WO2014019468A1 - 哌嗪并三唑类化合物及其制备方法和制药用途 - Google Patents

哌嗪并三唑类化合物及其制备方法和制药用途 Download PDF

Info

Publication number
WO2014019468A1
WO2014019468A1 PCT/CN2013/079998 CN2013079998W WO2014019468A1 WO 2014019468 A1 WO2014019468 A1 WO 2014019468A1 CN 2013079998 W CN2013079998 W CN 2013079998W WO 2014019468 A1 WO2014019468 A1 WO 2014019468A1
Authority
WO
WIPO (PCT)
Prior art keywords
substituted
group
hydrogen
unsubstituted
fluorenyl
Prior art date
Application number
PCT/CN2013/079998
Other languages
English (en)
French (fr)
Inventor
张翱
缪泽鸿
叶娜
宦霞娟
宋子兰
陈川惠子
陈奕
丁健
Original Assignee
中国科学院上海药物研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院上海药物研究所 filed Critical 中国科学院上海药物研究所
Priority to CA2880739A priority Critical patent/CA2880739C/en
Priority to EP13825341.4A priority patent/EP2881395B1/en
Priority to AU2013299117A priority patent/AU2013299117B2/en
Priority to JP2015524614A priority patent/JP6043935B2/ja
Priority to US14/418,705 priority patent/US9255106B2/en
Publication of WO2014019468A1 publication Critical patent/WO2014019468A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D487/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00
    • C07D487/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00 in which the condensed system contains two hetero rings
    • C07D487/04Ortho-condensed systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/495Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
    • A61K31/4985Pyrazines or piperazines ortho- or peri-condensed with heterocyclic ring systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/495Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
    • A61K31/50Pyridazines; Hydrogenated pyridazines
    • A61K31/501Pyridazines; Hydrogenated pyridazines not condensed and containing further heterocyclic rings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/495Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
    • A61K31/50Pyridazines; Hydrogenated pyridazines
    • A61K31/502Pyridazines; Hydrogenated pyridazines ortho- or peri-condensed with carbocyclic ring systems, e.g. cinnoline, phthalazine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/28Drugs for disorders of the nervous system for treating neurodegenerative disorders of the central nervous system, e.g. nootropic agents, cognition enhancers, drugs for treating Alzheimer's disease or other forms of dementia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/10Drugs for disorders of the cardiovascular system for treating ischaemic or atherosclerotic diseases, e.g. antianginal drugs, coronary vasodilators, drugs for myocardial infarction, retinopathy, cerebrovascula insufficiency, renal arteriosclerosis

Definitions

  • the present invention relates to the field of pharmacy, and in particular to a class of piperazine-triazole compounds having one or more substituents or isomers thereof, or a pharmaceutically acceptable salt, ester, prodrug or hydrate thereof,
  • PARP1 novel highly selective poly ADP-ribose polymerase-1
  • PARP Poly ADP-ribose polymerase-1
  • PARP1 was the first cell ribozyme that catalyzed the function of poly ADP-ribosyl group.
  • PARP2, PARP3, PARP4 (VPARP), PARP5a (tankyrase 1), PARP5b (tankyrase 2), PARP7 (TiPARP) were successively isolated. ) and subtypes such as sPARPl.
  • sPARPl 18 structural subtypes with potential PARP activity have been identified based on the structure of the catalytic domain of PARP1.
  • the structure of PARP1 is relatively complete, including three major domains: the N-terminal DNA binding domain (DBD), and the self-modifying domain ( AMD) and the catalytic domain at the C-terminus.
  • DBD contains two zinc finger structures and a DNA strand break sensitive element (NLS), which receives signals from DNA strand breaks through NLS, and the zinc finger structure binds to the damaged DNA site and repairs it.
  • NLS DNA strand break sensitive element
  • PARP-2 has the highest degree of homology with PARP1 and has 69% homology. Therefore, the currently reported PARP1 inhibitors are quite active against PARP2.
  • PARP1 predominates, including: 1) repairing DNA and maintaining genomic stability; 2) regulating transcription levels, regulating expression of related proteins; 3) affecting replication and differentiation, participating in maintenance Grain length; 4) Regulate cell death and remove damaged cells inside the body. Therefore, by inhibiting the activity of PARP1, PARP1-mediated DNA repair mechanism can be inhibited, and DNA damage of tumor cells can be improved by radiotherapy and chemotherapy, thereby treating tumors.
  • PARP has a DNA repair function
  • DNA damage is too difficult to be repaired, PARP is overactivated, tending to a "suicide mechanism" and consuming a large amount of substrate nicotinamide adenine dinucleotide (NAD + ) and ATP.
  • NAD + substrate nicotinamide adenine dinucleotide
  • ATP nicotinamide adenine dinucleotide
  • the acceptor domain binds to the ADP site of the poly ADP-ribose chain.
  • the supply domain is combined with NAD+, which can be divided into three sub-binding domains, namely the nicotinamide-ribose binding site (NI site), the phosphate binding site (PH site), and the adenosine-ribose binding site (AD site).
  • PARP inhibitors interact with the NI site of PARP, competitively inhibiting NAD+, and thus have similarities to the structure of nicotinamide, such as AZD2281 (olaparib/KU-59436;) developed by AstraZeneca Pharmaceuticals.
  • An oral PARP small molecule inhibitor that shows good development in the study of ovarian cancer, breast cancer and solid tumors in combination with drugs such as cisplatin, carboplatin and paclitaxel
  • compound AZD2281 has a shorter duration of action and half-life ( ⁇ 1 hour) and lower bioavailability ( ⁇ 15%), which makes further development difficult.
  • cyclic tertiary amines in the molecular structure are one of the main causes of metabolic instability.
  • the cyclic tertiary amine forms the oxidation product I or the imine intermediate II (as shown in the figure above) by the action of an oxidase or a P450 metabolic enzyme, thereby producing a series of oxidation products including N-demethylation and cyclohydroxylation.
  • Metabolites such as a-carbonylation, N-oxidation, and ring-opening, resulting in inactivation of drug molecules, and even toxicity, such as partial cyclic tertiary amines, metabolized by imine intermediates to MPTP (1-methyl-4) -Phenyl-1, 2,3,6-tetrahydropyridine;) or phencyclidine ( hallucinogen), etc. to produce central nervous system toxicity.
  • AZD2281 is less selective for members of the PARP family, especially for the telomerases Tankyrasel and Tankyrase 2, which may lead to safety risks.
  • the present invention mainly analyzes the crystal structure of PARP1 and its binding characteristics to small molecule compounds such as AZD2281, and retains the key hydrogen bonding site, ie, the amide fragment, which affects the activity, and focuses on structural modification of its hydrophobic action region.
  • Another object of the invention is to provide a process for the preparation of such compounds.
  • a further object of the present invention is to provide the use of such a compound as a novel highly selective PARP1 inhibitor for the preparation of a medicament for the prevention and/or treatment of a disease associated with PARP (poly ADP-ribose polymerase), said with PARP Related diseases include various ischemic diseases (brain, umbilical cord, heart, digestive tract, retina, etc.), neurodegenerative diseases (Parkinson's disease, Alzheimer's disease, muscular dystrophy, etc.) and cancer (breast cancer) , ovarian cancer, liver cancer, melanoma, prostate cancer, colon cancer, gastric cancer and solid tumors, etc.).
  • Another object of the present invention is to provide a pharmaceutical composition
  • a pharmaceutical composition comprising a therapeutically effective amount of one or more piperazine-triazole compounds or a pharmaceutically acceptable salt, ester, prodrug or hydrate thereof.
  • the present invention provides a piperazine triazole compound represented by the following formula I or an isomer thereof or a pharmaceutically acceptable salt, ester, prodrug or hydrate thereof:
  • a and B are each independently hydrogen or a substituted or unsubstituted C1-C8 hydrocarbon group, and A and B are not simultaneously hydrogen, wherein the substituted substituent is selected from the group consisting of halogen, cyano, nitro, hydroxy and Amino group;
  • a and B together with the attached carbon atom form a substituted or unsubstituted C4-C8 aliphatic ring, a substituted or unsubstituted C6-C10 aromatic ring, substituted or unsubstituted containing 1-3 selected from N, a 4-8 membered heterocyclic ring of 0 and S atoms, or a substituted or unsubstituted 5-8 membered aromatic heterocyclic ring containing 1-3 selected from N, 0 and S atoms, wherein the substituted substituent is selected from the group consisting of Halogen, cyano, nitro, hydroxy and amino;
  • X is hydrogen, halogen, hydroxy or cyano
  • Y is hydrogen or a substituted or unsubstituted C1-C8 alkyl group, and the substituted substituent is selected from the group consisting of 3 ⁇ 4, cyano, nitro, hydroxy, amino, C1-C6 decyloxy, C2-C6 fluorene carbonyl, C2 -C6 oxime carbonyl, C2-C6 alkenyl, C2-C6 alkynyl and C6-C10 aryl;
  • G is hydrogen, C1-C6 fluorenyl, C1-C6 decyloxy, C2-C6 fluorenylcarbonyl, C1-C6 decylamino or (C1-C6 fluorenyl) 2 amino;
  • Z is hydrogen, C1-C6 fluorenyl, C1-C6 decyloxy, C2-C6 fluorene carbonyl, C1-C6 decylamino or (C1-C6 fluorenyl) 2 amino;
  • R is selected from hydrogen or a substituted or unsubstituted C1-C8 fluorenyl group; the substituted substituent is selected from the group consisting of halogen, cyano, nitro, hydroxy, amino, C1-C6 decyloxy, C2-C6 fluorene carbonyl, C2 -C6 oxime carbonyl and C6-C10 aryl.
  • Each of ruthenium and osmium is independently hydrogen, a substituted or unsubstituted C1-C8 fluorenyl group, a substituted or unsubstituted C2-C8 alkenyl group, or a substituted or unsubstituted C2-C8 alkynyl group, and A and B are not simultaneously Is hydrogen, wherein the substituted substituent is selected from the group consisting of halogen, cyano, nitro, hydroxy and amino;
  • a and B together with the attached carbon atom form a substituted or unsubstituted C4-C7 aliphatic ring, a substituted or unsubstituted C6-C8 aromatic ring, substituted or unsubstituted containing 1-3 selected from N, a 4-7 membered heterocyclic ring of 0 and S atoms, or a substituted or unsubstituted 5-7 membered aromatic heterocyclic ring containing 1-3 selected from N, 0 and S atoms, wherein the substituted substituent is selected from the group consisting of Halogen, cyano, nitro, hydroxy and amino;
  • X is hydrogen, halogen, hydroxy or cyano
  • Y is hydrogen or a substituted or unsubstituted C1-C6 alkyl group, and the substituted substituent is selected from the group consisting of 3 ⁇ 4, cyano, nitro, Hydroxy, amino, C1-C4 decyloxy, C2-C4 fluorenylcarbonyl, C2-C4 fluorenyloxycarbonyl, C2-C4 alkenyl, C2-C4 alkynyl and C6-C8 aryl;
  • G is hydrogen, C1-C4 fluorenyl, C1-C4 decyloxy, C2-C4 fluorenylcarbonyl, C1-C4 decylamino or (C1-C4 fluorenyl) 2 amino;
  • Z is hydrogen, C1-C4 fluorenyl, C1-C4 decyloxy, C2-C4 fluorenylcarbonyl, C1-C4 decylamino or (C1-C4 fluorenyl) 2 amino;
  • R is selected from hydrogen, substituted or unsubstituted C1-C6 fluorenyl; the substituted substituent is selected from the group consisting of a cyano group, a cyano group, a nitro group, a hydroxyl group, an amino group, a C1-C4 decyloxy group, a C2-C4 fluorene carbonyl group, C2-C4 anthraceneoxycarbonyl and C6-C8 aryl;
  • the ruthenium and osmium are each independently hydrogen or a substituted or unsubstituted C1-C6 fluorenyl group, and A and B are not simultaneously hydrogen, wherein the substituted substituent is selected from the group consisting of halogen, cyano, nitro, hydroxy and amino groups. ;
  • a and B together with the attached carbon atom form a substituted or unsubstituted C4-C7 aliphatic ring or a substituted or unsubstituted C6-C8 aromatic ring, wherein the substituted substituent is selected from the group consisting of halogen and cyano. , nitro, hydroxy and amino groups;
  • X is hydrogen, halogen, hydroxy or cyano
  • Y is hydrogen or a substituted or unsubstituted C1-C6 alkyl group, and the substituted substituent is selected from the group consisting of 3 ⁇ 4, cyano, nitro, hydroxy, amino, C1-C4 decyloxy, C2-C4 fluorene carbonyl, C2 -C4 oxime carbonyl, C2-C4 alkenyl, C2-C4 alkynyl and C6-C8 aryl;
  • G is hydrogen, C1-C4 fluorenyl, C1-C4 decyloxy, C2-C4 fluorenylcarbonyl, C1-C4 decylamino or (C1-C4 fluorenyl) 2 amino;
  • Z is hydrogen, C1-C4 fluorenyl, C1-C4 decyloxy, C2-C4 fluorenylcarbonyl, C1-C4 decylamino or (C1-C4 fluorenyl) 2 amino;
  • R is selected from hydrogen or a substituted or unsubstituted C1-C6 fluorenyl group; the substituted substituent is selected from the group consisting of halogen, cyano, nitro, hydroxy and amino;
  • ⁇ and ⁇ are each independently hydrogen or a C1-C4 fluorenyl group, and A and B are not hydrogen at the same time;
  • a and B together with the attached carbon atom form a substituted or unsubstituted C4-C6 aliphatic ring or substitution or An unsubstituted C6-C8 aromatic ring, wherein the substituted substituent is selected from the group consisting of halogen, cyano, nitro, hydroxy and amino;
  • X is hydrogen, halogen, hydroxy or cyano;
  • Y is hydrogen or a substituted or unsubstituted C1-C4 alkyl group, and the substituted substituent is selected from the group consisting of a tetra-, a cyano group, a nitro group, a hydroxyl group, an amino group, a C1-C4 alkoxy group, a C2-C4 anthraceneoxycarbonyl group, C2-C4 alkenyl and phenyl;
  • G is hydrogen, C1-C4 fluorenyl, C1-C4 decyloxy, C1-C4 decylamino or (C1-C4 fluorenyl) 2 amino
  • Z is hydrogen, C1-C4 fluorenyl, C1-C4 decyloxy , C1-C4 mercaptoamino or (C1-C4 fluorenyl) 2 amino
  • Y, G and hydrazine are not hydrogen at the same time;
  • R is selected from hydrogen or a substituted or unsubstituted C1-C4 fluorenyl group; the substituted substituent is selected from the group consisting of halogen, cyano, nitro, hydroxy and amino;
  • ⁇ and ⁇ are each independently hydrogen or methyl, and A and B are not hydrogen at the same time;
  • a and B together with the attached carbon atoms form a benzene ring
  • X is hydrogen or halogen
  • Y is hydrogen, methyl, 2,2,2-trifluoroethyl, allyl, ethoxycarbonylethyl or benzyl;
  • G is hydrogen, methyl, ethyl, methoxy or dimethylamino
  • Z is hydrogen, methyl, ethyl, methoxy or dimethylamino
  • R is hydrogen, monofluoromethyl, difluoromethyl or trifluoromethyl.
  • piperazin triazole compounds of Formula I may also exist in the form of tautomers.
  • the tautomeric form of the piperazin triazole compound represented by the general formula I may include, but is not limited to, a structure represented by the following formula II:
  • Typical compounds of the invention include, but are not limited to, the following compounds: L
  • Another aspect of the present invention provides a process for the preparation of a piperazin triazole compound represented by Formula I, which comprises the following steps:
  • HBTU is benzotriazole-oxime, oxime, ⁇ ', ⁇ '-tetramethylurea Fluorophosphate
  • DIPEA is diisopropylethylamine
  • DMF is hydrazine, hydrazine-dimethylformamide.
  • the raw material S (leq) and the purchased or synthesized amine D (leq) were dissolved in DMF, and HBTU and DIPEA were sequentially added in an ice bath, and the temperature was gradually raised to room temperature overnight. Water was added to the ice bath, extracted with methylene chloride, and the dichloromethane layer was washed with saturated brine, dried, evaporated, and then purified by column chromatography to obtain the piperazine and triazole compound of the formula I.
  • Still another aspect of the present invention provides the use of a piperazine triazole compound represented by Formula I or an isomer thereof or a pharmaceutically acceptable salt, ester, prodrug or hydrate thereof as a novel high Use of a selective PARP1 inhibitor for the preparation of a medicament for the prevention and/or treatment of a disease associated with PARP (poly ADP-ribose polymerase), ie various ischemic diseases (brain, umbilical cord, heart, Digestive tract, retina, etc.), neurodegenerative diseases (Parkinson's disease, Alzheimer's disease, muscular dystrophy, etc.) and cancer (breast cancer, ovarian cancer, liver cancer, melanoma, prostate cancer, colon cancer, stomach cancer) And other solid tumors, etc.).
  • PARP poly ADP-ribose polymerase
  • ie various ischemic diseases brain, umbilical cord, heart, Digestive tract, retina, etc.
  • neurodegenerative diseases Parkinson's disease, Alzheimer's disease
  • a pharmaceutical composition comprising a therapeutically effective amount of one or more piperazine-triazole compounds represented by Formula I, or a pharmaceutically acceptable salt, ester thereof, Prodrugs and or hydrates thereof, and may optionally further comprise a pharmaceutically acceptable carrier or excipient.
  • a PARP1 inhibitor comprising a therapeutically effective amount of one or more piperazine-triazole compounds represented by Formula I, or a pharmaceutically acceptable salt, ester thereof, Prodrugs and or hydrates thereof, and may optionally further comprise a pharmaceutically acceptable carrier or excipient.
  • a further aspect of the invention provides a method of preventing and/or treating a disease associated with PARP, the method comprising administering a therapeutically effective amount of a piperazine-triazole compound represented by Formula I, or a pharmaceutically acceptable salt thereof, The ester, prodrug and or hydrate thereof or the above pharmaceutical composition of the present invention are administered to a patient.
  • DRAWINGS Figure 1 is a spectrum of the racemate S3;
  • Figure 2 is an optical isomer S3-(+) spectrum
  • Figure 3 shows the optical isomer S3-(-) spectrum.
  • ⁇ - MR was measured with a Varian Mercury AMX300 model; MS was measured with a VG ZAB-HS or VG-7070 meter, except for the EI source (70 ev); all solvents were re-distilled before use, none used
  • the water solvent is obtained by drying according to the standard method; except for the description, all the reactions are carried out under the protection of nitrogen and traced by TLC.
  • silica gel (200 300 mesh) column chromatography was used except for the description; silica gel (200 300 mesh) was produced by Qingdao Ocean Chemical Plant, and GF254 thin layer silica gel plate was produced by Yantai Jiangyou Silica Development Co., Ltd.
  • HBTU is benzotriazole- ⁇ , ⁇ , ⁇ ', ⁇ '-tetramethylurea hexafluorophosphate
  • DIPEA is diisopropylethylamine
  • DMF is N,N-dimethylformamide.
  • the S2 synthesis method is the same as SI.
  • Analytical data for S2 ⁇ NMR POO MHz, CDC1 3 ) ⁇ 11.59 (s, 0.65 ⁇ ), 11.47 (s, 0.35H), 8.56 ⁇ 8.29 (m, 1H), 7.90 ⁇ 7.59 (m, 3H), 7.33 ( m, 2H), 7.06 (m, 1H), 6.21 ⁇ 6.17 (m, 0.5H), 5.86 (m, 0.5H), 5.47 ⁇ 4.72 (m, 3H), 4.30 (s, 2H), 4.21 -3.82 ( m, 2H), 3.71 (m, 1H), 3.47 - 2.47 (m, 3H).
  • the S3 synthesis method is the same as SI.
  • the S4 synthesis method is the same as SI.
  • the synthetic reference for the starting material 5-1 is J Met/. Chem. 2008, 57, 5 ⁇ -602.
  • the synthetic reference for the raw material 6-1 is J Met/. Chem. 2008, 57, 559-602 0
  • the S6 synthesis method is the same as SI.
  • the synthesis reference of the raw material 7-1 is J Met/. Chem. 2008, 51, 589-602, and TMEDA is tetramethylethylenediamine.
  • the raw material 7-1 (1 eq) was dissolved in tetrahydrofuran, TMEDA (1.5 eq) was added at -78 °C, n-BuLi was slowly added dropwise after 0 min, and allyl bromide was added after 0 min, and closed 20 min after the completion of the dropwise addition. Refrigeration. After the saturated ammonium chloride was quenched, it was extracted twice with dichloromethane, and the dichloromethane layer was washed with saturated brine, dried, evaporated and evaporated.
  • the raw material 7-2 was dissolved in ethanol, and 6N hydrochloric acid was added thereto, and the mixture was stirred at room temperature overnight, and the solvent was evaporated to dryness.
  • the S7 synthesis method is the same as S1.
  • the S8 synthesis method is the same as S1.
  • Analytical data for the compound S8 iH NMR (300 MHz, CDC1 3 ) ⁇ 11.70, 0.5 ⁇ ), 11.46 (s, 0.5H), 8.44 (s,lH), 7.78 (m, 3H), 7.43 ⁇ 6.68 (m, 7H), 6.35 (s,lH), 5.28 (m,H), 5.17 ⁇ 4.67 (m,lH), 4.30 (s, 2H), 4.09 (m,2H), 3.48 ⁇ 3.14 (m, 2H), 1.75 -1.48 (m, 3H).
  • the raw material 10-1 was dissolved in 80% hydrazine hydrate, heated to 120 ° C for reaction, and after completion of the reaction, it was cooled to room temperature, and then placed in a refrigerator. A large amount of solid was precipitated, filtered, and dried to obtain a crude product 10-2.
  • iH NMR 300 MHz, DMSO
  • the intermediate 12-1 is a reference to the Journal of Natural Products, 2011, 74(7), 1630-1635.
  • the synthesis of the intermediate 12-4 is carried out in the same manner as in the 11-4 synthesis, and the intermediate 12-7 is obtained by the synthesis of the intermediate 7-3 described above, and finally condensed to give the final product S12.
  • the intermediate 17-3 was dissolved in methanol, and an appropriate amount of palladium carbon was added thereto, and the mixture was replaced with hydrogen, and the mixture was stirred at room temperature overnight. After the reaction was completed, palladium carbon was filtered off and concentrated to give crude crude product.
  • the synthesis of the fragment 19-1 is the same as the synthesis method of the fragment 5-1.
  • the S20 synthesis method is the same as SI.
  • the S21 synthesis method is the same as SI.
  • the full-length plasmid of PARP1 was amplified by PCR, digested, ligated and transformed into DH5a to obtain HTb-PARP1 positive clones. After extraction and restriction enzyme digestion, PCR was carried out to identify D-Bobac, and Bacmid/PARP was identified by PCR. The virus was collected, the cells were lysed, and the PARP1 protein was purified by affinity chromatography and identified by Western blotting.
  • the substrate histone, NAD + and DNA and the expressed PARP1 enzyme are coated, placed in a 96-well plate reaction system, optimized and finally determined various reaction conditions, and the reaction product PAR is reacted with PAR mAb, and after adding the secondary antibody, The OD value was read with a microplate reader, and the degree of inhibition of PARP1 enzyme activity was calculated based on this, as shown in Table 1.
  • Negative value indicating no growth and inhibition of growth, can be regarded as 0;
  • the new compound not only has high activity at the PARP 1 enzyme level, but also exhibits significant activity on the PARP1 directly related cell VC8, and some compounds are 12 times more active than the positive compound AZD2281.
  • the tumor tissue in the vigorous growth period was cut into 1.5 mm 3 and inoculated subcutaneously in the right axilla of the nude mice under aseptic conditions.
  • the nude mice were subcutaneously transplanted with a vernier caliper to measure the diameter of the transplanted tumor. After the tumor was grown to 100-200 mm 3 , the animals were randomly divided into groups. S3 was 100 mg/kg and 25 mg/kg, and the positive drug AZD2281 was 100 mg/kg. All were administered orally once a day for three weeks; in the solvent control group, the same amount of normal saline was given.
  • the diameter of the transplanted tumor was measured twice a week during the entire experiment, and the body weight of the mice was weighed.
  • Compound S3 does have significant antitumor activity in vivo, and the inhibition of tumor at 25 mg/kg is comparable to that of the positive compound at 100 mg/kg. At 100 mg/kg, the tumor completely disappears. . More importantly, Compound S3 showed no significant side effects at both doses.
  • such a piperazine-triazole compound having one or more substituents represented by the compound S3 has an extremely high PARP1 enzyme inhibitory activity, and the cell activity is also significantly higher than that of the positive compound AZD2281.
  • the presence of the substituents on the ring also significantly increased the selectivity of the compounds for telomerase TNKS1 and TNKS2, and the risk of cardiotoxicity was small.
  • the tumor inhibition was also significantly higher in the PARP1 mouse model than in the positive compounds. Therefore, these compounds are useful as novel high-selective ribose poly ADP-ribose polymerase-1 (PARP1) inhibitors for the prevention and/or treatment of PARP-related diseases.
  • PARP1 novel high-selective ribose poly ADP-ribose polymerase-1

Abstract

提供通式I表示的哌嗪并三唑类化合物或其异构体、药学上可接受的盐、酯、前药或水合物;并提供该化合物的制备方法,含该化合物的药物组合物及其作为高选择性聚腺苷二磷酸核糖聚合酶-1(PARP1)抑制剂在制备预防和/或治疗与PARP相关疾病的药物中的用途。

Description

哌嗪并三唑类化合物及其制备方法和制药用途
¾ ^领域
本发明涉及药物学领域,具体涉及一类含一个或多个取代基的哌嗪并三唑类化合物或 其异构体或其药剂学上可接受的盐、酯、前药或水合物, 其药物组合物, 其制备方法及其 作为新型高选择性聚腺苷二磷酸核糖聚合酶 -1 (PARP1 )抑制剂在预防和 /或治疗与 PARP 相关疾病中的用途。 背景
1、 PARP的難雄和生物
聚腺苷二磷酸核糖聚合酶 [poly ADP-ribose) polymerase- 1, PARP]存在于真核细胞中 催化聚 ADP核糖化, 包括众多的家族成员。 其中 PARP1 是最早发现的具有催化多聚腺 苷二磷酸核糖基功能的细胞核酶,后来陆续分离出了 PARP2、 PARP3、 PARP4 (VPARP)、 PARP5a (tankyrase 1 )、 PARP5b (tankyrase 2)、 PARP7(TiPARP)和 sPARPl 等亚型。 目 前根据 PARP1 的催化域的结构已确认了 18种具有潜在 PARP活性的结构亚型, 其中 PARP1 的结构比较完整, 包括三个主要的结构域: N端的 DNA结合域 (DBD) , 自身 修饰域(AMD)和 C端的催化域。 DBD 中含有两个锌指结构和 DNA链断裂敏感元件 (NLS) , 通过 NLS 接收 DNA链断裂的信号, 锌指结构就能与受损 DNA部位结合并 进行修复。在 PARP家族中, PARP-2与 PARP1 的同源性程度最高, 具有 69 %的同源性, 因此, 目前报道的 PARP1抑制剂均对 PARP2具有相当的活性。
2、 PARP与鶊
在已知的 PARP相关的功能中, PARP1 占主导地位, 具体包括: 1)修复 DNA和维 持基因组稳定性; 2)调节转录水平,调控有关蛋白的表达; 3 ) 影响复制和分化, 参与维持 端粒长度; 4)调控细胞死亡及清除机体内部受损细胞。 因此, 通过抑制 PARP1的活性可 抑制 PARP1介导的 DNA修复机制, 提高放疗和化疗对肿瘤细胞 DNA的损伤, 因而对肿 瘤有治疗作用。
虽然 PARP具有 DNA修复功能,但是当 DNA的损伤过度难以被修复时, PARP被 过度激活, 倾向于一种"自杀机制"而大量消耗底物烟酰胺腺嘌呤二核苷酸 (NAD+ ) 和 ATP, 使细胞能量耗竭, 导致细胞坏死, 最终引起器官组织的损伤, 这是脑损伤以及神经 退行性疾病的发病机制之一。研究表明 PARP1 抑制剂在脑缺血性损伤、 休克、 阿尔茨海 默病和帕金森病等疾病的动物模型中显示出较好的效果。 因此, PARP1 抑制剂对于各种 缺血性疾病和神经退行性疾病有治疗作用。
3、 PARP抑讓
Armin等以 PARP 的底物 NAD+为模板进行研究发现 PARP1 的催化活性部位可 以大致分为供给和接受两个域。接受域与聚腺苷二磷酸核糖链的 ADP部位结合。供给域 与 NAD+结合,此部位还可以分成三个亚结合域,分别为烟酰胺-核糖结合部位(NI site)、 磷酸结合部位 (PH site) 和腺苷-核糖结合部位(AD site)。 大部分的 PARP抑制剂都是 与 PARP 的 NI site相互作用, 竞争性抑制 NAD+的, 因此与烟酰胺的结构具有相似性, 如阿斯利康制药公司开发的 AZD2281 (olaparib/KU-59436;)就是一种口服 PARP小分子抑 制剂, 在与顺铂、卡铂、紫杉醇等药物联用治疗卵巢癌、乳腺癌和实体瘤的研究中显示了 良好的开发
Figure imgf000003_0001
然而, 化合物 AZD2281体内作用时间和半衰期较短 (<1小时), 生物利用率也较低 (<15%), 这给进一步研发带来了困难。 导致这些缺点的原因很多, 分子结构中的环状三 级胺是导致代谢不稳定性的主要原因之一。 环状三级胺通过氧化酶或 P450代谢酶的作用 形成氧化产物 I或亚胺中间体 II (如上图所示), 进而产生一系列的氧化产物, 包括 N-脱 垸基化、 环羟基化、 a-羰基化、 N-氧化和开环等代谢物, 从而导致药物分子代谢失活, 甚 至毒性, 如部分环状三级胺会通过亚胺中间体代谢成为 MPTP(1-甲基- 4-苯基- 1, 2, 3, 6- 四氢吡啶;)或苯环己哌啶(致幻剂)等从而产生中枢神经系统毒性。 同时, AZD2281由于 对 PARP家族成员的选择性较低, 尤其是对端粒酶 Tankyrasel 和 Tankyrase 2的选择性较 低, 临床上可能导致安全隐患。 因此, 本发明主要是在综合分析 PARP1 晶体结构及其与小分子化合物如 AZD2281 的结合特点的基础上,保留影响活性的关键氢键作用点即酰胺片段,重点对其疏水性作用 区进行结构修饰, 尤其是通过: 1 ) 引入含取代基的哌嗪并三唑环体系, 增加三级胺的位 阻或对代谢位点进行取代以降低化合物在体内 P450细胞色素酶系作用下的氧化代谢能 力, 从而增加分子体内稳定性以及降低产生毒性代谢物的可能性; 2) 在哌嗪环上引入一 个或多个取代基, 增加对端粒酶 Tankyrasel 和 Tankyrase 2的选择性, 进而提高化合物作 为 PARP1抑制剂在疾病治疗方面的安全性。 因此, 我们设计了一类含一个或多个取代基 的哌嗪并三唑类化合物, 作为新型高选择性 PARP1抑制剂用于各种缺血性的疾病、 神经 退行性疾病和癌症的治疗药物。 发明内容
本发明一个的目的是提供一类如下通式 I表示的含一个或多个取代基的哌嗪并三唑 类化合物或其异构体或其药剂学上可接受的盐、 酯、 前药或水合物。
本发明的另一目的是提供该类化合物的制备方法。
本发明的又一目的是提供该类化合物作为新型高选择性 PARP1抑制剂在制备预防和 / 或治疗与 PARP (聚腺苷二磷酸核糖聚合酶) 相关疾病的药物中的用途, 所述与 PARP相 关疾病包括各种缺血性的疾病 (大脑、 脐带、 心脏、 消化管、 视网膜等)、 神经退行性疾 病(帕金森氏症、 阿尔茨海默病、 肌肉萎缩症等)和癌症(乳腺癌、 卵巢癌、 肝癌、 黑素 瘤、 前列腺癌、 结肠癌、 胃癌和实体瘤等)。
本发明的另一目的是提供包含治疗有效量的一种或多种哌嗪并三唑类化合物或其药 学上可接受的盐、 酯、 前药或水合物的药物组合物。
本发明的再一个目的是提供一种预防和 /或治疗与 PARP相关疾病的方法。
为了实现上述目的, 本发明提供了如下通式 I表示的哌嗪并三唑类化合物或其异构 体或其药剂学上可接受的盐、 酯、 前药或水合物:
Figure imgf000004_0001
I
其中, A和 B各自独立地为氢或者取代或未取代的 C1-C8烃基, 并且 A和 B不同时 为氢, 其中, 所述取代的取代基选自卤素、 氰基、 硝基、 羟基和氨基;
或者, A和 B与相连接的碳原子一起形成取代或未取代的 C4-C8脂族环, 取代或未 取代的 C6-C10芳环, 取代或未取代的含有 1-3个选自 N、 0和 S原子的 4-8元杂环, 或 者取代或未取代的含有 1-3个选自 N、 0和 S原子的 5-8元芳杂环, 其中, 所述取代的取 代基选自卤素、 氰基、 硝基、 羟基和氨基;
X为氢、 卤素、 羟基或氰基;
Y为氢或者取代或未取代的 C1-C8烷基, 所述取代的取代基选自¾素、 氰基、 硝基、 羟基、 氨基、 C1-C6垸氧基、 C2-C6垸羰基、 C2-C6垸氧羰基、 C2-C6链烯基、 C2-C6炔 基和 C6-C10芳基;
G为氢、 C1-C6垸基、 C1-C6垸氧基、 C2-C6垸羰基、 C1-C6垸基氨基或 (C1-C6垸基 )2 氨基;
Z为氢、 C1-C6垸基、 C1-C6垸氧基、 C2-C6垸羰基、 C1-C6垸基氨基或 (C1-C6垸基 )2 氨基;
并且 Y、 G和 Ζ不同时为氢;
R选自氢或者取代或未取代的 C1-C8垸基; 所述取代的取代基选自卤素、 氰基、 硝 基、 羟基、 氨基、 C1-C6垸氧基、 C2-C6垸羰基、 C2-C6垸氧羰基和 C6-C10芳基。
优选地, 在通式 I化合物中,
Α和 Β各自独立地为氢, 取代或未取代的 C1-C8垸基, 取代或未取代的 C2-C8链烯 基, 或取代或未取代的 C2-C8炔基, 并且 A和 B不同时为氢, 其中, 所述取代的取代基 选自卤素、 氰基、 硝基、 羟基和氨基;
或者, A和 B与相连接的碳原子一起形成取代或未取代的 C4-C7脂族环, 取代或未 取代的 C6-C8芳环, 取代或未取代的含有 1-3个选自 N、 0和 S原子的 4-7元杂环, 或取 代或未取代的含有 1-3个选自 N、 0和 S原子的 5-7元芳杂环, 其中, 所述取代的取代基 选自卤素、 氰基、 硝基、 羟基和氨基;
X为氢、 卤素、 羟基或氰基;
Y为氢或者取代或未取代的 C1-C6烷基, 所述取代的取代基选自¾素、 氰基、 硝基、 羟基、 氨基、 C1-C4垸氧基、 C2-C4垸羰基、 C2-C4垸氧羰基、 C2-C4链烯基、 C2-C4炔 基和 C6-C8芳基;
G为氢、 C1-C4垸基、 C1-C4垸氧基、 C2-C4垸羰基、 C1-C4垸基氨基或 (C1-C4垸基 )2 氨基;
Z为氢、 C1-C4垸基、 C1-C4垸氧基、 C2-C4垸羰基、 C1-C4垸基氨基或 (C1-C4垸基 )2 氨基;
并且 Y、 G和 Ζ不同时为氢;
R选自氢、 取代或未取代的 C1-C6垸基; 所述取代的取代基选自^素、 氰基、 硝基、 羟基、 氨基、 C1-C4垸氧基、 C2-C4垸羰基、 C2-C4垸氧羰基和 C6-C8芳基;
进一步优选地, 在通式 I化合物中,
Α和 Β各自独立地为氢或者取代或未取代的 C1-C6垸基, 并且 A和 B不同时为氢, 其中, 所述取代的取代基选自卤素、 氰基、 硝基、 羟基和氨基;
或者, A和 B与相连接的碳原子一起形成取代或未取代的 C4-C7脂族环或者取代或 未取代的 C6-C8芳环, 其中, 所述取代的取代基选自卤素、 氰基、 硝基、 羟基和氨基;
X为氢、 卤素、 羟基或氰基;
Y为氢或者取代或未取代的 C1-C6烷基, 所述取代的取代基选自¾素、 氰基、 硝基、 羟基、 氨基、 C1-C4垸氧基、 C2-C4垸羰基、 C2-C4垸氧羰基、 C2-C4链烯基、 C2-C4炔 基和 C6-C8芳基;
G为氢、 C1-C4垸基、 C1-C4垸氧基、 C2-C4垸羰基、 C1-C4垸基氨基或 (C1-C4垸基 )2 氨基;
Z为氢、 C1-C4垸基、 C1-C4垸氧基、 C2-C4垸羰基、 C1-C4垸基氨基或 (C1-C4垸基 )2 氨基;
并且 Y、 G和 Ζ不同时为氢;
R选自氢或者取代或未取代的 C1-C6垸基; 所述取代的取代基选自卤素、 氰基、 硝 基、 羟基和氨基;
进一步优选地, 在通式 I化合物中,
Α和 Β各自独立地为氢或 C1-C4垸基, 并且 A和 B不同时为氢;
或者, A和 B与相连接的碳原子一起形成取代或未取代的 C4-C6脂族环或者取代或 未取代的 C6-C8芳环, 其中, 所述取代的取代基选自卤素、 氰基、 硝基、 羟基和氨基; X为氢、 卤素、 羟基或氰基;
Y为氢或者取代或未取代的 C1-C4烷基, 所述取代的取代基选自¾素、 氰基、 硝基、 羟基、 氨基、 C1-C4垸氧基、 C2-C4垸氧羰基、 C2-C4链烯基和苯基;
G为氢、 C1-C4垸基、 C1-C4垸氧基、 C1-C4垸基氨基或 (C1-C4垸基 )2氨基; Z为氢、 C1-C4垸基、 C1-C4垸氧基、 C1-C4垸基氨基或 (C1-C4垸基 )2氨基; 并且 Y、 G和 Ζ不同时为氢;
R选自氢或者取代或未取代的 C1-C4垸基; 所述取代的取代基选自卤素、 氰基、 硝 基、 羟基和氨基;
特别优选地, 在通式 I化合物中,
Α和 Β各自独立地为氢或甲基, 并且 A和 B不同时为氢;
或者, A和 B与相连接的碳原子一起形成苯环;
X为氢或卤素;
Y为氢、 甲基、 2,2,2-三氟乙基、 烯丙基、 乙氧羰基乙基或苄基;
G为氢、 甲基、 乙基、 甲氧基或二甲基氨基;
Z为氢、 甲基、 乙基、 甲氧基或二甲基氨基;
并且 Y、 G和 Ζ不同时为氢;
R为氢、 单氟甲基、 二氟甲基或三氟甲基。
本领域普通技术人员可以理解,通式 I表示的哌嗪并三唑类化合物还可存在互变异构 体的形式。 通式 I表示的哌嗪并三唑类化合物的互变形式可包括但不限于由如下通式 II 表示的结构:
Figure imgf000007_0001
本发明的典型化合物包括, 但不限于以下化合物: L
Figure imgf000008_0001
8666.0/CT0ZN3/X3d 89t6I0/ 0Z OAV
Figure imgf000009_0001
8666.0/CT0ZN3/X3d 89t6I0/ 0Z OAV 6
Figure imgf000010_0001
8666.0/CT0ZN3/X3d 89t6I0/ 0Z OAV 本发明的另一方面提供了通式 I表示的哌嗪并三唑类化合物的制备方法,所述方法包 括如下如下步骤:
Figure imgf000011_0001
D S
原料 S的合成可参考文献 J Med. Chem. 2008, 51, 6581-6591 ; US2008161280; 以及 WO2007138351 , 其中, HBTU是苯并三氮唑 -Ν,Ν,Ν',Ν'-四甲基脲六氟磷酸酯, DIPEA是 二异丙基乙胺, DMF是 Ν,Ν-二甲基甲酰胺。
将原料 S ( leq) 与购买或合成的胺 D(leq)溶于 DMF中, 冰浴下依次加入 HBTU、 DIPEA, 逐渐升温至室温反应过夜。于冰浴下加入水, 用二氯甲垸萃取, 二氯甲垸层用饱 和食盐水洗, 干燥, 蒸除溶剂, 通过柱色谱分离得到通式 I表示的哌嗪并三唑类化合物。
本发明的再一个方面还提供了通式 I表示的哌嗪并三唑类化合物或其异构体或其药剂 学上可接受的盐、 酯、 前药或水合物的用途, 其作为新型高选择性 PARP1抑制剂, 在制 备用于预防和 /或治疗与 PARP (聚腺苷二磷酸核糖聚合酶)相关疾病的药物中的用途, 即 各种缺血性的疾病 (大脑、 脐带、 心脏、 消化管、 视网膜等)、 神经退行性疾病 (帕金森 氏症、 阿尔兹海默病、 肌肉萎缩症等)和癌症(乳腺癌、 卵巢癌、 肝癌、 黑素瘤、 前列腺 癌、 结肠癌、 胃癌和其它实体瘤等)。
在本发明的又一个方面, 提供了一种药物组合物, 其包含治疗有效量的一种或多种通 式 I表示的哌嗪并三唑类化合物或其药学上可接受的盐、酯、 前药和或其水合物, 并可任 选进一步包含药学上可接受的载体或赋形剂。
在本发明的又一个方面, 提供了一种 PARP1抑制剂, 其包含治疗有效量的一种或多 种通式 I表示的哌嗪并三唑类化合物或其药学上可接受的盐、酯、 前药和或其水合物, 并 可任选进一步包含药学上可接受的载体或赋形剂。
本发明的又一个方面提供了预防和 /或治疗与 PARP相关疾病的方法,所述方法包括施 用治疗有效量的通式 I表示的哌嗪并三唑类化合物或其药学上可接受的盐、酯、前药和或 其水合物或本发明的上述药物组合物给患者。 附图说明 图 1为消旋体 S3的谱图;
图 2为光学异构体 S3-(+)谱图;
图 3为光学异构体 S3- (-)谱图。 具体实施方式
下面结合具体实施例对本发明作进一步阐述, 但这些实施例并不限制本发明的范围。 一、 制备 例
^- MR用 Varian MercuryAMX300型仪测定; MS用 VG ZAB-HS或 VG-7070型仪 测定, 除注明外均为 EI源(70ev) ; 所有溶剂在使用前均经过重新蒸馏, 所使用的无水溶 剂均是按标准方法干燥处理获得; 除说明外, 所有反应均是在氮气保护下进行并 TLC跟 踪,后处理时均经饱和氯化钠水溶液洗涤和无水硫酸钠干燥过程;产品的纯化除说明外均 使用硅胶(200 300目)柱色谱法;其中硅胶(200 300目)由青岛海洋化工厂生产, GF254 薄层硅胶板由烟台江友硅胶开发有限公司生产。
1化 S1的合成
Figure imgf000012_0001
其中, 原料 S的合成参考文献 J Med. Chem. 2008, 51, 6581-6591, 原料 1-1的合成参 考文献 J Med. Chem. 2008, 51, 589-602, HBTU是苯并三氮唑 -Ν,Ν,Ν',Ν'-四甲基脲六氟磷 酸酯, DIPEA是二异丙基乙胺, DMF是 N,N-二甲基甲酰胺。
将中间体 S ( leq) 与 8-苄基 -3-三氟甲基 -5,6,7,8-四氢 [1,2,4]三唑 [4,3-a]哌嗪(leq)溶于 DMF中, 冰浴下依次加入 HBTU ( 1.2eq), DIPEA ( 2eq), 逐渐升温至室温反应过夜。 于 冰浴下加入水, 用二氯甲垸萃取 2次, 二氯甲垸层用饱和食盐水洗, 干燥, 蒸除溶剂, 柱 层析得白色泡状物 Sl。 NMR (300 MHz, CDC13) δ 11.69 (s, 0.5Η), 11.45 (s, 0.5H), 8.44 (s,lH), 7.97—7.62 (m, 3H), 7.41—6.69 (m,7H), 6.33 (s,lH), 5.26 (d, J = 40.2 Hz, 1H), 4.29 (s, 2H), 4.09 (s, 1.5H), 3.89 (s, 1H), 3.62 (m, 1.5H), 3.18 (s, 1H), 2.86 (m, 1H).
2化 S2的合成
Figure imgf000013_0001
2-1 S2 其中原料 2-1的合成参考文献 J Μέ¾/. Chem. 2008, 51,589-602.
S2合成方法与 SI相同。 S2的分析数据: ^ NMR POO MHz, CDC13) δ 11.59 (s, 0.65Η), 11.47 (s, 0.35H), 8.56〜8.29 (m, 1H), 7.90〜7.59 (m, 3H), 7.33 (m,2H), 7.06 (m, 1H), 6.21〜 6.17 (m, 0.5H), 5.86 (m,0.5H), 5.47〜4.72 (m,3H), 4.30 (s, 2H), 4.21 -3.82 (m, 2H), 3.71 (m, 1H), 3.47 - 2.47 (m, 3H).
3化
Figure imgf000013_0002
其中原料 3-1的合成参考文献 J Λ/έ¾/. Chem. 2008, 57,559-602 =
S3合成方法与 SI相同。 S3的分析数据: ^ NMR POO MHz, CDCI3) δ 12.19 (s, 0.33H), 12.01 (s,0.67H), 8.37 (d, J= 7.4 Hz, 1H), 7.71 (m, 3H), 7.48〜7.28 (m, 2H), 7.04 (t, J= 8.8 Hz, 1H), 4.88 (m, 1H), 4.76〜4.41 (m,2H), 4.22 (s, 2H), 3.72 (s,lH), 3.46-3.41 (m, 1H), 1.49 (d, J = 6.3 Hz,3H).
4化合物 S4 ¾^成
Figure imgf000013_0003
其中原料 4-1的合成参考文献 J Chem. 2008, 57,559-602 =
S4合成方法与 SI相同。 S4的分析数据: ¾ NMR (300 MHz, CDC13) δ 12.13 (s, 1H), 8.33 (d, J = 6.9 Hz, 1H), 7.65 (m, 3H), 7.35 (s, 2H), 7.01 (t, J = 8.1 Hz, 1H), 6.02 (s, 0.5H), 5.18—4.88 (m,0.5H), 4.25 (s, 2H),4.20〜3.80 (m, 3H), 3.68 (m, 1H), 1.63 (d, J = 4.5 Hz, 2H): 1.46 (s, 1H).
5化合物 S5的合成
Figure imgf000014_0001
其中原料 5-1的合成参考文献 J Met/. Chem. 2008, 57,5<^-602。
S5合成方法与 SI相同。 S5的分析数据: NMR (300 MHz, CDC13) δ 11.93 (s, 0.3H), 11.79 (d, J = 13.8 Hz,0.7H), 8.43 (d, J = 7.5 Hz,lH), 7.73 (m, 3H), 7.36 (m, 2H), 7.07 (m,lH), 6.10 (t, J = 6.9 Hz,0.25H), 5.09 (d, J = 7.2 Hz,0.25H), 4.89 (d, J = 14.1 Hz, 0.25H), 4.67 (s,0.25H), 4.55—4.37 (m,lH), 4.35〜4.24 (m, 2H), 3.87—3.53 (m, 0.5H),3.46〜3.18 (m, 1H), 3.12—3.05 (m, 0.5H),1.71〜1.43 (m, 6H).
Figure imgf000014_0002
其中原料 6-1的合成参考文献 J Met/. Chem. 2008, 57, 559-6020
S6合成方法与 SI相同。 S6的分析数据: ¾ MR (300 MHz, CDC13) δ 12.11 (s, 0.3Η),δ 11.94 (s, 0.7Η), 8.39 (d, J= 7.2 Hz, 1H), 7.70 (d, J = 7.2Hz, 3H), 7.36 (d, J= 5.4 Hz, 2H), 7.03 (t, J = 8.7 Hz, 1H), 5.14 (s,0.5H), 4.76 (s, 1.5H), 4.27 (s,2H), 3.98 (s, 1.5H), 3.52 (s,0.5H), 1.62 (s, 4.35H), 1.40 (s, 1.68H).
7化合物 S7的合成
Figure imgf000015_0001
S7
其中原料 7- 1的合成参考文献 J Met/. Chem. 2008, 51, 589-602 , TMEDA为四甲基乙 二胺。
中间体 7-2的合成:
将原料 7- 1 (1 eq)溶解在四氢呋喃中, -78 °C下加入 TMEDA(1.5eq), l Omin后缓慢滴加 n-BuLi, l Omin后加入烯丙基溴, 滴完后 20min关闭制冷。 饱和氯化胺淬灭后用二氯甲垸 萃取两次, 二氯甲垸层用饱和食盐水洗, 干燥, 蒸除溶剂, 柱层析得中间体 7-2。 NMR (300 MHz, CDC13) δ 5.98 - 5.36 (m, 2H), 5.24 - 4.83 (m, 2H), 4.63 - 4.26 (m, 2H), 3.29 (m, 1H), 2.82 (s, 1H), 2.67 (m, H), 1.55 - 1.37 (m, 12H).
中间体 7-3的合成:
将原料 7-2溶解在乙醇中, 加入 6N盐酸, 室温搅拌过夜, 直接减压蒸干溶剂备用。 S7合成方法与 S 1相同。 S7的分析数据: ^ NMR POO MHz, CDC13) δ 11.89〜11.78 (m, 1H), 8.42 (d, J = 7.5 Hz,lH), 7.72 (m, 3H), 7.38 (m, 2H), 7.06 (m, lH), 6.25〜6.19 (m, 0.5H), 5.87 (m,0.5H), 5.49—4.73 (m,3H), 4.30 (s, 2H), 4.20—3.80 (m, 3H), 3.45—2.44 (m,2H), 1.72〜1.45 (m, 3H).
8化合物 S8的合成
Figure imgf000016_0001
中间体 8-1的合成:
合成方法与 7-2的合成相同。化合物 8-1的分析数据: NMR (300 MHz, CDC13) δ.38-7.19 (m, 3Η), 7.12 (d, J= 6.0 Hz,2H), 5.68 (dd, J= 9.1, 3.8 Hz,lH), 4.49-4.15 (m, 2H),.39 (d, J = 11.4 Hz, 1H), 3.19 (dd, J = 13.7, 9.7 Hz, 1H), 2.91 (dd, J = 14.3, 10.1 Hz, 1H),.30—1.07 (m, 12H).
中间体 8-2的合成:
将原料 8-1溶解在乙醇中, 加入 6N盐酸, 室温搅拌过夜, 直接减压蒸干溶剂备用。 终产物 S8的合成:
S8合成方法与 S1相同。化合物 S8的分析数据: iH NMR (300 MHz, CDC13) δ 11.70, 0.5Η), 11.46 (s, 0.5H), 8.44 (s,lH), 7.78 (m, 3H), 7.43〜6.68 (m,7H), 6.35 (s,lH), 5.28 (m,H), 5.17〜4.67 (m,lH), 4.30 (s, 2H), 4.09 (m,2H), 3.48〜3.14 (m, 2H), 1.75-1.48 (m, 3H).
Figure imgf000016_0002
S9及中间体的合 与 S8相同。 化^ ί S9的分析数据: NMR (300 MHz, CDC13) δ 12.12 (s, 0.4Η),δ 11.96 (s, 0.6H), 8.36 (d, J= 7.2 Hz, 1H), 7.70 (d, J= 7.2 Hz, 3H), 7.36 (d, J = 5.4 Hz, 2H), 7.03 (t, J= 8.7 Hz, 1H), 6.00 (s, 0.5H), 5.15〜4.85(m,0.5H), 4.28 (s,2H), 3.95 (s, 1.5H), 3.50 (s,0.5H), 1.60-1.34 (m, 9H).
10 S10的合成
Figure imgf000017_0001
其中原料 10-1 的合成参考文献 Journal of Heterocyclic Chemistry, 2005 , 42(4), 691-694。
中间体 10-2的合成:
将原料 10-1溶解在 80%水合肼中, 加热至 120°C反应, 反应完全后冷却至室温再放 置冰箱,大量固体析出,过滤,烘干得粗品 10-2。 iH NMR (300 MHz, DMSO) δ 7.48 (s, 1Η), 7.41 (s, 1H), 7.35 (s, 1H), 4.11 (s, 2H), 3.99(s, 3H).
中间体 10-3的合成:
将三氟乙酸酐于冰浴下冷却后, 分批加入 10-2后, 在此温度下搅拌 lOmin缓慢升至 室温反应, 反应完全后将反应液减压蒸出后加入多聚磷酸, 加热至 120°C反应过夜, 冷却 后将反应液倒入冷却的浓氨水中, 过滤得粗品 10-3。 ^ NMR POO MHz, DMSO) δ 9.51 (s, 1Η), 8.08 (s, 1Η), 4.02 (s, 3Η).
中间体 10-4的合成:
将中间体 10-3溶解在甲醇中, 加入钯碳, 氢气置换反应过夜。 反应完全后将钯碳过 滤, 浓缩滤液得 10-4. ¾ NMR (300 MHz, CDC13) δ 5.43 (t, J = 7.5 Hz, 1H), 4.28 (d, J = 16.8 Hz, 1H), 4.07 (d, J = 16.8 Hz, 1H), 3.39 (s, 3H), 3.18 (dd, J = 13.5, 3.9 Hz, 1H), 3.03 (d, J = 13.5 Hz, 1H), 2.20 (s, 1H).
终产物 s 10的合成: SIO合成: ¾¾与 SI相同, SIO的分析数据: NMR (300 MHz, CDC13) δ 12.21 (s, 0.4H), 12.01 (s,0.6H), 8.35 (d, J = 7.4 Hz, 1H), 7.69 (m, 3H), 7.46-7.28 (m, 2H), 7.02 (t, J = 8.7 Hz, IH), 5.66 (m, 1H), 4.88 (m, 1H), 4.76 (m,lH), 4.22 (s, 2H), 3.92 (s,lH),3.71〜3.52 (m, IH), 3.35 (s, 3H).
11化^ f Sll的合成
Figure imgf000018_0001
终产物 S l l及其相关中间体的合成与 S10相同。
11-2的分析数据: ¾ NMR (300 MHz, DMSO) δ 7.45 (s, IH), 7.38 (s, 1H), 7.32 (s, 1H), 4.09 (s, 2H), 3.09(s, 6H).
11-3的分析数据: ¾ NMR (300 MHz, DMSO) δ 9.10 (s, IH), 8.01 (s, 1H), 3.21 (s, 6H).
11-4的分析数据: ¾ NMR (300 MHz, CDC13) δ 5.18 (t, J = 7.5 Hz, 1H), 4.18 (d, J = 16.8 Hz, 1H), 4.01(d, J = 16.8 Hz, 1H), 3.18 (dd, J = 13.5, 3.9 Hz, 1H), 3.03 (d, J = 13.5 Hz, IH) ,2.28 (s, 6H), 2.20 (s, IH).
Sll的分析数据: ^ MR (300 MHz, CDC13) δ 12.22 (s, 0.4H), 12.02 (s,0.6H), 8.33 (d, J = 7.4 Hz, 1H), 7.66 (m, 3H), 7.46〜7.28 (m, 2H), 7.00 (t, J = 8.7 Hz, 1H), 5.26 (m, 1H), 4.86—4.65 (m, 2H), 4.21 (s, 2H), 3.90 (s,lH), 3.70—3.50 (m, 1H),2.31 (m, 6H).
12化合物 S12的合成
Figure imgf000019_0001
Figure imgf000019_0002
其中中间体 12-1 合^ L参考文橡 Journal of Natural Products, 2011 , 74(7), 1630-1635。 中间体 12-4的合成与 11-4合成方法相同,后面按照前面所述中间体 7-3的合成方法 得到中间体 12-7, 最后缩合得到终产物 S12。
化合物 12-2的分析数据: NMR (300 MHz, DMSO) δ 7.52 (s, 1H), 7.41 (s, 1H), 7.35 (s, 1H), 4.21 (s, 2H), 3.02(q, J = 7.0 Hz, 2H), 1.10 (t, J = 7.0 Hz, 3H).
化合物 12-3的分析数据: ¾ NMR (300 MHz, DMSO) δ 9.01 (s, 1H), 7.92 (s, 1H), 3.03(q, J = 7.0 Hz, 2H), 1.15 (t, J = 7.0 Hz, 3H).
化合物 12-4的分析数据: ^ NMR (300 MHz, CDC13) δ 4.12 (m, 1H), 4.01 (d, J = 16.8 Hz, 1H), 3.83(d, J = 16.8 Hz, 1H), 3.12 (dd, J = 13.5, 3.9 Hz, 1H), 2.88 (d, J = 13.5 Hz, 1H), 2.20 (s, 1H), 1.75(q, J = 7.0 Hz, 2H), 0.95 (t, J = 7.0 Hz, 3H).
化合物 12-6的分析数据: NMR (300 MHz, CDC13) δ 5.57 (m, 1H), 4.78-4.16 (m, 2H), 3.29 (m, 1H), 1.73〜 1.62 (m, 5H),0.95 (m, 3H).
化合物 S12的分析数据: NMR (300 MHz, CDC13) δ 11.96 (s, 0.3H), 11.81 (d, J = 13.8 Hz,0.7H), 8.45 (d, J = 7.5 Hz,lH), 7.75 (m, 3H), 7.37 (m, 2H), 7.07 (m,lH), 6.14 (t, J = 6.9 Hz,0.25H), 5.06 (d, J = 7.2 Hz,0.25H), 4.89 (d, J = 14.1 Hz, 0.25H), 4.66 (s,0.25H), 4.54— 4.40 (m,lH), 4.30—4.28 (m, 2H), 3.81—3.48 (m, 0.5H),3.48〜3.09 (m, 1H), 3. 10—3.02 (m, 0.5H),1.81〜1.43 (m, 5H), 0.96 (m,3H).
13化合物 S13的合成
Figure imgf000020_0001
化合物 S13的合成与化合物 S12合成方法相同。
化合物 S13的分析数据: NMR (300 MHz, CDC13) δ 11.83 (s, 0.3H), 11.67 (d, J = 13.8 Hz,0.7H), 8.32 (d, J = 7.5 Hz,lH), 7.59 (m, 3H), 7.21 (m, 2H), 7.01 (m,lH), 6.15 (m, 0.25H),5.45 (m,lH) ,5.09—4.85 (m,0.75H), 4.55〜4.39 (m, 2H), 3.79—3.42 (m, 0.5H),3.46〜 3.18 (m, 1H), 3.12—3.05 (m, 0.5H), 2.30 (m, 6H),1.67〜1.36 (m, 3H).
14化 S14的合成
Figure imgf000020_0002
化合物 S14的合成与化合物 S12合成方法相同 HNMR POO MHz, CDCI3) δ 11.98 (s, 0.3H), 11.80 (d, J = 13.8 Hz,0.7H), 8.47 (d, J = 7.5 Hz,lH), 7.65 (m, 3H), 7.30 (m, 2H), 7.12 (m,lH), 6.35 (m, 0.25H), 5.87 (m,lH) , 5.15-4.92 (m, 0.75H), 4.64〜4.41 (m, 2H), 4.13 (s, 3H), 3.98-3.68 (m, 0.5H), 3.59-3.33 (m, 1H), 3.22〜3.12 (m, 0.5H), 1.79-1.51 (m, 3H).
15化合物 S15 成
Figure imgf000021_0001
S15
化合物 S15的合成与化合物 S12合成方法相同 HNMR OOMHZ, CDC13) δ 12.01 (s, 0.3H), 11.89 (d, J= 13.8 Hz,0.7H), 8.51 (d, J= 7.5 Hz,lH), 7.78 (m, 3H), 7.39 (m, 2H), 7.12 (m,lH), 6.08 (t, J= 6.9 Hz,0.25H), 5.11 (d, J= 7.2 Hz,0.25H), 4.92 (d, J = 14.1 Hz, 0.25H), 4.72 (s,0.25H), 4.59—4.42 (m,lH), 4.37—4.27 (m, 2H), 3.92〜3.56 (m, 0.5H), 3.51〜3.22 (m, 1H), 3.15—3.07 (m, 0.5H), 2.85 (m, 2H) , 1.71〜 1.43 (m, 3H).
Figure imgf000021_0002
S16
化合物 S16的合成与化合物 S12合成方法相同 ^HNMRPOO MHz, CDC13) δ 11.93 (s, 0.3H), 11.79 (d, J= 13.8 Hz,0.7H), 8.43 (d, J= 7.5 Hz,lH), 7.73 (m, 3H), 7.36 (m, 2H), 7.07 (m,lH), 6.10 (t, J= 6.9 Hz,0.25H), 5.09 (d, J= 7.2 Hz,0.25H), 4.89 (d, J = 14.1 Hz, 0.25H), 4.67 (s,0.25H), 4.55〜4.37 (m,lH), 4.35—4.24 (m, 2H), 3.87—3.53 (m, 0.5H),3.46〜3.18 (m, 1H), 3.12〜3.05 (m, 0.5H),1.71〜1.43 (m, 6H).
1
Figure imgf000022_0001
其中原料 17-2的合成参考文献 J Med. Chem. 2008, 57, 559-602 »
中间体 17-3的合成:
将二氟乙酸酐冷却后, 冰浴下分批加入 17-2, 加毕在此温度下反应 lOmin后, 将温 度缓慢升至室温, 反应完全后将反应液减压浓缩后, 加入适量多聚磷酸, 加热至 120°C反 应过夜。 冷却后将反应液倒入冷却的浓氨水中, 过滤得粗品 17-3。 NMR (300 MHz, DMSO) δ 9.51 (s, 1H), 8.08 (s, 1H), 6.87 (t, J = 51.6 Hz, 1H), 2.68 (s, 3H).
中间体 17-4的合成:
将中间体 17-3溶解在甲醇中, 加入适量的钯碳, 氢气置换后放置在室温搅拌过夜, 反应完全后将钯碳滤除,浓缩得 17-4粗品。 NMR (300 MHz, CDC13) 56.79 (t, J = 51.6 Hz, 1H), 4.57 - 4.41 (m, 1H), 4.35 (d, J = 16.8 Hz, 1H), 4.15 (dd, J = 15.9, 7.7 Hz, 1H), 3.22 (dd, J = 13.4, 4.0 Hz, 1H), 3.08 (dd, J = 13.4, 1.6 Hz, 1H), 2.38〜1.98 (m, 1H), 1.54 (t, J = 5.9 Hz, 3H).
终产物 S 17的合成与 S I相同。 ¾ NMR (300 MHz, CDC13) δ 12.13(s, 0.33H), 12.05 (s,0.67H), 8.34 (d, J = 7.4 Hz, 1H), 7.68 (m, 3H), 7.43—7.24 (m, 2H), 6.92—7.08 (m, 2H), 4.85 (m, 1H), 4.74〜4.40 (m,2H), 4.20 (s, 2H), 3.70 (s,lH), 3.45 —3.38 (m, 1H), 1.49 (d, J = 6.3 Hz,3H).
is化合物 sis
Figure imgf000022_0002
Figure imgf000023_0001
其中,片段 18-1的合成与片段 17-4合成方法相同。 ^ NMR (300 MHz, CDC13) δ 5.47 (d, J= 47.9 Hz, 2H), 4.57 - 4.41 (m, 1H), 4.35 (d, J = 16.8 Hz, 1H), 4.15 (dd, J = 15.9, 7.7 Hz, 1H), 3.22 (dd, J = 13.4, 4.0 Hz, 1H), 3.08 (dd, J = 13.4, 1.6 Hz, 1H), 2.38—1.98 (m, 1H), 1.54 (t, J = 5.9 Hz, 3H).
终产物 S 18的合成与 S I相同。 ¾ NMR (300 MHz, CDC13) δ 12.13(s, 0.33H), 12.05 (s,0.67H), 8.34 (d, J = 7.4 Hz, 1H), 7.68 (m, 3H), 7.43—7.24 (m, 2H), 6.92—7.08 (m, 1H), 5.54 (d, J= 47.7 Hz, 2H), 4.85 (m, 1H), 4.74—4.40 (m,2H), 4.20 (s, 2H), 3.70 (s,lH), 3.45 〜 3.38 (m, 1H), 1.49 (d, J= 6.3 Hz,3H).
19化合物 S19的合成
Figure imgf000023_0002
其中, 片段 19-1的合成与片段 5- 1合成方法相同。 ^ NMR (300 MHz,CDCl3) S 5.59 (s, 1H), 4.73 - 4.24 (m, 2H), 3.60 - 3.17 (m, 1H), 2.45 (m, 1H), 1.77 - 1.58 (m, 6H).
终产物 S 19的合成与 SI相同。 ^ NMR POO MHz, CDC13) δ 11.93 (s, 0.3H), 11.79 (d,J = 13.8 Hz,0.7H), 8.43 (d, J = 7.5 Hz,lH), 7.73 (m, 3H), 7.36 (m, 2H), 7.07 (m,lH), 6.10 (t, J = 6.9 Hz,0.25H), 5.52 (d, J = 47.4 Hz, 2H), 5.09 (d, J = 7.2 Hz,0.25H), 4.89 (d, J = 14.1 Hz, 0.25H), 4.67 (s,0.25H), 4.55〜4.37 (m,lH), 4.35〜4.24 (m, 2H), 3.87〜3.53 (m, 0.5H),3.46〜 3.18 (m, 1H), 3.12—3.05 (m, 0.5H),1.71〜1.43 (m, 6H).
20化合物 S20的合成
Figure imgf000024_0001
其中, 片段 20-1的合成与片段 6-1合成方法相同。 ^ NMR (300 MHz,CDCl3) S 5.48 (d, J= 48.3 Hz, 2H), 4.72 (d, J= 1.4 Hz, 2H), 3.53 (s, 2H), 2.55 (m, 1H), 1.49 (s, 6H).
S20合成方法与 SI相同。 NMR (300 MHz, CDC13) δ 12.11 (s, 0.3Η),δ 11.94 (s, 0.7H), 8.39 (d, J = 7.2 Hz, 1H), 7.70 (d, J = 7.2Hz, 3H), 7.36 (d, J = 5.4 Hz, 2H), 7.03 (t, J= 8.7 Hz, 1H), 5.51 (d, J = 47.6 Hz, 2H), 5.14 (s,0.5H), 4.76 (s, 1.5H), 4.27 (s,2H), 3.98 (s, 1.5H), 3.52 (s,0.5H), 1.62 (s, 4.35H),1.40 (s, 1.68H).
Figure imgf000024_0002
S21合成方法与 SI相同。 MR (300 MHz, CDC13) 512.19 (s, 0.33H), 12.01 (s,0.67H), 7.42 (s, 1H), 7.13 (t, J = 8.9 Hz, 1H), 7.01 (d, J = 8.7 Hz, 1H), 4.88 (m, 1H), 4.76-4.41 (m,2H), 4.22 (s, 2H), 3.72 (s,lH), 3.46〜3.41 (m, lH),2.44(s, 3H), 2.14 (s, 3H), 1.49 (d, J= 6.3 Hz, 3H).
Figure imgf000024_0003
S22合成方法与 SI相同。 MR (300 MHz, CDC13) 512.19 (s, 0.33H), 12.01 (s,0.67H) 7.35 (m, 2H), 7.11 (t, J = 8.9 Hz, 1H), 6.96 (d, J = 8.7 Hz, 1H), 4.88 (m, 1H), 4.76—4.41 (m, 2H), 4.22 (s, 2H), 3.72 (s,lH), 3.46-3.41 (m, 1H), 2.14 (s, 3H), 1.49 (d, J= 6.3 Hz, 3H). 二、试验 例
1、 ELISA髙職 PARP1抑制布鮮水平贿
利用 PARP1全长质粒, 经 PCR扩增、 酶切、 连接、 转化到 DH5a, 获得 HTb-PARPl 阳性克隆; 经抽提、 酶切鉴定, 转化到 DHlOBac后 PCR、 测序鉴定 Bacmid/PARP, 转染 TNI, 收集病毒、 裂解细胞, 用亲和层析法纯化 PARP1 蛋白、 Western blotting鉴定。 将 底物组蛋白、 NAD+和 DNA以及表达的 PARP1酶进行包被、 置于 96孔板反应体系、 优 化并最终确定各种反应条件, 反应产物 PAR用 PAR单抗反应, 加入二抗后, 用酶标仪读 取 OD值, 并据此计算 PARP1酶活性抑 w制程度, 如表一所示。
、 化合物在分子水平对 PARP1酶活性的抑制作用
水平
化合物 结构 (PARP1)
IC50(nM)
AZD2281 <50
S1 300
S2 <50
S3 <20
<20
S4
Figure imgf000026_0001
8666.0/CT0ZN3/X3d 89t6I0/ 0Z OAV 91
Figure imgf000027_0001
8666.0/CT0ZN3/X3d 89t6I0/ 0Z OAV
Figure imgf000028_0001
从表一我们可以看到, 绝大多数的化合物在分子水平对 PARP1酶表现出高亲和力, 对 PARP表现出显著抑制活性, 多数化合物抑制率浓度为纳摩尔级 (; <100nM), 部分化合 物对 PARP的抑制活性强于阳性化合物, 最好化合物甚至达到 10 nM以下, 是阳性化合 物 AZD-2281的 13倍。 并且, 比较化合物 S1 S16的结构特点, 我们可以发现, 因哌嗪 环上取代基的位置以及种类的不同,化合物在分子水平对 PARP1酶表现出不同的亲和力, 如 S1和 S8就表现出很差的亲和力 GOOnM左右)。 因此,三唑并哌嗪环及环上的取代基 对活性贡献较大。
2、 化合 «分
由于化合物大多具有 1-2个手性中心, 我们通过手性制备液相色谱对它们进行拆分, 得到相应的光学异构体。例如化合物 S3的两个对映异构体均显示较高的 PARP1酶抑制活 性, 其中 (-;) -S3的活性比 (+;>-S3的活性高出一倍, 表明 0-异构体与 PARP酶的结合更好。 具体结果如下:
1) 拆分条件:
手性柱: CHIRALPAKIA
手性柱尺寸: 0.46cmI.D. X 15 cmL 流动相: Hexane/IPA=40/60 (v/v) 流速: 1 ml/min
检测波长: UV 254 nm
2)手性 HPLC谱图: 参看图 1-3。
3 ) 对映异构体的 PARP1酶抑制活性:
Figure imgf000029_0001
3、代雜化合物细胞活性测试 基于用 ELISA模型初步评价化合物在分子水平对 PARP1的抑制作用,接着用细胞增 殖抑制模型评价化合物在细胞水平对 PARP1的抑制作用, 结果如下:
表三.化合物在细胞水平对 PARP1酶活性的抑制作用 细胞水平 PARP1酶活性抑制率 (%; nM)
化合物 IC50 (nM)
1000 200 40 8 1.60 53 74.43 70.14 61.19 33.08 -3.11 17.33
54 75.65 75.50 53.12 8.66 -1.36 35.52
55 73.53 63.78 23.48 -3.01 -5.06 98.74 S10 78.59 67.54 31.82 10.51 11.62 83.97
517 79.72 76.50 65.60 12.12 4.61 24.77
518 78.44 77.03 76.98 54.12 7.63 7.15
S19 0.69 0.40 3.32 -2.17 2.09
AZD2281 81.321 67.977 31.49 9.079 -3.57 86.32
* 负值, 表明无生长增殖抑制作用, 可视为 0; 余同。
从上面结果可以看出, 新化合物不仅在 PARP 1酶水平具有高活性, 在 PARP1直接 相关的细胞 VC8上也表现明显的活性,部分化合物活性是阳性化合物 AZD2281 的 12倍。
4、代¾¾化合物 S3与 AZD2281对不同肿痏细胞增¾^¾1制作用的比较
为进一步明确新化合物与 AZD2281 可能的比较优势, 我们对代表性化合物 S3 与 AZD2281对不同肿瘤细胞增殖生长抑制作用进行了平行对比, 结果见表四。该结果显示, 对四种不同组织来源的肿瘤细胞, S3的增殖生长抑制作用 均强于 AZD2281 ,最强达 178 倍。 表四. f¾¾¾ft合物 S3与 AZD2281对不同胂痏细胞的增 长抑制作用
Figure imgf000030_0001
PC-3 前列腺癌 995 3922 3.9
U87-MG 神经胶质瘤 228 2922 12.8
U251 神经胶质瘤 6.7 1194 178
OVCAR-8 卵巢癌 10500 12360 1.2
5、代總化 S3对 PARP m ^
为了测试三唑并哌嗪环上的取代基对 PARP家族成员的选择性, 我们测试化合物 S3 和阳性化合物 AZD2281的选择性, 结果见下表:
化 对 PARP麵的 性
Figure imgf000031_0001
* 以相应化合物对其它亚型的 IC5Q与对 PARP1的 IC5Q的比值; ** 以相应化合物对其它亚型的 IC5Q与对 PARP1的 IC5Q的比值。 从上表可以看出, 新合成的取代的三唑并哌嗪衍生物 S3对 PARP1和 PARP2的活性 明显高于阳性化合物。 同时,化合物 S3 还表现出较高的选择性, 尤其是对 TNKS1 和 TNKS2,选择性高达 870倍以上,而阳性化合物对这两个亚型的选择性则较低,仅 5.5-23.1 倍。 TNKS1和 TNKS2的功能并未完全阐明, 对其选择性较低, 可能预示着较高的不可预 知的毒性风险。 因此, 与阳性化合物 AZD2281相比, 新合成的化合物 (S3 ) 对 PARP1/2 选择性明显更高, 不可预知的毒性风险较低。
5.化合物对钾离子舰 hERG的 活性
为评价新化合物是否具有较好的安全性,尤其是对心脏毒性相关的钾离子通道 hERG 的抑制活性, 我们进一步评价了这些化合物对 hERG的抑制活性, 结果见下表:
表五. 化合物对钾离子通道 hERG的抑制作用 化合物 ΙΟ50(μΜ)
S1 >10
S3 >10
S3- (+) >10
S3- (-) >10
S7 >10
S10 >10
S15 >10
S17 >10
可见, 这类化合物无论是消旋体还是立体异构体, 都不对钾离子通道 hERG产生抑 制作用, 因而心脏毒性的风险较低。
6.代表性化合物 S3体内膽瘤活性
取生长旺盛期的瘤组织剪切成 1.5 mm3左右, 在无菌条件下, 接种于裸小鼠右侧腋 窝皮下。裸小鼠皮下移植瘤用游标卡尺测量移植瘤直径,待肿瘤生长至 100-200 mm3后将 动物随机分组。 S3均为 100 mg/kg组和 25 mg/kg组, 阳性药 AZD2281为 100 mg/kg。 均 为口服给药每天一次, 连续三周; 溶剂对照组则给等量生理盐水。整个实验过程中, 每周 2次测量移植瘤直径, 同时称量小鼠体重。肿瘤体积 (tumor volume, TV)的计算公式为: TV = l/2xaxb2,其中 a、 b分别表示长、宽。根据测量的结果计算出相对肿瘤体积(relative tumor volume, RTV), 计算公式为: RTV = Vt/V。。 其中 V。为分笼给药时 (即 d0)测量所得肿瘤 体积, ¼为每一次测量时的肿瘤体积。 抗肿瘤活性的评价指标为 1 ) 相对肿瘤增殖率 T/C(%), 计算公式如下: T/C(%)= (TRTV/ CRTV)x l00 %, TRTV: 治疗组 RTV ; CRTV: 阴性 对照组 RTV ; 2 ) 肿瘤体积增长抑制率 GI% , 计算 公式如下 : GI%=[ 1 -(TVt-TVo)/(CVt-CTo)] x 100% , TVt为治疗组每次测量的瘤体积; TV。为治疗组分 笼给药时所得瘤体积; CVt为对照组每次测量的瘤体积; CV。为对照组分笼给药时所得瘤 体积; 3 )瘤重抑制率, 计算公式如下: 瘤重抑制率%=CWc-WT)/Wcx lOO%, Wc: 对照组 瘤重, WT : 治疗组瘤重。
实验结果如表六所示。 化合物 S3按 100 mg/kg及 25 mg/kg剂量每天口服给药 1次, 连续给药 21天, 对人乳腺癌 MDA-MB-436裸小鼠皮下移植瘤的生长均有极显著抑制作 用, 在第 21天所得 T/C百分数分别为 0.59%和 9.80%。 25 mg/kg剂量时, 抑瘤作用与阳 性对照 AZD2281相当; 而 100 mg/kg剂量时, 抑瘤作用远远高于阳性对照 AZD2281。
表六. 化合物 S3对人乳腺癌 MDA-MB-436裸小鼠移植瘤的实验治疗作用
动物数 TV (mm3) (平均值±80) RTV (平均值 T/C 组别 剂量、 给药方式
do d2i do d2i 士 SD) (%) 溶剂对照 0.2ml/只, qdx21 o 12 12 125±24 1698±672 14.26±7.74
100mg/kg,qdx21 po 6 6 128±36 11±7(1) 0.08±0.04** 0.59
S3
25mg/kg,qd><21 po 6 6 127±30 165±57(3) 1.40±0.71** 9.80
AZD2281 100mg/kg,qdx21 po 6 6 127±37 120±118 0.95±0.78** 6.65
** p<0.05 ; "0"中数字为肿瘤消退小鼠数
综上所述,化合物 S3在体内确具有显著的抗肿瘤活性,在 25mg/kg剂量下对肿瘤的 抑制作用与阳性化合物在 100mg/kg剂量下相当, 在 100mg/kg剂量下, 则肿瘤完全消失。 更重要的是, 在两个剂量下, 化合物 S3均未表现出明显的副作用。
综上所述,以化合物 S3为代表的这类含一个或多个取代基的哌嗪并三唑类化合物具 有极高的 PARP1酶抑制活性, 细胞活性也明显高于阳性化合物 AZD2281。 同时, 环上取 代基的存在也明显提高了化合物对端粒酶 TNKS1和 TNKS2的选择性,心脏毒性风险小, 在 PARP1小鼠动物模型上肿瘤的抑制作用也显著高于阳性化合物。 因此, 这些化合物作 为新型高选择性核糖多聚 ADP-核糖聚合酶 -1 (PARP1 ) 抑制剂可用于预防和 /或治疗与 PARP相关疾病。

Claims

权利要求
1、一类如下通式 I表示的哌嗪并三唑类化合物或其异构体或其药剂学上可接受的盐、 酯、 前药或水合物,
Figure imgf000034_0001
其中, A和 B各自独立地为氢或者取代或未取代的 C1-C8烃基, 并且 A和 B不同时 为氢, 其中, 所述取代的取代基选自卤素、 氰基、 硝基、 羟基和氨基;
或者, A和 B与相连接的碳原子一起形成取代或未取代的 C4-C8脂族环, 取代或未 取代的 C6-C10芳环, 取代或未取代的含有 1-3个选自 N、 0和 S原子的 4-8元杂环, 或 者取代或未取代的含有 1-3个选自 N、 0和 S原子的 5-8元芳杂环, 其中, 所述取代的取 代基选自卤素、 氰基、 硝基、 羟基和氨基;
X为氢、 卤素、 羟基或氰基;
Y为氢或者取代或未取代的 C1-C8烷基, 其中, 所述取代的取代基选自¾素、 氰基、 硝基、羟基、氨基、 C1-C6垸氧基、 C2-C6垸羰基、 C2-C6垸氧羰基、 C2-C6链烯基、 C2-C6 炔基和 C6-C10芳基;
G为氢、 C1-C6垸基、 C1-C6垸氧基、 C2-C6垸羰基、 C1-C6垸基氨基或 (C1-C6垸基 )2 氨基;
Z为氢、 C1-C6垸基、 C1-C6垸氧基、 C2-C6垸羰基、 C1-C6垸基氨基或 (C1-C6垸基 )2 氨基;
并且 Y、 G和 Ζ不同时为氢;
R选自氢或者取代或未取代的 C1-C8垸基; 所述取代的取代基选自卤素、 氰基、 硝 基、 羟基、 氨基、 C1-C6垸氧基、 C2-C6垸羰基、 C2-C6垸氧羰基和 C6-C10芳基。
2、根据权利要求 1所述的哌嗪并三唑类化合物或其异构体或其药剂学上可接受的盐、 酯、 前药或水合物, 其中, A和 B各自独立地为氢, 取代或未取代的 C1-C8垸基, 取代或未取代的 C2-C8链¾ 基, 或者取代或未取代的 C2-C8炔基, 并且 A和 B不同时为氢, 其中, 所述取代的取代 基选自卤素、 氰基、 硝基、 羟基和氨基;
或者, A和 B与相连接的碳原子一起形成取代或未取代的 C4-C7脂族环, 取代或未 取代的 C6-C8芳环, 取代或未取代的含有 1-3个选自 N、 0和 S原子的 4-7元杂环, 或取 代或未取代的含有 1-3个选自 N、 0和 S原子的 5-7元芳杂环, 其中, 所述取代的取代基 选自卤素、 氰基、 硝基、 羟基和氨基;
X为氢、 卤素、 羟基或氰基;
Y为氢或者取代或未取代的 C1-C6烷基, 所述取代的取代基选自¾素、 氰基、 硝基、 羟基、 氨基、 C1-C4垸氧基、 C2-C4垸羰基、 C2-C4垸氧羰基、 C2-C4链烯基、 C2-C4炔 基和 C6-C8芳基;
G独立地为氢、 C1-C4垸基、 C1-C4垸氧基、 C2-C4垸羰基、 C1-C4垸基氨基或 (C1-C4 焼基) 2氨基;
Z独立地为氢、 C1-C4垸基、 C1-C4垸氧基、 C2-C4垸羰基、 C1-C4垸基氨基或 (C1-C4 焼基) 2氨基;
并且 Y、 G和 Ζ不同时为氢;
R选自氢或者取代或未取代的 C1-C6垸基; 所述取代的取代基选自卤素、 氰基、 硝 基、 羟基、 氨基、 C1-C4垸氧基、 C2-C4垸羰基、 C2-C4垸氧羰基和 C6-C8芳基。
3、根据权利要求 2所述的哌嗪并三唑类化合物或其异构体或其药剂学上可接受的盐、 酯、 前药或水合物, 其中,
Α和 Β各自独立地为氢或者取代或未取代的 C1-C6垸基, 并且 A和 B不同时为氢, 其中, 所述取代的取代基选自卤素、 氰基、 硝基、 羟基和氨基;
或者, A和 B与相连接的碳原子一起形成取代或未取代的 C4-C7脂族环或者取代或 未取代的 C6-C8芳环, 其中, 所述取代的取代基选自卤素、 氰基、 硝基、 羟基和氨基;
X为氢、 卤素、 羟基或氰基;
Y为氢或者取代或未取代的 C1-C6烷基, 所述取代的取代基选自¾素、 氰基、 硝基、 羟基、 氨基、 C1-C4垸氧基、 C2-C4垸羰基、 C2-C4垸氧羰基、 C2-C4链烯基、 C2-C4炔 基和 C6-C8芳基; G独立地为氢、 C1-C4垸基、 C1-C4垸氧基、 C2-C4垸羰基、 C1-C4垸基氨基或 (C1-C4 焼基) 2氨基;
Z独立地为氢、 C1-C4垸基、 C1-C4垸氧基、 C2-C4垸羰基、 C1-C4垸基氨基或 (C1-C4 焼基) 2氨基;
并且 Y、 G和 Ζ不同时为氢;
R选自氢或者取代或未取代的 C1-C6垸基; 所述取代的取代基选自卤素、 氰基、 硝 基、 羟基和氨基。
4、根据权利要求 3所述的哌嗪并三唑类化合物或其异构体或其药剂学上可接受的盐、 酯、 前药或水合物, 其中,
Α和 Β各自独立地为氢或 C1-C4垸基, 并且 A和 B不同时为氢;
或者, A和 B与相连接的碳原子一起形成取代或未取代的 C4-C6脂族环或者取代或 未取代的 C6-C8芳环, 其中, 所述取代的取代基选自卤素、 氰基、 硝基、 羟基和氨基; X为氢、 卤素、 羟基或氰基;
Y为氢或者取代或未取代的 C1-C4烷基, 所述取代的取代基选自¾素、 氰基、 硝基、 羟基、 氨基、 C1-C4垸氧基、 C2-C4垸氧羰基、 C2-C4链烯基和苯基;
G独立地为氢、 C1-C4垸基、 C1-C4垸氧基、 C1-C4垸基氨基或 (C1-C4垸基 )2氨基; Z独立地为氢、 C1-C4垸基、 C1-C4垸氧基、 C1-C4垸基氨基或 (C1-C4垸基 )2氨基; 并且 Y、 G和 Ζ不同时为氢;
R选自氢或者取代或未取代的 C1-C4垸基; 所述取代的取代基选自卤素、 氰基、 硝 基、 羟基和氨基。
5、根据权利要求 4所述的哌嗪并三唑类化合物或其异构体或其药剂学上可接受的盐、 酯、 前药或水合物, 其中,
Α和 Β各自独立地为氢或甲基, 并且 A和 B不同时为氢;
或者, A和 B与相连接的碳原子一起形成苯环;
X为氢或卤素;
Y为氢、 甲基、 2,2,2-三氟乙基、 烯丙基、 乙氧羰基乙基或苄基;
G独立地为氢、 甲基、 乙基、 甲氧基或二甲基氨基;
Z独立地为氢、 甲基、 乙基、 甲氧基或二甲基氨基; 并且 Y、 G和 Ζ不同时为氢;
R为氢、 单氟甲基、 二氟甲基或三氟甲基。
6、根据权利要求 1所述的哌嗪并三唑类化合物或其异构体或其药剂学上可接受的盐、 前药或水合物, 其中, 所述哌嗪并三唑类化合物为下列化合物之一: 化
Figure imgf000037_0001
Li
Figure imgf000038_0001
8666.0/CT0ZN3/X3d 89t6I0/ 0Z OAV 8ε
Figure imgf000039_0001
8666.0/CT0ZN3/X3d 89t6I0/ 0Z OAV
Figure imgf000040_0001
7、一种制备权利要求 1所述的哌嗪并三唑类化合物的方法,所述方法包括如下步骤: 将原料 S (leq)和胺 D (leq)溶于 DMF中, 冰浴下依次加入 HBTU、 DIPEA, 逐渐 升温至室温反应过夜; 于冰浴下加入水, 用二氯甲垸萃取, 然后蒸除溶剂, 通过柱色谱分 离得 I表示的哌嗪并三唑类化合物,
Figure imgf000040_0002
D S
8、 权利要求 1-6中任一项所述的哌嗪并三唑类化合物或其异构体或其药剂学上可接 受的盐、 酯、 前药或水合物作为聚腺苷二磷酸核糖聚合酶 -1抑制剂在制备预防和 /或治疗 与聚腺苷二磷酸核糖聚合酶相关疾病的药物中的用途。
9、 根据权利要求 8所述的用途, 其中, 所述与聚腺苷二磷酸核糖聚合酶相关疾病为 缺血性的疾病、 神经退行性疾病或癌症。
10、一种药物组合物, 其包含一种或多种治疗有效量的根据权利要求 1-6中任一项所 述的哌嗪并三唑类化合物或其异构体或其药剂学上可接受的盐、酯、前药或水合物, 并可 任选进一步包含药学上可接受的载体或赋形剂。
PCT/CN2013/079998 2012-08-01 2013-07-24 哌嗪并三唑类化合物及其制备方法和制药用途 WO2014019468A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CA2880739A CA2880739C (en) 2012-08-01 2013-07-24 Piperazinotriazole compound, preparation method thereof, and use thereof in drug preparation
EP13825341.4A EP2881395B1 (en) 2012-08-01 2013-07-24 Piperazinotriazole compound, preparation method therefor, and use thereof in drug preparation
AU2013299117A AU2013299117B2 (en) 2012-08-01 2013-07-24 Piperazinotrizole compound, preparation method therefor, and use thereof in drug preparation
JP2015524614A JP6043935B2 (ja) 2012-08-01 2013-07-24 ピペラジノトリアゾール化合物及びその製造方法と製薬用途
US14/418,705 US9255106B2 (en) 2012-08-01 2013-07-24 Substituted [1,2,4]triazolo[4,3-a]pyrazines as PARP-1 inhibitors

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210272101.5 2012-08-01
CN201210272101.5A CN103570725B (zh) 2012-08-01 2012-08-01 哌嗪并三唑类化合物及其制备方法和用途

Publications (1)

Publication Number Publication Date
WO2014019468A1 true WO2014019468A1 (zh) 2014-02-06

Family

ID=50027238

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/079998 WO2014019468A1 (zh) 2012-08-01 2013-07-24 哌嗪并三唑类化合物及其制备方法和制药用途

Country Status (7)

Country Link
US (1) US9255106B2 (zh)
EP (1) EP2881395B1 (zh)
JP (1) JP6043935B2 (zh)
CN (1) CN103570725B (zh)
AU (1) AU2013299117B2 (zh)
CA (1) CA2880739C (zh)
WO (1) WO2014019468A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017101796A1 (zh) * 2015-12-16 2017-06-22 四川科伦博泰生物医药股份有限公司 酞嗪酮衍生物、其制备方法及用途
US9856262B2 (en) 2014-04-10 2018-01-02 Hubei Bio-Pharmaceutical Industrial Technological Institute Inc. Analogues of 4H-pyrazolo[1,5-a] benzimidazole compound as PARP inhibitors
JP2018516979A (ja) * 2015-05-18 2018-06-28 中国科学院上海薬物研究所 Somcl−9112固体分散体、その製造方法およびそれを含むsomcl−9112固体製剤
EP3381919A4 (en) * 2015-11-23 2018-11-21 Shanghai Institute of Materia Medica, Chinese Academy of Sciences Substituted triazolopiperazine parp inhibitor, preparation method therefor, and use thereof
US10800784B2 (en) 2018-02-01 2020-10-13 Japan Tobacco Inc. Nitrogen-containing heterocyclic amide compound and pharmaceutical use thereof

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103570725B (zh) * 2012-08-01 2017-03-22 中国科学院上海药物研究所 哌嗪并三唑类化合物及其制备方法和用途
US20160193210A1 (en) 2013-07-18 2016-07-07 Taiho Pharmaceutical Co., Ltd. Antitumor drug for intermittent administration of fgfr inhibitor
TW201536293A (zh) 2013-07-18 2015-10-01 Taiho Pharmaceutical Co Ltd 對fgfr抑制劑具耐受性之癌的治療藥
CN107406455B (zh) 2015-03-31 2020-05-12 大鹏药品工业株式会社 3,5-二取代的苯炔基化合物晶体
US11883404B2 (en) 2016-03-04 2024-01-30 Taiho Pharmaceuticals Co., Ltd. Preparation and composition for treatment of malignant tumors
WO2017156350A1 (en) 2016-03-09 2017-09-14 K-Gen, Inc. Methods of cancer treatment
EP4353222A1 (en) 2018-03-19 2024-04-17 Taiho Pharmaceutical Co., Ltd. Use of sodium alkyl sulfate
PE20211382A1 (es) * 2018-04-30 2021-07-27 Ribon Therapeutics Inc Piridazinonas como inhibidoras de parp7
US11691969B2 (en) 2019-10-30 2023-07-04 Ribon Therapeutics, Inc. Pyridazinones as PARP7 inhibtors
KR20230167755A (ko) * 2021-02-09 2023-12-11 자코바이오 파마슈티칼스 컴퍼니 리미티드 Parp7 억제제로서 유용한 트리시클릭 유도체
WO2022242750A1 (zh) * 2021-05-21 2022-11-24 成都百裕制药股份有限公司 哌嗪衍生物及其在医药上的应用
CN115477640A (zh) * 2021-05-31 2022-12-16 由理生物医药(上海)有限公司 作为parp7抑制剂的哒嗪酮类化合物
WO2023288002A1 (en) * 2021-07-16 2023-01-19 Oregon Health & Science University Phthalazinone-based parp-1 inhibitors
WO2023001247A1 (zh) * 2021-07-21 2023-01-26 南京明德新药研发有限公司 哒嗪酮类化合物
WO2023006013A1 (zh) * 2021-07-29 2023-02-02 上海齐鲁制药研究中心有限公司 新型parp7抑制剂及其应用
TW202346294A (zh) * 2022-04-21 2023-12-01 大陸商四川海思科製藥有限公司 吡嗪酮衍生物及其在醫藥上的應用
WO2024037558A1 (en) * 2022-08-17 2024-02-22 Jacobio Pharmaceuticals Co., Ltd. Solid forms of compound i or salts thereof

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007138351A2 (en) 2006-05-31 2007-12-06 Istituto Di Ricerche Di Biologia Molecolare P. Angeletti Spa Pyridinone and pyridazinone derivatives as inhibitors of poly(adp-ribose)polymerase (parp)
US20080161280A1 (en) 2006-12-28 2008-07-03 Abbott Laboratories Inhibitors of poly(adp-ribose)polymerase
CN101855221A (zh) * 2007-11-15 2010-10-06 P.安杰莱蒂分子生物学研究所 作为parp抑制剂的哒嗪酮衍生物
WO2012019427A1 (zh) * 2010-08-09 2012-02-16 上海恒瑞医药有限公司 酞嗪酮类衍生物、其制备方法及其在医药上的应用
WO2012072033A1 (zh) * 2010-12-03 2012-06-07 苏州科瑞戈医药科技有限公司 取代的2,3-二氮杂萘酮化合物及其用途
CN102898377A (zh) * 2012-02-14 2013-01-30 南京圣和药业有限公司 一类新型酞嗪酮衍生物及其用途
CN103172619A (zh) * 2011-12-20 2013-06-26 齐鲁制药有限公司 4-(取代苄基)-1(2h)-2,3-二氮杂萘酮类衍生物及其制备方法、药物组合物和用途

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5998402A (en) 1996-04-19 1999-12-07 American Home Products Corporation 2-phenyl-1-[4-(2-aminoethoxy)-benzyl]-indoles as estrogenic agents
CN103570725B (zh) * 2012-08-01 2017-03-22 中国科学院上海药物研究所 哌嗪并三唑类化合物及其制备方法和用途

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007138351A2 (en) 2006-05-31 2007-12-06 Istituto Di Ricerche Di Biologia Molecolare P. Angeletti Spa Pyridinone and pyridazinone derivatives as inhibitors of poly(adp-ribose)polymerase (parp)
US20090176765A1 (en) * 2006-05-31 2009-07-09 Philip Jones Pyridinone and Pyridazinone Derivatives as Inhibitors of Poly (Adp-Ribose) Polymerase (Parp)
US20080161280A1 (en) 2006-12-28 2008-07-03 Abbott Laboratories Inhibitors of poly(adp-ribose)polymerase
CN101641014A (zh) * 2006-12-28 2010-02-03 艾博特公司 聚(adp-核糖)聚合酶抑制剂
CN101855221A (zh) * 2007-11-15 2010-10-06 P.安杰莱蒂分子生物学研究所 作为parp抑制剂的哒嗪酮衍生物
WO2012019427A1 (zh) * 2010-08-09 2012-02-16 上海恒瑞医药有限公司 酞嗪酮类衍生物、其制备方法及其在医药上的应用
WO2012072033A1 (zh) * 2010-12-03 2012-06-07 苏州科瑞戈医药科技有限公司 取代的2,3-二氮杂萘酮化合物及其用途
CN103172619A (zh) * 2011-12-20 2013-06-26 齐鲁制药有限公司 4-(取代苄基)-1(2h)-2,3-二氮杂萘酮类衍生物及其制备方法、药物组合物和用途
CN102898377A (zh) * 2012-02-14 2013-01-30 南京圣和药业有限公司 一类新型酞嗪酮衍生物及其用途

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
FATIMA, S. ET AL.: "Molecular docking and 3D-QSAR studies on inhibitors of DNA damage signaling enzyme human PARP-1", JOURNAL OF RECEPTORS AND SIGNAL TRANSDUCTION 1079-9893, vol. 32, no. 4, 1 August 2012 (2012-08-01), pages 214 - 224, XP008176567 *
J MED. CHEM., vol. 51, 2008, pages 589 - 602
J. MED. CHEM., vol. 51, 2008, pages 589 - 602
J. MED. CHEM., vol. 51, 2008, pages 6581 - 6591
JOURNAL OF HETEROCYCLIC CHEMISTRY, vol. 42, no. 4, 2005, pages 691 - 694
JOURNAL OF NATURAL PRODUCTS, vol. 74, no. 7, 2011, pages 1630 - 1635
See also references of EP2881395A4 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9856262B2 (en) 2014-04-10 2018-01-02 Hubei Bio-Pharmaceutical Industrial Technological Institute Inc. Analogues of 4H-pyrazolo[1,5-a] benzimidazole compound as PARP inhibitors
JP2018516979A (ja) * 2015-05-18 2018-06-28 中国科学院上海薬物研究所 Somcl−9112固体分散体、その製造方法およびそれを含むsomcl−9112固体製剤
US11191761B2 (en) 2015-05-18 2021-12-07 Shanghai Institute Of Materia Medica, Chinese Academy Of Sciences SOMCL-9112 solid dispersion and preparation method thereof and SOMCL-9112 solid preparation containing SOMCL-9112 solid dispersion
EP3381919A4 (en) * 2015-11-23 2018-11-21 Shanghai Institute of Materia Medica, Chinese Academy of Sciences Substituted triazolopiperazine parp inhibitor, preparation method therefor, and use thereof
US10597399B2 (en) 2015-11-23 2020-03-24 Shanghai Institute Of Materia Medica, Chinese Academy Of Sciences Substituted triazolopiperazine PARP inhibitor, preparation method therefor and use thereof
WO2017101796A1 (zh) * 2015-12-16 2017-06-22 四川科伦博泰生物医药股份有限公司 酞嗪酮衍生物、其制备方法及用途
CN107207504A (zh) * 2015-12-16 2017-09-26 四川科伦博泰生物医药股份有限公司 酞嗪酮衍生物、其制备方法及用途
US10800784B2 (en) 2018-02-01 2020-10-13 Japan Tobacco Inc. Nitrogen-containing heterocyclic amide compound and pharmaceutical use thereof

Also Published As

Publication number Publication date
US20150166544A1 (en) 2015-06-18
CN103570725B (zh) 2017-03-22
US9255106B2 (en) 2016-02-09
CA2880739A1 (en) 2014-02-06
JP2015527336A (ja) 2015-09-17
AU2013299117B2 (en) 2016-02-18
EP2881395A4 (en) 2016-02-24
JP6043935B2 (ja) 2016-12-14
EP2881395B1 (en) 2018-09-05
EP2881395A1 (en) 2015-06-10
CA2880739C (en) 2017-05-30
AU2013299117A1 (en) 2015-03-19
CN103570725A (zh) 2014-02-12

Similar Documents

Publication Publication Date Title
WO2014019468A1 (zh) 哌嗪并三唑类化合物及其制备方法和制药用途
US9273052B2 (en) Phthalazinone ketone derivative, preparation method thereof, and pharmaceutical use thereof
US20210238184A1 (en) Therapeutic compounds
WO2021190467A1 (zh) 含螺环的喹唑啉化合物
CA3213029A1 (en) Parp inhibitor containing piperazine structure, preparation method therefor and pharmaceutical use thereof
TW200901992A (en) Triazolopyridine carboxamide and triazolopyrimidine carboxamide derivatives, their preparation and their application in therapeutics
WO2018133795A1 (zh) 一种ezh2抑制剂及其用途
US11267815B2 (en) Class of amino-substituted nitrogen-containing fused ring compounds, preparation method therefor, and use thereof
JP2015038112A (ja) フェノキシメチル複素環化合物
TW201840564A (zh) 稠合的四環或五環二氫二氮呯幷哢唑酮的鹽的結晶形式及其用途
CN116323625A (zh) 杂环类衍生物、其制备方法及其医药上的用途
WO2017088723A1 (zh) 一类取代三唑并哌嗪类parp抑制剂及其制备方法和用途
CN108368059A (zh) 一种取代的酞嗪酮化合物及其药物组合物
JP5822080B2 (ja) キノキサリン化合物
JP2021505132A (ja) 核酸結合光プローブおよびその使用
CN116514846A (zh) 杂环类衍生物、其制备方法及其医药上的用途
WO2022171088A1 (zh) 吡唑并[3,4-d]嘧啶-3-酮衍生物
WO2020118753A1 (zh) 一种喹啉结构的pan-KIT激酶抑制剂及其用途
TWI548637B (zh) 酞嗪酮類衍生物、其製備方法及其在醫藥上的應用
WO2021071982A1 (en) Compounds for modulating splicing
CN116162099A (zh) 杂环类衍生物及其制备方法和用途
CN116157400A (zh) 杂环类衍生物及其制备方法和用途
CN116332938A (zh) 稠合三环类衍生物及其制备方法和用途
NZ765772B2 (en) Pharmaceutical composition for the treatment of cancer
BR112018006498B1 (pt) Composto, uso do mesmo e composição farmacêutica

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13825341

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14418705

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2880739

Country of ref document: CA

Ref document number: 2015524614

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2013825341

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2013299117

Country of ref document: AU

Date of ref document: 20130724

Kind code of ref document: A