WO2014021453A1 - Active substance, method for manufacturing active substance, and lithium-ion secondary cell - Google Patents

Active substance, method for manufacturing active substance, and lithium-ion secondary cell Download PDF

Info

Publication number
WO2014021453A1
WO2014021453A1 PCT/JP2013/071024 JP2013071024W WO2014021453A1 WO 2014021453 A1 WO2014021453 A1 WO 2014021453A1 JP 2013071024 W JP2013071024 W JP 2013071024W WO 2014021453 A1 WO2014021453 A1 WO 2014021453A1
Authority
WO
WIPO (PCT)
Prior art keywords
active material
mass
parts
positive electrode
ion secondary
Prior art date
Application number
PCT/JP2013/071024
Other languages
French (fr)
Japanese (ja)
Inventor
正則 原田
Original Assignee
株式会社豊田自動織機
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社豊田自動織機 filed Critical 株式会社豊田自動織機
Publication of WO2014021453A1 publication Critical patent/WO2014021453A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/42Nickelates containing alkali metals, e.g. LiNiO2
    • C01G53/44Nickelates containing alkali metals, e.g. LiNiO2 containing manganese
    • C01G53/50Nickelates containing alkali metals, e.g. LiNiO2 containing manganese of the type [MnO2]n-, e.g. Li(NixMn1-x)O2, Li(MyNixMn1-x-y)O2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/5825Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to an active material, a method for producing the active material, and a lithium ion secondary battery.
  • Patent Document 1 discloses an active material having a surface treatment layer containing a compound represented by the chemical formula MXO k on the surface of the active material.
  • M is at least one element selected from the group consisting of alkali metals, alkaline earth metals, Group 13 elements, Group 14 elements, transition metals, and rare earth elements
  • X forms a double bond with oxygen.
  • k is a number in the range of 2-4.
  • the output characteristics of lithium ion secondary batteries are not yet sufficient, and there is a need for an active material that can further improve the output characteristics.
  • This invention is made
  • the active material according to the present invention includes a composite oxide containing at least one element selected from the group consisting of Ni, Mn, and Co and Li, and Mg 2 P 2 O 7, and 100 parts by mass of the composite 0.2 to 7.0 parts by mass of Mg 2 P 2 O 7 is included with respect to the oxide.
  • a lithium ion secondary battery having excellent output characteristics can be realized.
  • a lithium ion secondary battery according to the present invention includes a positive electrode containing the active material and a negative electrode.
  • the lithium ion secondary battery according to the present invention preferably has an impedance at 10 Hz of 10 ⁇ or less.
  • a mixture containing at least one element selected from the group consisting of Ni, Mn, and Co and Li, and MgNH 4 PO 4 .H 2 O is fired.
  • the mixture includes 0.3 to 9.0 parts by mass of MgNH 4 PO 4 .H 2 O with respect to 100 parts by mass of the composite oxide.
  • the firing temperature is preferably 500 ° C. to 800 ° C.
  • an active material capable of providing a lithium ion secondary battery having excellent output characteristics is provided.
  • FIG. 1A is a schematic sectional view of a positive electrode according to one embodiment of the present invention
  • FIG. 1B is a schematic sectional view of a lithium ion secondary battery according to one embodiment of the present invention.
  • the active material according to the embodiment of the present invention includes Mg 2 P 2 O 7 and a composite oxide containing Li and at least one element selected from the group consisting of Ni, Mn, and Co.
  • An example of such a composite oxide is LiCo 1/3 Ni 1/3 Mn 1/3 O 2 .
  • Mg 2 P 2 O 7 is 0.2 to 7.0 parts by mass, preferably 0.4 to 6.0 parts by mass, and more preferably 0.02 parts by mass with respect to 100 parts by mass of the oxide. Including 5 to 5.0 parts by mass. If it is less than 0.2 parts by mass or more than 7.0 parts by mass, the effect of improving output characteristics is low.
  • MgNH 4 PO 4 .H 2 O is prepared.
  • MgNH 4 PO 4 .H 2 O can be obtained, for example, as follows. First, the Mg (NO 3 ) 2 aqueous solution and the (NH 4 ) 2 HPO 4 aqueous solution are mixed. Thereby, MgNH 4 PO 4 .6H 2 O is generated and precipitated in water. The obtained precipitate is collected by filtration, and the precipitate is dried to obtain MgNH 4 PO 4 .H 2 O.
  • the drying temperature is not particularly limited, but is preferably 100 ° C to 300 ° C.
  • the drying time is not particularly limited, but is preferably 6 to 12 hours.
  • the mixing method is not particularly limited, but can be performed by, for example, a ball mill.
  • the composition of the mixture is 100 parts by mass of the composite oxide such that 0.2 to 7.0 parts by mass of Mg 2 P 2 O 7 is included with respect to 100 parts by mass of the composite oxide in the obtained fired product.
  • 0.3 to 9.0 parts by mass of MgNH 4 PO 4 .H 2 O is contained.
  • MgNH 4 PO 4 .H 2 O is more preferably contained in an amount of 0.5 to 8.0 parts by mass, more preferably 0.7 to 7.0 parts by mass with respect to 100 parts by mass of the composite oxide.
  • the firing temperature may be any temperature at which MgNH 4 PO 4 .H 2 O can be decomposed to produce Mg 2 P 2 O 7 , and is preferably 500 to 800 ° C.
  • MgNH 4 PO 4 ⁇ H 2 O is converted to Mg 2 P 2 O 7, the active material described above can be obtained.
  • the firing time is not particularly limited, but can be, for example, 1 to 6 hours.
  • the positive electrode 10 includes a positive electrode current collector 12 and a positive electrode active material layer 14 provided on the positive electrode current collector 12.
  • the positive electrode active material layer 14 refers to a region where the active material (positive electrode active material) is coated on the positive electrode current collector 12.
  • the positive electrode active material layer 14 may be provided only on one surface of the positive electrode current collector 12 or may be provided on both surfaces of the positive electrode current collector 12 as indicated by a dotted line in FIG.
  • the positive electrode current collector 12 is made of a conductive material.
  • An example of the material of the positive electrode current collector 12 is a metal material such as stainless steel, titanium, nickel, aluminum, or copper, or a conductive resin.
  • aluminum is suitable as a material for the positive electrode current collector 12.
  • the thickness of the positive electrode current collector 12 is not particularly limited, but can be, for example, 15 to 20 ⁇ m.
  • the positive electrode active material layer 14 includes the active material described above and a binder.
  • the particle size of the active material is preferably 10 to 15 ⁇ m.
  • the binder fixes the active material to the current collector.
  • the binder are fluorine-containing resins such as polyvinylidene fluoride, polytetrafluoroethylene, and fluororubber, thermoplastic resins such as polypropylene and polyethylene, imide resins such as polyimide and polyamideimide, and alkoxysilanol group-containing resins.
  • the amount of the binder can be 1 to 30 parts by mass with respect to 100 parts by mass of the active material.
  • the positive electrode active material layer 14 can further contain a conductive additive as necessary.
  • a conductive additive examples include carbon-based particles such as carbon black, graphite, acetylene black (AB), ketjen black (registered trademark) (KB), vapor grown carbon fiber (VaporGown Carbon Fiber: VGCF). These can be added alone or in combination of two or more.
  • the amount of the conductive aid used is not particularly limited, but for example, it can be 1 to 30 parts by mass with respect to 100 parts by mass of the active material.
  • Such a positive electrode can be obtained by applying a slurry containing an active material, a binder, and a conductive additive added as necessary to a current collector and drying it.
  • the solvent for the slurry are N-methyl-2-pyrrolidone (NMP), methanol, methyl isobutyl ketone (MIBK). After drying, the active material layer may be pressed.
  • the positive electrode current collector 12 has a tab portion 12t at the end where the positive electrode active material layer 14 is not formed.
  • a lead 16 described later is electrically connected to the tab portion 12t.
  • Lithium ion secondary battery 100 Next, an example of the lithium ion secondary battery 100 according to the embodiment of the present invention will be described with reference to FIG.
  • the lithium ion secondary battery 100 mainly includes a positive electrode 10, a separator 20, a negative electrode 30, a case 70, and an electrolytic solution.
  • the negative electrode 30 includes a negative electrode current collector 32 and a negative electrode active material layer 34 provided on the negative electrode current collector 32.
  • the negative electrode active material layer 34 refers to a region of the negative electrode current collector 32 where the negative electrode active material is applied.
  • the negative electrode current collector 32 is made of a conductive material.
  • An example of the material of the negative electrode current collector 32 is a metal such as copper.
  • the negative electrode active material layer 34 has a negative electrode active material and a binder.
  • the negative electrode active material layer 34 may contain a conductive additive as necessary. Examples and blending amounts of the binder and the conductive auxiliary agent can be the same as those described for the positive electrode 10.
  • a carbon-based material that can occlude and release lithium an element that can be alloyed with lithium, an elemental compound that has an element that can be alloyed with lithium, or a polymer material can be used.
  • the carbon-based material examples include non-graphitizable carbon, artificial graphite, coke, graphite, glassy carbon, organic polymer compound fired body, carbon fiber, activated carbon, or carbon black.
  • the organic polymer compound fired body refers to a material obtained by firing and carbonizing a polymer material such as phenols and furans at an appropriate temperature.
  • elements that can be alloyed with lithium are Na, K, Rb, Cs, Fr, Be, Mg, Ca, Sr, Ba, Ra, Ti, Ag, Zn, Cd, Al, Ga, 1n, Si, Ge. , Sn, Pb, Sb, Bi.
  • the element that can be alloyed with lithium is preferably silicon (Si) or tin (Sn).
  • Examples of element compound having lithium can be alloyed elements, ZnLiAl, AlSb, SiB 4, SiB 6, Mg 2 Si, Mg 2 Sn, Ni 2 Si, TiSi 2, MoSi 2, CoSi 2, NiSi 2, CaSi 2, CrSi 2, Cu 5 Si , FeSi 2, MnSi 2, NbSi 2, TaSi 2, VSi 2, WSi 2, ZnSi 2, SiC, Si 3 N 4, Si 2 N 2 O, SiO v (0 ⁇ v ⁇ 2), SnO w (0 ⁇ w ⁇ 2), SnSiO 3 , LiSiO or LiSnO can be used.
  • An example of the elemental compound having an element capable of alloying with lithium is preferably a silicon compound or a tin compound.
  • the silicon compound is preferably SiO x (0.5 ⁇ x ⁇ 1.5).
  • a tin alloy Cu—Sn alloy, Co—Sn alloy, etc. can be used.
  • polymer material examples include polyacetylene and polypyrrole.
  • the manufacturing method of the negative electrode is the same as that of the positive electrode except that the active material is different.
  • the negative electrode current collector 32 has a tab portion 32t at the end of which the negative electrode active material layer 34 is not formed.
  • a lead 36 described later is electrically connected to the tab portion 32t.
  • the separator 20 separates the positive electrode 10 and the negative electrode 30 and allows lithium ions to pass through while preventing a short circuit of current due to contact between both electrodes.
  • a porous film made of a synthetic resin such as polytetrafluoroethylene, polypropylene, or polyethylene, or a porous film made of ceramics can be used.
  • the positive electrode active material layer 14 of the positive electrode 10 and the negative electrode active material layer 34 of the negative electrode 30 are in contact with each surface of the separator 20.
  • the electrolytic solution includes an electrolyte and a solvent that dissolves the electrolyte.
  • the electrolyte is impregnated in the positive electrode active material layer 14, the separator 20, and the negative electrode active material layer 34.
  • Examples of the electrolyte are lithium salts such as LiBF 4 , LiPF 6 , LiClO 4 , LiAsF 6 , LiCF 3 SO 3 , and LiN (CF 3 SO 2 ) 2 .
  • solvent examples include cyclic esters, chain esters, and ethers. Two or more of these solvents can be mixed.
  • cyclic esters are ethylene carbonate, propylene carbonate, butylene carbonate, gamma butyrolactone, vinylene carbonate, 2-methyl-gamma butyrolactone, acetyl-gamma butyrolactone, and gamma valerolactone.
  • chain esters are methyl carbonate, diethyl carbonate, dibutyl carbonate, dipropyl carbonate, methyl ethyl carbonate, propionic acid alkyl ester, malonic acid dialkyl ester, and acetic acid alkyl ester.
  • ethers examples include tetrahydrofuran, 2-methyltetrahydrofuran, 1,4-dioxane, 1,2-dimethoxyethane, 1,2-diethoxyethane, 1,2-dibutoxyethane.
  • the concentration of the electrolyte in the electrolytic solution can be, for example, 0.5 to 1.7 mol / L.
  • the electrolytic solution may contain a gelling agent.
  • the case 70 accommodates the positive electrode 10, the separator 20, the negative electrode 30, and the electrolytic solution.
  • the material and form of the case are not particularly limited, and various known materials such as resins and metals can be used.
  • Leads 16 and 36 are connected to the tab portion 12t of the positive electrode current collector 12 and the tab portion 32t of the negative electrode current collector 32, respectively. One ends of the leads 16 and 36 are out of the case 70.
  • Such a lithium ion secondary battery 100 is excellent in output characteristics. Specifically, the lithium ion secondary battery 100 does not contain Mg 2 P 2 O 7 and has a 0.1 Hz impedance relative to the lithium ion secondary battery 100 having the same structure and material except that the concentration is 0. Can be reduced.
  • the lithium ion secondary battery 100 is not limited to the above embodiment, and various modifications can be made.
  • a plurality of positive electrodes, negative electrodes, and separators may be provided, the positive electrodes and the negative electrodes may be alternately disposed, and the separators may be disposed between the positive electrodes and the negative electrodes.
  • Example 1 A 3% by mass Mg (NO 3 ) 2 aqueous solution and a 1% by mass (NH 4 ) 2 HPO 4 aqueous solution were prepared. Next, these aqueous solutions were mixed, and the precipitate was collected by filtration. The precipitate (MgNH 4 PO 4 .6H 2 O) was dried at 120 ° C. for 6 hours to obtain MgNH 4 PO 4 .H 2 O particles.
  • MgNH 4 PO 4 .H 2 O particles and LiCo 1/3 Ni 1/3 Mn 1/3 O 2 particles are mixed at a mass ratio of 2: 100, and the mixture is fired at 700 ° C. for 5 hours. Then, active material particles containing 1.4 parts by mass of Mg 2 P 2 O 7 with respect to 100 parts by mass of LiCo 1/3 Ni 1/3 Mn 1/3 O 2 were obtained.
  • the obtained active material particles, acetylene black, and polyvinylidene fluoride (PVDF) were mixed at a mass ratio of 88: 6: 6, and N-methyl-2-pyrrolidone (NMP) was further added.
  • a slurry was applied, applied onto an aluminum foil, dried at 120 ° C. for 6 hours, and then pressed to obtain a positive electrode 10 (25 mm ⁇ 30 mm).
  • the positive electrode active material layer 14 of the positive electrode 10 and the negative electrode active material layer 34 of the negative electrode 30 are used as polypropylene as the separator 20. They were overlapped via a porous film (27 mm ⁇ 32 mm), accommodated in a resin case 70, and an electrolyte was injected to obtain a lithium ion secondary battery.
  • the electrolytic solution contained a solvent containing ethylene carbonate and diethyl carbonate in a volume ratio of 3: 7 and LiPF 6 contained at a concentration of 1 mol / L.
  • Example 2 MgNH 4 PO 4 .H 2 O particles and LiCo 1/3 Ni 1/3 Mn 1/3 O 2 particles are mixed at a mass ratio of 5: 100, and 100 parts by mass of LiCo 1/3.
  • the same procedure as in Example 1 was performed except that positive electrode active material particles containing 3.6 parts by mass of Mg 2 P 2 O 7 with respect to Ni 1/3 Mn 1/3 O 2 were obtained.
  • Example 3 MgNH 4 PO 4 .H 2 O particles and LiCo 1/3 Ni 1/3 Mn 1/3 O 2 particles are mixed at a mass ratio of 0.5: 100, and 100 parts by mass of LiCo 1 / 3 The same procedure as in Example 1 was conducted except that positive electrode active material particles containing 0.4 parts by mass of Mg 2 P 2 O 7 with respect to Ni 1/3 Mn 1/3 O 2 were obtained.
  • Example 1 The same operation as in Example 1 was performed except that LiCo 1/3 Ni 1/3 Mn 1/3 O 2 particles were used as the active material particles.
  • Example 2 MgNH 4 PO 4 .H 2 O particles and LiCo 1/3 Ni 1/3 Mn 1/3 O 2 particles are mixed at a mass ratio of 10: 100, and 100 parts by mass of LiCo 1/3.
  • the same operation as in Example 1 was performed except that active material particles containing 7.2 parts by mass of Mg 2 P 2 O 7 with respect to Ni 1/3 Mn 1/3 O 2 were obtained.
  • the impedance was measured with a multipotentiostat 1470E type (manufactured by Solartron) as follows.
  • the impedance is a value of impedance at 0.1 Hz obtained when impedance is measured in the range of 1 MHz to 0.05 Hz after the cell is adjusted to a voltage of SOC 20%.
  • the results are shown in Table 1. In Examples 1 to 3, a 0.1 Hz impedance of 10 ⁇ or less was achieved, but in Comparative Examples 1 and 2, a 0.1 Hz impedance of 10 ⁇ or less was not achieved.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

This active substance contains Mg2P2O7 and a complex oxide containing Li and at least one element selected from the group consisting of Ni, Mn, and Co, the active substance containing 0.2-7.0 parts by mass of Mg2P2O7 to 100 parts by mass of the complex oxide. This method for manufacturing an active substance includes a step for firing a blended material containing MgNH4PO4·H2O and a complex oxide containing Li and at least one element selected from the group consisting of Ni, Mn, and Co, the blended material containing 0.3-9.0 parts by mass of MgNH4PO4·H2O to 100 parts by mass of the complex oxide.

Description

活物質、活物質の製造方法、及び、リチウムイオン二次電池Active material, method for producing active material, and lithium ion secondary battery
 本発明は、活物質、活物質の製造方法、及び、リチウムイオン二次電池に関する。 The present invention relates to an active material, a method for producing the active material, and a lithium ion secondary battery.
 従来より、リチウムイオン二次電池用の種々の正極活物質が知られている。例えば、特許文献1には、MXOkの化学式で表される化合物を含む表面処理層を活物質の表面に有してなる活物質が開示されている。ここで、Mはアルカリ金属、アルカリ土類金属、13族元素、14族元素、遷移金属及び希土類元素からなる群より選択される少なくとも一つの元素であり、Xは酸素と二重結合を形成することができる元素であり、kは2乃至4の範囲の数である。 Conventionally, various positive electrode active materials for lithium ion secondary batteries are known. For example, Patent Document 1 discloses an active material having a surface treatment layer containing a compound represented by the chemical formula MXO k on the surface of the active material. Here, M is at least one element selected from the group consisting of alkali metals, alkaline earth metals, Group 13 elements, Group 14 elements, transition metals, and rare earth elements, and X forms a double bond with oxygen. Where k is a number in the range of 2-4.
特開2003-7299号公報JP 2003-7299 A 特開平10-154532号公報JP 10-154532 A 特開2001-256979号公報Japanese Patent Laid-Open No. 2001-256969 特開2011-138718号公報JP2011-138718A 特開平10-241681号公報Japanese Patent Laid-Open No. 10-241681
 リチウムイオン二次電池の出力特性は未だ十分ではなく、より一層出力特性を向上させることのできる活物質が求められている。本発明は上記課題に鑑みてなされたものであり、出力特性に優れたリチウムイオン二次電池を実現可能な活物質等を提供することを目的とする。 The output characteristics of lithium ion secondary batteries are not yet sufficient, and there is a need for an active material that can further improve the output characteristics. This invention is made | formed in view of the said subject, and it aims at providing the active material etc. which can implement | achieve the lithium ion secondary battery excellent in the output characteristic.
 本発明に係る活物質は、Ni、Mn及びCoから成る群から選択される少なくとも1つの元素及びLiを含む複合酸化物と、Mgと、を含み、100質量部の前記複合酸化物に対して、Mgを0.2~7.0質量部含む。 The active material according to the present invention includes a composite oxide containing at least one element selected from the group consisting of Ni, Mn, and Co and Li, and Mg 2 P 2 O 7, and 100 parts by mass of the composite 0.2 to 7.0 parts by mass of Mg 2 P 2 O 7 is included with respect to the oxide.
 本発明によれば、出力特性に優れたリチウムイオン二次電池が実現可能となる。 According to the present invention, a lithium ion secondary battery having excellent output characteristics can be realized.
 ここで、前記複合酸化物は、LiCoNiMn(p+q+r=1、0<p<1、0<q<1、0<r<1)であることが好ましい。 Here, the composite oxide is preferably LiCo p Ni q Mn r O 2 (p + q + r = 1, 0 <p <1, 0 <q <1, 0 <r <1).
 本発明にかかるリチウムイオン二次電池は、上記活物質を含む正極と、負極とを備える。 A lithium ion secondary battery according to the present invention includes a positive electrode containing the active material and a negative electrode.
 また、本発明に係るリチウムイオン二次電池は、0.1Hzにおけるインピーダンスが10Ω以下であることが好ましい。 Further, the lithium ion secondary battery according to the present invention preferably has an impedance at 10 Hz of 10Ω or less.
 本発明に係る活物質の製造方法は、Ni、Mn及びCoから成る群から選択される少なくとも1つの元素及びLiを含む複合酸化物と、MgNHPO・HOとを含む混合物を焼成する工程を備え、前記混合物は、100質量部の前記複合酸化物に対して、MgNHPO・HOを0.3~9.0質量部含む。 In the method for producing an active material according to the present invention, a mixture containing at least one element selected from the group consisting of Ni, Mn, and Co and Li, and MgNH 4 PO 4 .H 2 O is fired. The mixture includes 0.3 to 9.0 parts by mass of MgNH 4 PO 4 .H 2 O with respect to 100 parts by mass of the composite oxide.
 前記焼成の温度は500℃~800℃であることが好ましい。 The firing temperature is preferably 500 ° C. to 800 ° C.
 本発明によれば、出力特性に優れたリチウムイオン二次電池を提供可能な活物質が提供される。 According to the present invention, an active material capable of providing a lithium ion secondary battery having excellent output characteristics is provided.
図1(a)は本発明の1実施形態に係る正極の概略断面図、図1(b)は本発明の1実施形態にかかるリチウムイオン二次電池の概略断面図である。FIG. 1A is a schematic sectional view of a positive electrode according to one embodiment of the present invention, and FIG. 1B is a schematic sectional view of a lithium ion secondary battery according to one embodiment of the present invention.
 (活物質)
 本発明の実施形態に係る活物質は、Ni、Mn及びCoから成る群から選択される少なくとも1つの元素及びLiを含む複合酸化物と、Mgとを含む。
(Active material)
The active material according to the embodiment of the present invention includes Mg 2 P 2 O 7 and a composite oxide containing Li and at least one element selected from the group consisting of Ni, Mn, and Co.
 上記複合酸化物の例は、リチウムコバルト複合酸化物LiCoO、リチウムニッケル複合酸化物LiNiO2、リチウムマンガン複合酸化物LiMnO,LiMn、リチウムニッケルコバルト複合酸化物LiNiCo(a+b=1、0<a<1、0<b<1)、リチウムマンガンコバルト複合酸化物LiMnCo(a+b=1、0<a<1、0<b<1)、リチウムコバルトニッケルマンガン複合酸化物LiCoNiMn(p+q+r=1、0<p<1、0<q<1、0<r<1)である。 Examples of the composite oxide include lithium cobalt composite oxide LiCoO 2 , lithium nickel composite oxide LiNiO 2 , lithium manganese composite oxide LiMnO 2 , LiMn 2 O 4 , lithium nickel cobalt composite oxide LiNi a Co b O 2 (a + b = 1,0 <a <1,0 <b <1), lithium-manganese-cobalt composite oxide LiMn a Co b O 2 (a + b = 1,0 <a <1,0 <b <1), lithium cobalt nickel manganese a composite oxide LiCo p Ni q Mn r O 2 (p + q + r = 1,0 <p <1,0 <q <1,0 <r <1).
 中でも、上記複合酸化物は、LiCoNiMn(p+q+r=1、0<p<1、0<q<1、0<r<1)であることが好ましい。このような複合酸化物の例はLiCo1/3Ni1/3Mn1/3である。また、別の例は、p=0.2、q=0.6、r=0.2の組み合わせや、p=0.2、q=0.5、r=0.3の組み合わせである。 Among them, the composite oxide is preferably LiCo p Ni q Mn r O 2 (p + q + r = 1,0 <p <1,0 <q <1,0 <r <1). An example of such a composite oxide is LiCo 1/3 Ni 1/3 Mn 1/3 O 2 . Another example is a combination of p = 0.2, q = 0.6, r = 0.2, or a combination of p = 0.2, q = 0.5, r = 0.3.
 この活物質は、100質量部の前記酸化物に対して、Mgを0.2~7.0質量部、好ましくは0.4~6.0質量部、さらに好ましくは0.5~5.0質量部含む。0.2質量部未満及び7.0質量部超では出力特性の改善効果が低い。 In this active material, Mg 2 P 2 O 7 is 0.2 to 7.0 parts by mass, preferably 0.4 to 6.0 parts by mass, and more preferably 0.02 parts by mass with respect to 100 parts by mass of the oxide. Including 5 to 5.0 parts by mass. If it is less than 0.2 parts by mass or more than 7.0 parts by mass, the effect of improving output characteristics is low.
 (活物質の製造方法)
 続いて、本発明に係る活物質の製造方法の1例について説明する。
(Method for producing active material)
Then, an example of the manufacturing method of the active material which concerns on this invention is demonstrated.
 まず、MgNHPO・HOを用意する。MgNHPO・HOは例えば以下のようにして得ることができる。まず、Mg(NO水溶液と、(NHHPO水溶液とを混合する。これにより、水中にMgNHPO・6HOが生成し、沈殿する。えられた沈殿物をろ過により回収し、沈殿物を乾燥すると、MgNHPO・HOが得られる。乾燥温度は特に限定されないが100℃~300℃が好ましい。乾燥時間も特に限定されないが、6~12時間が好ましい。 First, MgNH 4 PO 4 .H 2 O is prepared. MgNH 4 PO 4 .H 2 O can be obtained, for example, as follows. First, the Mg (NO 3 ) 2 aqueous solution and the (NH 4 ) 2 HPO 4 aqueous solution are mixed. Thereby, MgNH 4 PO 4 .6H 2 O is generated and precipitated in water. The obtained precipitate is collected by filtration, and the precipitate is dried to obtain MgNH 4 PO 4 .H 2 O. The drying temperature is not particularly limited, but is preferably 100 ° C to 300 ° C. The drying time is not particularly limited, but is preferably 6 to 12 hours.
 次に、得られたMgNHPO・HOと、前述の複合酸化物と、を混合し、混合物を得る。混合方法は特に限定されないが、例えば、ボールミル等で行うことができる。混合物の組成は、得られる焼成物において、100質量部の複合酸化物に対して、Mgが0.2~7.0質量部含まれるように、100質量部の複合酸化物に対して、MgNHPO・HOを0.3~9.0質量部含む。100質量部の複合酸化物に対して、MgNHPO・HOは0.5~8.0質量部含むことがより好ましく、0.7~7.0質量部含むことがさらに好ましい。 Next, the obtained MgNH 4 PO 4 .H 2 O and the above-described composite oxide are mixed to obtain a mixture. The mixing method is not particularly limited, but can be performed by, for example, a ball mill. The composition of the mixture is 100 parts by mass of the composite oxide such that 0.2 to 7.0 parts by mass of Mg 2 P 2 O 7 is included with respect to 100 parts by mass of the composite oxide in the obtained fired product. In contrast, 0.3 to 9.0 parts by mass of MgNH 4 PO 4 .H 2 O is contained. MgNH 4 PO 4 .H 2 O is more preferably contained in an amount of 0.5 to 8.0 parts by mass, more preferably 0.7 to 7.0 parts by mass with respect to 100 parts by mass of the composite oxide.
 混合により混合物を得た後に、混合物を焼成する。焼成温度は、MgNHPO・HOが分解してMgが生成しうる温度であれば良く、500~800℃が好ましい。これにより、MgNHPO・HOが、Mgに転化し、上述の活物質が得られる。焼成時間は特に限定されないが、例えば、1~6時間とすることができる。 After obtaining the mixture by mixing, the mixture is fired. The firing temperature may be any temperature at which MgNH 4 PO 4 .H 2 O can be decomposed to produce Mg 2 P 2 O 7 , and is preferably 500 to 800 ° C. Thus, MgNH 4 PO 4 · H 2 O is converted to Mg 2 P 2 O 7, the active material described above can be obtained. The firing time is not particularly limited, but can be, for example, 1 to 6 hours.
 (正極)
 続いて、本実施形態に係る正極10について図1(a)を参照して説明する。正極10は、正極集電体12、及び、正極集電体12上に設けられた正極活物質層14を有する。なお、正極活物質層14は正極集電体12において活物質(正極活物質)が塗工された領域を指す。正極活物質層14は、正極集電体12の一方面のみにあっても良いし、図1(a)に点線で示すように正極集電体12の両面に設けられていても良い。
(Positive electrode)
Subsequently, the positive electrode 10 according to the present embodiment will be described with reference to FIG. The positive electrode 10 includes a positive electrode current collector 12 and a positive electrode active material layer 14 provided on the positive electrode current collector 12. The positive electrode active material layer 14 refers to a region where the active material (positive electrode active material) is coated on the positive electrode current collector 12. The positive electrode active material layer 14 may be provided only on one surface of the positive electrode current collector 12 or may be provided on both surfaces of the positive electrode current collector 12 as indicated by a dotted line in FIG.
 正極集電体12は導電材料からなる。正極集電体12の材料の例は、ステンレス鋼、チタン、ニッケル、アルミニウム、銅などの金属材料または導電性樹脂である。特に、正極集電体12の材料として、アルミニウムが好適である。正極集電体12の厚みは特に限定されないが、例えば、15~20μmとすることができる。 The positive electrode current collector 12 is made of a conductive material. An example of the material of the positive electrode current collector 12 is a metal material such as stainless steel, titanium, nickel, aluminum, or copper, or a conductive resin. In particular, aluminum is suitable as a material for the positive electrode current collector 12. The thickness of the positive electrode current collector 12 is not particularly limited, but can be, for example, 15 to 20 μm.
 正極活物質層14は、前述した活物質、及び、バインダーを含む。活物質の粒径は、10~15μmであることが好ましい。 The positive electrode active material layer 14 includes the active material described above and a binder. The particle size of the active material is preferably 10 to 15 μm.
 バインダーは、活物質を集電体に固定する。バインダーの例は、ポリフッ化ビニリデン、ポリテトラフルオロエチレン、フッ素ゴム等の含フッ素樹脂、ポリプロピレン、ポリエチレン等の熱可塑性樹脂、ポリイミド、ポリアミドイミド等のイミド系樹脂、アルコキシシリノレ基含有樹脂である。バインダーの量は、活物質100質量部に対して、1~30質量部とすることができる。 The binder fixes the active material to the current collector. Examples of the binder are fluorine-containing resins such as polyvinylidene fluoride, polytetrafluoroethylene, and fluororubber, thermoplastic resins such as polypropylene and polyethylene, imide resins such as polyimide and polyamideimide, and alkoxysilanol group-containing resins. The amount of the binder can be 1 to 30 parts by mass with respect to 100 parts by mass of the active material.
 正極活物質層14は、必用に応じて、さらに導電助剤を含むことができる。導電助剤の例は、カーボンブラック、黒鉛、アセチレンブラック(AB) 、ケッチェンブラック(登録商標) (KB) 、気相法炭素繊維(VaporGrown Carbon Fiber : VGCF) 等の炭素系粒子である。これらは、単独で、または2種以上組み合わせて添加することができる。導電助剤の使用量については、特に限定されないが、例えば、100質量部の活物質に対して、1~30質量部とすることができる。 The positive electrode active material layer 14 can further contain a conductive additive as necessary. Examples of the conductive auxiliary agent are carbon-based particles such as carbon black, graphite, acetylene black (AB), ketjen black (registered trademark) (KB), vapor grown carbon fiber (VaporGown Carbon Fiber: VGCF). These can be added alone or in combination of two or more. The amount of the conductive aid used is not particularly limited, but for example, it can be 1 to 30 parts by mass with respect to 100 parts by mass of the active material.
 このような正極は、活物質、バインダー、及び、必用に応じて添加される導電助剤を含むスラリーを、集電体に塗布し、乾燥させることにより得ることができる。スラリーの溶媒の例は、N-メチル-2-ピロリドン(NMP)、メタノール、メチルイソブチルケトン(MIBK)である。乾燥後、活物質層をプレスしても良い。 Such a positive electrode can be obtained by applying a slurry containing an active material, a binder, and a conductive additive added as necessary to a current collector and drying it. Examples of the solvent for the slurry are N-methyl-2-pyrrolidone (NMP), methanol, methyl isobutyl ketone (MIBK). After drying, the active material layer may be pressed.
 正極集電体12はその端部に、正極活物質層14が形成されていないタブ部12tを有する。タブ部12tには、後述するリード16が電気的に接続される。 The positive electrode current collector 12 has a tab portion 12t at the end where the positive electrode active material layer 14 is not formed. A lead 16 described later is electrically connected to the tab portion 12t.
 (リチウムイオン二次電池)
 続いて、本発明の実施形態にかかるリチウムイオン二次電池100の1例を、図1(b)を参照して説明する。
(Lithium ion secondary battery)
Next, an example of the lithium ion secondary battery 100 according to the embodiment of the present invention will be described with reference to FIG.
 リチウムイオン二次電池100は、正極10、セパレータ20、負極30、及び、ケース70、及び、電解液を主として備える。 The lithium ion secondary battery 100 mainly includes a positive electrode 10, a separator 20, a negative electrode 30, a case 70, and an electrolytic solution.
 負極30は、負極集電体32、及び、負極集電体32上に設けられた負極活物質層34を備える。なお、負極活物質層34は負極集電体32において負極活物質が塗工された領域を指す。負極集電体32は導電材料からなる。負極集電体32の材料の例は、銅などの金属である。 The negative electrode 30 includes a negative electrode current collector 32 and a negative electrode active material layer 34 provided on the negative electrode current collector 32. The negative electrode active material layer 34 refers to a region of the negative electrode current collector 32 where the negative electrode active material is applied. The negative electrode current collector 32 is made of a conductive material. An example of the material of the negative electrode current collector 32 is a metal such as copper.
 負極活物質層34は、負極活物質、及び、バインダーを有する。負極活物質層34は、必用に応じて導電助剤を含んでも良い。バインダーや導電助剤の例及び配合量は、正極10で記載したのと同様とすることができる。 The negative electrode active material layer 34 has a negative electrode active material and a binder. The negative electrode active material layer 34 may contain a conductive additive as necessary. Examples and blending amounts of the binder and the conductive auxiliary agent can be the same as those described for the positive electrode 10.
 負極活物質は、リチウムを吸蔵、放出可能な炭素系材料、リチウムと合金化可能な元素、リチウムと合金化可能な元素を有する元素化合物、あるいは高分子材料などを用いることができる。 As the negative electrode active material, a carbon-based material that can occlude and release lithium, an element that can be alloyed with lithium, an elemental compound that has an element that can be alloyed with lithium, or a polymer material can be used.
 炭素系材料の例は、難黒鉛化性炭素、人造黒鉛、コークス類、グラファイト類、ガラス状炭素類、有機高分子化合物焼成体、炭素繊維、活性炭あるいはカーボンブラック類である。ここで、有機高分子化合物焼成体とは、フェノール類やフラン類などの高分子材料を適当な温度で焼成して炭素化したものをいう。 Examples of the carbon-based material are non-graphitizable carbon, artificial graphite, coke, graphite, glassy carbon, organic polymer compound fired body, carbon fiber, activated carbon, or carbon black. Here, the organic polymer compound fired body refers to a material obtained by firing and carbonizing a polymer material such as phenols and furans at an appropriate temperature.
 リチウムと合金化可能な元素の例は、Na、K、Rb、Cs、Fr、Be、Mg、Ca、Sr、Ba、Ra、Ti、Ag、Zn、Cd、Al、Ga、1n、Si、Ge、Sn、Pb、Sb、Biの少なくとも1種である。中でも、リチウムと合金化可能な元素は、珪素(Si)または錫(Sn)であるとよい。 Examples of elements that can be alloyed with lithium are Na, K, Rb, Cs, Fr, Be, Mg, Ca, Sr, Ba, Ra, Ti, Ag, Zn, Cd, Al, Ga, 1n, Si, Ge. , Sn, Pb, Sb, Bi. Among them, the element that can be alloyed with lithium is preferably silicon (Si) or tin (Sn).
 リチウムと合金化可能な元素を有する元素化合物の例は、ZnLiAl、AlSb、SiB、SiB、MgSi、MgSn、NiSi、TiSi、MoSi、CoSi、NiSi、CaSi、CrSi、CuSi、FeSi、MnSi、NbSi、TaSi、VSi、WSi、ZnSi、SiC、Si、SiO、SiO(0<v≦2)、SnO(0<w≦2)、SnSiO、LiSiOあるいはLiSnOなどが使用できる。 Examples of element compound having lithium can be alloyed elements, ZnLiAl, AlSb, SiB 4, SiB 6, Mg 2 Si, Mg 2 Sn, Ni 2 Si, TiSi 2, MoSi 2, CoSi 2, NiSi 2, CaSi 2, CrSi 2, Cu 5 Si , FeSi 2, MnSi 2, NbSi 2, TaSi 2, VSi 2, WSi 2, ZnSi 2, SiC, Si 3 N 4, Si 2 N 2 O, SiO v (0 <v ≦ 2), SnO w (0 <w ≦ 2), SnSiO 3 , LiSiO or LiSnO can be used.
 リチウムと合金化反応可能な元素を有する元素化合物の例は、珪素化合物または錫化合物であることがよい。珪素化合物は、SiO(0.5≦x≦1.5)であることがよい。錫化合物は、例えば、スズ合金(Cu-Sn合金、Co-Sn合金等)などが使用できる。 An example of the elemental compound having an element capable of alloying with lithium is preferably a silicon compound or a tin compound. The silicon compound is preferably SiO x (0.5 ≦ x ≦ 1.5). As the tin compound, for example, a tin alloy (Cu—Sn alloy, Co—Sn alloy, etc.) can be used.
 高分子材料の例は、ポリアセチレン、ポリピロールである。 Examples of the polymer material are polyacetylene and polypyrrole.
 負極の製造方法は、活物質が異なる以外は正極と同様である。 The manufacturing method of the negative electrode is the same as that of the positive electrode except that the active material is different.
 負極集電体32はその端部に、負極活物質層34が形成されていないタブ部32tを有する。タブ部32tには、後述するリード36が電気的に接続される。 The negative electrode current collector 32 has a tab portion 32t at the end of which the negative electrode active material layer 34 is not formed. A lead 36 described later is electrically connected to the tab portion 32t.
 (セパレータ)
 セパレータ20は、正極10と負極30とを隔離し、両極の接触による電流の短絡を防止しつつ、リチウムイオンを通過させるものである。セパレータ20は、例えばポリテトラフルオロエチレン、ポリプロピレン、あるいはポリエチレンなどの合成樹脂製の多孔質膜、またはセラミックス製の多孔質膜が使用できる。正極10の正極活物質層14と、負極30の負極活物質層34とがセパレータ20の各面に接触している。
(Separator)
The separator 20 separates the positive electrode 10 and the negative electrode 30 and allows lithium ions to pass through while preventing a short circuit of current due to contact between both electrodes. As the separator 20, for example, a porous film made of a synthetic resin such as polytetrafluoroethylene, polypropylene, or polyethylene, or a porous film made of ceramics can be used. The positive electrode active material layer 14 of the positive electrode 10 and the negative electrode active material layer 34 of the negative electrode 30 are in contact with each surface of the separator 20.
 (電解液)
 電解液は、電解質と、この電解質を溶解する溶媒とを含む。電解質は、正極活物質層14、セパレータ20、負極活物質層34内に含浸されている。
(Electrolyte)
The electrolytic solution includes an electrolyte and a solvent that dissolves the electrolyte. The electrolyte is impregnated in the positive electrode active material layer 14, the separator 20, and the negative electrode active material layer 34.
 電解質の例は、LiBF、LiPF、LiClO、LiAsF、LiCFSO、LiN(CFSO等のリチウム塩である。 Examples of the electrolyte are lithium salts such as LiBF 4 , LiPF 6 , LiClO 4 , LiAsF 6 , LiCF 3 SO 3 , and LiN (CF 3 SO 2 ) 2 .
 溶媒の例は、環状エステル類、鎖状エステル類、エーテル類である。これらの溶媒を2種以上混合することもできる。 Examples of the solvent are cyclic esters, chain esters, and ethers. Two or more of these solvents can be mixed.
 環状エステル類の例は、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、ガンマブチロラクトン、ビニレンカーボネート、2-メチル-ガンマブチロラクトン、アセチル-ガンマブチロラクトン、ガンマバレロラクトンである。鎖状エステル類の例は、メチルカーボネート、ジエチルカーボネート、ジブチルカーボネート、ジプロピルカーボネート、メチルエチルカーボネート、プロピオン酸アルキルエステル、マロン酸ジアルキルエステル、酢酸アルキルエステルである。エーテル類の例は、テトラヒドロフラン、2-メチルテトラヒドロフラン、1,4-ジオキサン、1,2-ジメトキシエタン、1,2-ジエトキシエタン、1,2-ジブトキシエタンである。 Examples of cyclic esters are ethylene carbonate, propylene carbonate, butylene carbonate, gamma butyrolactone, vinylene carbonate, 2-methyl-gamma butyrolactone, acetyl-gamma butyrolactone, and gamma valerolactone. Examples of the chain esters are methyl carbonate, diethyl carbonate, dibutyl carbonate, dipropyl carbonate, methyl ethyl carbonate, propionic acid alkyl ester, malonic acid dialkyl ester, and acetic acid alkyl ester. Examples of ethers are tetrahydrofuran, 2-methyltetrahydrofuran, 1,4-dioxane, 1,2-dimethoxyethane, 1,2-diethoxyethane, 1,2-dibutoxyethane.
 電解液における電解質の濃度は、例えば、0.5~1.7mol/Lとすることができる。電解液は、ゲル化剤を含んでいても良い。 The concentration of the electrolyte in the electrolytic solution can be, for example, 0.5 to 1.7 mol / L. The electrolytic solution may contain a gelling agent.
 (ケース)
 ケース70は、正極10、セパレータ20、負極30、及び、電解液を収容する。ケースの材料や形態は特に限定されず、樹脂、金属など公知の種々の物を使用できる。
(Case)
The case 70 accommodates the positive electrode 10, the separator 20, the negative electrode 30, and the electrolytic solution. The material and form of the case are not particularly limited, and various known materials such as resins and metals can be used.
 正極集電体12のタブ部12t、及び、負極集電体32のタブ部32tには、それぞれ、リード16、36が接続されている。リード16、36の一端は、ケース70の外に出ている。 Leads 16 and 36 are connected to the tab portion 12t of the positive electrode current collector 12 and the tab portion 32t of the negative electrode current collector 32, respectively. One ends of the leads 16 and 36 are out of the case 70.
 このようなリチウムイオン二次電池100は、出力特性に優れる。具体的には、このリチウムイオン二次電池100は、Mgを含まず、濃度が0である以外は構造及び材料が同じリチウムイオン二次電池100に対して、0.1Hzインピーダンスが低減されることができる。 Such a lithium ion secondary battery 100 is excellent in output characteristics. Specifically, the lithium ion secondary battery 100 does not contain Mg 2 P 2 O 7 and has a 0.1 Hz impedance relative to the lithium ion secondary battery 100 having the same structure and material except that the concentration is 0. Can be reduced.
 なお、本発明に係るリチウムイオン二次電池100は、上記実施形態に限られず様々な変形態様が可能である。例えば、正極、負極、及び、セパレータを複数有し、正極及び負極が交互に配置され、かつ、各正極及び負極の間にセパレータが配置されるように積層されているものでもよい。 In addition, the lithium ion secondary battery 100 according to the present invention is not limited to the above embodiment, and various modifications can be made. For example, a plurality of positive electrodes, negative electrodes, and separators may be provided, the positive electrodes and the negative electrodes may be alternately disposed, and the separators may be disposed between the positive electrodes and the negative electrodes.
(実施例1)
 3質量%のMg(NO水溶液と、1質量%の(NHHPOの水溶液を調製した。次に、これらの水溶液を混合し、沈殿物をろ過により回収した。沈殿物(MgNHPO・6HO)を120℃で6時間乾燥し、MgNHPO・HO粒子を得た。
(Example 1)
A 3% by mass Mg (NO 3 ) 2 aqueous solution and a 1% by mass (NH 4 ) 2 HPO 4 aqueous solution were prepared. Next, these aqueous solutions were mixed, and the precipitate was collected by filtration. The precipitate (MgNH 4 PO 4 .6H 2 O) was dried at 120 ° C. for 6 hours to obtain MgNH 4 PO 4 .H 2 O particles.
 MgNHPO・HO粒子と、LiCo1/3Ni1/3Mn1/3粒子とを、質量比で2:100となるように混合し、混合物を700℃で5時間焼成し、100質量部のLiCo1/3Ni1/3Mn1/3に対してMgを1.4質量部含む活物質粒子を得た。 MgNH 4 PO 4 .H 2 O particles and LiCo 1/3 Ni 1/3 Mn 1/3 O 2 particles are mixed at a mass ratio of 2: 100, and the mixture is fired at 700 ° C. for 5 hours. Then, active material particles containing 1.4 parts by mass of Mg 2 P 2 O 7 with respect to 100 parts by mass of LiCo 1/3 Ni 1/3 Mn 1/3 O 2 were obtained.
 得られた活物質粒子、アセチレンブラック、及び、ポリフッ化ビニリデン(PVDF)を、質量比で88:6:6となるように混合し、さらに、N-メチル-2-ピロリドン(NMP)を加えてスラリーとし、アルミニウム箔上に塗布し、120℃で6時間乾燥させ、その後、プレスし、正極10(25mm×30mm)を得た。 The obtained active material particles, acetylene black, and polyvinylidene fluoride (PVDF) were mixed at a mass ratio of 88: 6: 6, and N-methyl-2-pyrrolidone (NMP) was further added. A slurry was applied, applied onto an aluminum foil, dried at 120 ° C. for 6 hours, and then pressed to obtain a positive electrode 10 (25 mm × 30 mm).
 また、黒鉛粉末と、アセチレンブラックと、スチレンブタジエンゴムと、カルボキシメチルセルロースとを、97:1:1:1となるように混合した。この混合物をイオン交換水に分散させてスラリーを得て、銅箔上に塗布し、乾燥させ、その後プレスし、負極30(25mm×30mm)を得た。 Further, graphite powder, acetylene black, styrene butadiene rubber, and carboxymethyl cellulose were mixed so as to be 97: 1: 1: 1. This mixture was dispersed in ion-exchanged water to obtain a slurry, which was applied onto a copper foil, dried, and then pressed to obtain a negative electrode 30 (25 mm × 30 mm).
 正極10及び負極30のタブ部12t、32tにそれぞれリード16、36を接続した後、得られた正極10の正極活物質層14と負極30の負極活物質層34とを、セパレータ20としてのポリプロピレン多孔膜(27mm×32mm)を介して重ね合わせ、樹脂製のケース70に収容し、電解液を注入し、リチウムイオン二次電池を得た。 After connecting the leads 16 and 36 to the tab portions 12t and 32t of the positive electrode 10 and the negative electrode 30, respectively, the positive electrode active material layer 14 of the positive electrode 10 and the negative electrode active material layer 34 of the negative electrode 30 thus obtained are used as polypropylene as the separator 20. They were overlapped via a porous film (27 mm × 32 mm), accommodated in a resin case 70, and an electrolyte was injected to obtain a lithium ion secondary battery.
 電解液は、エチレンカーボネート及びジエチルカーボネートを、3:7の体積比で含有する溶媒と、1mol/Lの濃度で含有されたLiPFを含むものであった。 The electrolytic solution contained a solvent containing ethylene carbonate and diethyl carbonate in a volume ratio of 3: 7 and LiPF 6 contained at a concentration of 1 mol / L.
 (実施例2)
 MgNHPO・HO粒子と、LiCo1/3Ni1/3Mn1/3粒子とを、質量比で5:100となるように混合し、100質量部のLiCo1/3Ni1/3Mn1/3に対してMgを3.6質量部含む正極活物質粒子を得た以外は実施例1と同様にした。
(Example 2)
MgNH 4 PO 4 .H 2 O particles and LiCo 1/3 Ni 1/3 Mn 1/3 O 2 particles are mixed at a mass ratio of 5: 100, and 100 parts by mass of LiCo 1/3. The same procedure as in Example 1 was performed except that positive electrode active material particles containing 3.6 parts by mass of Mg 2 P 2 O 7 with respect to Ni 1/3 Mn 1/3 O 2 were obtained.
 (実施例3)
 MgNHPO・HO粒子と、LiCo1/3Ni1/3Mn1/3粒子とを、質量比で0.5:100となるように混合し、100質量部のLiCo1/3Ni1/3Mn1/3に対してMgを0.4質量部含む正極活物質粒子を得た以外は実施例1と同様にした。
(Example 3)
MgNH 4 PO 4 .H 2 O particles and LiCo 1/3 Ni 1/3 Mn 1/3 O 2 particles are mixed at a mass ratio of 0.5: 100, and 100 parts by mass of LiCo 1 / 3 The same procedure as in Example 1 was conducted except that positive electrode active material particles containing 0.4 parts by mass of Mg 2 P 2 O 7 with respect to Ni 1/3 Mn 1/3 O 2 were obtained.
 (比較例1)
 活物質粒子としてLiCo1/3Ni1/3Mn1/3粒子を用いた以外は実施例1と同様にした。
(Comparative Example 1)
The same operation as in Example 1 was performed except that LiCo 1/3 Ni 1/3 Mn 1/3 O 2 particles were used as the active material particles.
 (比較例2)
 MgNHPO・HO粒子と、LiCo1/3Ni1/3Mn1/3粒子とを、質量比で10:100となるように混合し、100質量部のLiCo1/3Ni1/3Mn1/3に対してMgを7.2質量部含む活物質粒子を得た以外は実施例1と同様にした。
(Comparative Example 2)
MgNH 4 PO 4 .H 2 O particles and LiCo 1/3 Ni 1/3 Mn 1/3 O 2 particles are mixed at a mass ratio of 10: 100, and 100 parts by mass of LiCo 1/3. The same operation as in Example 1 was performed except that active material particles containing 7.2 parts by mass of Mg 2 P 2 O 7 with respect to Ni 1/3 Mn 1/3 O 2 were obtained.
 (評価)
 得られたリチウムイオン二次電池それぞれについて、インピーダンスをマルチポテンショスタット1470E型(Solartron社製)にて以下のように測定した。インピーダンスは、セルをSOC20%の電圧に調整した後、1MHz~0.05Hzの範囲でインピーダンス測定したときに得られた0.1Hzにおけるインピーダンスの値である。
 結果を表1に示す。
 実施例1~3では、10Ω以下の0.1Hzインピーダンスが達成されたが、比較例1、2では、10Ω以下の0.1Hzインピーダンスは達成されなかった。
Figure JPOXMLDOC01-appb-T000001
(Evaluation)
For each of the obtained lithium ion secondary batteries, the impedance was measured with a multipotentiostat 1470E type (manufactured by Solartron) as follows. The impedance is a value of impedance at 0.1 Hz obtained when impedance is measured in the range of 1 MHz to 0.05 Hz after the cell is adjusted to a voltage of SOC 20%.
The results are shown in Table 1.
In Examples 1 to 3, a 0.1 Hz impedance of 10Ω or less was achieved, but in Comparative Examples 1 and 2, a 0.1 Hz impedance of 10Ω or less was not achieved.
Figure JPOXMLDOC01-appb-T000001
 10…正極、20…セパレータ、30…負極、100…リチウムイオン二次電池。 10 ... positive electrode, 20 ... separator, 30 ... negative electrode, 100 ... lithium ion secondary battery.

Claims (6)

  1.  Ni、Mn及びCoから成る群から選択される少なくとも1つの元素及びLiを含む複合酸化物と、
     Mgと、を含み、100質量部の前記複合酸化物に対して、Mgを0.2~7.0質量部含む活物質。
    A composite oxide containing Li and at least one element selected from the group consisting of Ni, Mn and Co;
    Mg 2 P and 2 O 7, wherein the relative said composite oxide of 100 parts by weight, Mg 2 P 2 O 7 the active material containing 0.2 to 7.0 parts by weight.
  2.  前記複合酸化物は、LiCoNiMn(p+q+r=1、0<p<1、0<q<1、0<r<1)である請求項1記載の活物質。 2. The active material according to claim 1, wherein the composite oxide is LiCo p Ni q Mn r O 2 (p + q + r = 1, 0 <p <1, 0 <q <1, 0 <r <1).
  3.  請求項1または請求項2に記載の活物質を含む正極と、負極とを備えたリチウムイオン二次電池。 A lithium ion secondary battery comprising a positive electrode containing the active material according to claim 1 or 2 and a negative electrode.
  4.  0.1Hzにおけるインピーダンスが10Ω以下である請求項3記載のリチウムイオン二次電池。 The lithium ion secondary battery according to claim 3, wherein an impedance at 0.1 Hz is 10Ω or less.
  5.  Ni、Mn及びCoから成る群から選択される少なくとも1つの元素及びLiを含む複合酸化物と、MgNHPO・HOとを含む混合物を焼成する工程を備え、
     前記混合物は、100質量部の前記複合酸化物に対して、MgNHPO・HOを0.3~9.0質量部含む、活物質の製造方法。
    Firing a mixture containing a composite oxide containing Li and at least one element selected from the group consisting of Ni, Mn, and Co, and MgNH 4 PO 4 .H 2 O;
    The method for producing an active material, wherein the mixture contains 0.3 to 9.0 parts by mass of MgNH 4 PO 4 .H 2 O with respect to 100 parts by mass of the composite oxide.
  6.  前記焼成の温度が500~800℃である請求項5記載の活物質の製造方法。 The method for producing an active material according to claim 5, wherein the firing temperature is 500 to 800 ° C.
PCT/JP2013/071024 2012-08-03 2013-08-02 Active substance, method for manufacturing active substance, and lithium-ion secondary cell WO2014021453A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012173198 2012-08-03
JP2012-173198 2012-08-03

Publications (1)

Publication Number Publication Date
WO2014021453A1 true WO2014021453A1 (en) 2014-02-06

Family

ID=50028116

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/071024 WO2014021453A1 (en) 2012-08-03 2013-08-02 Active substance, method for manufacturing active substance, and lithium-ion secondary cell

Country Status (2)

Country Link
JP (1) JP5862622B2 (en)
WO (1) WO2014021453A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0796347A (en) * 1993-06-09 1995-04-11 Bayer Ag Component for investment casting mold
JP2011028976A (en) * 2009-07-24 2011-02-10 Sony Corp Positive electrode active material, positive electrode, and nonaqueous electrolyte battery
JP2013114786A (en) * 2011-11-25 2013-06-10 Sony Corp Electrode, secondary battery, battery pack, electric vehicle, power storage system, electric power tool, and electronic device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4679112B2 (en) * 2004-10-29 2011-04-27 三洋電機株式会社 Non-aqueous electrolyte secondary battery and manufacturing method thereof
JP2012071267A (en) * 2010-09-29 2012-04-12 Nippon Shokubai Co Ltd Catalyst for dehydrating glycerin and method for producing acrolein

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0796347A (en) * 1993-06-09 1995-04-11 Bayer Ag Component for investment casting mold
JP2011028976A (en) * 2009-07-24 2011-02-10 Sony Corp Positive electrode active material, positive electrode, and nonaqueous electrolyte battery
JP2013114786A (en) * 2011-11-25 2013-06-10 Sony Corp Electrode, secondary battery, battery pack, electric vehicle, power storage system, electric power tool, and electronic device

Also Published As

Publication number Publication date
JP5862622B2 (en) 2016-02-16
JP2014044949A (en) 2014-03-13

Similar Documents

Publication Publication Date Title
JP7116314B2 (en) Electrolyte for non-aqueous electrolyte battery and non-aqueous electrolyte battery using the same
JP5259268B2 (en) Nonaqueous electrolyte secondary battery
JP5757148B2 (en) Negative electrode active material for lithium ion secondary battery and lithium ion secondary battery using the negative electrode active material
JP5533035B2 (en) Nonaqueous electrolyte composition and nonaqueous electrolyte battery
EP1711971A1 (en) Electrode additives coated with electro conductive material and lithium secondary comprising the same
JP6477690B2 (en) Binder composition for lithium ion secondary battery electrode, slurry composition for lithium ion secondary battery electrode, electrode for lithium ion secondary battery, and lithium ion secondary battery
JP5357517B2 (en) Lithium ion secondary battery
JP5664943B2 (en) ELECTRODE FOR LITHIUM ION SECONDARY BATTERY, MANUFACTURING METHOD THEREOF, AND LITHIUM ION SECONDARY BATTERY USING THE ELECTRODE
JP6061143B2 (en) Positive electrode for lithium ion secondary battery and lithium ion secondary battery
US20170084923A1 (en) Binder composition for secondary battery electrode-use, slurry composition for secondary battery electrode-use, electrode for secondary battery-use, and secondary battery
JP5100069B2 (en) Non-aqueous electrolyte secondary battery and manufacturing method thereof
JP6252858B2 (en) Positive electrode for lithium ion secondary battery and lithium ion secondary battery
KR100873578B1 (en) Anode active material for secondary battery with high capacity
JP2005302300A (en) Nonaqueous electrolyte battery
JP2014082084A (en) Lithium ion secondary battery
JP2014149989A (en) Active material for lithium ion secondary battery, electrode for lithium ion secondary battery including the same, and lithium ion secondary battery
JP2014112505A (en) Positive electrode active material for lithium ion secondary battery, and lithium ion secondary battery having the same
JP2004319133A (en) Nonaqueous electrolyte secondary battery
CN114788063A (en) Non-aqueous electrolyte secondary battery
WO2017110080A1 (en) Non-aqueous-electrolyte secondary cell
WO2017110089A1 (en) Non-aqueous electrolyte secondary battery
JP5557067B1 (en) Positive electrode for lithium ion secondary battery and lithium ion secondary battery
JP6011634B2 (en) Nonaqueous electrolyte secondary battery
JP7133776B2 (en) Non-aqueous electrolyte secondary battery
JP5862622B2 (en) Method for producing active material for lithium ion secondary battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13825185

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13825185

Country of ref document: EP

Kind code of ref document: A1