WO2014017539A1 - 太陽光熱変換装置およびこれを用いる太陽熱発電システム - Google Patents

太陽光熱変換装置およびこれを用いる太陽熱発電システム Download PDF

Info

Publication number
WO2014017539A1
WO2014017539A1 PCT/JP2013/070045 JP2013070045W WO2014017539A1 WO 2014017539 A1 WO2014017539 A1 WO 2014017539A1 JP 2013070045 W JP2013070045 W JP 2013070045W WO 2014017539 A1 WO2014017539 A1 WO 2014017539A1
Authority
WO
WIPO (PCT)
Prior art keywords
solar
conversion device
heat conversion
lens
hot water
Prior art date
Application number
PCT/JP2013/070045
Other languages
English (en)
French (fr)
Inventor
謙治 東
大森 整
Original Assignee
株式会社ダ・ビンチ
独立行政法人 理化学研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ダ・ビンチ, 独立行政法人 理化学研究所 filed Critical 株式会社ダ・ビンチ
Priority to EP13823845.6A priority Critical patent/EP2878898A4/en
Priority to JP2014526974A priority patent/JPWO2014017539A1/ja
Priority to IN1433DEN2015 priority patent/IN2015DN01433A/en
Publication of WO2014017539A1 publication Critical patent/WO2014017539A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03GSPRING, WEIGHT, INERTIA OR LIKE MOTORS; MECHANICAL-POWER PRODUCING DEVICES OR MECHANISMS, NOT OTHERWISE PROVIDED FOR OR USING ENERGY SOURCES NOT OTHERWISE PROVIDED FOR
    • F03G6/00Devices for producing mechanical power from solar energy
    • F03G6/06Devices for producing mechanical power from solar energy with solar energy concentrating means
    • F03G6/065Devices for producing mechanical power from solar energy with solar energy concentrating means having a Rankine cycle
    • F03G6/067Binary cycle plants where the fluid from the solar collector heats the working fluid via a heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S10/00Solar heat collectors using working fluids
    • F24S10/70Solar heat collectors using working fluids the working fluids being conveyed through tubular absorbing conduits
    • F24S10/72Solar heat collectors using working fluids the working fluids being conveyed through tubular absorbing conduits the tubular conduits being integrated in a block; the tubular conduits touching each other
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S23/00Arrangements for concentrating solar-rays for solar heat collectors
    • F24S23/30Arrangements for concentrating solar-rays for solar heat collectors with lenses
    • F24S23/31Arrangements for concentrating solar-rays for solar heat collectors with lenses having discontinuous faces, e.g. Fresnel lenses
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S20/00Solar heat collectors specially adapted for particular uses or environments
    • F24S2020/10Solar modules layout; Modular arrangements
    • F24S2020/18Solar modules layout; Modular arrangements having a particular shape, e.g. prismatic, pyramidal
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/44Heat exchange systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/46Conversion of thermal power into mechanical power, e.g. Rankine, Stirling or solar thermal engines

Definitions

  • the present invention relates to a solar thermal conversion device and a solar thermal power generation system using the solar thermal conversion device, and more particularly to a solar thermal conversion device that collects sunlight and converts it into thermal energy, and a solar thermal power generation system using the solar thermal conversion device.
  • a hemispherical light-receiving member having a diameter larger than the diagonal of the quadrangular column is integrally formed with acrylic resin on the rectangular light-guiding member, and the solar cell is formed on the bottom surface of the light-guiding member.
  • a solar light collecting device in which elements are arranged and a refractive surface is arranged on the entire surface of a light receiving member (see, for example, Patent Document 1).
  • a transparent annular lens having the same cross-sectional shape as the W-shaped sun lens in which the conical auxiliary lens is coaxially embedded in the bottom surface of the inverted frustoconical main lens is arranged coaxially in the radial direction or the axial direction.
  • the laminated solar lens configured to collect the light collected by the respective annular lenses with a light guide tube so as to narrow the distance between them, and connect to the solar lens to re-collect the light. It has been proposed (see, for example, Patent Document 2). With this laminated solar lens, it is possible to reduce the thickness and weight of the solar lens, and the cylindrical laminated solar lens laminated in the axial direction condenses sunlight incident from the side surface of the cylinder. It can handle low sunlight.
  • the weight increases when the light receiving area is increased.
  • the incident angle of sunlight is small, such as in the morning sun or sunset, it falls outside the range of the allowable incident angle and cannot be condensed.
  • the above-described laminated solar lens also increases in weight when the light receiving area is increased.
  • the solar heat conversion device of the present invention is mainly intended to efficiently collect sunlight and convert it into heat energy with a small, light and simple configuration.
  • the main purpose of the solar thermal power generation system of the present invention is to efficiently generate power using thermal energy obtained by concentrating sunlight efficiently with a small, lightweight and simple configuration.
  • the solar thermal conversion apparatus of the present invention and the solar thermal power generation system using the same have adopted the following means in order to achieve the above-mentioned main object.
  • the solar heat conversion device of the present invention is A solar heat conversion device that condenses sunlight and converts it into heat energy,
  • a polyhedron lens part constituted by a lens whose focal direction is the inner side of the polyhedron, at least a part of a surface forming a side part of a hollow polyhedron and a surface forming a top part;
  • a light receiving heat generating part disposed inside the polyhedral lens part and receiving light from the lens to generate heat; It is a summary to provide.
  • At least a part of the surface forming the top part and the side part forming the side part of the polyhedral lens part is constituted by a lens.
  • Sunlight and reflected light of sunlight can be collected not only from the surface forming the top but also from the surface forming the side.
  • all of the surfaces forming the side portions of the polyhedral lens portion are configured by lenses, light (sunlight, reflected light of sunlight, etc.) from all directions except the bottom surface can be collected. For this reason, even if the position of the sun changes with the passage of time, it can efficiently collect light and generate heat. As a result, sunlight can be efficiently condensed and converted into thermal energy with a small, light and simple configuration.
  • the polyhedral lens portion is a regular hexahedron and all surfaces except the bottom surface are constituted by lenses, the polyhedral lens portion can be easily assembled. If the lens is configured as a Fresnel lens, the polyhedral lens portion can be reduced in weight.
  • the light receiving and heating portion may be disposed so as to be located at the center of the bottom surface of the polyhedral lens portion.
  • the light receiving and heating portion may include a plate-like bottom member and a pedestal portion that stands from the center of the bottom member so as to include the center of the polyhedral lens portion.
  • the light receiving and heating unit may be formed to have a reverse T-shaped cross section.
  • the shape of the light receiving and heating unit may be, for example, a cylindrical shape, a prismatic shape, or a conical shape.
  • the light receiving and heating unit may have a flow path of a fluid to be heated inside or outside. If it carries out like this, a to-be-heated fluid can be heated and taken out with the heat
  • the solar thermal power generation system of the present invention is The solar heat conversion device of the present invention in which the flow path of the fluid to be heated is formed inside the light receiving heat generating part, that is, the solar heat conversion device that basically collects sunlight and converts it into heat energy. And a polyhedral lens portion in which at least a part of a surface forming a side portion of a hollow polyhedron and a surface forming a top portion are configured by a lens whose focal direction is the inside of the polyhedron, and the inside of the polyhedral lens portion
  • a solar heat conversion device in which a flow path of a fluid to be heated is formed inside or outside the light receiving heat generating portion, and a light receiving heat generating portion that receives light from the lens and generates heat. Using the heat of the heated fluid as a heat source in a power generation system using a Rankine cycle, This is the gist.
  • the solar thermal power generation system of the present invention includes the solar heat conversion device of the present invention
  • the effects of the solar heat conversion device of the present invention for example, the sun not only from the surface forming the top but also from the surface forming the side portion.
  • the effect of being able to collect light and reflected light of sunlight, and the effect of being able to efficiently collect and generate heat even if the position of the sun changes over time caused by this effect Can play.
  • the power generation system using the Rankine cycle is such that the working fluid having a lower boiling point than the fluid to be heated is a rotary heat engine, a condenser, and a pressure pump, an evaporator, and a generator. It is also possible to supply the heat of the heated fluid to the evaporator.
  • water is used as a fluid to be heated, a hot water storage device, a heating flow path for supplying hot water heated by supplying cold water of the hot water storage device to the light receiving heat generating unit, and heat of the hot water storage device
  • a cooling flow path for supplying water to the evaporator and returning water cooled by heat exchange with the working fluid to the hot water storage device.
  • heat can be stored using common water. It is also possible to supply hot water stored in hot water, and energy efficiency can be further improved. Furthermore, energy efficiency can be further improved if the condenser is equipped with a supply channel that cools the working fluid with water to make the working fluid liquid and supplies water from the condenser to the hot water storage device. Can be made.
  • FIG. 3 is a cross-sectional view showing an AA cross section of a bottom member 32 in FIG. 2.
  • FIG. 3 is a cross-sectional view showing a BB cross section of the bottom member 32 and the standing member 42 in FIG. 2.
  • It is a graph which shows the relationship between sunlight, reflected light, and direction by experimental data.
  • It is a block diagram which shows the outline of a structure of the solar thermal power generation system 100 of an Example as a block.
  • FIG. 1 is a configuration diagram showing an outline of the configuration of a solar heat conversion apparatus 20 as an embodiment of the present invention
  • FIG. 2 is an exploded perspective view of the solar heat conversion apparatus 20 of the embodiment.
  • the solar heat conversion apparatus 20 of an Example is provided with the polyhedral lens part 21 formed as a regular hexahedron, and the light-receiving / heating part 30 arrange
  • the polyhedral lens portion 21 is composed of a top lens 22 that forms a top surface, side lenses 23 to 26 that form side surfaces, and a bottom surface member 27 that forms a bottom surface.
  • the top lens 22 and the side lenses 23 to 26 are formed as Fresnel lenses using, for example, acrylic resin so that the focal point of parallel light is near or far from the center of the polyhedral lens unit 21, and the focal point is the polyhedral lens 21. It is attached to be inside.
  • the light receiving and heating unit 30 is configured to have an inverted T-shaped cross section by standing a plate-like standing member 42 at the center of a bottom member 32 disposed at the center of the bottom member 27 of the polyhedral lens unit 21. ing.
  • the bottom member 32 and the stance member 42 are made of metal such as stainless steel or aluminum, and a flow path for fluid such as water is formed therein.
  • 3 shows an AA cross section of the bottom member 32 in FIG. 2
  • FIG. 4 shows a BB cross section of the bottom member 32 and the standing leg member 42 in FIG.
  • a fluid inlet hole 33 from the bottom direction and a fluid outlet hole 34 from the bottom direction are formed in the vicinity of both ends of the bottom member 32 where the standing member 42 is erected.
  • two vertically symmetrical flow paths 35 and 36 are formed from the inlet hole 33 toward the outlet hole 34 in the AA cross section.
  • a passage 45 is formed in the BB cross section of the standing member 42 so that the inlet 43 and the outlet 44 are aligned with the inlet hole 33 and the outlet hole 34 of the bottom member 32. Therefore, a fluid such as water flowing in from the inlet hole 33 flows in a divided manner into the three flow paths 35, 36, and 45, and merges and flows out in the outlet hole 34.
  • the solar heat conversion apparatus 20 of the embodiment configured in this way will be described.
  • the solar heat conversion apparatus 20 of the embodiment is installed on an outdoor horizontal plane such that the side lens 23 is east and the side lens 25 is west (the side lens 24 is north and the side lens 26 is south).
  • the sunlight has a side lens 23 and a top lens 22 arranged in the east facing the sun, and a side lens 26 arranged in the south (the side arranged in the north in the early hours of summer morning).
  • the light is directly incident from the lens 24), collected by the lenses 22, 23, 26 (, 24), and applied to the light receiving / heating unit 30.
  • the side lens 23 arranged in the east facing no sunlight and the side lens 24 arranged in the north direction directly receive sunlight. Is not incident, but reflected light reflected by a surrounding building or the like is incident, collected by the lenses 23, 24 (, 26), and applied to the light receiving and heating unit 30.
  • the light receiving and heating unit 30 generates heat, and enters the three flow paths 35, 36, and 45 formed inside the light receiving and heating unit 30.
  • the fluid is flowing, the fluid is heated.
  • FIG. 5 is a graph showing experimental data on the relationship between the sunlight and the electromotive force due to the direction of reflected light.
  • the experiment was conducted using an experimental polyhedron with a solar panel with an electromotive force of 500 mV at maximum illuminance in each orientation of a regular hexahedron acrylic case, around 13:30 pm on a sunny day of spring (temperature is 21.6 ° C). ) was installed outdoors with the side facing east, west, south, and north.
  • “above”, “east”, “west”, “south”, “north” are the top, east-facing side, west-facing side, south-facing side, north-facing side of the experimental polyhedron. Is shown.
  • the hatched bar graph (the left bar graph) is a graph obtained by covering the ground within the range of 30 cm around the experimental polyhedron with black rubber in order to remove the reflected light from the ground. Shows the electromotive force of the solar panel in the azimuth, the unhatched bar graph (right bar graph) removes the black rubber from the ground within 30 cm around the experimental polyhedron to allow reflection from the ground It shows the electromotive force of the solar panel in each direction when As shown in the figure, since it is around 13:30 pm, a solar panel with a “right above” sunlight incident angle relatively close to 90 degrees has a high electromotive voltage (approximately 450 mV), but the incident angle of sunlight is small, but the direct incident “west” and “south” solar panels are about 60 to 70% of the electromotive voltage of the “directly above” solar panel.
  • An electromotive voltage (about 250 mV to 300 mV) is generated.
  • an electromotive voltage of about 30% to 40% (about 150 mV to 200 mV) is generated relative to the electromotive voltage of the “directly above” solar panel. Has occurred. Further, in any orientation, the electromotive voltage is higher when the ground within the range of 30 cm around the experimental polyhedron is not covered with black rubber.
  • the top lens 22 and the side lenses 23 to 26, which are formed as a square Fresnel lens with an acrylic resin, and the bottom member 27 are formed into a regular hexahedron shape. Since the cross-section composed of the bottom member 32 and the pedestal member 42 is formed in the center of the polyhedral lens portion 21 and the bottom surface member 27 on the inner side of the polyhedral lens portion 21, the light receiving and heating portion 30 has an inverted T-shape. It is possible to generate heat by efficiently collecting sunlight and its reflected light from sunrise to sunset with a simple configuration. Further, since each of the lenses 22 to 26 is configured as a Fresnel lens, it can be made lightweight.
  • the polyhedral lens part 21 is configured as a regular hexahedron with all the surfaces except the bottom surface formed by lenses, but the shape of the polyhedral lens part is not limited to a regular hexahedron, and is triangular or pentagonal.
  • the polygonal prism shape described above may be used, and a pyramid shape such as a regular tetrahedron, a triangular pyramid, or a quadrangular pyramid may be used. Further, it is not necessary to configure all surfaces except the bottom surface as lenses, and some surfaces that do not receive sunlight may not be configured as lenses.
  • each of the lenses 22 to 26 is configured as a Fresnel lens using acrylic resin, but may be configured as a Fresnel lens using glass or the like. Further, each of the lenses 22 to 26 may be configured as a convex lens.
  • the light receiving and heating unit 30 is configured to be an inverted T shape by the bottom member 32 and the standing member 42, but it is sufficient that the condensed light is irradiated.
  • a shape other than the inverted T-shape for example, a shape in which a column member such as a cylinder or a prism is formed in the center of the bottom member, or a pyramid shape such as a cone shape, a triangular pyramid, or a quadrangular pyramid may be used.
  • the three flow paths 35, 36, and 45 are formed as the flow paths of the fluid inside the light receiving and heating unit 30, but a single flow path is formed. Two channels or four or more channels may be formed.
  • the fluid flow path may be formed so as to be in contact with the outer wall of the light receiving and heating unit so that heat can be exchanged.
  • FIG. 6 is a block diagram illustrating a schematic configuration of the solar thermal power generation system 100 of the embodiment as a block.
  • the solar thermal power generation system 100 includes a solar heat conversion device 20, a hot water storage device 110 that stores hot water heated by the solar heat conversion device 20, and Rankine cycle power generation that uses the hot water from the hot water storage device 110 to generate electric power.
  • System 120 includes a solar heat conversion device 20, a hot water storage device 110 that stores hot water heated by the solar heat conversion device 20, and Rankine cycle power generation that uses the hot water from the hot water storage device 110 to generate electric power.
  • the hot water is stored in the uppermost part and the coldest water (cold water) is stored in the lowermost part of the water stored in the hot water storage 110 due to the specific gravity depending on the temperature.
  • the upper part including the uppermost part is referred to as a hot water part
  • the lower part including the lowermost part is referred to as a cold water part
  • the middle is referred to as a hot water part.
  • the cold water part of the hot water storage device 110 and the inlet hole 33 of the light receiving heat generating part 30 of the solar heat conversion device 20 are connected by a cold water supply pipe 131, and the outlet hole 33 of the light receiving heat generating part 30 of the solar heat conversion device 20 and the water heater.
  • the hot water section 110 is connected by a hot water return pipe 132. Accordingly, water (cold water) is supplied from the hot water storage device 110 to the light receiving heat generating unit 30 of the solar heat conversion device 20, and the cold water is heated by the light receiving heat generating unit 30 of the solar heat conversion device 20 to be hot water in the hot water storage device 110. Returned to the department.
  • the Rankine cycle power generation system 120 is a cycle in which a working fluid having a boiling point lower than that of water (for example, alternative chlorofluorocarbon) is circulated through the circulation passage 121.
  • the circulation passage 121 includes a pressurizing pump 122 that pressurizes the working fluid.
  • the drive shaft connected to the generator 129 is rotationally driven by the pressure difference between the evaporator 124 that evaporates and vaporizes the pressurized working fluid and the gas working fluid that is supplied and the gas working fluid that is discharged.
  • a rotary heat engine 126 and a condenser 128 for liquefying the working fluid discharged from the rotary heat engine 126 are provided.
  • the evaporator 124 is provided with a heat exchange channel 124a for exchanging heat to vaporize the working fluid.
  • the inlet 124b of the heat exchange channel 124a is connected to the hot water portion of the hot water storage device 110 by a hot water supply pipe 133, and the outlet 124c of the evaporator 124 is connected to the hot water portion of the hot water storage device 110 by a hot water return pipe 134. ing. Therefore, hot water is supplied from the hot water storage device 110 to the evaporator 124, and the hot water cooled by heat exchange with the working fluid is returned to the hot water portion of the hot water storage device 110.
  • the condenser 128 is provided with a heat exchange channel 128a for exchanging heat to liquefy the working fluid.
  • a cold water supply pipe 135 for supplying cold water (for example, tap water) from the outside of the system is connected to the inlet 128b of the heat exchange flow path 128a, and an outlet 128c of the heat exchange flow path 128a is a hot water section of the hot water storage device 110.
  • the cold / hot water supply pipe 136 is connected to the lower part (or the upper part of the cold water part). Therefore, cold water from the outside of the system is supplied to the condenser 128, and cold / warm water heated by heat exchange with the working fluid is supplied to the lower part of the hot water part of the hot water storage device 110 (or the upper part of the cold water part).
  • the rotary heat engine 126 is configured as a heat engine capable of rotating the generator 129 even with a slight pressure difference, and operates at a temperature difference of about 50 ° C.
  • a hot water supply pipe 137 for hot water supply is attached to the hot water section and the hot water section of the hot water storage device 110, and the hot water and hot water in the hot water storage device 110 are mixed with tap water to adjust to a desired temperature to supply hot water. It can be done.
  • cold water is heated by the solar heat conversion device 20 from sunrise to sunset and stored in the hot water storage 110 as hot water, and the hot water stored in the hot water storage 110 is evaporated when electric power is required.
  • the Rankine cycle power generation system 120 is operated to generate power.
  • the solar heat conversion device 20 efficiently collects sunlight and stores the heat converted into thermal energy in the hot water storage 110, and if necessary, the Rankine cycle power generation system. Since power is generated by operating 120, electric power can be obtained at a desired time regardless of the presence or absence of sunlight. Moreover, the hot water cooled by the evaporator 124 is returned to the hot water storage device 110, the hot and cold water heated by the condenser 128 is supplied to the hot water storage device 110, and hot water and hot water stored in the hot water storage device 110 are supplied. By supplying hot water, the energy efficiency of the entire system can be improved.
  • the hot water cooled by the evaporator 124 is returned to the hot water storage device 110 and the hot and cold water heated by the condenser 128 is supplied to the hot water storage device 110.
  • the hot water cooled by 124 or the hot / cold water heated by the condenser 128 may be supplied to others, for example, hot water may be supplied.
  • hot water or hot water stored in the hot water storage 110 is supplied, but the hot water may not be supplied from the hot water storage 110.
  • a pressurizing pump 122 an evaporator 124, a rotary heat engine 126, and a condenser 128 are provided in a circulation passage 121 through which a working fluid circulates.
  • a steam turbine and a condenser in which a pressure pump, a heater, and a generator are attached to the circulation flow path may be provided.
  • water is used as a fluid heated by the solar thermal conversion device 20, and a fluid having a lower boiling point than water (for example, alternative CFC) is used as a working fluid of the Rankine cycle power generation system 120.
  • a fluid to be heated other than water may be used as the fluid heated by the converter 20, and a fluid having a boiling point lower than that of the fluid to be heated may be used as the working fluid of the Rankine cycle power generation system 120.
  • a heat storage device that stores the fluid to be heated may be used, and hot water supply may not be performed.
  • the present invention can be used in the manufacturing industry of solar thermal conversion devices and solar power generation systems.

Abstract

アクリル樹脂により正方形のフレネルレンズとして形成された頂面レンズ22および側面レンズ23~26と底面用部材27とにより正六面体形状に構成された多面体レンズ部21と、多面体レンズ部21の内側の底面用部材27の中央に底部材32と立脚部材42とからなる断面が逆T字型の受光発熱部30と、により太陽光熱変換装置20を構成する。これにより、太陽の方向を追従して駆動する機構を用いることなく、小型で簡易な構成で日の出から日の入りまで太陽光およびその反射光を効率よく集光して発熱することができる。

Description

太陽光熱変換装置およびこれを用いる太陽熱発電システム
 本発明は、太陽光熱変換装置およびこれを用いる太陽熱発電システムに関し、詳しくは、太陽光を集光して熱エネルギーに変換する太陽光熱変換装置およびこの太陽光熱変換装置を用いる太陽熱発電システムに関する。
 従来、この種の技術としては、太陽光を追尾するシステムが広く知られているが、このシステムは、コストが高く、大型であるため、太陽光を追尾しない固定型のものが望まれ、例えば、四角柱の導光部材の上に直径が四角柱の対角線より大きな半球形の受光部材を球面が上になるように配置した形状にアクリル樹脂により一体形成し、導光部材の底面に太陽電池素子を配置し、受光部材の全面に屈折面が配置されて構成された太陽光集光装置が提案されている(例えば、特許文献1参照)。この装置では、太陽光は屈折面により屈折して受光部材に入射し、受光部材に入射した太陽光の一部は導光部材の側面で反射することなく導光部材の底面に取り付けられた太陽電池素子に到達し、残余は導光部材の側面で理論的には100%の反射率で反射して太陽電池素子に到達する。太陽光の入射角が若干ずれても、受光部材の張り出しにより、大半の太陽光は導光部材を介して太陽電池素子に到達する。これにより、許容入射角が大きく太陽電池への照射均一性が高いものとしている。
 また、逆円錐台形の主レンズの底面に円錐形の補助レンズを同軸で埋め込んだW字形の太陽レンズと断面形状が同一の透明な環状レンズを、半径方向または軸方向に同軸で複数個を配置して積層太陽レンズを形成すると共に、それぞれの環状レンズで集光した光線を相互の間隔を詰めるように導光筒で集めて太陽レンズに連結し再集光するように構成した積層太陽レンズも提案されている(例えば、特許文献2参照)。この積層太陽レンズでは、太陽レンズの薄型化と軽量化を図ることができると共に、軸方向に積層した円筒型の積層太陽レンズでは、円筒の側面から入射する太陽光を集光するため、高度の低い太陽光にも対応することができる、としている。
特開2002-280595号公報 特開2009-86059号公報
 しかしながら、上述の太陽光集光装置では、受光部材と導光部材とをアクリル樹脂により一体形成するため、受光面積を大きくすると重量が大きくなってしまう。また、朝日や夕日などのように、太陽光の入射角度が小さいときには許容入射角の範囲外となり、集光することができない。また、上述の積層太陽レンズも、受光面積を大きくすると重量が大きくなってしまう。
 本発明の太陽光熱変換装置は、小型で軽量で簡易な構成で効率よく太陽光を集光して熱エネルギーに変換することを主目的とする。また、本発明の太陽熱発電システムは、小型で軽量で簡易な構成で効率よく太陽光を集光して得られた熱エネルギーを用いて効率よく発電することを主目的とする。
 本発明の太陽光熱変換装置およびこれを用いる太陽熱発電システムは、上述の主目的を達成するために以下の手段を採った。
 本発明の太陽光熱変換装置は、
 太陽光を集光して熱エネルギーに変換する太陽光熱変換装置であって、
 中空の多面体の側部を形成する面の少なくとも一部と頂部を形成する面を、焦点方向が前記多面体の内側となるレンズにより構成した多面体レンズ部と、
 前記多面体レンズ部の内部に配置され、前記レンズからの光を受光して発熱する受光発熱部と、
 を備えることを要旨とする。
 この本発明の太陽光熱変換装置では、多面体レンズ部の頂部を形成する面と側部を形成する面の少なくとも一部がレンズによって構成される。頂部を形成する面だけでなく、側部を形成する面からも太陽光や太陽光の反射光を集光することができる。特に、多面体レンズ部の側部を形成する面の全てをレンズによって構成すれば、底面を除く全方向からの光(太陽光や太陽光の反射光など)を集光することができる。このため、時間の経過に伴って太陽の位置が変化しても、効率よく集光して発熱することができる。これらの結果、小型で軽量で簡易な構成で効率よく太陽光を集光して熱エネルギーに変換することができる。ここで、多面体レンズ部を正六面体とし、底面を除く全ての面をレンズにより構成すれば、多面体レンズ部を容易に組み付けることができる。また、レンズをフレネルレンズとして構成すれば、多面体レンズ部の軽量化を図ることができる。
 こうした本発明の太陽光熱変換装置において、前記受光発熱部は、前記多面体レンズ部の底面の中央に位置するように配置されているものとすることもできる。この場合、前記受光発熱部は、板状の底部材と、前記底部材の中央から前記多面体レンズ部の中心を含むように立脚する立脚部分と、を有するものとすることもでき、更にこの場合、前記受光発熱部は、断面が逆T字型となるよう形成されているものとすることもできる。なお、受光発熱部の形状は、例えば円柱形や角柱形あるいは円錐形としてもよい。
 本発明の太陽光熱変換装置において、前記受光発熱部は、内部または外部に被加熱流体の流路が形成されているものとすることもできる。こうすれば、受光発熱部の熱で被加熱流体を加熱して取り出すことができる。
 本発明の太陽熱発電システムは、
 受光発熱部の内部に被加熱流体の流路が形成されている態様の本発明の太陽光熱変換装置、即ち、基本的には、太陽光を集光して熱エネルギーに変換する太陽光熱変換装置であって、中空の多面体の側部を形成する面の少なくとも一部と頂部を形成する面を、焦点方向が前記多面体の内側となるレンズにより構成した多面体レンズ部と、前記多面体レンズ部の内部に配置され、前記レンズからの光を受光して発熱する受光発熱部と、を備え、前記受光発熱部の内部または外部に被加熱流体の流路が形成されている太陽光熱変換装置を備え、
 前記被加熱流体の熱をランキンサイクルを利用した発電システムにおける熱源として用いて発電する、
 ことを要旨とする。
 この本発明の太陽熱発電システムでは、本発明の太陽光熱変換装置を備えるから、本発明の太陽光熱変換装置が奏する効果、例えば、頂部を形成する面だけでなく側部を形成する面からも太陽光や太陽光の反射光を集光することができるという効果や、この効果により生じる時間の経過に伴って太陽の位置が変化しても効率よく集光して発熱することができるという効果を奏することができる。これらの結果、小型で軽量で簡易な構成で効率よく太陽光を集光して得られた熱エネルギーを用いて効率よく発電することができる。
 こうした本発明の太陽熱発電システムにおいて、前記ランキンサイクルを利用した発電システムは、前記被加熱流体より沸点が低い作動流体が加圧ポンプ、蒸発器、発電機が取り付けられたロータリー熱エンジン、復水器の順に循環するシステムであり、前記被加熱流体の熱を前記蒸発器に供給するものとすることもできる。この場合、被加熱流体として水を用い、貯湯器と、前記貯湯器の冷水を前記受光発熱部に供給して加熱された熱水を前記貯湯器に戻す加熱流路と、前記貯湯器の熱水を前記蒸発器に供給して前記作動流体との熱交換により冷却した水を前記貯湯器に戻す冷却流路と、を備えるものとすることもできる。こうすれば、ありふれた水を用いて蓄熱することができる。また、貯湯した熱水を給湯することも可能となり、更に、エネルギ効率を向上させることができる。更に、復水器を水により作動流体を冷却して作動流体を液体とするものとし、復水器からの水を貯湯器に供給する供給流路を備えるものとすれば、エネルギ効率を更に向上させることができる。
本発明の一実施例としての太陽光熱変換装置20の構成の概略を示す構成図である。 実施例の太陽光熱変換装置20の分解斜視図である。 図2における底部材32のA-A断面を示す断面図である。 図2における底部材32および立脚部材42のB-B断面を示す断面図である。 太陽光と反射光と方位との関係を実験データにより示すグラフである。 実施例の太陽熱発電システム100の構成の概略をブロックとして示すブロック図である。
 次に、本発明を実施するための形態を実施例を用いて説明する。
 図1は本発明の一実施例としての太陽光熱変換装置20の構成の概略を示す構成図であり、図2は実施例の太陽光熱変換装置20の分解斜視図である。実施例の太陽光熱変換装置20は、図示するように、正六面体として形成された多面体レンズ部21と、多面体レンズ部21の内側に配置された受光発熱部30と、を備える。
 多面体レンズ部21は、頂面を形成する頂部レンズ22と、各側面を形成する側面レンズ23~26と、底面を形成する底面用部材27とにより構成されている。頂部レンズ22や側面レンズ23~26は、平行光に対して焦点が多面体レンズ部21の中央近傍あるいは中央より遠くになるよう、例えばアクリル樹脂によりフレネルレンズとして形成されており、焦点が多面体レンズ21の内側となるよう取り付けられている。
 受光発熱部30は、多面体レンズ部21の底面用部材27の中央に配置された底部材32の中央に板状の立脚部材42を立脚することにより、断面が逆T字型となるよう構成されている。底部材32と立脚部材42は、ステンレスやアルミニウムなどの金属によって形成されており、内部に水などの流体の流路が形成されている。図3に図2における底部材32のA-A断面を示し、図4に図2における底部材32および立脚部材42のB-B断面を示す。底部材32の立脚部材42が立脚された両端部近傍には、図3,図4に示すように、底方向からの流体の入口孔33と底方向への流体の出口孔34とが貫通孔として形成されており、図3に示すように、A-A断面には、入口孔33から出口孔34に向けて上下対称の2つの流路35,36が形成されている。立脚部材42のB-B断面には入口43と出口44とが底部材32の入口孔33と出口孔34とに整合する流路45が形成されている。したがって、入口孔33から流入した水などの流体は、3つの流路35,36,45に分流して流れ、出口孔34で合流して流出する。
 次に、こうして構成された実施例の太陽光熱変換装置20の機能について説明する。実施例の太陽光熱変換装置20を、屋外の水平面に側面レンズ23が東で側面レンズ25が西(側面レンズ24が北で側面レンズ26が南)となるように設置した場合を考える。太陽光は、午前中は、陽の当たる東向きに配置された側面レンズ23や頂部レンズ22,南向きに配置された側面レンズ26(夏の午前中の早い時間では北向きに配置された側面レンズ24)から直接に入射し、各レンズ22,23,26(,24)により集光されて受光発熱部30に照射される。一方、陽の当たらない西向きに配置された側面レンズ25や北向きに配置された側面レンズ24(夏の午前中の早い時間では南向きに配置された側面レンズ26)には、直接に太陽光は入射しないが、周囲の建物などによって反射された反射光が入射し、各レンズ24,25(,26)により集光されて受光発熱部30に照射される。太陽光は、午後は、陽の当たる西向きに配置された側面レンズ25や頂部レンズ22,南向きに配置された側面レンズ26(夏の午後の遅い時間では北向きに配置された側面レンズ24)から直接に入射し、各レンズ22,25,26(,24)により集光されて受光発熱部30に照射される。一方、陽の当たらない東向きに配置された側面レンズ23や北向きに配置された側面レンズ24(夏の午後の遅い時間では南向きに配置された側面レンズ26)には、直接に太陽光は入射しないが、周囲の建物などによって反射された反射光が入射し、各レンズ23,24(,26)により集光されて受光発熱部30に照射される。こうした太陽光やその反射光が集光されて受光発熱部30に照射されると、受光発熱部30は発熱し、受光発熱部30の内部に形成された3つの流路35,36,45に流体が流れされているときには、その流体を加熱する。
 図5に、太陽光と反射光の方位による起電圧との関係の実験データをグラフとして示す。実験は、正六面体のアクリルケースの各方位に最大照度で起電圧が500mVとなるソーラーパネルを貼り付けた実験用多面体を、春の快晴の日の午後13時30分頃(気温が21.6℃)に屋外に側面が東西南北に向くように設置して行なった。図中、「真上」、「東」、「西」、「南」、「北」は、実験用多面体において頂面、東向きの側面、西向きの側面、南向きの側面、北向きの側面を示している。各方位の2つの棒グラフのうち、ハッチングされた棒グラフ(左側の棒グラフ)は、地面からの反射光を除去するために実験用多面体の周囲30cmの範囲内の地面を黒いゴムで覆ったときの各方位におけるソーラーパネルの起電圧を示しており、ハッチングされていない棒グラフ(右側の棒グラフ)は、地面からの反射光を許容するために実験用多面体の周囲30cmの範囲内の地面を黒いゴムを除去したときの各方位におけるソーラーパネルの起電圧を示している。図示するように、午後13時30分頃であるため、太陽光の入射角が比較的仰角90度に近い「真上」のソーラーパネルでは、黒いゴムの有無に拘わらずに高い起電圧(約450mV)を生じており、太陽光の入射角が小さいものの直接入射する「西」と「南」のソーラーパネルでは、「真上」のソーラーパネルの起電圧に対して6割から7割程度の起電圧(約250mV~300mV)を生じている。また、太陽の直射光を入射しない「東」と「北」のソーラーパネルでも、「真上」のソーラーパネルの起電圧に対して3割から4割程度の起電圧(約150mV~200mV)を生じている。また、何れの方位でも実験用多面体の周囲30cmの範囲内の地面を黒いゴムで覆っていないときの方が起電圧が高くなる。これらのことから、太陽光を大きな角度で入射する方位(「真上」)や太陽光の入射角が小さい方位(「西」や「南」)だけでなく、太陽光が直接入射しない方位(「東」や「北」)であっても、太陽光起因の反射光により相当の起電圧を生じさせることが解る。そして、この実験用多面体を実施例の太陽光熱変換装置20に置き換えれば、太陽光を大きな角度で入射する方位(「真上」)や太陽光の入射角が小さい方位(「西」や「南」)はもとより、太陽光が直接入射しない方位(「東」や「北」)であっても、太陽光および反射光を集光して受光発熱部30を加熱することができる。
 以上説明した実施例の太陽光熱変換装置20によれば、アクリル樹脂により正方形のフレネルレンズとして形成された頂面レンズ22および側面レンズ23~26と底面用部材27とにより正六面体形状に構成された多面体レンズ部21と、多面体レンズ部21の内側の底面用部材27の中央に底部材32と立脚部材42とからなる断面が逆T字型の受光発熱部30と、によって構成するから、小型で簡易な構成で日の出から日の入りまで太陽光およびその反射光を効率よく集光して発熱することができる。更に、各レンズ22~26をフレネルレンズとして構成したから、軽量なものとすることができる。これらのことから、小型で軽量で簡易な構成で効率よく太陽光を集光して熱エネルギーに変換することができる。また、受光発熱部30は多面体レンズ部21の内部に配置するから、多面体レンズ部21と受光発熱部30との間の空間が受光発熱部30の外気に対する断熱効果を奏することができる。
 実施例の太陽光熱変換装置20では、多面体レンズ部21を底面を除く全ての面をレンズにより正六面体として構成したが、多面体レンズ部の形状は正六面体に限定されるものではなく、三角あるいは五角以上の多角柱形状でもよく、正四面体や三角錐、四角錐などの角錐形状としてもよい。また、底面を除く全ての面をレンズとして構成する必要はなく、陽の当たらない一部の面をレンズとしないものとしても構わない。
 実施例の太陽光熱変換装置20では、各レンズ22~26をアクリル樹脂によりフレネルレンズとして構成したが、ガラスなどによりフレネルレンズとして構成してもよい。また、各レンズ22~26を凸レンズとして構成してもよい。
 実施例の太陽光熱変換装置20では、受光発熱部30を底部材32と立脚部材42とにより逆T字型となるように構成するものとしたが、集光した光が照射されればよいから、逆T字型以外の形状、例えば、底部材の中央に円柱や角柱などの柱部材を立脚した形状としたり、円錐形状や三角錐や四角錐などの角錐形状としてもよい。
 実施例の太陽光熱変換装置20では、受光発熱部30の内部に流体の流路として3つの流路35,36,45を形成するものとしたが、単一の流路を形成するものとしたり、2つの流路あるいは4つ以上の流路を形成するものとしてもよい。また、受光発熱部30により加温されればよいから、受光発熱部の外壁に熱交換可能に接するように流体の流路を形成するものとしても構わない。
 次に、こうした実施例の太陽光熱変換装置20を組み込んだ太陽熱発電システム100について説明する。図6は、実施例の太陽熱発電システム100の構成の概略をブロックとして示すブロック図である。実施例の太陽熱発電システム100は、太陽光熱変換装置20と、太陽光熱変換装置20により加熱された熱水を貯湯する貯湯器110と、貯湯器110からの熱水を用いて発電するランキンサイクル発電システム120と、を備える。
 貯湯器110に蓄えられる水は、その温度による比重の関係で、最も熱い水(熱水)が最上部に蓄えられ、最も冷たい水(冷水)がその最下部に蓄えられる。このため、便宜上、最上部を含む上部を熱水部と称し、最下部を含む下部を冷水部と称し、その中間を温水部と称する。
 貯湯器110の冷水部と太陽光熱変換装置20の受光発熱部30の入口孔33は、冷水供給管131により接続されており、太陽光熱変換装置20の受光発熱部30の出口孔33と貯湯器110の熱水部は、熱水返送管132により接続されている。したがって、貯湯器110から水(冷水)が太陽光熱変換装置20の受光発熱部30に供給され、冷水が太陽光熱変換装置20の受光発熱部30で加熱されて熱水として貯湯器110の熱水部に返送される。
 ランキンサイクル発電システム120は、水より沸点が低い作動流体(例えば、代替フロンなど)を循環流路121に循環させるサイクルであり、循環流路121には、作動流体を加圧する加圧ポンプ122と、加圧された作動流体を蒸発させて気化する蒸発器124と、供給される気体の作動流体と排出する気体の作動流体との圧力差により発電機129に連結された駆動軸を回転駆動するロータリー熱エンジン126と、ロータリー熱エンジン126から排出された作動流体を液化する復水器128と、が設けられている。
 蒸発器124には、作動流体を気化するために熱交換する熱交換流路124aが設けられている。この熱交換流路124aの入口124bは貯湯器110の熱水部と熱水供給管133により接続されており、蒸発器124の出口124cは貯湯器110の温水部と温水返送管134により接続されている。したがって、貯湯器110から熱水が蒸発器124に供給され、作動流体との熱交換により冷却された温水が貯湯器110の温水部に返送される。
 復水器128には、作動流体を液化するために熱交換する熱交換流路128aが設けられている。この熱交換流路128aの入口128bにはシステム外部から冷水(例えば水道水)を供給するための冷水供給管135が接続されており、熱交換流路128aの出口128cは貯湯器110の温水部の下部(または冷水部の上部)に冷温水供給管136が接続されている。したがって、システム外部からの冷水が復水器128に供給され、作動流体と熱交換により加温された冷温水が貯湯器110の温水部の下部(または冷水部の上部)に供給される。
 ロータリー熱エンジン126は、僅かな圧力差でも発電機129を回転駆動することができる熱エンジンとして構成されており、温度差が50℃程度で作動する。
 貯湯器110の熱水部および温水部には、給湯用の給湯管137が取り付けられており、貯湯器110の余剰の熱水や温水に水道水を混合して所望の温度に調整して給湯できるようになっている。
 実施例の太陽熱発電システム100では、日の出から日の入りまで太陽光熱変換装置20により冷水を加熱して熱水として貯湯器110に貯湯し、電力が必要なときに貯湯器110に貯湯した熱水を蒸発器124に供給してランキンサイクル発電システム120を作動させて発電する。
 以上説明した実施例の太陽熱発電システム100によれば、太陽光熱変換装置20により効率よく太陽光を集光して熱エネルギーに変換した熱を貯湯器110で蓄え、必要に応じてランキンサイクル発電システム120を作動させて発電するから、太陽光の有無に拘わらず、所望のときに電力を得ることができる。また、蒸発器124により冷却された温水を貯湯器110に返送したり、復水器128で加温された温冷水を貯湯器110に供給したり、貯湯器110に貯湯された熱水や温水を給湯したりすることにより、システム全体のエネルギ効率を向上させることができる。
 実施例の太陽熱発電システム100では、蒸発器124により冷却された温水を貯湯器110に返送すると共に復水器128で加温された温冷水を貯湯器110に供給するものとしたが、蒸発器124により冷却された温水や復水器128で加温された温冷水を他に供給するもの、例えば給湯するものとしてもよい。また、実施例の太陽熱発電システム100では、貯湯器110に貯湯された熱水や温水を給湯するものとしたが、貯湯器110から給湯しないものとしてもよい。
 実施例の太陽熱発電システム100では、ランキンサイクル発電システム120として、作動流体が循環する循環流路121に加圧ポンプ122と蒸発器124とロータリー熱エンジン126と復水器128とを設けるものとしたが、循環流路に加圧ポンプと加熱器と発電機が取り付けられた蒸気タービンと復水器とを設けるものとしても構わない。
 実施例の太陽熱発電システム100では、太陽光熱変換装置20により加熱する流体として水を用い、ランキンサイクル発電システム120の作動流体として水より沸点の低い流体(例えば代替フロン)を用いたが、太陽光熱変換装置20により加熱する流体として水以外の被加熱流体を用い、ランキンサイクル発電システム120の作動流体として被加熱流体より沸点の低い流体を用いるものとしてもよい。この場合、熱水を蓄える貯湯器110に代えて被加熱流体を蓄える蓄熱器とすればよく、給湯を行なわないものとすればよい。
 以上、本発明を実施するための形態について実施例を用いて説明したが、本発明はこうした実施例に何等限定されるものではなく、本発明の要旨を逸脱しない範囲内において、種々なる形態で実施し得ることは勿論である。
 本発明は、太陽光熱変換装置や太陽熱発電システムの製造産業などに利用可能である。

Claims (11)

  1.  太陽光を集光して熱エネルギーに変換する太陽光熱変換装置であって、
     中空の多面体の側部を形成する面の少なくとも一部と頂部を形成する面を、焦点方向が前記多面体の内側となるレンズにより構成した多面体レンズ部と、
     前記多面体レンズ部の内部に配置され、前記レンズからの光を受光して発熱する受光発熱部と、
     を備える太陽光熱変換装置。
  2.  請求項1記載の太陽光熱変換装置であって、
     前記多面体レンズ部は、正六面体であり、底面を除く全ての面がレンズにより構成されている、
     太陽光熱変換装置。
  3.  請求項1または2記載の太陽光熱変換装置であって、
     前記レンズは、フレネルレンズとして構成されている、
     太陽光熱変換装置。
  4.  請求項1ないし3のうちのいずれか1つの請求項に記載の太陽光熱変換装置であって、
     前記受光発熱部は、前記多面体レンズ部の底面の中央に位置するように配置されている、
     太陽光熱変換装置。
  5.  請求項4記載の太陽光熱変換装置であって、
     前記受光発熱部は、板状の底部材と、前記底部材の中央から前記多面体レンズ部の中心を含むように立脚する立脚部材と、を有する、
     太陽光熱変換装置。
  6.  請求項5記載の太陽光熱変換装置であって、
     前記受光発熱部は、断面が逆T字型となるよう形成されている、
     太陽光熱変換装置。
  7.  請求項1ないし6のうちいずれか1つの請求項に記載の太陽光熱変換装置であって、
     前記受光発熱部は、内部または外部に被加熱流体の流路が形成されている、
     太陽光熱変換装置。
  8.  請求項7記載の太陽光熱変換装置を備え、前記被加熱流体の熱をランキンサイクルを利用した発電システムにおける熱源として用いて発電する太陽熱発電システム。
  9.  請求項8記載の太陽熱発電システムであって、
     前記ランキンサイクルを利用した発電システムは、前記被加熱流体より沸点が低い作動流体が加圧ポンプ、蒸発器、発電機が取り付けられたロータリー熱エンジン、復水器の順に循環するシステムであり、
     前記被加熱流体の熱を前記蒸発器に供給する、
     太陽熱発電システム。
  10.  請求項9記載の太陽熱発電システムであって、
     前記被加熱流体は水であり、
     更に、
     貯湯器と、
     前記貯湯器の冷水を前記受光発熱部に供給して加熱された熱水を前記貯湯器に戻す加熱流路と、
     前記貯湯器の熱水を前記蒸発器に供給して前記作動流体との熱交換により冷却した水を前記貯湯器に戻す冷却流路と、
     を備える太陽熱発電システム。
  11.  請求項10記載の太陽熱発電システムであって、
     前記復水器は、水により前記作動流体を冷却して該作動流体を液体とするものであり、
     前記復水器からの水を前記貯湯器に供給する供給流路を備える、
     太陽熱発電システム。
PCT/JP2013/070045 2012-07-25 2013-07-24 太陽光熱変換装置およびこれを用いる太陽熱発電システム WO2014017539A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP13823845.6A EP2878898A4 (en) 2012-07-25 2013-07-24 DEVICE FOR CONVERTING SUNROOM HEAT AND SOLAR POWER GENERATION SYSTEM THEREWITH
JP2014526974A JPWO2014017539A1 (ja) 2012-07-25 2013-07-24 太陽光熱変換装置およびこれを用いる太陽熱発電システム
IN1433DEN2015 IN2015DN01433A (ja) 2012-07-25 2013-07-24

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012164388 2012-07-25
JP2012-164388 2012-07-25

Publications (1)

Publication Number Publication Date
WO2014017539A1 true WO2014017539A1 (ja) 2014-01-30

Family

ID=49997348

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/070045 WO2014017539A1 (ja) 2012-07-25 2013-07-24 太陽光熱変換装置およびこれを用いる太陽熱発電システム

Country Status (4)

Country Link
EP (1) EP2878898A4 (ja)
JP (1) JPWO2014017539A1 (ja)
IN (1) IN2015DN01433A (ja)
WO (1) WO2014017539A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6059398B1 (ja) * 2016-09-28 2017-01-11 株式会社Ihi バイナリ発電システム
JP6097897B1 (ja) * 2017-01-10 2017-03-15 株式会社Ihi バイナリ発電システム

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2016434337B9 (en) * 2016-12-30 2020-10-08 Bolymedia Holdings Co. Ltd. Concentrating solar apparatus

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4993941A (ja) * 1973-01-11 1974-09-06
JPS5784948A (en) * 1980-11-15 1982-05-27 Matsushita Electric Works Ltd Convergence type solar heat collector
JPH08285377A (ja) * 1995-04-19 1996-11-01 Sony Corp 太陽光集光装置
JPH09273816A (ja) * 1996-04-02 1997-10-21 Katsukuni Noguchi 組み合わせ太陽熱温水器
JP2000321525A (ja) * 1999-05-14 2000-11-24 Hitachi Cable Ltd 太陽光集光装置
JP2002280595A (ja) 2001-03-22 2002-09-27 Canon Inc 太陽光集光装置
JP2007263010A (ja) * 2006-03-29 2007-10-11 Osaka Gas Co Ltd コージェネレーションシステム
JP2008057823A (ja) * 2006-08-30 2008-03-13 Matsushita Electric Ind Co Ltd 太陽熱集熱器およびそれを用いた太陽熱利用装置
JP2009086059A (ja) 2007-09-28 2009-04-23 Motoaki Masuda 積層太陽レンズ
WO2011021694A1 (ja) * 2009-08-20 2011-02-24 旭硝子株式会社 フレネルレンズ構造体、集光装置、カバーガラス付き太陽電池用フレネルレンズ、および、カバーガラス付き太陽電池用フレネルレンズの製造方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4830677A (en) * 1988-04-22 1989-05-16 Geisler Jr Herbert A Solar generator
US20090078249A1 (en) * 2007-05-24 2009-03-26 Tricia Liu Device for concentrating optical radiation
AU2010246433A1 (en) * 2009-11-27 2011-06-16 Roderick John Mould A power generator assembly
ES2373302B1 (es) * 2011-12-29 2012-12-13 Juan Martínez Vázquez Concentrador solar.

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4993941A (ja) * 1973-01-11 1974-09-06
JPS5784948A (en) * 1980-11-15 1982-05-27 Matsushita Electric Works Ltd Convergence type solar heat collector
JPH08285377A (ja) * 1995-04-19 1996-11-01 Sony Corp 太陽光集光装置
JPH09273816A (ja) * 1996-04-02 1997-10-21 Katsukuni Noguchi 組み合わせ太陽熱温水器
JP2000321525A (ja) * 1999-05-14 2000-11-24 Hitachi Cable Ltd 太陽光集光装置
JP2002280595A (ja) 2001-03-22 2002-09-27 Canon Inc 太陽光集光装置
JP2007263010A (ja) * 2006-03-29 2007-10-11 Osaka Gas Co Ltd コージェネレーションシステム
JP2008057823A (ja) * 2006-08-30 2008-03-13 Matsushita Electric Ind Co Ltd 太陽熱集熱器およびそれを用いた太陽熱利用装置
JP2009086059A (ja) 2007-09-28 2009-04-23 Motoaki Masuda 積層太陽レンズ
WO2011021694A1 (ja) * 2009-08-20 2011-02-24 旭硝子株式会社 フレネルレンズ構造体、集光装置、カバーガラス付き太陽電池用フレネルレンズ、および、カバーガラス付き太陽電池用フレネルレンズの製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2878898A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6059398B1 (ja) * 2016-09-28 2017-01-11 株式会社Ihi バイナリ発電システム
JP6097897B1 (ja) * 2017-01-10 2017-03-15 株式会社Ihi バイナリ発電システム
JP2018112081A (ja) * 2017-01-10 2018-07-19 株式会社Ihi バイナリ発電システム

Also Published As

Publication number Publication date
JPWO2014017539A1 (ja) 2016-07-11
EP2878898A4 (en) 2016-08-17
EP2878898A1 (en) 2015-06-03
IN2015DN01433A (ja) 2015-07-03

Similar Documents

Publication Publication Date Title
US8952238B1 (en) Concentrated photovoltaic and solar heating system
JP5797737B2 (ja) 太陽熱集熱システム
US8188366B2 (en) Integrated solar energy conversion system, method, and apparatus
Patel et al. A review on compound parabolic solar concentrator for sustainable development
US9279416B2 (en) Solar power system
US20110000543A1 (en) Solar energy collection and conversion system
Han et al. Energy analysis of a hybrid solar concentrating photovoltaic/concentrating solar power (CPV/CSP) system
Ratismith et al. A non-tracking concentrating collector for solar thermal applications
US10072875B2 (en) Heat concentrator device for solar power system
WO2017136377A1 (en) Combination photovoltaic and thermal energy system
WO2014017539A1 (ja) 太陽光熱変換装置およびこれを用いる太陽熱発電システム
Sahu et al. Historical overview of power generation in solar parabolic dish collector system
CN102207344A (zh) 双镜聚焦太阳能制冷装置
US20140366930A1 (en) Hybrid solar energy recovery system
JP2010281251A (ja) 太陽集光蒸気発電装置
Singh et al. A review on solar energy collection for thermal applications
CN105577032B (zh) 单元式太阳能全光谱利用的光电‑热电‑热水复合系统
Elshik et al. Appropriate solar spectrum usage: the novel design of a photovoltaic thermal system
Kesari et al. Review of the concentrated solar thermal technologies: challenges and opportunities in India
WO2013005479A1 (ja) 太陽集光システム及び太陽熱発電システム
US8853522B1 (en) Concentrated photovoltaic and solar heating system
Henkel New solar thermal energy applications for commercial, industrial, and government facilities
Abbood et al. Performance evaluation of steam generation by a Fresnel lensed conical cavity receiver: An experimental study
Siddique et al. An analytical approach to design a cost effective dual axis solar tracker based on CSP and PV technology
Arpan et al. DEVELOPMENT OF PARABOLIC DISC SOLAR THERMAL COLLECTORS FOR HOT WATER GENERATION

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13823845

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014526974

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2013823845

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013823845

Country of ref document: EP