WO2014022956A1 - 在线标定可配置站点波长相关衰减的方法、装置及系统 - Google Patents

在线标定可配置站点波长相关衰减的方法、装置及系统 Download PDF

Info

Publication number
WO2014022956A1
WO2014022956A1 PCT/CN2012/079720 CN2012079720W WO2014022956A1 WO 2014022956 A1 WO2014022956 A1 WO 2014022956A1 CN 2012079720 W CN2012079720 W CN 2012079720W WO 2014022956 A1 WO2014022956 A1 WO 2014022956A1
Authority
WO
WIPO (PCT)
Prior art keywords
wavelength
calibrated
configurable
optical amplifier
optical power
Prior art date
Application number
PCT/CN2012/079720
Other languages
English (en)
French (fr)
Inventor
周恩波
张森
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2012/079720 priority Critical patent/WO2014022956A1/zh
Priority to CN201280001396.0A priority patent/CN103004109B/zh
Publication of WO2014022956A1 publication Critical patent/WO2014022956A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/07Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems
    • H04B10/075Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal

Definitions

  • the invention belongs to the field of communications, and in particular relates to a method, device and system for online calibration of wavelength-dependent attenuation of a configurable station. Background technique
  • the attenuation of a wavelength division multiplexing network at a ROADM (reconfigurable optical add-drop multiplexer) site has wavelength dependence, that is, network performance.
  • Each channel is wavelength dependent, and often a station can have attenuation of 3-4 dB or even greater at different wavelength channels.
  • This attenuation is related to the WDL (wavelength dependent loss) of the passive device, and the WDL of the wavelength selective switch (WSS) is dominant.
  • FIG. 1 shows a network topology of a ROADM site in the prior art, which includes a plurality of channels, each channel containing a plurality of passive devices 101, and the optical loss of the site mainly comes from the WDL of the passive device WSS.
  • the maximum WDL of a single WSS measured in the experiment is about 1.5-2 dB.
  • the path includes two WSSs, and a transmitting optical amplifier 301 and a receiving optical amplifier 302 respectively at the incident end and the outgoing end to compensate for passive components.
  • the loss of the fiber the loss caused by the optical signal transmitted between the A and B points is the loss of the passive device.
  • an optical service wavelength channel is already physically opened.
  • the actual service of the wavelength ⁇ is not yet loaded (such as the laser does not have On, there is no optical transmission in the channel. It is usually impossible to obtain the optical attenuation value of the wavelength, so it is difficult to eliminate the influence of optical attenuation on the network performance.
  • each optical passive device is actually measured by a meter (for example, a spectrometer) at the time of production. Calibrate and record.
  • each wavelength channel can be accurately measured by the meter, but in practice, due to the excessive workload, the calibration values measured at a limited number of wavelength points (for example, one wavelength each of the long and medium lengths) are equivalently substituted for all.
  • the WDL of the wavelength is not very accurate. In addition, this scenario cannot dynamically update the WDL and cannot update the state of the network in real time.
  • the WDL of the frit point is related to the time of the spun fiber and the proficiency of the operator. Referring to Figure 4, the WDL characteristics of the frit points at different splice times are shown. When the splice time is different, the WDL is also different. In the actual measurement, each frit point may bring in more than 0.2dB loss. If the loss is unpredictable, it will inevitably affect the network performance.
  • the second technique of the prior art is that the online calibration technique of WDL is not considered. This technique does not distinguish the wavelength dependence of the channel. Instead of the attenuation of all channels, the attenuation of the signal light power detected at the transceiver end of the open wavelength is essentially equivalent to ignoring the WDL of the different channels.
  • This solution can be automated online through the network management software without additional manpower investment.
  • this scheme considers the attenuation of all wavelengths to be the same, and does not consider the attenuation difference of different wavelengths, the calibration result must be very rough, and often introduces an error of 3 ⁇ 4dB. This error increases as the number of cascaded WSS and other optical passive components increases, and is strongly correlated with the WDL characteristics of each optical passive component, making network states more difficult to accurately learn and update.
  • the purpose of the embodiments of the present invention is to provide a method for onlinely calibrating the wavelength-dependent attenuation of a configurable site, which is to solve the problem that the WDL of the configurable site cannot be accurately obtained in the prior art, and is implemented at the beginning of the network or in the service. After the wavelength is turned on, the WDL of the configurable site can be updated in real time to provide reliable input parameters for the planning algorithm to provide high quality network services.
  • an embodiment of the present invention provides a method for onlinely calibrating wavelength-dependent attenuation of a configurable site, the method comprising: Performing a wavelength punch-through configuration on the configurable station, the optical wave to be calibrated to pass through the configurable station to the receiving end optical amplifier, and detecting the incident optical power of the optical wave reaching the receiving end optical amplifier;
  • the wavelength dependent attenuation of the wavelength to be calibrated is obtained according to the single-wave exiting optical power of the wavelength to be calibrated and the incident optical power of the optical wave reaching the optical amplifier at the receiving end.
  • the wavelength puncturing configuration is performed on the configurable station, so that the optical wave to be calibrated is passed through the configurable station to the receiving end optical amplifier, and the detection reaches the receiving end.
  • the incident light power of the optical wave of the optical amplifier is specifically:
  • each wavelength-through configuration is: configuring one of the plurality of wavelengths to be calibrated to pass through the configurable station, and blocking the wavelength to be calibrated Light waves of other wavelengths pass through the configurable site, and the wavelengths of light waves that pass through the configurable site each time are different;
  • the incident light power of the light wave reaching the receiving end optical amplifier is detected.
  • the single-wave outgoing optical power according to the to-be-calibrated wavelength and the incident optical power of the optical wave reaching the receiving end optical amplifier obtain the to-be-calibrated wavelength.
  • the wavelength dependent attenuation is specifically as follows:
  • the wavelength dependent attenuation is obtained by solving the equation: U ⁇ PoD-PDu ⁇ ,
  • ( ) is the wavelength dependent attenuation of the configurable site with respect to the wavelength to be calibrated
  • P. w ( ) is the single-wave exiting optical power of the wavelength to be calibrated
  • the PD in is the incident optical power of the light wave of the wavelength to be calibrated that reaches the optical amplifier of the receiving end.
  • the wavelength puncturing configuration is performed on the configurable station, so that the optical wave to be calibrated passes through the configurable station to the receiving end optical amplifier, and detects Before reaching the incident light power of the light wave of the receiving end optical amplifier, the method further includes: Detecting an initial incident optical power of the optical wave received by the optical amplifier at the receiving end;
  • the wavelength-dependent attenuation obtained according to the single-wave outgoing optical power of the wavelength to be calibrated and the incident optical power of the optical wave reaching the optical amplifier at the receiving end is specifically:
  • p. w ( ) is the single-wave exiting optical power of the wavelength to be calibrated
  • PD in J is the incident optical power of the optical wave containing the service wavelength and the wavelength to be calibrated that reaches the optical amplifier at the receiving end;
  • PD in0 is the initial incident optical power
  • optical power of the light wave to be calibrated to the configurable site is lower than the optical power of the service wavelength.
  • an embodiment of the present invention provides another method for onlinely calibrating wavelength-dependent attenuation of a configurable site, the method comprising:
  • the incident optical power of the optical wave of the amplifier determines the wavelength dependent attenuation; if not, Then changing the spontaneous emission intensity of the optical amplifier at the transmitting end, and jumping to the combined output optical power of the optical amplifier with the wavelength to be calibrated, which is greater than or equal to the number of wavelengths to be calibrated minus 1 .
  • the wavelength-dependent attenuation is determined according to the combined output optical power obtained by the transmitting end optical amplifier at various spontaneous emission intensities and the incident optical power of the optical wave reaching the receiving end optical amplifier:
  • the wavelength dependent attenuation is determined by solving a system of equations containing a meta-equation of ( ⁇ ); the meta-first equation is:
  • k l , 2 , 3... ⁇ ', n > m;
  • Oh. 3 ⁇ 4 ⁇ is the combined output optical power when the transmitting optical amplifier is at the first spontaneous emission intensity; when the transmitting optical amplifier is at the first spontaneous emission intensity, the wavelength of the optical wave 'J reaches the incident optical power of the receiving optical amplifier ;
  • ( ) is the wavelength dependent attenuation of the configurable site with respect to the wavelength to be calibrated
  • an embodiment of the present invention provides a device for onlinely calibrating a wavelength-dependent attenuation of a configurable station, the device comprising: a wavelength configuration and detection unit, configured to perform wavelength punch-through configuration on the configurable site, The optical wave to be calibrated wavelength passes through the configurable station to the receiving end optical amplifier, and detects the incident optical power of the optical wave reaching the receiving end optical amplifier;
  • a processing unit configured to obtain, according to the single-wave outgoing optical power of the to-be-calibrated wavelength and the incident optical power of the optical wave reaching the optical amplifier at the receiving end, to obtain a wavelength-dependent attenuation of the wavelength to be calibrated.
  • the wavelength configuration and detection unit includes:
  • each wavelength-through configuration is: configuring one of the plurality of wavelengths to be calibrated to pass through the configurable site, and blocking the configuration site The wavelengths of the light waves are different;
  • a detecting module configured to detect the incident light power of the light wave reaching the optical amplifier at the receiving end after each wavelength punch-through configuration is completed.
  • ( ) is the wavelength dependent attenuation of the configurable site with respect to the wavelength to be calibrated
  • the device further includes: an initial detecting unit, configured to detect an initial incident optical power of the optical wave received by the optical amplifier at the receiving end;
  • the processing unit includes:
  • ( ) is the wavelength dependent attenuation of the configurable site with respect to the wavelength to be calibrated
  • p. w ( ) is the single-wave exiting optical power of the wavelength to be calibrated
  • PD in is the incident optical power of the optical wave containing the service wavelength and the wavelength to be calibrated that reaches the optical amplifier of the receiving end;
  • an embodiment of the present invention provides a wavelength division multiplexing optical communication system, including the above-described device for performing wavelength-dependent attenuation of an online calibration configurable station.
  • an embodiment of the present invention provides another apparatus for onlinely calibrating wavelength-dependent attenuation of a configurable station, the apparatus comprising: an initial setting unit, configured to operate a transmitting optical amplifier in an spontaneous emission state, and control the The spontaneous emission intensity of the optical amplifier at the transmitting end is such that it is at a spontaneous emission intensity; the optical power;
  • a wavelength configuration and detection unit configured to perform a predetermined number of wavelength punch-through configurations on the configurable station, each wavelength-through configuration configured such that only one optical wave to be calibrated passes through the configurable station to the receiving end optical amplifier, Blocking light waves of other wavelengths from penetrating the configurable site, and each time the wavelength of the light wave passing through the configurable site is different; after each punch-through configuration is completed, detecting the incident light power of the light wave reaching the receiving end optical amplifier ;
  • a processing unit configured to determine whether the number of times of change of the spontaneous radiation intensity of the optical amplifier of the transmitting end reaches a preset value; if yes, according to the combined output optical power obtained by the optical amplifier of the transmitting end under various spontaneous radiation intensities The incident light power of the light wave reaching the receiving end optical amplifier determines the wavelength dependent attenuation; if not, the spontaneous radiation intensity of the transmitting end optical amplifier is changed, and the number of acquisitions to be calibrated wavelength is decreased by one.
  • processing unit includes:
  • An arithmetic module configured to obtain the wavelength dependent attenuation by solving a system of equations containing n i-ary equations of ( );
  • PZ. 3 ⁇ 4i is the combined output optical power when the transmitting optical amplifier is at the first spontaneous emission intensity; when the transmitting optical amplifier is at the first spontaneous emission intensity, the wavelength of the optical wave 'J reaches the incident optical power of the receiving optical amplifier ;
  • embodiments of the present invention provide another wavelength division multiplexed optical communication system, including the above-described device for wavelength-dependent attenuation of an on-line calibration configurable site.
  • Beneficial effect
  • the wavelength of the configurable station is configured to enable the optical wave to be calibrated to pass through the configurable site one by one, and combine the optical power detection of the transmitting end and the receiving end to determine that the light wave to be calibrated is configurable.
  • Wavelength dependent attenuation that occurs at the site The method adapts to the scene very strongly, and whether the actual service is loaded or not, the wavelength-dependent attenuation of each physical link can be determined, so that the wavelength-dependent attenuation of each channel can be known and updated in real time, and a reliable input parameter is provided for the planning algorithm.
  • the method can calibrate the wavelength-dependent attenuation of each physical link, it does not treat different links as equivalent, so it is eliminated compared with the traditional offline calibration technology and the technology that does not consider wavelength-dependent attenuation.
  • the calibration error caused by the difference in attenuation of the different links makes the calibration of the wavelength dependent attenuation more accurate.
  • the updated wavelength-dependent attenuation can be measured by the method, thereby updating the network state in time to ensure high-quality communication quality.
  • the embodiment of the present invention can implement online calibration of wavelength-dependent attenuation based on the existing network environment, and does not need to add any hardware, thereby effectively controlling the increase of cost.
  • FIG. 1 is a schematic diagram of a network topology structure of a ROADM site in the prior art
  • 2 is a WDL curve of a single WSS experimentally measured in the prior art
  • 3 is a schematic diagram of a physical link of a RO ADM site in the prior art
  • FIG. 5 is a flowchart of a method for determining wavelength-dependent attenuation of an online calibration configurable station according to a first embodiment of the present invention
  • FIG. 6 is a flowchart of a method for determining wavelength-dependent attenuation of an online calibration configurable station according to a third embodiment of the present invention
  • FIG. 7 is a flowchart of a method for determining a wavelength-dependent attenuation of an online calibration configurable site according to a fourth embodiment of the present invention.
  • FIG. 8 is a flowchart of a method for determining wavelength-dependent attenuation of an online calibration configurable station according to a fifth embodiment of the present invention.
  • FIG. 9 is a flowchart of a method for determining wavelength-dependent attenuation of an online calibration configurable station according to a sixth embodiment of the present invention.
  • FIG. 10 is a flowchart of a method for determining wavelength-dependent attenuation of an online calibration configurable station according to a seventh embodiment of the present invention.
  • Figure 11 is a block diagram of the wavelength-dependent attenuation of an online calibration configurable site provided by the eighth, ninth, tenth, and eleventh embodiments of the present invention.
  • Figure 12 is a block diagram showing the wavelength dependent attenuation of an online calibration configurable site provided by a twelfth embodiment of the present invention.
  • FIG. 5 is a flow chart showing a method for wavelength-dependent attenuation of an online calibration configurable site according to a first embodiment of the present invention. For ease of explanation, only parts related to the present embodiment are shown. rate.
  • the transmitting end optical amplifier (the cartridge is called "originating light emitting") emits a light wave containing a wavelength to be calibrated.
  • the light wave may be a composite wave (including a plurality of wavelengths of light waves), or may be a single wave (including only one wavelength of light waves), wherein the composite wave may be derived from the spontaneous emission of the originating light, and the single wave may be externally connected.
  • a monochromatic source (such as a laser or a monochromatic conventional source) is obtained. Stimulated radiation and spontaneous emission are common phenomena in optical amplifiers.
  • the optical amplifier uses the stimulated radiation to amplify the input optical signal.
  • the optical amplifier When the optical amplifier is working, if no optical signal is input to the optical amplifier, then the optical amplifier There is only spontaneous emission. If an optical signal is input to the optical amplifier, then the optical amplifier has both spontaneous emission and stimulated radiation, but the stimulated radiation is dominant at this time. When there is only spontaneous emission in the optical amplifier, the optical amplifier outputs optical signals of various wavelengths. When the optical amplifier has both spontaneous emission and stimulated radiation, the optical amplifier also outputs optical signals of various wavelengths, except that the power of the optical signal having the same wavelength as the input optical signal is much larger than the optical signals of other wavelengths. Power. Therefore, in the embodiment of the present invention, the wavelength dependent attenuation can be calibrated based on the composite wave generated by the spontaneous emission of the optical amplifier.
  • a power monitoring device In the existing optical amplifier, a power monitoring device generally monitors the optical power of the optical wave of the input port of the optical amplifier and the optical power of the optical wave of the output port of the optical amplifier.
  • the power monitoring device monitors the optical power of the optical wave of the input port to obtain the total incident optical power of the composite wave, and accordingly, the optical power of the optical wave of the output port is monitored to obtain the total outgoing optical power of the composite wave;
  • the light wave to the optical amplifier is a single wave, and the power monitoring device monitors the optical power of the light wave of the input port to obtain the incident optical power of the single wave, and accordingly, the optical power of the optical wave of the output port is monitored.
  • the composite wave is input to the optical amplifier.
  • the light wave emitted from the originating light can be emitted by the OPM (Optical Performance Monitoring) device. Monitoring is performed to obtain the outgoing light power of the light waves of each wavelength.
  • OPM Optical Performance Monitoring
  • any device that can obtain the optical power of each single wavelength for power detection of the composite wave can be used in the present invention, which is not limited in the embodiment of the present invention.
  • the emitting end of the light source does not have an external monochromatic light source
  • the emitting end light is controlled to be in a spontaneous radiation state, so that the composite wave is radiated, and then the single-wave outgoing light power of each wavelength to be calibrated in the composite wave is detected by the OPM device.
  • a light source is connected with a monochromatic light source
  • a single wave of different wavelengths can be obtained by replacing the monochromatic light source one by one, and the single-wave outgoing light power when each single-wavelength-emitting end light is emitted by the OPM device is performed. Detection.
  • step S102 the wavelength puncturing configuration is performed on the configurable station, so that the optical wave to be calibrated is passed through the configurable station to the receiving end optical amplifier, and the incident optical power of the optical wave reaching the receiving end optical amplifier is detected;
  • the optical wave-through configurable station of the wavelength to be calibrated needs to be configured one by one, and after each wavelength of the light wave passes through the configurable station, It is necessary to detect the incident light power when it reaches the receiving end optical amplifier (the barrel is called the "receiving end light"), to obtain the incident light power of all the optical waves to be calibrated to reach the receiving end optical amplifier, and provide data for determining the WDL.
  • the receiving end optical amplifier the barrel is called the "receiving end light
  • the incident light power can be obtained by directly querying the reported reading power of the incident light power of the receiving end light. This is an existing function of the wavelength division multiplexing network, and will not be described in detail in this embodiment.
  • step S103 the wavelength-dependent attenuation of the wavelength to be calibrated is obtained according to the power of the single-wave outgoing light to be calibrated and the incident optical power of the optical wave reaching the optical amplifier at the receiving end.
  • the units of the single-wave outgoing optical power and the incident optical power are both dBm, and the units of the wavelength-dependent attenuation or gain are all dB, and both are positive numbers, and the same applies to the following embodiments.
  • the wavelength of the configurable station is configured to enable the optical wave to be calibrated to pass through the configurable site one by one, and combine the optical power detection of the transmitting end and the receiving end to determine that the light wave to be calibrated is configurable.
  • WDL that occurs when the site is.
  • the method adapts to the scene very strongly, and the WDL of each physical link can be determined regardless of whether the actual service is loaded, so as to know and update the WDL of each channel in real time, and provide reliable input parameters for the planning algorithm.
  • the method can calibrate the WDL of each physical link and does not treat different links as equivalent, it eliminates the different links compared with the traditional offline calibration technology and the technology without considering WDL.
  • Calibration error caused by the difference in attenuation WDL calibration is more accurate.
  • the updated WDL can be measured by the method, thereby updating the network status in time to ensure high-quality communication quality.
  • the embodiment of the present invention can implement online calibration of the WDL based on the existing network environment, and does not need to add any hardware, thereby effectively controlling the increase in cost.
  • Embodiment 2 is a diagrammatic representation of Embodiment 1:
  • the embodiment of the present invention provides a preferred implementation manner for the step S102 on the basis of the foregoing embodiment 1.
  • each wavelength-through configuration is: Configuring one of the plurality of wavelengths to be calibrated to pass through the configurable site, and blocking the optical wave penetration of other wavelengths in the wavelength to be calibrated
  • the stations are configured, and the wavelengths of the light waves passing through the configurable stations are different each time; and, after each wavelength punch-through configuration is completed, the incident light power of the light waves reaching the optical amplifier of the receiving end is detected.
  • the optical wave of one wavelength to be calibrated is configured to pass through the configurable site, and the optical wave of the other wavelengths to be calibrated is blocked to pass through the configurable site;
  • the third step is to cancel the punch-through configuration of the light wave
  • another optical wave to be calibrated is configured to pass through the configurable site, and the optical wave of the other wavelengths to be calibrated is blocked to pass through the configurable site;
  • the punch-through configuration of another light wave is canceled; and so on, until the punch-through configuration of all the light waves to be calibrated is completed, and the incident light power of each light wave reaching the optical amplifier at the receiving end is detected.
  • the embodiment of the present invention can accurately obtain the incident optical power of each wavelength to be calibrated at the receiving end by the above method, and the steps are clean, the execution speed is fast, and the error is not easy to occur, and accurate data is provided for determining the WDL of the configurable station.
  • Embodiment 3 is a diagrammatic representation of Embodiment 3
  • FIG. 6 is a flow chart showing a method for wavelength-dependent attenuation of an online calibration configurable site according to a third embodiment of the present invention. For ease of explanation, only parts related to the present embodiment are shown.
  • the embodiment of the present invention is applicable to the case where there is no service wavelength in the configurable site in the initial stage, and there is no external monochromatic light source but the OPM device is arranged at the originating end, the details are as follows:
  • step S301 the emitting end light is operated in a spontaneous emission state, and the spontaneous radiation intensity of the emitting end light is controlled to be at a spontaneous radiation intensity;
  • step S302 the OPM device detects the single-wave outgoing light power of each light wave to be calibrated in the spontaneously emitted composite wave at the originating light exiting port;
  • step S303 the wavelength wave passing through the configurable site is configured, and the light wave of the other wavelengths to be calibrated is blocked to pass through the configurable station, and the reading of the incident light power of the wavelength A to the receiving light is queried.
  • step S304 the punch-through configuration of the light wave of the wavelength is cancelled
  • step S305 it is determined whether the number of times the different optical wave passes through the configurable station reaches a preset number of times. If yes, the process goes to step S306, otherwise the process goes to step S303.
  • the preset number of times > the number of wavelengths to be calibrated.
  • step S306 wavelength dependent attenuation is obtained by solving the following equation
  • ( ) is the wavelength dependent attenuation of the configurable site with respect to the wavelength to be calibrated;
  • Pout ⁇ i) is the single-wave outgoing optical power of the wavelength A to be calibrated
  • the incident light power of the light wave to be calibrated to the receiving end is calibrated to the receiving end.
  • the embodiment of the invention can pass the existing one in the case that the originating light is not connected to the external monochromatic light source.
  • the OPM device detects the single-wave output light power of the originating light, and realizes the online calibration of the WDL without the need for an external light source and the like.
  • the embodiment of the present invention can also be used in the case where the light source is provided with a broadband light source, and the composite wave can be directly obtained by the broadband light source.
  • Embodiment 4 is a diagrammatic representation of Embodiment 4:
  • FIG. 7 is a flow chart showing a method for wavelength-dependent attenuation of an online calibration configurable station according to a fourth embodiment of the present invention. For convenience of explanation, only parts related to the present embodiment are shown.
  • the embodiment of the present invention is applicable to the case where there is no service wavelength in the configurable site in the initial stage, and the monochromatic light source is externally connected with the OPM device in the transmitting end, and the details are as follows:
  • step S401 a monochromatic light source having an emission wavelength is disposed at the originating end, and the optical wave passing through the configurable site is configured by the OPM in step S402, and the incident light power of the optical wave reaching the receiving end light is queried. Report the reading PD in ,
  • the optical wave of the configured wavelength can be blocked by the configurable site while the optical wave is blocked to improve the accuracy of the detected data.
  • step S403 the punch-through configuration of the light wave of the wavelength is cancelled
  • step S404 it is determined whether the number of times the different optical wave passes through the configurable station reaches a preset number of times, if yes, step S405 is performed; otherwise, the process proceeds to step S401;
  • the preset number of times is greater than or equal to the number of wavelengths to be calibrated
  • the external light source can be evacuated to restore the normal operation of the station.
  • the monochromatic light source may be a monochromatic light source having a single emission wavelength; It may also be a monochromatic light source composed of a broad-spectrum light source and a filter. When a light wave of a certain wavelength is required, a monochromatic light source of a desired wavelength can be obtained by replacing the filter.
  • the monochromatic light source in this embodiment can adopt any one of the above two monochromatic light sources.
  • step S405 the wavelength dependent attenuation is determined by solving the following equation
  • L) and P 0 ⁇ have the same meanings as in the third embodiment.
  • the embodiment of the present invention is the same as the principle of the foregoing embodiment 3, and is applicable to the case where no service wavelength exists in the configurable site in the initial stage, and the optical powers of the transmitting end and the receiving end are respectively detected, and then the single-wave outgoing light is emitted. The power is subtracted from the incident light power to obtain a wavelength dependent attenuation.
  • the difference is only that the third embodiment is more suitable for the case where there is no monochromatic light source, and the emitted light is a composite wave of spontaneous emission, and the single-wave output light power of each light wave to be calibrated is required to be detected by the ⁇ device.
  • the hair source of the present embodiment is provided with a monochromatic light source, and a single wave can be obtained by replacing the monochromatic light source, and then the power of the single-wave output light is detected by the helium device.
  • the embodiment is also applicable to the case where the ⁇ device is not provided, because the illuminating light can be configured with a monochromatic light source of different wavelengths, and the single-wave outgoing optical power of the single-wave at the emitting end of the optical output can be directly queried.
  • Embodiment 5 is a diagrammatic representation of Embodiment 5:
  • FIG. 8 is a flow chart showing a method for wavelength-dependent attenuation of an online calibration configurable station according to a fifth embodiment of the present invention. For convenience of explanation, only parts related to the present embodiment are shown.
  • the embodiments of the present invention are applicable to the case where several physical links of the configurable station in the capacity expansion stage have service wavelengths, and there is no monochromatic light source at the originating end, but the device is equipped with a device, and the details are as follows:
  • step S501 the optical transceiver is maintained in a normal working state to control the optical power of the optical signal of the existing service wavelength emitted from the originating optical source.
  • the purpose of this step is to avoid affecting the existing service wavelength.
  • step S502 each of the composite waves in the spontaneous emission of the originating light is detected by the helium device. Single-wave exiting optical power at a fixed wavelength, and querying the reported reading of the initial incident optical power of the light wave arriving at the receiving end
  • the spontaneous light emission since the light wave of the existing service wavelength passes through the originating light, the spontaneous light emission has both spontaneous emission and stimulated radiation, and the spontaneous radiation generates light waves of various wavelengths, and the light is emitted from the light. Output in the amplifier. Since the spontaneous radiation of the originating light emits light waves of various wavelengths, the complex wave generated by the spontaneous radiation of the originating light must have a light wave to be calibrated, so that the complex wave of the spontaneous light emitted by the emitting end can be detected in step S502. The single-wave outgoing optical power of each wavelength to be calibrated.
  • the germanium device can detect optical power of all service wavelengths and other wavelengths, wherein the optical power p of the service wavelength. 3 ⁇ 4i ( ) is not used to calculate wavelength dependent attenuation;
  • the reported reading at the receiving end of the light is the incident optical power of the service wavelength, which is the initial incident optical power at which the optical wave of the service wavelength reaches the receiving end when the wavelength to be punctured is not configured.
  • step S503 the wavelength wave passing through the configurable site is configured, and the light wave of the other wavelengths to be calibrated is blocked to pass through the configurable station, and the reported reading power of the incident light power of the light wave reaching the receiving light is queried.
  • the reported reading PD il i includes the service wavelength and the total incident optical power of the to-be-calibrated wavelength ⁇ configured to pass through;
  • step S504 the punch-through configuration of the wavelength is cancelled
  • step S505 it is determined whether the number of times the different optical wave punch-throughs is set reaches a preset number of times. If yes, go to step S506, otherwise, go to step S503.
  • the preset number of times > the number of wavelengths to be calibrated.
  • step S506 by solving the equation:
  • ( ) is the wavelength dependent attenuation of the configurable site with respect to the wavelength to be calibrated
  • Po d is the single-wave outgoing optical power of the wavelength A to be calibrated
  • PD in is the incident optical power of the optical wave containing the service wavelength and the wavelength to be calibrated that reaches the optical amplifier of the receiving end;
  • PD in0 is the initial incident optical power
  • 10*log 10 (10 A (0.1 ) - 10 ⁇ (0.1 * PD in0 )) represents the incident light power at which the wavelength of the light wave reaches the end light.
  • the incident optical power "The same as the meaning of ⁇ in the above embodiments 3 and 4 are the incident light power of the wavelength to be calibrated light wave. Therefore, the embodiment of the present invention is substantially the same as the method for determining the WDL in the above embodiment, and both are determination sheets.
  • the difference between the output power of the wave and the power of the incident light is wavelength-dependent attenuation. The only difference is that: In the third and fourth embodiments, no service wavelength is turned on, and the light received by the receiving end light only includes the wavelength through which the through-through is configured, so the light is discharged at the receiving end.
  • the detected optical power is the incident optical power of the optical wave to be detected.
  • the configurable site in the embodiment of the present invention has an existing service wavelength, because the receiving optical transceiver cannot distinguish the wavelength to be detected and the service wavelength, and therefore needs to be configured before punch-through.
  • the initial incident optical power of the service wavelength is detected, and then the optical wave punch-through is configured, and the total incident optical power is detected, and the total incident optical power is subtracted from the initial incident optical power to determine the WDL.
  • the WDL of all unopened links can be detected after the service wavelength is turned on, which does not affect the services that have been opened, nor does it need to add hardware, and the detection precision is high.
  • FIG. 9 is a flow chart showing a method for wavelength-dependent attenuation of an online calibration configurable station according to a sixth embodiment of the present invention. For ease of explanation, only parts related to the present embodiment are shown.
  • the embodiment of the present invention is applicable to a case where a plurality of physical links of a configurable site in a capacity expansion phase have a service wavelength, and a monochrome light source and an OPM device are disposed at the originating light, the details are as follows:
  • step S601 the query is performed.
  • the reported reading of the initial incident optical power of the optical wave at the service wavelength reaches the receiving end of the light
  • step S602 a monochromatic light source of a wavelength is disposed at the emitting end, and the OPM device is passed through the OPM device.
  • step S603 the wavelength wave passing through the configurable site is configured, and the reading of the incident light power is reported at the receiving end to read the PD in , i;
  • the reported readings include the service wavelength and the total incident optical power of the wavelength to be calibrated that is configured to pass through.
  • other light waves in the calibration light wave may be blocked while configuring the light wave punch-through configurable site to improve the accuracy of the detected data.
  • step S604 the punch-through configuration of the light wave of the wavelength is cancelled
  • step S605 it is determined whether the number of times the different optical wave passes through the configurable station reaches a preset number of times, if yes, step S606 is performed; otherwise, the process proceeds to step S602;
  • the preset number of times is greater than or equal to the number of wavelengths to be calibrated
  • step S606 the wavelength dependent attenuation is obtained by solving the following equation,
  • the equation is specifically: -10*log 10 (10 A (0.1 * A - 10 ⁇ (0.1 * ⁇ réelle 0 )).
  • the physical quantities in the equation are the same as those in the above embodiment 5, and the embodiment of the present invention is substantially the same as the above embodiment. Both are applicable to the expansion phase, and the incident optical power to be calibrated is the difference between the total incident optical power and the initial incident optical power of the service wavelength.
  • the optical power of the optical wave generated by the monochromatic light source may be lower than the optical power of the service wavelength signal.
  • the optical power of the light wave generated by the monochromatic light source is lower than the optical power of the existing service wavelength signal by more than 10 dB.
  • the monochrome external light source in the embodiment of the present invention is the same as that in the fourth embodiment, and details are not described herein again.
  • FIG. 10 is a flow chart showing a method for wavelength-dependent fading of an online calibration configurable station according to a seventh embodiment of the present invention. For convenience of explanation, only parts related to the present embodiment are shown.
  • the embodiment of the present invention is applicable to the case where the configurable site does not have a service wavelength in the deployment phase, and the source optical amplifier is not configured with the monochromatic light source and the OPM device.
  • the present invention Embodiments provide an online calibration method for WDL.
  • the method is mainly implemented by the following steps:
  • step S701 the emitting end light is operated in a spontaneous emission state, and the spontaneous radiation intensity of the emitting end light is controlled to be at an spontaneous radiation intensity; in the embodiment of the invention, spontaneously
  • the light wave emitted by the radiation is a composite wave, which is white light containing all the wavelengths to be calibrated, and the acquired combined wave light power is the total outgoing light power of the spontaneous radiation composite wave.
  • step S703 the configurable station performs a predetermined number of wavelength punch-through configurations, and each wavelength punch-through configuration causes only one optical wave to be calibrated to pass through the configurable station to reach the receiving end optical amplifier, and block the optical wave punching of other wavelengths.
  • the station can be configured, and the wavelength of the light wave passing through the configurable station is different each time; after each punch-through configuration is completed, the incident light power of the light wave reaching the receiving end optical amplifier is detected;
  • step S704 it is determined whether the number of changes in the spontaneous radiation intensity of the optical amplifier of the transmitting end reaches a preset value; if yes, step S705 is performed, and if no, step S706 is performed: changing the spontaneous radiation intensity of the optical amplifier of the transmitting end, and then Go to step S702.
  • step S705 the wavelength dependent attenuation is determined based on the combined output light power obtained by the originating light at various spontaneous emission intensities and the incident optical power of the optical wave arriving at the receiving end.
  • the preset value is greater than or equal to the number of wavelengths to be calibrated minus one.
  • the combined output optical power and the incident optical power can be obtained by directly querying the reported readings of the optical power of the transmitting end and the receiving end. This is an existing function of the wavelength division multiplexing network, and will not be described in detail in this embodiment.
  • the WDL is determined according to the combined output optical power obtained at the different spontaneous emission intensity of the originating light and the incident optical power reaching the receiving end, and the WDL online calibration and network update can be realized without adding any hardware, and the operation is single and No increase in hardware costs.
  • the wavelength dependent attenuation can be obtained by solving the following equations:
  • the system of equations is: Ut- ' where i is a natural number,
  • k l , 2, 3... ⁇ ', n> m;
  • Oh. 3 ⁇ 4 ⁇ is the combined output optical power when the emitting end is at the first spontaneous emission intensity
  • PD is the incident optical power of the wavelength of the light wave reaching the receiving end when the emitting end is at the first spontaneous emission intensity
  • the ratio of the combined output optical power of the originating light to the total outgoing optical power of all pre-configured punch-through wavelengths when the primary light is at the first spontaneous emission intensity is related to the unevenness of the first spontaneous emission intensity emission spectrum and the ratio of the total bandwidth of all pre-calibrated wavelengths to the total gain spectral bandwidth of the optical amplifier, in dB.
  • the phase difference at different spontaneous emission intensities is less than 0.2 dB.
  • it can be input by the operator, or it can be stored in the system in advance, and is called directly during actual detection.
  • the above equations have a unique solution when ">, therefore, the wavelength-dependent attenuation ( ⁇ ), L(l 2 ), ( )... ( ) can be uniquely determined by solving the above equations.
  • wavelength-dependent attenuation
  • L(l 2 ), ( )... ( ) can be uniquely determined by solving the above equations.
  • 80 channels are to be calibrated, it is necessary to operate the optical transceiver in at least 80 different states.
  • the above-mentioned configuration of optical wave punch-through and cancel-through is performed at least 80*80 times.
  • the originating light is operated in at least 81 different states, namely > +1, and the above-mentioned configuration of light wave punch-through and cancel punch-through is performed at least 81*80 times.
  • the embodiment of the invention is preferably measured in advance
  • the preset value is used to limit the number of times of spontaneous radiation intensity change of the originating light, and according to the above, when the total number of spontaneous radiation intensities is greater than or equal to the number of wavelengths to be calibrated, the above equation group There is only a unique solution, so the preset value in this embodiment needs to be greater than or equal to the number of wavelengths to be calibrated minus one.
  • the determining process in the above step S704 can also be implemented by determining the total number of spontaneous radiation intensities.
  • the preset value needs to be greater than or equal to the number of wavelengths to be calibrated to ensure that the above equations have a unique solution.
  • Figure 11 is a diagram showing the apparatus for wavelength-dependent fading of an online calibration configurable station according to an eighth embodiment of the present invention. For ease of explanation, only parts related to the present embodiment are shown.
  • the obtaining unit 1 acquires the single-wave outgoing optical power of the to-be-calibrated wavelength emitted by the transmitting end optical amplifier (the term "originating light emitting");
  • the wavelength configuration and detection unit 2 performs wavelength punch-through configuration on the configurable station, so that the light wave to be calibrated is passed through the configurable station to reach the receiving end optical amplifier (the cartridge is called the "receiving end light”), and the light wave reaching the receiving end light is detected.
  • the receiving end optical amplifier the cartridge is called the "receiving end light”
  • the light wave reaching the receiving end light is detected. Incident light power;
  • the processing unit 3 obtains the wavelength-dependent attenuation of the wavelength to be calibrated according to the power of the single-wave outgoing light to be calibrated and the incoming optical power of the optical wave that reaches the receiving end.
  • the originating light emitting emits a light wave comprising a wavelength to be calibrated.
  • the light wave may be a composite wave or a single wave.
  • the composite wave can be derived from the spontaneous emission of the originating light
  • the single wave can be obtained by an external monochromatic light source such as a laser or a monochrome conventional light source.
  • the obtaining unit 1 can perform power detection on the composite wave or the single wave to obtain corresponding data of wavelength and power, thereby obtaining a target to be marked.
  • the wavelength configuration and the detecting unit perform wavelength punch-through configuration on the configurable station, so that the light wave to be calibrated wavelength passes through the configurable station one by one, and combines the acquiring unit and the wavelength configuration and the detecting unit to the transmitting end and the receiving end.
  • the device adapts to the scenario very strongly.
  • the WDL of each physical link can be determined regardless of whether the actual service is loaded, so that the WDL of each channel can be learned and updated in real time after the network is opened and the service wavelength is opened, which provides a planning algorithm. Reliable input parameters.
  • the device can calibrate the WDL of each physical link, it does not treat different links as equivalent, thus eliminating the difference in attenuation by different links.
  • the calibration error is brought to make the WDL calibration more accurate.
  • the updated WDL can be measured through the device, thereby updating the network status in time to ensure high-quality communication quality.
  • the wavelength configuration and detection unit 2 may further include: a configuration module 21 and a detection module 22.
  • the configuration module 21 performs multiple wavelength punch-through configurations on the configurable station, and each wavelength punch-through configuration is: configuring one of the plurality of wavelengths to be calibrated to pass through the configurable site to block other wavelengths in the wavelength to be calibrated
  • the light wave punch-through configurable site, and the wavelength of the light wave passing through the configurable site is different each time; after each wavelength-through configuration is completed, the incident light power of the light wave reaching the optical amplifier at the receiving end is detected by the detecting module 22.
  • the configuration module 21 and the detection module 22 can perform the wavelength punch-through configuration and the detection of the incident optical power according to the steps described in the second embodiment, and details are not described herein again.
  • the embodiment of the present invention implements the wavelength punch-through configuration through the configuration module 21 and the detecting module 22, and detects the incident light power of each of the to-be-calibrated wavelengths at the receiving end, the structure is clean, the execution speed is fast, and the error is not easy to occur, in order to determine the configurable site.
  • WDL provides accurate data.
  • Pout ⁇ i) is the single-wave outgoing optical power of the wavelength A to be calibrated
  • PD in J is the incident optical power of the light wave to be calibrated to the optical amplifier of the receiving end.
  • the data output by the acquiring unit 1 and the wavelength configuration and detecting unit 2 is processed by the first computing module 31, and the WDL of the configurable station is accurately obtained.
  • the embodiment of the invention is applicable to the case where the configurable site already has a service wavelength.
  • the optical wave received by the receiving end includes both the optical wave of the wavelength to be detected and the optical wave of the service wavelength.
  • ( ) is the wavelength dependent attenuation of the configurable site with respect to the wavelength to be calibrated
  • Pout ⁇ i) is the single-wave outgoing optical power of the wavelength A to be calibrated
  • PD in is the incident optical power of the optical wave containing the service wavelength and the wavelength to be calibrated that reaches the optical amplifier of the receiving end;
  • PD in0 is the initial incident optical power
  • the WDL of all unopened links can be detected after the service wavelength is turned on, which does not affect the services that have been opened, nor does it need to add hardware, and the detection precision is high.
  • Example 12
  • Figure 12 is a diagram showing the apparatus for wavelength-dependent attenuation of an online calibration configurable station according to a twelfth embodiment of the present invention. For convenience of explanation, only parts related to the present embodiment are shown.
  • the embodiment of the invention is mainly applicable to the case where the hair source is not provided with a monochromatic light source and an OPM device.
  • the composite wave can be obtained by spontaneous emission of the emitting end light.
  • the optical power of the transmitting end and the receiving end can be directly queried. The reported reading obtains the combined output optical power of the composite wave and the incident optical power of the optical wave received by the receiving end.
  • the initial setting unit 1 causes the emitting end to operate in a spontaneous emission state, and controls the spontaneous emission intensity of the emitting end to be under an spontaneous emission intensity; the wavelength configuration and detecting unit 3 performs a predetermined number of wavelength punch-throughs on the configurable station. Configuration, each wavelength through-through configuration allows only one optical wave to be calibrated to pass through the configurable site to the receiving end, block the other wavelengths of the optical wave through the configurable site, and each time the wavelength of the light wave passing through the configurable site is The power of the incident light that reaches the light wave of the receiving end is detected after the completion of the punch-through configuration.
  • the wavelength configuration and detection unit 3 can include the configuration module and the detecting module as described in the ninth embodiment.
  • the processing unit 4 determines whether the number of times of the spontaneous radiation intensity change of the originating light is up to a preset value; if so, according to the originating light, the combined output optical power obtained at various spontaneous radiation intensities and the light wave reaching the receiving end light
  • the incident light power determines the wavelength dependent attenuation; if not, the rate of the originating light is changed, the preset value being greater than or equal to the number of wavelengths to be calibrated minus one.
  • the WDL is determined, and the WDL online calibration and network update can be realized without adding any hardware. No increase in hardware costs.
  • the processing unit 4 may include an operation module 41 for obtaining wavelength-dependent attenuation by solving a system of equations containing a meta-equation of ( );
  • k l , 2 , 3... ⁇ ', n > m;
  • Oh. 3 ⁇ 4 ⁇ is the combined output optical power when the transmitting optical amplifier is at the first spontaneous emission intensity; when the transmitting optical amplifier is at the first spontaneous emission intensity, the wavelength of the optical wave 'J reaches the incident optical power of the receiving optical amplifier ;
  • the ratio of the combined output optical power of the originating light to the total outgoing optical power of all pre-configured punch-through wavelengths when the primary light is at the first spontaneous emission intensity is related to the unevenness of the first spontaneous emission intensity emission spectrum and the ratio of the total bandwidth of all pre-calibrated wavelengths to the total gain spectral bandwidth of the optical amplifier, in dB.
  • the phase difference at different spontaneous emission intensities is less than 0.2 dB. Row operations, not repeated here.
  • the apparatus provided by the above embodiments is applicable to a wavelength division multiplexing optical communication system for online calibration of a WDL of a configurable station, so as to know and update the network status in real time.
  • the device realizes accurate online calibration of WDL based on the cooperation of the above functional units and modules, and eliminates the calibration error caused by the traditional device not considering the difference of attenuation of different links, so that the WDL calibration is more accurate; and when the network state changes ( When replacing or adding passive components or re-melting, etc., the updated WDL can be measured by the device to update the network status in time.
  • the device is not only suitable for the case where the service wavelength is not opened in the initial stage, but also for the service wavelength after the service is opened, and can be calibrated based on the existing network environment, without adding new hardware, with strong adaptability and low cost.
  • wavelength division multiplexing optical communication system including the above device is also in the present invention.
  • the wavelength division multiplexing optical communication system including the above device is also in the present invention.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Optical Communication System (AREA)

Abstract

提供了一种在线标定可配置站点波长相关衰减的方法、装置及光通信系统。该方法包括:获取发射端光放大器出射的待标定波长的单波出射光功率(S101);对可配置站点进行波长穿通配置,使待标定波长的光波穿通可配置站点到达接收端光放大器,并检测到达接收端光放大器的光波的入射光功率(S102);根据待标定波长的单波出射光功率与到达接收端光放大器的光波的入射光功率,得到待标定波长的波长相关衰减(S103)。该方法在网络开局阶段和扩容阶段都可实时获知和更新WDL,进而及时更新网络状态,保证优质的通信质量。另外,该方案可完全基于现有的网络环境实现波长相关衰减的在线标定,不需增加任何硬件,有效控制了成本的增加。

Description

发明名称:在线标定可配置站点波长相关衰减的方法、 装置及系统 技术领域
本发明属于通信领域, 尤其涉及一种在线标定可配置站点波长相关衰减的 方法、 装置及系统。 背景技术
光通信网络中, 波分复用网络在 ROADM ( reconfigurable optical add-drop multiplexer,可重构型光分插复用设备)站点 (又称可配置站点) 的衰减具有波 长相关性, 即网络的性能对每个通道都是波长相关的, 往往一个站点在不同波 长通道的衰减可以达到 3-4 dB , 甚至更大。 这种衰减与无源器件的 WDL ( wavelength dependent loss , 波长相关衰减) 相关, 通常 WSS (wavelength selective switch,波长选择开关)的 WDL占主导。
图 1示出了现有技术中 ROADM站点的网络拓朴结构,其中包括多个通道, 每个通道均含有若干个无源器件 101 , 该站点的光损耗主要来自于无源器件 WSS的 WDL。 参考图 2, 实验中测到的单个 WSS的最大 WDL约 1.5-2 dB 。
进一步参考图 3 , 以一个 ROADM站点的一条物理链路 /为例,该路径包含 两个 WSS ,并且在入射端和出射端分别有发射端光放大器 301和接收端光放大 器 302来补偿无源器件和光纤的损耗,光信号在 A与 B点之间传输时产生的损 耗便是无源器件的损耗。 在实际操作中, 在做好 WSS的波长配置以后, 通常一 个光业务波长通道已经在物理上打通, 而事实上, 在开局或者扩容阶段, 如果 这个波长 λ的实际业务还没有加载(如激光器没有打开, 通道中没有光传输), 通常无法获得波长 的光衰减值, 因此难以消除光衰减对网络性能的影响。
为了解决上述问题, 现有技术中出现了多种解决方案。 其中之一是离线标 定技术。即在出产时通过仪表(例如光谱仪)实际测量每个光无源器件的 WDL, 标定并且记录。 在理论上每个波长通道都可以采用仪表精确测量, 但是在实际 操作中, 由于工作量过大, 往往以有限个波长点 (例如长中短各一个波长)测 量的标定值来等效替代所有波长的 WDL, 并不十分准确。 另外, 此方案无法动 态更新 WDL, 不能实时更新网络的状态。 例如: 某个站点的光无源器件被更替 或者重新熔纤以后, 如果新增器件或者熔纤点的波长相关衰减不已知, 则整个 站点会陷入不可知状态。 其中, 熔纤点的 WDL跟熔纤时间和操作者的熟练程 度相关。 参考图 4, 图中示出了在不同的熔纤时间下熔纤点的 WDL特性曲线, 熔纤时间不同时, 其 WDL也不同。 实测中每个熔纤点可能带入 0.2dB以上的 损耗, 若此损耗不可预知, 必然会影响网络性能。
现有技术之二是不考虑 WDL的在线标定技术。 该技术不区分通道的波长 相关性, 采用在已开通波长的收发端探测到的信号光功率衰减值来替代所有通 道的衰减, 实质上相当于忽略了不同通道的 WDL。这种方案可以在线通过网管 软件自动完成, 不需增加额外的人力投入。 但是由于此方案将所有波长的衰减 视为相同, 没有考虑不同波长的衰减差异, 标定结果必然非常粗糙, 往往会引 入 3~4dB的误差。 这种误差会随着级联 WSS和其他光无源器件的个数的增加 而增加, 并且同每个光无源器件的 WDL特性强相关, 使得网络状态更加难以 准确获知和更新。
综上, 现有技术仍不能对可配置站点的 WDL进行准确的在线标定, 无法 实时获知并更新网络的状态, 不利于网络维护和优化。 技术问题
本发明实施例的目的在于提供一种在线标定可配置站点的波长相关衰减的 方法, 旨在解决现有技术中无法准确获知可配置站点之 WDL的问题, 实现在 网络开设之初或是在业务波长开通以后可实时更新可配置站点的 WDL,为规划 算法提供可靠的输入参数, 以提供优质的网络服务。
技术解决方案
一方面, 本发明实施例提供一种在线标定可配置站点的波长相关衰减的方 法, 所述方法包括: 对所述可配置站点进行波长穿通配置, 使所述待标定波长的光波穿通所述 可配置站点到达接收端光放大器, 并检测到达接收端光放大器的光波的入射光 功率;
根据所述待标定波长的单波出射光功率与到达接收端光放大器的光波的所 述入射光功率, 得到所述待标定波长的波长相关衰减。
进一步的, 当待标定波长有多个时, 所述对所述可配置站点进行波长穿通 配置, 使所述待标定波长的光波穿通所述可配置站点到达接收端光放大器, 并 检测到达接收端光放大器的光波的入射光功率具体为:
对所述可配置站点进行多次波长穿通配置, 每次波长穿通配置均是: 将多 个待标定波长中的一种波长配置成穿通所述可配置站点, 阻断所述待标定波长 中的其它波长的光波穿通所述可配置站点, 且每次穿通所述可配置站点的光波 的波长均不相同;
在每次波长穿通配置完成后, 均检测到达所述接收端光放大器的光波的入 射光功率。
具体的, 当所述可配置站点无业务波长存在时, 所述根据所述待标定波长 的单波出射光功率与到达接收端光放大器的光波的所述入射光功率, 得到所述 待标定波长的波长相关衰减具体为:
通过解方程: U^PoD-PDu^得到所述波长相关衰减,
其中,
( )为可配置站点关于待标定波长 的波长相关衰减;
P。w ( )为所述待标定波长 的单波出射光功率;
PDin 为到达接收端光放大器的所述待标定波长 的光波的入射光功率。 进一步的, 当所述可配置站点已经有业务波长存在时, 在对所述可配置站 点进行波长穿通配置, 使所述待标定波长的光波穿通所述可配置站点到达接收 端光放大器, 并检测到达接收端光放大器的光波的入射光功率之前还包括: 检测所述接收端光放大器接收的光波的初始入射光功率;
所述根据所述待标定波长的单波出射光功率与到达接收端光放大器的光波 的所述入射光功率, 得到所述波长相关衰减具体为:
通过解方程: L(^) = P0D -10*log10(10A(0.1*m - 10Λ(0· 1 *尸 A„0 ))得到 所述波长相关衰减,
其中,
为可配置站点关于待标定波长 的波长相关衰减;
p。w ( )为所述待标定波长 的单波出射光功率;
PDin J为到达接收端光放大器的包含有业务波长和待标定波长 的光波的 入射光功率;
PDin0为所述初始入射光功率。
进一步的, 穿通所述可配置站点的待标定波长的光波的光功率低于所述业 务波长的光功率。
另一方面, 本发明实施例提供另一种在线标定可配置站点的波长相关衰减 的方法, 所述方法包括:
使发射端光放大器工作在自发辐射状态, 并控制所述发射端光放大器的自 发辐射强度使其处于一种自发辐射强度下; 对所述可配置站点进行预设次数的波长穿通配置, 每次波长穿通配置均使 得只有一种待标定波长的光波穿通所述可配置站点到达接收端光放大器, 阻断 其它波长的光波穿通所述可配置站点, 且每次穿通所述可配置站点的光波的波 长均不相同; 在每次穿通配置完成后, 检测到达接收端光放大器的光波的入射 光功率;
判断所述发射端光放大器的自发辐射强度的改变次数是否达到预设值; 如 果是, 则根据所述发射端光放大器处于各种自发辐射强度下获得的合波出射光 功率和到达接收端光放大器的光波的入射光功率确定波长相关衰减; 如果否, 则改变发射端光放大器的自发辐射强度, 并跳转至所述获取发射端光放大器出 射的含有待标定波长的合波出射光功率, 所述预设值大于或等于待标定波长的 数目减 1。
具体的, 所述根据所述发射端光放大器处于各种自发辐射强度下获得的合 波出射光功率和到达接收端光放大器的光波的入射光功率确定波长相关衰减具 体为:
通过解含《个关于 (^)的 元一次方程的方程组确定波长相关衰减; 所述 元一次方程为:
Figure imgf000007_0001
其中, 均为自然数,
i=l , 2 , 3... , m 为待标定波长的数目; 表示对所有待标定波长的光功 率值求和;
k=l , 2 , 3...η', n > m;
ΡΖ 。¾ί为当发射端光放大器处于第 种自发发射强度时的合波出射光功率; 为当发射端光放大器处于第 种自发发射强度时, 波长为 的光波 'J达接收端光放大器的入射光功率;
( )为可配置站点关于待标定波长 的波长相关衰减;
为当发射端光放大器处于第 种自发发射强度时, 发射端光放大器的合 波出射光功率和所有预配置穿通波长的总出射光功率的比值。
又一方面, 本发明实施例提供一种在线标定可配置站点的波长相关衰减的 装置, 所述装置包括: 波长配置及检测单元, 用于对所述可配置站点进行波长穿通配置, 使所述 待标定波长的光波穿通所述可配置站点到达接收端光放大器, 并检测到达接收 端光放大器的光波的入射光功率;
处理单元, 用于根据所述待标定波长的单波出射光功率与到达接收端光放 大器的光波的所述入射光功率, 得到所述待标定波长的波长相关衰减。 进一步的, 所述波长配置及检测单元包括:
配置模块, 用于对所述可配置站点进行多次波长穿通配置, 每次波长穿通 配置均是: 将多个待标定波长中的一种波长配置成穿通所述可配置站点, 阻断 配置站点的光波的波长均不相同;
检测模块, 用于在每次波长穿通配置完成后, 检测到达所述接收端光放大 器的光波的入射光功率。
具体的, 当所述可配置站点无业务波长存在时, 所述处理单元包括: 第一运算模块, 用于通过解方程: L(Ad =P0Ut{l^-PDin 得到所述波长相关 衰减,
其中,
( )为可配置站点关于待标定波长 的波长相关衰减;
为所述待标定波长 A的单波出射光功率;
PDin 为到达接收端光放大器的所述待标定波长 的光波的入射光功率。 进一步的, 当所述可配置站点已经有业务波长存在时, 所述装置还包括: 初始检测单元, 用于检测所述接收端光放大器接收的光波的初始入射光功 率;
所述处理单元包括:
第二运算模块, 用于通过解方程: ( )=尸。¾ )-10*1(^10(10八(0.1*^^ ) - 10Λ(0.1 * PDin0 ))得到所述波长相关衰减,
其中,
( )为可配置站点关于待标定波长 的波长相关衰减;
p。w ( )为所述待标定波长 的单波出射光功率;
PDin 为到达接收端光放大器的包含有业务波长和待标定波长 的光波的 入射光功率;
PDin0为所述初始入射光功率。 又一方面, 本发明实施例提供一种波分复用光通信系统, 包括上述的在线 标定可配置站点的波长相关衰减的装置。
再一方面, 本发明实施例提供另一种在线标定可配置站点的波长相关衰减 的装置, 所述装置包括: 初始设置单元, 用于使发射端光放大器工作在自发辐 射状态, 并控制所述发射端光放大器的自发辐射强度使其处于一种自发辐射强 度下; 射光功率;
波长配置及检测单元, 用于对所述可配置站点进行预设次数的波长穿通配 置, 每次波长穿通配置均使得只有一种待标定波长的光波穿通所述可配置站点 到达接收端光放大器, 阻断其它波长的光波穿通所述可配置站点, 且每次穿通 所述可配置站点的光波的波长均不相同; 在每次穿通配置完成后, 检测到达接 收端光放大器的光波的入射光功率;
处理单元, 用于判断所述发射端光放大器的自发辐射强度的改变次数是否 达到预设值; 如果是, 则根据所述发射端光放大器处于各种自发辐射强度下获 得的合波出射光功率和到达接收端光放大器的光波的入射光功率确定波长相关 衰减; 如果否, 则改变发射端光放大器的自发辐射强度, 并跳转至所述获取发 于待标定波长的数目减 1。
进一步的, 所述处理单元包括:
运算模块, 用于通过解含 n个关于 ( )的 i元一次方程的方程组得到所述 波长相关衰减;
所述 元一次方程为:
Figure imgf000009_0001
其中, 均为自然数,
i=l , 2, 3... , m 为待标定波长的数目; 表示对所有待标定波长的光功 率值求和; k=\ , 2, 3...«; n > m;
PZ 。¾i为当发射端光放大器处于第 种自发发射强度时的合波出射光功率; 为当发射端光放大器处于第 种自发发射强度时, 波长为 的光波 'J达接收端光放大器的入射光功率;
为可配置站点关于待标定波长 的波长相关衰减;
为当发射端光放大器处于第 种自发发射强度时, 发射端光放大器的合 波出射光功率和所有预配置穿通波长的总出射光功率的比值。
再一方面, 本发明实施例提供另一种波分复用光通信系统, 包括上述的另 一种在线标定可配置站点的波长相关衰减的装置。 有益效果
本发明实施例通过对可配置站点进行波长穿通配置, 使待标定波长的光波 逐一穿通可配置站点, 并结合发端光放和收端光放的光功率检测, 确定待标定 波长的光波经过可配置站点时发生的波长相关衰减。 该方法适应场景极强, 无 论实际业务是否加载, 均可确定各物理链路的波长相关衰减, 以便实时获知和 更新各通道的波长相关衰减, 为规划算法提供了可靠的输入参数。 另外, 由于 该方法可标定出每一物理链路的波长相关衰减, 不会将不同的链路等同视之, 因此其与传统的离线标定技术和不考虑波长相关衰减等技术相比, 消除了由不 同链路的衰减差异带来的标定误差, 使波长相关衰减的标定更加精确。 并且, 当网络状态改变 (如更换或新增无源器件或重新熔纤等) 时, 可以通过该方法 实测更新后的波长相关衰减, 进而及时更新网络状态, 保证优质的通信质量。 另夕卜,本发明实施例可完全基于现有的网络环境实现波长相关衰减的在线标定, 不需增加任何硬件, 有效控制了成本的增加。 附图说明
图 1是现有技术中 ROADM站点的网络拓朴结构示意图;
图 2是现有技术中实验测得的单个 WSS的 WDL曲线; 图 3是现有技术中 RO ADM站点的物理链路示意图;
图 4是现有技术中熔纤时间与熔纤点的 WDL特性曲线;
图 5是本发明第一实施例提供的在线标定可配置站点的波长相关衰减的方 法流程图; 图 6是本发明第三实施例提供的在线标定可配置站点的波长相关衰 减的方法流程图;
图 7是本发明第四实施例提供的在线标定可配置站点的波长相关衰减的方 法流程图;
图 8是本发明第五实施例提供的在线标定可配置站点的波长相关衰减的方 法流程图;
图 9是本发明第六实施例提供的在线标定可配置站点的波长相关衰减的方 法流程图;
图 10是本发明第七实施例提供的在线标定可配置站点的波长相关衰减的 方法流程图;
图 11是本发明第八、 九、 十、 十一实施例提供的在线标定可配置站点的波 长相关衰减的装置图;
图 12 示出了本发明第十二实施例提供的在线标定可配置站点的波长相关 衰减的装置图。 本发明的实施方式
为了使本发明的目的、 技术方案及优点更加清楚明白, 以下结合附图及实 施例, 对本发明进行进一步详细说明。 应当理解, 此处所描述的具体实施例仅 仅用以解释本发明, 并不用于限定本发明。 实施例一:
图 5示出了本发明第一实施例提供的在线标定可配置站点的波长相关衰减 的方法流程图, 为了便于说明, 仅示出了与本实施例相关的部分。 率。
在本发明实施例中, 发射端光放大器(筒称 "发端光放" )发出包含待标 定波长的光波。 该光波可以是复合波(包含有多种波长的光波) , 也可以是单 波(只包含一种波长的光波), 其中, 复合波可以来源于发端光放的自发辐射, 单波可以通过外接的单色光源 (如激光器或单色常规光源)获得。 受激辐射和 自发辐射是光放大器中普遍存在的现象, 光放大器利用受激辐射实现对输入的 光信号进行放大, 当光放大器在工作时, 如果没有光信号输入到光放大器, 则 此时光放大器中只有自发辐射, 如果有光信号输入到光放大器, 则此时光放大 器中既有自发辐射, 又有受激辐射, 只不过此时受激辐射占主导地位。 当光放 大器中只有自发辐射时, 光放大器会输出各种波长的光信号。 当光放大器中既 有自发辐射又有受激辐射时, 光放大器也会输出各种波长的光信号, 只不过与 输入光信号的波长相同的光信号的功率是远远大于其它波长的光信号的功率。 因此, 本发明实施例中可以基于光放大器的自发辐射产生的复合波来标定波长 相关衰减。
现有的光放大器中一般都有功率监测装置对光放大器的输入端口的光波的 光功率和光放大器的输出端口的光波的光功率进行监测, 但是, 如果输入到光 放大器的光波是复合波, 则功率监测装置对输入端口的光波的光功率进行监测 得到的是复合波的总入射光功率, 相应地, 对输出端口的光波的光功率进行监 测得到的是复合波的总出射光功率; 如果输入到光放大器的光波是单波, 功率 监测装置对输入端口的光波的光功率进行监测得到的才是单波的入射光功率, 相应地, 对输出端口的光波的光功率进行监测得到的才是单波的出射光功率。 现有的应用中, 大多数情况下输入到光放大器的都是复合波, 为了获取每个波 长的光功率, 可以通过 OPM ( Optical Performance Monitoring, 光性能检测)装 置对从发端光放出射的光波进行监测, 得到每个波长的光波的出射光功率。 需 要说明的是, 除了 OPM外, 任何对复合波进行功率检测均能得到每一个单一 波长的光功率的装置都可以用于本发明, 本发明实施例对此不做限制。 此外, 具体的, 当发端光放没有外接单色光源时, 可控制发端光放处于自发辐射 状态, 使其辐射出复合波, 然后通过 OPM装置检测复合波中各待标定波长的 单波出射光功率。 当发端光放连接有单色光源时, 则可以通过逐一更换单色光 源的方式获得不同波长的单波, 并通过 OPM装置对每种单波经发端光放射出 时的单波出射光功率进行检测。
在步骤 S102中,对可配置站点进行波长穿通配置,使待标定波长的光波穿 通可配置站点到达接收端光放大器, 并检测到达接收端光放大器的光波的入射 光功率;
在本发明实施例中,在获取了出自发端光放的光波的单波出射光功率之后, 需逐一配置待标定波长的光波穿通可配置站点, 并且, 每一波长的光波穿通可 配置站点后, 均要检测其到达接收端光放大器(筒称 "收端光放" ) 时的入射 光功率, 以获得所有待标定波长的光波到达接收端光放大器的入射光功率, 为 确定 WDL提供数据。
其中,入射光功率可通过直接查询收端光放的入射光功率的上报读数获得。 此为波分复用网络的已有功能, 本实施例中不进行详细说明。
在步骤 S103中,根据待标定波长的单波出射光功率与到达接收端光放大器 的光波的入射光功率, 得到待标定波长的波长相关衰减。
在本发明实施例中, 单波出射光功率及入射光功率的单位均为 dBm, 波长 相关衰减或增益的单位均为 dB, 且均为正数, 此同样适用于以下各实施例。
本发明实施例通过对可配置站点进行波长穿通配置, 使待标定波长的光波 逐一穿通可配置站点, 并结合发端光放和收端光放的光功率检测, 确定待标定 波长的光波经过可配置站点时发生的 WDL。该方法适应场景极强,无论实际业 务是否加载, 均可确定各物理链路的 WDL, 以便实时获知和更新各通道的 WDL, 为规划算法提供了可靠的输入参数。 另外, 由于该方法可标定出每一物 理链路的 WDL, 不会将不同的链路等同视之, 因此其与传统的离线标定技术和 不考虑 WDL等技术相比, 消除了由不同链路的衰减差异带来的标定误差, 使 WDL标定更加精确。 并且, 当网络状态改变(如更换或新增无源器件或重新熔 纤等)时, 可以通过该方法实测更新后的 WDL, 进而及时更新网络状态, 保证 优质的通信质量。 另外, 本发明实施例可完全基于现有的网络环境实现 WDL 的在线标定, 不需增加任何硬件, 有效控制了成本的增加。
实施例二:
当需要对多个波长标定波长相关衰减时, 本发明实施例在上述实施例一的 基础上, 针对步骤 S102提供一种较佳的实现方式, 具体如下:
对可配置站点进行多次波长穿通配置, 每次波长穿通配置均是: 将多个待 标定波长中的一种波长配置成穿通可配置站点, 阻断待标定波长中的其它波长 的光波穿通可配置站点,且每次穿通可配置站点的光波的波长均不相同; 并且, 在每次波长穿通配置完成后,均检测到达接收端光放大器的光波的入射光功率。
更具体的, 上述方法可以通过以下步骤实施:
第一步, 配置待标定波长中的一种波长的光波穿通可配置站点, 并阻断待 标定波长中的其它波长的光波穿通可配置站点;
第二步, 检测该光波到达收端光放的入射光功率;
第三步, 取消该光波的穿通配置;
第四步, 配置另一种待标定波长的光波穿通可配置站点, 并阻断待标定波 长中的其它波长的光波穿通可配置站点;
第五步, 检测该另一种光波到达收端光放的入射光功率;
第六步, 取消另一种光波的穿通配置; 依此类推, 直至完成全部待标定波长的光波的穿通配置, 并检测到达接收 端光放大器的各光波的入射光功率。
在上述过程中, 在每次完成一种波长的穿通配置及入射光功率的检测后, 可以判断不同光波穿通可配置站点的次数是否达到预设次数, 该预设次数 >待 标定波长的数目。 是则结束, 否则跳转至第一步, 继续进行下一种波长的穿通 配置和入射光功率的检测, 直至完成所有待标定波长的穿通配置和入射光功率 的检测。
本发明实施例通过上述方法可以准确的获得各待标定波长在收端光放的入 射光功率, 步骤筒洁, 执行速度快, 不易出现误差, 为确定可配置站点的 WDL 提供了精确的数据。
实施例三:
图 6示出了本发明第三实施例提供的在线标定可配置站点的波长相关衰减 的方法流程图, 为了便于说明, 仅示出了与本实施例相关的部分。
本发明实施例适用于开局阶段中可配置站点无业务波长存在, 且在发端光 放没有外接单色光源但配置有 OPM装置的情况, 详细内容如下:
在步骤 S301中,使发端光放工作在自发辐射状态,并控制发端光放的自发 辐射强度使其处于一种自发辐射强度下;
在步骤 S302中, 通过 OPM装置检测自发辐射的复合波中每个待标定波长 的光波在发端光放出光口处的单波出射光功率 ;
其中, 代表配置穿通的波长, i=l , 2, 3...m; 为待标定波长的数目。 在该步骤中, 可获得尸^ (^)、 Ρο Ιλ2)
Figure imgf000015_0001
在步骤 S303中,配置波长 的光波穿通可配置站点, 同时阻断待标定波长 中其它波长的光波穿通可配置站点, 并查询波长 A的光波到达收端光放的入射 光功率的上报读数
在步骤 S304中, 取消波长 的光波的穿通配置;
在步骤 S305中,判断配置不同光波穿通可配置站点的次数是否达到预设次 数, 是则进行步骤 S306, 否则跳转至步骤 S303。
在该步骤中, 预设次数 >待标定波长的数目。
在步骤 S306中, 通过解以下方程得到波长相关衰减;
该方程具体为: L^ = Ρ01^ -PD^
其中, ( )为可配置站点关于待标定波长 的波长相关衰减;
Pout^i)为待标定波长 A的单波出射光功率;
为到达收端光放的待标定波长 的光波的入射光功率。
本发明实施例可以在发端光放没有外接单色光源的情况下, 通过现有的
OPM装置检测发端光放的单波出射光功率,在不需另设外接光源等硬件的条件 下实现了 WDL的在线标定。
当然, 本发明实施例也可用于发端光放设有宽带光源的情况, 可直接通过 该宽带光源获得复合波。
实施例四:
图 7示出了本发明第四实施例提供的在线标定可配置站点的波长相关衰减 的方法流程图, 为了便于说明, 仅示出了与本实施例相关的部分。
本发明实施例适用于开局阶段中可配置站点无业务波长存在, 且在发端光 放外接有单色光源并配有 OPM装置的情况, 详细内容如下:
在步骤 S401中,在发端光放配置一发射波长为 的单色光源,并通过 OPM 在步骤 S402中,配置波长 的光波穿通可配置站点,并查询该光波到达收 端光放的入射光功率的上报读数 PDin
在本发明实施例中, 可以在配置波长 的光波穿通可配置站点的同时对其 他光波进行阻断, 以提高检测数据的精确度。
在步骤 S403中, 取消波长 的光波的穿通配置;
在步骤 S404中,判断配置不同光波穿通可配置站点的次数是否达到预设次 数, 是则进行步骤 S405 , 否则跳转至步骤 S401 ;
在该步骤中, 预设次数大于或等于待标定波长的数目;
在该步骤中, 当配置穿通的次数达到预设次数时, 可撤离外接光源以恢复 站点的正常工作。
在本发明实施例中, 单色光源具体可以是一种发光波长单一的单色光源; 也可以是由一宽谱光源和一滤光片组成的单色光源,当需要某种波长的光波时, 可以通过更换滤光片的方式得到所需波长的单色光源。 本实施例中的单色光源 可以采用上述两种单色光源中的任意一种。
在步骤 S405中, 通过解以下方程确定波长相关衰减;
该方程具体为: U^ POD -PD^
其中, L ) 、 P0 ΡΑ 的含义同上述实施例三相同。
本发明实施例与上述实施例三的原理相同, 均适用于开局阶段可配置站点 无业务波长存在的情况, 均是分别检测发端光放和收端光放的光功率, 然后将 单波出射光功率与入射光功率相减得到波长相关衰减。 其区别仅在于, 实施例 三较适合没有单色光源的情况, 其出射光是自发辐射的复合波, 需要通过 ΟΡΜ 装置检测各待标定波长的光波的单波出射光功率。 而本实施例的发端光放配有 单色光源, 可以通过更换单色光源的方式获得单波, 然后通过 ΟΡΜ装置检测 单波出射光功率。 进而也可以确定, 本实施例也适用于不设有 ΟΡΜ装置的情 况, 因为发端光放可配置不同波长的单色光源, 可以直接查询单波在发端光放 出光口处的单波出射光功率。 但本实施例仍然优选通过 ΟΡΜ装置检测单波出 射光功率, 旨在提高检测精度。
实施例五:
图 8示出了本发明第五实施例提供的在线标定可配置站点的波长相关衰减 的方法流程图, 为了便于说明, 仅示出了与本实施例相关的部分。
本发明实施例适用于扩容阶段中可配置站点的若干个物理链路已经有业务 波长存在, 且在发端光放无单色光源但配置有 ΟΡΜ装置的情况, 详细内容如 下:
在步骤 S501中,维持发端光放处于正常工作状态, 以控制从发端光放出射 的已存在业务波长的光信号的光功率不变; 此步骤的目的是为了避免对已有业 务波长造成影响。
在步骤 S502中, 通过 ΟΡΜ装置检测发端光放自发辐射的复合波中各待标 定波长的单波出射光功率 ,并查询到达收端光放的光波的初始入射光功 率的上报读数
在本实施例中, 由于已有业务波长的光波经过发端光放, 所以此时发端光 放中既有自发辐射又有受激辐射, 而自发辐射是会产生各种波长的光波, 并从 光放大器中输出。 由于发端光放的自发辐射会产生各种波长的光波, 因此, 发 端光放的自发辐射产生的复合波中必然存在待标定波长的光波, 故步骤 S502 中可以检测发端光放自发辐射的复合波中各待标定波长的单波出射光功率。
在本发明实施例中, ΟΡΜ装置可检测到全部业务波长 和其它波长的的光 功率, 其中, 业务波长 的光功率 p。¾i ( )不用于计算波长相关衰减;
在收端光放查询的上报读数 是业务波长的入射光功率,是未配置待标 定波长穿通时, 业务波长的光波到达收端光放的初始入射光功率。
在步骤 S503中,配置波长 的光波穿通可配置站点, 同时阻断待标定波长 中其它波长的光波穿通可配置站点, 并查询到达收端光放的光波的入射光功率 的上报读数
在本发明实施例中, 上报读数 PDil i包括业务波长 和配置穿通的待标定 波长 Α的总入射光功率;
在步骤 S504中, 取消波长 的穿通配置;
在步骤 S505中,判断配置不同光波穿通的次数是否达到预设次数,是则进 行步骤 S506, 否则跳转至步骤 S503。
在该步骤中, 预设次数 >待标定波长的数目。
在步骤 S506中, 通过解方程:
(λ) = P。 d -10*log10(10A(0.1* A , ) - 10Λ(0.1* PDin0 ))得到波长相关衰 减,
其中,
( )为可配置站点关于待标定波长 的波长相关衰减;
Po d为待标定波长 A的单波出射光功率; PDin 为到达接收端光放大器的包含有业务波长和待标定波长 的光波的 入射光功率;
PDin0为初始入射光功率。
在上述公式中, 10*log10(10A(0.1 ) - 10Λ(0.1 * PDin0 ))即代表波长为 的光波到达收端光放的入射光功率。
在本发明实施例中,入射光功率
Figure imgf000019_0001
" 与上述实施例三和四中的 ΡΑ 意义相同, 均是波长为 的待标定光波的入射 光功率, 因此, 本发明实施例与上述实施例中 WDL的确定方法实质上相同, 均是确定单波出射光功率与入射光功率之差为波长相关衰减。 区别仅在于: 实 施例三和四中没有业务波长开通, 收端光放接收的光仅包含配置穿通的波长, 因此在收端光放检测到的光功率即为待检测光波的入射光功率。 本发明实施例 中的可配置站点已有业务波长开通, 因为收端光放不能区分待检测波长及业务 波长, 因此需要在配置穿通之前,在收端光放检测业务波长的初始入射光功率, 然后再配置光波穿通, 并检测总入射光功率, 将总入射光功率与初始入射光功 率相减, 确定 WDL。
本发明实施例可以在业务波长开通以后检测出所有未开通链路的 WDL,既 不影响已开通的业务, 也不需要增加硬件, 且检测精度高。
实施例六:
图 9示出了本发明第六实施例提供的在线标定可配置站点的波长相关衰减 的方法流程图, 为了便于说明, 仅示出了与本实施例相关的部分。
本发明实施例适用于扩容阶段中可配置站点的若干个物理链路已经有业务 波长存在, 且在发端光放配置有单色光源和 OPM装置的情况, 详细内容如下: 在步骤 S601中,查询业务波长的光波到达收端光放的初始入射光功率的上 报读数
在步骤 S602中, 在发端光放配置一波长为 的单色光源, 通过 OPM装置 在步骤 S603中,配置波长 的光波穿通可配置站点,并在收端光放查询入 射光功率的上报读数 PDin,i;
上报读数 包括业务波长和配置穿通的待标定波长 的总入射光功率。 在本发明实施例中, 可以在配置光波穿通可配置站点的同时对待标定光波 中的其他光波进行阻断, 以提高检测数据的精确度。
在步骤 S604中, 取消波长 的光波的穿通配置;
在步骤 S605中,判断配置不同光波穿通可配置站点的次数是否达到预设次 数, 是则进行步骤 S606, 否则跳转至步骤 S602;
在该步骤中, 预设次数大于或等于待标定波长的数目;
在步骤 S606中, 通过解以下方程获得波长相关衰减,
该方程具体为:
Figure imgf000020_0001
-10*log10(10A(0.1 * A - 10Λ(0.1 * ΡΑ„0 ))。该 方程中的各物理量与上述实施例五中的相同, 本发明实施例与上述实施例实质 相同, 均适用于扩容阶段, 待标定光波的入射光功率均为总入射光功率与业务 波长的初始入射光功率之差。
在本发明实施例中, 为了不影响已开通业务, 可以使单色光光源产生的光 波的光功率低于业务波长信号的光功率。
优选的, 单色光光源产生的光波的光功率比已有业务波长信号的光功率低 10dB以上。
本发明实施例中的单色外接光源同实施例四中的相同, 此处不再赘述。
实施例七:
图 10 示出了本发明第七实施例提供的在线标定可配置站点的波长相关衰 减的方法流程图, 为了便于说明, 仅示出了与本实施例相关的部分。
本发明实施例适用于开局阶段中可配置站点未有业务波长存在, 且发端光 放未配置单色光源和 OPM装置的情况。
由于发端光放未配置单色光源, 也没有 OPM装置, 因此无法在发端光放 获取单波出射光功率, 而只能获取到合波出射光功率, 针对这种情况, 本发明 实施例提供一种 WDL的在线标定方法。 该方法主要通过以下步骤实现: 在步骤 S701中,使发端光放工作在自发辐射状态,并控制发端光放的自发 辐射强度使其处于一种自发辐射强度下; 在本发明实施例中, 自发辐射发出的光波为复合波, 是包含有全部待标定 波长的白光, 获取的合波出射光功率是自发辐射复合波的总出射光功率。
在步骤 S703中,对可配置站点进行预设次数的波长穿通配置,每次波长穿 通配置均使得只有一种待标定波长的光波穿通可配置站点到达接收端光放大 器, 阻断其它波长的光波穿通可配置站点, 且每次穿通可配置站点的光波的波 长均不相同; 在每次穿通配置完成后, 检测到达接收端光放大器的光波的入射 光功率;
在步骤 S704中,判断发射端光放大器的自发辐射强度的改变次数是否达到 预设值; 如果是, 则进行步骤 S705 , 如果否, 则进行步骤 S706: 改变发射端 光放大器的自发辐射强度, 然后跳转至步骤 S702。
在步骤 S705中,根据发端光放处于各种自发辐射强度下获得的合波出射光 功率和到达收端光放的光波的入射光功率确定波长相关衰减。
在本发明实施例中, 该预设值大于或等于待标定波长的数目减 1。
在本发明实施例中, 上述合波出射光功率和入射光功率可通过直接查询发 端光放和收端光放的光功率的上报读数获得。 此为波分复用网络的已有功能, 本实施例中不进行详细说明。 根据发端光放处于不同自发辐射强度时获得的合波出射光功率和到达收端光放 的入射光功率确定 WDL, 不需要增加任何硬件即可实现 WDL的在线标定及网 络更新, 操作筒单且不增加硬件成本。
进一步的, 当发端光放的自发辐射强度的改变次数达到预设值时, 可以通 过解如下方程组得到波长相关衰减: 该方程组为:
Figure imgf000022_0001
ut- ' 其中, i, 均为自然数,
i=l, 2, 3... , m 为待标定波长的数目; 表示对所有待标定波长的光功 率值求和;
k=l , 2, 3...η', n> m;
ΡΖ 。¾ί为当发端光放处于第 种自发发射强度时的合波出射光功率; PD 为当发端光放处于第 种自发发射强度时, 波长为 的光波到达收 端光放的入射光功率;
为可配置站点关于待标定波长 的波长相关衰减;
为当发端光放处于第 种自发辐射强度时, 发端光放的合波出射光功率 和所有预配置穿通波长的总出射光功率的比值。 该值与第 种自发辐射强度下 发端光放增益谱的不平坦性以及所有预标定波长的总带宽与光放大器总增益谱 带宽的比例相关, 单位为 dB。 不同自发辐射强度下的 相差小于 0.2 dB。
上述方程组具体为:
Figure imgf000022_0002
PD1 out - ί
10*log10(∑ 0A(0.1* (PD2 2 +L(ld)))= PD2 0Ut - ζ2
10*log10(∑ 0A(0.1* (PD3 3 +L(ld)))= PD3 0Ut - ζ3
10*log10(∑ 0A(0.1* (PDn inJ +1(^ )))= PDn 0Ut - C
在本实施例中, 可以预先测得, 不同自发辐射强度下的 相差仅小于 0.2 dB, 因此可以使 <^= <Γ2=...= , 其具体值可以根据预测的多个 的值确定, 例 如取其平均值。 在实际操作中, 可由操作人员自行输入, 也可以预先存储于 系统中, 在实际检测时直接调用。
当 为预知值时, 上述方程组当《> 时, 有唯一解, 因此, 通过解上述 方程组可唯一确定波长相关衰减 (^), L(l2), ( )... ( )。 以待标定通道为 80 个为例, 则需要使发端光放工作在至少 80种不同的状态,上述配置光波穿通及 取消穿通的过程至少进行 80*80次。 可以理解, 当 为非预知值时, 则需要使 发端光放工作在至少 81种不同的状态, 即《> +1 , 上述配置光波穿通及取消 穿通的过程至少进行 81*80次。 本发明实施例优选预先测得
在本发明实施例中,预设值用于限制发端光放的自发辐射强度的改变次数, 而根据上述内容可知, 只有自发辐射强度的总数目大于或等于待标定波长的数 目时, 上述方程组才有唯一解, 因此本实施例中的预设值需大于或等于待标定 波长的数目减 1。
当然,上述步骤 S704中的判断过程也可以通过判断自发辐射强度的总数目 实现, 此时, 预设值需大于或等于待标定波长的数目, 以保证上述方程组有唯 一解。
本领域普通技术人员可以理解, 上述实施例中的全部或部分步骤可以通过 程序指令相关的硬件来完成, 该程序可以存储于一计算机可读取存储介质中, 该存储介质可以是 ROM/RAM、 磁盘、 光盘等。
实施例八:
图 11 示出了本发明第八实施例提供的在线标定可配置站点的波长相关衰 减的装置图, 为了便于说明, 仅示出了与本实施例相关的部分。
获取单元 1获取发射端光放大器(筒称 "发端光放" ) 出射的待标定波长 的单波出射光功率;
波长配置及检测单元 2对可配置站点进行波长穿通配置, 使待标定波长的 光波穿通可配置站点到达接收端光放大器(筒称 "收端光放" ) , 并检测到达 收端光放的光波的入射光功率;
处理单元 3根据待标定波长的单波出射光功率与到达收端光放的光波的入 射光功率, 得到待标定波长的波长相关衰减。
在本发明实施例中, 发端光放可发出包含待标定波长的光波。 该光波可以 是复合波, 也可以是单波。 其中, 复合波可以来源于发端光放的自发辐射, 单 波可以通过外接的单色光源 (如激光器或单色常规光源)获得。 获取单元 1可 以对复合波或单波进行功率检测, 得到波长与功率的对应数据, 进而得到待标 定波长的单波出射光功率。
本发明实施例通过波长配置及检测单元对可配置站点进行波长穿通配置, 使待标定波长的光波逐一穿通可配置站点, 并结合获取单元及波长配置及检测 单元对发端光放及收端光放进行功率检测, 以确定可配置站点的 WDL。该装置 适应场景极强, 无论实际业务是否加载, 均可确定各物理链路的 WDL, 使得在 网络开设之初和业务波长开通以后都可以实时获知和更新各通道的 WDL,为规 划算法提供了可靠的输入参数。 与传统的离线标定技术和不考虑 WDL等技术 相比,由于该装置可标定出每一物理链路的 WDL,不会将不同的链路等同视之, 因此消除了由不同链路的衰减差异带来的标定误差, 使 WDL标定更加精确。 并且, 当网络状态改变(如更换或新增无源器件或重新熔纤等) 时, 可以通过 该装置实测更新后的 WDL, 进而及时更新网络状态, 保证优质的通信质量。
实施例九:
在本发明实施例中, 波长配置及检测单元 2可以进一步包括: 配置模块 21 及检测模块 22。 配置模块 21对可配置站点进行多次波长穿通配置, 每次波长 穿通配置均是: 将多个待标定波长中的一种波长配置成穿通可配置站点, 阻断 待标定波长中的其它波长的光波穿通可配置站点, 且每次穿通可配置站点的光 波的波长均不相同; 在每次波长穿通配置完成后,通过检测模块 22检测到达接 收端光放大器的光波的入射光功率。
更具体的, 配置模块 21及检测模块 22可以按照实施例二中所述的步骤进 行波长穿通配置和入射光功率的检测, 此处不再赘述。
本发明实施例通过配置模块 21及检测模块 22实现波长穿通配置并检测各 待标定波长在收端光放的入射光功率, 结构筒洁, 执行速度快, 不易出现误差, 为确定可配置站点的 WDL提供了精确的数据。
实施例十:
本发明实施例适用于可配置站点无业务波长存在的情况。 具体的, 处理单 元 3可以包括第一运算模块 31 , 用于通过解方程: = ^(^κ Α 得到波 长相关衰减,
其中,
为可配置站点关于待标定波长 的波长相关衰减;
Pout^i)为待标定波长 A的单波出射光功率;
PDin J为到达接收端光放大器的待标定波长 的光波的入射光功率。
上述数据通过实施例三或四提供的方法获得, 不再赘述。
本发明实施例通过第一运算模块 31对获取单元 1及波长配置及检测单元 2 输出的数据进行处理, 准确获得了可配置站点的 WDL。
实施例十一:
本发明实施例适用于可配置站点已经有业务波长存在的情况。 当可配置站 点已经有业务波长存在时,则收端光放接收到的光波既包含待检测波长的光波, 又包含业务波长的光波, 此时直接通过上述第一运算模块 31不能获得 WDL。 因此, 本实施例中的在线标定可配置站点的波长相关衰减的装置还包括初始检 测单元 4, 主要用于在进行波长配置之前检测收端光放接收的光波的初始入射 光功率。
此时, 处理单元 3包括第二运算模块 32, 用于通过解方程: L(^ = P0D -10*log10(10A(0.1 ^PDin ) - 10Λ(0.1 * PDin0 ))得到波长相关衰减,
其中,
( )为可配置站点关于待标定波长 的波长相关衰减;
Pout^i)为待标定波长 A的单波出射光功率;
PDin 为到达接收端光放大器的包含有业务波长和待标定波长 的光波的 入射光功率;
PDin0为初始入射光功率。
上述数据可以按照实施例五或六提供的方法获得, 此处不再赘述。
本发明实施例可以在业务波长开通以后检测出所有未开通链路的 WDL,既 不影响已开通的业务, 也不需要增加硬件, 且检测精度高。 实施例十二:
图 12 示出了本发明第十二实施例提供的在线标定可配置站点的波长相关 衰减的装置图, 为了便于说明, 仅示出了与本实施例相关的部分。
本发明实施例主要适用于发端光放不设有单色光源及 OPM装置的情况。 当发端光放不设有单色光源时, 可以通过发端光放的自发辐射获得复合波, 同 时, 由于发端光放没有 OPM装置, 因此可以通过直接查询发端光放和收端光 放的光功率的上报读数获得复合波的合波出射光功率和收端光放接收的光波的 入射光功率。
具体的,
初始设置单元 1使发端光放工作在自发辐射状态, 并控制发端光放的自发 辐射强度使其处于一种自发辐射强度下; 波长配置及检测单元 3对可配置站点进行预设次数的波长穿通配置, 每次 波长穿通配置均使得只有一种待标定波长的光波穿通可配置站点到达收端光 放, 阻断其它波长的光波穿通可配置站点, 且每次穿通可配置站点的光波的波 长均不相同; 在每次穿通配置完成后,检测到达收端光放的光波的入射光功率; 该波长配置及检测单元 3可以同实施例九所述包括配置模块及检测模块。 处理单元 4判断发端光放的自发辐射强度的改变次数是否达到预设值; 如 果是, 则根据发端光放处于各种自发辐射强度下获得的合波出射光功率和到达 收端光放的光波的入射光功率确定波长相关衰减; 如果否, 则改变发端光放的 率, 该预设值大于或等于待标定波长的数目减 1。 据发端光放处于不同自发辐射强度时获得的合波出射光功率和到达收端光放的 入射光功率确定 WDL, 不需要增加任何硬件即可实现 WDL的在线标定及网络 更新, 操作筒单且不增加硬件成本。 进一步的, 处理单元 4可以包括运算模块 41 , 用于通过解含《个关于 ( ) 的 元一次方程的方程组得到波长相关衰减;
该 元一次方程为: 10*1(^10(∑,10八(0.1 * (PDk inJ +L(ld)))= PDk 0Ut - ^, 其中, 均为自然数,
i=l , 2 , 3... , m 为待标定波长的数目; 表示对所有待标定波长的光功 率值求和;
k=l , 2 , 3...η', n > m;
ΡΖ 。¾ί为当发射端光放大器处于第 种自发发射强度时的合波出射光功率; 为当发射端光放大器处于第 种自发发射强度时, 波长为 的光波 'J达接收端光放大器的入射光功率;
为可配置站点关于待标定波长 的波长相关衰减;
为当发端光放处于第 种自发辐射强度时, 发端光放的合波出射光功率 和所有预配置穿通波长的总出射光功率的比值。 该值与第 种自发辐射强度下 发端光放增益谱的不平坦性以及所有预标定波长的总带宽与光放大器总增益谱 带宽的比例相关, 单位为 dB。 不同自发辐射强度下的 相差小于 0.2 dB。 行运算, 此处不再赘述。
上述各实施例提供的装置适用于波分复用光通信系统, 用于在线标定可配 置站点的 WDL, 以便于实时获知和更新网络状态。该装置基于上述功能单元及 模块的配合工作实现了 WDL的准确在线标定, 消除了传统装置由于不考虑不 同链路的衰减差异导致的标定误差, 使 WDL标定更加精确; 并且, 当网络状 态改变 (如更换或新增无源器件或重新熔纤等) 时, 可以通过该装置实测更新 后的 WDL,进而及时更新网络状态。该装置不仅适用于开局阶段未开通业务波 长的情况, 又适用于业务波长开通以后, 并可基于现有的网络环境进行标定, 无需增加新的硬件, 适应性强, 且成本低。
同时, 可以理解的是, 包括上述装置的波分复用光通信系统也在本发明的 保护范围内。
以上所述仅为本发明的较佳实施例而已, 并不用以限制本发明, 凡在本发 明的精神和原则之内所作的任何修改、 等同替换和改进等, 均应包含在本发明 的保护范围之内。

Claims

权利要求书
1、 一种在线标定可配置站点的波长相关衰减的方法, 其特征在于, 所述方 法包括: 对所述可配置站点进行波长穿通配置, 使所述待标定波长的光波穿通所述 可配置站点到达接收端光放大器, 并检测到达接收端光放大器的光波的入射光 功率;
根据所述待标定波长的单波出射光功率与到达接收端光放大器的光波的所 述入射光功率, 得到所述待标定波长的波长相关衰减。
2、 如权利要求 1所述的方法, 其特征在于, 当待标定波长有多个时, 所述 对所述可配置站点进行波长穿通配置, 使所述待标定波长的光波穿通所述可配 置站点到达接收端光放大器, 并检测到达接收端光放大器的光波的入射光功率 具体为:
对所述可配置站点进行多次波长穿通配置, 每次波长穿通配置均是: 将多 个待标定波长中的一种波长配置成穿通所述可配置站点, 阻断所述待标定波长 中的其它波长的光波穿通所述可配置站点, 且每次穿通所述可配置站点的光波 的波长均不相同;
在每次波长穿通配置完成后, 均检测到达所述接收端光放大器的光波的入 射光功率。
3、 如权利要求 1或 2所述的方法, 其特征在于, 当所述可配置站点无业务 波长存在时, 所述根据所述待标定波长的单波出射光功率与到达接收端光放大 器的光波的所述入射光功率, 得到所述待标定波长的波长相关衰减具体为: 通过解方程: U^PoD-PDu^得到所述波长相关衰减,
其中,
( )为可配置站点关于待标定波长 的波长相关衰减;
P。w ( )为所述待标定波长 的单波出射光功率; PDin ,i为到达接收端光放大器的所述待标定波长 的光波的入射光功率。
4、 如权利要求 1或 2所述的方法, 其特征在于, 当所述可配置站点已经有 业务波长存在时, 在对所述可配置站点进行波长穿通配置, 使所述待标定波长 的光波穿通所述可配置站点到达接收端光放大器, 并检测到达接收端光放大器 的光波的入射光功率之前还包括:
检测所述接收端光放大器接收的光波的初始入射光功率;
所述根据所述待标定波长的单波出射光功率与到达接收端光放大器的光波 的所述入射光功率, 得到所述波长相关衰减具体为:
通过解方程: L(ld = Po d -10*log10(10A(0.1* A - 10Λ(0·1*尸 A„0 ))得到 所述波长相关衰减,
其中,
( )为可配置站点关于待标定波长 的波长相关衰减;
为所述待标定波长 A的单波出射光功率;
PDin 为到达接收端光放大器的包含有业务波长和待标定波长 的光波的 入射光功率;
PDin0为所述初始入射光功率。
5、 如权利要求 4所述的方法, 其特征在于, 穿通所述可配置站点的待标定 波长的光波的光功率低于所述业务波长的光功率。
6、 一种在线标定可配置站点的波长相关衰减的方法, 其特征在于, 所述方 法包括:
使发射端光放大器工作在自发辐射状态, 并控制所述发射端光放大器的自 发辐射强度使其处于一种自发辐射强度下; 对所述可配置站点进行预设次数的波长穿通配置, 每次波长穿通配置均使 得只有一种待标定波长的光波穿通所述可配置站点到达接收端光放大器, 阻断 其它波长的光波穿通所述可配置站点, 且每次穿通所述可配置站点的光波的波 长均不相同; 在每次穿通配置完成后, 检测到达接收端光放大器的光波的入射 光功率;
判断所述发射端光放大器的自发辐射强度的改变次数是否达到预设值; 如 果是, 则根据所述发射端光放大器处于各种自发辐射强度下获得的合波出射光 功率和到达接收端光放大器的光波的入射光功率确定波长相关衰减; 如果否, 则改变发射端光放大器的自发辐射强度, 并跳转至所述获取发射端光放大器出 射的含有待标定波长的合波出射光功率, 所述预设值大于或等于待标定波长的 数目减 1。
7、 如权利要求 6所述的方法, 其特征在于, 所述根据所述发射端光放大器 处于各种自发辐射强度下获得的合波出射光功率和到达接收端光放大器的光波 的入射光功率确定波长相关衰减具体为:
通过解含《个关于 (^)的 元一次方程的方程组确定波长相关衰减; 所述 元一次方程为: 10*1(^10(∑,10 0.1 * (PDk in +L(ld)))= PDk 0Ut - ^, 其中, 均为自然数,
i=l , 2 , 3... , m 为待标定波长的数目; 表示对所有待标定波长的光功 率值求和;
k=l , 2 , 3...η', n > m;
ΡΖ 。¾ί为当发射端光放大器处于第 种自发发射强度时的合波出射光功率; 为当发射端光放大器处于第 种自发发射强度时, 波长为 的光波 'J达接收端光放大器的入射光功率;
( )为可配置站点关于待标定波长 的波长相关衰减;
为当发射端光放大器处于第 种自发发射强度时, 发射端光放大器的合 波出射光功率和所有预配置穿通波长的总出射光功率的比值。
8、一种在线标定可配置站点的波长相关衰减的装置, 其特征在于, 所述装 置包括: 波长配置及检测单元, 用于对所述可配置站点进行波长穿通配置, 使所述 待标定波长的光波穿通所述可配置站点到达接收端光放大器, 并检测到达接收 端光放大器的光波的入射光功率;
处理单元, 用于根据所述待标定波长的单波出射光功率与到达接收端光放 大器的光波的所述入射光功率, 得到所述待标定波长的波长相关衰减。
9、如权利要求 8所述的装置,其特征在于,所述波长配置及检测单元包括: 配置模块, 用于对所述可配置站点进行多次波长穿通配置, 每次波长穿通 配置均是: 将多个待标定波长中的一种波长配置成穿通所述可配置站点, 阻断 配置站点的光波的波长均不相同;
检测模块, 用于在每次波长穿通配置完成后, 检测到达所述接收端光放大 器的光波的入射光功率。
10、 如权利要求 8或 9所述的装置, 其特征在于, 当所述可配置站点无业 务波长存在时, 所述处理单元包括:
第一运算模块, 用于通过解方程: L ( d =P0Ut{ i)-PDinji得到所述波长相关 衰减,
其中,
( )为可配置站点关于待标定波长 的波长相关衰减;
P。w ( )为所述待标定波长 的单波出射光功率;
PDin 为到达接收端光放大器的所述待标定波长 的光波的入射光功率。
11、 如权利要求 8或 9所述的装置, 其特征在于, 当所述可配置站点已经 有业务波长存在时, 所述装置还包括:
初始检测单元, 用于检测所述接收端光放大器接收的光波的初始入射光功 率;
所述处理单元包括:
第二运算模块, 用于通过解方程: ()=/^Α.) -10*1ο8ιο(10Λ(0.1*ΡΑ ) - 10Λ(0.1 * PDin0 ))得到所述波长相关衰减,
其中,
为可配置站点关于待标定波长 的波长相关衰减;
P。W ( )为所述待标定波长 的单波出射光功率;
PDin J为到达接收端光放大器的包含有业务波长和待标定波长 的光波的 入射光功率;
PDin0为所述初始入射光功率。
12、 一种在线标定可配置站点的波长相关衰减的装置, 其特征在于, 所述 装置包括:
初始设置单元, 用于使发射端光放大器工作在自发辐射状态, 并控制所述 发射端光放大器的自发辐射强度使其处于一种自发辐射强度下; 射光功率;
波长配置及检测单元, 用于对所述可配置站点进行预设次数的波长穿通配 置, 每次波长穿通配置均使得只有一种待标定波长的光波穿通所述可配置站点 到达接收端光放大器, 阻断其它波长的光波穿通所述可配置站点, 且每次穿通 所述可配置站点的光波的波长均不相同; 在每次穿通配置完成后, 检测到达接 收端光放大器的光波的入射光功率;
处理单元, 用于判断所述发射端光放大器的自发辐射强度的改变次数是否 达到预设值; 如果是, 则根据所述发射端光放大器处于各种自发辐射强度下获 得的合波出射光功率和到达接收端光放大器的光波的入射光功率确定波长相关 衰减; 如果否, 则改变发射端光放大器的自发辐射强度, 并跳转至所述获取发 于待标定波长的数目减 1。
13、 如权利要求 12所述的装置, 其特征在于, 所述处理单元包括: 运算模块, 用于通过解含 n个关于 L ( I 的 i元一次方程的方程组得到所述 波长相关衰减;
所述 元一次方程为:
Figure imgf000034_0001
其中, 均为自然数,
i=l , 2 , 3... , m 为待标定波长的数目; 表示对所有待标定波长的光功 率值求和;
k=l , 2 , 3...η', n > m;
ΡΖ 。¾ί为当发射端光放大器处于第 种自发发射强度时的合波出射光功率; 为当发射端光放大器处于第 种自发发射强度时, 波长为 的光波 'J达接收端光放大器的入射光功率;
( )为可配置站点关于待标定波长 的波长相关衰减;
为当发射端光放大器处于第 种自发发射强度时, 发射端光放大器的合 波出射光功率和所有预配置穿通波长的总出射光功率的比值。
14、 一种波分复用光通信系统, 其特征在于, 包括权利要求 8~11任一项所 述的在线标定可配置站点的波长相关衰减的装置。
15、 一种波分复用光通信系统, 其特征在于, 包括权利要求 12或 13所述 的在线标定可配置站点的波长相关衰减的装置。
PCT/CN2012/079720 2012-08-06 2012-08-06 在线标定可配置站点波长相关衰减的方法、装置及系统 WO2014022956A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2012/079720 WO2014022956A1 (zh) 2012-08-06 2012-08-06 在线标定可配置站点波长相关衰减的方法、装置及系统
CN201280001396.0A CN103004109B (zh) 2012-08-06 2012-08-06 在线标定可配置站点波长相关衰减的方法、装置及系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2012/079720 WO2014022956A1 (zh) 2012-08-06 2012-08-06 在线标定可配置站点波长相关衰减的方法、装置及系统

Publications (1)

Publication Number Publication Date
WO2014022956A1 true WO2014022956A1 (zh) 2014-02-13

Family

ID=47930694

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/079720 WO2014022956A1 (zh) 2012-08-06 2012-08-06 在线标定可配置站点波长相关衰减的方法、装置及系统

Country Status (2)

Country Link
CN (1) CN103004109B (zh)
WO (1) WO2014022956A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014022956A1 (zh) * 2012-08-06 2014-02-13 华为技术有限公司 在线标定可配置站点波长相关衰减的方法、装置及系统
CN107104726A (zh) * 2017-03-31 2017-08-29 国网新疆电力公司信息通信公司 测试光缆损耗的方法和系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6067150A (en) * 1998-02-14 2000-05-23 Hewlett-Packard Company Remote measurement of wavelength dependent information about optical components
CN101814952A (zh) * 2010-02-26 2010-08-25 电子科技大学 一种大气信道中光波传输特性的测试方法
CN102525420A (zh) * 2011-12-16 2012-07-04 天津大学 一种多通道时域荧光层析成像系统标定方法
CN103004109A (zh) * 2012-08-06 2013-03-27 华为技术有限公司 在线标定可配置站点波长相关衰减的方法、装置及系统

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2838190B1 (fr) * 2002-04-08 2004-10-15 Cit Alcatel Dispositif de mesure et/ou de controle dynamique de perte de puissance dans une ligne de transmission optique a canal de supervision, et procede associe
CN102299738B (zh) * 2011-07-01 2015-05-13 华为技术有限公司 获得光网络链路性能参数的方法及装置
CN102201864B (zh) * 2011-07-08 2014-07-23 武汉光迅科技股份有限公司 一种多通道光器件的损耗测试装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6067150A (en) * 1998-02-14 2000-05-23 Hewlett-Packard Company Remote measurement of wavelength dependent information about optical components
CN101814952A (zh) * 2010-02-26 2010-08-25 电子科技大学 一种大气信道中光波传输特性的测试方法
CN102525420A (zh) * 2011-12-16 2012-07-04 天津大学 一种多通道时域荧光层析成像系统标定方法
CN103004109A (zh) * 2012-08-06 2013-03-27 华为技术有限公司 在线标定可配置站点波长相关衰减的方法、装置及系统

Also Published As

Publication number Publication date
CN103004109A (zh) 2013-03-27
CN103004109B (zh) 2016-03-02

Similar Documents

Publication Publication Date Title
US10574379B2 (en) Open, modular, and scalable optical line system
JP5446944B2 (ja) 光ネットワークおよびその制御方法
US8095008B2 (en) Systems and methods for a multiple-input, multiple-output controller in a reconfigurable optical network
US10003429B2 (en) Optical transmission device that transmits wavelength division multiplexed optical signal and optical transmission system
US8160446B2 (en) Methods and systems to stabilize an optical network against nodal gain changes
JP5551825B2 (ja) 光受信機の電力最適化
US20070058984A1 (en) Network management system for an optical network
US6904241B2 (en) Power balanced optical add multiplexer and power balancing methods therefore
EP3832907B1 (en) Method and apparatus for establishing data model
EP2765717B1 (en) Method for capacity expansion and commissioning of wavelength multiplexing optical network, and controller
WO2012119495A1 (zh) 光功率调节方法和装置
EP2787668A1 (en) Method and apparatus for balancing link performance
US6885825B2 (en) Power balanced optical add/drop multiplexer and power balancing methods therefore
EP1514366B1 (en) Method and system for power control of optical transmission span
WO2012142977A1 (en) An apparatus and method to calculate a noise figure of an optical amplifier for wavelength channels in a partial-fill scenario to account for channel loading
CN115296732A (zh) 光传输系统和光传输系统的配置参数优化方法
US10630416B2 (en) System and method for optical channel reconfiguration
WO2014022956A1 (zh) 在线标定可配置站点波长相关衰减的方法、装置及系统
US7596320B2 (en) Preemphasis of an optical wavelength multiplex signal
US20040208577A1 (en) Methods for in-service wavelength upgrade and system performance optimization in WDM optical networks
EP2974077A1 (en) Controlling optical signal power levelling in an optical communication network
JP6741365B2 (ja) 光信号制御装置及び光通信システム
WO2023155451A1 (zh) 一种调节光功率的方法、站点和系统
EP2945305B1 (en) Monitoring of optical performance in an optical data transmission network

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201280001396.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12882583

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12882583

Country of ref document: EP

Kind code of ref document: A1