WO2014024781A1 - Method for manufacturing porous body, porous body, and structure - Google Patents

Method for manufacturing porous body, porous body, and structure Download PDF

Info

Publication number
WO2014024781A1
WO2014024781A1 PCT/JP2013/070944 JP2013070944W WO2014024781A1 WO 2014024781 A1 WO2014024781 A1 WO 2014024781A1 JP 2013070944 W JP2013070944 W JP 2013070944W WO 2014024781 A1 WO2014024781 A1 WO 2014024781A1
Authority
WO
WIPO (PCT)
Prior art keywords
porous body
layer
alloy
metal
film
Prior art date
Application number
PCT/JP2013/070944
Other languages
French (fr)
Japanese (ja)
Inventor
智資 平野
優 瀧本
Original Assignee
日本発條株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本発條株式会社 filed Critical 日本発條株式会社
Priority to JP2014529463A priority Critical patent/JP6182140B2/en
Publication of WO2014024781A1 publication Critical patent/WO2014024781A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F7/00Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
    • B22F7/002Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of porous nature
    • B22F7/004Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of porous nature comprising at least one non-porous part
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C24/00Coating starting from inorganic powder
    • C23C24/02Coating starting from inorganic powder by application of pressure only
    • C23C24/04Impact or kinetic deposition of particles
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/02Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material
    • C23C28/021Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material including at least one metal alloy layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/11Making porous workpieces or articles

Definitions

  • the present invention relates to a method for producing a porous body, a porous body, and a structure including the porous body.
  • Patent Document 1 discloses a method of performing metal plating on a resin-made three-dimensional network porous body made of resin foam, nonwoven fabric, felt, woven fabric, or the like.
  • pores are the gaps in the network-like three-dimensional structure formed by the resin and the space after the three-dimensional structure is removed. For this reason, the shape of some of the pores becomes a linear shape, and it is difficult to form, for example, minute cellular pores whose diameter is controlled to 0.3 mm or less.
  • the spacer method it is possible to form pores having a smaller diameter (for example, about several tens of ⁇ m to 0.3 mm) than the plating method or the foaming method by adjusting the diameter of the spacer powder.
  • the porosity of the metal porous body cannot be made very high, and remains at, for example, about 70% even if it is high.
  • the present invention has been made in view of the above, and it is possible to easily control the pore diameter and the porosity, and to form a porous body having a smaller pore diameter and a higher porosity than before.
  • An object of the present invention is to provide a method for producing a porous body, a porous body, and a structure including such a porous body.
  • a method for producing a porous body according to the present invention includes a first layer made of a material that can be dissolved in a predetermined solution, and an outer side of the first layer. Forming a film formed by coating at least a part with a metal or an alloy, and forming a film composed of a composite powder having a second layer that is less soluble in the solution than the first layer. And a pore forming step of forming pores in the coating by immersing the coating in the solution and removing the material from the coating.
  • the method for producing a porous body of the present invention is formed by coating a first layer made of a material that can be thermally decomposed at a predetermined temperature and at least a part of the outside of the first layer with a metal or an alloy.
  • the composite powder is formed by cutting a composite wire obtained by coating a wire made of the material of the first layer with a material of the second layer.
  • the film forming step includes accelerating the composite powder together with a gas and spraying and depositing on the surface of the base material while maintaining at least the surface of the composite powder in a solid state.
  • the film forming step is characterized in that the composite powder is mixed with a powder consisting only of the same kind of metal or alloy as the outermost layer metal or alloy and sprayed onto the base material. To do.
  • the film forming step is characterized in that the composite powder is filled in a mold and pressure is applied.
  • the material is a metal or an alloy different from the second layer.
  • the method for producing a porous body further includes a step of heat-treating the film before the pore forming step.
  • the solution is an acidic solution
  • the ionization tendency of the metal or alloy forming the second layer is smaller than the ionization tendency of the material.
  • the material is aluminum or an aluminum alloy
  • the metal or alloy forming the second layer is copper or a copper alloy.
  • the solution is an acidic solution
  • the second layer is made of a valve metal
  • the material is more soluble than the passive film formed on the surface of the second layer. It is easily dissolved in liquid.
  • the material is copper or a copper alloy
  • the metal or alloy forming the second layer is aluminum, an aluminum alloy, nickel, a nickel alloy, titanium, a titanium alloy, chromium, or chromium. It is one of alloys.
  • the material is a chloride that is soluble in water or an aqueous solution.
  • the chloride is sodium chloride.
  • the material is a resin that is soluble in an organic solvent.
  • the material is a resin that is soluble in an alkaline solution.
  • the composite powder is a third layer provided outside the second layer, and is different from the metal or alloy forming the second layer. And a third layer that is more difficult to dissolve in the solution than the first layer.
  • the material is a resin.
  • the composite powder is a third layer provided outside the second layer, and is made of a second metal or alloy different from the metal or alloy. And a third layer that does not melt at the temperature.
  • the method for producing a porous body further includes a step of forming a plating layer on the film in which the pores are formed after the pore forming step.
  • the porous body according to the present invention has a cell wall made of a metal, an alloy or an intermetallic compound, and pores are formed between the cell walls, and the average pore diameter of the pores is 0.01 mm.
  • the ratio of the pore volume to the porous body is 30% or more and less than 100%.
  • the porous body according to the present invention has a cell wall made of a metal, an alloy or an intermetallic compound, and pores are formed between the cell walls, and the average pore diameter of the pores is 0.01 mm.
  • the ratio of the pore volume to the porous body is 85% or more and less than 100%.
  • the porous body according to the present invention has a cell wall made of a metal, an alloy, or an intermetallic compound, and pores are formed between the cell walls, the pores being in the thickness direction of the porous body.
  • a flat shape having a larger diameter in a plane orthogonal to the thickness direction than the diameter in is formed.
  • an average pore diameter in a cross section perpendicular to the thickness direction of the pores is 0.01 mm or more and 1 mm or less, and a volume ratio of the pores to the porous body is 30% or more and less than 100%.
  • the cell wall has a layer structure in which a plurality of different metals or alloys are stacked.
  • the porous body further includes a plating layer formed on the cell wall.
  • the porous body is characterized in that the cell wall is made of a metal or an alloy and further has an intermetallic compound layer formed on the surface of the cell wall.
  • the pores are formed by covering a first layer made of a material that can be dissolved in a predetermined solution and at least a part of the outside of the first layer with a metal or an alloy,
  • the composite powder having the second layer, which is less soluble in the solution than the first layer, is accelerated together with the gas, and at least the surface of the composite powder is kept in a solid-phase state.
  • the film is formed by spraying on the surface and depositing the film, immersing the film in the solution, and removing the material from the film.
  • the cell wall is made of a metal or an alloy
  • the pores are made of a first layer made of a material that can be thermally decomposed at a predetermined temperature and at least a part of the outside of the first layer made of metal or
  • a composite powder formed by coating with an alloy and having a second layer that does not melt at the temperature is accelerated together with a gas, and at least the surface of the composite powder is kept in a solid phase state on the surface of the substrate.
  • the film is formed by spraying and depositing, and the film is heated to the temperature to remove the material from the film.
  • the structure according to the present invention includes a base material formed of a metal or an alloy, and the porous body formed on the base material.
  • a film made of a composite powder having a first layer and a second layer is formed, and pores are formed in the film by removing the material forming the first layer from the film.
  • the diameter and porosity of the pores formed in the porous body can be easily controlled, and a porous body having a smaller pore diameter and higher porosity than before can be formed.
  • FIG. 1 is a flowchart showing a method for manufacturing a porous body according to Embodiment 1 of the present invention.
  • FIG. 2 is a cross-sectional view showing a composite powder used in the method for producing a porous body shown in FIG.
  • FIG. 3 is a schematic view showing an outline of a cold spray apparatus used in the film forming step shown in FIG.
  • FIG. 4 is a cross-sectional view schematically showing a film formed by the film forming process shown in FIG.
  • FIG. 5 is a cross-sectional view schematically showing a structure including a porous body according to Embodiment 1 of the present invention.
  • FIG. 6 is a cross-sectional view showing a composite powder used in Embodiment 4 of the present invention.
  • FIG. 1 is a flowchart showing a method for manufacturing a porous body according to Embodiment 1 of the present invention.
  • FIG. 2 is a cross-sectional view showing a composite powder used in the method for producing a porous
  • FIG. 7 is a cross-sectional view schematically showing a structure including a porous body according to Embodiment 4 of the present invention.
  • FIG. 8 is a flowchart showing a method for manufacturing a porous body according to the fifth embodiment of the present invention.
  • FIG. 9 is a flowchart showing a method for manufacturing a porous body according to the sixth embodiment of the present invention.
  • FIG. 10 is a schematic diagram for explaining a porous body manufacturing method according to Embodiment 6 of the present invention.
  • FIG. 11 is sectional drawing which shows typically the structure provided with the porous body which concerns on Embodiment 6 of this invention.
  • FIG. 12 is a cross-sectional view schematically showing a structure including a porous body according to Embodiment 7 of the present invention.
  • FIG. 13 is a schematic diagram for explaining a method for producing a composite powder used in the method for producing a porous body according to Embodiment 9 of the present invention.
  • FIG. 14 is an electron micrograph of a cross section of the film formed by the film forming process.
  • FIG. 15 is an electron micrograph of a cross section of the porous body according to the example.
  • FIG. 1 is a flowchart showing a method for manufacturing a porous body according to Embodiment 1 of the present invention.
  • step S1 a composite powder that is a raw material for the porous body is produced.
  • FIG. 2 is a cross-sectional view schematically showing the composite powder used in step S1.
  • the composite powder 10 is a powder having a particle size of, for example, about 5 to 100 ⁇ m, and includes an inner core material layer 11 and a coating layer 12 covering the periphery of the core material layer 11.
  • the core material layer 11 is formed of a material such as a metal or alloy, chloride, or resin, and the coating layer 12 is formed of a metal or alloy.
  • the core material layer 11 is formed of a metal or an alloy, a metal or alloy different from the coating layer 12 is used.
  • the composite powder 10 will be described in detail later.
  • a base material serving as a base of the porous body is produced.
  • the material of the base material is not particularly limited as long as it is a material capable of forming a film by a cold spray method described later.
  • the base material is formed of a metal or an alloy.
  • the material of the base material may be the same as the metal or alloy forming the coating layer 12 (and the metal or alloy forming the core material layer 11 when the core material layer 11 is a metal or alloy). May be of different types.
  • the size and shape of the substrate are not particularly limited as long as it has a surface on which a film can be formed by the cold spray method.
  • a film is formed on the substrate by a cold spray method using the composite powder 10.
  • the cold spray method is a film forming method for forming a film by accelerating the raw material powder together with a gas and spraying and depositing on the surface of the base material in the solid state, for example, a cold spray shown in FIG. This is done by the device 60.
  • FIG. 3 is a schematic diagram showing an outline of the cold spray device 60.
  • the cold spray device 60 includes a gas heater 61 that heats the compressed gas, a powder supply device 62 that contains the composite powder 10 and supplies the powder 10 to the spray gun 63, the heated compressed gas, and A gas nozzle 64 for injecting the composite powder 10 supplied thereto toward the base 21 and valves 65 and 66 for adjusting the amount of compressed gas supplied to the gas heater 61 and the powder supply device 62 are provided.
  • the compressed gas helium, nitrogen, air or the like is used.
  • the compressed gas supplied to the gas heater 61 is, for example, 50 ° C. or higher, heated to a temperature in a range lower than the melting point of the coating layer 12, and then supplied to the spray gun 63.
  • the heating temperature of the compressed gas is preferably 300 to 900 ° C.
  • the compressed gas supplied to the powder supply device 62 supplies the composite powder 10 in the powder supply device 62 to the spray gun 63 so as to be discharged from the spray gun 63 at a predetermined discharge amount.
  • the heated compressed gas is made a supersonic flow (about 340 m / s or more) by the gas nozzle 64 having a divergent shape.
  • the gas pressure of the compressed gas is preferably about 1 to 5 MPa. This is because by adjusting the pressure of the compressed gas to this level, it is possible to improve the adhesion strength between the base material 21 and the coating film 22 formed thereon.
  • These spray conditions temperature and pressure of the compressed gas, the discharge amount of the composite powder 10 and the like) are determined according to the characteristics of the coating layer 12 that is the outermost layer in direct contact with the compressed gas.
  • the composite powder 10 supplied to the spray gun 63 is injected into a supersonic flow of compressed gas and accelerated to collide with the base material 21 at a high speed while maintaining at least the surface of the composite powder 10 in a solid state. To form a film 22.
  • FIG. 4 is a cross-sectional view schematically showing a structure in which the film 22 is formed on the base material 21 in step S3.
  • step S3 since the powder obtained by coating the core material layer 11 with the coating layer 12 is deposited on the base material 21, the coating 22 is formed between the cell walls 24 formed of the metal or alloy forming the coating layer 12 (that is, It has a structure in which the material 23 forming the core material layer 11 is filled in the cell).
  • each cell filled with the material 23 has a thickness direction (composite). It has a flat shape in which the diameter on the surface orthogonal to the thickness direction (film forming surface of the base material 21) is larger than the diameter in the powder 10 deposition direction.
  • pores (holes) are formed in the coating 22 by immersing the coating 22 in a predetermined solution to remove the material 23 forming the core material layer 11.
  • the solution is prepared according to the type of the material 23 forming the core material layer 11 and the metal or alloy forming the coating layer 12. That is, the components, concentration, temperature, and the like are determined so that the core material layer 11 is dissolved and the coating layer 12 is difficult to dissolve.
  • the core material layer 11 is aluminum and the coating layer 12 is copper
  • hydrochloric acid is used as the solution.
  • the core material layer 11 is copper or a copper alloy and the coating layer 12 is nickel or a nickel alloy
  • concentrated nitric acid is used as a solution.
  • FIG. 5 is a cross-sectional view schematically showing the structure of the film after the material 23 is removed, and shows the structure including the porous body according to the first embodiment.
  • the thus produced porous body 26 may be applied to various uses in the state of the structure 1 fixed on the substrate 21. At this time, the substrate 21 may be cut into a desired shape or thickness. Alternatively, the substrate 21 may be removed from the porous body 26 by cutting or dissolving it, and the porous body 26 may be used alone. When the base material 21 is dissolved, the base material 21 may be made of the same material (metal or alloy) as the core material layer 11, and the base material 21 may be dissolved together with the core material layer 11 in step S4. In addition, when cutting the base material 21 into a desired shape or thickness, it may be cut before removing the material 23 in step S4.
  • the composite powder 10 shown in FIG. 2 is produced by coating the periphery of a powder formed of a material such as a metal or alloy, chloride, or resin with a metal or alloy.
  • a coating method well-known various methods, such as a plating method and CVD method, can be used.
  • a coating method for example, a plating method
  • CVD method CVD method
  • Examples of the material of the core layer 11 include magnesium, magnesium alloy, aluminum, aluminum alloy, copper, copper alloy, zinc, zinc alloy, nickel, nickel alloy, iron, iron alloy, titanium, titanium alloy, tin, tin alloy, and the like. Metals or alloys, chlorides such as sodium chloride, and resins such as urethane are used.
  • Examples of the material of the coating layer 12 include aluminum, aluminum alloy, copper, copper alloy, zinc, zinc alloy, nickel, nickel alloy, iron, iron alloy, titanium, titanium alloy, chromium, chromium alloy, niobium, niobium alloy, Molybdenum, molybdenum alloy, silver, silver alloy, tin, tin alloy, tantalum, tantalum alloy, tungsten, or tungsten alloy is used.
  • the core material layer 11 is formed of a metal or an alloy, a metal or alloy having a different type from the core material layer 11 is used as the covering layer 12.
  • the combination of the material forming the core material layer 11 and the metal or alloy forming the coating layer 12 is determined in consideration of the solution used in step S4. For example, when the core material layer 11 is formed of a metal or alloy, an acidic solution is used as a solution so that the metal or alloy forming the coating layer 12 has a lower ionization tendency than the metal or alloy forming the core material layer 11. Each material should be selected. Specifically, a combination of aluminum or an aluminum alloy as the core material layer 11, copper or a copper alloy as the coating layer 12, and hydrochloric acid as the solution is mentioned.
  • an oxidizing strong acid solution is used as the solution
  • a so-called valve metal that forms a passive film on the surface is used as the coating layer 12
  • a metal or an alloy that is easily dissolved in the strong acid solution is used as the core layer 11.
  • copper or copper alloy as the core material layer 11 aluminum, aluminum alloy, nickel, nickel alloy, titanium, titanium alloy, chromium and chromium alloy as the coating layer 12, or a combination of concentrated nitric acid as the solution. Can be mentioned.
  • the core material layer 11 may be formed of chloride that is soluble in water or an aqueous solution.
  • the type of metal or alloy forming the coating layer 12 is not particularly limited. Specifically, for example, when sodium chloride is used as the core material layer 11, water may be used as the solution.
  • the core material layer 11 may be formed of a resin that can be dissolved in an organic solvent.
  • the type of metal or alloy forming the coating layer 12 is not particularly limited.
  • an organic solvent arbitrary things, such as acetone, ethanol, toluene, can be used.
  • acetone may be used as a solution.
  • the core material layer 11 may be formed of a resin that can be dissolved in an alkaline solution.
  • the components, concentration, temperature, etc. of the alkaline solution are determined so that the core material layer 11 is dissolved and the coating layer 12 is difficult to dissolve.
  • a sodium hydroxide aqueous solution heated to about 90 ° C. is used as a solution.
  • the total size of the composite powder 10 is not particularly limited as long as it is a size applicable to the above-described cold spray method (for example, about 10 to 300 ⁇ m).
  • the diameter D of the core material layer 11 and the thickness d of the covering layer 12 are the diameter of the pores 25 (pore diameter) to be realized in the porous body 26, the thickness of the cell wall 24 (wall thickness), and the porous body 26. It is determined according to the volume ratio (porosity) of the pores 25 and the like. That is, in order to control the pore diameter, the diameter D of the core material layer 11 may be adjusted. In addition, when it is desired to control the thickness of the cell wall 24, the thickness d of the coating layer 12 may be adjusted.
  • the ratio between the diameter D of the core material layer 11 and the thickness d of the covering layer 12 may be adjusted.
  • a porosity of about 95% can be realized by using the core material layer 11 as an aluminum powder having an average particle size of about 30 ⁇ m and the coating layer 12 as a copper plating layer having a thickness of about 0.5 ⁇ m. .
  • the material 23 that forms the core material layer 11 is removed from the coating 22 formed by the cold spray method using the composite powder 10, on the base material 21.
  • a porous body 26 can be produced.
  • the pore diameter in the porous body 26 is given by 1 / ( ⁇ k), where k is the number of pores 25 counted per 1 mm 2 cross section perpendicular to the thickness direction of the porous body 26.
  • the average pore diameter is given by 1 / ( ⁇ k), where k is the number of pores 25 counted per 1 mm 2 cross section perpendicular to the thickness direction of the porous body 26.
  • the pore diameter can be controlled in the range of about 0.01 mm to about 1 mm. Therefore, it is possible to form minute pores that are difficult to realize in the past, for example, 0.3 mm or less, 0.02 mm or less, and 0.01 mm or less.
  • the porous body 26 having a small pore diameter of preferably 0.01 mm or more and 0.1 mm or less is applied to, for example, a catalyst or a heat radiating member, a large specific surface area can be ensured. It is possible to improve the performance of the heat dissipation member and the like.
  • the porosity can be controlled in a range of about 30% or more and less than 100%. Therefore, it is possible to achieve a high porosity of 75% or more, or 85% or more, which has been difficult to realize in the past.
  • the high porosity porous body 26 having a porosity of preferably 75% or more is applied to, for example, a filter, the pressure loss of the fluid can be kept low.
  • the pore diameter and the porosity can be simultaneously controlled within the above-described range.
  • the porosity can be controlled within a desired range of 30% or more and less than 100% while the pore diameter is set to a minute diameter of 0.01 mm or more and 0.3 mm or less.
  • the pore diameter can be controlled to a desired diameter of 0.01 mm or more and 1 mm or less while the porosity is set to a high porosity of 85% or more and less than 100%. Therefore, for example, it is possible to produce a porous body having a small pore diameter and a high porosity of 0.01 mm or more and 0.3 mm or less and a porosity of 85% or more.
  • the porous body 26 has a cell structure in which pores 25 are formed inside (inside the cell) the cell wall 24 made of metal or alloy.
  • the ratio of the surface area of the cell wall 24 to the porosity is higher than that of other porous structures such as a mesh shape. Therefore, by using such a porous body 26 as a catalyst carrier, for example, the efficiency of the catalytic action can be improved.
  • the cell wall 24 since the cell wall 24 is formed by the cold spray method, the cell wall 24 itself is very dense and is in close contact with the base material 21. Therefore, good electrical conductivity and thermal conductivity can be obtained in the cell wall 24, and good electrical conductivity and thermal conductivity can be ensured between the cell wall 24 and the substrate 21. Therefore, by using such a porous body 26 or the structure 1 including the porous body 26 as an electrode member in a battery or the like, the efficiency of the battery or the like can be improved. Moreover, it becomes possible to improve the heat exchange efficiency of the circuit board provided in a heat sink by using the structure 1 as a heat sink.
  • the cell wall 24 in the porous body 26 is very dense and is in close contact with the base material 21, higher durability than that of the conventional porous body can be obtained. Therefore, when such a porous body 26 or the structure 1 including the porous body 26 is applied to various modules, it is possible to extend the lifetime of the module as compared with the related art.
  • a porous body can be produced on a desired base material, regardless of the shape and size of the base material, as long as the base material can form a film by the cold spray method. Accordingly, it is possible to increase the degree of freedom in designing a module using a porous body.
  • a powder (hereinafter referred to as a single layer) consisting only of a metal or an alloy that forms the coating layer 12 (see FIG. 2). It is characterized by using a mixed powder obtained by mixing a composite powder 10).
  • the composite powder 10 is mixed with copper powder.
  • the ratio of the material 23 and the cell wall 24 in the coating 22 can be changed by mixing the single layer powder into the composite powder 10.
  • the thickness and porosity of the cell wall 24 in the porous body 26 after removing the material 23 from the coating 22 can be controlled more easily.
  • the third embodiment is characterized in that, when the material forming the core material layer 11 (see FIG. 2) is removed (see step S4 in FIG. 1), the film is heated instead of immersing the film in the solution. To do.
  • the core material layer 11 of the composite powder 10 is formed of a material that can be thermally decomposed at a predetermined temperature
  • the coating layer 12 is formed of a metal or alloy that does not melt at the temperature. Specifically, polyethylene that thermally decomposes at about 500 ° C. is used as the core material layer 11, and copper that does not melt at 500 ° C. is used as the coating layer 12.
  • step S3 after forming the film 22 on the base material 21 using the composite powder 10 (see FIG. 4), in step S4, for example, the film 22 is heated to about 500 ° C. by an electric furnace, and the material 23 is Remove by pyrolysis. Thereby, the porous body 26 (refer FIG. 5) which has a cell structure can be obtained.
  • the core material layer 11 of the composite powder 10 for example, a resin material that can be hydrolyzed by steam may be used.
  • a resin material is polyethylene terephthalate (PET).
  • PET polyethylene terephthalate
  • the coating layer 12 a metal or an alloy that is not highly reactive in the hydrolysis treatment for the resin material can be used.
  • the base material 21 and the film 22 are placed in a chamber filled with water vapor heated to 150 ° C. or higher. And coat 22 is exposed to water vapor. Thereby, the material 23 made of PET in the coating 22 is hydrolyzed and removed. The raw material material before the polymerization of PET remaining in the film 22 by hydrolysis may be removed by washing the film 22.
  • Embodiment 4 is characterized in that a composite powder composed of multiple layers is used in the method for manufacturing a porous body shown in FIG.
  • FIG. 6 is a cross-sectional view showing the structure of the composite powder 30 used in the fourth embodiment.
  • the composite powder 30 shown in FIG. 6 has a core material layer 31 and a first coating layer 32 and a second coating layer 33 formed around the core material layer 31.
  • the core material layer 31 is made of a material such as a metal or an alloy, chloride, or resin that can be dissolved in a predetermined solution.
  • the 1st coating layer 32 and the 2nd coating layer 33 are hard to melt
  • the first coating layer 32 and the second coating layer 33 are formed by sequentially coating the core material layer 31 by a plating method or the like.
  • the composite powder 30 is used to form a film on the base material by a cold spray method (step S3), and the material that forms the core layer 31 by immersing the film in the solution. By removing, pores are formed (step S4). Details of the steps S3 and S4 are the same as those in the first embodiment.
  • FIG. 7 is a cross-sectional view showing the structure 2 including the porous body 42 produced in step S4.
  • the cell wall 43 has a layer structure composed of a metal or alloy 45 forming the first coating layer 32 and a metal or alloy 46 forming the second coating layer 33.
  • the second coating layer 33 (metal or alloy 46) is formed of a highly conductive metal or alloy such as copper, and the first coating layer 32 (metal or alloy 45) is platinum or the like.
  • the catalyst metal By forming the catalyst metal, a porous body carrying the catalyst can be easily produced.
  • the core material layer 31 of the composite powder 30 may be formed of aluminum having a higher ionization tendency than copper and platinum, for example.
  • the fourth embodiment by increasing the number of layers of the composite powder 30, it is possible to easily produce a porous body composed of cell walls having a layer structure.
  • the core material layer 31 may be formed of a thermally decomposable material (for example, a resin such as polyethylene). In this case, in step S4, the film may be heated to remove the material forming the core layer 31 by thermal decomposition.
  • the core material layer 31 may be formed of a hydrolyzable material (for example, PET).
  • FIG. 8 is a flowchart showing a method for manufacturing a porous body according to the fifth embodiment. Steps S1 to S4 shown in FIG. 8 are the same as those described in the first embodiment.
  • step S5 subsequent to step S4, the cell wall 24 (see FIG. 5) remaining on the substrate 21 is plated to form a plating layer, and the cell wall 24 is coated.
  • the metal or alloy forming the plating layer is not particularly limited, and may be selected according to the use of the porous body. For example, it can be used as a negative electrode material of a nickel metal hydride battery by performing palladium plating on the cell wall 24 formed of copper.
  • the cell wall can be multilayered (multiple layers) as in the porous body 42 shown in FIG. Note that step S5 in the fifth embodiment may be applied to the second to fourth embodiments.
  • FIG. 9 is a flowchart showing a method for manufacturing a porous body according to the sixth embodiment.
  • FIG. 10 is a schematic diagram for explaining a method for manufacturing a porous body according to the sixth embodiment. Note that steps S1 to S3 shown in FIG. 9 are the same as those described in the first embodiment.
  • the composite powder 10 the core material layer 11 and the coating layer 12 formed of different metals or alloys are used. More specifically, the composite powder 10 comprising the core material layer 11 and the coating layer 12 is a combination of metals or alloys capable of forming an intermetallic compound at the interface contacting each other, such as aluminum and copper or aluminum and nickel. Prepare.
  • step S6 heat treatment is performed on the film 22 (see FIG. 4) formed on the substrate 21.
  • an intermetallic compound layer 51 is formed at the interface between the material (alloy or metal) 23 forming the core layer 11 and the cell wall 24 formed of the metal or alloy forming the coating layer 12. Is done.
  • the core layer 11 is formed of aluminum and the coating layer 12 is formed of nickel
  • an intermetallic compound is formed at the interface between the material 23 and the cell wall 24 by heating at 500 to 600 ° C.
  • pores are formed in the coating 22 by immersing the coating 22 on which the intermetallic compound layer 51 is formed in a predetermined solution and removing the material 23 of the unreacted portion.
  • a specific example of the solution for dissolving the material 23 of the unreacted portion is the same as that described in step S4 of the first embodiment.
  • FIG. 11 is a cross-sectional view showing the structure 3 including the porous body formed thereby.
  • the thickness of the intermetallic compound layer 51 can be controlled by the time and temperature of the heat treatment in step S6.
  • FIG. 11 shows the case where only the surface layer of the cell wall 24 is reacted with the material 23 to form the intermetallic compound layer 51.
  • the entire cell wall 24 is reacted. You may let them.
  • the cell wall 24 (porous body) made only of the intermetallic compound can be formed on the substrate 21.
  • the intermetallic compound layer formed by the reaction between aluminum and nickel is resistant to corrosion like ceramics. And it becomes a layer excellent in heat resistance. Since such intermetallic compounds are generally brittle compared to metals, it is usually difficult to make them porous.
  • a porous body made of an intermetallic compound having excellent corrosion resistance and heat resistance and having a small pore diameter can be produced relatively easily.
  • the porous body manufacturing method according to the sixth embodiment may be combined with the second, fourth, and fifth embodiments.
  • the quantity of the powder of the single layer mixed with the composite powder 10 is adjusted, and the thickness of the cell wall 24 in the film
  • the thickness of the intermetallic compound layer 51 can be more easily adjusted by controlling the heat treatment conditions (time and temperature) in step S6.
  • the manufacturing method of the porous body which concerns on this Embodiment 6 with Embodiment 4 it forms in process S3 by selecting suitably the metal or alloy which comprises each layer of the composite powder 30 (refer FIG. 6).
  • a desired interface the interface between the metal or alloy forming the core layer 31 and the metal or alloy forming the first coating layer 32, or the metal or alloy forming the first coating layer 32 and the second coating layer
  • An intermetallic compound layer can be formed at the interface between the metal 33 and the metal or the alloy 33.
  • a composite powder 30 in which the core layer 31 is formed of a resin material can be used as the material.
  • a porous body in which the surface of the intermetallic compound layer 51 is further covered by plating can be obtained.
  • FIG. 12 is a cross-sectional view schematically showing a structure including a porous body according to the seventh embodiment.
  • the structure 4 includes a base material 21 and a porous body 26 formed on both surfaces of the base material 21.
  • each porous body 26 is formed by sequentially forming the coating 22 on both surfaces of the base material 21 by the cold spray method using the composite powder 10 (see FIG. 2), and then dissolving each coating 22. It is produced by sequentially immersing in a liquid and removing the material forming the core material layer 11.
  • Such a structure 4 is formed by, for example, forming the base material 21 by a thin plate that can be wound, forming the porous body 26 on both surfaces of the base material 21, and then winding the base body 21 together with a sheet-like insulating member. It can be used as an electrode member.
  • the film 22 is formed on the base materials 21 and 41 by the cold spray method (see step S3 in FIG. 1).
  • a technique other than the cold spray method may be used as long as a dense film composed of the composite powders 10 and 30 can be formed.
  • a mold press in which the composite powders 10 and 30 are filled in a mold and the pressure is applied to compress the mold press, or a cold isotropic pressurization in which the composite powders 10 and 30 are filled in a mold and a pressure is applied.
  • the composite powders 10 and 30 can be formed into a desired shape by a high pressure powder forming technique such as a pressure method.
  • membrane which consists of the composite powders 10 and 30 may be formed on the base materials 21 and 41, and the film
  • the film composed of the composite powders 10 and 30 is immersed in a solution selected according to the core material layers 11 and 31 and the coating layers 12, 32 and 33, and the core material layer 11 is immersed.
  • a porous body can be produced.
  • the eighth embodiment by adjusting the diameter D of the core material layers 11 and 31 in the composite powders 10 and 30, the thickness d of the coating layers 12, 32 and 33, and the ratio thereof, The pore diameter, cell wall thickness, and porosity can be easily controlled.
  • the pore diameter can be controlled in the range of about 0.01 mm to about 1 mm. Therefore, it is possible to form minute pores that are difficult to realize in the past, for example, 0.3 mm or less, 0.02 mm or less, and 0.01 mm or less.
  • the pore diameter is an average pore diameter given by 1 / ( ⁇ k) where k is the number of pores counted per 1 mm 2 of a cross section of the porous body.
  • the porosity can be controlled in the range of about 30% or more and less than 100%. Therefore, it is possible to achieve a high porosity of 75% or more, or 85% or more, which has been difficult to realize in the past.
  • the pore diameter and the porosity can be controlled simultaneously within the above-described range.
  • the porosity can be controlled within a desired range of 30% or more and less than 100% while the pore diameter is set to a minute diameter of 0.01 mm or more and 0.3 mm or less.
  • the pore diameter can be controlled to a desired diameter of 0.01 mm or more and 1 mm or less while the porosity is set to a high porosity of 85% or more and less than 100%. Therefore, for example, it is possible to produce a porous body having a small pore diameter and a high porosity of 0.01 mm or more and 0.3 mm or less and a porosity of 85% or more.
  • substantially equal pressure acts on the composite powders 10 and 30 regardless of the direction. Will not deform in a specific direction. Therefore, it is possible to obtain a porous body having an average pore diameter substantially equal in the cross section in the thickness direction and the cross section orthogonal to the thickness direction.
  • the cell wall is multilayered (multi-layered) by further plating the porous body in which the pores are formed by removing the core material layer. )
  • the periphery of the core material layers 11 and 31 is the covering layer 12, or the first covering layer 32 and the second covering layer.
  • the composite powders 10 and 30 coated with the coating layer 33 were used (see FIGS. 2 and 6).
  • the entire periphery of the core material layers 11 and 31 is not necessarily covered with the coating layer 12 or the like, and the core material layers 11 and 31 may be exposed from a part of the coating layer 12 or the like.
  • composite powder in which only the outer peripheral surface of the cylindrical core material layer is covered with the material of the coating layer may be used.
  • a method for producing such a composite powder will be described.
  • FIG. 13 is a schematic diagram for explaining a method for producing a composite powder in the ninth embodiment.
  • a wire made of a resin such as chloride or urethane is prepared. These materials are the same as the material of the core material layer 11 in the first embodiment.
  • the method for producing the wire is not particularly limited, and various known methods such as wire drawing and drawing can be used.
  • the outer peripheral surface of the wire 71 made of the above material is made of aluminum, aluminum alloy, copper, copper alloy, zinc, zinc alloy, nickel, nickel alloy, iron, iron alloy, titanium.
  • the coating layer 72 is made of titanium alloy, chromium, chromium alloy, niobium, niobium alloy, molybdenum, molybdenum alloy, silver, silver alloy, tin, tin alloy, tantalum, tantalum alloy, tungsten, tungsten alloy, or the like. Note that these materials are the same as the material of the coating layer 12 in the first embodiment.
  • the wire 71 is formed of a metal or an alloy
  • a metal or alloy having a different type from the wire 71 is used as the covering layer 72.
  • the formation method of the coating layer 72 is not specifically limited, Well-known various methods, such as a plating method and CVD method, can be used.
  • the composite wire 70 in which the wire 71 is covered with the coating layer 72 is cut into a desired length.
  • the outer peripheral surface of the cylindrical core material layer 74 is covered with the coating layer 75, and the composite powder 73 in which the end surface of the core material layer 74 is exposed is obtained.
  • the combination of the material forming the wire rod 71 (core material layer 74) and the metal or alloy forming the coating layer 72 (coating layer 75) is the same as in the first or third embodiment, in the core material layer removing step (FIGS. 1 and 3). It is determined according to the type of solution used in step S4 in FIG. 8 or step S7 in FIG. Alternatively, as in the sixth embodiment, a combination of metals or alloys capable of forming an intermetallic compound at the interface may be selected.
  • the coating layer formed around the wire 71 is not limited to one layer of the coating layer 72 (coating layer 75). That is, as in the fourth embodiment, one or more coating layers made of a metal or an alloy different from the coating layer 72 may be further formed on the outer peripheral surface of the coating layer 72.
  • the diameter d1 of the wire 71 and the thickness d2 of the covering layer 72 are determined according to the pore size, cell wall thickness, porosity, etc. that are desired to be realized in the completed porous body (for example, the porous body 26 shown in FIG. 5). Is done. For example, when controlling the pore size, the diameter d1 of the wire 71 and the length L of the composite powder 73 may be adjusted. In addition, when the thickness of the cell wall is controlled, the thickness d2 of the covering layer 72 may be adjusted. Further, in the case of controlling the porosity, the ratio of the diameter d1 of the wire 71 and the thickness d2 of the coating layer 72, or may be adjusting the ratio between the diameter D 2 and a length L of the composite powder 73 .
  • the diameter D 2 and the length L of the composite powder 73 are appropriately determined within a range (for example, about 10 to 300 ⁇ m) applicable to the cold spray method and the high pressure powder molding technique.
  • the porosity when the porosity is controlled by the ratio of the diameter D and the length L of the composite powder 73, the porosity can be decreased as the length L is increased, and the porosity is decreased as the length L is decreased. Can be high.
  • the length L is too short, the ratio of the surface area of the coating layer 75 to the surface area of the composite powder 73 decreases, and other composites are formed when the coating 22 is formed by the cold spray method or the high-pressure powder molding technique. There is a possibility that the coating layers 72 are difficult to bond with the powder 73.
  • the ratio D 2 of the diameter D 2 and the length L of the composite powder 73 is preferably about 0.5 ⁇ D 2 / L ⁇ 2.
  • the length L is preferably about 15 to 60 ⁇ m.
  • the coating layer is formed on the core material layer 11 that has been previously powdered.
  • the composite powder 73 can be manufactured very easily, in a short time and at low cost.
  • the composite powder 73 having the coating layer 75 made of aluminum can be easily manufactured. Therefore, it is possible to reduce the labor and cost of manufacturing the composite powder 73 and the porous body manufactured using the composite powder 73.
  • the size (diameter D and length L) of the composite powder 73, the diameter d1 of the core material layer 74, and the thickness d2 of the coating layer 75 can be adjusted easily and accurately. it can. Therefore, the pore size, cell wall thickness, and porosity in the porous body can be controlled easily and accurately.
  • any material that can be coated on the wire 71 can be used as the coating layer 72. Therefore, the combination of the material of the core layer 74 and the coating layer 75 in the composite powder 73 is used. Can be widened. Therefore, the range of selection of the method to be applied in the core material layer removing step can be expanded.
  • the resin of the core material layer 74 is dissolved in an organic solvent in the core material layer removing step, or
  • the porous body made of aluminum can be produced in a short time by pyrolysis.
  • the ninth embodiment even when a plurality of coating layers are provided outside the core material layer 74, the range of selection of the material of each coating layer can be increased, and the layer thickness and the number of layers of each layer can be increased. Can be easily controlled.
  • the porous body described in the first to ninth embodiments can be used for various applications exemplified below in addition to the application examples described in the respective embodiments.
  • the heat exchange performance can be improved by forming the surface of the heat sink with the porous body according to Embodiments 1 to 5 or 8, 9 described above.
  • the composite powder a powder obtained by performing copper plating on an aluminum powder having an average particle diameter of about 30 ⁇ m was prepared.
  • the average particle diameter of the composite powder as a whole was about 32 ⁇ m.
  • spray conditions are set on a substrate made of pure aluminum (A1050) by a cold spray method with an inert gas (nitrogen) temperature of about 500 ° C. and a gas pressure of 5 MPa. A film was formed on.
  • inert gas nitrogen
  • FIG. 14 is a SEM (scanning electron microscope) photograph of a cross-section of the film formed on the substrate. As shown in FIG. 14, copper (Cu) forming a cell structure and aluminum (Al) filled between the cell structures (inside the cell) are observed inside the coating.
  • Cu scanning electron microscope
  • FIG. 15 is an SEM photograph of a cross section of the film after the aluminum has been removed. As shown in FIG. 15, the region after the aluminum was removed became pores, and only the cell walls made of copper remained on the substrate.
  • the pore diameter (average value) in the thickness direction (film deposition direction) is about 10 ⁇ m
  • the pore diameter (average value) in the plane perpendicular to the thickness direction is It was about 30 ⁇ m, and it was confirmed that flat pores were formed.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Composite Materials (AREA)
  • Manufacturing & Machinery (AREA)
  • Powder Metallurgy (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

Provided are a method for manufacturing a porous body, a porous body, and a structure, the method for manufacturing a porous body being capable of readily controlling pore diameter and porosity, and being capable of forming a porous body having a smaller pore diameter and higher porosity than a conventional porous body. The method for manufacturing a porous body comprises: a film formation step (S3) for forming a film composed of a composite powder, the film having a first layer composed of a material soluble in a predetermined solution and a second layer, which formed by coating at least a portion of the outer side of the first layer with a metal or alloy and which is less soluble in the solution than is the first layer; and a pore formation step (S4) for forming pores in the film by immersing the film in the solution to remove the material from the film.

Description

多孔体の製造方法、多孔体、及び構造体Porous body manufacturing method, porous body, and structure
 本発明は、多孔体の製造方法、多孔体、及び多孔体を備える構造体に関する。 The present invention relates to a method for producing a porous body, a porous body, and a structure including the porous body.
 近年、金属等の無機材料からなる多孔質構造を有する部材(以下、多孔体ともいう)は、自動車用電池の電極部材、フィルタ、触媒担体等、様々な用途に用いられている。金属からなる多孔体(以下、金属多孔体ともいう)の製造方法としては、芯材となる樹脂に骨材となる金属をめっきし、加熱により芯材を除去して気孔(空孔)を形成するめっき法、骨材となる金属と発泡剤とを混合し、過熱により発泡させて気孔を形成する発泡法、骨材となる金属粉末とスペーサ粉末を混合して焼結した後、スペーサ粉末を加熱により除去して気孔を形成するスペーサ法等が知られている(非特許文献1参照)。例えば、特許文献1には、樹脂発泡体、不織布、フェルト、織布等からなる樹脂製3次元網目状多孔体に金属めっきを施す方法が開示されている。 In recent years, members having a porous structure made of an inorganic material such as metal (hereinafter also referred to as a porous body) have been used in various applications such as electrode members for automobile batteries, filters, and catalyst carriers. As a method for producing a porous body made of metal (hereinafter also referred to as a metal porous body), the core metal is plated on the core resin, and the core material is removed by heating to form pores (holes). Plating method, foaming method in which metal and foaming agent to be aggregated are mixed and foamed by overheating to form pores, metal powder to be aggregated and spacer powder are mixed and sintered, then spacer powder is A spacer method that forms pores by removing by heating is known (see Non-Patent Document 1). For example, Patent Document 1 discloses a method of performing metal plating on a resin-made three-dimensional network porous body made of resin foam, nonwoven fabric, felt, woven fabric, or the like.
特開2012-82483号公報JP 2012-82483 A
 しかしながら、めっき法においては、樹脂によって形成された網目状の3次元構造体の隙間や、3次元構造体が除去された後のスペースが気孔となる。このため、一部の気孔の形状は線形状になってしまい、例えば径が0.3mm以下に制御されたセル状の微小な気孔を形成することが困難である。 However, in the plating method, pores are the gaps in the network-like three-dimensional structure formed by the resin and the space after the three-dimensional structure is removed. For this reason, the shape of some of the pores becomes a linear shape, and it is difficult to form, for example, minute cellular pores whose diameter is controlled to 0.3 mm or less.
 また、発泡法においては、やはり、径が例えば0.3mm以下の微小な気孔を形成することが困難であると共に、気孔径を制御することも困難である。 Also, in the foaming method, it is difficult to form minute pores having a diameter of, for example, 0.3 mm or less, and it is also difficult to control the pore diameter.
 一方、スペーサ法においては、スペーサ粉末の径を調節することにより、めっき法や発泡法よりも径が小さな(例えば数10μm~0.3mm程度)の気孔を形成することは可能である。しかしながら、スペーサ法の場合、金属多孔体における気孔率をあまり高くすることができず、高くても例えば70%程度に留まってしまう。 On the other hand, in the spacer method, it is possible to form pores having a smaller diameter (for example, about several tens of μm to 0.3 mm) than the plating method or the foaming method by adjusting the diameter of the spacer powder. However, in the case of the spacer method, the porosity of the metal porous body cannot be made very high, and remains at, for example, about 70% even if it is high.
 また、セラミックスのように、延性が金属ほど大きくない材料からなる多孔体を作製する場合、微小な気孔を形成したり、気孔径を制御することが困難である。 Also, when producing a porous body made of a material that is not as large as a metal, such as ceramics, it is difficult to form minute pores or control the pore diameter.
 本発明は、上記に鑑みてなされたものであって、気孔径及び気孔率を容易に制御することができ、且つ、従来よりも気孔径が小さく、気孔率が高い多孔体を形成することができる多孔体の製造方法、多孔体、及びこのような多孔体を備える構造体を提供することを目的とする。 The present invention has been made in view of the above, and it is possible to easily control the pore diameter and the porosity, and to form a porous body having a smaller pore diameter and a higher porosity than before. An object of the present invention is to provide a method for producing a porous body, a porous body, and a structure including such a porous body.
 上述した課題を解決し、目的を達成するために、本発明に係る多孔体の製造方法は、所定の溶解液に溶解可能な材料からなる第1の層と、前記第1の層の外側の少なくとも一部を金属又は合金で被覆することにより形成され、前記第1の層よりも前記溶解液に対して難溶解である第2の層とを有する複合化粉末からなる皮膜を形成する皮膜形成工程と、前記皮膜を前記溶解液に浸して、前記皮膜から前記材料を除去することにより、前記皮膜に気孔を形成する気孔形成工程と、を含むことを特徴とする。 In order to solve the above-described problems and achieve the object, a method for producing a porous body according to the present invention includes a first layer made of a material that can be dissolved in a predetermined solution, and an outer side of the first layer. Forming a film formed by coating at least a part with a metal or an alloy, and forming a film composed of a composite powder having a second layer that is less soluble in the solution than the first layer. And a pore forming step of forming pores in the coating by immersing the coating in the solution and removing the material from the coating.
 また、本発明の多孔体の製造方法は、所定の温度で熱分解可能な材料からなる第1の層と、前記第1の層の外側の少なくとも一部を金属又は合金で被覆することにより形成され、前記温度において溶融しない第2の層とを有する複合化粉末からなる皮膜を形成する皮膜形成工程と、前記皮膜を前記温度に加熱して、前記皮膜から前記材料を除去することにより、前記皮膜に気孔を形成する気孔形成工程と、を含むことを特徴とする。 The method for producing a porous body of the present invention is formed by coating a first layer made of a material that can be thermally decomposed at a predetermined temperature and at least a part of the outside of the first layer with a metal or an alloy. A film forming step of forming a film composed of a composite powder having a second layer that does not melt at the temperature, and heating the film to the temperature to remove the material from the film, And a pore forming step of forming pores in the film.
 上記多孔体の製造方法において、前記複合化粉末は、前記第1の層の材料からなる線材を前記第2の層の材料によって被覆した複合化線材を切断することにより形成されていることを特徴とする。 In the method for producing a porous body, the composite powder is formed by cutting a composite wire obtained by coating a wire made of the material of the first layer with a material of the second layer. And
 上記多孔体の製造方法において、前記皮膜形成工程は、前記複合化粉末をガスと共に加速し、少なくとも前記複合化粉末の表面を固相状態に保ったままで基材の表面に吹き付けて堆積させることを特徴とする。 In the method for producing a porous body, the film forming step includes accelerating the composite powder together with a gas and spraying and depositing on the surface of the base material while maintaining at least the surface of the composite powder in a solid state. Features.
 上記多孔体の製造方法において、前記皮膜形成工程は、前記複合化粉末に、最外層をなす金属又は合金と同種の金属又は合金のみからなる粉末を混合して前記基材に吹き付けることを特徴とする。 In the method for producing a porous body, the film forming step is characterized in that the composite powder is mixed with a powder consisting only of the same kind of metal or alloy as the outermost layer metal or alloy and sprayed onto the base material. To do.
 上記多孔体の製造方法において、前記皮膜形成工程は、前記複合化粉末を型に充填して圧力を印加することを特徴とする。 In the method for producing a porous body, the film forming step is characterized in that the composite powder is filled in a mold and pressure is applied.
 上記多孔体の製造方法において、前記材料は、前記第2の層とは種類が異なる金属又は合金であることを特徴とする。 In the method for manufacturing a porous body, the material is a metal or an alloy different from the second layer.
 上記多孔体の製造方法は、前記気孔形成工程の前に、前記皮膜を熱処理する工程をさらに含むことを特徴とする。 The method for producing a porous body further includes a step of heat-treating the film before the pore forming step.
 上記多孔体の製造方法において、前記溶解液は酸性溶液であり、前記第2の層をなす金属又は合金のイオン化傾向は、前記材料のイオン化傾向よりも小さいことを特徴とする。 In the method for producing a porous body, the solution is an acidic solution, and the ionization tendency of the metal or alloy forming the second layer is smaller than the ionization tendency of the material.
 上記多孔体の製造方法において、前記材料は、アルミニウム又はアルミニウム合金であり、前記第2の層をなす金属又は合金は、銅又は銅合金であることを特徴とする。 In the method for producing a porous body, the material is aluminum or an aluminum alloy, and the metal or alloy forming the second layer is copper or a copper alloy.
 上記多孔体の製造方法において、前記溶解液は酸性溶液であり、前記第2の層はバルブ金属からなり、前記材料は、前記第2の層の表面に形成される不動態膜よりも前記溶解液に対して易溶解であることを特徴とする。 In the method for producing a porous body, the solution is an acidic solution, the second layer is made of a valve metal, and the material is more soluble than the passive film formed on the surface of the second layer. It is easily dissolved in liquid.
 上記多孔体の製造方法において、前記材料は、銅又は銅合金であり、前記第2の層をなす金属又は合金は、アルミニウム、アルミニウム合金、ニッケル、ニッケル合金、チタン、チタン合金、クロム、及びクロム合金のいずれかであることを特徴とする。 In the method for producing a porous body, the material is copper or a copper alloy, and the metal or alloy forming the second layer is aluminum, an aluminum alloy, nickel, a nickel alloy, titanium, a titanium alloy, chromium, or chromium. It is one of alloys.
 上記多孔体の製造方法において、前記材料は、水又は水溶液に溶解可能な塩化物であることを特徴とする。
 上記多孔体の製造方法において、前記塩化物は、塩化ナトリウムであることを特徴とする。
In the method for producing a porous body, the material is a chloride that is soluble in water or an aqueous solution.
In the method for producing a porous body, the chloride is sodium chloride.
 上記多孔体の製造方法において、前記材料は、有機溶剤に溶解可能な樹脂であることを特徴とする。
 上記多孔体の製造方法において、前記材料は、アルカリ溶液に溶解可能な樹脂であることを特徴とする。
In the method for producing a porous body, the material is a resin that is soluble in an organic solvent.
In the method for producing a porous body, the material is a resin that is soluble in an alkaline solution.
 上記多孔体の製造方法において、前記複合化粉末は、前記第2の層の外側に設けられた第3の層であって、前記第2の層をなす金属又は合金とは種類が異なる第2の金属又は合金からなり、前記第1の層よりも前記溶解液に対して難溶解である第3の層をさらに有することを特徴とする。 In the method for producing a porous body, the composite powder is a third layer provided outside the second layer, and is different from the metal or alloy forming the second layer. And a third layer that is more difficult to dissolve in the solution than the first layer.
 上記多孔体の製造方法において、前記材料は樹脂であることを特徴とする。
 上記多孔体の製造方法において、前記複合化粉末は、前記第2の層の外側に設けられた第3の層であって、前記金属又は合金とは種類が異なる第2の金属又は合金からなり、前記温度において溶融しない第3の層をさらに有することを特徴とする。
In the method for producing a porous body, the material is a resin.
In the method for producing a porous body, the composite powder is a third layer provided outside the second layer, and is made of a second metal or alloy different from the metal or alloy. And a third layer that does not melt at the temperature.
 上記多孔体の製造方法は、前記気孔形成工程の後、前記気孔が形成された前記皮膜にめっき層を形成する工程をさらに含むことを特徴とする。 The method for producing a porous body further includes a step of forming a plating layer on the film in which the pores are formed after the pore forming step.
 本発明に係る多孔体は、金属又は合金又は金属間化合物からなるセル壁を有し、該セル壁の間に気孔が形成された多孔体であって、前記気孔の平均気孔径が0.01mm以上0.3mm以下、且つ、前記多孔体に対する前記気孔の体積の比率が30%以上100%未満であることを特徴とする。 The porous body according to the present invention has a cell wall made of a metal, an alloy or an intermetallic compound, and pores are formed between the cell walls, and the average pore diameter of the pores is 0.01 mm. The ratio of the pore volume to the porous body is 30% or more and less than 100%.
 本発明に係る多孔体は、金属又は合金又は金属間化合物からなるセル壁を有し、該セル壁の間に気孔が形成された多孔体であって、前記気孔の平均気孔径が0.01mm以上1mm以下、且つ、前記多孔体に対する前記気孔の体積の比率が85%以上100%未満であることを特徴とする。 The porous body according to the present invention has a cell wall made of a metal, an alloy or an intermetallic compound, and pores are formed between the cell walls, and the average pore diameter of the pores is 0.01 mm. The ratio of the pore volume to the porous body is 85% or more and less than 100%.
 本発明に係る多孔体は、金属又は合金又は金属間化合物からなるセル壁を有し、該セル壁の間に気孔が形成された多孔体であって、前記気孔は、前記多孔体の厚み方向における径よりも、該厚み方向と直交する面における径が大きい扁平形状をなすことを特徴とする。 The porous body according to the present invention has a cell wall made of a metal, an alloy, or an intermetallic compound, and pores are formed between the cell walls, the pores being in the thickness direction of the porous body. A flat shape having a larger diameter in a plane orthogonal to the thickness direction than the diameter in is formed.
 上記多孔体において、前記気孔の前記厚み方向と直交する断面における平均気孔径が0.01mm以上1mm以下であり、前記多孔体に対する前記気孔の体積の比率が30%以上100%未満であることを特徴とする。 In the porous body, an average pore diameter in a cross section perpendicular to the thickness direction of the pores is 0.01 mm or more and 1 mm or less, and a volume ratio of the pores to the porous body is 30% or more and less than 100%. Features.
 上記多孔体において、前記セル壁は、互いに異なる金属又は合金を複数層重ねた層構造を有することを特徴とする。 In the porous body, the cell wall has a layer structure in which a plurality of different metals or alloys are stacked.
 上記多孔体は、前記セル壁に形成されためっき層をさらに有することを特徴とする。 The porous body further includes a plating layer formed on the cell wall.
 上記多孔体は、前記セル壁は金属又は合金からなり、前記セル壁の表面に形成された金属間化合物層をさらに有することを特徴とする。 The porous body is characterized in that the cell wall is made of a metal or an alloy and further has an intermetallic compound layer formed on the surface of the cell wall.
 上記多孔体において、前記気孔は、所定の溶解液に溶解可能な材料からなる第1の層と、前記第1の層の外側の少なくとも一部を金属又は合金で被覆することにより形成され、前記第1の層よりも前記溶解液に対して難溶解である第2の層とを有する複合化粉末をガスと共に加速し、少なくとも前記複合化粉末の表面を固相状態に保ったままで基材の表面に吹き付けて堆積させることにより皮膜を形成し、該皮膜を前記溶解液に浸して、前記皮膜から前記材料を除去することにより形成されたことを特徴とする。 In the porous body, the pores are formed by covering a first layer made of a material that can be dissolved in a predetermined solution and at least a part of the outside of the first layer with a metal or an alloy, The composite powder having the second layer, which is less soluble in the solution than the first layer, is accelerated together with the gas, and at least the surface of the composite powder is kept in a solid-phase state. The film is formed by spraying on the surface and depositing the film, immersing the film in the solution, and removing the material from the film.
 上記多孔体において、前記セル壁は金属又は合金からなり、前記気孔は、所定の温度で熱分解可能な材料からなる第1の層と、前記第1の層の外側の少なくとも一部を金属又は合金で被覆することにより形成され、前記温度において溶融しない第2の層とを有する複合化粉末をガスと共に加速し、少なくとも前記複合化粉末の表面を固相状態に保ったままで基材の表面に吹き付けて堆積させることにより皮膜を形成し、該皮膜を前記温度に加熱して、前記皮膜から前記材料を除去することにより形成されたことを特徴とする。 In the porous body, the cell wall is made of a metal or an alloy, and the pores are made of a first layer made of a material that can be thermally decomposed at a predetermined temperature and at least a part of the outside of the first layer made of metal or A composite powder formed by coating with an alloy and having a second layer that does not melt at the temperature is accelerated together with a gas, and at least the surface of the composite powder is kept in a solid phase state on the surface of the substrate. The film is formed by spraying and depositing, and the film is heated to the temperature to remove the material from the film.
 本発明に係る構造体は、金属又は合金により形成された基材と、前記基材上に形成された上記多孔体と、を備えることを特徴とする。 The structure according to the present invention includes a base material formed of a metal or an alloy, and the porous body formed on the base material.
 本発明によれば、第1の層及び第2の層を有する複合化粉末からなる皮膜を形成し、該皮膜から第1の層をなす材料を除去することによって皮膜に気孔を形成するので、多孔体に形成される気孔の径及び気孔率を容易に制御することができると共に、従来よりも気孔径が小さく、気孔率が高い多孔体を形成することが可能となる。 According to the present invention, a film made of a composite powder having a first layer and a second layer is formed, and pores are formed in the film by removing the material forming the first layer from the film. The diameter and porosity of the pores formed in the porous body can be easily controlled, and a porous body having a smaller pore diameter and higher porosity than before can be formed.
図1は、本発明の実施の形態1に係る多孔体の製造方法を示すフローチャートである。FIG. 1 is a flowchart showing a method for manufacturing a porous body according to Embodiment 1 of the present invention. 図2は、図1に示す多孔体の製造方法において用いられる複合化粉末を示す断面図である。FIG. 2 is a cross-sectional view showing a composite powder used in the method for producing a porous body shown in FIG. 図3は、図1に示す皮膜形成工程において使用されるコールドスプレー装置の概要を示す模式図である。FIG. 3 is a schematic view showing an outline of a cold spray apparatus used in the film forming step shown in FIG. 図4は、図1に示す皮膜形成工程により形成された皮膜を模式的に示す断面図である。FIG. 4 is a cross-sectional view schematically showing a film formed by the film forming process shown in FIG. 図5は、本発明の実施の形態1に係る多孔体を備える構造体を模式的に示す断面図である。FIG. 5 is a cross-sectional view schematically showing a structure including a porous body according to Embodiment 1 of the present invention. 図6は、本発明の実施の形態4において用いられる複合化粉末を示す断面図である。FIG. 6 is a cross-sectional view showing a composite powder used in Embodiment 4 of the present invention. 図7は、本発明の実施の形態4に係る多孔体を備える構造体を模式的に示す断面図である。FIG. 7 is a cross-sectional view schematically showing a structure including a porous body according to Embodiment 4 of the present invention. 図8は、本発明の実施の形態5に係る多孔体の製造方法を示すフローチャートである。FIG. 8 is a flowchart showing a method for manufacturing a porous body according to the fifth embodiment of the present invention. 図9は、本発明の実施の形態6に係る多孔体の製造方法を示すフローチャートである。FIG. 9 is a flowchart showing a method for manufacturing a porous body according to the sixth embodiment of the present invention. 図10は、本発明の実施の形態6に係る多孔体の製造方法を説明する模式図である。FIG. 10 is a schematic diagram for explaining a porous body manufacturing method according to Embodiment 6 of the present invention. 図11は、本発明の実施の形態6に係る多孔体を備える構造体を模式的に示す断面図である。FIG. 11: is sectional drawing which shows typically the structure provided with the porous body which concerns on Embodiment 6 of this invention. 図12は、本発明の実施の形態7に係る多孔体を備える構造体を模式的に示す断面図である。FIG. 12 is a cross-sectional view schematically showing a structure including a porous body according to Embodiment 7 of the present invention. 図13は、本発明の実施の形態9に係る多孔体の製造方法において用いられる複合化粉末の作製方法を説明する模式図である。FIG. 13 is a schematic diagram for explaining a method for producing a composite powder used in the method for producing a porous body according to Embodiment 9 of the present invention. 図14は、皮膜形成工程により形成された皮膜の断面を撮像した電子顕微鏡写真である。FIG. 14 is an electron micrograph of a cross section of the film formed by the film forming process. 図15は、実施例に係る多孔体の断面を撮像した電子顕微鏡写真である。FIG. 15 is an electron micrograph of a cross section of the porous body according to the example.
 以下、本発明を実施するための形態を、図面を参照しながら詳細に説明する。なお、以下の実施の形態により本発明が限定されるものではない。また、以下の説明において参照する各図は、本発明の内容を理解し得る程度に形状、大きさ、及び位置関係を概略的に示してあるに過ぎない。即ち、本発明は各図で例示された形状、大きさ、及び位置関係のみに限定されるものではない。 Hereinafter, embodiments for carrying out the present invention will be described in detail with reference to the drawings. In addition, this invention is not limited by the following embodiment. The drawings referred to in the following description only schematically show the shape, size, and positional relationship so that the contents of the present invention can be understood. That is, the present invention is not limited only to the shape, size, and positional relationship illustrated in each drawing.
(実施の形態1)
 図1は、本発明の実施の形態1に係る多孔体の製造方法を示すフローチャートである。
 まず、工程S1において、多孔体の原料となる複合化粉末を作製する。図2は、工程S1において用いられる複合化粉末を模式的に示す断面図である。図2に示すように、複合化粉末10は、粒径が例えば5~100μm程度の粉末であり、内側の心材層11と、心材層11の周囲を覆う被覆層12とを含む。心材層11は金属又は合金、塩化物、樹脂等の材料によって形成され、被覆層12は金属又は合金によって形成されている。なお、心材層11を金属又は合金によって形成する場合、被覆層12とは種類が異なる金属又は合金が用いられる。複合化粉末10については後で詳述する。
(Embodiment 1)
FIG. 1 is a flowchart showing a method for manufacturing a porous body according to Embodiment 1 of the present invention.
First, in step S1, a composite powder that is a raw material for the porous body is produced. FIG. 2 is a cross-sectional view schematically showing the composite powder used in step S1. As shown in FIG. 2, the composite powder 10 is a powder having a particle size of, for example, about 5 to 100 μm, and includes an inner core material layer 11 and a coating layer 12 covering the periphery of the core material layer 11. The core material layer 11 is formed of a material such as a metal or alloy, chloride, or resin, and the coating layer 12 is formed of a metal or alloy. In addition, when the core material layer 11 is formed of a metal or an alloy, a metal or alloy different from the coating layer 12 is used. The composite powder 10 will be described in detail later.
 続く工程S2において、多孔体のベースとなる基材を作製する。基材の材料は、後述するコールドスプレー法による皮膜形成が可能な材料であれば特に限定されない。好ましくは、金属又は合金によって基材を形成すると良い。この場合、基材の材料は、被覆層12をなす金属又は合金(及び、心材層11が金属又は合金である場合には、心材層11をなす金属又は合金)と同種であっても良いし、異なる種類であっても良い。また、基材のサイズや形状も、コールドスプレー法による皮膜形成が可能な面を有していれば、特に限定されない。 In the subsequent step S2, a base material serving as a base of the porous body is produced. The material of the base material is not particularly limited as long as it is a material capable of forming a film by a cold spray method described later. Preferably, the base material is formed of a metal or an alloy. In this case, the material of the base material may be the same as the metal or alloy forming the coating layer 12 (and the metal or alloy forming the core material layer 11 when the core material layer 11 is a metal or alloy). May be of different types. Further, the size and shape of the substrate are not particularly limited as long as it has a surface on which a film can be formed by the cold spray method.
 続く工程S3において、複合化粉末10を用いたコールドスプレー法により、基材上に皮膜形成を行う。コールドスプレー法とは、原料の粉末をガスと共に加速し、固相状態のままで基材の表面に吹き付けて堆積させることにより皮膜を形成する成膜方法であり、例えば、図3に示すコールドスプレー装置60によって行われる。 In the subsequent step S3, a film is formed on the substrate by a cold spray method using the composite powder 10. The cold spray method is a film forming method for forming a film by accelerating the raw material powder together with a gas and spraying and depositing on the surface of the base material in the solid state, for example, a cold spray shown in FIG. This is done by the device 60.
 図3は、コールドスプレー装置60の概要を示す模式図である。図3に示すように、コールドスプレー装置60は、圧縮ガスを加熱するガス加熱器61と、複合化粉末10を収容し、スプレーガン63に供給する粉末供給装置62と、加熱された圧縮ガス及びそこに供給された複合化粉末10を基材21に向けて噴射するガスノズル64と、ガス加熱器61及び粉末供給装置62に対する圧縮ガスの供給量をそれぞれ調節するバルブ65及び66とを備える。 FIG. 3 is a schematic diagram showing an outline of the cold spray device 60. As shown in FIG. 3, the cold spray device 60 includes a gas heater 61 that heats the compressed gas, a powder supply device 62 that contains the composite powder 10 and supplies the powder 10 to the spray gun 63, the heated compressed gas, and A gas nozzle 64 for injecting the composite powder 10 supplied thereto toward the base 21 and valves 65 and 66 for adjusting the amount of compressed gas supplied to the gas heater 61 and the powder supply device 62 are provided.
 圧縮ガスとしては、ヘリウム、窒素、空気などが使用される。ガス加熱器61に供給された圧縮ガスは、例えば50℃以上であって、被覆層12の融点よりも低い範囲の温度に加熱された後、スプレーガン63に供給される。圧縮ガスの加熱温度は、好ましくは300~900℃である。 As the compressed gas, helium, nitrogen, air or the like is used. The compressed gas supplied to the gas heater 61 is, for example, 50 ° C. or higher, heated to a temperature in a range lower than the melting point of the coating layer 12, and then supplied to the spray gun 63. The heating temperature of the compressed gas is preferably 300 to 900 ° C.
 一方、粉末供給装置62に供給された圧縮ガスは、粉末供給装置62内の複合化粉末10をスプレーガン63に、該スプレーガン63から所定の吐出量で吐出されるように供給する。 On the other hand, the compressed gas supplied to the powder supply device 62 supplies the composite powder 10 in the powder supply device 62 to the spray gun 63 so as to be discharged from the spray gun 63 at a predetermined discharge amount.
 加熱された圧縮ガスは、末広形状をなすガスノズル64により超音速流(約340m/s以上)にされる。この際の圧縮ガスのガス圧力は、1~5MPa程度とすることが好ましい。圧縮ガスの圧力をこの程度に調節することにより、基材21とその上に形成される皮膜22との間の密着強度の向上を図ることができるからである。これらのスプレー条件(圧縮ガスの温度及び圧力、複合化粉末10の吐出量等)は、圧縮ガスに直接接触する最外層である被覆層12の特性に応じて決定される。 The heated compressed gas is made a supersonic flow (about 340 m / s or more) by the gas nozzle 64 having a divergent shape. At this time, the gas pressure of the compressed gas is preferably about 1 to 5 MPa. This is because by adjusting the pressure of the compressed gas to this level, it is possible to improve the adhesion strength between the base material 21 and the coating film 22 formed thereon. These spray conditions (temperature and pressure of the compressed gas, the discharge amount of the composite powder 10 and the like) are determined according to the characteristics of the coating layer 12 that is the outermost layer in direct contact with the compressed gas.
 スプレーガン63に供給された複合化粉末10は、圧縮ガスの超音速流の中に投入されて加速され、少なくとも複合化粉末10の表面を固相状態に保ったまま基材21に高速で衝突して堆積し、皮膜22を形成する。 The composite powder 10 supplied to the spray gun 63 is injected into a supersonic flow of compressed gas and accelerated to collide with the base material 21 at a high speed while maintaining at least the surface of the composite powder 10 in a solid state. To form a film 22.
 なお、複合化粉末10を基材21に、少なくとも複合化粉末10の表面を固相状態に保ったまま衝突させて皮膜22を形成できる装置であれば、図3に示すコールドスプレー装置60に限定されるものではない。 In addition, as long as it is an apparatus which can form the membrane | film | coat 22 by making the composite powder 10 collide with the base material 21 with at least the surface of the composite powder 10 maintained in a solid-phase state, it is limited to the cold spray apparatus 60 shown in FIG. Is not to be done.
 図4は、工程S3により基材21上に皮膜22を形成した構造体を模式的に示す断面図である。工程S3においては、心材層11を被覆層12で被覆した粉末を基材21上に堆積させるので、皮膜22は、被覆層12をなす金属又は合金により形成されたセル壁24の間(即ち、セル内)に心材層11をなす材料23が充填された構造を有する。なお、皮膜22の形成時に複合化粉末10を基材21に衝突させた際の衝撃により複合化粉末10が変形するため、材料23で満たされた各セルは、皮膜22の厚み方向(複合化粉末10の堆積方向)における径よりも、該厚み方向と直交する面(基材21の皮膜形成面)における径の方が大きい扁平形状となっている。 FIG. 4 is a cross-sectional view schematically showing a structure in which the film 22 is formed on the base material 21 in step S3. In step S3, since the powder obtained by coating the core material layer 11 with the coating layer 12 is deposited on the base material 21, the coating 22 is formed between the cell walls 24 formed of the metal or alloy forming the coating layer 12 (that is, It has a structure in which the material 23 forming the core material layer 11 is filled in the cell). In addition, since the composite powder 10 is deformed by an impact when the composite powder 10 collides with the base material 21 when the coating 22 is formed, each cell filled with the material 23 has a thickness direction (composite). It has a flat shape in which the diameter on the surface orthogonal to the thickness direction (film forming surface of the base material 21) is larger than the diameter in the powder 10 deposition direction.
 続く工程S4において、皮膜22を所定の溶解液に浸して心材層11をなす材料23を除去することにより、皮膜22に気孔(空孔)を形成する。 In the subsequent step S4, pores (holes) are formed in the coating 22 by immersing the coating 22 in a predetermined solution to remove the material 23 forming the core material layer 11.
 溶解液は、心材層11をなす材料23及び被覆層12をなす金属又は合金の種類に応じて調製される。即ち、心材層11を溶解させ、且つ、被覆層12は溶解させ難い溶解液となるように、成分、濃度、温度等が決定される。具体例として、心材層11がアルミニウム、被覆層12が銅である場合には、溶解液として塩酸が用いられる。また、心材層11が銅又は銅合金、被覆層12がニッケル又はニッケル合金である場合には、溶解液として濃硝酸が用いられる。 The solution is prepared according to the type of the material 23 forming the core material layer 11 and the metal or alloy forming the coating layer 12. That is, the components, concentration, temperature, and the like are determined so that the core material layer 11 is dissolved and the coating layer 12 is difficult to dissolve. As a specific example, when the core material layer 11 is aluminum and the coating layer 12 is copper, hydrochloric acid is used as the solution. When the core material layer 11 is copper or a copper alloy and the coating layer 12 is nickel or a nickel alloy, concentrated nitric acid is used as a solution.
 図5は、材料23を除去した後の皮膜の構造を模式的に示す断面図であり、実施の形態1に係る多孔体を備える構造体を示す。皮膜22から、セル壁24を残して材料23のみを除去することにより、材料23で満たされていた各セルが気孔25となる。それにより、セル構造を有する多孔体26が作製される。なお、上述したように、材料23で満たされた各セルは扁平形状をなしていたため、材料23を除去した後の気孔25も扁平形状となる。 FIG. 5 is a cross-sectional view schematically showing the structure of the film after the material 23 is removed, and shows the structure including the porous body according to the first embodiment. By removing only the material 23 from the coating 22 while leaving the cell walls 24, the cells filled with the material 23 become pores 25. Thereby, the porous body 26 having a cell structure is produced. As described above, since each cell filled with the material 23 has a flat shape, the pores 25 after the material 23 is removed also have a flat shape.
 このように作製された多孔体26は、基材21上に固定された構造体1の状態で各種用途に適用しても良い。この際、基材21を所望の形状又は厚さにカットしても良い。或いは、基材21をカット又は溶解するなどして多孔体26から除去し、多孔体26を単独で使用しても良い。基材21を溶解させる場合には、基材21を心材層11と同じ材料(金属又は合金)で作製し、工程S4において、基材21を心材層11と共に溶解させても良い。なお、基材21を所望の形状又は厚さにカットする場合には、工程S4において材料23を除去する前にカットしても良い。 The thus produced porous body 26 may be applied to various uses in the state of the structure 1 fixed on the substrate 21. At this time, the substrate 21 may be cut into a desired shape or thickness. Alternatively, the substrate 21 may be removed from the porous body 26 by cutting or dissolving it, and the porous body 26 may be used alone. When the base material 21 is dissolved, the base material 21 may be made of the same material (metal or alloy) as the core material layer 11, and the base material 21 may be dissolved together with the core material layer 11 in step S4. In addition, when cutting the base material 21 into a desired shape or thickness, it may be cut before removing the material 23 in step S4.
 次に、図2に示す複合化粉末10について詳しく説明する。
 複合化粉末10は、金属又は合金、塩化物、樹脂等の材料によって形成された粉末の周囲を、金属又は合金で被覆することにより作製される。なお、被覆法としては、めっき法やCVD法等、公知の種々の手法を用いることができる。この際、加熱による金属間化合物の形成を抑制するため、金属又は合金の温度がなるべく上昇しない被覆方法(例えばめっき法)を用いることが好ましい。
Next, the composite powder 10 shown in FIG. 2 will be described in detail.
The composite powder 10 is produced by coating the periphery of a powder formed of a material such as a metal or alloy, chloride, or resin with a metal or alloy. In addition, as a coating method, well-known various methods, such as a plating method and CVD method, can be used. At this time, in order to suppress the formation of an intermetallic compound by heating, it is preferable to use a coating method (for example, a plating method) in which the temperature of the metal or alloy does not increase as much as possible.
 心材層11の材料としては、例えば、マグネシウム、マグネシウム合金、アルミニウム、アルミニウム合金、銅、銅合金、亜鉛、亜鉛合金、ニッケル、ニッケル合金、鉄、鉄合金、チタン、チタン合金、錫、錫合金等の金属又は合金、塩化ナトリウム等の塩化物、ウレタン等の樹脂が用いられる。 Examples of the material of the core layer 11 include magnesium, magnesium alloy, aluminum, aluminum alloy, copper, copper alloy, zinc, zinc alloy, nickel, nickel alloy, iron, iron alloy, titanium, titanium alloy, tin, tin alloy, and the like. Metals or alloys, chlorides such as sodium chloride, and resins such as urethane are used.
 被覆層12の材料としては、例えば、アルミニウム、アルミニウム合金、銅、銅合金、亜鉛、亜鉛合金、ニッケル、ニッケル合金、鉄、鉄合金、チタン、チタン合金、クロム、クロム合金、ニオブ、ニオブ合金、モリブデン、モリブデン合金、銀、銀合金、錫、錫合金、タンタル、タンタル合金、タングステン、又は、タングステン合金が用いられる。なお、心材層11を金属又は合金によって形成する場合、被覆層12としては、心材層11とは種類が異なる金属又は合金を使用する。 Examples of the material of the coating layer 12 include aluminum, aluminum alloy, copper, copper alloy, zinc, zinc alloy, nickel, nickel alloy, iron, iron alloy, titanium, titanium alloy, chromium, chromium alloy, niobium, niobium alloy, Molybdenum, molybdenum alloy, silver, silver alloy, tin, tin alloy, tantalum, tantalum alloy, tungsten, or tungsten alloy is used. In addition, when the core material layer 11 is formed of a metal or an alloy, a metal or alloy having a different type from the core material layer 11 is used as the covering layer 12.
 心材層11をなす材料及び被覆層12をなす金属又は合金の組み合わせは、工程S4において用いられる溶解液を考慮して決定される。例えば、心材層11を金属又は合金によって形成する場合、溶解液として酸性溶液を用い、被覆層12をなす金属又は合金の方が心材層11をなす金属又は合金よりもイオン化傾向が小さくなるように、各材料を選択すると良い。具体的には、心材層11としてアルミニウム又はアルミニウム合金、被覆層12として銅又は銅合金、溶解液として塩酸の組み合わせが挙げられる。 The combination of the material forming the core material layer 11 and the metal or alloy forming the coating layer 12 is determined in consideration of the solution used in step S4. For example, when the core material layer 11 is formed of a metal or alloy, an acidic solution is used as a solution so that the metal or alloy forming the coating layer 12 has a lower ionization tendency than the metal or alloy forming the core material layer 11. Each material should be selected. Specifically, a combination of aluminum or an aluminum alloy as the core material layer 11, copper or a copper alloy as the coating layer 12, and hydrochloric acid as the solution is mentioned.
 或いは、溶解液として酸化性の強酸溶液を用い、被覆層12として表面に不動態膜を形成する所謂バルブ金属を用い、心材層11として、上記強酸溶液に対して溶解し易い金属又は合金を用いても良い。具体的には、心材層11として銅又は銅合金、被覆層12としてアルミニウム、アルミニウム合金、ニッケル、ニッケル合金、チタン、チタン合金、クロム、及びクロム合金のいずれか、溶解液として濃硝酸の組み合わせが挙げられる。 Alternatively, an oxidizing strong acid solution is used as the solution, a so-called valve metal that forms a passive film on the surface is used as the coating layer 12, and a metal or an alloy that is easily dissolved in the strong acid solution is used as the core layer 11. May be. Specifically, copper or copper alloy as the core material layer 11, aluminum, aluminum alloy, nickel, nickel alloy, titanium, titanium alloy, chromium and chromium alloy as the coating layer 12, or a combination of concentrated nitric acid as the solution. Can be mentioned.
 また、心材層11を、水又は水溶液に溶解可能な塩化物によって形成しても良い。この場合、被覆層12をなす金属又は合金の種類は特に限定されない。具体的には、心材層11として例えば塩化ナトリウムを用いる場合、溶解液として水を用いれば良い。 Alternatively, the core material layer 11 may be formed of chloride that is soluble in water or an aqueous solution. In this case, the type of metal or alloy forming the coating layer 12 is not particularly limited. Specifically, for example, when sodium chloride is used as the core material layer 11, water may be used as the solution.
 また、心材層11を、有機溶剤に溶解可能な樹脂によって形成しても良い。この場合も、被覆層12をなす金属又は合金の種類は特に限定されない。有機溶剤としては、アセトン、エタノール、トルエン等、任意のものを用いることができる。具体的な組み合わせとしては、心材層11として例えばポリエチレン系樹脂を用いる場合、溶解液としてアセトンを用いれば良い。 The core material layer 11 may be formed of a resin that can be dissolved in an organic solvent. Also in this case, the type of metal or alloy forming the coating layer 12 is not particularly limited. As an organic solvent, arbitrary things, such as acetone, ethanol, toluene, can be used. As a specific combination, for example, when a polyethylene resin is used as the core material layer 11, acetone may be used as a solution.
 また、心材層11を、アルカリ溶液に溶解可能な樹脂によって形成しても良い。この場合、アルカリ溶液の成分、濃度、温度等は、心材層11を溶解させ、且つ、被覆層12は溶解させ難い溶液となるように決定される。具体的な組み合わせとしては、心材層11がポリエチレン系樹脂、被覆層12がニッケルである場合には、溶解液として90℃程度に加熱した水酸化ナトリウム水溶液が用いられる。 Further, the core material layer 11 may be formed of a resin that can be dissolved in an alkaline solution. In this case, the components, concentration, temperature, etc. of the alkaline solution are determined so that the core material layer 11 is dissolved and the coating layer 12 is difficult to dissolve. As a specific combination, when the core material layer 11 is a polyethylene resin and the coating layer 12 is nickel, a sodium hydroxide aqueous solution heated to about 90 ° C. is used as a solution.
 複合化粉末10全体のサイズは、上述したコールドスプレー法に適用可能なサイズ(例えば10~300μm程度)であれば特に限定されない。また、心材層11の径D及び被覆層12の厚さdは、多孔体26において実現したい気孔25の径(気孔径)、セル壁24の太さ(壁の厚さ)、多孔体26に対する気孔25の体積の比率(気孔率)等に応じて決定される。即ち、気孔径を制御したい場合には、心材層11の径Dを調節すれば良い。また、セル壁24の太さを制御したい場合には、被覆層12の厚さdを調節すれば良い。さらに、気孔率を制御したい場合には、心材層11の径Dと被覆層12の厚さdとの比率を調節すれば良い。具体例として、心材層11を平均粒径が約30μmのアルミニウム粉末とし、被覆層12を厚さ約0.5μmの銅めっき層とすることにより、約95%の気孔率を実現することができる。 The total size of the composite powder 10 is not particularly limited as long as it is a size applicable to the above-described cold spray method (for example, about 10 to 300 μm). Further, the diameter D of the core material layer 11 and the thickness d of the covering layer 12 are the diameter of the pores 25 (pore diameter) to be realized in the porous body 26, the thickness of the cell wall 24 (wall thickness), and the porous body 26. It is determined according to the volume ratio (porosity) of the pores 25 and the like. That is, in order to control the pore diameter, the diameter D of the core material layer 11 may be adjusted. In addition, when it is desired to control the thickness of the cell wall 24, the thickness d of the coating layer 12 may be adjusted. Furthermore, when it is desired to control the porosity, the ratio between the diameter D of the core material layer 11 and the thickness d of the covering layer 12 may be adjusted. As a specific example, a porosity of about 95% can be realized by using the core material layer 11 as an aluminum powder having an average particle size of about 30 μm and the coating layer 12 as a copper plating layer having a thickness of about 0.5 μm. .
 以上説明したように、実施の形態1によれば、複合化粉末10を用いてコールドスプレー法により形成した皮膜22から心材層11をなす材料23を除去するという簡単な工程で、基材21上に多孔体26を作製することができる。 As described above, according to the first embodiment, the material 23 that forms the core material layer 11 is removed from the coating 22 formed by the cold spray method using the composite powder 10, on the base material 21. A porous body 26 can be produced.
 また、本実施の形態1によれば、複合化粉末10における心材層11の径D、被覆層12の厚さd、及びこれらの比率を調節することにより、多孔体26における気孔径、セル壁24の太さ、及び、気孔率を容易に制御することができる。なお、本実施の形態1において、気孔径とは、多孔体26の厚み方向と直交する断面1mm2当たりで計数した気孔25の個数をkとした場合に、1/(√k)で与えられる平均気孔径のことをいう。 Further, according to the first embodiment, by adjusting the diameter D of the core layer 11 in the composite powder 10, the thickness d of the coating layer 12, and the ratio thereof, the pore diameter in the porous body 26, the cell wall The thickness of 24 and the porosity can be easily controlled. In the first embodiment, the pore diameter is given by 1 / (√k), where k is the number of pores 25 counted per 1 mm 2 cross section perpendicular to the thickness direction of the porous body 26. The average pore diameter.
 具体的には、実施の形態1によれば、気孔径を約0.01mm以上約1mm以下の範囲で制御することができる。従って、従来は実現が困難であった、例えば0.3mm以下、0.02mm以下、さらには、0.01mm以下の微小な気孔を形成することも可能である。例えば、気孔径が好ましくは0.01mm以上0.1mm以下である小気孔径の多孔体26を、例えば触媒や放熱部材等に適用する場合、大きな比表面積を確保することができるので、触媒や放熱部材等の性能を向上させることが可能となる。 Specifically, according to Embodiment 1, the pore diameter can be controlled in the range of about 0.01 mm to about 1 mm. Therefore, it is possible to form minute pores that are difficult to realize in the past, for example, 0.3 mm or less, 0.02 mm or less, and 0.01 mm or less. For example, when the porous body 26 having a small pore diameter of preferably 0.01 mm or more and 0.1 mm or less is applied to, for example, a catalyst or a heat radiating member, a large specific surface area can be ensured. It is possible to improve the performance of the heat dissipation member and the like.
 また、実施の形態1によれば、気孔率を約30%以上100%未満の範囲で制御することができる。従って、従来は実現が困難であった75%以上、或いは85%以上という高い気孔率を実現することも可能である。例えば、気孔率が好ましくは75%以上である高気孔率の多孔体26を例えばフィルタ等に適用する場合、流体の圧力損失を低く抑えることが可能となる。 Further, according to the first embodiment, the porosity can be controlled in a range of about 30% or more and less than 100%. Therefore, it is possible to achieve a high porosity of 75% or more, or 85% or more, which has been difficult to realize in the past. For example, when the high porosity porous body 26 having a porosity of preferably 75% or more is applied to, for example, a filter, the pressure loss of the fluid can be kept low.
 さらには、実施の形態1によれば、気孔径及び気孔率を、上述した範囲で同時に制御することができる。例えば、気孔径を0.01mm以上0.3mm以下の微小な径としつつ、気孔率を30%以上100%未満の所望の範囲に制御することができる。或いは、気孔率を85%以上100%未満の高気孔率にしつつ、気孔径を0.01mm以上1mm以下の所望の径に制御することができる。従って、例えば、気孔径が0.01mm以上0.3mm以下、且つ気孔率が85%以上という、気孔径が微小で高気孔率の多孔体を作製することも可能である。 Furthermore, according to Embodiment 1, the pore diameter and the porosity can be simultaneously controlled within the above-described range. For example, the porosity can be controlled within a desired range of 30% or more and less than 100% while the pore diameter is set to a minute diameter of 0.01 mm or more and 0.3 mm or less. Alternatively, the pore diameter can be controlled to a desired diameter of 0.01 mm or more and 1 mm or less while the porosity is set to a high porosity of 85% or more and less than 100%. Therefore, for example, it is possible to produce a porous body having a small pore diameter and a high porosity of 0.01 mm or more and 0.3 mm or less and a porosity of 85% or more.
 また、多孔体26は、金属又は合金からなるセル壁24の内側(セル内)に気孔25が形成されたセル構造を有している。このようなセル構造においては、気孔率に対するセル壁24の表面積の比率が、網目状といった他の多孔構造よりも高くなる。従って、このような多孔体26を例えば触媒の担体として用いることにより、触媒作用の効率を向上させることが可能となる。 The porous body 26 has a cell structure in which pores 25 are formed inside (inside the cell) the cell wall 24 made of metal or alloy. In such a cell structure, the ratio of the surface area of the cell wall 24 to the porosity is higher than that of other porous structures such as a mesh shape. Therefore, by using such a porous body 26 as a catalyst carrier, for example, the efficiency of the catalytic action can be improved.
 また、多孔体26において、セル壁24はコールドスプレー法により形成されているため、それ自体が非常に緻密であると共に、基材21に強く密着している。従って、セル壁24において良好な電気伝導率及び熱伝導率が得られると共に、セル壁24と基材21との間においても良好な電気伝導率及び熱伝導率を確保することが可能となる。従って、このような多孔体26、又は多孔体26を備える構造体1を電池等における電極部材として用いることにより、電池等の効率を向上させることが可能となる。また、構造体1をヒートシンクとして用いることにより、ヒートシンクに設けられる回路基板の熱交換効率を向上させることが可能となる。 Further, in the porous body 26, since the cell wall 24 is formed by the cold spray method, the cell wall 24 itself is very dense and is in close contact with the base material 21. Therefore, good electrical conductivity and thermal conductivity can be obtained in the cell wall 24, and good electrical conductivity and thermal conductivity can be ensured between the cell wall 24 and the substrate 21. Therefore, by using such a porous body 26 or the structure 1 including the porous body 26 as an electrode member in a battery or the like, the efficiency of the battery or the like can be improved. Moreover, it becomes possible to improve the heat exchange efficiency of the circuit board provided in a heat sink by using the structure 1 as a heat sink.
 また、上述したように、多孔体26におけるセル壁24は非常に緻密であると共に、基材21と強く密着しているので、従来の多孔体よりも高い耐久性を得ることができる。従って、このような多孔体26、又は多孔体26を備える構造体1を各種モジュールに適用した場合、当該モジュールを従来よりも長寿命化させることが可能となる。 Further, as described above, since the cell wall 24 in the porous body 26 is very dense and is in close contact with the base material 21, higher durability than that of the conventional porous body can be obtained. Therefore, when such a porous body 26 or the structure 1 including the porous body 26 is applied to various modules, it is possible to extend the lifetime of the module as compared with the related art.
 また、実施の形態1によれば、コールドスプレー法による皮膜形成が可能な基材であれば、基材の形状やサイズによらず、所望の基材上に多孔体を製造することができる。従って、多孔体を用いたモジュール等の設計の自由度を広げることが可能となる。 Further, according to the first embodiment, a porous body can be produced on a desired base material, regardless of the shape and size of the base material, as long as the base material can form a film by the cold spray method. Accordingly, it is possible to increase the degree of freedom in designing a module using a porous body.
(実施の形態2)
 次に、本発明の実施の形態2について説明する。
 本実施の形態2においては、コールドスプレー法により皮膜形成を行う際に(図1の工程S3参照)、被覆層12(図2参照)をなす金属又は合金のみからなる粉末(以下、単層の粉末という)を複合化粉末10に混合した混合粉末を用いることを特徴とする。例えば、心材層11がアルミニウム、被覆層12が銅からなる複合化粉末10を用いる場合、該複合化粉末10に銅粉末を混合する。
(Embodiment 2)
Next, a second embodiment of the present invention will be described.
In the second embodiment, when a film is formed by a cold spray method (see step S3 in FIG. 1), a powder (hereinafter referred to as a single layer) consisting only of a metal or an alloy that forms the coating layer 12 (see FIG. 2). It is characterized by using a mixed powder obtained by mixing a composite powder 10). For example, when using the composite powder 10 in which the core material layer 11 is made of aluminum and the coating layer 12 is made of copper, the composite powder 10 is mixed with copper powder.
 このように、単層の粉末を複合化粉末10に混合することにより、皮膜22(図4参照)における材料23とセル壁24との比率を変化させることができる。これより、皮膜22から材料23を除去した後の多孔体26(図5参照)におけるセル壁24の太さや気孔率を、さらに容易に制御することが可能となる。 Thus, the ratio of the material 23 and the cell wall 24 in the coating 22 (see FIG. 4) can be changed by mixing the single layer powder into the composite powder 10. Thus, the thickness and porosity of the cell wall 24 in the porous body 26 (see FIG. 5) after removing the material 23 from the coating 22 can be controlled more easily.
(実施の形態3)
 次に、本発明の実施の形態3について説明する。
 本実施の形態3においては、心材層11(図2参照)をなす材料を除去する際に(図1の工程S4参照)、皮膜を溶解液に浸す代わりに、皮膜を加熱することを特徴とする。
(Embodiment 3)
Next, a third embodiment of the present invention will be described.
The third embodiment is characterized in that, when the material forming the core material layer 11 (see FIG. 2) is removed (see step S4 in FIG. 1), the film is heated instead of immersing the film in the solution. To do.
 本実施の形態3において、複合化粉末10の心材層11は、所定の温度で熱分解可能な材料によって形成され、被覆層12は、該温度で溶融しない金属又は合金によって形成される。具体的には、心材層11として約500℃で熱分解するポリエチレンを用い、被覆層12として該500℃では溶融しない銅を用いる。 In the third embodiment, the core material layer 11 of the composite powder 10 is formed of a material that can be thermally decomposed at a predetermined temperature, and the coating layer 12 is formed of a metal or alloy that does not melt at the temperature. Specifically, polyethylene that thermally decomposes at about 500 ° C. is used as the core material layer 11, and copper that does not melt at 500 ° C. is used as the coating layer 12.
 工程S3において、上記複合化粉末10を用いて基材21上に皮膜22を形成した後(図4参照)、工程S4において、例えば電気炉により皮膜22を約500℃に加熱し、材料23を熱分解して除去する。それにより、セル構造を有する多孔体26(図5参照)を得ることができる。 In step S3, after forming the film 22 on the base material 21 using the composite powder 10 (see FIG. 4), in step S4, for example, the film 22 is heated to about 500 ° C. by an electric furnace, and the material 23 is Remove by pyrolysis. Thereby, the porous body 26 (refer FIG. 5) which has a cell structure can be obtained.
(変形例)
 次に、本発明の実施の形態3の変形例について説明する。
 複合化粉末10の心材層11として、例えば、蒸気による加水分解可能な樹脂材料を用いても良い。このような樹脂材料の具体例として、ポリエチレンテレフタレート(PET)が挙げられる。また、被覆層12としては、当該樹脂材料に対する加水分解処理における反応性が高くない金属又は合金を用いることができる。
(Modification)
Next, a modification of the third embodiment of the present invention will be described.
As the core material layer 11 of the composite powder 10, for example, a resin material that can be hydrolyzed by steam may be used. A specific example of such a resin material is polyethylene terephthalate (PET). Moreover, as the coating layer 12, a metal or an alloy that is not highly reactive in the hydrolysis treatment for the resin material can be used.
 この場合、PETを心材層11とする複合化粉末10により基材21上に皮膜22を形成した後、150℃以上に加熱された水蒸気で満たされたチャンバ内に基材21及び皮膜22を載置し、皮膜22を水蒸気に曝露する。それにより皮膜22中のPETからなる材料23が加水分解されて除去される。なお、加水分解により皮膜22中に残ったPETの重合前の原料物質は、皮膜22を洗浄することにより除去すれば良い。 In this case, after forming the film 22 on the base material 21 with the composite powder 10 using PET as the core material layer 11, the base material 21 and the film 22 are placed in a chamber filled with water vapor heated to 150 ° C. or higher. And coat 22 is exposed to water vapor. Thereby, the material 23 made of PET in the coating 22 is hydrolyzed and removed. The raw material material before the polymerization of PET remaining in the film 22 by hydrolysis may be removed by washing the film 22.
(実施の形態4)
 次に、本発明の実施の形態4について説明する。
 実施の形態4においては、図1に示す多孔体の製造方法において、多層からなる複合化粉末を用いることを特徴とする。
(Embodiment 4)
Next, a fourth embodiment of the present invention will be described.
Embodiment 4 is characterized in that a composite powder composed of multiple layers is used in the method for manufacturing a porous body shown in FIG.
 図6は、本実施の形態4において用いられる複合化粉末30の構造を示す断面図である。図6に示す複合化粉末30は、心材層31と、その周囲に形成された第1被覆層32及び第2被覆層33とを有する。心材層31は、図2に示す心材層11と同様、所定の溶解液に溶解可能な金属又は合金、塩化物、樹脂等の材料からなる。一方、第1被覆層32及び第2被覆層33は、上記溶解液に対して心材層31よりも溶解し難く、且つ、互いに異なる種類の金属又は合金からなる。これらの第1被覆層32及び第2被覆層33は、心材層31に対してめっき法等による被覆を順次施すことにより形成される。 FIG. 6 is a cross-sectional view showing the structure of the composite powder 30 used in the fourth embodiment. The composite powder 30 shown in FIG. 6 has a core material layer 31 and a first coating layer 32 and a second coating layer 33 formed around the core material layer 31. Like the core material layer 11 shown in FIG. 2, the core material layer 31 is made of a material such as a metal or an alloy, chloride, or resin that can be dissolved in a predetermined solution. On the other hand, the 1st coating layer 32 and the 2nd coating layer 33 are hard to melt | dissolve with respect to the said solution than the core material layer 31, and consist of a mutually different kind of metal or alloy. The first coating layer 32 and the second coating layer 33 are formed by sequentially coating the core material layer 31 by a plating method or the like.
 実施の形態4においては、このような複合化粉末30を用いてコールドスプレー法により基材上に皮膜を形成し(工程S3)、該皮膜を上記溶解液に浸して心材層31をなす材料を除去することにより気孔を形成する(工程S4)。各工程S3、S4の詳細については、実施の形態1と同様である。 In the fourth embodiment, the composite powder 30 is used to form a film on the base material by a cold spray method (step S3), and the material that forms the core layer 31 by immersing the film in the solution. By removing, pores are formed (step S4). Details of the steps S3 and S4 are the same as those in the first embodiment.
 図7は、工程S4により作製された多孔体42を含む構造体2を示す断面図である。基材41上に形成された皮膜から心材層31をなす材料を除去することにより、図7に示すように、セル壁43の間に気孔44が形成された多孔体42が作製される。このセル壁43は、第1被覆層32をなす金属又は合金45及び第2被覆層33をなす金属又は合金46からなる層構造を有している。 FIG. 7 is a cross-sectional view showing the structure 2 including the porous body 42 produced in step S4. By removing the material forming the core material layer 31 from the film formed on the base material 41, a porous body 42 in which pores 44 are formed between the cell walls 43 as shown in FIG. The cell wall 43 has a layer structure composed of a metal or alloy 45 forming the first coating layer 32 and a metal or alloy 46 forming the second coating layer 33.
 このような多孔体42において、例えば、第2被覆層33(金属又は合金46)を銅などの導電性の高い金属又は合金で形成し、第1被覆層32(金属又は合金45)を白金などの触媒用の金属で形成することにより、触媒を担持させた多孔体を容易に作製することができる。なお、この場合、複合化粉末30の心材層31は、例えば、銅及び白金よりもイオン化傾向が大きいアルミニウムで形成すれば良い。 In such a porous body 42, for example, the second coating layer 33 (metal or alloy 46) is formed of a highly conductive metal or alloy such as copper, and the first coating layer 32 (metal or alloy 45) is platinum or the like. By forming the catalyst metal, a porous body carrying the catalyst can be easily produced. In this case, the core material layer 31 of the composite powder 30 may be formed of aluminum having a higher ionization tendency than copper and platinum, for example.
 以上説明したように、実施の形態4によれば、複合化粉末30の層数を増やすことにより、層構造を有するセル壁からなる多孔体を容易に作製することが可能となる。なお、複合化粉末における被覆層を3層以上にすることにより、セル壁をさらに多層化することも可能である。 As described above, according to the fourth embodiment, by increasing the number of layers of the composite powder 30, it is possible to easily produce a porous body composed of cell walls having a layer structure. In addition, it is also possible to make a cell wall further multilayer by making the coating layer in composite powder into three or more layers.
(変形例)
 上記実施の形態4においても、実施の形態3と同様に、心材層31を熱分解可能な材料(例えばポリエチレン等の樹脂)によって形成しても良い。この場合、工程S4においては、皮膜を加熱して心材層31をなす材料を熱分解により除去すれば良い。或いは、実施の形態3の変形例と同様に、心材層31を加水分解可能な材料(例えばPET)によって形成しても良い。
(Modification)
Also in the fourth embodiment, similarly to the third embodiment, the core material layer 31 may be formed of a thermally decomposable material (for example, a resin such as polyethylene). In this case, in step S4, the film may be heated to remove the material forming the core layer 31 by thermal decomposition. Alternatively, similarly to the modification of the third embodiment, the core material layer 31 may be formed of a hydrolyzable material (for example, PET).
(実施の形態5)
 次に、本発明の実施の形態5について説明する。
 図8は、実施の形態5に係る多孔体の製造方法を示すフローチャートである。なお、図8に示す工程S1~S4は、実施の形態1において説明したものと同様である。
(Embodiment 5)
Next, a fifth embodiment of the present invention will be described.
FIG. 8 is a flowchart showing a method for manufacturing a porous body according to the fifth embodiment. Steps S1 to S4 shown in FIG. 8 are the same as those described in the first embodiment.
 工程S4に続く工程S5において、基材21上に残ったセル壁24(図5参照)にめっき処理を施すことによりめっき層を形成して、セル壁24をコーティングする。めっき層をなす金属又は合金は特に限定されず、多孔体の用途に応じて選択すれば良い。例えば、銅によって形成されたセル壁24に対してパラジウムめっきを施すことにより、ニッケル水素電池の負極材料として使用することができる。 In step S5 subsequent to step S4, the cell wall 24 (see FIG. 5) remaining on the substrate 21 is plated to form a plating layer, and the cell wall 24 is coated. The metal or alloy forming the plating layer is not particularly limited, and may be selected according to the use of the porous body. For example, it can be used as a negative electrode material of a nickel metal hydride battery by performing palladium plating on the cell wall 24 formed of copper.
 このように、気孔25が形成された多孔体26にめっき処理を施すことによっても、図7に示す多孔体42と同様に、セル壁を多層化(複数層化)することができる。
 なお、本実施の形態5における工程S5を、実施の形態2~4に適用しても良い。
As described above, by performing the plating process on the porous body 26 in which the pores 25 are formed, the cell wall can be multilayered (multiple layers) as in the porous body 42 shown in FIG.
Note that step S5 in the fifth embodiment may be applied to the second to fourth embodiments.
(実施の形態6)
 次に、本発明の実施の形態6について説明する。
 図9は、実施の形態6に係る多孔体の製造方法を示すフローチャートである。また、図10は、実施の形態6に係る多孔体の製造方法を説明する模式図である。なお、図9に示す工程S1~S3は、実施の形態1において説明したものと同様である。ただし、複合化粉末10としては、心材層11及び被覆層12が、種類が互いに異なる金属又は合金により形成されたものを用いる。より詳細には、例えばアルミニウムと銅や、アルミニウムとニッケルのように、互いに接触する界面に金属間化合物が形成可能な金属又は合金の組み合わせで、心材層11及び被覆層12からなる複合化粉末10を用意する。
(Embodiment 6)
Next, a sixth embodiment of the present invention will be described.
FIG. 9 is a flowchart showing a method for manufacturing a porous body according to the sixth embodiment. FIG. 10 is a schematic diagram for explaining a method for manufacturing a porous body according to the sixth embodiment. Note that steps S1 to S3 shown in FIG. 9 are the same as those described in the first embodiment. However, as the composite powder 10, the core material layer 11 and the coating layer 12 formed of different metals or alloys are used. More specifically, the composite powder 10 comprising the core material layer 11 and the coating layer 12 is a combination of metals or alloys capable of forming an intermetallic compound at the interface contacting each other, such as aluminum and copper or aluminum and nickel. Prepare.
 工程S3に続く工程S6において、基材21上に形成された皮膜22(図4参照)に熱処理を施す。それにより、図10に示すように、心材層11をなす材料(合金又は金属)23と被覆層12をなす金属又は合金により形成されたセル壁24との界面に、金属間化合物層51が形成される。例えば、心材層11をアルミニウム、被覆層12をニッケルめっきで形成した場合、500~600℃で加熱することにより、材料23とセル壁24との界面に金属間化合物が形成される。 In step S6 following step S3, heat treatment is performed on the film 22 (see FIG. 4) formed on the substrate 21. As a result, as shown in FIG. 10, an intermetallic compound layer 51 is formed at the interface between the material (alloy or metal) 23 forming the core layer 11 and the cell wall 24 formed of the metal or alloy forming the coating layer 12. Is done. For example, when the core layer 11 is formed of aluminum and the coating layer 12 is formed of nickel, an intermetallic compound is formed at the interface between the material 23 and the cell wall 24 by heating at 500 to 600 ° C.
 続く工程S7において、金属間化合物層51が形成された皮膜22を所定の溶解液に浸し、未反応部分の材料23を除去することにより、皮膜22に気孔を形成する。なお、未反応部分の材料23を溶解させる溶解液の具体例については、実施の形態1の工程S4で説明したものと同様である。 In the subsequent step S7, pores are formed in the coating 22 by immersing the coating 22 on which the intermetallic compound layer 51 is formed in a predetermined solution and removing the material 23 of the unreacted portion. A specific example of the solution for dissolving the material 23 of the unreacted portion is the same as that described in step S4 of the first embodiment.
 図11は、それによって形成された多孔体を備える構造体3を示す断面図である。材料23を除去することにより、セル壁24の表層(気孔52との接触面)が金属間化合物層51で覆われた多孔体53が形成される。 FIG. 11 is a cross-sectional view showing the structure 3 including the porous body formed thereby. By removing the material 23, a porous body 53 in which the surface layer of the cell wall 24 (the contact surface with the pores 52) is covered with the intermetallic compound layer 51 is formed.
 金属間化合物層51の厚さは、工程S6における熱処理の時間及び温度によって制御することができる。例えば図11には、セル壁24の表層のみを材料23と反応させて金属間化合物層51を形成した場合を示したが、工程S6における熱処理を十分に行うことにより、セル壁24全体を反応させても良い。この場合、金属間化合物のみからなるセル壁24(多孔体)を基材21上に形成することができる。 The thickness of the intermetallic compound layer 51 can be controlled by the time and temperature of the heat treatment in step S6. For example, FIG. 11 shows the case where only the surface layer of the cell wall 24 is reacted with the material 23 to form the intermetallic compound layer 51. However, by sufficiently performing the heat treatment in step S6, the entire cell wall 24 is reacted. You may let them. In this case, the cell wall 24 (porous body) made only of the intermetallic compound can be formed on the substrate 21.
 例えば、アルミニウムの心材層11とニッケルめっきで形成した被覆層12とからなる複合化粉末10を用いる場合、アルミニウムとニッケルとの反応により形成された金属間化合物の層は、セラミックスのように、耐食性及び耐熱性に優れた層となる。このような金属間化合物は一般に、金属と比較して脆いので、通常は多孔質体とすることが困難である。しかしながら、実施の形態6によれば、耐食性及び耐熱性に優れた金属間化合物からなり、且つ、気孔径が微小な多孔質体を、比較的容易に作製することが可能となる。 For example, in the case of using a composite powder 10 composed of an aluminum core layer 11 and a coating layer 12 formed by nickel plating, the intermetallic compound layer formed by the reaction between aluminum and nickel is resistant to corrosion like ceramics. And it becomes a layer excellent in heat resistance. Since such intermetallic compounds are generally brittle compared to metals, it is usually difficult to make them porous. However, according to the sixth embodiment, a porous body made of an intermetallic compound having excellent corrosion resistance and heat resistance and having a small pore diameter can be produced relatively easily.
 本実施の形態6に係る多孔体の製造方法は、実施の形態2、4、5と組み合わせても良い。実施の形態6に係る多孔体の製造方法を例えば実施の形態2と組み合わせる場合、複合化粉末10に混合する単層の粉末の量を調節して皮膜22におけるセル壁24の太さを制御すると共に、工程S6における熱処理の条件(時間及び温度)を制御することにより、金属間化合物層51の厚さをより簡単に調節できるようになる。 The porous body manufacturing method according to the sixth embodiment may be combined with the second, fourth, and fifth embodiments. When combining the manufacturing method of the porous body which concerns on Embodiment 6 with Embodiment 2, for example, the quantity of the powder of the single layer mixed with the composite powder 10 is adjusted, and the thickness of the cell wall 24 in the film | membrane 22 is controlled. At the same time, the thickness of the intermetallic compound layer 51 can be more easily adjusted by controlling the heat treatment conditions (time and temperature) in step S6.
 また、本実施の形態6に係る多孔体の製造方法を実施の形態4と組み合わせる場合、複合化粉末30(図6参照)の各層をなす金属又は合金を適宜選択することにより、工程S3で形成された皮膜に対し、所望の界面(心材層31をなす金属又は合金と第1被覆層32をなす金属又は合金との界面、或いは、第1被覆層32をなす金属又は合金と第2被覆層33をなす金属又は合金との界面)に金属間化合物層を形成することができる。後者の場合には、材料として、心材層31が樹脂材料で形成された複合化粉末30を用いることができる。 Moreover, when combining the manufacturing method of the porous body which concerns on this Embodiment 6 with Embodiment 4, it forms in process S3 by selecting suitably the metal or alloy which comprises each layer of the composite powder 30 (refer FIG. 6). A desired interface (the interface between the metal or alloy forming the core layer 31 and the metal or alloy forming the first coating layer 32, or the metal or alloy forming the first coating layer 32 and the second coating layer) An intermetallic compound layer can be formed at the interface between the metal 33 and the metal or the alloy 33. In the latter case, a composite powder 30 in which the core layer 31 is formed of a resin material can be used as the material.
 また、本実施の形態6に係る多孔体の製造方法を実施の形態5と組み合わせる場合、金属間化合物層51の表面がめっきによりさらに覆われた多孔体を得ることができる。 Moreover, when the method for manufacturing a porous body according to the sixth embodiment is combined with the fifth embodiment, a porous body in which the surface of the intermetallic compound layer 51 is further covered by plating can be obtained.
(実施の形態7)
 次に、本発明の実施の形態7について説明する。
 図12は、実施の形態7に係る多孔体を備える構造体を模式的に示す断面図である。図12に示すように、構造体4は、基材21と、該基材21の両面に形成された多孔体26とを備える。
(Embodiment 7)
Next, a seventh embodiment of the present invention will be described.
FIG. 12 is a cross-sectional view schematically showing a structure including a porous body according to the seventh embodiment. As shown in FIG. 12, the structure 4 includes a base material 21 and a porous body 26 formed on both surfaces of the base material 21.
 各多孔体26は、実施の形態1と同様に、複合化粉末10(図2参照)を用いたコールドスプレー法により、基材21の両面に皮膜22を順次形成した後、各皮膜22を溶解液に順次浸して、心材層11をなす材料を除去することにより作製されたものである。 As in the first embodiment, each porous body 26 is formed by sequentially forming the coating 22 on both surfaces of the base material 21 by the cold spray method using the composite powder 10 (see FIG. 2), and then dissolving each coating 22. It is produced by sequentially immersing in a liquid and removing the material forming the core material layer 11.
 このような構造体4は、例えば、基材21を巻回可能な薄板により形成し、基材21の両面に多孔体26を形成した後で、シート状の絶縁部材と共に巻回することにより、電極部材として使用することができる。 Such a structure 4 is formed by, for example, forming the base material 21 by a thin plate that can be wound, forming the porous body 26 on both surfaces of the base material 21, and then winding the base body 21 together with a sheet-like insulating member. It can be used as an electrode member.
(実施の形態8)
 次に、本発明の実施の形態8について説明する。
 上記実施の形態1~7においては、コールドスプレー法により基材21、41上に皮膜22を形成した(図1の工程S3参照)。しかしながら、複合化粉末10、30からなる緻密な皮膜を形成することができれば、コールドスプレー法以外の手法を用いても良い。例えば、複合化粉末10、30を金型に充填し、圧力を印加して押し固める金型プレスや、複合化粉末10、30を成形モールドに充填して圧力を印加する冷間等方圧加圧法等の高圧粉末成形技術により、複合化粉末10、30を所望の形状に成形することができる。この際、複合化粉末10、30からなる皮膜を基材21、41上に形成しても良いし、複合化粉末10、30からなる皮膜を単独の成形体として作製しても良い。
(Embodiment 8)
Next, an eighth embodiment of the present invention will be described.
In the first to seventh embodiments, the film 22 is formed on the base materials 21 and 41 by the cold spray method (see step S3 in FIG. 1). However, a technique other than the cold spray method may be used as long as a dense film composed of the composite powders 10 and 30 can be formed. For example, a mold press in which the composite powders 10 and 30 are filled in a mold and the pressure is applied to compress the mold press, or a cold isotropic pressurization in which the composite powders 10 and 30 are filled in a mold and a pressure is applied. The composite powders 10 and 30 can be formed into a desired shape by a high pressure powder forming technique such as a pressure method. Under the present circumstances, the film | membrane which consists of the composite powders 10 and 30 may be formed on the base materials 21 and 41, and the film | membrane which consists of the composite powders 10 and 30 may be produced as a single molded object.
 このような複合化粉末10、30からなる皮膜を、実施の形態1と同様に、心材層11、31及び被覆層12、32、33に応じて選択される溶解液に浸して心材層11を除去することにより、多孔体を作製することができる。或いは、実施の形態3と同様に、心材層11、31を熱分解によって除去しても良い。 In the same manner as in the first embodiment, the film composed of the composite powders 10 and 30 is immersed in a solution selected according to the core material layers 11 and 31 and the coating layers 12, 32 and 33, and the core material layer 11 is immersed. By removing, a porous body can be produced. Or you may remove the core material layers 11 and 31 by thermal decomposition similarly to Embodiment 3. FIG.
 本実施の形態8によれば、複合化粉末10、30における心材層11、31の径D、被覆層12、32、33の厚さd、及びこれらの比率を調節することにより、多孔体における気孔径、セル壁の太さ、及び、気孔率を容易に制御することができる。 According to the eighth embodiment, by adjusting the diameter D of the core material layers 11 and 31 in the composite powders 10 and 30, the thickness d of the coating layers 12, 32 and 33, and the ratio thereof, The pore diameter, cell wall thickness, and porosity can be easily controlled.
 具体的には、気孔径を約0.01mm以上約1mm以下の範囲で制御することができる。従って、従来は実現が困難であった、例えば0.3mm以下、0.02mm以下、さらには、0.01mm以下の微小な気孔を形成することも可能である。なお、本実施の形態8において、気孔径とは、多孔体の任意の断面1mm2当たりで計数した気孔の個数をkとした場合に、1/(√k)で与えられる平均気孔径のことをいう。 Specifically, the pore diameter can be controlled in the range of about 0.01 mm to about 1 mm. Therefore, it is possible to form minute pores that are difficult to realize in the past, for example, 0.3 mm or less, 0.02 mm or less, and 0.01 mm or less. In the eighth embodiment, the pore diameter is an average pore diameter given by 1 / (√k) where k is the number of pores counted per 1 mm 2 of a cross section of the porous body. Say.
 また、実施の形態8によれば、気孔率を約30%以上100%未満の範囲で制御することができる。従って、従来は実現が困難であった75%以上、或いは85%以上という高い気孔率を実現することも可能である。 Further, according to the eighth embodiment, the porosity can be controlled in the range of about 30% or more and less than 100%. Therefore, it is possible to achieve a high porosity of 75% or more, or 85% or more, which has been difficult to realize in the past.
 さらには、実施の形態8によれば、気孔径及び気孔率を、上述した範囲で同時に制御することができる。例えば、気孔径を0.01mm以上0.3mm以下の微小な径としつつ、気孔率を30%以上100%未満の所望の範囲に制御することができる。或いは、気孔率を85%以上100%未満の高気孔率にしつつ、気孔径を0.01mm以上1mm以下の所望の径に制御することができる。従って、例えば、気孔径が0.01mm以上0.3mm以下、且つ気孔率が85%以上という、気孔径が微小で高気孔率の多孔体を作製することも可能である。 Furthermore, according to the eighth embodiment, the pore diameter and the porosity can be controlled simultaneously within the above-described range. For example, the porosity can be controlled within a desired range of 30% or more and less than 100% while the pore diameter is set to a minute diameter of 0.01 mm or more and 0.3 mm or less. Alternatively, the pore diameter can be controlled to a desired diameter of 0.01 mm or more and 1 mm or less while the porosity is set to a high porosity of 85% or more and less than 100%. Therefore, for example, it is possible to produce a porous body having a small pore diameter and a high porosity of 0.01 mm or more and 0.3 mm or less and a porosity of 85% or more.
 また、複合化粉末10、30からなる皮膜を高圧粉末成形技術により作製する場合には、複合化粉末10、30に対して方向によらず概ね等しい圧力が作用するので、複合化粉末10、30が特定の方向に揃って変形することはない。従って、厚み方向における断面と、厚み方向と直交する断面とにおいて、平均気孔径が概ね等しい多孔体を得ることができる。 Further, in the case where a film composed of the composite powders 10 and 30 is produced by the high-pressure powder molding technique, substantially equal pressure acts on the composite powders 10 and 30 regardless of the direction. Will not deform in a specific direction. Therefore, it is possible to obtain a porous body having an average pore diameter substantially equal in the cross section in the thickness direction and the cross section orthogonal to the thickness direction.
(変形例)
 上記実施の形態8においても、実施の形態5と同様に、心材層を除去することによって気孔が形成された多孔体に対し、さらにめっき処理を施すことにより、セル壁を多層化(複数層化)しても良い。
(Modification)
Also in the above-described eighth embodiment, similarly to the fifth embodiment, the cell wall is multilayered (multi-layered) by further plating the porous body in which the pores are formed by removing the core material layer. )
(実施の形態9)
 次に、本発明の実施の形態9について説明する。
 上記実施の形態1~8においては、基材21上に皮膜22(図4参照)を形成する際に、心材層11、31の周囲を被覆層12、又は、第1被覆層32及び第2被覆層33で被覆した複合化粉末10、30を用いた(図2、図6参照)。しかしながら、必ずしも心材層11、31の周囲全体が被覆層12等で覆われている必要はなく、被覆層12等の一部から心材層11、31が露出していても良い。或いは、複合化粉末10、30の代わりに、円柱状の心材層の外周面のみを被覆層の材料で覆った複合化粉末を用いても良い。以下、そのような複合化粉末の作製方法を説明する。
(Embodiment 9)
Next, a ninth embodiment of the present invention will be described.
In the first to eighth embodiments, when the coating 22 (see FIG. 4) is formed on the substrate 21, the periphery of the core material layers 11 and 31 is the covering layer 12, or the first covering layer 32 and the second covering layer. The composite powders 10 and 30 coated with the coating layer 33 were used (see FIGS. 2 and 6). However, the entire periphery of the core material layers 11 and 31 is not necessarily covered with the coating layer 12 or the like, and the core material layers 11 and 31 may be exposed from a part of the coating layer 12 or the like. Alternatively, instead of the composite powders 10 and 30, composite powder in which only the outer peripheral surface of the cylindrical core material layer is covered with the material of the coating layer may be used. Hereinafter, a method for producing such a composite powder will be described.
 図13は、実施の形態9における複合化粉末の作製方法を説明する模式図である。まず、マグネシウム、マグネシウム合金、アルミニウム、アルミニウム合金、銅、銅合金、亜鉛、亜鉛合金、ニッケル、ニッケル合金、鉄、鉄合金、チタン、チタン合金、錫、錫合金等の金属又は合金、塩化ナトリウム等の塩化物、ウレタン等の樹脂からなる線材を作製する。なお、これらの材料は、実施の形態1における心材層11の材料と共通である。線材の作製方法は特に限定されず、伸線加工や引き抜き加工等、公知の種々の方法を用いることができる。 FIG. 13 is a schematic diagram for explaining a method for producing a composite powder in the ninth embodiment. First, magnesium, magnesium alloy, aluminum, aluminum alloy, copper, copper alloy, zinc, zinc alloy, nickel, nickel alloy, iron, iron alloy, titanium, titanium alloy, tin, tin alloy and other metals or alloys, sodium chloride, etc. A wire made of a resin such as chloride or urethane is prepared. These materials are the same as the material of the core material layer 11 in the first embodiment. The method for producing the wire is not particularly limited, and various known methods such as wire drawing and drawing can be used.
 続いて、図13(a)に示すように、上記材料からなる線材71の外周面を、アルミニウム、アルミニウム合金、銅、銅合金、亜鉛、亜鉛合金、ニッケル、ニッケル合金、鉄、鉄合金、チタン、チタン合金、クロム、クロム合金、ニオブ、ニオブ合金、モリブデン、モリブデン合金、銀、銀合金、錫、錫合金、タンタル、タンタル合金、タングステン、又は、タングステン合金等からなる被覆層72によって被覆する。なお、これらの材料は、実施の形態1における被覆層12の材料と共通である。線材71を金属又は合金によって形成する場合、被覆層72としては、線材71と種類が異なる金属又は合金を使用する。また、被覆層72の形成方法は特に限定されず、めっき法やCVD法等、公知の種々の方法を用いることができる。 Subsequently, as shown in FIG. 13 (a), the outer peripheral surface of the wire 71 made of the above material is made of aluminum, aluminum alloy, copper, copper alloy, zinc, zinc alloy, nickel, nickel alloy, iron, iron alloy, titanium. The coating layer 72 is made of titanium alloy, chromium, chromium alloy, niobium, niobium alloy, molybdenum, molybdenum alloy, silver, silver alloy, tin, tin alloy, tantalum, tantalum alloy, tungsten, tungsten alloy, or the like. Note that these materials are the same as the material of the coating layer 12 in the first embodiment. When the wire 71 is formed of a metal or an alloy, a metal or alloy having a different type from the wire 71 is used as the covering layer 72. Moreover, the formation method of the coating layer 72 is not specifically limited, Well-known various methods, such as a plating method and CVD method, can be used.
 続いて、図13(b)に示すように、線材71を被覆層72で被覆した複合化線材70を所望の長さに切断する。それにより、円柱状をなす心材層74の外周面が被覆層75で覆われ、心材層74の端面が露出した複合化粉末73が得られる。 Subsequently, as shown in FIG. 13B, the composite wire 70 in which the wire 71 is covered with the coating layer 72 is cut into a desired length. Thereby, the outer peripheral surface of the cylindrical core material layer 74 is covered with the coating layer 75, and the composite powder 73 in which the end surface of the core material layer 74 is exposed is obtained.
 ここで、線材71(心材層74)をなす材料及び被覆層72(被覆層75)をなす金属又は合金の組み合わせは、実施の形態1又は3と同様に、心材層の除去工程(図1及び図8の工程S4、又は図9の工程S7参照)において用いられる溶解液の種類や熱分解温度等に応じて決定される。或いは、実施の形態6と同様に、界面に金属間化合物が形成可能な金属又は合金の組み合わせを選択しても良い。 Here, the combination of the material forming the wire rod 71 (core material layer 74) and the metal or alloy forming the coating layer 72 (coating layer 75) is the same as in the first or third embodiment, in the core material layer removing step (FIGS. 1 and 3). It is determined according to the type of solution used in step S4 in FIG. 8 or step S7 in FIG. Alternatively, as in the sixth embodiment, a combination of metals or alloys capable of forming an intermetallic compound at the interface may be selected.
 また、線材71(心材層74)の周囲に形成される被覆層は、被覆層72(被覆層75)の1層に限定されない。即ち、実施の形態4と同様に、被覆層72とは種類が異なる金属又は合金からなる1層以上の被覆層を、被覆層72の外周面にさらに形成しても良い。 Moreover, the coating layer formed around the wire 71 (core material layer 74) is not limited to one layer of the coating layer 72 (coating layer 75). That is, as in the fourth embodiment, one or more coating layers made of a metal or an alloy different from the coating layer 72 may be further formed on the outer peripheral surface of the coating layer 72.
 線材71の径d1及び被覆層72の厚さd2は、完成した多孔体(例えば、図5に示す多孔体26)において実現したい気孔のサイズ、セル壁の厚さ、気孔率等に応じて決定される。例えば、気孔のサイズを制御する場合には、線材71の径d1や複合化粉末73の長さLを調節すれば良い。また、セル壁の厚さを制御する場合には、被覆層72の厚さd2を調節すれば良い。さらに、気孔率を制御する場合には、線材71の径d1と被覆層72の厚さd2との比率、又は、複合化粉末73の径D2と長さLとの比率を調節すれば良い。 The diameter d1 of the wire 71 and the thickness d2 of the covering layer 72 are determined according to the pore size, cell wall thickness, porosity, etc. that are desired to be realized in the completed porous body (for example, the porous body 26 shown in FIG. 5). Is done. For example, when controlling the pore size, the diameter d1 of the wire 71 and the length L of the composite powder 73 may be adjusted. In addition, when the thickness of the cell wall is controlled, the thickness d2 of the covering layer 72 may be adjusted. Further, in the case of controlling the porosity, the ratio of the diameter d1 of the wire 71 and the thickness d2 of the coating layer 72, or may be adjusting the ratio between the diameter D 2 and a length L of the composite powder 73 .
 複合化粉末73の径D2及び長さLは、コールドスプレー法や高圧粉末成形技術に適用可能なサイズ(例えば10~300μm程度)の範囲内で適宜決定される。例えば、上記気孔率を複合化粉末73の径Dと長さLとの比率により制御する場合、長さLを長くするほど気孔率を低くすることができ、長さLを短くするほど気孔率を高くすることができる。ただし、長さLを短くし過ぎると、複合化粉末73の表面積に対する被覆層75の表面積の割合が低下し、コールドスプレー法や高圧粉末成形技術により皮膜22を形成する際に、他の複合化粉末73との間で被覆層72同士が結合し難くなるおそれがある。そのため、皮膜22において複合化粉末73の被覆層72同士を確実に結合させ、多孔体26を安定的に作製するためには、複合化粉末73の径D2と長さLとの比D2/Lの範囲を、0.5≦D2/L≦2程度とすることが好ましい。例えば径D2を約30μmとした場合、長さLを15~60μm程度にすると良い。 The diameter D 2 and the length L of the composite powder 73 are appropriately determined within a range (for example, about 10 to 300 μm) applicable to the cold spray method and the high pressure powder molding technique. For example, when the porosity is controlled by the ratio of the diameter D and the length L of the composite powder 73, the porosity can be decreased as the length L is increased, and the porosity is decreased as the length L is decreased. Can be high. However, if the length L is too short, the ratio of the surface area of the coating layer 75 to the surface area of the composite powder 73 decreases, and other composites are formed when the coating 22 is formed by the cold spray method or the high-pressure powder molding technique. There is a possibility that the coating layers 72 are difficult to bond with the powder 73. Therefore, in order to reliably bond the coating layers 72 of the composite powder 73 in the coating 22 and to stably produce the porous body 26, the ratio D 2 of the diameter D 2 and the length L of the composite powder 73. The range of / L is preferably about 0.5 ≦ D 2 / L ≦ 2. For example, when the diameter D 2 is about 30 μm, the length L is preferably about 15 to 60 μm.
 以上説明したように、本実施の形態9によれば、線材71に被覆層72を形成した複合化線材70を切断して粉末状にするので、予め粉末状にされた心材層11に被覆層12を形成する場合と比べ、複合化粉末73を非常に簡単に、短時間且つ安価に作製することができる。例えば、本実施の形態9によれば、アルミニウムからなる被覆層75を有する複合化粉末73を容易に作製することができる。従って、複合化粉末73及びこれを用いて作製した多孔体の製造の手間やコストを低減することが可能となる。 As described above, according to the ninth embodiment, since the composite wire 70 in which the coating layer 72 is formed on the wire 71 is cut into a powder form, the coating layer is formed on the core material layer 11 that has been previously powdered. Compared with the case of forming No. 12, the composite powder 73 can be manufactured very easily, in a short time and at low cost. For example, according to the ninth embodiment, the composite powder 73 having the coating layer 75 made of aluminum can be easily manufactured. Therefore, it is possible to reduce the labor and cost of manufacturing the composite powder 73 and the porous body manufactured using the composite powder 73.
 また、本実施の形態9によれば、複合化粉末73のサイズ(径D及び長さL)や、心材層74の径d1及び被覆層75の厚さd2を容易且つ精度良く調節することができる。従って、多孔体における気孔のサイズ、セル壁の厚さ、及び気孔率を容易且つ精度良く制御することが可能となる。 Further, according to the ninth embodiment, the size (diameter D and length L) of the composite powder 73, the diameter d1 of the core material layer 74, and the thickness d2 of the coating layer 75 can be adjusted easily and accurately. it can. Therefore, the pore size, cell wall thickness, and porosity in the porous body can be controlled easily and accurately.
 また、本実施の形態9によれば、線材71に対して被覆可能な材料であれば被覆層72として用いることができるので、複合化粉末73における心材層74と被覆層75との材料の組み合わせの幅を広げることができる。従って、心材層の除去工程において適用する方法の選択の幅を広げることができる。 Further, according to the ninth embodiment, any material that can be coated on the wire 71 can be used as the coating layer 72. Therefore, the combination of the material of the core layer 74 and the coating layer 75 in the composite powder 73 is used. Can be widened. Therefore, the range of selection of the method to be applied in the core material layer removing step can be expanded.
 例えば、樹脂からなる線材71にアルミニウムからなる被覆層72を形成した複合化線材70により複合化粉末73を作製した場合、心材層の除去工程において心材層74の樹脂を有機溶剤により溶解し、或いは、熱分解することにより、アルミニウムからなる多孔体を短時間に作製することができる。 For example, when the composite powder 73 is produced by the composite wire 70 in which the coating layer 72 made of aluminum is formed on the wire 71 made of resin, the resin of the core material layer 74 is dissolved in an organic solvent in the core material layer removing step, or The porous body made of aluminum can be produced in a short time by pyrolysis.
 また、本実施の形態9によれば、心材層74の外側に複数の被覆層を設ける場合においても、各被覆層の材料の選択の幅を広げることができると共に、各層の層厚や層数を容易に制御することができる。 Further, according to the ninth embodiment, even when a plurality of coating layers are provided outside the core material layer 74, the range of selection of the material of each coating layer can be increased, and the layer thickness and the number of layers of each layer can be increased. Can be easily controlled.
 以上実施の形態1~9において説明した多孔体は、各実施の形態において説明した適用例の他、以下に例示する種々の用途に使用することができる。
 例えば、ヒートシンクの表面を上記実施の形態1~5又は8、9に係る多孔体で形成することにより、熱交換性能を向上させることができる。
The porous body described in the first to ninth embodiments can be used for various applications exemplified below in addition to the application examples described in the respective embodiments.
For example, the heat exchange performance can be improved by forming the surface of the heat sink with the porous body according to Embodiments 1 to 5 or 8, 9 described above.
 また、上記実施の形態1~6又は8、9に係る多孔体を備える構造体を各種機器の筐体や壁部材に用いることにより、吸音又は防音性能を向上させることができる。
 また、上記実施の形態1~5又は8、9に係る多孔体を触媒フィルタに適用することにより、熱伝導率や耐衝撃性を向上させることができる。
Further, by using the structure including the porous body according to Embodiments 1 to 6, 8, or 9 described above for a housing or a wall member of various devices, sound absorption or soundproof performance can be improved.
Further, by applying the porous body according to Embodiments 1 to 5, 8 or 9 to the catalyst filter, the thermal conductivity and the impact resistance can be improved.
 以下、本発明の実施例を説明する。本実施例においては、上記実施の形態1に係る多孔体の製造方法により、基材上に多孔体を作製する実験を行った。 Hereinafter, examples of the present invention will be described. In this example, an experiment for producing a porous body on a substrate was performed by the method for producing a porous body according to the first embodiment.
 複合化粉末としては、平均粒径が約30μmのアルミニウム粉末に銅メッキを施した粉末を用意した。複合化粉末全体の平均粒径は、約32μmであった。 As the composite powder, a powder obtained by performing copper plating on an aluminum powder having an average particle diameter of about 30 μm was prepared. The average particle diameter of the composite powder as a whole was about 32 μm.
 このような複合化粉末を用い、スプレー条件を、不活性ガス(窒素)の温度を約500℃、ガス圧力を5MPaに設定して、コールドスプレー法により、純アルミニウム(A1050)からなる基材上に皮膜を形成した。 Using such a composite powder, spray conditions are set on a substrate made of pure aluminum (A1050) by a cold spray method with an inert gas (nitrogen) temperature of about 500 ° C. and a gas pressure of 5 MPa. A film was formed on.
 図14は、基材上に形成された皮膜の断面を撮影したSEM(走査型電子顕微鏡)写真である。図14に示すように、皮膜の内部には、セル構造をなす銅(Cu)と、セル構造の間(セル内)に充填されたアルミニウム(Al)とが観察される。 FIG. 14 is a SEM (scanning electron microscope) photograph of a cross-section of the film formed on the substrate. As shown in FIG. 14, copper (Cu) forming a cell structure and aluminum (Al) filled between the cell structures (inside the cell) are observed inside the coating.
 その後、皮膜を以下の条件で溶解液に浸すことにより、アルミニウムを除去した。
  液の種類:塩酸
  濃度:50%
  温度:30℃
  浸している時間:5分
Thereafter, the film was immersed in a solution under the following conditions to remove aluminum.
Type of liquid: hydrochloric acid Concentration: 50%
Temperature: 30 ° C
Soaking time: 5 minutes
 図15は、アルミニウムが除去された後の皮膜の断面を撮影したSEM写真である。図15に示すように、アルミニウムが除去された後の領域は気孔となり、銅からなるセル壁のみが基材上に残った。このようにして作製された多孔体において、厚さ方向(皮膜の堆積方向)における気孔の径(平均値)は約10μmであり、厚さ方向と直交する面における気孔の径(平均値)は約30μmであり、扁平形状の気孔が形成されていることが確認された。 FIG. 15 is an SEM photograph of a cross section of the film after the aluminum has been removed. As shown in FIG. 15, the region after the aluminum was removed became pores, and only the cell walls made of copper remained on the substrate. In the porous body thus produced, the pore diameter (average value) in the thickness direction (film deposition direction) is about 10 μm, and the pore diameter (average value) in the plane perpendicular to the thickness direction is It was about 30 μm, and it was confirmed that flat pores were formed.
 1、2、3、4 構造体
 10、30、73 複合化粉末
 11、31、74 心材層
 12、72、75 被覆層
 21、41 基材
 22 皮膜
 23 材料
 24、43 セル壁
 25、44、52 気孔
 26、42、53 多孔体
 32 第1被覆層
 33 第2被覆層
 45、46 金属又は合金
 51 金属間化合物層
 60 コールドスプレー装置
 61 ガス加熱器
 62 粉末供給装置
 63 スプレーガン
 64 ガスノズル
 65、66 バルブ
 70 複合化線材
 71 線材
1, 2, 3, 4 Structure 10, 30, 73 Composite powder 11, 31, 74 Core material layer 12, 72, 75 Cover layer 21, 41 Base material 22 Film 23 Material 24, 43 Cell wall 25, 44, 52 Pore 26, 42, 53 Porous body 32 First coating layer 33 Second coating layer 45, 46 Metal or alloy 51 Intermetallic compound layer 60 Cold spray device 61 Gas heater 62 Powder supply device 63 Spray gun 64 Gas nozzle 65, 66 Valve 70 Composite wire 71 Wire

Claims (30)

  1.  所定の溶解液に溶解可能な材料からなる第1の層と、前記第1の層の外側の少なくとも一部を金属又は合金で被覆することにより形成され、前記第1の層よりも前記溶解液に対して難溶解である第2の層とを有する複合化粉末からなる皮膜を形成する皮膜形成工程と、
     前記皮膜を前記溶解液に浸して、前記皮膜から前記材料を除去することにより、前記皮膜に気孔を形成する気孔形成工程と、
    を含むことを特徴とする多孔体の製造方法。
    A first layer made of a material that can be dissolved in a predetermined solution, and at least part of the outside of the first layer is coated with a metal or an alloy, and the solution is more than the first layer. A film forming step of forming a film made of a composite powder having a second layer that is difficult to dissolve,
    A pore forming step of forming pores in the coating by immersing the coating in the solution and removing the material from the coating;
    The manufacturing method of the porous body characterized by including.
  2.  所定の温度で熱分解可能な材料からなる第1の層と、前記第1の層の外側の少なくとも一部を金属又は合金で被覆することにより形成され、前記温度において溶融しない第2の層とを有する複合化粉末からなる皮膜を形成する皮膜形成工程と、
     前記皮膜を前記温度に加熱して、前記皮膜から前記材料を除去することにより、前記皮膜に気孔を形成する気孔形成工程と、
    を含むことを特徴とする多孔体の製造方法。
    A first layer made of a material that can be thermally decomposed at a predetermined temperature; and a second layer that is formed by coating at least a part of the outside of the first layer with a metal or an alloy, and does not melt at the temperature. A film forming step of forming a film made of a composite powder having:
    A pore forming step of forming pores in the coating by heating the coating to the temperature and removing the material from the coating;
    The manufacturing method of the porous body characterized by including.
  3.  前記複合化粉末は、前記第1の層の材料からなる線材を前記第2の層の材料によって被覆した複合化線材を切断することにより形成されていることを特徴とする請求項1又は2に記載の多孔体の製造方法。 3. The composite powder according to claim 1, wherein the composite powder is formed by cutting a composite wire obtained by coating a wire made of the material of the first layer with a material of the second layer. The manufacturing method of the porous body of description.
  4.  前記皮膜形成工程は、前記複合化粉末をガスと共に加速し、少なくとも前記複合化粉末の表面を固相状態に保ったままで基材の表面に吹き付けて堆積させることを特徴とする請求項1~3のいずれか1項に記載の多孔体の製造方法。 The film forming step includes accelerating the composite powder together with a gas and spraying and depositing at least the surface of the composite powder on the surface of the base material while keeping the surface of the composite powder in a solid state. The manufacturing method of the porous body of any one of these.
  5.  前記皮膜形成工程は、前記複合化粉末に、最外層をなす金属又は合金と同種の金属又は合金のみからなる粉末を混合して前記基材に吹き付けることを特徴とする請求項4に記載の多孔体の製造方法。 The porous film according to claim 4, wherein in the film forming step, the composite powder is mixed with a powder made of only the same kind of metal or alloy as the metal or alloy forming the outermost layer and sprayed onto the substrate. Body manufacturing method.
  6.  前記皮膜形成工程は、前記複合化粉末を型に充填して圧力を印加することを特徴とする請求項1~3のいずれか1項に記載の多孔体の製造方法。 The method for producing a porous body according to any one of claims 1 to 3, wherein in the film forming step, the composite powder is filled in a mold and pressure is applied.
  7.  前記材料は、前記第2の層とは種類が異なる金属又は合金であることを特徴とする請求項1に記載の多孔体の製造方法。 2. The method for producing a porous body according to claim 1, wherein the material is a metal or an alloy different in type from the second layer.
  8.  前記気孔形成工程の前に、前記皮膜を熱処理する工程をさらに含むことを特徴とする請求項7に記載の多孔体の製造方法。 The method for producing a porous body according to claim 7, further comprising a step of heat-treating the film before the pore forming step.
  9.  前記溶解液は酸性溶液であり、
     前記第2の層をなす金属又は合金のイオン化傾向は、前記材料のイオン化傾向よりも小さいことを特徴とする請求項7又は8に記載の多孔体の製造方法。
    The solution is an acidic solution;
    The method for producing a porous body according to claim 7 or 8, wherein the ionization tendency of the metal or alloy forming the second layer is smaller than the ionization tendency of the material.
  10.  前記材料は、アルミニウム又はアルミニウム合金であり、
     前記第2の層をなす金属又は合金は、銅又は銅合金であることを特徴とする請求項9に記載の多孔体の製造方法。
    The material is aluminum or an aluminum alloy,
    The method for producing a porous body according to claim 9, wherein the metal or alloy forming the second layer is copper or a copper alloy.
  11.  前記溶解液は酸性溶液であり、
     前記第2の層はバルブ金属からなり、
     前記材料は、前記第2の層の表面に形成される不動態膜よりも前記溶解液に対して易溶解であることを特徴とする請求項7に記載の多孔体の製造方法。
    The solution is an acidic solution;
    The second layer comprises a valve metal;
    The method for producing a porous body according to claim 7, wherein the material is more easily dissolved in the solution than the passive film formed on the surface of the second layer.
  12.  前記材料は、銅又は銅合金であり、
     前記第2の層をなす金属又は合金は、アルミニウム、アルミニウム合金、ニッケル、ニッケル合金、チタン、チタン合金、クロム、及びクロム合金のいずれかであることを特徴とする請求項11に記載の多孔体の製造方法。
    The material is copper or a copper alloy,
    The porous body according to claim 11, wherein the metal or alloy forming the second layer is any one of aluminum, aluminum alloy, nickel, nickel alloy, titanium, titanium alloy, chromium, and chromium alloy. Manufacturing method.
  13.  前記材料は、水又は水溶液に溶解可能な塩化物であることを特徴とする請求項1に記載の多孔体の製造方法。 2. The method for producing a porous body according to claim 1, wherein the material is a chloride that is soluble in water or an aqueous solution.
  14.  前記塩化物は、塩化ナトリウムであることを特徴とする請求項13に記載の多孔体の製造方法。 The method for producing a porous body according to claim 13, wherein the chloride is sodium chloride.
  15.  前記材料は、有機溶剤に溶解可能な樹脂であることを特徴とする請求項1に記載の多孔体の製造方法。 The method for producing a porous body according to claim 1, wherein the material is a resin that is soluble in an organic solvent.
  16.  前記材料は、アルカリ溶液に溶解可能な樹脂であることを特徴とする請求項1に記載の多孔体の製造方法。 2. The method for producing a porous body according to claim 1, wherein the material is a resin that is soluble in an alkaline solution.
  17.  前記複合化粉末は、前記第2の層の外側に設けられた第3の層であって、前記第2の層をなす金属又は合金とは種類が異なる第2の金属又は合金からなり、前記第1の層よりも前記溶解液に対して難溶解である第3の層をさらに有することを特徴とする請求項1及び7~16のいずれか1項に記載の多孔体の製造方法。 The composite powder is a third layer provided outside the second layer, and is composed of a second metal or alloy different in type from the metal or alloy forming the second layer, The method for producing a porous body according to any one of claims 1 and 7 to 16, further comprising a third layer that is less soluble in the solution than the first layer.
  18.  前記材料は樹脂であることを特徴とする請求項2に記載の多孔体の製造方法。 The method for producing a porous body according to claim 2, wherein the material is a resin.
  19.  前記複合化粉末は、前記第2の層の外側に設けられた第3の層であって、前記金属又は合金とは種類が異なる第2の金属又は合金からなり、前記温度において溶融しない第3の層をさらに有することを特徴とする請求項2又は18に記載の多孔体の製造方法。 The composite powder is a third layer provided outside the second layer, and is composed of a second metal or alloy different from the metal or alloy, and does not melt at the temperature. The method for producing a porous body according to claim 2, further comprising a layer.
  20.  前記気孔形成工程の後、前記気孔が形成された前記皮膜にめっき層を形成する工程をさらに含むことを特徴とする請求項1~19のいずれか1項に記載の多孔体の製造方法。 The method for producing a porous body according to any one of claims 1 to 19, further comprising a step of forming a plating layer on the film in which the pores are formed after the pore forming step.
  21.  金属又は合金又は金属間化合物からなるセル壁を有し、該セル壁の間に気孔が形成された多孔体であって、
     前記気孔の平均気孔径が0.01mm以上0.3mm以下、且つ、前記多孔体に対する前記気孔の体積の比率が30%以上100%未満であることを特徴とする多孔体。
    A porous body having a cell wall made of a metal or an alloy or an intermetallic compound, and pores formed between the cell walls,
    A porous body, wherein an average pore diameter of the pores is 0.01 mm or more and 0.3 mm or less, and a volume ratio of the pores to the porous body is 30% or more and less than 100%.
  22.  金属又は合金又は金属間化合物からなるセル壁を有し、該セル壁の間に気孔が形成された多孔体であって、
     前記気孔の平均気孔径が0.01mm以上1mm以下、且つ、前記多孔体に対する前記気孔の体積の比率が85%以上100%未満であることを特徴とする多孔体。
    A porous body having a cell wall made of a metal or an alloy or an intermetallic compound, and pores formed between the cell walls,
    A porous body, wherein an average pore diameter of the pores is 0.01 mm or more and 1 mm or less, and a volume ratio of the pores to the porous body is 85% or more and less than 100%.
  23.  金属又は合金又は金属間化合物からなるセル壁を有し、該セル壁の間に気孔が形成された多孔体であって、
     前記気孔は、前記多孔体の厚み方向における径よりも、該厚み方向と直交する面における径が大きい扁平形状をなすことを特徴とする多孔体。
    A porous body having a cell wall made of a metal or an alloy or an intermetallic compound, and pores formed between the cell walls,
    The porous body has a flat shape in which a diameter in a surface orthogonal to the thickness direction is larger than a diameter in the thickness direction of the porous body.
  24.  前記気孔の前記厚み方向と直交する断面における平均気孔径が0.01mm以上1mm以下であり、前記多孔体に対する前記気孔の体積の比率が30%以上100%未満であることを特徴とする請求項23に記載の多孔体。 The average pore diameter in a cross section perpendicular to the thickness direction of the pores is 0.01 mm or more and 1 mm or less, and the volume ratio of the pores to the porous body is 30% or more and less than 100%. 24. The porous body according to 23.
  25.  前記セル壁は、互いに異なる金属又は合金を複数層重ねた層構造を有することを特徴とする請求項21~24のいずれか1項に記載の多孔体。 The porous body according to any one of claims 21 to 24, wherein the cell wall has a layered structure in which a plurality of different metals or alloys are stacked.
  26.  前記セル壁に形成されためっき層をさらに有することを特徴とする請求項21~25のいずれか1項に記載の多孔体。 The porous body according to any one of claims 21 to 25, further comprising a plating layer formed on the cell wall.
  27.  前記セル壁は、金属又は合金からなり、
     前記セル壁の表面に形成された金属間化合物層をさらに有することを特徴とする請求項21~26のいずれか1項に記載の多孔体。
    The cell wall is made of metal or alloy,
    The porous body according to any one of claims 21 to 26, further comprising an intermetallic compound layer formed on a surface of the cell wall.
  28.  前記気孔は、所定の溶解液に溶解可能な材料からなる第1の層と、前記第1の層の外側の少なくとも一部を金属又は合金で被覆することにより形成され、前記第1の層よりも前記溶解液に対して難溶解である第2の層とを有する複合化粉末をガスと共に加速し、少なくとも前記複合化粉末の表面を固相状態に保ったままで基材の表面に吹き付けて堆積させることにより皮膜を形成し、該皮膜を前記溶解液に浸して、前記皮膜から前記材料を除去することにより形成されたことを特徴とする請求項23又は24に記載の多孔体。 The pores are formed by coating a first layer made of a material that can be dissolved in a predetermined solution and at least a part of the outside of the first layer with a metal or an alloy. In addition, the composite powder having the second layer that is hardly soluble in the solution is accelerated together with the gas, and at least the surface of the composite powder is kept in a solid state and sprayed onto the surface of the base material for deposition. The porous body according to claim 23 or 24, wherein the porous body is formed by forming a film by immersing the film, immersing the film in the solution, and removing the material from the film.
  29.  前記セル壁は、金属又は合金からなり、
     前記気孔は、所定の温度で熱分解可能な材料からなる第1の層と、前記第1の層の外側の少なくとも一部を金属又は合金で被覆することにより形成され、前記温度において溶融しない第2の層とを有する複合化粉末をガスと共に加速し、少なくとも前記複合化粉末の表面を固相状態に保ったままで基材の表面に吹き付けて堆積させることにより皮膜を形成し、該皮膜を前記温度に加熱して、前記皮膜から前記材料を除去することにより形成されたことを特徴とする請求項23又は24に記載の多孔体。
    The cell wall is made of metal or alloy,
    The pores are formed by coating a first layer made of a material that can be thermally decomposed at a predetermined temperature and at least a part of the outside of the first layer with a metal or an alloy, and do not melt at the temperature. The composite powder having two layers is accelerated together with the gas, and a film is formed by spraying and depositing on the surface of the base material while maintaining at least the surface of the composite powder in a solid phase, The porous body according to claim 23 or 24, which is formed by heating to a temperature and removing the material from the film.
  30.  金属又は合金により形成された基材と、
     前記基材上に形成された、請求項28又は29に記載の多孔体と、
    を備えることを特徴とする構造体。
    A substrate formed of a metal or alloy;
    The porous body according to claim 28 or 29, formed on the substrate;
    A structure characterized by comprising.
PCT/JP2013/070944 2012-08-08 2013-08-01 Method for manufacturing porous body, porous body, and structure WO2014024781A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014529463A JP6182140B2 (en) 2012-08-08 2013-08-01 Porous body manufacturing method, porous body, and structure

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-176390 2012-08-08
JP2012176390 2012-08-08

Publications (1)

Publication Number Publication Date
WO2014024781A1 true WO2014024781A1 (en) 2014-02-13

Family

ID=50068012

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/070944 WO2014024781A1 (en) 2012-08-08 2013-08-01 Method for manufacturing porous body, porous body, and structure

Country Status (2)

Country Link
JP (1) JP6182140B2 (en)
WO (1) WO2014024781A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017143395A1 (en) * 2016-02-26 2017-08-31 Coobowie Pty Ltd Flat sheet membrane
JP2017218633A (en) * 2016-06-08 2017-12-14 積水化学工業株式会社 Production method of composite particle
JP2022040587A (en) * 2020-08-31 2022-03-11 国立大学法人東北大学 Porous film composed of intermetallic compound, and method for producing the same and application thereof
WO2023181613A1 (en) * 2022-03-24 2023-09-28 住友電気工業株式会社 Metallic porous body

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019163256A1 (en) * 2018-02-22 2019-08-29 住友電気工業株式会社 Porous metal body

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03285880A (en) * 1990-03-30 1991-12-17 Isuzu Motors Ltd Production of porous sintered body
WO2010125778A1 (en) * 2009-04-28 2010-11-04 三洋電機株式会社 Capacitor electrode body, method for manufacturing capacitor electrode body, capacitor, and method for manufacturing capacitor
JP2011044653A (en) * 2009-08-24 2011-03-03 Sumitomo Metal Mining Co Ltd Method of manufacturing porous valve metal film

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS572847A (en) * 1980-06-09 1982-01-08 Tanaka Kikinzoku Kogyo Kk Manufacture of composite electrical contact material
JP2889547B2 (en) * 1997-01-28 1999-05-10 日本カル株式会社 Apparatus and method for collecting and treating surface deposits
JP5825598B2 (en) * 2012-03-13 2015-12-02 国立研究開発法人産業技術総合研究所 Metal porous body and method for producing metal porous body.

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03285880A (en) * 1990-03-30 1991-12-17 Isuzu Motors Ltd Production of porous sintered body
WO2010125778A1 (en) * 2009-04-28 2010-11-04 三洋電機株式会社 Capacitor electrode body, method for manufacturing capacitor electrode body, capacitor, and method for manufacturing capacitor
JP2011044653A (en) * 2009-08-24 2011-03-03 Sumitomo Metal Mining Co Ltd Method of manufacturing porous valve metal film

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017143395A1 (en) * 2016-02-26 2017-08-31 Coobowie Pty Ltd Flat sheet membrane
JP2017218633A (en) * 2016-06-08 2017-12-14 積水化学工業株式会社 Production method of composite particle
JP2022040587A (en) * 2020-08-31 2022-03-11 国立大学法人東北大学 Porous film composed of intermetallic compound, and method for producing the same and application thereof
JP7493775B2 (en) 2020-08-31 2024-06-03 国立大学法人東北大学 Porous film made of intermetallic compound, and its manufacturing method and application
WO2023181613A1 (en) * 2022-03-24 2023-09-28 住友電気工業株式会社 Metallic porous body

Also Published As

Publication number Publication date
JPWO2014024781A1 (en) 2016-07-25
JP6182140B2 (en) 2017-08-16

Similar Documents

Publication Publication Date Title
JP6182140B2 (en) Porous body manufacturing method, porous body, and structure
Su et al. Metallization of 3D printed polymers and their application as a fully functional water‐splitting system
JP5389439B2 (en) Porous metal foam
EP3377441B1 (en) High conductivity graphene-metal composite and methods of manufacture
EP3287206B1 (en) Composite material and method for producing same
US7851062B2 (en) Metal/fiber laminate and fabrication using a porous metal/fiber preform
WO2010125778A1 (en) Capacitor electrode body, method for manufacturing capacitor electrode body, capacitor, and method for manufacturing capacitor
US11980942B2 (en) Method for manufacturing metal foam
JP2005516412A (en) Electrode, electrode manufacturing method, and capacitor having electrode
WO1995018350A1 (en) Heat transfer material
JP2009521637A (en) Porous metal bodies used to attenuate aircraft turbine noise.
WO2010058534A1 (en) Electrode body for capacitor, capacitor, method for producing electrode body for capacitor, and method for manufacturing capacitor
KR101623447B1 (en) Anode for Lithium Ion Secondary Battery and Method for Manufacturing the Same
JPH0350801B2 (en)
US20140158887A1 (en) Equipment for quantum vacuum energy extraction
JPH08145592A (en) Heat transfer member and manufacture thereof
JP5872844B2 (en) Method for producing composite material and composite material
WO2011010612A1 (en) Conductive porous body using spherical metal powder and method for producing the same
EP3294932A1 (en) Method for producing a metallic coating with macro-pores, coated substrate with such a coating and use of such a substrate
TW200539205A (en) Electrode sheet for capacitors, method for manufacturing the same, and electrolytic capacitor
JP4230441B2 (en) Magnesium alloy hollow metal sphere
JP2011138882A (en) Method of manufacturing electrode body for capacitor, and method of manufacturing capacitor
JP2011204753A (en) Manufacturing method for electrode for capacitor, and manufacturing method for capacitor
JP2017226859A (en) Sintered body and production method thereof
KR101689387B1 (en) Method for manufacturing metallic substrate having metal foam layer on the surface and metallic substrate manufactured thereby

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13827443

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014529463

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13827443

Country of ref document: EP

Kind code of ref document: A1