US20090078249A1 - Device for concentrating optical radiation - Google Patents

Device for concentrating optical radiation Download PDF

Info

Publication number
US20090078249A1
US20090078249A1 US12/154,211 US15421108A US2009078249A1 US 20090078249 A1 US20090078249 A1 US 20090078249A1 US 15421108 A US15421108 A US 15421108A US 2009078249 A1 US2009078249 A1 US 2009078249A1
Authority
US
United States
Prior art keywords
recited
collection frame
radiation
focal point
sunlight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/154,211
Inventor
Tricia Liu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BUCKY SOLAR Inc
Original Assignee
Tricia Liu
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tricia Liu filed Critical Tricia Liu
Priority to US12/154,211 priority Critical patent/US20090078249A1/en
Priority to PCT/US2009/034580 priority patent/WO2009105587A2/en
Publication of US20090078249A1 publication Critical patent/US20090078249A1/en
Assigned to BUCKY SOLAR, INC. reassignment BUCKY SOLAR, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: LIU, TRICIA
Abandoned legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/054Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means
    • H01L31/0547Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means comprising light concentrating means of the reflecting type, e.g. parabolic mirrors, concentrators using total internal reflection
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S20/00Solar heat collectors specially adapted for particular uses or environments
    • F24S20/20Solar heat collectors for receiving concentrated solar energy, e.g. receivers for solar power plants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S23/00Arrangements for concentrating solar-rays for solar heat collectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S23/00Arrangements for concentrating solar-rays for solar heat collectors
    • F24S23/30Arrangements for concentrating solar-rays for solar heat collectors with lenses
    • F24S23/31Arrangements for concentrating solar-rays for solar heat collectors with lenses having discontinuous faces, e.g. Fresnel lenses
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S23/00Arrangements for concentrating solar-rays for solar heat collectors
    • F24S23/70Arrangements for concentrating solar-rays for solar heat collectors with reflectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S23/00Arrangements for concentrating solar-rays for solar heat collectors
    • F24S23/70Arrangements for concentrating solar-rays for solar heat collectors with reflectors
    • F24S23/80Arrangements for concentrating solar-rays for solar heat collectors with reflectors having discontinuous faces
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S23/00Arrangements for concentrating solar-rays for solar heat collectors
    • F24S23/70Arrangements for concentrating solar-rays for solar heat collectors with reflectors
    • F24S2023/83Other shapes
    • F24S2023/833Other shapes dish-shaped
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S23/00Arrangements for concentrating solar-rays for solar heat collectors
    • F24S23/70Arrangements for concentrating solar-rays for solar heat collectors with reflectors
    • F24S2023/87Reflectors layout
    • F24S2023/872Assemblies of spaced reflective elements on common support, e.g. Fresnel reflectors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/20Solar thermal
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/44Heat exchange systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators

Definitions

  • the present invention relates to an optical radiation collection device, and more particularly to a device which collects solar energy from different directions and concentrates the collected energy to a fixed energy converter.
  • solar energy is mainly used to convert sun light into electricity and heat. Both need to first collection the optical radiation from the sun, and then to convert the optical energy by converter.
  • the converter could be a photovoltaic (PV) cell to generate electric energy, or medium such as water for heat energy transportation.
  • PV photovoltaic
  • the present invention provides another approach to increase the efficiency of solar energy utilization. Instead of enlarging the receiving area of the converter or using moving elements, the strategy of the present invention is to use fixed receiving elements which can receive optical radiation from different direction, and then guide the light to the converter. In this approach, no complex moving elements are needed, and no more expensive converter such as PV cells are demanded.
  • the main object of the present invention is to provide a device for concentrating optical radiation which improves the solar energy utilization.
  • Another object of the present invention is to provide a device for concentrating optical radiation which collects optical radiation from all directions.
  • Another object of the present invention is to provide a device for concentrating optical radiation which concentrates the optical radiation to a predetermined position.
  • Another object of the present invention is to provide a device for concentrating optical radiation which collects optical radiation passively without using moving elements.
  • Another object of the present invention is to provide a device for concentrating optical radiation which is using economical materials.
  • Another object of the present invention is to provide a device for concentrating optical radiation which is portable.
  • Another object of the present invention is to provide a device for concentrating optical radiation which is easy to install.
  • Another object of the present invention is to provide a device for concentrating optical radiation which is adaptable to different converters.
  • Another object of the present invention is to provide a device for concentrating optical radiation which is adaptable to different carriers.
  • Another object of the present invention is to provide a device for concentrating optical radiation which is flexible to be used for different applications.
  • the present invention provides a device for concentrating optical radiation, comprising:
  • a collection frame having a all-direction collecting surface for the sunlight projecting thereto at all time, and a focal point defining within said all-direction collecting surface such that radiation of said sunlight is converged at said focal point;
  • a radiation collector supported at said focal point of said collection frame for collecting said radiation of said sunlight.
  • FIG. 1 is a perspective view of a ball structure of the device for concentrating optical radiation with Fresnel lenses.
  • FIG. 2 is a perspective view of a radiation collector of the A section of the FIG. 1 .
  • FIG. 3 is a schematic view of a device of the present invention for generating bio fuel using heat converted from solar energy.
  • FIG. 4 is a perspective view of an embodiment of the present invention using concaved reflective surface.
  • FIG. 5 is a perspective view of an embodiment of the present invention wherein the collection frame is a geodesic sphere balloon.
  • FIG. 6 is a schematic view of a group of collection frames with reflective pyramids which are integrated together.
  • FIG. 7 is a sectional view of a building with a dome roof of the present invention.
  • FIG. 8 is a sectional view of the A section of FIG. 7 .
  • FIG. 9 is a perspective view of a building with an arch roof of the present invention.
  • FIG. 10 is a perspective view of a building with a gable roof of the present invention.
  • FIG. 11 is a schematic view of a building with the devices of the present invention mounted on the roof and on the outer wall.
  • FIG. 12 is a schematic view of a vehicle with a device of the present invention mounted on the roof.
  • FIG. 13 is a schematic view of a power plant using the devices of the present invention.
  • a device for concentrating optical radiation comprises a collection frame 100 , and a radiation collector 200 .
  • the collection frame 100 also has a collecting surface 110 and a focal point 120 .
  • the collecting surface is adapted to collect optical radiation, and more particularly to collect solar radiation, from different directions, and guide the radiation to the focal point 120 .
  • the radiation collector 200 is located at the focal point 120 . It can collect the concentrated radiation for further utilization.
  • the collecting surface 110 has two ways to concentrate the optical radiation: one is using optical lens 130 , the other is using concaved reflective surface 140 .
  • the structure of the collection frame 100 is in a versatile ball shape.
  • the spherical surface of the versatile ball is covered by a plurality of lens faces 131 .
  • On each lens face 131 is an optical lens 130 .
  • Inside the versatile ball is the focal point 120 , which is preferably the ball center.
  • Each optical lens 130 of the lens face 131 can focus the light projected from a range of directions onto the focal point 120 . Because the whole spherical surface of the collection frame 100 is covered by optical lenses 130 facing different directions, there is always one or more lenses can focus the sun rays onto the focal point 120 no matter what the position of the sun is.
  • the structure of the collection frame 100 is analogical to the modular structure of the carbon-60 bucky ball nano structure.
  • the collection frame 100 is consisted by 32 polyhedron faces as the lens faces 131 , including 20 hexagonal faces and 12 pentagonal faces. Each polyhedron face is connected with other polyhedron faces edge by edge to form a ball shape.
  • the optical lens 130 is a Fresnel lens which is made of MPPA polymer. It is light, thin, cheap, and easy to install.
  • the Fresnel lens' can be in either concentric prismatic rings 1321 or divided in 1 ⁇ 1 micro elements 1322 to concentrate the lights to the focal point 120 .
  • the collection frame 100 is formed by clear plastic parts, it is portable and easy to assemble.
  • the clear plastic parts don't obstruct light's path because they are transparent and coated with MgF2 anti-reflective coating.
  • the edges of the polyhedron faces are made of hollow tubes with tongue and groove on both sides of the tubes lengthwise.
  • the lens faces 131 are embedded in those grooves of the collection frame 100 .
  • the vertexes of the polyhedron faces are plastic joints with 3 protruding rods for 3 of the hollow tubes to be embedded to form the ball frame.
  • the radiation collector 200 is supported at the focal point 120 of the collection frame 100 . At this point the sun light is concentrated. So the radiation collection will collect all the solar energy.
  • the radiation collector 200 is collecting solar energy to generate electricity.
  • the radiation collector 200 is either in a shape of a cube 211 or a ball 212 .
  • the surface of the cube 211 or ball 212 is covered with PV cells 210 to convert solar energy to electricity.
  • the PV cells 210 can be flat or flexible thin film adapted to the spherical curve.
  • the P/V thin film can be CdTe which is 3 ⁇ m in thickness, GaInP 2 /GsAs/Ge triple junction, or CGIS/CdSe which is 5 ⁇ m in thickness.
  • the surface of the cube 211 and the ball 212 can receive light rays from all directions.
  • the cube 211 and the ball 212 are supported by rods extending from the collection frame 100 .
  • some joints have one extra rod to support the cube 211 or ball 212 .
  • the whole device can be disassembled and pout into a back pack and be portable.
  • the collecting surface 110 is coated by PV cells. So the PV cells can collect sun rays from different direction directly without extra lenses.
  • the structure of the collection frame 100 can be of bucky ball which consists of 20 hexagonal faces and 12 pentagonal faces, globe ball consists of 12 oval faces, icosahedron consists of 20 faces, tetrahedron consists of 4 faces, or pyramid consists of 5 faces.
  • PV cells can be flat or flexible thin film pasted or deposited onto the spherical curve.
  • the radiation collector 200 is collecting solar energy to generate heat.
  • the radiation collector 200 is hollow copper ball 220 which is connected with conducting copper pipes 221 .
  • the hollow copper ball can be heated by the concentrated sun light, and the heat is then transferred by the conducting copper pipes for further application.
  • the radiation collector 200 is a container containing fluidic medium. This fluidic medium can be liquid or air which can be heated by the concentrated sun light. The heated fluidic medium is than conducted to predetermined element for further application.
  • the radiation collector 200 heats the object directly.
  • the radiation collector 200 contains the sea water for desalination.
  • concaved reflective surface 140 is used.
  • the collection frame 100 comprises a plurality of reflective cones 141 .
  • These reflective cones 141 are polyhedron cone and are assembled together to form a spherical shape with the vertex facing the focal point 120 of the collection frame 100 .
  • Each reflective cone 141 further comprises a concaved reflective surface 140 at the inner face thereof. When a sun ray is projected into this reflective cone 141 , the concaved reflective surface 140 will reflect the sun ray towards the apex of the cone, and finally guide the sun ray to the focal point 120 .
  • both the bottom and the apex of the reflective cone 141 are open or transparent, so that the light will pass through from outside of the collection frame 100 and reach the focal point 120 .
  • the reflective cone 141 can have different shapes.
  • the collection frame 100 is divided into a plurality of sections 142 vertically. Each section has 3 reflective cones 141 .
  • the collection frame 100 is formed by a plurality of reflective cones 141 that each reflective cone 141 is a tetrahedron having 3 reflective faces 143 .
  • the reflective faces 143 is made of plastic, such as polyethylene terephthalate (boPET) coated with aluminized thin film, or alternatively made of aluminum sheet. BoPET with aluminized thin film coating can reflective 99% sun light including much of the infrared spectrum.
  • the collection frame 100 is a geodesic sphere balloon 101 with reflective faces inside to divide the balloon into reflective cones 141 . Before inflated by air, the geodesic sphere balloon 101 can be squeezed and folded into small volume. After pumping air into it, the geodesic sphere balloon 101 can be expanded into a sphere. The outer surface is transparent, the sun light projects into the balloon will be reflected by the concaved reflective surface 140 of the reflective cones 141 and concentrated to the focal point 120 and be collected by the radiation collector 200 . This design is light, portable, and very easy to install.
  • the device also comprises a reflective element 300 to bounce back additional sun light which is not collected by the collecting surface 110 .
  • the reflective element 300 is a curved surface which can reflect uncaptured sun ray back to the device.
  • the reflective element 300 is a reflective dish 301 .
  • the collection frame 100 is suspended over the reflective dish 301 . So the sun rays reach at the reflective dish 301 will be reflected to the collection frame 100 .
  • the reflective element 300 is a reflective pyramid 302 which has four curved reflective faces 303 . 4 reflective pyramids 302 can be placed around the collection frame 100 and reflect run rays to the collection frame 100 .
  • the parabolic dish is also used to collect more sun light. But the parabolic dish still needs to track the sun to focus the reflected sun rays onto the collector. In the present invention, all the sun light reflected by the reflective element 300 will be captured by the collection frame 100 . At the same time the reflective element 300 is stationary.
  • the device of the present invention can be used individually, or used as a group.
  • each device has a collection frame 100 , a radiation collector 200 , and/or a reflective element 300 .
  • the device itself collects the sun light and converts it into desired power for further usage. This can be used in outdoor lighting, solar grill, small amount electricity generation, and so on.
  • a number of devices of the present invention are integrated into a group in order to generate a large amount of power.
  • the device of the present invention can be applied in different locations for different functions conveniently.
  • the device for concentrating optical radiation can be place on the roof and outer wall of buildings.
  • the collective cone structure can replace the conventional roof of building.
  • the reflective cones 141 can be assembled into one roof structure 150 , such as a dome roof, a gable roof, a pyramid roof, an arch roof or any other suitable structures.
  • the versatile and esthetic appearance of the present invention is a big advantage in architecture.
  • the device of the present invention can also be built on the outer wall of buildings for collecting more sun lights.
  • Each roof structure has one or more than one radiation collector 200 .
  • the sun light concentrated onto the radiation collectors 200 can be split into visible sun light and infrared through a prism for different purposes.
  • one or more than one embodiment of the present invention can be simple placed on the roof of the building without changing the original structure, or just be placed on the ground.
  • the utilization of the present invention for a building can provide electricity, light, and heat which can greatly save the energy consuming.
  • the device can be placed on mobile carriers such as cars and boats as portable power and heat supplier. Because the materials of present invention are light, the structure is simple, it won't take too much load of the carriers. Additionally, because the device can collect sun light from all directions, it won't limit the movement of the carriers. For better efficiency, the device is place at the roof of the carriers.
  • the present invention can be used in mass production.
  • a large amount of the devices of the present invention can be integrated together to generate electricity as a power plant, to desalinate sea water, to purify water, to produce bio fuel, and to extract hydrogen.
  • the present invention is using simple, stationary and economical structures to increase area for collecting more sun light from all directions instead of increasing the radiation collector's area.
  • the sun light is concentrated on a radiation collector 200 which only has limited bulk and area. Because in general the radiation collector 200 is expensive, the present invention largely saves the cost. Also, since the sunlight is concentrated, it increases the efficiency for energy converting.
  • the present invention doesn't use any motional element, which increases the reliability.
  • the present invention is light, portable, and very flexible in shape and materials which is convenient to be applied for different location and purposes.

Abstract

A device for concentrating optical radiation comprises a collection frame, and a radiation collector. The collection frame also has a collecting surface and a focal point 120. The collecting surface is adapted to collect optical radiation, and more particularly to collect solar radiation, from different directions, and guide the radiation to the focal point. The radiation collector is located at the focal point. It can collect the concentrated radiation for further utilization. The present invention is using simple, stationary and economical structures to increase area for collecting more sun light from all directions instead of increasing the radiation collector's area which largely saves the cost.

Description

    CROSS REFERENCE OF RELATED APPLICATION
  • This is a non-provisional application of a provisional application having application No. 60/931,496 and filing date of May 24, 2007.
  • BACKGROUND OF THE PRESENT INVENTION
  • 1. Field of Invention
  • The present invention relates to an optical radiation collection device, and more particularly to a device which collects solar energy from different directions and concentrates the collected energy to a fixed energy converter.
  • 2. Description of Related Arts
  • How to utilize solar energy efficiently is one of the biggest interests for human society. It could be the key to solve the problems such pollution and global warm we have to face seriously.
  • Currently solar energy is mainly used to convert sun light into electricity and heat. Both need to first collection the optical radiation from the sun, and then to convert the optical energy by converter. The converter could be a photovoltaic (PV) cell to generate electric energy, or medium such as water for heat energy transportation. There are several factors that affect the prevalence of the solar energy. Because of the rotation and revolution of the earth, the direction of sun light keeps changing. That largely affects the efficiency of energy converting. For example, most PV cells are flat, only when the sun light projects on the PV cell vertically the most electricity can be converted. Otherwise, more expensive PV cells are needed to generate the same amount of electricity. For heating, sun light must be concentrated to generate enough heat, but the moving sun always changes the focus.
  • One of the solutions is tracking the sun. Mechanical systems are used to make sure the PV cells or mirrors are tracking the movement of the sun for the best efficiency. But most of the time the energy consumed to track the sun is even larger than the energy generated by the solar power system. Another solution is enlarging the receiving area of the converter. But obviously this will increase the cost. A different solution must be supplied.
  • SUMMARY OF THE PRESENT INVENTION
  • The present invention provides another approach to increase the efficiency of solar energy utilization. Instead of enlarging the receiving area of the converter or using moving elements, the strategy of the present invention is to use fixed receiving elements which can receive optical radiation from different direction, and then guide the light to the converter. In this approach, no complex moving elements are needed, and no more expensive converter such as PV cells are demanded.
  • The main object of the present invention is to provide a device for concentrating optical radiation which improves the solar energy utilization.
  • Another object of the present invention is to provide a device for concentrating optical radiation which collects optical radiation from all directions.
  • Another object of the present invention is to provide a device for concentrating optical radiation which concentrates the optical radiation to a predetermined position.
  • Another object of the present invention is to provide a device for concentrating optical radiation which collects optical radiation passively without using moving elements.
  • Another object of the present invention is to provide a device for concentrating optical radiation which is using economical materials.
  • Another object of the present invention is to provide a device for concentrating optical radiation which is portable.
  • Another object of the present invention is to provide a device for concentrating optical radiation which is easy to install.
  • Another object of the present invention is to provide a device for concentrating optical radiation which is adaptable to different converters.
  • Another object of the present invention is to provide a device for concentrating optical radiation which is adaptable to different carriers.
  • Another object of the present invention is to provide a device for concentrating optical radiation which is flexible to be used for different applications.
  • Accordingly, in order to accomplish the above objects, the present invention provides a device for concentrating optical radiation, comprising:
  • a collection frame having a all-direction collecting surface for the sunlight projecting thereto at all time, and a focal point defining within said all-direction collecting surface such that radiation of said sunlight is converged at said focal point; and
  • a radiation collector supported at said focal point of said collection frame for collecting said radiation of said sunlight.
  • These and other objectives, features, and advantages of the present invention will become apparent from the following detailed description, the accompanying drawings, and the appended claims.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a perspective view of a ball structure of the device for concentrating optical radiation with Fresnel lenses.
  • FIG. 2 is a perspective view of a radiation collector of the A section of the FIG. 1.
  • FIG. 3 is a schematic view of a device of the present invention for generating bio fuel using heat converted from solar energy.
  • FIG. 4 is a perspective view of an embodiment of the present invention using concaved reflective surface.
  • FIG. 5 is a perspective view of an embodiment of the present invention wherein the collection frame is a geodesic sphere balloon.
  • FIG. 6 is a schematic view of a group of collection frames with reflective pyramids which are integrated together.
  • FIG. 7 is a sectional view of a building with a dome roof of the present invention.
  • FIG. 8 is a sectional view of the A section of FIG. 7.
  • FIG. 9 is a perspective view of a building with an arch roof of the present invention.
  • FIG. 10 is a perspective view of a building with a gable roof of the present invention.
  • FIG. 11 is a schematic view of a building with the devices of the present invention mounted on the roof and on the outer wall.
  • FIG. 12 is a schematic view of a vehicle with a device of the present invention mounted on the roof.
  • FIG. 13 is a schematic view of a power plant using the devices of the present invention.
  • DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT
  • Referring to the FIGS. 1 to 4 of the drawings, a device for concentrating optical radiation comprises a collection frame 100, and a radiation collector 200. The collection frame 100 also has a collecting surface 110 and a focal point 120. The collecting surface is adapted to collect optical radiation, and more particularly to collect solar radiation, from different directions, and guide the radiation to the focal point 120. The radiation collector 200 is located at the focal point 120. It can collect the concentrated radiation for further utilization.
  • The collecting surface 110 has two ways to concentrate the optical radiation: one is using optical lens 130, the other is using concaved reflective surface 140.
  • Referring to FIG. 1, in one preferred embodiment of the present invention which is using optical lens 130, the structure of the collection frame 100 is in a versatile ball shape. The spherical surface of the versatile ball is covered by a plurality of lens faces 131. On each lens face 131 is an optical lens 130. Inside the versatile ball is the focal point 120, which is preferably the ball center. Each optical lens 130 of the lens face 131 can focus the light projected from a range of directions onto the focal point 120. Because the whole spherical surface of the collection frame 100 is covered by optical lenses 130 facing different directions, there is always one or more lenses can focus the sun rays onto the focal point 120 no matter what the position of the sun is.
  • In a preferred embodiment of the present invention, the structure of the collection frame 100 is analogical to the modular structure of the carbon-60 bucky ball nano structure. Referring to FIG. 1, the collection frame 100 is consisted by 32 polyhedron faces as the lens faces 131, including 20 hexagonal faces and 12 pentagonal faces. Each polyhedron face is connected with other polyhedron faces edge by edge to form a ball shape.
  • On each polyhedron face an optical lens 130 is loaded. In a preferred embodiment, the optical lens 130 is a Fresnel lens which is made of MPPA polymer. It is light, thin, cheap, and easy to install. The Fresnel lens' can be in either concentric prismatic rings 1321 or divided in 1×1 micro elements 1322 to concentrate the lights to the focal point 120.
  • The collection frame 100 is formed by clear plastic parts, it is portable and easy to assemble. The clear plastic parts don't obstruct light's path because they are transparent and coated with MgF2 anti-reflective coating. The edges of the polyhedron faces are made of hollow tubes with tongue and groove on both sides of the tubes lengthwise. The lens faces 131 are embedded in those grooves of the collection frame 100. The vertexes of the polyhedron faces are plastic joints with 3 protruding rods for 3 of the hollow tubes to be embedded to form the ball frame.
  • Referring to FIGS. 1 and 2, the radiation collector 200 is supported at the focal point 120 of the collection frame 100. At this point the sun light is concentrated. So the radiation collection will collect all the solar energy. In a preferred embodiment, the radiation collector 200 is collecting solar energy to generate electricity. The radiation collector 200 is either in a shape of a cube 211 or a ball 212. The surface of the cube 211 or ball 212 is covered with PV cells 210 to convert solar energy to electricity. The PV cells 210 can be flat or flexible thin film adapted to the spherical curve. For example, the P/V thin film can be CdTe which is 3 μm in thickness, GaInP2/GsAs/Ge triple junction, or CGIS/CdSe which is 5 μm in thickness. The surface of the cube 211 and the ball 212 can receive light rays from all directions. Also the cube 211 and the ball 212 are supported by rods extending from the collection frame 100. In an embodiment, some joints have one extra rod to support the cube 211 or ball 212. Totally there are 3 or 4 rods for supporting the cube 211 or ball 212. The whole device can be disassembled and pout into a back pack and be portable.
  • In an alternative embodiment of the present invention, the collecting surface 110 is coated by PV cells. So the PV cells can collect sun rays from different direction directly without extra lenses. The structure of the collection frame 100 can be of bucky ball which consists of 20 hexagonal faces and 12 pentagonal faces, globe ball consists of 12 oval faces, icosahedron consists of 20 faces, tetrahedron consists of 4 faces, or pyramid consists of 5 faces. PV cells can be flat or flexible thin film pasted or deposited onto the spherical curve.
  • Referring to FIG. 3, in an alternative embodiment, the radiation collector 200 is collecting solar energy to generate heat. The radiation collector 200 is hollow copper ball 220 which is connected with conducting copper pipes 221. The hollow copper ball can be heated by the concentrated sun light, and the heat is then transferred by the conducting copper pipes for further application. In an alternative embodiment, the radiation collector 200 is a container containing fluidic medium. This fluidic medium can be liquid or air which can be heated by the concentrated sun light. The heated fluidic medium is than conducted to predetermined element for further application. In another alternative embodiment, the radiation collector 200 heats the object directly. For example, the radiation collector 200 contains the sea water for desalination.
  • Besides using lens to concentrate sun light, in an alternative embodiment of the present invention, concaved reflective surface 140 is used. Referring to FIG. 4, the collection frame 100 comprises a plurality of reflective cones 141. These reflective cones 141 are polyhedron cone and are assembled together to form a spherical shape with the vertex facing the focal point 120 of the collection frame 100. Each reflective cone 141 further comprises a concaved reflective surface 140 at the inner face thereof. When a sun ray is projected into this reflective cone 141, the concaved reflective surface 140 will reflect the sun ray towards the apex of the cone, and finally guide the sun ray to the focal point 120. In this way, sun ray projects into the reflective cone 141 from any direction will be concentrated on the focal point 120. It is worth mentioning that both the bottom and the apex of the reflective cone 141 are open or transparent, so that the light will pass through from outside of the collection frame 100 and reach the focal point 120.
  • The reflective cone 141 can have different shapes. For example, referring to FIG. 4, in an embodiment of the present invention, the collection frame 100 is divided into a plurality of sections 142 vertically. Each section has 3 reflective cones 141. Referring to FIG. 8, in an alternative embodiment, the collection frame 100 is formed by a plurality of reflective cones 141 that each reflective cone 141 is a tetrahedron having 3 reflective faces 143. The reflective faces 143 is made of plastic, such as polyethylene terephthalate (boPET) coated with aluminized thin film, or alternatively made of aluminum sheet. BoPET with aluminized thin film coating can reflective 99% sun light including much of the infrared spectrum. It can be in any color or assorted colors. So it is a good versatile and esthetic building material to blend into architectural designs. The opening of each reflective cone 141 can be covered with transparent materials to prevent dust and insect invasion. Referring to FIG. 5, in another alternative embodiment, the collection frame 100 is a geodesic sphere balloon 101 with reflective faces inside to divide the balloon into reflective cones 141. Before inflated by air, the geodesic sphere balloon 101 can be squeezed and folded into small volume. After pumping air into it, the geodesic sphere balloon 101 can be expanded into a sphere. The outer surface is transparent, the sun light projects into the balloon will be reflected by the concaved reflective surface 140 of the reflective cones 141 and concentrated to the focal point 120 and be collected by the radiation collector 200. This design is light, portable, and very easy to install.
  • The device also comprises a reflective element 300 to bounce back additional sun light which is not collected by the collecting surface 110. The reflective element 300 is a curved surface which can reflect uncaptured sun ray back to the device. In a preferred embodiment, referring to FIG. 1, the reflective element 300 is a reflective dish 301. The collection frame 100 is suspended over the reflective dish 301. So the sun rays reach at the reflective dish 301 will be reflected to the collection frame 100. In an alternative embodiment, referring to FIG. 6, the reflective element 300 is a reflective pyramid 302 which has four curved reflective faces 303. 4 reflective pyramids 302 can be placed around the collection frame 100 and reflect run rays to the collection frame 100. In prior art, the parabolic dish is also used to collect more sun light. But the parabolic dish still needs to track the sun to focus the reflected sun rays onto the collector. In the present invention, all the sun light reflected by the reflective element 300 will be captured by the collection frame 100. At the same time the reflective element 300 is stationary.
  • In application, the device of the present invention can be used individually, or used as a group. For individual using, each device has a collection frame 100, a radiation collector 200, and/or a reflective element 300. The device itself collects the sun light and converts it into desired power for further usage. This can be used in outdoor lighting, solar grill, small amount electricity generation, and so on. Alternatively, referring to FIG. 6, a number of devices of the present invention are integrated into a group in order to generate a large amount of power.
  • The device of the present invention can be applied in different locations for different functions conveniently. Referring to FIGS. 7 to 11, the device for concentrating optical radiation can be place on the roof and outer wall of buildings. In one embodiment of the present invention, the collective cone structure can replace the conventional roof of building. According to the situation of the roofs, the reflective cones 141 can be assembled into one roof structure 150, such as a dome roof, a gable roof, a pyramid roof, an arch roof or any other suitable structures. The versatile and esthetic appearance of the present invention is a big advantage in architecture. The device of the present invention can also be built on the outer wall of buildings for collecting more sun lights.
  • Each roof structure has one or more than one radiation collector 200. The sun light concentrated onto the radiation collectors 200 can be split into visible sun light and infrared through a prism for different purposes.
  • Alternatively, referring to FIG. 13, one or more than one embodiment of the present invention can be simple placed on the roof of the building without changing the original structure, or just be placed on the ground. The utilization of the present invention for a building can provide electricity, light, and heat which can greatly save the energy consuming.
  • Referring to FIG. 12, the device can be placed on mobile carriers such as cars and boats as portable power and heat supplier. Because the materials of present invention are light, the structure is simple, it won't take too much load of the carriers. Additionally, because the device can collect sun light from all directions, it won't limit the movement of the carriers. For better efficiency, the device is place at the roof of the carriers.
  • The present invention can be used in mass production. For example, a large amount of the devices of the present invention can be integrated together to generate electricity as a power plant, to desalinate sea water, to purify water, to produce bio fuel, and to extract hydrogen.
  • In summary, the present invention is using simple, stationary and economical structures to increase area for collecting more sun light from all directions instead of increasing the radiation collector's area. The sun light is concentrated on a radiation collector 200 which only has limited bulk and area. Because in general the radiation collector 200 is expensive, the present invention largely saves the cost. Also, since the sunlight is concentrated, it increases the efficiency for energy converting. The present invention doesn't use any motional element, which increases the reliability. The present invention is light, portable, and very flexible in shape and materials which is convenient to be applied for different location and purposes.
  • One skilled in the art will understand that the embodiment of the present invention as shown in the drawings and described above is exemplary only and not intended to be limiting.
  • It will thus be seen that the objects of the present invention have been fully and effectively accomplished. The embodiments have been shown and described for the purposes of illustrating the functional and structural principles of the present invention and is subject to change without departure from such principles. Therefore, this invention includes all modifications encompassed within the spirit and scope of the following claims.

Claims (20)

1. A device for concentrating optical radiation, comprising:
a collection frame having a all-direction collecting surface 110 for the sunlight projecting thereto at all time, and a focal point defining within said all-direction collecting surface such that radiation of said sunlight is converged at said focal point; and
a radiation collector supported at said focal point of said collection frame for collecting said radiation of said sunlight.
2. The device, as recited in claim 1, wherein said collection frame comprises one or more collecting cells alignedly supported to form said all-direction collecting surface, such that when said sunlight projects at said all-direction collecting surface, said collecting cell converges said sunlight at said focal point to said radiation collector.
3. The device, as recited in claim 2, wherein each of said collecting cells comprises a Fresnel lens.
4. The device, as recited in claim 1, wherein said collection frame further has a concaved reflection surface positioned below said all-direction collecting surface for reflecting said sunlight towards said focal point for said radiation collector to collect.
5. The device, as recited in claim 4, wherein said concaved reflective surface extends radially from said focal point to said all-direction collecting surface, wherein when said sunlight projects at said concaved reflective surface, said concaved reflective surface reflects said sunlight to said focal point to said radiation collector.
6. The device, as recited in claim 4, wherein said concaved reflective surfaces divide said collection frame into a plurality of reflective cones having the vertexes facing said focal point.
7. The device, as recited in claim 1, wherein said collecting frame has a spherical shape providing a spherical surface as said all-direction collecting surface.
8. The device, as recited in claim 7, wherein said collection frame is made of polyethylene terephthalate (boPET) polyester fabric arranged to be inflated by air to form said spherical shape.
9. The device, as recited in claim 3, wherein said collecting frame has a spherical shape providing a spherical surface as said all-direction collecting surface.
10. The device, as recited in claim 9, wherein said collection frame is made of polyethylene terephthalate (boPET) polyester fabric arranged to be inflated by air to form said spherical shape.
11. The device, as recited in claim 5, wherein said collecting frame has a spherical shape providing a spherical surface as said all-direction collecting surface.
12. The device, as recited in claim 11, wherein said collection frame is made of polyethylene terephthalate (boPET) polyester fabric arranged to be inflated by air to form said spherical shape.
13. The device, as recited in claim 1, wherein further comprises a stationary reflective element reflecting sunlight to said collection frame.
14. The device, as recited in claim 3, wherein further comprises a stationary reflective element reflecting sunlight to said collection frame.
15. The device, as recited in claim 5, wherein further comprises a stationary reflective element reflecting sunlight to said collection frame.
16. The device, as recited in claim 1, wherein said radiation collector converts solar energy into electricity.
17. The device, as recited in claim 3, wherein said radiation collector converts solar energy into electricity.
18. The device, as recited in claim 5, wherein said radiation collector converts solar energy into electricity.
19. The device, as recited in claim 1, wherein said radiation collector converts solar energy into heat.
20. The device, as recited in claim 4, wherein said radiation collector converts solar energy into heat.
US12/154,211 2007-05-24 2008-05-20 Device for concentrating optical radiation Abandoned US20090078249A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US12/154,211 US20090078249A1 (en) 2007-05-24 2008-05-20 Device for concentrating optical radiation
PCT/US2009/034580 WO2009105587A2 (en) 2008-02-19 2009-02-19 Solar radiation collection systems

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US93149607P 2007-05-24 2007-05-24
US12/154,211 US20090078249A1 (en) 2007-05-24 2008-05-20 Device for concentrating optical radiation

Publications (1)

Publication Number Publication Date
US20090078249A1 true US20090078249A1 (en) 2009-03-26

Family

ID=40470344

Family Applications (1)

Application Number Title Priority Date Filing Date
US12/154,211 Abandoned US20090078249A1 (en) 2007-05-24 2008-05-20 Device for concentrating optical radiation

Country Status (1)

Country Link
US (1) US20090078249A1 (en)

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080127964A1 (en) * 2006-11-27 2008-06-05 Jiahua Han Sun tracker
US20100116266A1 (en) * 2008-11-08 2010-05-13 Lovato Christopher C Solar Energy Collecting Apparatus
ITPI20090071A1 (en) * 2009-06-08 2010-12-09 Giuseppe Vita DEVICE TO CONCENTRATE AND CAPTURE SOLAR RADIATION IN CONDITIONS OF THE SERENE SKY AND CLOUDY SKY.
CN102029716A (en) * 2009-09-25 2011-04-27 鸿富锦精密工业(深圳)有限公司 Processing method for spherical Fresnel lens
CN102074605A (en) * 2009-11-23 2011-05-25 鸿富锦精密工业(深圳)有限公司 Condensing device and solar energy gathering device
KR101047218B1 (en) * 2010-12-16 2011-07-06 박상희 Multidirectional solar concentrating appratus
WO2011083351A1 (en) * 2010-01-11 2011-07-14 Violeta Doci Solar electric compound for curved surfaces
ES2373302A1 (en) * 2011-12-29 2012-02-02 Juan Martínez Vázquez Solar concentrator
CN102444533A (en) * 2010-09-30 2012-05-09 池田荣 Natural energy composite obtaining device
EP2488800A1 (en) * 2009-10-16 2012-08-22 D&D Manufacturing Solar dish collector system and associated methods
US20120252292A1 (en) * 2011-04-01 2012-10-04 Cheri Chafin Garcia Luminous envy tanning float system
GB2492063A (en) * 2011-06-15 2012-12-26 Rania Gideon Solar Panel unit comprising of a plurality of pyramidal solar panels on a dome or elliptically shaped base.
GB2493202A (en) * 2011-07-28 2013-01-30 Campbell Mackay Taylor Desalination of seawater
CN103090558A (en) * 2013-01-31 2013-05-08 曾令伦 Medium-high temperature solar heat collecting device
TWI447922B (en) * 2009-12-17 2014-08-01 Hon Hai Prec Ind Co Ltd Solar cell device and portable electronic device having same
RU2576739C2 (en) * 2014-05-19 2016-03-10 Федеральное государственное бюджетное научное учреждение"Всероссийский научно-исследовательский институт электрификации сельского хозяйства" (ФГБНУ ВИЭСХ) Solar module with concentrator
EP2878898A4 (en) * 2012-07-25 2016-08-17 Da Vinci Co Ltd Solar ray heat conversion device and solar heat power generating system using same
CN106549632A (en) * 2015-09-21 2017-03-29 中海阳能源集团股份有限公司 A kind of folding photovoltaic and photothermal suitching type beam condensing unit of minute surface and its heating electricity-generating method
KR101856701B1 (en) * 2016-05-04 2018-05-14 임채영 Solar Cell Unit for Photovoltaic Power Generation
CN109067359A (en) * 2018-08-02 2018-12-21 陆茹姣 Photovoltaic device
WO2019164782A1 (en) * 2018-02-20 2019-08-29 Clark Daniel S 3d printed three-dimensional photovoltaic module
CN114296206A (en) * 2022-01-21 2022-04-08 胡根才 Light energy collecting and focusing device
US11626526B2 (en) 2014-08-25 2023-04-11 Daniel S. Clark 3D printed three-dimensional photovoltaic module
USD1018808S1 (en) * 2023-09-28 2024-03-19 Hangrui Lin Solar heater

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3279457A (en) * 1964-12-28 1966-10-18 William F Kyryluk Solar heat concentrator
US4043315A (en) * 1976-02-03 1977-08-23 Cooper Nathan E Solar heat collector
US4166769A (en) * 1977-05-06 1979-09-04 Joseph Dukess Solar heat apparatus
US4172740A (en) * 1975-12-24 1979-10-30 Campbell William P Iii Solar energy system
US4356813A (en) * 1981-02-02 1982-11-02 Hoffman Thomas J Solar energy concentration device
US4723535A (en) * 1981-12-30 1988-02-09 Lew Hyok S Solar trap

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3279457A (en) * 1964-12-28 1966-10-18 William F Kyryluk Solar heat concentrator
US4172740A (en) * 1975-12-24 1979-10-30 Campbell William P Iii Solar energy system
US4043315A (en) * 1976-02-03 1977-08-23 Cooper Nathan E Solar heat collector
US4166769A (en) * 1977-05-06 1979-09-04 Joseph Dukess Solar heat apparatus
US4356813A (en) * 1981-02-02 1982-11-02 Hoffman Thomas J Solar energy concentration device
US4723535A (en) * 1981-12-30 1988-02-09 Lew Hyok S Solar trap

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080127964A1 (en) * 2006-11-27 2008-06-05 Jiahua Han Sun tracker
US20100116266A1 (en) * 2008-11-08 2010-05-13 Lovato Christopher C Solar Energy Collecting Apparatus
ITPI20090071A1 (en) * 2009-06-08 2010-12-09 Giuseppe Vita DEVICE TO CONCENTRATE AND CAPTURE SOLAR RADIATION IN CONDITIONS OF THE SERENE SKY AND CLOUDY SKY.
CN102029716A (en) * 2009-09-25 2011-04-27 鸿富锦精密工业(深圳)有限公司 Processing method for spherical Fresnel lens
EP2488800A1 (en) * 2009-10-16 2012-08-22 D&D Manufacturing Solar dish collector system and associated methods
EP2488800A4 (en) * 2009-10-16 2015-01-21 D & D Mfg Solar dish collector system and associated methods
CN102074605A (en) * 2009-11-23 2011-05-25 鸿富锦精密工业(深圳)有限公司 Condensing device and solar energy gathering device
TWI447922B (en) * 2009-12-17 2014-08-01 Hon Hai Prec Ind Co Ltd Solar cell device and portable electronic device having same
WO2011083351A1 (en) * 2010-01-11 2011-07-14 Violeta Doci Solar electric compound for curved surfaces
CN102444533A (en) * 2010-09-30 2012-05-09 池田荣 Natural energy composite obtaining device
KR101047218B1 (en) * 2010-12-16 2011-07-06 박상희 Multidirectional solar concentrating appratus
US20120252292A1 (en) * 2011-04-01 2012-10-04 Cheri Chafin Garcia Luminous envy tanning float system
US8540540B2 (en) * 2011-04-01 2013-09-24 Cheri Chafin Garcia Luminous envy tanning float system
GB2492063A (en) * 2011-06-15 2012-12-26 Rania Gideon Solar Panel unit comprising of a plurality of pyramidal solar panels on a dome or elliptically shaped base.
GB2492063B (en) * 2011-06-15 2013-08-28 Rania Gideon Hill Three dimensional solar panel base
GB2493202A (en) * 2011-07-28 2013-01-30 Campbell Mackay Taylor Desalination of seawater
WO2013098453A1 (en) * 2011-12-29 2013-07-04 Juan Martinez Vazquez Solar concentrator
ES2373302A1 (en) * 2011-12-29 2012-02-02 Juan Martínez Vázquez Solar concentrator
EP2878898A4 (en) * 2012-07-25 2016-08-17 Da Vinci Co Ltd Solar ray heat conversion device and solar heat power generating system using same
CN103090558A (en) * 2013-01-31 2013-05-08 曾令伦 Medium-high temperature solar heat collecting device
RU2576739C2 (en) * 2014-05-19 2016-03-10 Федеральное государственное бюджетное научное учреждение"Всероссийский научно-исследовательский институт электрификации сельского хозяйства" (ФГБНУ ВИЭСХ) Solar module with concentrator
US11626526B2 (en) 2014-08-25 2023-04-11 Daniel S. Clark 3D printed three-dimensional photovoltaic module
CN106549632A (en) * 2015-09-21 2017-03-29 中海阳能源集团股份有限公司 A kind of folding photovoltaic and photothermal suitching type beam condensing unit of minute surface and its heating electricity-generating method
KR101856701B1 (en) * 2016-05-04 2018-05-14 임채영 Solar Cell Unit for Photovoltaic Power Generation
WO2019164782A1 (en) * 2018-02-20 2019-08-29 Clark Daniel S 3d printed three-dimensional photovoltaic module
CN109067359A (en) * 2018-08-02 2018-12-21 陆茹姣 Photovoltaic device
CN114296206A (en) * 2022-01-21 2022-04-08 胡根才 Light energy collecting and focusing device
USD1018808S1 (en) * 2023-09-28 2024-03-19 Hangrui Lin Solar heater

Similar Documents

Publication Publication Date Title
US20090078249A1 (en) Device for concentrating optical radiation
US4024852A (en) Solar energy reflector-collector
US7442871B2 (en) Photovoltaic modules for solar concentrator
US20100212719A1 (en) System and methods of utilizing solar energy
US20120255540A1 (en) Sun tracking solar concentrator
WO2009105587A2 (en) Solar radiation collection systems
US20100154866A1 (en) Hybrid solar power system
US20080236569A1 (en) System and Method for Concentrating Sunlight
US20100218808A1 (en) Concentrated photovoltaic systems and methods with high cooling rates
US20150125113A1 (en) Fiber optic solar collector
AU2007100370A4 (en) Electricity generation device using solar power
US8794229B2 (en) Solar concentrator
CN103219409A (en) Use of rotating photovoltaic cells and assemblies for concentrated and non-concentrated solar systems
CN101872063A (en) Conical concentrating system
CN108508586A (en) Inflate non-imaged sunlight collector
RU2676214C1 (en) Concentrated solar power system
Ma et al. A review on solar concentrators with multi-surface and multi-element (MS/ME) combinations
US20140048117A1 (en) Solar energy systems using external reflectors
US20020062856A1 (en) Solar collector unit
JP2003149586A (en) Condenser
CN202083827U (en) Disc type condensation based solar energy secondary condensation frequency division apparatus
WO2012107605A1 (en) Direct solar-radiation collection and concentration element and panel
RU2282113C1 (en) Solar photoelectric module with concentrator
WO1982000366A1 (en) Reflector arrangement
JP2021535624A (en) Solar power generator

Legal Events

Date Code Title Description
AS Assignment

Owner name: BUCKY SOLAR, INC., CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:LIU, TRICIA;REEL/FRAME:022642/0755

Effective date: 20090413

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION