straight blade centrifugal separation device, with arrows indicating the separation process and direction of movement of the device during operation;
  • FIG. 4 is a perspective view showing the stereoscopic appearance of a straight blade centrifugal separation device
  • 5 is a schematic perspective view of the drum and the blade in the centrifugal separation device of the straight blade
  • FIG. 6 is a schematic cross-sectional view of the central portion of the centrifugal device of the double spiral blade, and the direction of movement of the material during operation of the device is indicated by an arrow;
  • Figure 7 is a schematic perspective view of a double-spiral blade centrifugal separation device
  • Figure 8 is a schematic perspective view of the inner drum and the blade of the double-screw blade centrifugal separation device;
  • Figure 9 is a perspective view of the light-duty discharge port of the double-spiral blade centrifugal separation device;
  • Figure 10 is a heavy material anti-adhesion device and light and heavy A central cross-sectional view of the centrifugal separation device of the material forced discharge device, with arrows indicating the direction of movement of the material during operation of the device;
  • Figure 11 is a perspective view showing a three-dimensional sectional structure of a centrifugal separation device with a heavy material anti-adhesion device and a light and heavy material forced discharge device;
  • Figure 12 is a perspective view showing the appearance of a centrifugal separation device with a heavy material anti-adhesion device and a light and heavy material forced discharge device;
  • Figure 13 is a perspective view showing the three-dimensional appearance of the centrifugal drum of the centrifugal separation device with the heavy material anti-adhesion device and the light and heavy material forced discharge device;
  • Figure 14 is a perspective view showing the stereoscopic appearance of the inner drum of the centrifugal separation device with the heavy material anti-adhesion device and the light and heavy material forced discharge device;
  • Fig. 15 is a schematic cross-sectional perspective view showing the vibration driving portion of the centrifugal drum of the centrifugal separation device with the heavy material anti-adhesion device and the light and heavy material forced discharge device.
  • Example 1 Small centrifugal separation device for intermittent operation
  • a specific technical solution is to provide a rotary excitation device 02 in the centrifugal cup 011 of the existing flattening rotor centrifuge 01 for rotating the material in the cup during the centrifugation process.
  • the rotary excitation device can be fixed to the cup of the centrifuge cup by a plate stirring blade 022 driven by a DC motor 021.
  • a pair of slip ring carbon brushes 023 are arranged on the shaft of the centrifuge, and one of the two phase power lines of the DC motor is arranged.
  • the other phase is connected to the regulated DC power supply via a slip ring carbon brush, and the other phase of the DC power supply is connected to the centrifuge.
  • the centrifugal device comprises an outer drum 11, an inner drum 12, a differential transmission device 13, a feeding tube 14, the outer drum is a truncated cone-shaped hollow drum, and the side surface is provided with a chute 111 at the lower bottom surface and the lower bottom surface, respectively.
  • the inner drum as the mechanical excitation means is a circular table having a shape similar to that of the outer drum, and a plurality of straight-shaped blades 121 are provided on the side.
  • the outer drum and the smaller diameter of the inner drum are called the top end, and the larger diameter end is the bottom end.
  • the differential transmission has the same structure as the corresponding part of the existing horizontal screw centrifuge, and its function is to drive the outer drum and the discharge spiral differential rotation at a set differential speed driven by the external power.
  • the inner drum of the device corresponds to the discharge spiral of the horizontal screw centrifuge.
  • the straight plate blade maintains a certain gap with the outer drum, and the feed port 122 is located at the near end of the inner drum side.
  • the feed tube 14 extending from one end to the inner drum along the inner drum center line has a structure similar to that of the horizontal screw centrifuge, and is fixed to the frame without rotating together with the inner drum and the outer drum.
  • the cavity between the inner drum and the outer drum is a separation chamber.
  • the separation chamber is also divided into a top end and a bottom end according to the inner drum and the outer drum.
  • the raw material slurry enters the top of the separation chamber through the feed port, and moves spirally along the separation chamber toward the bottom end of the separation chamber.
  • the slurry particles are layered according to specific gravity to form a heavy material layer and a light material layer.
  • the heavy material enters the chute and is discharged through the heavy material discharge port, and the light material moves to the bottom end and to the inner side, and is discharged through the light material discharge port.
  • Example 3 Double helix blade centrifugal separation device
  • the apparatus includes an outer drum 21, an inner drum 22, an excitation screw 221, a heavy discharge spiral 222, and a differential transmission 23.
  • the outer drum is a centrifugal device consisting of a straight section and a section of a cone whose bottom surface matches the straight cylinder.
  • the inner drum and the excitation screw are mechanical excitation devices.
  • the inner drum is similar in shape to the outer drum, and is surrounded by the inner drum and the outer drum to form a separation chamber 24.
  • the straight portion and the conical portion of the inner drum and the outer drum are referred to as a straight section and a tapered section, respectively, and the intersection of the straight section and the cone section of the inner drum and the outer drum is referred to as a shoulder, and the other end of the straight section is referred to as a bottom.
  • a feed port 223 is provided in the middle of the straight section of the inner drum, and a flushing water inlet 224 is provided in the straight section of the inner drum.
  • the feed pipe 25 extending from one end to the inner drum along the center line of the inner drum, the flushing water inlet pipe 251 structure can be set as a concentric pipe structure of the feed pipe, the feed pipe is inside, the flushing water inlet pipe is outside, and the opening is respectively
  • the feed tube is fixed to the frame and does not rotate with the inner drum and the outer drum.
  • the flushing water inlet 224 may be provided in a simple hole shape, and is preferably designed to protrude into the separation chamber into a blind tube having a plurality of fine holes, which can reduce the impact of the flushing water on the sediment filling material.
  • the heavy material discharges the straight straight blade opening, and the opening is as large as possible while keeping the spiral strength, so that the outer edge of the opening to the outer edge of the blade does not exceed one third of the blade width, and the reverse twist is set through the opening.
  • the excitation spiral, the pitch of the excitation spiral is several times the helical pitch of the heavy material discharge, and even the pitch of the excitation spiral can be infinite, that is, the excitation spiral is actually a straight plate.
  • the excitation spiral is as close as possible to the outer edge of the opening and is not to exceed the width of the opening height by half, that is, the width of the excitation spiral does not exceed one third of the width of the spiral discharge spiral blade.
  • the action of the excitation spiral not only drives the slurry material to flow relative to the outer drum but also produces a laminar flow with a velocity gradient, thereby generating a Begogno effect, so that the slurry particles are layered by specific gravity, and the excitation spiral is rotated relative to the outer drum.
  • the light material is accelerated to the bottom end of the separation chamber.
  • the liquid barrier 210 at the bottom of the straight section is provided with a plurality of tubular light material discharge ports 2101, the light material discharge opening inner opening 21011 is at the side of the liquid shield near the outer drum, and the outer opening 21012 is at the inner drum.
  • the light material discharge port utilizes the principle of the communication device to efficiently discharge the light material reaching the bottom of the straight section to the side of the near outer drum, which is called the communication discharge tube.
  • a heavy material discharge port 211 is provided at the tip of the outer cone of the cone.
  • the device can also be understood to be based on the existing horizontal screw centrifuge.
  • the material pushes the spiral opening, and a reverse twisted excitation spiral is arranged in the opening, and the light material discharge port is ejected from the inner drain of the liquid shield to be discharged from the discharge tube disposed in the liquid shield.
  • the slurry material entering the separation chamber from the feed port during work Under the action of centrifugal force, the slurry material entering the separation chamber from the feed port during work, the particles with larger specific gravity swell outward and move to the cone segment under the push of the heavy material discharge spiral, and at the same time, the excitation spiral drives the specific gravity.
  • the intermediate slurry of small particles moves in a spiral direction with respect to the outer drum toward the light discharge port at the bottom of the drum.
  • the thin slurry located inside the separation chamber moves toward the cone section and forms a partial circulation flow with the intermediate slurry.
  • the overall movement tendency of the slurry material in the separation chamber is that the larger specific gravity particles move toward the cone section and are finally discharged from the heavy material discharge outlet in a solid or semi-solid state, and the lighter weight particles move toward the bottom of the drum and are discharged from the light material.
  • the inner thin slurry containing extremely light particles moves toward the cone section and enters the intermediate slurry to form a circulation.
  • Example 4 Centrifugal separation device with heavy material anti-adhesion device and forced discharge device for light and heavy materials.
  • the apparatus includes an outer drum 31, an inner drum 32, a vibrating drum 33, an excitation spiral 321, a heavy discharge spiral 322, a light discharge spiral 323, and a power transmission device 34.
  • the separation chamber 35 is enclosed by both end portions of the inner drum, the vibrating drum and the outer drum.
  • the excitation spiral, the heavy material discharge spiral, and the light material discharge spiral are all fixed on the inner drum.
  • the heavy material discharge spiral and the light material discharge spiral have opposite twist directions, and are in contact with the outer drum or a small gap fit.
  • the structure and principle of the heavy material discharge spiral and the light material discharge spiral are the same as those of the existing horizontal screw centrifuge.
  • the twisting direction of the excitation spiral is the same as that of the light material discharge spiral, and a large gap is left between the excitation spiral and the vibration drum, and a large gap is also left between the inner drum and the inner tube in the form of an opening or an indirect connection with the connecting member.
  • the excitation spiral is located at a centered position between the inner drum and the outer drum, the width being about one third of the distance between the inner drum and the outer drum.
  • Both ends of the outer drum have a conical shape with a bottom surface oppositely, and a heavy material discharge port 311 and a light material discharge port 312 are respectively disposed at the two ends of the outer cone.
  • the vibrating drum has a truncated cone shape, and the diameter of the side near the discharge port is larger, which can be used as the bottom end and the other end as the top end.
  • the vibrating drum is connected to both end portions of the outer drum through the seal ring 36 to form a continuous outer side wall of the separation chamber.
  • the action of the excitation spiral not only drives the slurry material to flow relative to the vibration drum and produces a laminar flow with an appropriate velocity gradient, thereby generating a Begogno effect, causing the slurry particles to be stratified by specific gravity, and the excitation spiral is rotated relative to the vibration drum to make the light material Overcoming the centrifugal force to the top end of the truncated cone.
  • the inner side wall of the vibrating drum is provided with a spiral groove having the same twist direction as the excitation spiral but having a smaller pitch than the excitation spiral.
  • the slightly smaller pitch of the helical groove is intended to cause the direction of flow of the slurry of the relative vibration drum generated by the rotation of the excitation coil to be as perpendicular as possible to the spiral groove.
  • the middle portion of the outer drum is located outside the vibrating drum, and is fixedly connected to both end portions of the outer drum to form a whole.
  • the middle portion of the outer drum is provided with a plurality of repair windows 313 for removing the components between the outer drum and the inner drum.
  • the inner drum has a tapered shape at both ends and a trombone shape in the middle.
  • the middle portion is provided with a feed port 324, and the flushing water inlet 325 is disposed near the bottom of the heavy material discharge end cone.
  • the feeding pipe 37 extending from one end into the inner drum along the center line of the inner drum, the flushing water inlet pipe 371 structure can be set as the concentric pipe structure of the feeding pipe, the feeding pipe is inside, the flushing water inlet pipe is outside, and the opening is respectively opened Feed inlet and flushing water inlet of the drum.
  • the feed tube is fixed to the frame and does not rotate with the inner drum and the outer drum.
  • a pair of sliding engagement joints 326 are provided between the vibrating drum and the two end portions of the outer drum as a center line with the common rotation center line of the inner and outer drums, so that the vibrating drum and the outer drum can be relatively rotated.
  • a pair of protruding connecting members 319 and 339 are disposed between the middle portion of the outer drum and the vibrating drum, and a vibrator 38 capable of generating synchronous vibration is disposed between each pair of connecting members, so that the vibrating drum can be generated in the circumferential direction relative to the outer drum. Rotating vibration.
  • the vibrator obtains drive power from the fixed frame through a conductive slip ring device disposed on the shaft of the drum
  • Conductive slip ring devices are well established in current electromechanical devices and will not be described in detail herein.
  • Commercially available vibrators are available in mechanical and piezoceramic styles and can be configured for use.
  • the slurry material entering the separation chamber from the feed inlet is under the action of centrifugal force, and the particles with larger specific gravity sink to the vibration drum and move to the heavy material discharge port under the action of centrifugal force, and simultaneously stimulate the spiral to carry the specific gravity.
  • the intermediate slurry of the lighter particles moves in a spiral direction toward the light discharge port with respect to the vibration drum.
  • the thin slurry located inside the separation chamber moves toward the heavy material discharge port and forms a partial circulation flow with the intermediate slurry.
  • the heavy material leaving the vibrating drum is dehydrated by the heavy material discharge spiral and discharged to the separation chamber as a solid or semi-solid self-heavy material discharge port.
  • the light material leaving the vibrating drum is discharged from the light discharge port in a slurry state under the common push of the light discharge spiral and the water flow.
  • the vibrating drum causes the rotational vibration of the outer drum in the circumferential direction of rotation to also enhance the effect of stratifying the slurry particles by specific gravity.
  • the vibrator 38 can also be configured to generate a composite frequency oscillator comprising a composite vibration that does not pass the oscillation frequency, wherein the high frequency oscillation is mainly used to prevent heavy material from sticking, and the low frequency oscillation is used to enhance the slurry.

Landscapes

  • Centrifugal Separators (AREA)

Abstract

一种用于分离浆体中不同密度的微细颗粒的离心设备。本离心分离装置利用能够控制其作用强度的机械激励装置(022)对离心场内的浆体物料施加动力激励,能够使浆体物料产生相对于离心装置具有适当速度梯度的层流,增强了拜格诺效应,从而完成精确分选。

Description

离心分离装置 技术领域
本发明涉及一种用于分离浆体中不同密度的微细颗粒的离心设备。 背景技术
现已投入广泛商业应用的具有分离浆体中不同密度的微细颗粒的离心设 备中有一种具有碗状转鼓的离心机, 其在加拿大专利 CA1111809A1中首次公 开, 并在此后一系列专利或专利申请中 (包括 US4608040、 US484678 US5338284, US5462513, US5586965、 US5601523, US6149572、 US6796934、 US2004013260, US20050026766, US20060135338 ) 不断得到改进和完善, 并被称为 Knelson离心分离机或 Falcon离心分离机。 这类分离设备的主要结 构包括一个垂直的、 可以高速旋转的碗状转鼓和位于转鼓外周壁的一条或多 条环状溜槽, 一根给料管通向转鼓底部, 转鼓底部设有可使物料加速旋转的 叶轮, 其中有的技术方案在溜槽内设置了可防止溜槽内的物料滞留沉积的液 体喷射装置, 有的技术方案设置了可以让重物料连续不断地排出的节流喷嘴。 其工作原理是: 待处理的浆体物料由位于机器中央的垂直给料管进入转鼓, 在高达 50-300G加强重力场作用下, 矿物在向外上方运动的同时按照不同的 密度沿转鼓内壁分层。 在物料到达溜槽时, 其中最重的部分富集在溜槽底部 或通过一系列节流喷嘴不断地流出转鼓, 进入重物料收集输出通道, 其它较 轻的成分从转鼓的上缘飞出, 进入轻物料收集输出通道。 该类设备的颗粒分 级遵从析离分层规律, 即密度和粒度各不相同的颗粒的分层规律从下向上是 按照较重的小颗粒、 较重的大颗粒、 较轻的小颗粒及较轻的大颗粒来分布的。 由于薄层浆体物料在分层过程中相对于转鼓内壁或溜槽具有较高的运动速 度, 因此具有使得已分层的颗粒产生混杂的趋势, 这种趋势在物料粒度较小 时更加明显。 因此, 在该设备用于脱除煤中灰份或硫分的情况下, 当粒度小 于一定的限度时, 分离效果迅速下降甚至完全失效。 在已见诸报告的实践中, 最小的有效分离粒度约为 37μιη, 低于此粒度便不能进行有效分离。 中国专利申请 201010123864.4公开了一种离心分离装置, 其技术方案包 括分离腔、 进料口、 至少一个带溜槽的重料出口和至少一个轻料出口, 进料 口与分离腔之间的进料通道处设置辐射状挡板或涡轮等物料加速装置, 配合 分离腔的不同形态构成物料差速旋转推进装置, 该装置使得进入分离腔的浆 体物料随分离腔旋转, 保持旋转的速度与分离腔的旋转速度有适当的差别, 并推动浆体物料最终经各物料出口排除腔外。 该装置充分利用析离效应, 可 以在不增加离心加速度的条件下用于对更微细的浆体颗粒按其密度分层并实 现有效分离。
该装置的不足之处在于: 由于浆体物料在浓度较高时, 即便在流动速度 较快的情况下仍倾向于形成层流, 并在分离腔的外壁形成沉积, 致使高密度 物料难以连续顺畅的排出分离腔。 这种情况使得在设定分离作业参数时被迫 采用较低的浆体浓度或较高的浆体与分离腔的差速, 从而降低了工作效率和 分离精度, 抬高了分选粒度的下限。 发明内容
本发明公开了与上述离心分离装置分离原理相似, 将驱动浆体物料与分 离腔相对运动的方式由利用物料惯性驱动改为由机械装置驱动, 以期精确地 控制浆体物料与分离腔的相对运动。
具体来说, 这种用于按比重分选浆体物料内不同颗粒成分的离心分离装 置, 包括离心装置, 该离心装置旋转产生离心力场, 浆体物料置于离心力场 内或连续通过离心力场, 其中, 还包括机械激励装置, 该机械激励装置对离 心场内的浆体物料施加能够控制强度的动力激励, 能够使浆体物料产生相对 于离心装置具有适当速度梯度的层流。
离心力场中具有适当速度梯度的浆体层流运动产生最大的拜格诺效应, 使得浆体物料的颗粒按不同比重和粒度产生析离分层效果。 浆体流速过快, 容易产生湍流, 破坏分层, 浆体流速过慢, 则容易产生沉淀。
其中, 将物料置于离心力场中的技术方案, 其作业方式为间断式, 装置 结构较为简单, 适合应用在小型的实验室装置上。 具体技术方案是在摆平转 子离心机的离心杯内设置一个可以在离心过程中对杯内物料进行旋转搅拌的 叶片来实现。 其中的摆平转子离心机即离心装置, 叶片装置即机械激励装置。 物料连续通过离心力场的技术方案, 其作业方式连续, 在生产应用中更 具有实用价值。
物料连续通过离心力场的技术方案为:
该离心分离装置中的离心装置包括转鼓、 进料口、 重料出口、 轻料出口, 转鼓在动力驱动下能够绕其自身的中轴线旋转, 一端或两端开放, 也可以两 端均封闭, 在其绕中轴线旋转时能够容纳浆体在其内侧作旋转运动, 进料口 位于转鼓内侧, 用于向转鼓内输送待分离浆体物料, 重料和轻料出口分别位 于转鼓的外侧和相对内侧, 或分别位于转鼓的两端, 机械激励装置为设置在 转鼓内侧与浆体物料接触并绕转鼓中轴线相对转鼓旋转的带有叶片的类圆鼓 状装置, 类圆鼓状装置也称为内鼓, 转鼓也称为外鼓。
根据分离过程中轻、 重物料的运动方向, 可以将进料口设置在转鼓的一 端, 轻、 重料出口设置在另一端, 这样分离过程中轻、 重物料向同一个方向 运动; 也可以将进料口设置在转鼓的中间, 轻、 重料出口分别设置在两端, 这样分离过程中轻、 重物料向相反的两个方向运动, 从而使得分离效果更加 显著, 分离比例易于控制。
所述的轻物料是指包含了较多比重较轻的颗粒的浆体, 同理, 重物料是 指包含了较多比重较重的颗粒的浆体。 轻物料和重物料是在同一个分离过程 中相对而言的, 有时还把所含颗粒比重居于两者之间或含有轻、 重比重颗粒 比例相当的浆体称为中物料。 轻物料、 重物料及中物料在工业上有时也被分 别简称为轻料、 重料和中料。
本发明还可在转鼓上设置重物料抗附着装置, 避免重物料在分层后附壁 积存, 造成连续作业中断。
在转鼓上设置重物料抗附着装置, 可以采用机械推送装置, 如螺旋推送 装置, 其结构与现有的卧螺式离心机的螺旋推送装置相似。
抗附着装置也可以采用震动装置。 所述震动装置可以采用针对转鼓施加 作用的机械震动装置, 也可以采用针对浆体物料施加作用的超声波震动装置。
所述超声波振动装置可以将超声波发射器设置在转鼓内侧并浸入浆体物 料, 向外对浆体物料发射超声波, 浆体物料的震动可以阻止浆体颗粒在转鼓 外壁上的附着。
针对转鼓的机械震动装置可以采用敲击装置, 也可以采用高频震荡装置。 敲击装置是在转鼓旋转过程中主动或被动地在转鼓的圆周方向或中心轴 方向敲击转鼓, 使得转鼓与物料之间产生相对加速度的装置。 敲击装置本身 没有动力, 而是靠转鼓的动力来起作用的称之为被动敲击装置, 敲击装置本 身具有动力的称之为主动敲击装置。
被动敲击装置可以具体为在转鼓的外周设置一个或一个以上的突起, 在 机架上设置一个或一个以上具有弹性复位装置的重锤。 这样, 当转鼓的突起 每次经过重锤时产生一次敲击。 被动敲击装置敲击的频率由突起和重锤的数 目以及转鼓的转速共同决定。
主动敲击装置本身具有动力, 可以按需要的频率对转鼓实施敲击。 主动 敲击装置以在中心轴方向施加敲击更具有优越性。
针对转鼓的高频震荡装置中, 振动方向可以在转鼓中心轴方向上, 也可 以在转鼓的旋转圆周方向上。 振动方向在转鼓中心轴方向上的机械结构可以 参考莫兹利 (Mozley) 离心机。 只是莫兹利离心机的震荡频率较低, 主要作 用不是用来阻止重物料沉淀附壁。
机械震动装置本身对浆体颗粒按比重分层具有加强作用。
为了增强析离分层效果, 可以在设置高频震荡装置的转鼓的内壁上设置 走向与浆体流动方向大致垂直的沟槽或罗纹。 其工作原理可以参考选矿摇床 的工作原理。 附图说明
下面结合附图及实施例进一步说明本发明的具体技术方案:
图 1是间断作业的小型离心分离装置的主要结构立体外观示意图; 图 2是间断作业的小型离心分离装置带旋转激励装置离心杯的立体剖开 示意图;
图 3是直板叶片离心分离装置的中央剖面示意图, 用箭头表示出该装置 工作时物料的分离过程及运动方向;
图 4是直板叶片离心分离装置的立体外观示意图; 图 5是直板叶片离心分离装置内鼓及叶片的立体外观示意图; 图 6是双螺旋叶片离心分离装置的中央剖面示意图, 用箭头表示出该装 置工作时物料的运动方向;
图 7是双螺旋叶片离心分离装置的立体外观示意图;
图 8是双螺旋叶片离心分离装置内鼓及叶片的立体外观示意图; 图 9是双螺旋叶片离心分离装置轻料排出口立体剖开示意图; 图 10是带有重物料抗附着装置及轻、重物料强制排出装置的离心分离装 置的中央剖面示意图, 用箭头表示出该装置工作时物料的运动方向;
图 11是带有重物料抗附着装置及轻、重物料强制排出装置的离心分离装 置的立体剖开结构示意图;
图 12是带有重物料抗附着装置及轻、重物料强制排出装置的离心分离装 置的立体外观示意图;
图 13是带有重物料抗附着装置及轻、重物料强制排出装置的离心分离装 置震动鼓的立体外观示意图;
图 14是带有重物料抗附着装置及轻、重物料强制排出装置的离心分离装 置内鼓的立体外观示意图; 以及
图 15是带有重物料抗附着装置及轻、重物料强制排出装置的离心分离装 置震动鼓震动驱动部分横截面剖开立体外观示意图。 具体实施方式
实施例 1: 间断作业的小型离心分离装置
具体技术方案是在现有的摆平转子离心机 01的离心杯 011内设置一个可 以在离心过程中对杯内物料进行旋转搅拌的旋转激励装置 02。 旋转激励装置 可以用一个由直流电机 021驱动的平板搅拌叶片 022固定在离心杯杯口, 在 离心机中轴上设置一副滑环碳刷 023,直流电机的两相电源线的中的一相与离 心机直接连接, 另一相通过滑环碳刷与调压直流电源连接, 直流电源的另一 相与离心机连接。 平板搅拌叶片边缘与离心杯杯壁间留有较大间隙。
工作时将浆体物料置于离心杯中, 安装好搅拌叶片。 先让搅拌叶片转动 起来, 使浆体物料均匀混合, 然后开动离心机, 待离心机达到一定转速并保 持一段时间, 让浆体物料充分分层。 停止搅拌叶片转动, 然后降低离心机转 速直至停止。 取出离心杯, 手工分离已分层的浆体物料。 实施例 2: 直板叶片离心分离装置
具体技术方案是: 其离心装置包括外鼓 11、 内鼓 12、 差速传动装置 13、 进料管 14, 外鼓为圆台形空心圆鼓, 侧面近下底面处和下底面分别设置带溜 槽 111的重料出口 112和轻物料出口 113。作为机械激励装置的内鼓为与外鼓 形状相似的圆台, 侧面设置数条直板形叶片 121。外鼓、 内鼓直径较小的一端 称为顶端, 直径较大的一端为底端。 差速传动装置与现有的卧螺式离心机的 相应部分结构相同, 其功能是在外接动力的驱动下按设定的差速驱动外鼓和 排料螺旋差速旋转。 该装置的内鼓相当于卧螺式离心机的排料螺旋。 直板形 叶片与外鼓保持一定间隙, 进料口 122位于内鼓侧面近顶端处。 沿内鼓中心 线从一端伸入内鼓的进料管 14结构与卧螺式离心机的相应结构相似, 固定在 机架上, 不与内鼓和外鼓一起转动。 内鼓和外鼓之间的腔隙为分离腔 15, 分 离腔依内鼓和外鼓两端的称谓也分为顶端和底端。
工作时原料浆体通过进料口进入分离腔顶端, 沿分离腔呈螺旋形向分离 腔底端运动。 过程中浆体颗粒按比重不同分层, 形成重物料层和轻物料层。 重物料进入溜槽并经重物料排料口排出, 轻物料向底端并向内侧运动, 经轻 物料排出口排出。 实施例 3 : 双螺旋叶片离心分离装置
该装置包括外鼓 21、 内鼓 22、 激励螺旋 221、 重料排出螺旋 222和差速 传动装置 23。 外鼓为离心装置, 由一段直筒和一段底面与直筒匹配的圆锥构 成空腔。 内鼓和激励螺旋为机械激励装置。 内鼓与外鼓形状相似, 由内鼓、 和外鼓共同围成分离腔 24。 内鼓、 外鼓的直筒部分和圆锥部分分别称为直段 和锥段, 内鼓、 外鼓的直段与锥段交界处称为肩部, 直段的另一端称为底部。 内鼓直段的中间位置设置了进料口 223, 内鼓直段近锥部设置了冲洗水进口 224。沿内鼓中心线从一端伸入内鼓的进料管 25,冲洗水输入管 251结构可以 设置为进料管的同心管结构, 进料管在内, 冲洗水输入管在外, 分别开口在
6 内鼓的进料口和冲洗水进口处。 进料管固定在机架上, 不与内鼓和外鼓一起 转动。 冲洗水进口 224可以设置为简单的孔状, 更好的设计为突向分离腔的 开有多个细孔的盲管状, 这样可以减小冲洗水对以沉淀充物料的冲击。 重料 排出螺旋直段叶片开孔, 在保持螺旋强度的前提下开尽量开大, 使得开孔外 缘到叶片外缘的尺寸不超过叶片宽度的三分之一, 通过开孔设置反向扭曲的 激励螺旋, 激励螺旋的螺距为重料排出螺旋螺距的数倍, 甚至激励螺旋的螺 距可以为无穷大, 即激励螺旋实际为直板。 激励螺旋尽量靠近开孔外缘, 并 取不超过开孔高度一半的宽度, 即激励螺旋的宽度不超过重料排出螺旋叶片 宽度的三分之一。 激励螺旋的作用除了驱动浆体物料相对于外鼓鼓流动并产 生具有速度梯度的层流, 从而产生拜格诺效应, 使的浆体颗粒按比重分层以 夕卜, 激励螺旋相对外鼓转动使得轻料向分离腔底端加速运动。 位于直段底部 的挡液板 210设置数个管状轻物料排出口 2101,轻物料排出口内部开口 21011 在挡液板近外鼓侧面处, 外部开口 21012在近内鼓处。 轻物料排出口利用连 通器的原理高效率地排出到达直段底部的沉降至近外鼓侧面处的轻物料, 称 为连通器排料管。 在外鼓锥段近锥尖处设置重料排出口 211。
该装置还可以理解为是在在现有卧螺式离心机的基础上改进而成的。 物 料推送螺旋开孔, 并在开孔内设置反向扭曲的激励螺旋, 轻料排出口由经挡 液板内缘溢出改为由设置在挡液板内的连通器排料管喷出。
工作时自进料口进入分离腔的浆体物料在离心力的作用下, 比重较大的 颗粒向外鼓下沉并在重料排出螺旋的推动下向锥段移动, 同时激励螺旋带动 携带比重较小颗粒的中间浆体相对于外鼓呈螺旋方向向外鼓底部轻料排出口 运动。 作为补偿运动, 位于分离腔内侧的稀薄浆体向锥段运动, 并与中间浆 体形成局部循环流。 分离腔内浆体物料的总体运动趋势是比重较大的颗粒向 锥段运动并最终从重料排出口以固体或半固体状态排出, 比重较轻的颗粒向 外鼓底部运动并从轻料排出口以浆体状态排出, 含有极轻颗粒的内侧稀薄浆 体向锥段运动并进入中间浆体形成循环。 实施例 4:带有重物料抗附着装置及轻重物料强制排出装置的离心分离装 置。
7 该装置包括外鼓 31、 内鼓 32、 震动鼓 33、 激励螺旋 321、 重料排出螺旋 322、轻料排出螺旋 323和动力传导装置 34。 由内鼓、震动鼓和外鼓的两端部 分共同围成分离腔 35。 激励螺旋、 重料排出螺旋、 轻料排出螺旋均固定在内 鼓上。 重料排出螺旋和轻料排出螺旋的扭曲方向相反, 与外鼓接触配合或小 间隙配合。 重料排出螺旋和轻料排出螺旋的结构与原理与现有的卧螺式离心 机的锥段结构相同。 激励螺旋的扭曲方向与轻料排出螺旋相同, 激励螺旋与 震动鼓之间留有较大的间隙, 与内鼓之间以开孔或以连接件间接连接的形式 也留有较大间隙。 比如, 可以设置成激励螺旋位于内鼓和外鼓之间的居中位 置, 宽度约为内鼓和外鼓之间距离的三分之一。 外鼓两端为底面相对的圆锥 状,在两端近锥尖处分别设置重料排出口 311和轻料排出口 312。震动鼓为圆 台状, 近重料排出口一侧的直径较大, 可作为底端, 另一端作为顶端。 震动 鼓通过密封圈 36与外鼓的两端部分连接形成分离腔连续的外侧壁。激励螺旋 的作用除了驱动浆体物料相对于震动鼓流动并产生具有适当速度梯度的层 流, 从而产生拜格诺效应, 致使浆体颗粒按比重分层以外, 激励螺旋相对震 动鼓转动使得轻料克服离心力向圆台形震动鼓的顶端运动。 震动鼓内侧壁设 置扭曲方向与激励螺旋相同、 但螺距较激励螺旋略小的螺旋线形沟槽。 螺旋 线形沟槽螺距略小的用意是使得由激励螺旋旋转产生的相对震动鼓的浆体流 动方向与螺旋线形沟槽尽可能垂直。 外鼓的中间部分位于震动鼓外侧, 分别 与外鼓的两端部分固定连接形成一个整体。 外鼓的中间部分开有数个修理窗 313 ,用于拆卸外鼓与内鼓之间的部件。 内鼓形状两端为锥形, 中间为圆台形。 中间部分设置了进料口 324, 重料排出端圆锥近底部设置了冲洗水进口 325。 沿内鼓中心线从一端伸入内鼓的进料管 37, 冲洗水输入管 371结构可以设置 为进料管的同心管结构, 进料管在内, 冲洗水输入管在外, 分别开口在内鼓 的进料口和冲洗水进口处。 进料管固定在机架上, 不与内鼓和外鼓一起转动。 震动鼓与外鼓两端部分之间设置与内外鼓的共同旋转中心线为中心线的两副 滑动配合连接 326,使得震动鼓与外鼓可以相对转动。外鼓的中间部分与震动 鼓之间设置数对突起的连接件 319和 339,每对连接件之间设置一个可以产生 同步振动的震动器 38, 使得震动鼓可以相对外鼓产生沿旋转圆周方向的旋转 振动。 震动器通过设置在转鼓中轴上的导电滑环装置从固定机架获得驱动电
8 力。 导电滑环装置在当前的机电设备中是成熟技术, 这里不再详述。 市售的 震动器分机械式和压电陶瓷式, 均可以配置使用。
工作时, 自进料口进入分离腔的浆体物料在离心力的作用下, 比重较大 的颗粒向震动鼓下沉并在离心力的作用下向重料排出口方向移动, 同时激励 螺旋带动携带比重较轻颗粒的中间浆体相对于与震动鼓呈螺旋状向轻料排出 口方向运动。 作为补偿运动, 位于分离腔内侧的稀薄浆体向重料排出口方向 运动, 并与中间浆体形成局部循环流。 离开震动鼓的重料在重料排出螺旋的 推动下脱水并以固态或半固态自重料排出口排出分离腔。 离开震动鼓的轻料 在轻料排出螺旋和水流的共同的推动下以浆体状态自轻料排出口排出分离 腔。
震动鼓使得外鼓产生的沿旋转圆周方向的旋转振动还具有增强浆体颗粒 按比重分层效果的作用。 为了进一步增强这种作用, 还可以将震动器 38设置 为可以产生包含不通震荡频率的复合振动的复合频率震荡器, 其中的高频震 荡主要用来防止重物料贴附, 低频震荡用来增强浆体颗粒按比重分层效果的 作用。
9

Claims

权利要求
1.一种用于按比重分选浆体物料内不同颗粒成分的离心分离装置, 包括 离心装置, 所述离心装置旋转产生离心力场, 浆体物料置于所述离心力场内 或连续通过所述离心力场, 其特征在于, 还包括机械激励装置, 所述机械激 励装置对所述离心力场内的浆体物料施加能够控制强度的动力激励, 能够使 所述浆体物料产生相对于所述离心装置具有适当速度梯度的层流。
2. 如权利要求 1所述的离心分离装置, 其特征在于, 所述离心装置为摆 平转子离心机, 所述机械激励装置为能够在离心过程中对杯内物料进行旋转 搅拌的叶片装置。
3. 如权利要求 1所述的离心分离装置, 其特征在于, 所述离心装置包括 转鼓、 进料口、 重料出口、 轻料出口, 所述转鼓在动力驱动下能够绕其自身 的中轴线旋转, 并能够容纳浆体在其内侧作旋转运动, 所述进料口位于所述 转鼓内侧, 所述重料出口和所述轻料出口分别位于所述转鼓的同一端的外侧 和相对内侧, 或分别位于所述转鼓的两端, 所述机械激励装置为设置在所述 转鼓内侧与浆体物料接触并绕所述转鼓中轴线相对所述转鼓旋转的带有叶片 的类圆鼓状装置, 所述类圆鼓状装置称为内鼓, 所述转鼓称为外鼓。
4. 如权利要求 3所述的离心分离装置, 其特征在于, 所述外鼓为圆台形 空心圆鼓, 所述外鼓侧面近下底面处设置带溜槽的重料出口, 下底面设置轻 料出口, 所述内鼓为与所述外鼓形状相似的圆台, 侧面设置直板形叶片, 叶 片与所述外鼓之间留有间隙, 进料口位于所述内鼓侧面近顶端处。
5. 如权利要求 3所述的离心分离设备, 其特征在于, 所述转鼓内或所述 转鼓上设置有重料抗附着装置。
6. 如权利要求 5所述的离心分离装置, 其特征在于, 所述重料抗附着装 置为重料排出螺旋, 所述机械激励装置为设置在所述重料排出螺旋的开孔内 反向扭曲的激励螺旋, 轻料排出口为设置在挡液板内的连通器排料管。
7. 如权利要求 5所述的离心分离装置, 其特征在于, 所述重料抗附着装 置由设置为圆台形的震动鼓及能够使所述震动鼓在旋转圆周方向上振动的高 频震荡装置组成。
8. 如权利要求 7所述的离心分离设备, 其特征在于, 所述离心分离装置 的机械激励装置为带激励螺旋的内鼓, 所述激励螺旋与震动鼓之间留有较大 的间隙, 与所述内鼓之间以开孔或以连接件间接连接的形式也留有较大间隙, 激励螺旋能够使得轻料克服离心力向圆台形震动鼓的顶端运动。
9. 如权利要求 8所述的离心分离设备, 其特征在于, 所述离心分离装置 包括重料排出螺旋和轻料排出螺旋, 所述重料排出螺旋的扭曲方向与激励螺 旋相反, 所述轻料排出螺旋的扭曲方向与激励螺旋相同。
10. 如权利要求 8所述的离心分离设备,其特征在于,在所述震动鼓内侧 壁设置扭曲方向与激励螺旋相同、 但螺距较激励螺旋略小的螺旋线形沟槽。
11
PCT/CN2013/081508 2012-08-15 2013-08-15 离心分离装置 WO2014026618A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US14/422,145 US20150209804A1 (en) 2012-08-15 2013-08-15 Centrifugal separation device
AU2013304459A AU2013304459A1 (en) 2012-08-15 2013-08-15 Centrifugal separation device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210290352 2012-08-15
CN201210290352.6 2012-08-15

Publications (1)

Publication Number Publication Date
WO2014026618A1 true WO2014026618A1 (zh) 2014-02-20

Family

ID=50076577

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/081508 WO2014026618A1 (zh) 2012-08-15 2013-08-15 离心分离装置

Country Status (4)

Country Link
US (1) US20150209804A1 (zh)
CN (1) CN103586141B (zh)
AU (1) AU2013304459A1 (zh)
WO (1) WO2014026618A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108067359B (zh) * 2018-02-05 2024-03-22 南京达旻机械制造有限公司 卧式螺旋离心机的转鼓排液装置
CN108067360B (zh) * 2018-02-05 2024-03-19 南京达旻机械制造有限公司 卧式螺旋离心机的转鼓排液机构
CN109201346A (zh) * 2018-09-01 2019-01-15 李正福 一种用于食品检测的高速离心机
CN109530102A (zh) * 2018-12-05 2019-03-29 珠海力新环保有限公司 一种离心分离装置及其废气处理方法
CN114618693A (zh) * 2020-12-10 2022-06-14 南京中船绿洲机器有限公司 一种卧螺机进料管固定装置及其方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH105626A (ja) * 1996-06-26 1998-01-13 Mitsubishi Kakoki Kaisha Ltd 遠心分離装置
DE10300976A1 (de) * 2002-01-17 2003-07-31 Mann & Hummel Filter Zentrifuge zum Abscheiden von Partikeln aus einem Fluidstrom
DE102008017368A1 (de) * 2008-04-04 2009-10-15 Pieralisi Deutschland Gmbh Klassierer
CN201529572U (zh) * 2009-09-09 2010-07-21 江苏华大离心机制造有限公司 卧式螺旋卸料沉降离心机
CN102189041A (zh) * 2010-03-15 2011-09-21 钦州鑫能源科技有限公司 离心分离装置

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1749057A (en) * 1926-11-11 1930-03-04 Arthur L Armentrout Apparatus for separating solids from liquids
US2528974A (en) * 1945-09-19 1950-11-07 Process Dev Company Method and apparatus for centrifugal separation
NL173874C (nl) * 1951-12-14 Petroles Cie Francaise Combinatie van een produktiesamenstel en een inrichting voor het installeren van een produktiesamenstel op een onder water gelegen boorput.
DD96856A1 (zh) * 1972-05-24 1973-04-12
US4743226A (en) * 1983-04-29 1988-05-10 Geosource Inc. High capacity continuous solid bowl centrifuge
DE3518885A1 (de) * 1985-05-25 1986-11-27 Bayer Ag, 5090 Leverkusen Vollmantelschneckenzentrifuge mit nachklaervorrichtung
DE3608664A1 (de) * 1986-03-14 1987-09-17 Krauss Maffei Ag Vollmantelzentrifuge
DE4005755A1 (de) * 1989-10-17 1991-04-18 Kloeckner Humboldt Deutz Ag Vollmantel-schneckenzentrifuge
DE4115347C2 (de) * 1991-05-10 1999-07-22 Baker Hughes De Gmbh Vollmantel-Schneckenzentrifuge zur Klassierung eines Feststoff-Flüssigkeitsgemisches
JPH0663450A (ja) * 1992-08-03 1994-03-08 Alfa Laval Separation Inc スクリューデカンタ型遠心分離機
SE505557C2 (sv) * 1995-12-21 1997-09-15 Alfa Laval Separation Ab Dekantercentrifug
CN1088629C (zh) * 1999-11-08 2002-08-07 吕资谷 静流式卧式螺旋离心机
KR100494228B1 (ko) * 1999-12-15 2005-06-13 도모에고교 가부시키가이샤 원심선별장치
US6790169B2 (en) * 2000-08-31 2004-09-14 Varco I/P, Inc. Centrifuge with feed tube adapter
DE20208119U1 (de) * 2002-05-24 2002-08-14 Hiller Gmbh Dekantierzentrifuge für die Gewinnung von Frucht- oder Gemüsesäften
US20100120600A1 (en) * 2008-11-10 2010-05-13 Andritz Separation Inc. Vibrating centrifuge
IT1402117B1 (it) * 2010-07-29 2013-08-28 Cassani Metodo e dispositivo per separare particelle di materiali sintetici diversi

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH105626A (ja) * 1996-06-26 1998-01-13 Mitsubishi Kakoki Kaisha Ltd 遠心分離装置
DE10300976A1 (de) * 2002-01-17 2003-07-31 Mann & Hummel Filter Zentrifuge zum Abscheiden von Partikeln aus einem Fluidstrom
DE102008017368A1 (de) * 2008-04-04 2009-10-15 Pieralisi Deutschland Gmbh Klassierer
CN201529572U (zh) * 2009-09-09 2010-07-21 江苏华大离心机制造有限公司 卧式螺旋卸料沉降离心机
CN102189041A (zh) * 2010-03-15 2011-09-21 钦州鑫能源科技有限公司 离心分离装置

Also Published As

Publication number Publication date
AU2013304459A1 (en) 2015-03-05
CN103586141B (zh) 2016-09-28
CN103586141A (zh) 2014-02-19
US20150209804A1 (en) 2015-07-30

Similar Documents

Publication Publication Date Title
WO2014026618A1 (zh) 离心分离装置
CN208976067U (zh) 一种卧式螺旋离心机
WO2011113335A1 (zh) 离心分离装置
JP2018065134A (ja) 粉体の振動流動層式分離装置
CN103097032B (zh) 利用加压空气促进固体传送的离心液体分离机
CN212418290U (zh) 一种改进型复合力选矿设备
CN201565350U (zh) 螺旋振动式离心选矿机
CN103447167A (zh) 卧式螺旋卸料沉降离心机用布料加速器
JP2015199031A (ja) 粉体の振動流動層式分離装置
US5792039A (en) Decanter centrifuge for separating feed suspension into fractions and method for operating same
CN111068895A (zh) 一种复合力选矿设备
CN107597546A (zh) 一种微细矿物高效分级装置
CN211964553U (zh) 一种复合力选矿设备
US11938420B2 (en) Method and apparatus utilizing solids discharge ports with dump gates for removing particulates from a fluid
RU2360739C1 (ru) Центробежный виброконцентратор
CN107398357A (zh) 卧式螺旋沉降离心机加料腔结构
CN110064506B (zh) 一种石英砂水力分选清洗装置
CN207401718U (zh) 一种微细矿物高效分级装置
CN112122016B (zh) 卧式离心机的离心过滤装置
RU192012U1 (ru) Шнековая центрифуга для отделения из суспензии наночастиц
CN205965551U (zh) 一种均质乳化器
CN207357545U (zh) 一种结构改良的离心筛
EA014356B1 (ru) Способ и устройство для обогащения материалов, находящихся в виде твердых частиц
CN202962822U (zh) 圆锥粉料初清筛
RU2147934C1 (ru) Механический лотковый шлюз и способ обогащения тяжелых минералов и металлов

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13829741

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14422145

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2013304459

Country of ref document: AU

Date of ref document: 20130815

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 13829741

Country of ref document: EP

Kind code of ref document: A1