WO2014017184A1 - Vibration power generation body and method for producing same - Google Patents

Vibration power generation body and method for producing same Download PDF

Info

Publication number
WO2014017184A1
WO2014017184A1 PCT/JP2013/065856 JP2013065856W WO2014017184A1 WO 2014017184 A1 WO2014017184 A1 WO 2014017184A1 JP 2013065856 W JP2013065856 W JP 2013065856W WO 2014017184 A1 WO2014017184 A1 WO 2014017184A1
Authority
WO
WIPO (PCT)
Prior art keywords
electret dielectric
vibration power
electrode
power generation
electrodes
Prior art date
Application number
PCT/JP2013/065856
Other languages
French (fr)
Japanese (ja)
Inventor
健彦 水野
考洋 金谷
Original Assignee
株式会社ビスキャス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ビスキャス filed Critical 株式会社ビスキャス
Publication of WO2014017184A1 publication Critical patent/WO2014017184A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G7/00Capacitors in which the capacitance is varied by non-mechanical means; Processes of their manufacture
    • H01G7/02Electrets, i.e. having a permanently-polarised dielectric
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N1/00Electrostatic generators or motors using a solid moving electrostatic charge carrier
    • H02N1/06Influence generators
    • H02N1/08Influence generators with conductive charge carrier, i.e. capacitor machines

Definitions

  • the present invention relates to a vibration power generator using an electret dielectric.
  • electrical energy includes vibrations of structures such as roads, bridges, buildings, and industrial machines, vibrations of moving bodies such as automobiles, railway vehicles, and aircraft, and environmental vibrations that are universally present in human movement and the environment. Attempts have been made to make effective use by converting to.
  • Such power generation methods that convert vibration energy into electricity can be broadly divided into methods that use electromagnetic induction, methods that use piezoelectric elements, and methods that use electrostatic induction.
  • the system using electromagnetic induction is a system in which the relative position between the coil and the magnet is changed by vibration and power is generated by electromagnetic induction generated in the coil.
  • the method using a piezoelectric element mainly uses a ceramic-based piezoelectric element and utilizes a phenomenon in which charges are induced on the surface of the piezoelectric element when strain is applied to the piezoelectric element by vibration.
  • an electret dielectric that holds a charge semipermanently is generally used for a system that uses electrostatic induction.
  • electrostatic induction By changing the relative position of the electret dielectric and the electrode disposed at a distance from the dielectric by vibration or the like, electric charges are electrostatically induced in the electrode, and power generation is performed.
  • a power generation device using such a principle is described in, for example, Patent Document 1 and Patent Document 2.
  • a plurality of strip-shaped base electrodes are arranged in parallel on the upper surface of a fixed substrate, and electrets are formed on the respective base electrodes.
  • the movable substrate faces the surface of the fixed substrate on which the electret is disposed, and is disposed in parallel with a predetermined gap.
  • a strip-shaped counter electrode is formed on the counter surface of the movable substrate so as to oppose the base electrode.
  • Patent Document 2 describes an electret condenser microphone that converts sound waves into electrical signals.
  • an electret condenser microphone an electret dielectric film is formed on a cup-shaped back electrode that is a fixed electrode, and a vibration film that is a counter electrode is formed on the side facing the electret dielectric film. Further, the gap between the electret dielectric film and the vibration film is held by a spacer.
  • the sound wave propagates from the center hole and the vibration film vibrates, the relative position between the vibration film and the electret dielectric film changes. At this time, a charge is electrostatically induced in each electrode. The electric signal thus obtained can be output after signal amplification and impedance conversion.
  • the electret dielectric is used after being charged in advance. Even in the above-described power generation method, electret dielectric charging is an important process in order to obtain sufficient power generation.
  • the electret dielectric surface is charged by using corona discharge by a corona discharge generator provided outside the electret dielectric, so that the charge processing step becomes large.
  • each member is formed in a substantially rigid manner, so that it is inferior in flexibility such as changing the shape according to the attachment site. .
  • the present invention has been made in view of such problems, and it is an object of the present invention to provide a vibration power generator and the like having high power generation efficiency that can be easily charged and can be applied to various installation locations. And
  • the first invention comprises a pair of electrodes and an electret dielectric that is provided between the pair of electrodes and retains electric charges, and the electret dielectric is empty inside.
  • a flexible material composed of a porous material having pores, and when an external force is applied, the distance between at least one of the pair of electrodes and the electret dielectric changes at least in part.
  • the vibration power generator is characterized in that it is possible.
  • the electret dielectric can be charged using air discharge in the holes inside the electret dielectric, and the applied voltage required for the charging is compared. Therefore, the electret dielectric can be easily charged.
  • the applied voltage required for charging the front and back surfaces of the electret dielectric is relatively high by applying a voltage in the thickness direction.
  • the electret dielectric surface is charged by an external corona discharge generator. Compared to this case, the electrification process of the porous electret dielectric material having pores is facilitated.
  • the obtained vibration power generator can be deformed according to the installation location.
  • the electret dielectric is a porous material, the electret dielectric can be easily deformed in the thickness direction, and each electret dielectric can be deformed in the thickness direction (a partial change in the thickness of the electret dielectric). Electric charges are electrostatically induced in the electrodes, and power generation can be performed. Further, the electret dielectric can be reduced in weight.
  • a non-joining portion that is not joined to each other is formed between at least one of the electrodes and the electret dielectric, and when an external force is applied, at least a portion of the non-joining portion includes at least the electret dielectric, It is desirable that the distance to one of the electrodes can be changed.
  • the vibration power generator of the present invention composed of a porous electret dielectric having pores inside is deformed in the thickness direction of the electret dielectric (a partial change in the thickness of the electret dielectric), Due to both the change in the distance between the electret dielectric and the electrode at the non-joined portion, electric charge is electrostatically induced in each electrode, and power can be generated.
  • the deformation by external force is not limited to the case where another material mechanically contacts the vibration power generator to deform the vibration power generator.
  • the vibration power generator can be deformed by being repeatedly applied to the vibration power generator, such as vibration of the structure itself that occurs at the attachment portion of the vibration power generator, external sound wave or air pressure change, wind (air flow), water flow, etc. It refers to the action of force from the outside to the vibration power generator. This external force may be minute.
  • the vibration in the vibration power generator is not limited to the one whose amplitude or frequency is constant, but refers to one that can apply external force (including inertial force) repeatedly or irregularly. .
  • a spacer is partially provided between the electret dielectric and at least one of the electrodes, and the electret dielectric and the electrode are joined via at least a part of the spacer, and other than the spacer It is good also considering a site
  • One of the pair of electrodes is a center electrode, the other is an external electrode, the electret dielectric is provided on an outer periphery of the center electrode, and the external electrode is provided on an outer periphery of the electret dielectric, It is good also as a structure by which the outer periphery of the external electrode was coat
  • a cable-like vibration power generator with a high degree of freedom in installation can be obtained.
  • a cable-like vibration power generator is capable of at least partial deformation of the interface shape between the external electrode and the electret dielectric by an external force, so that the change in the relative position between the center electrode and the external electrode is possible. Can generate electricity.
  • a second invention is a method for manufacturing a vibration power generator, comprising: a pair of electrodes; and an electret dielectric that is a porous body provided between the pair of electrodes and having pores therein.
  • a non-bonding portion that is not bonded to each other between at least one of the electrodes and the electret dielectric, and using a vibration power generator before charging treatment having a gap in at least a part of the non-bonding portion,
  • a method of manufacturing a vibration power generator characterized in that a voltage is applied between electrodes to cause discharge in the holes or in the gaps to charge the electret dielectric.
  • electret dielectric charging in the vibration power generator manufacturing process is facilitated. That is, it is not necessary to provide a corona discharge generator outside, and a high voltage power source for applying a voltage between a pair of electrodes sandwiching the electret dielectric may be used as an alternative. Further, as described above, the voltage required for the charging process of the porous electret dielectric having pores may be a relatively low voltage, so that the charging process is facilitated. Furthermore, since the electret dielectric charging process can be positioned as the final step of manufacturing the vibration power generator, the vibration power generator can be easily manufactured.
  • electrostatic dielectric may be used not only for the charged state but also for the base material before the charging process.
  • FIG. 1A is a diagram showing a vibration power generator 1
  • FIG. 1B is a diagram showing a vibration power generator 1a
  • 2A is a diagram showing the electret dielectric 3
  • FIG. 2B is an enlarged view of a portion J in FIG. 2A.
  • FIG. 3A and FIG. 3B are conceptual diagrams showing a deformed state of the electrode 5 b and the electret dielectric 3.
  • FIG. 4A is a view showing the vibration power generation body 30, and FIG. 4B is a view showing the vibration power generation body 30a. Sectional drawing which shows the vibration electric power generation body.
  • FIG. 6A and FIG. 6B are diagrams showing a charged state of the electret dielectric 3.
  • FIG. 7B are conceptual diagrams showing deformation states of the external electrode 43 and the electret dielectric 3.
  • FIG. 8A and FIG. 8B are conceptual diagrams showing a change in the distance between the electret dielectric 3 and the external electrode 43.
  • FIG. 9A is a cross-sectional view showing the vibration power generation body 40a
  • FIG. 9B is a cross-sectional view showing the vibration power generation body 40b.
  • FIGS. 10A, 10 ⁇ / b> B, and 10 ⁇ / b> C are diagrams showing a configuration in which the electret dielectric 3 is formed with the resin tape 51.
  • the figure which shows the comparison of the electric power generation output voltage of a vibration electric power generation body The figure which shows the comparison of the electric power generation output voltage of a vibration electric power generation body.
  • the vibration electric power generation body 1 concerning embodiment of this invention is demonstrated.
  • the vibration power generator 1 is mainly composed of an electret dielectric 3, electrodes 5a and 5b, a spacer 7, and the like.
  • Electrodes 5a and 5b are disposed on both sides of the electret dielectric 3 so as to face the electret dielectric 3, respectively.
  • a spacer 7 is provided between the electret dielectric 3 and the electrodes 5a and 5b.
  • the spacer 7 is for maintaining a gap between the electret dielectric 3 and the electrodes 5a and 5b. That is, the electret dielectric 3 and the electrodes 5a and 5b are joined via the spacer 7, and the portion that is not joined to each other via the spacer 7 becomes the non-joined portion 9, and the thickness of the spacer 7 is between them.
  • a corresponding gap 6 (gap) is formed.
  • the spacer 7 for example, a conductive or semiconductive material can be used, but it is preferable that the spacer 7 is made of an insulating material. Moreover, it is desirable that at least a part of all the spacers 7 is made of an adhesive or adhesive member.
  • the spacer 7 is partially formed of an adhesive member or the like to such an extent that the electret dielectric 3 and the electrodes 5a and 5b can be bonded and fixed, and the non-adhesive spacer 7 is provided at other portions. It may be used. The details of the spacer 7 will be described later.
  • the electret dielectric 3 and the electrodes 5a and 5b are both flexible.
  • the electrodes 5a and 5b can be formed of a metal foil that can be easily deformed, such as a metal foil having flexibility such as aluminum or copper.
  • the electret dielectric 3 is made of, for example, a flexible resin that is a porous material having insulating properties. Therefore, the vibration power generation body 1 has flexibility as a whole, and can be modified to suit various installation locations.
  • both surfaces of the electret dielectric 3 are charged with charges having opposite polarities.
  • the electret dielectric material 3 is comprised with a porous material (for example, foamed resin etc.). That is, as shown in FIG. 2B, fine holes 4 are formed inside the electret dielectric 3.
  • Such an electret dielectric 3 can be charged on the surface using, for example, an electron irradiation method using an external charge source, a DC corona discharge method using an external corona generator, or an AC corona discharge method.
  • the charging process can be easily performed by generating corona discharge on the surface of the base material of the electret dielectric 3.
  • the corona discharge facilitates charging the hole 4 wall surface and the electret dielectric 3 near the hole 4 wall surface.
  • the charge on the wall surface of the hole 4 and in the vicinity of the wall surface of the hole 4 is positive and negative along the voltage application direction (in this case, the thickness direction of the electret dielectric 3). It is considered that a region charged with electric charge is formed.
  • the electret dielectric As described above, as a method for manufacturing the vibration power generator 1 and a method for charging the electret dielectric 3, for example, after electrifying the surface of the electret dielectric 3 using an external corona generating device, the electret dielectric There is a method of manufacturing the vibration power generator 1 by sandwiching the body 3 between the electrodes 5 a and 5 b and joining the electret dielectric 3 and the electrodes 5 a and 5 b via the spacer 7. Alternatively, before electret dielectric 3 is charged, electret dielectric 3 and electrodes 5a and 5b are bonded via spacer 7, and a voltage is applied between electrodes 5a and 5b in this state.
  • a method of manufacturing the vibration power generator 1 by performing the electrification process of the electret dielectric 3 can also be adopted.
  • the latter method does not require the use of an external corona generator, and the electret dielectric 3 can be charged in the final step of the manufacturing process of the vibration power generator 1.
  • the manufacture of the vibration power generator 1 and the electret dielectric 3 charging process are facilitated.
  • the electret dielectric 3 since the holes 4 are present inside the electret dielectric 3, the electret dielectric 3 as a whole can be easily deformed. Therefore, the thickness of the electret dielectric 3 itself can be partially changed with a smaller external force. Therefore, although details will be described later, electric power can be generated by electrostatic induction of each electrode. That is, in addition to the power generation due to the change in the distance (gap length) between the electret dielectric 3 and the electrodes 5a and 5b in the gap 6 (non-joined portion 9), the electret dielectric 3 itself has a partial thickness change. Since power generation can be performed, power generation efficiency can be improved.
  • the electret dielectric 3 can be easily charged by using a porous material having pores 4 as the electret dielectric 3.
  • the electret dielectric 3 can be charged with a lower applied voltage as compared with the case where the holes 4 are not formed.
  • the voltage applied to the base material of the electret dielectric 3 may be an alternating voltage or a direct voltage.
  • electrodes 5a and 5b may be used as electrodes sandwiching the electret dielectric 3 of the porous material, or electrodes for electrification treatment may be used separately.
  • the charging process is performed by water current collision with sufficient pressure. Also good.
  • the liquid mixture with an organic solvent or water may be passed through the non-woven fabric and then quickly dried to perform the charging treatment.
  • the charging process may be performed by frictionally charging two types of fibers having different charge trains.
  • the timing at which the electret dielectric 3 is charged is not particularly limited, and may be appropriately set according to the selected charging method.
  • the structure of the vibration power generator 1 may be assembled by using the electret dielectric 3 that has been previously charged.
  • the electret dielectric 3 may be charged using a corona generator or the like in a state where the base material of the electret dielectric 3 is incorporated as a part of the constituent members of the vibration power generator 1. Good.
  • the charging process may be performed as a final process after the configuration of the vibration power generator is completely assembled.
  • the holes 4 have a function of easily deforming the electret dielectric 3 itself by the holes 4 as well as for facilitating the charging process. Therefore, the vibration power generator 1 can be easily deformed with a smaller external force. For this reason, power generation efficiency can be improved. Further, the electret dielectric 3 is lightened by the holes 4.
  • the electret dielectric 3 has a large charge amount (for example, a potential difference V 0 [V] between the front and back surfaces of the electret dielectric 3), the electret dielectric 3 has a small thickness d [m], and the electret dielectric 3 As the relative dielectric constant ⁇ r is larger, the generated power of the vibration power generator 1 tends to increase.
  • the surface charge density charged on both surfaces of the electret dielectric 3 is + ⁇ [C / m 2 ], ⁇
  • the surface charge density is expressed by the following formula, and the larger the surface charge density ⁇ , the larger the generated power of the vibration power generator 1.
  • the occurrence of air discharge in the gap (gap) between the electrodes 5a and 5b and the electret dielectric 3 is determined by the gap length and the potential difference between the gaps, and approximately follows Paschen's law. Therefore, when the external force is not applied, and with respect to the change range of the gap length between the electrodes 5a and 5b and the electret dielectric 3 when the external force is applied, the electret is set so as to have a potential difference between the gaps where no air discharge occurs. It is desirable to set the potential difference V 0 between the front surface and the back surface of the dielectric 3.
  • the change range of the gap length when an external force is applied is 0 to 100 ⁇ m.
  • air discharge occurs when the potential difference V 0 between the front surface and the back surface of the electret dielectric 3 is set to about 600 V or more.
  • the potential difference V 0 between the front and back surfaces of the electret dielectric 3 after the occurrence of discharge is about 200 to 600V. Therefore, in the present invention, when the gap length is 100 ⁇ m, it is desirable to perform the charging process so that V 0 is about 200 to 600V.
  • the occurrence of air discharge in the gap 6 (gap) between the electrodes 5a and 5b and the electret dielectric 3 also depends on the manufacturing method of the vibration power generator 1 and the electret dielectric 3 charging method.
  • the electret dielectric 3 that has been previously charged is incorporated as an oscillating power generator 1 together with an electrode, the case where the electrification is performed during manufacture (incorporation), and the case where the electrification is performed after manufacture (incorporation). Since the range of the distance change between the electret dielectric 3 and the electrodes 5a and 5b during the production of each vibration power generator 1 and the range of the potential difference generated between the two differ, the conditions for generating air discharge are different.
  • the vibration power generator 1 it is desirable to set the potential difference V 0 between the front and back surfaces of the electret dielectric 3 that does not generate air discharge between the electret dielectric 3 and the electrodes 5 a and 5 b.
  • the electret dielectric 3 may use an insulating porous plastic sheet or porous plastic film, or an insulating porous rubber sheet or porous rubber film, or a sheet-like fiber body made of fibers of an insulating material.
  • the plastic include resins such as polyethylene, polypropylene, polyethylene terephthalate, and polyvinyl chloride.
  • a polyimide-based resin or a fluorine-based resin for example, fluoroethylenepropylene or polytetrafluoroethylene having excellent high-temperature characteristics can be used.
  • the rubber for example, nitrile rubber, ethylene propylene rubber, acrylic rubber, urethane rubber, chloroprene rubber, silicone rubber, fluorine-based rubber, and the like can be used.
  • non-woven fabric or felt can be used in addition to woven fabric.
  • the nonwoven fabric is utilized for the electret filter used for an air cleaner, a mask, etc., and has the characteristic of a favorable electret.
  • the material of such a nonwoven fabric the same material as that of the plastic described above can be used.
  • a non-joining portion 9 is formed between the electret dielectric 3 and the electrodes 5a and 5b at a portion other than those joined via the spacer 7, and a gap 6 (gap) is formed.
  • a gap 6 is formed in the non-joint part 9 (gap 6). That is, in the non-joint part 9 (gap 6), the distance between the electret dielectric 3 and the electrodes 5a and 5b is easily changed by deformation. For example, the electrodes 5a and 5b can be brought into contact with the surface of the electret dielectric 3 by deformation of the electrodes 5a and 5b.
  • 3 (a) and 3 (b) are enlarged views of part A in FIG.
  • a steady state a state in which no external force is applied; the same applies hereinafter
  • a gap 6 between the electrode 5b and the electret dielectric 3 is formed in the gap 6 at the non-joint portion 9.
  • a gap length B corresponding to the thickness of the spacer 7 is formed. From this state, as shown in FIG. 3B, when the external force C is applied in the thickness direction of the vibration power generator 1, the electrode 5b (and the electret dielectric 3) is deformed, and the gap length B is reduced. Change direction.
  • the electrode 5b and the electret dielectric 3 are in contact with each other at the contact portion 11 as shown in FIG.
  • the position corresponding to the contact portion 11 can be changed until the distance (gap length B) in the thickness direction between the electrode 5b and the electret dielectric 3 becomes zero. Further, in the contact portion 11, after the electrode 5 b and the electret dielectric 3 are contacted, the electret dielectric 3 is deformed by the external force C, and the thickness of the electret dielectric 3 is changed. Therefore, it is considered that electric charges of opposite polarity are electrostatically induced in each of the electrode 5a and the electrode 5b in accordance with a change in the distance (gap length B) between the electrode 5b and the electret dielectric 3 in the thickness direction. It is done.
  • the dipole moment of the dipole formed by the charges charged with different polarities on the front and back surfaces and inside of the electret dielectric 3 (in the vicinity of the holes 4) causes deformation (thickness of the electret dielectric 3). Change).
  • charges of opposite polarity are electrostatically induced in each of the electrodes 5a and 5b sandwiching the electret dielectric 3 in accordance with the change in the thickness of the electret dielectric 3 to generate power.
  • the change in the distance in the thickness direction (gap length B) between the electrode 5b and the electret dielectric 3 and the electret dielectric 3 are the same.
  • Electricity is generated by electrostatic induction according to the change in the thickness of the substrate.
  • the polarities of the charges induced in the electrodes 5a and 5b change in the direction in which the distance between the electrode 5b and the electret dielectric 3 approaches, and in the direction in which the thickness of the electret dielectric 3 decreases.
  • the case where the distance between the electrode 5b and the electret dielectric 3 is changed in the direction away from each other and the thickness of the electret dielectric 3 is changed in the opposite direction is opposite. Therefore, the output voltage obtained from the vibration power generator 1 when a repeated external force change (including vibration) is applied is an alternating voltage.
  • the power generation output voltage accompanying the change in the distance between the electrode 5b and the electret dielectric 3 and the change in the thickness of the electret dielectric 3 is immediately before the electrode 5b and the electret dielectric 3 come into contact with each other due to deformation. And immediately after peeling.
  • the electrodes 5a and 5b are deformed in the thickness direction with respect to the electret dielectric 3, and the gap length B is changed, and the thickness of the electret dielectric 3 itself is changed. Can generate electricity.
  • the direction of the distance change (decrease direction or increase direction) of electrode 5a, 5b and the electret dielectric material 3, and the thickness of the electret dielectric material 3 It is desirable that the change direction (decreasing direction or increasing direction) and the timing (phase) thereof coincide with each other in each part of the vibration power generator 1. For example, when the electrodes 5a and 5b and the electret dielectric 3 are repeatedly contacted and peeled, it is desirable to match the timing of the contact and peeling between the parts of the vibration power generator 1.
  • the portion where the spacer 7 is arranged depends on the material, but the thickness of the spacer 7 is less likely to change compared to the change in the gap length of the non-joining portion 9 (gap 6) with respect to the application of external force. . That is, the distance between the electrodes 5a and 5b and the electret dielectric 3 is unlikely to change at the portion where the spacer 7 is disposed. For this reason, the site
  • positioned does not contribute easily to electric power generation. Therefore, it is desirable to make the spacer 7 as small as possible and make the total area of the spacer 7 in the vibration power generator 1 as small as possible.
  • the spacers 7 are disposed at a predetermined distance from each other to such an extent that the gap length B can be maintained with respect to the non-joining portion 9 (gap 6). Further, as described above, the planar arrangement of the spacers 7 on the front and back of the electret dielectric 3 is made in order to match the timing and the direction of the distance change between the electrodes 5a and 5b and the electret dielectric 3 on the front and back of the electret dielectric 3. It is desirable to match.
  • the spacers 7 are arranged on the surface of the electret dielectric 3 in a shape (form) such as a dot shape, a stripe shape, and a lattice shape with a predetermined interval.
  • a shape such as a dot shape, a stripe shape, and a lattice shape with a predetermined interval.
  • the shape of the spacer 7 in plan view may be an arbitrary shape such as a circle, an ellipse, a square, or a rectangle.
  • the vibration power generator 1 When the vibration power generator 1 is repeatedly deformed by an external force, the electrodes 5a and 5b and the electret dielectric 3 are repeatedly contacted and peeled, but at this time, the gap between the electrodes 5a and 5b and the electret dielectric 3 is repeated. 6 is considered to cause air discharge. When such air discharge occurs, the potential difference between the front and back surfaces of the electret dielectric 3 may be reduced. Therefore, there is a possibility that power generation is not performed as the vibration power generator 1 is used. However, the inventors have found that even if the electrodes 5a and 5b and the electret dielectric 3 are repeatedly contacted and separated from each other, the power generation output of the vibration power generator 1 is immediately reduced and power generation is not performed. I found that there was nothing.
  • the generation of air discharge in the gap 6 between the electrodes 5a, 5b and the electret dielectric 3 is considered to approximately follow Paschen's law as described above. Therefore, the distance between the electrodes 5a and 5b in the gap 6 and the electret dielectric 3 and the electrification potential of the electret dielectric 3 (potential difference between the front and back surfaces of the electret dielectric 3) are expressed by the air discharge according to Paschen's law. It is desirable to set in a range where no occurrence occurs.
  • the vibration electric power generation body 1a in which the spacer 7 was provided only between one electrode 5b and the electret dielectric material 3 can also be used.
  • the vibration power generation body 1 a has substantially the same configuration as the vibration power generation body 1, but the electrode 5 a is directly bonded to the electret dielectric 3 over the entire surface without the spacer 7.
  • a gap 6 (non-joined portion 9) is formed by the spacer 7 disposed between the one electrode 5b and the electret dielectric 3. Therefore, power generation can be performed by a mechanism similar to that of the vibration power generator 1.
  • the potential difference V 0 between the front surface and the back surface of the electret dielectric 3 is about 200 to 600 V for the reasons described above.
  • the electrode 5a and the electret dielectric 3 may be fused by, for example, heat fusion. Or you may adhere
  • the adhesive, the pressure-sensitive adhesive, and the pressure-sensitive adhesive tape a conductive material or a semiconductive material can be used, but a member having high insulation (high electrical resistivity) is desirable.
  • the vibration power generator 1 that generates power by changing the distance between each of the electrodes 5 a and 5 b and the electret dielectric 3 and changing the thickness of the electret dielectric 3, for example, each of the electrodes 5 a and 5 b and the electret dielectric If the distance change direction and the timing (phase) of both of the body 3 and the body 3 do not coincide with each other, the power generation output voltages generated between the electrodes 5a and 5b may cancel each other. Therefore, it is necessary to match the direction and timing (phase) of the distance change between each of the electrodes 5 a and 5 b and the electret dielectric 3.
  • the vibration power generator 1a power is generated by a change in the distance between the one electrode 5b and the electret dielectric 3 and a change in the thickness of the electret dielectric 3, so that the electrode 5a, There is no need to match the direction and timing (phase) of the distance change between each of 5b and the electret dielectric 3. Further, compared with the vibration power generation body 1 of FIG. 1A, the vibration power generation body 1 a can be reduced in total thickness by the thickness of the spacer 7. In this way, the vibration power generator 1a can be used in consideration of the cost reduction due to the simplification of the structure and the point that the thickness can be reduced.
  • the electret dielectric 3 is comprised with the porous material which has the void
  • the spacer 7 can maintain a predetermined gap length between the electrodes 5 a and 5 b and the electret dielectric 3. For this reason, it is possible to secure a deformation allowance of the electrodes 5a and 5b due to an external force (a deformation allowance in the thickness direction in which the distance between the electrodes 5a and 5b and the electret dielectric 3 changes).
  • the thickness of the spacer 7 by optimizing the thickness of the spacer 7, the contact and peeling between the electrodes 5a and 5b and the electret dielectric 3 can be repeated. For this reason, high power generation can be obtained. Note that power generation can be efficiently performed by setting the thickness of the spacer 7 that holds the gap length to 30 ⁇ m to 100 ⁇ m.
  • the vibration power generation body 30 shown in FIG. 4A has substantially the same configuration as that of the vibration power generation body 1, but differs in that electrodes 31a and 31b are used instead of the electrodes 5a and 5b.
  • the electrodes 31 a and 31 b are configured by laminating a conductive layer 33 and a resin layer 35, and are arranged so that each conductive layer 33 faces the electret dielectric 3.
  • Such electrodes 31a and 31b may be obtained by bonding a resin sheet and a metal foil by an adhesive, heat welding, or the like, or by performing metal vapor deposition or metal plating on the surface of the resin sheet. Good. In any case, it is sufficient that the conductor layer can be formed on the sheet (film) resin.
  • the conductor can be appropriately selected from aluminum, tin, copper, and alloys thereof.
  • resin such as polyethylene, a polypropylene, a polyethylene terephthalate
  • resin such as polyethylene, a polypropylene, a polyethylene terephthalate
  • a polyimide-based resin or a fluorine-based resin having excellent high-temperature characteristics
  • rubber materials such as nitrile rubber, ethylene propylene rubber, acrylic rubber, urethane rubber, chloroprene rubber, silicone rubber, and fluorine rubber can also be used.
  • the electrodes 31a and 31b having a two-layer structure it is possible to improve the followability of the electrode with respect to an external force or the like. For example, with only a thin conductor, after being deformed by an external force, the restoring force to the original shape becomes small. However, if the rigidity is increased only with the conductor, there is a problem of an increase in weight because it is necessary to increase the thickness of the conductor portion. In addition, this may cause the movement of the electrode to become dull.
  • one electrode 31a may be directly joined to the electret dielectric 3 over the entire surface without using the spacer 7, as in the vibration power generator 30a shown in FIG.
  • the vibration power generator 40 having a cable shape mainly includes a center electrode 41, an electret dielectric 3, an external electrode 43, a covering portion 45, and the like.
  • a center electrode 41 is provided at the center of the vibration power generator 40.
  • An electret dielectric 3 is provided on the outer periphery of the center electrode 41.
  • An external electrode 43 is provided on the outer periphery of the electret dielectric 3. That is, the electret dielectric 3 is sandwiched between the center electrode 41 and the external electrode 43.
  • a covering portion 45 is provided on the outer periphery of the external electrode 43.
  • the vibration power generator 40 is a cable in which the center electrode 41, the electret dielectric 3, the external electrode 43, and the covering portion 45 are arranged coaxially.
  • the mutual interface shape of the external electrode 43 and the electret dielectric 3 can be partially deformed in a cross section perpendicular to the length direction of the vibration power generator 40. Further, the center electrode 41, the electret dielectric 3 and the external electrode 43 are each flexible, and the vibration power generator 40 can be bent and deformed into an arbitrary form.
  • a highly conductive material is desirable, but a semiconductive material may be used.
  • a metal such as aluminum, copper, tin, iron, or an alloy thereof can be used.
  • the surface of these metals may be plated with tin, silver, zinc, nickel or the like.
  • the center electrode 41 may be formed by, for example, twisting a single conductor wire or a plurality of conductor wires.
  • the external electrode 43 can be formed by, for example, a metal braided wire, a metal tape winding, a spiral winding of a conductor wire, or the like, but considering flexibility and durability due to external force, a metal braid A line is desirable.
  • the electret dielectric 3 is positively charged on the center electrode 41 side which is the inner surface side and negatively charged on the outer electrode 43 side which is the outer surface side. That is, both surfaces of the electret dielectric 3 are semi-permanently charged with opposite polarities.
  • Such an electret dielectric 3 can be formed by performing a predetermined charging process.
  • the electret dielectric 3 may be negatively charged on the center electrode 41 side which is the inner surface side and positively charged on the outer electrode 43 side which is the outer surface side.
  • the holes 4 (FIG. 2B) are formed inside as described above.
  • the mechanism by which charges are induced in the center electrode 41 and the external electrode 43 can be considered as follows. On both surfaces of the electret dielectric 3, the dipole moment of the dipole formed by charges charged with different polarities changes as the electret dielectric 3 is deformed. At this time, it is considered that charges having opposite polarities are electrostatically induced in the center electrode 41 and the external electrode 43 disposed on the inner surface side and the outer surface side of the electret dielectric 3, respectively, to generate electric power.
  • the center electrode 41 and the external electrode 43 are different from each other in that the amount of charge to be charged is different between the inner surface side and the outer surface side of the electret dielectric 3 and that the constituent members are arranged coaxially.
  • the mechanism by which electric charges are induced is complicated.
  • the polarity of the charges induced in the center electrode 41 and the external electrode 43 is such that the thickness of the electret dielectric 3 is small and the distance between the center electrode 41 and the external electrode 43 is The case of deformation in the approaching direction and the case of deformation in the direction in which the thickness of the electret dielectric 3 increases and the distance between the center electrode 41 and the external electrode 43 increases are opposite.
  • the output voltage obtained from the vibration power generator 40 when a repeated external force change (including vibration) is applied is an alternating voltage.
  • a non-joint portion is formed between the electret dielectric 3 and at least one of the center electrode 41 or the external electrode 43. That is, it is desirable that the electret dielectric 3 can be easily separated from the center electrode 41 and the external electrode 43. Further, as shown in FIG. 8A, the electret dielectric 3 may not be completely in contact with the center electrode 41 or the external electrode 43, and a gap may be partially formed. In the illustrated example, part I of FIG. 8A shows a state in which the external electrode 43 and the electret dielectric 3 are separated and a gap 6 is generated therebetween.
  • FIG. 8B shows a state where the external electrode 43 and the electret dielectric 3 shown in part I of FIG. 8A have changed from a peeled state to a contacted state. Yes.
  • the thickness of the electret dielectric 3 itself also changes.
  • the distance between the external electrode 43 and the electret dielectric 3 partially changes, and the thickness of the electret dielectric 3 also changes at the portion where the external electrode 43 and the electret dielectric 3 are in contact with each other. And the external electrode 43 partially change in distance.
  • transformation of the vibration electric power generation body 40 can be formed.
  • the thickness of the electret dielectric 3 itself can be partially changed. At this time, electric charges are induced in the center electrode 41 and the external electrode 43, and power generation can be performed.
  • the mechanism by which the charge is induced in each electrode by changing the contact state at the non-junction portion between the electret dielectric 3 and the center electrode 41 or the external electrode 43 is considered as follows.
  • the surface of the electret dielectric 3 and the respective surfaces of the center electrode 41 or the external electrode 43 The relative position of changes. Moreover, formation and disappearance of an air layer are repeated between the electret dielectric 3 and the center electrode 41 or the external electrode 43 by repeating peeling and contact. At that time, it is considered that charges having different polarities are induced in each electrode by electrostatic induction. Further, in the region where the electret dielectric 3 and the center electrode 41 or the external electrode 43 are repeatedly contacted and peeled, an external force is also applied to the electret dielectric 3, so that the thickness of the electret dielectric 3 also changes.
  • the thickness of the porous electret dielectric material 3 having the pores 4 therein is easily changed by an external force as compared with the case where the pores 4 are not provided.
  • the dipole moment of the electret dielectric 3 changes due to the change in the thickness of the electret dielectric 3, it is considered that charges having different polarities are induced by the electrostatic induction.
  • the inventors can contact and peel the electret dielectric 3 and each electrode from each other in a non-bonded state, rather than the case where the electret dielectric 3 is completely bonded to the center electrode 41 and the external electrode 43. It has been found that the power generation output voltage is larger in the state. Therefore, in the vibration power generation body 40 in which the non-junction portion is provided between the electret dielectric 3 and the center electrode 41 or the external electrode 43, the power generation due to the change in the dipole moment accompanying the deformation of the electret dielectric 3 described above. However, it is considered that the power generation accompanying the change in the contact state at the non-joint portion between the electret dielectric 3 and the center electrode 41 or the external electrode 43 is dominant.
  • the vibration power generators 1, 1a, 30, 30a shown in FIGS. 1 (a), 1 (b), 4 (a), and 4 (b) have the gap 6 held by the spacer 7 so that the external force
  • the spacer 7 is not necessarily required if the vibration power generators 1, 1a, 30, and 30a are partially formed with non-joining portions.
  • the vibration power generator 40 of the present invention can generate power in response to deformation caused by an external force. Therefore, it is desirable that the vibration power generator 40 be easily deformed. For this reason, as shown in FIG. 9A, a vibration power generator 40a having a hollow center electrode 41 may be used. In the vibration power generation body 40a, since the space 47 is formed inside the center electrode 41, the deformation of the cross section of the vibration power generation body 40a by an external force is easy.
  • a vibration power generation body 40b in which an elastic body 49 is disposed inside the hollow center electrode 41 may be used.
  • the elastic body one that can be easily deformed and has a high shape restoring force is desirable.
  • a rubber string member or a wire member can be used.
  • the center electrode 41 may be formed on the outer surface of the elastic body 49 by metal deposition, metal plating, or the like. Further, the center electrode 41 may be formed by winding a metal tape or a metal wire around the outer periphery of the elastic body 49. Further, the center electrode 41 may be formed by covering the outer periphery of the elastic body 49 with, for example, a copper braided wire in a tubular shape.
  • the cross-sectional shape of the center electrode 41 may not be a perfect circle, but may be an ellipse or other shapes.
  • the electret dielectric 3 can be formed by extruding and covering an insulating foamed plastic or foamed rubber on the outer periphery of the center electrode 41. After the base material of the electret dielectric 3 made of insulating foamed plastic or foam rubber is extruded and coated, an external electrode 43 is formed on the outer periphery, and the covering portion 45 is extruded and coated on the outer periphery of the external electrode 43. Thereafter, a DC voltage may be applied between the center electrode 41 and the external electrode 43 to charge the electret dielectric 3.
  • the holes 4 are dispersed and exist inside the electret dielectric 3, or when a gap exists between the electret dielectric 3 and the center electrode 41 or the external electrode 43.
  • a DC voltage may be applied between the center electrode 41 and the external electrode 43, but the electret dielectric 3 can be charged by applying an AC voltage.
  • the AC voltage when the AC voltage is applied, air discharge can be generated in the gap portion or the hole portion with a lower applied voltage than when the DC voltage is applied. It is easy to form a charged region inside. Accordingly, the electret dielectric 3 can be easily charged.
  • the electret dielectric 3 may be formed by other methods.
  • the resin tape 51 may be formed by winding the resin tape 51 around the center electrode 41 so as to form one or more layers.
  • the resin tape 51 may be wound helically so that each edge part may wrap (wrap winding).
  • the resin tapes 51 may be spirally wound with a gap 6 therebetween so that a gap is formed between the end portions (gap winding).
  • a spiral gap 6 is formed between the layers of the resin tape 51 wound around a plurality of layers.
  • the gap 6 functions as the hole 4 of the present invention. That is, even if the resin tape 51 is made of a material without pores, the electret dielectric 3 formed by winding the resin tape 51 is the same as the electret dielectric 3 formed of the porous material described above. Work. That is, the gap 6 functions as the hole 4 of the present invention.
  • the resin tape 51 may be made of the same material as the electret dielectric 3 described above. That is, as the resin tape 51, an insulating porous plastic tape, porous rubber tape, fiber tape, or the like can be used. When the resin tape 51 made of a porous material is used, as shown in FIG. 10C, the resin tape 51 is abutted with no gap so that no wrap portion or gap portion is formed at each end portion. It may be wrapped around (butt wrap). Further, one layer or a plurality of layers may be wound with a resin tape vertically attached to the center conductor.
  • electrification treatment can be performed before the external electrode 43 is formed after the base material of the electret dielectric 3 made of insulating foam plastic or foam rubber is extruded and coated on the outer periphery of the center electrode 41. That is, for example, after the base material of the electret dielectric 3 is extruded and coated on the outer periphery of the center electrode 41, the surface of the electret dielectric 3 is charged using an external corona discharge generator, and then the external electrode 43 and the covering portion 45 are charged. Can be sequentially formed to manufacture the vibration power generator 40.
  • the charging process may be performed after the resin tape 51 is wound, or the resin tape 51 that has been previously charged may be wound.
  • FIG. 11 is a diagram illustrating a result of evaluating the relationship between the deformation of the vibration power generation body 40 and the power generation output voltage, where the horizontal axis represents time and the vertical axis represents the power generation output voltage.
  • the vibration power generator 40 a copper wire having a diameter of 1 mm was used for the center electrode 41, and the electret dielectric 3 was provided by extruding and covering a foamed polypropylene having a thickness of about 1 mm on the center electrode.
  • a tin-plated copper braided wire was used for the external electrode 43, and polyvinyl chloride having a thickness of about 0.5 mm was used for the covering portion 45.
  • expanded foam expanded polyvinyl chloride, expanded silicone rubber, expanded ethylene propylene rubber is extruded on the center electrode 41 with a thickness of about 1 mm for the electret dielectric 3 and has the same configuration.
  • the power generator 40 was similarly evaluated.
  • the obtained vibration power generator 40 was subjected to polarization charging treatment of the electret dielectric 3 by applying a DC voltage of 4 kV for 1 hour between the center electrode 41 and the external electrode 43 at room temperature.
  • a DC voltage of 4 kV for 1 hour between the center electrode 41 and the external electrode 43 at room temperature Regarding the polarity of the DC voltage, both the case where the central electrode 41 side is a negative electrode and the external electrode 43 side is a positive electrode and vice versa were evaluated.
  • the electret dielectric 3, the center electrode 41, and the external electrode 43 are in a non-bonded state, and deformation, deformation, or friction between the vibration power generation body 40 can occur. It is.
  • the relationship between the deformation of the vibration power generation body 40 of FIG. 11 and the power generation output voltage will be described by focusing on the changes in the interface shape and the contact state between the external electrode 43 and the electret dielectric 3.
  • FIG. 11 shows an example of observing, using an oscilloscope, a power generation output waveform when a pressing force is applied to the vibration power generation body 40 and the pressing force is removed after holding for a certain period of time.
  • the input impedance of the oscilloscope was DC 1 M ⁇ .
  • the potential of the electrode facing the surface side where the negative charge of the electret dielectric 3 is charged was used as the reference potential.
  • the vibration power generator 40 does not generate power and induces both the center electrode 41 and the external electrode 43 before that. Since the generated charge flows through the input impedance of the oscilloscope, the power generation output voltage of the vibration power generator 40 becomes 0 (II in FIG. 11).
  • the shape of the vibration power generation body 40 in the area subjected to the pressure is deformed so as to return to the shape in the original steady state.
  • the mutual interface shape and contact state between the external electrode 43 and the electret dielectric 3, and the thickness of the electret dielectric 3 also return to the interface shape and contact state in the steady state and the thickness of the electret dielectric 3. It will be transformed into. That is, the external electrode 43 and the electret dielectric 3 are deformed in a peeling direction (a direction in which both distances are separated), and the thickness of the electret dielectric 3 is changed in an increasing direction.
  • the distance between the external electrode 43 and the center electrode 41 also changes in a direction that increases.
  • a negative voltage having a polarity opposite to that described above is generated in the vibration power generator 40 (III in FIG. 11).
  • the shape change of the vibration power generator 40 stops after releasing the pressure, the mutual interface shape and contact state between the external electrode 43 and the electret dielectric 3 and the thickness of the electret dielectric 3 change. Stops, and the vibration power generator 40 does not generate power.
  • the power generation output voltage of the vibration power generator 40 becomes zero. .
  • the shape of the interface between the electret dielectric 3 and the external electrode 43 or the center electrode 41 in the vibration power generator 40 and the change in the contact state (contact and peeling), and further the deformation of the electret dielectric 3 Due to the change in thickness due to, power can be generated with high efficiency.
  • Such a tendency was the same even when the material of the electret dielectric 3 was changed. The same tendency was observed even when the electret dielectric 3 was charged with the opposite polarity.
  • the vibration power generation bodies 1, 1a, 30, 30a, 40a, and 40b have the same relationship between the deformation of the vibration power generation body and the power generation output voltage as shown in FIG.
  • the spacer 7 between the electrode and the electret dielectric 3 and forming the gap 6 higher power generation was obtained.
  • the largest generated output voltage was shown immediately before the electrode contacted the electret dielectric 3.
  • the power generation output voltage was the largest immediately after the electrode was peeled from the electret dielectric 3. Therefore, it is desirable that the electrode and the electret dielectric 3 repeat contact and peeling when the vibration power generator is deformed.
  • the vibration power generators 1, 1a, 30, 30a, 40, 40a, 40b according to the present invention can be used by connecting them in series or in parallel. By doing so, a larger power generation output voltage can be obtained.
  • electrodes in which positive charges are induced and electrodes in which negative charges are induced may be connected in parallel, or electrodes in which charges of different polarities are induced may be connected in series.
  • the vibration power generators 1, 1a, 30, 30a, 40 may be laminated in a plurality of layers, arranged in a plurality on the plane, or may be arranged in combination.
  • the vibration power generator 1, 1a, 30, 30a, 40, 40a, 40b since the vibration power generator 1, 1a, 30, 30a, 40, 40a, 40b according to the present invention has flexibility, the vibration power generator can be bent and used.
  • the vibration power generators 1, 1a, 30, 30a may be used in a folded state. In this case, a plurality of vibration power generators are stacked and the electrodes are connected in parallel with the polarities aligned. The same effect as the case can be obtained.
  • the vibration power generators 40, 40a, and 40b can be used in a state of being bent in a spiral shape.
  • the vibration power generator 60 includes the vibration power generator 1, a rectifier circuit 67, a power storage circuit 69, and the like.
  • the example using the vibration electric power generation body 1 is demonstrated in FIG. 12, it is applicable similarly to the vibration electric power generation bodies 1a, 30, 30a, 40, 40a, 40b.
  • the rectifier circuit 67 As the rectifier circuit 67, a full-wave rectifier circuit in which four diodes 61 are combined is used.
  • the rectifier circuit 67 rectifies the output voltage from the vibration power generator 1.
  • the power storage circuit 69 includes a power storage unit 63 such as a capacitor and a rechargeable battery, and a switch 65.
  • the diode 61 preferably has a low forward resistance, a high reverse resistance, a fast time response speed, and a small loss. Further, it is desirable that the capacitor or the battery has a small leakage current in a charged state and a small charging loss.
  • the output voltage of the vibration power generator 1 when a repeated external force is applied is alternating current. Therefore, it is desirable that the output voltage of the vibration power generator 1 is rectified by the rectifier circuit 67 and the output of the rectifier circuit 67 is stored in the storage circuit 69.
  • the electrodes 5a and 5b of all vibration power generation bodies 1 may be connected in parallel and then connected to the rectifier circuit 67.
  • the vibration power generation body 1 that does not generate power when the vibration power generation body 1 that does not generate power is included, the vibration power generation body 1 that does not generate power as an external load with respect to the other vibration power generation bodies 1 that generate power This is to prevent a decrease in power generation output due to functioning.
  • the power generation output voltage was evaluated using various vibration power generators shown below.
  • Example 1 In Example 1, the structure shown in the vibration power generation body 30 (FIG. 4A) was adopted.
  • the size of the vibration power generator was about 100 mm ⁇ about 100 mm ⁇ about 0.5 mm.
  • the electrodes 31a and 31b were formed by using a 12 ⁇ m thick aluminum foil as the conductive layer 33 and using a 100 ⁇ m thick PET (polyethylene terephthalate) film as the resin layer 35 and bonding them by thermal welding.
  • As the electret dielectric 3 a foamed polypropylene film having a thickness of 100 ⁇ m was used, and the entire foamed polypropylene film was uniformly charged by corona discharge. The potential difference between both surfaces of the electret dielectric 3 was about 200V.
  • an insulating adhesive was used as the spacer 7.
  • the aluminum foil surfaces of both electrodes and the electret dielectric 3 were adhered by applying an insulating adhesive in the form of dots using a mask pattern so as to be equally spaced two-dimensionally in the plane direction.
  • the adhesion pattern after adhesion was a circle having a diameter of about 1 mm, a thickness of 100 ⁇ m, and the spacers were arranged at equal intervals. That is, the gap length between the electret dielectric 3 and each of the electrodes 31a and 31b was 100 ⁇ m.
  • the distance between the centers of the spacers 7 was 10 mm, and the arrangement relationship of the spacers 7 provided on both surfaces of the electret dielectric 3 was arranged at the same position in plan view.
  • Example 2 is substantially the same as Example 1, but has the structure shown in the vibration power generator 30a (FIG. 4B).
  • the size of the vibration power generator was about 100 mm ⁇ about 100 mm ⁇ about 0.4 mm.
  • the electrodes 31a and 31b and the electret dielectric 3 are the same as in the first embodiment. Note that the aluminum foil surface (conductive layer 33) of one electrode 31a is bonded to the electret dielectric 3 by heat fusion.
  • the other electrode 31b and the electret dielectric 3 were coated with dots in the same manner as in Example 1 to form spacers 7.
  • Comparative Example 1 is substantially the same as Example 1, except that a 100 ⁇ m thick polypropylene film that is not a porous material is used as the electret dielectric 3.
  • Comparative Example 2 Comparative Example 2 was substantially the same as Example 2, but a 100 ⁇ m thick polypropylene film that was not a porous material was used as the electret dielectric 3.
  • Comparative Example 3 is substantially the same as Example 2, except that electrodes 31 a and 31 b on both sides are bonded to the entire surface of the electret dielectric 3. That is, the entire surfaces of the electrodes 31a and 31b and the electret dielectric 3 were bonded to each other without forming a non-bonded portion with respect to any of the electrodes on both sides.
  • Comparative Example 4 is substantially the same as Example 2, except that a 100 ⁇ m thick polypropylene film that is not a porous material is used as the electret dielectric 3, and the electrodes 31 a and 31 b on both sides are bonded to the entire surface of the electret dielectric 3. did. That is, the entire surfaces of the electrodes 31a and 31b and the electret dielectric 3 were bonded to each other without forming a non-bonded portion with respect to any of the electrodes on both sides.
  • FIG. 13 shows the evaluation results of the power generation output voltage when the same vibration (vibration frequency is 1 Hz) is applied to the vibration power generators of Examples 1 to 2 and Comparative Examples 1 to 4.
  • the power generation output voltage of the vibration power generation body of Example 1 is set to 1, and the normalized relative power generation output voltage is shown.
  • Examples 1 and 2 in which a porous material is applied as the material of the electret dielectric 3 showed a relatively high power generation output voltage compared to Comparative Examples 1 and 2 that are not porous materials. This is the same even if the comparative example 3 and the comparative example 4 are compared. That is, by using the electret dielectric 3 which is a porous material, the electret dielectric 3 is easily deformed, and as a result, the power generation output voltage is improved.
  • the comparative example 3 uses the porous material, since the electrodes 31a and 31b and the electret dielectric 3 are adhered on the entire surface, the power generation output voltage is inferior to those of Examples 1 and 2.
  • Comparative Example 4 in which the electret dielectric 3 has no holes, the power generation output voltage is remarkably large, and the power generation output voltage is improved by making the electret dielectric 3 porous.
  • the power generation output voltage is further improved.
  • Example 1 in which the gap is formed on both sides of the electret dielectric 3
  • Example 2 in which the gap is formed on only one side
  • the generated output voltage is higher when the gap is formed on both sides.
  • the difference is small. This is the same even if the comparative example 1 and the comparative example 2 are compared. That is, in consideration of manufacturability, use environment, and handleability of the vibration power generator, whether the gap is formed on both surfaces or only one surface may be appropriately set.
  • a porous material is used as the electret dielectric, and a higher power generation output voltage can be obtained by forming a gap (non-joined portion) between at least one electrode and the electret dielectric. As a result.
  • Example 2 several vibration electric power generation bodies 1a which changed gap length (adhesive thickness or spacer thickness) are manufactured, and the electrode 5b and the electret dielectric material 3 repeat a contact and peeling.
  • the power generation output voltage increased as the gap length increased. That is, when the electrode 5b and the electret dielectric 3 are repeatedly contacted and peeled, the power generation output voltage increases as the amount of change in the distance between the electrode 5b and the electret dielectric 3 increases.
  • the gap length exceeds 100 ⁇ m, the increase amount of the generated output voltage with respect to the increase amount of the gap length becomes smaller. Further, when the gap length is increased, the external force or vibration necessary for bringing the electrode 5b and the electret dielectric 3 into contact with each other also increases. Further, the total thickness of the vibration power generator is increased by increasing the gap length. Therefore, the gap length (spacer thickness) is preferably 100 ⁇ m or less.
  • Example 3 Next, the vibration power generator shown in the vibration power generator 40 (FIG. 5) was evaluated.
  • a copper wire having a diameter of 1 mm was used for the center electrode 41, and as the electret dielectric 3, foamed polypropylene having a thickness of about 1 mm was extruded and coated on the center electrode 41.
  • a tin-plated copper braided wire was used for the external electrode 43, and polyvinyl chloride having a thickness of about 0.5 mm was used for the covering portion 45.
  • the obtained vibration power generator was subjected to the electret dielectric 3 charging process by applying a DC voltage of 4 kV for 1 hour between the center electrode 41 and the external electrode 43 at room temperature.
  • a DC voltage of 4 kV for 1 hour between the center electrode 41 and the external electrode 43 at room temperature Regarding the polarity of the DC voltage, the case where the central electrode side was the negative electrode and the external electrode side was the positive electrode was evaluated, but the opposite result was also obtained.
  • Example 4 is substantially the same as Example 3, but without the electret dielectric 3 being extruded, a foamed polypropylene insulating tape (thickness: about 100 ⁇ m, width: about 5 mm) is spirally wrapped in multiple layers. Thus, an electret dielectric 3 having a thickness of about 1 mm was formed.
  • Other configurations and charging methods are the same as those in the third embodiment.
  • Comparative Example 5 is substantially the same as Example 3, but the electret dielectric 3 was provided on the center electrode 41 by extruding and covering polypropylene that is not a porous material. Other configurations are the same as those of the third embodiment.
  • Comparative Example 6 is substantially the same as Example 4, except that a polypropylene insulating tape (thickness: about 100 ⁇ m, width: about 5 mm) that is not a porous material is spirally wrapped in multiple layers as the electret dielectric 3. Thus, an electret dielectric 3 having a thickness of about 1 mm was formed.
  • Other configurations and the charging method are the same as those in the fourth embodiment.
  • FIG. 14 shows the vibration power generators of Examples 3 to 4 and Comparative Examples 5 to 6, with the vibration power generators sandwiched between two rigid plates and the same from the outside of the two plates.
  • the evaluation result of the power generation output voltage when the vibration (vibration frequency is 1 Hz) is given.
  • the power generation output voltage of the vibration power generation body of Example 3 is set to 1, and the normalized relative power generation output voltage is shown.
  • Examples 3 and 4 using a porous material as the material of the electret dielectric 3 showed a relatively high power generation output voltage compared to Comparative Examples 5 and 6 using no porous material. . That is, the power generation output voltage is improved by making the electret dielectric 3 easier to deform.
  • the reason why the power generation output voltage of Comparative Examples 5 and 6 is extremely small is that the electret dielectric 3 is not easily deformed compared to Examples 3 and 4, and the electret dielectric 3 has a very small charge amount. It is possible. That is, charging is performed by applying a DC voltage of 4 kV between the center electrode and the external electrode of the vibration power generator. In Comparative Examples 5 and 6, the applied DC voltage is applied to the electret dielectric 3. It seems that it is not enough to charge.
  • the applied voltage is sufficient to generate air discharge in the air holes even with an applied voltage of about 4 kV, so that the electret dielectric 3 is sufficiently charged. It is possible to make it.
  • Example 4 in which the gap 6 as shown in FIG. 10A exists inside the electret dielectric has such a gap 6 present.
  • the reason why the power generation output voltage of Examples 3 and 4 is remarkably higher than that of Comparative Examples 5 and 6 is that although the power generation output voltage is slightly higher than that of Example 3, This is considered to be because the quality electret dielectric 3 is used.
  • the power generation output voltage is slightly higher in Comparative Example 6 in which the gap 6 as shown in FIG. 10A exists in the electret dielectric, but compared with Examples 3 and 4. Then, as described above, it is considered that the power generation output voltage is considerably lowered because the electret dielectric 3 is not sufficiently charged.
  • Example 5 Next, with respect to the vibration power generation body shown in the vibration power generation body 40 (FIG. 5), the vibration power generation body subjected to another electret dielectric 3 charging method and manufacturing method of the vibration power generation body was evaluated.
  • the configuration and structure of the vibration power generator of Example 5 are substantially the same as those of Example 3.
  • the surface potential of the foamed polypropylene is set to ⁇ 4 kV (by a corona discharge device disposed with a gap around the outer periphery of the foamed polypropylene.
  • the electret dielectric 3 was formed by approximately uniformly charging the potential of the center electrode to the reference).
  • a tin-plated copper braided wire as the external electrode 43 and polyvinyl chloride as the covering portion 45 were sequentially coated to complete the vibration power generator.
  • Example 6 is substantially the same as Example 5, but without the electret dielectric 3 being extruded, a foamed polypropylene insulating tape (thickness: about 100 ⁇ m, width: about 5 mm) is spirally wrapped in multiple layers. Thus, an electret dielectric 3 having a thickness of about 1 mm was formed.
  • Other configurations, the electret dielectric charging method, and the vibration power generator manufacturing method are the same as in the fifth embodiment.
  • Comparative Example 7 is substantially the same as Example 5, except that polypropylene, which is not a porous material, is extruded and coated on the center electrode 41 as the electret dielectric 3.
  • polypropylene which is not a porous material
  • Other configurations, the electret dielectric 3 charging method, and the vibration power generator manufacturing method are the same as in the fifth embodiment.
  • Comparative Example 8 is substantially the same as Example 6, but as the electret dielectric 3, a polypropylene insulating tape (thickness: about 100 ⁇ m, width: about 5 mm) that is not a porous material is spirally wrapped in multiple layers. Thus, an electret dielectric 3 having a thickness of about 1 mm was formed.
  • Other configurations, the electret dielectric 3 charging method, and the vibration power generator manufacturing method are the same as those in the sixth embodiment.
  • FIG. 15 shows the vibration power generators of Examples 5 to 6 and Comparative Examples 7 to 8, with the vibration power generators sandwiched between two rigid plates and the same from the outside of the two plates.
  • the evaluation result of the power generation output voltage when the vibration (vibration frequency is 1 Hz) is given.
  • the power generation output voltage of the vibration power generation body of Example 5 is set to 1, and a normalized relative power generation output voltage is shown.
  • the electret dielectrics 3 in Examples 5 and 6 and Comparative Examples 7 and 8 are all charged so as to have the same surface potential, but the electret dielectric 3 is made of a porous material.
  • the power generation output voltage was relatively high compared to Comparative Examples 7 and 8 in which no porous material was used. That is, the power generation output voltage is improved by making the electret dielectric 3 easier to deform.
  • Example 5 in which the electret dielectric 3 is extrusion-molded
  • Example 6 in which the electret dielectric 3 is formed with an insulating tape
  • the output voltage tends to be high, the difference is small. That is, in consideration of the manufacturability of the vibration power generator, which configuration is to be set may be appropriately set.
  • Example 3 and Example 5, Example 4 and Example 6, Comparative Example 5 and Comparative Example 7, and Comparative Example 6 and Comparative Example 8 have the same configuration and structure of the vibration power generator, respectively.
  • the charging method of the dielectric 3 and the method of manufacturing the vibration power generator are different.
  • Comparative Example 5 and Comparison with Example 3 and Example 4 are compared.
  • the ratio of the power generation output voltage of Example 6 is considerably smaller than the ratio of the power generation output voltage of Comparative Example 7 and Comparative Example 8 to Example 5 and Example 6. This is one of the reasons that the electret dielectric 3 in Comparative Example 5 and Comparative Example 6 is not sufficiently charged as described above.
  • the reason why the electret dielectric 3 is insufficiently charged is considered to be caused by a difference between the electret dielectric 3 charging method and the vibration power generator manufacturing method. That is, when the electret is charged by applying a voltage between a pair of electrodes sandwiching the electret dielectric 3 as a final step of the vibration power generator (Examples 3 and 4, Comparative Examples 5 and 6), The electret dielectric can be charged with a relatively low voltage (DC voltage or AC voltage). On the other hand, the electret dielectric 3 that is not porous needs to be charged at a relatively high voltage.
  • the electret dielectric 3 is applied by applying a voltage between the electrodes of the vibration power generator in the final step of the vibration power generator manufacturing process.
  • This charging method is highly convenient in that it is not necessary to provide a large-scale corona discharge generator outside and in terms of quality control in the manufacturing process of the vibration power generator. And it becomes easy to employ
  • a high power generation output voltage can be obtained by using the electret dielectric 3 that is a porous material.
  • the vibration power generation body of the present invention can be installed on an object that vibrates when a vehicle such as a sound barrier, a railroad rail or a sleeper installed under a road, a bridge, or a highway passes. it can.
  • the obtained electric power senses the surrounding conditions (temperature, humidity, brightness, vibration acceleration, distortion, displacement, wind speed, vehicle speed and weight, etc.) of the vibration object, and drives the sensor for measurement.
  • it can be used as a power source for an information collecting system or a monitoring system that transmits information obtained by a sensor by wire or wireless.
  • the power obtained when the power obtained is large, it can also be used as one of distributed power sources for lighting such as roads, auxiliary power sources for traffic lights, and smart grid concepts.
  • power may be generated by vibration when a vehicle or a person passes, thereby sensing information that the vehicle or person has passed and ambient brightness. In this case, only when the surroundings are dark, the stored power can be used to light the front of the vehicle or person, the guide plate, the guide light, and the like.
  • the vibration power generator of the present invention can itself be used as a sensor for detecting a change in external force such as vibration.
  • it can be used in a security system in which a vibration power generator is installed in a site, a passage or the like, and power is generated by vibration when a suspicious person invades, thereby transmitting suspicious person intrusion information.
  • the present invention can be applied to a moving body that itself vibrates, such as a vehicle, an aircraft, a person, or an animal.
  • a vibration power generator or a vibration power generator cable may be installed in a car body, a suspension, a tire (such as the inside of a tire, a rubber inner surface, or a wheel portion) of an automobile, and various sensors may be driven by the generated power.
  • the electric power obtained is large, it can also be used as a power source for auxiliary charging to a secondary battery of an automobile.
  • a vibration power generator is installed in the seat of a vehicle, etc., and when a person is seated or generated by vibration during seating, it detects the person's seating and informs the driver's seat or cockpit. It can also be used.
  • a vibration power generator or a vibration power cable can be applied to a building structure such as a building, factory, or house, or a structure included in a building structure.
  • the above-mentioned building structure includes the vibration of the ground, the influence of wind, the movement of people inside, the mechanical devices installed inside (for example, rotating machines such as motors, production equipment in factories, elevators and escalators, etc. In response to vibration when an elevator, an air conditioning fan, etc.) are operating, it itself vibrates. Therefore, it is possible to install a vibration power generator in a site that is susceptible to such vibration and generate electric power, and use it as a driving power source such as an emergency power source, various sensors, or a communication power source.
  • the vibration power generator of the present invention can be applied to portable electronic devices such as personal computers, mobile phones, and remote controllers, and input devices such as touch panels, keyboards, and push buttons.
  • a vibration power generator is installed in the casing of a portable electronic device such as a personal computer or a mobile phone, and the power is generated by vibration during transportation or use of the device and used as an auxiliary charging power source for a secondary battery. You can also. It can also be used as a power source for a system that generates power by vibration of an input device and transmits input information to a master station or the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)

Abstract

A vibration power generation body (1) is primarily composed of an electret dielectric (3), electrodes (5a, 5b), and spacers (7). The electrodes (5a, 5b) are positioned on both surface of the electret dielectric (3) in such a manner as to face the electret dielectric (3). Both surfaces of the electret dielectric (3) are charged by charges that are opposite to each other. Furthermore, the electret dielectric (3) is constructed with a porous material (e.g., a resin foam). In other words, minute pores (4) are formed inside the electret dielectric (3).

Description

振動発電体およびその製造方法Vibration power generator and method of manufacturing the same
 本発明は、エレクトレット誘電体を用いた振動発電体等に関するものである。 The present invention relates to a vibration power generator using an electret dielectric.
 従来から、道路や橋梁、建築物、産業機械などの構造体の振動や、自動車や鉄道車両、航空機などの移動体の振動、人体の運動や環境に普遍的に存在する環境振動などを電気エネルギーに変換して有効利用する試みがなされている。 Conventionally, electrical energy includes vibrations of structures such as roads, bridges, buildings, and industrial machines, vibrations of moving bodies such as automobiles, railway vehicles, and aircraft, and environmental vibrations that are universally present in human movement and the environment. Attempts have been made to make effective use by converting to.
 このような振動エネルギーを電気に変換する発電方式としては、電磁誘導を利用する方式、圧電素子を利用する方式、静電誘導を利用する方式に大きく分けられる。電磁誘導を利用する方式は、振動によってコイルと磁石との相対的な位置を変化させ、この際にコイルに生じる電磁誘導によって発電する方式である。また、圧電素子を利用する方式は、主としてセラミックス系の圧電素子を用い、振動によって圧電素子に歪が加わる際に、圧電素子の表面に電荷が誘起される現象を利用するものである。 Such power generation methods that convert vibration energy into electricity can be broadly divided into methods that use electromagnetic induction, methods that use piezoelectric elements, and methods that use electrostatic induction. The system using electromagnetic induction is a system in which the relative position between the coil and the magnet is changed by vibration and power is generated by electromagnetic induction generated in the coil. The method using a piezoelectric element mainly uses a ceramic-based piezoelectric element and utilizes a phenomenon in which charges are induced on the surface of the piezoelectric element when strain is applied to the piezoelectric element by vibration.
 また、静電誘導を利用する方式には、一般的に、半永久的に電荷を保持するエレクトレット誘電体が用いられる。エレクトレット誘電体と、これと距離を置いて配置された電極との相対位置を振動等によって変化させることで、電荷が電極に静電誘導され、発電が行われるものである。このような原理を用いた発電装置は、例えば特許文献1、特許文献2に記載されている。 In addition, an electret dielectric that holds a charge semipermanently is generally used for a system that uses electrostatic induction. By changing the relative position of the electret dielectric and the electrode disposed at a distance from the dielectric by vibration or the like, electric charges are electrostatically induced in the electrode, and power generation is performed. A power generation device using such a principle is described in, for example, Patent Document 1 and Patent Document 2.
特開2010-136598号公報JP 2010-136598 A 特開2000-50394号公報JP 2000-50394 A
 特許文献1に記載された振動発電装置は、固定基板の上面に短冊状の複数本のベース電極が平行に配列され、各ベース電極上には、それぞれエレクトレットが形成される。また、可動基板は、固定基板のエレクトレットが配置される側の面に対向し、所定のギャップをあけて平行に配置される。さらに、可動基板の対向面には、ベース電極と対向するように短冊状の対向電極が形成される。振動が付与されると、可動基板は、固定基板との距離を保った状態で、平行に移動する。したがって、エレクトレットと対向電極との相対位置が平行な方向に変化する。この際、各電極に電荷が静電誘導されて発電することができる。 In the vibration power generation apparatus described in Patent Document 1, a plurality of strip-shaped base electrodes are arranged in parallel on the upper surface of a fixed substrate, and electrets are formed on the respective base electrodes. The movable substrate faces the surface of the fixed substrate on which the electret is disposed, and is disposed in parallel with a predetermined gap. Further, a strip-shaped counter electrode is formed on the counter surface of the movable substrate so as to oppose the base electrode. When vibration is applied, the movable substrate moves in parallel while maintaining a distance from the fixed substrate. Therefore, the relative position between the electret and the counter electrode changes in a parallel direction. At this time, electric power can be electrostatically induced in each electrode to generate power.
 また、特許文献2には、音波を電気信号に変換するエレクトレットコンデンサマイクロホンが記載されている。エレクトレットコンデンサマイクロホンは、固定電極であるカップ状背極にエレクトレット誘電体膜が形成され、エレクトレット誘電体膜と対向する側に対向電極である振動膜が形成される。また、エレクトレット誘電体膜と振動膜とのギャップはスペーサで保持される。中心孔から音波が伝播して振動膜が振動すると、振動膜とエレクトレット誘電体膜との相対位置が変化する。この際、各電極に電荷が静電誘導される。このようにして得られた電気信号を信号増幅およびインピーダンス変換して出力することができる。 Patent Document 2 describes an electret condenser microphone that converts sound waves into electrical signals. In an electret condenser microphone, an electret dielectric film is formed on a cup-shaped back electrode that is a fixed electrode, and a vibration film that is a counter electrode is formed on the side facing the electret dielectric film. Further, the gap between the electret dielectric film and the vibration film is held by a spacer. When the sound wave propagates from the center hole and the vibration film vibrates, the relative position between the vibration film and the electret dielectric film changes. At this time, a charge is electrostatically induced in each electrode. The electric signal thus obtained can be output after signal amplification and impedance conversion.
 ここで、エレクトレット誘電体は、事前に帯電処理が施されて使用される。上述の発電方式においても、十分な発電力を得るためには、エレクトレット誘電体の帯電処理が重要な工程となる。しかし、一般的には、エレクトレット誘電体の外部に設けられたコロナ放電発生装置によるコロナ放電を利用してエレクトレット誘電体表面の帯電処理がなされるため、帯電処理工程が大がかりとなる。 Here, the electret dielectric is used after being charged in advance. Even in the above-described power generation method, electret dielectric charging is an important process in order to obtain sufficient power generation. However, in general, the electret dielectric surface is charged by using corona discharge by a corona discharge generator provided outside the electret dielectric, so that the charge processing step becomes large.
 また、前述した従来の発電装置等は、広範囲かつ様々な取り付け部位の形態に対応させることが困難である。例えば、特許文献1、2に記載された装置や、電磁誘導や圧電素子を利用する方式では、各部材が略リジッドに形成されるため、取り付け部位に応じて形状を変える等のフレキシブル性に劣る。 In addition, it is difficult for the above-described conventional power generation apparatus and the like to correspond to a wide variety of attachment site forms. For example, in the devices described in Patent Documents 1 and 2, and methods using electromagnetic induction and piezoelectric elements, each member is formed in a substantially rigid manner, so that it is inferior in flexibility such as changing the shape according to the attachment site. .
 また、特許文献2のようなエレクトレットコンデンサマイクロホンは、入力される音波と出力される電気信号との線形性が重要であるため、得られる電気信号が小さく、かつ、発電部のインピーダンスが高い。このため、発電部で発電された電気は、半導体回路によって増幅され、インピーダンス変換される。したがって、半導体回路を駆動する外部電源が必要であり、そもそも発電した電気エネルギーを有効に利用できるものではない。 In the electret condenser microphone as disclosed in Patent Document 2, since the linearity between the input sound wave and the output electric signal is important, the obtained electric signal is small and the impedance of the power generation unit is high. For this reason, the electricity generated by the power generation unit is amplified by the semiconductor circuit and subjected to impedance conversion. Therefore, an external power source for driving the semiconductor circuit is necessary, and the generated electric energy cannot be effectively used in the first place.
 本発明は、このような問題に鑑みてなされたもので、帯電処理が容易であり、様々な形態の設置場所へ適用することが可能な発電効率の高い振動発電体等を提供することを目的とする。 The present invention has been made in view of such problems, and it is an object of the present invention to provide a vibration power generator and the like having high power generation efficiency that can be easily charged and can be applied to various installation locations. And
 前述した目的を達成するため、第1の発明は、一対の電極と、前記一対の電極の間に設けられ、電荷を保持したエレクトレット誘電体と、を具備し、前記エレクトレット誘電体は内部に空孔を有する多孔質材で構成された可撓性を有するものであり、外力が付与された際、一対の前記電極の少なくとの一方と前記エレクトレット誘電体との距離が、少なくとも一部において変化可能であることを特徴とする振動発電体である。 In order to achieve the above-described object, the first invention comprises a pair of electrodes and an electret dielectric that is provided between the pair of electrodes and retains electric charges, and the electret dielectric is empty inside. A flexible material composed of a porous material having pores, and when an external force is applied, the distance between at least one of the pair of electrodes and the electret dielectric changes at least in part. The vibration power generator is characterized in that it is possible.
 このような構成とすることで、設置自由度が高い振動発電体を得ることができる。特に、エレクトレット誘電体内部に空孔を有するため、エレクトレット誘電体の帯電処理時に、空孔内において容易に空気放電を生じさせることができる。したがって、エレクトレット誘電体の厚み方向に電圧を印加することによって、エレクトレット誘電体内部の空孔内における空気放電を利用してエレクトレット誘電体の帯電処理ができ、かつ帯電処理に必要な印加電圧は比較的低い電圧でよいため、エレクトレット誘電体の帯電処理が容易となる。すなわち、空孔を有さないエレクトレット誘電体の場合には、その厚み方向に電圧を印加することによってエレクトレット誘電体の表裏面の帯電処理を行うのに必要な印加電圧は比較的高く、一般的には外部に設けたコロナ放電発生装置によってエレクトレット誘電体表面の帯電処理を行う。この場合と比較して、空孔を有する多孔質性のエレクトレット誘電体の帯電処理は容易となる。 With this configuration, a vibration power generator with a high degree of freedom in installation can be obtained. In particular, since there are holes in the electret dielectric, air discharge can be easily generated in the holes during electret dielectric charging. Therefore, by applying a voltage in the thickness direction of the electret dielectric, the electret dielectric can be charged using air discharge in the holes inside the electret dielectric, and the applied voltage required for the charging is compared. Therefore, the electret dielectric can be easily charged. In other words, in the case of an electret dielectric that does not have holes, the applied voltage required for charging the front and back surfaces of the electret dielectric is relatively high by applying a voltage in the thickness direction. The electret dielectric surface is charged by an external corona discharge generator. Compared to this case, the electrification process of the porous electret dielectric material having pores is facilitated.
 また、エレクトレット誘電体が可撓性を有するものであるため、得られる振動発電体を設置場所に応じて変形させることができる。この際、エレクトレット誘電体が多孔質材であるため、エレクトレット誘電体の厚み方向の変形が容易であり、エレクトレット誘電体の厚み方向の変形(エレクトレット誘電体の厚さの部分的な変化)によって各電極に電荷が静電誘導され、発電を行うことができる。また、エレクトレット誘電体を軽量化することができる。 Also, since the electret dielectric is flexible, the obtained vibration power generator can be deformed according to the installation location. At this time, since the electret dielectric is a porous material, the electret dielectric can be easily deformed in the thickness direction, and each electret dielectric can be deformed in the thickness direction (a partial change in the thickness of the electret dielectric). Electric charges are electrostatically induced in the electrodes, and power generation can be performed. Further, the electret dielectric can be reduced in weight.
 少なくとも一方の前記電極と前記エレクトレット誘電体との間には、互いに接合されない非接合部が形成され、外力が付与された際、前記非接合部の少なくとも一部において、前記エレクトレット誘電体と、少なくとも一方の前記電極との距離が変化可能であることが望ましい。 A non-joining portion that is not joined to each other is formed between at least one of the electrodes and the electret dielectric, and when an external force is applied, at least a portion of the non-joining portion includes at least the electret dielectric, It is desirable that the distance to one of the electrodes can be changed.
 このような構成とすることで、振動発電体が外力を受けたとき、エレクトレット誘電体と電極との非接合部において、エレクトレット誘電体と電極との距離がそれらの厚み方向に変化し、これに応じて各電極に電荷が静電誘導され、発電を行うことができる。すなわち、内部に空孔を有する多孔質性のエレクトレット誘電体で構成された本発明の振動発電体は、エレクトレット誘電体の厚み方向の変形(エレクトレット誘電体の厚さの部分的な変化)と、非接合部におけるエレクトレット誘電体と電極との距離の変化の双方によって、各電極に電荷が静電誘導され、発電を行うことができる。 With this configuration, when the vibration power generator receives an external force, the distance between the electret dielectric and the electrode changes in the thickness direction at the non-joint portion between the electret dielectric and the electrode. Accordingly, electric charges are electrostatically induced in each electrode, and power generation can be performed. That is, the vibration power generator of the present invention composed of a porous electret dielectric having pores inside is deformed in the thickness direction of the electret dielectric (a partial change in the thickness of the electret dielectric), Due to both the change in the distance between the electret dielectric and the electrode at the non-joined portion, electric charge is electrostatically induced in each electrode, and power can be generated.
 なお、外力による変形とは、機械的に他の物質が振動発電体と接触して、振動発電体を変形させる場合のみには限られない。例えば、振動発電体の取り付け部に生じる構造体自体の振動や、外部からの音波や空気圧変化、風(気流)、水流など、振動発電体に繰り返し付与され、振動発電体を変形させることが可能な外部から振動発電体への力の作用を指すものである。この外力は微小なものであってもよい。また、振動発電体における振動とは、その振幅や周波数などが一定であるようなものに限られず、定期的または不定期に繰り返しの外力(慣性力などを含む)を付与可能であるものを指す。 It should be noted that the deformation by external force is not limited to the case where another material mechanically contacts the vibration power generator to deform the vibration power generator. For example, the vibration power generator can be deformed by being repeatedly applied to the vibration power generator, such as vibration of the structure itself that occurs at the attachment portion of the vibration power generator, external sound wave or air pressure change, wind (air flow), water flow, etc. It refers to the action of force from the outside to the vibration power generator. This external force may be minute. In addition, the vibration in the vibration power generator is not limited to the one whose amplitude or frequency is constant, but refers to one that can apply external force (including inertial force) repeatedly or irregularly. .
 前記エレクトレット誘電体と少なくとも一方の前記電極との間には、部分的にスペーサが設けられ、少なくとも一部の前記スペーサを介して、前記エレクトレット誘電体と前記電極とが接合され、前記スペーサ以外の部位を前記非接合部としてもよい。 A spacer is partially provided between the electret dielectric and at least one of the electrodes, and the electret dielectric and the electrode are joined via at least a part of the spacer, and other than the spacer It is good also considering a site | part as the said non-joining part.
 このような構成とすることで、スペーサの厚み分だけ、エレクトレット誘電体と電極との隙間を保持することが容易に可能となる。したがって、外力に応じて、より確実にエレクトレット誘電体と電極との距離を変化させることができる。 With such a configuration, it is possible to easily maintain the gap between the electret dielectric and the electrode by the thickness of the spacer. Therefore, the distance between the electret dielectric and the electrode can be changed more reliably according to the external force.
 前記一対の電極の一方は中心電極であり、他方は外部電極であり、前記エレクトレット誘電体は、前記中心電極の外周に設けられ、前記外部電極は、前記エレクトレット誘電体の外周に設けられ、前記外部電極の外周が被覆部で被覆された構成としてもよい。 One of the pair of electrodes is a center electrode, the other is an external electrode, the electret dielectric is provided on an outer periphery of the center electrode, and the external electrode is provided on an outer periphery of the electret dielectric, It is good also as a structure by which the outer periphery of the external electrode was coat | covered with the coating | coated part.
 このような構成とすることで、設置自由度が高いケーブル状の振動発電体を得ることができる。また、このようなケーブル状の振動発電体は、外力によって、少なくとも外部電極とエレクトレット誘電体の互いの界面形状の部分的な変形が可能であるため、中心電極と外部電極との相対位置の変化による発電を行うことができる。 With such a configuration, a cable-like vibration power generator with a high degree of freedom in installation can be obtained. In addition, such a cable-like vibration power generator is capable of at least partial deformation of the interface shape between the external electrode and the electret dielectric by an external force, so that the change in the relative position between the center electrode and the external electrode is possible. Can generate electricity.
 第2の発明は、振動発電体の製造方法であって、一対の電極と、前記一対の電極の間に設けられ、内部に空孔を有する多孔質体であるエレクトレット誘電体と、を具備し、少なくとも一方の前記電極と前記エレクトレット誘電体との間には互いに接合されない非接合部を有し、前記非接合部の少なくとも一部には空隙を有する帯電処理前の振動発電体を用い、前記電極間に電圧を付与し、前記空孔の内部あるいは前記空隙の内部で放電を生じさせることで、前記エレクトレット誘電体を帯電させることを特徴とする振動発電体の製造方法である。 A second invention is a method for manufacturing a vibration power generator, comprising: a pair of electrodes; and an electret dielectric that is a porous body provided between the pair of electrodes and having pores therein. A non-bonding portion that is not bonded to each other between at least one of the electrodes and the electret dielectric, and using a vibration power generator before charging treatment having a gap in at least a part of the non-bonding portion, A method of manufacturing a vibration power generator, characterized in that a voltage is applied between electrodes to cause discharge in the holes or in the gaps to charge the electret dielectric.
 このようなエレクトレット誘電体の帯電処理方法を用いることによって、振動発電体の製造工程におけるエレクトレット誘電体の帯電処理が容易となる。すなわち、外部にコロナ放電発生装置を設ける必要がなくなり、その代替としてエレクトレット誘電体を挟む一対の電極間に電圧を印加するための高電圧電源を利用すればよい。また前述したように空孔を有する多孔質性のエレクトレット誘電体の帯電処理に必要な電圧は比較的低い電圧でよいため、帯電処理が容易となる。更には、エレクトレット誘電体の帯電処理工程を、振動発電体製造の最終工程に位置づけることができるため、振動発電体の製造が容易となる。 By using such electret dielectric charging method, electret dielectric charging in the vibration power generator manufacturing process is facilitated. That is, it is not necessary to provide a corona discharge generator outside, and a high voltage power source for applying a voltage between a pair of electrodes sandwiching the electret dielectric may be used as an alternative. Further, as described above, the voltage required for the charging process of the porous electret dielectric having pores may be a relatively low voltage, so that the charging process is facilitated. Furthermore, since the electret dielectric charging process can be positioned as the final step of manufacturing the vibration power generator, the vibration power generator can be easily manufactured.
 なお、本願において「エレクトレット誘電体」という用語は、帯電処理された状態のものについてだけではなく、帯電処理前の基材についても用いることがある。 In the present application, the term “electret dielectric” may be used not only for the charged state but also for the base material before the charging process.
 本発明によれば、エレクトレット誘電体の帯電処理が容易であり、様々な形態の設置場所へ適用することが可能な発電効率の高い振動発電体等を提供することができる。 According to the present invention, it is possible to provide a vibration power generator and the like having high power generation efficiency that can be easily applied to an installation place in various forms because the electret dielectric can be easily charged.
図1(a)は振動発電体1を示す図、図1(b)は振動発電体1aを示す図。FIG. 1A is a diagram showing a vibration power generator 1, and FIG. 1B is a diagram showing a vibration power generator 1a. 図2(a)はエレクトレット誘電体3を示す図、図2(b)は、図2(a)のJ部拡大図。2A is a diagram showing the electret dielectric 3, and FIG. 2B is an enlarged view of a portion J in FIG. 2A. 図3(a)、図3(b)は、電極5bとエレクトレット誘電体3の変形状態を示す概念図。FIG. 3A and FIG. 3B are conceptual diagrams showing a deformed state of the electrode 5 b and the electret dielectric 3. 図4(a)は振動発電体30を示す図、図4(b)は振動発電体30aを示す図。FIG. 4A is a view showing the vibration power generation body 30, and FIG. 4B is a view showing the vibration power generation body 30a. 振動発電体40を示す断面図。Sectional drawing which shows the vibration electric power generation body. 図6(a)、図6(b)は、エレクトレット誘電体3の帯電状態を示す図。FIG. 6A and FIG. 6B are diagrams showing a charged state of the electret dielectric 3. 図7(a)、図7(b)は、外部電極43とエレクトレット誘電体3の変形状態を示す概念図。FIG. 7A and FIG. 7B are conceptual diagrams showing deformation states of the external electrode 43 and the electret dielectric 3. 図8(a)、図8(b)は、エレクトレット誘電体3と外部電極43との距離変化を示す概念図。FIG. 8A and FIG. 8B are conceptual diagrams showing a change in the distance between the electret dielectric 3 and the external electrode 43. 図9(a)は振動発電体40aを示す断面図、図9(b)は振動発電体40bを示す断面図。FIG. 9A is a cross-sectional view showing the vibration power generation body 40a, and FIG. 9B is a cross-sectional view showing the vibration power generation body 40b. 図10(a)、図10(b)、図10(c)は、エレクトレット誘電体3を樹脂テープ51で形成する構成を示す図。FIGS. 10A, 10 </ b> B, and 10 </ b> C are diagrams showing a configuration in which the electret dielectric 3 is formed with the resin tape 51. 振動発電体の発電出力電圧の変化を示す図。The figure which shows the change of the electric power generation output voltage of a vibration electric power generation body. 振動発電装置60を示す図。The figure which shows the vibration electric power generating apparatus 60. FIG. 振動発電体の発電出力電圧の比較を示す図。The figure which shows the comparison of the electric power generation output voltage of a vibration electric power generation body. 振動発電体の発電出力電圧の比較を示す図。The figure which shows the comparison of the electric power generation output voltage of a vibration electric power generation body. 振動発電体の発電出力電圧の比較を示す図。The figure which shows the comparison of the electric power generation output voltage of a vibration electric power generation body.
<実施形態1>
 以下、本発明の実施の形態にかかる振動発電体1について説明する。図1(a)に示すように、振動発電体1は、主にエレクトレット誘電体3、電極5a、5b、スペーサ7等から構成される。
<Embodiment 1>
Hereinafter, the vibration electric power generation body 1 concerning embodiment of this invention is demonstrated. As shown in FIG. 1A, the vibration power generator 1 is mainly composed of an electret dielectric 3, electrodes 5a and 5b, a spacer 7, and the like.
 エレクトレット誘電体3の両面には、エレクトレット誘電体3と対向するように、それぞれ電極5a、5bが配置される。また、エレクトレット誘電体3と電極5a、5bとの間にはスペーサ7が設けられる。スペーサ7は、エレクトレット誘電体3と電極5a、5bとの隙間を保持するためのものである。すなわち、エレクトレット誘電体3と電極5a、5bとは、スペーサ7を介して接合され、スペーサ7を介して互いに接合されない部分が非接合部9となり、互いの間には、スペーサ7の厚さに応じた空隙6(ギャップ)が形成される。 Electrodes 5a and 5b are disposed on both sides of the electret dielectric 3 so as to face the electret dielectric 3, respectively. A spacer 7 is provided between the electret dielectric 3 and the electrodes 5a and 5b. The spacer 7 is for maintaining a gap between the electret dielectric 3 and the electrodes 5a and 5b. That is, the electret dielectric 3 and the electrodes 5a and 5b are joined via the spacer 7, and the portion that is not joined to each other via the spacer 7 becomes the non-joined portion 9, and the thickness of the spacer 7 is between them. A corresponding gap 6 (gap) is formed.
 スペーサ7としては、例えば導電性、半導電性の材料を使用することも可能であるが、絶縁性の材料で構成されることが望ましい。また、全てのスペーサ7の内、少なくとも一部が、接着性あるいは粘着性部材で構成されることが望ましい。例えば、エレクトレット誘電体3と電極5a、5bとを接合して固定することができる程度に、部分的にスペーサ7を接着性部材等で構成し、他の部位には非接着性のスペーサ7を用いてもよい。なお、スペーサ7については詳細を後述する。 As the spacer 7, for example, a conductive or semiconductive material can be used, but it is preferable that the spacer 7 is made of an insulating material. Moreover, it is desirable that at least a part of all the spacers 7 is made of an adhesive or adhesive member. For example, the spacer 7 is partially formed of an adhesive member or the like to such an extent that the electret dielectric 3 and the electrodes 5a and 5b can be bonded and fixed, and the non-adhesive spacer 7 is provided at other portions. It may be used. The details of the spacer 7 will be described later.
 本発明では、エレクトレット誘電体3と電極5a、5bとは、いずれも可撓性を有する。例えば、電極5a、5bは、変形が容易な金属箔等、例えば、アルミニウム製や銅製などの可撓性を有する金属箔で形成できる。エレクトレット誘電体3は、例えば、絶縁性を有する多孔質材である可撓性樹脂等で構成される。したがって、振動発電体1は、全体として可撓性を有し、様々な形態の設置場所に適した変形が可能である。 In the present invention, the electret dielectric 3 and the electrodes 5a and 5b are both flexible. For example, the electrodes 5a and 5b can be formed of a metal foil that can be easily deformed, such as a metal foil having flexibility such as aluminum or copper. The electret dielectric 3 is made of, for example, a flexible resin that is a porous material having insulating properties. Therefore, the vibration power generation body 1 has flexibility as a whole, and can be modified to suit various installation locations.
 図2(a)に示すように、エレクトレット誘電体3の両面は、互いに逆の極性の電荷で帯電している。また、エレクトレット誘電体3は、多孔質材(例えば発泡樹脂等)で構成される。すなわち、図2(b)に示すように、エレクトレット誘電体3の内部には微細な空孔4が形成される。 As shown in FIG. 2A, both surfaces of the electret dielectric 3 are charged with charges having opposite polarities. Moreover, the electret dielectric material 3 is comprised with a porous material (for example, foamed resin etc.). That is, as shown in FIG. 2B, fine holes 4 are formed inside the electret dielectric 3.
 このようなエレクトレット誘電体3は、例えば、外部電荷源を用いる電子照射法や、外部コロナ発生装置を用いる直流コロナ放電法、交流コロナ放電法を利用してその表面を帯電させることができる。特に、エレクトレット誘電体3の基材表面にコロナ放電を生じさせることで容易に帯電処理を行うことができる。 Such an electret dielectric 3 can be charged on the surface using, for example, an electron irradiation method using an external charge source, a DC corona discharge method using an external corona generator, or an AC corona discharge method. In particular, the charging process can be easily performed by generating corona discharge on the surface of the base material of the electret dielectric 3.
 ここで、エレクトレット誘電体3の表裏面(厚さ方向)に電圧を付与すると、空孔4内において容易にコロナ放電を生じさせることができる。したがって、このコロナ放電によって空孔4壁面および空孔4壁面近傍のエレクトレット誘電体3への帯電が容易となる。なお、空孔4壁面および空孔4壁面近傍の帯電は、図2(b)に示すように、電圧印加方向(この場合にはエレクトレット誘電体3の厚さ方向)に沿って正電荷と負電荷に帯電した領域が形成されているものと考えられる。同様に、エレクトレット誘電体3と電極5a、5bとの非接合部9に形成される空隙6においても、振動発電体1の厚さ方向に電圧を付与すると、空隙6において容易にコロナ放電を生じさせることができる。したがって、エレクトレット誘電体3の表裏面にそれぞれ正電荷と負電荷とに帯電した領域が形成される。このことから、振動発電体1の製造方法およびエレクトレット誘電体3の帯電処理方法として、前述したように、例えば、外部コロナ発生装置を用いてエレクトレット誘電体3の表面を帯電処理した後に、エレクトレット誘電体3を電極5a、5bの間に挟み、スペーサ7を介してエレクトレット誘電体3と電極5a、5bとを接合させて振動発電体1を製造する方法がある。または、エレクトレット誘電体3を帯電処理する前に、スペーサ7を介してエレクトレット誘電体3と電極5a、5bとを接合させておき、その状態で電極5a、5bとの間に電圧を印加してエレクトレット誘電体3の帯電処理を実施して振動発電体1を製造する方法をとることもできる。ここで、後者の方法の方が、外部コロナ発生装置を用いる必要がなく、また振動発電体1の製造工程の最終工程でエレクトレット誘電体3の帯電処理を行うことができるため、前者と比較して、振動発電体1の製造およびエレクトレット誘電体3の帯電処理が容易となる。 Here, when a voltage is applied to the front and back surfaces (thickness direction) of the electret dielectric 3, corona discharge can be easily generated in the holes 4. Therefore, the corona discharge facilitates charging the hole 4 wall surface and the electret dielectric 3 near the hole 4 wall surface. As shown in FIG. 2B, the charge on the wall surface of the hole 4 and in the vicinity of the wall surface of the hole 4 is positive and negative along the voltage application direction (in this case, the thickness direction of the electret dielectric 3). It is considered that a region charged with electric charge is formed. Similarly, in the gap 6 formed in the non-joint portion 9 between the electret dielectric 3 and the electrodes 5a and 5b, corona discharge easily occurs in the gap 6 when a voltage is applied in the thickness direction of the vibration power generator 1. Can be made. Therefore, regions charged with positive charges and negative charges are formed on the front and back surfaces of the electret dielectric 3, respectively. Therefore, as described above, as a method for manufacturing the vibration power generator 1 and a method for charging the electret dielectric 3, for example, after electrifying the surface of the electret dielectric 3 using an external corona generating device, the electret dielectric There is a method of manufacturing the vibration power generator 1 by sandwiching the body 3 between the electrodes 5 a and 5 b and joining the electret dielectric 3 and the electrodes 5 a and 5 b via the spacer 7. Alternatively, before electret dielectric 3 is charged, electret dielectric 3 and electrodes 5a and 5b are bonded via spacer 7, and a voltage is applied between electrodes 5a and 5b in this state. A method of manufacturing the vibration power generator 1 by performing the electrification process of the electret dielectric 3 can also be adopted. Here, the latter method does not require the use of an external corona generator, and the electret dielectric 3 can be charged in the final step of the manufacturing process of the vibration power generator 1. Thus, the manufacture of the vibration power generator 1 and the electret dielectric 3 charging process are facilitated.
 また、エレクトレット誘電体3の内部に空孔4が存在するため、エレクトレット誘電体3全体として変形が容易となる。したがって、より小さな外力でエレクトレット誘電体3自体の厚さを部分的にでも変化させることができる。このため、詳細は後述するが各電極に電荷が静電誘導されて発電を行うことができる。すなわち、空隙6(非接合部9)でのエレクトレット誘電体3と電極5a、5bとの距離(ギャップ長)の変化による発電に加えて、エレクトレット誘電体3自体の部分的な厚さの変化による発電を行うことができるため、発電効率を向上させることができる。 Also, since the holes 4 are present inside the electret dielectric 3, the electret dielectric 3 as a whole can be easily deformed. Therefore, the thickness of the electret dielectric 3 itself can be partially changed with a smaller external force. Therefore, although details will be described later, electric power can be generated by electrostatic induction of each electrode. That is, in addition to the power generation due to the change in the distance (gap length) between the electret dielectric 3 and the electrodes 5a and 5b in the gap 6 (non-joined portion 9), the electret dielectric 3 itself has a partial thickness change. Since power generation can be performed, power generation efficiency can be improved.
 以上のように、エレクトレット誘電体3として、空孔4を有する多孔質材を用いることで、エレクトレット誘電体3の帯電処理が容易となる。例えば、空孔4が形成されないものと比較して、より低い印加電圧でエレクトレット誘電体3の帯電処理を行うことができる。なお、エレクトレット誘電体3の基材に付与される電圧は、交流電圧であってもよく、直流電圧であってもよい。 As described above, the electret dielectric 3 can be easily charged by using a porous material having pores 4 as the electret dielectric 3. For example, the electret dielectric 3 can be charged with a lower applied voltage as compared with the case where the holes 4 are not formed. The voltage applied to the base material of the electret dielectric 3 may be an alternating voltage or a direct voltage.
 ここで、エレクトレット誘電体3の帯電処理時において、多孔質材のエレクトレット誘電体3を挟む電極は、電極5a、5bを用いてもよく、別途帯電処理用の電極を用いてもよい。また、電圧印加あるいはコロナ放電によるエレクトレット誘電体の帯電処理以外の帯電処理方法としては、例えば、エレクトレット誘電体3が不織布で構成される場合には、十分な圧力による水流衝突により帯電処理を行ってもよい。または、有機溶剤もしくは水との混合液を不織布に通液後、素早く乾燥して帯電処理を行ってもよい。または、帯電列の異なる2種類の繊維を摩擦帯電させて帯電処理を行ってもよい。 Here, at the time of electrification processing of the electret dielectric 3, electrodes 5a and 5b may be used as electrodes sandwiching the electret dielectric 3 of the porous material, or electrodes for electrification treatment may be used separately. Further, as a charging method other than the electrification dielectric charging process by voltage application or corona discharge, for example, when the electret dielectric 3 is composed of a nonwoven fabric, the charging process is performed by water current collision with sufficient pressure. Also good. Alternatively, the liquid mixture with an organic solvent or water may be passed through the non-woven fabric and then quickly dried to perform the charging treatment. Alternatively, the charging process may be performed by frictionally charging two types of fibers having different charge trains.
 なお、振動発電体1の製造工程において、エレクトレット誘電体3の帯電処理を、どのタイミングで行うかについては、特に限定されず、選択される帯電処理方法等に応じて適宜設定すればよい。例えば、事前に帯電処理を施したエレクトレット誘電体3を用いて振動発電体1の構成を組み上げて製造してもよい。または、振動発電体の製造工程中において、エレクトレット誘電体3の基材が振動発電体1の構成部材の一部として組み込まれた状態で、別途コロナ発生装置等を用いて帯電処理を施してもよい。または、完全に振動発電体の構成が組み上げられた後に、最終工程として帯電処理を行ってもよい。 In the manufacturing process of the vibration power generator 1, the timing at which the electret dielectric 3 is charged is not particularly limited, and may be appropriately set according to the selected charging method. For example, the structure of the vibration power generator 1 may be assembled by using the electret dielectric 3 that has been previously charged. Alternatively, during the manufacturing process of the vibration power generator, the electret dielectric 3 may be charged using a corona generator or the like in a state where the base material of the electret dielectric 3 is incorporated as a part of the constituent members of the vibration power generator 1. Good. Alternatively, the charging process may be performed as a final process after the configuration of the vibration power generator is completely assembled.
 また、空孔4は、帯電処理を容易にするためのみではなく、空孔4によって、エレクトレット誘電体3自体を容易に変形させる機能を有する。したがって、より小さな外力で、容易に振動発電体1を変形させることができる。このため、発電効率を向上させることができる。さらに、空孔4によって、エレクトレット誘電体3が軽量となる。 Also, the holes 4 have a function of easily deforming the electret dielectric 3 itself by the holes 4 as well as for facilitating the charging process. Therefore, the vibration power generator 1 can be easily deformed with a smaller external force. For this reason, power generation efficiency can be improved. Further, the electret dielectric 3 is lightened by the holes 4.
 ここで、エレクトレット誘電体3の帯電量(例えばエレクトレット誘電体3の表面と裏面との電位差V[V])が大きく、エレクトレット誘電体3の厚みd[m]が薄く、エレクトレット誘電体3の比誘電率εが大きいほど、振動発電体1の発電力は大きくなる傾向がある。これは、真空中の誘電率をε(=8.854×10-12F/m)とし、エレクトレット誘電体3の両表面に帯電する表面電荷密度をそれぞれ+σ[C/m]、-σ[C/m]とすると、表面の電荷密度は以下の式で表わされ、表面電荷密度σが大きいほど、振動発電体1の発電力が大きくなるためである。 Here, the electret dielectric 3 has a large charge amount (for example, a potential difference V 0 [V] between the front and back surfaces of the electret dielectric 3), the electret dielectric 3 has a small thickness d [m], and the electret dielectric 3 As the relative dielectric constant ε r is larger, the generated power of the vibration power generator 1 tends to increase. This is because the dielectric constant in vacuum is ε 0 (= 8.854 × 10 −12 F / m), and the surface charge density charged on both surfaces of the electret dielectric 3 is + σ [C / m 2 ], − When σ [C / m 2 ] is assumed, the surface charge density is expressed by the following formula, and the larger the surface charge density σ, the larger the generated power of the vibration power generator 1.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 一般的に、電極5a、5bとエレクトレット誘電体3とのギャップ(隙間)における空気放電の発生は、ギャップ長とギャップ間の電位差で決まり、パッシェンの法則におよそ従う。したがって、外力が付与されない時、および外力が付与された時の電極5a、5bとエレクトレット誘電体3とのギャップ長の変化範囲に対して、空気放電が発生しないギャップ間の電位差となるようにエレクトレット誘電体3の表面と裏面との電位差Vを設定することが望ましい。例えば、外力を付与しない時のギャップ長(またはスペーサ7の厚み)が100μmであるとすると、外力を付与した時のギャップ長の変化範囲は0~100μmとなる。そのギャップ長の変化範囲に対しては、エレクトレット誘電体3の表面と裏面との電位差Vを600V程度以上に設定すると空気放電が発生する。一方、空気放電が発生した場合、放電発生後のエレクトレット誘電体3の表面と裏面との電位差Vは略200~600V程度となる。したがって、本発明において、ギャップ長が100μmの場合には、Vが200~600V程度となるように帯電処理を行うことが望ましい。 In general, the occurrence of air discharge in the gap (gap) between the electrodes 5a and 5b and the electret dielectric 3 is determined by the gap length and the potential difference between the gaps, and approximately follows Paschen's law. Therefore, when the external force is not applied, and with respect to the change range of the gap length between the electrodes 5a and 5b and the electret dielectric 3 when the external force is applied, the electret is set so as to have a potential difference between the gaps where no air discharge occurs. It is desirable to set the potential difference V 0 between the front surface and the back surface of the dielectric 3. For example, if the gap length (or the thickness of the spacer 7) when no external force is applied is 100 μm, the change range of the gap length when an external force is applied is 0 to 100 μm. With respect to the change range of the gap length, air discharge occurs when the potential difference V 0 between the front surface and the back surface of the electret dielectric 3 is set to about 600 V or more. On the other hand, when air discharge occurs, the potential difference V 0 between the front and back surfaces of the electret dielectric 3 after the occurrence of discharge is about 200 to 600V. Therefore, in the present invention, when the gap length is 100 μm, it is desirable to perform the charging process so that V 0 is about 200 to 600V.
 なお、電極5a、5bとエレクトレット誘電体3との間の空隙6(ギャップ)における空気放電の発生は、振動発電体1の製造方法やエレクトレット誘電体3の帯電処理方法にも依存する。例えば、事前に帯電処理を施したエレクトレット誘電体3を振動発電体1として電極等とともに組み込んだ場合と、製造(組み込み)途中で帯電処理を行った場合と、製造(組み込み)後に帯電処理を行った場合とで、各振動発電体1の製造中におけるエレクトレット誘電体3と電極5a、5bとの距離変化の範囲や双方間で生じる電位差の範囲が異なるため、空気放電の発生条件が異なる。したがって、選択した振動発電体1の製造方法において、エレクトレット誘電体3と電極5a、5bとの間で空気放電が発生しないエレクトレット誘電体3の表裏面の電位差Vに設定することが望ましい。 Note that the occurrence of air discharge in the gap 6 (gap) between the electrodes 5a and 5b and the electret dielectric 3 also depends on the manufacturing method of the vibration power generator 1 and the electret dielectric 3 charging method. For example, the electret dielectric 3 that has been previously charged is incorporated as an oscillating power generator 1 together with an electrode, the case where the electrification is performed during manufacture (incorporation), and the case where the electrification is performed after manufacture (incorporation). Since the range of the distance change between the electret dielectric 3 and the electrodes 5a and 5b during the production of each vibration power generator 1 and the range of the potential difference generated between the two differ, the conditions for generating air discharge are different. Therefore, in the selected method for manufacturing the vibration power generator 1, it is desirable to set the potential difference V 0 between the front and back surfaces of the electret dielectric 3 that does not generate air discharge between the electret dielectric 3 and the electrodes 5 a and 5 b.
 エレクトレット誘電体3は、絶縁性の多孔質プラスチックシートまたは多孔質プラスチックフィルム、あるいは絶縁性の多孔質ゴムシートまたは多孔質ゴムフィルム、または絶縁性材料の繊維からなるシート状繊維体を使用することができる。前記プラスチックとしては、例えばポリエチレン、ポリプロピレン、ポリエチレンテレフタレート、ポリ塩化ビニルなどの樹脂を用いることができる。また、使用条件に応じて、例えば高温特性に優れるポリイミド系の樹脂やフッ素系の樹脂(例えばフルオロエチレンプロピレンやポリテトラフルオロエチレン)を用いることができる。また、前記ゴムとしては、例えばニトリルゴム、エチレンプロピレンゴム、アクリルゴム、ウレタンゴム、クロロプレンゴム、シリコーンゴム、フッ素系ゴムなどを用いることができる。 The electret dielectric 3 may use an insulating porous plastic sheet or porous plastic film, or an insulating porous rubber sheet or porous rubber film, or a sheet-like fiber body made of fibers of an insulating material. it can. Examples of the plastic include resins such as polyethylene, polypropylene, polyethylene terephthalate, and polyvinyl chloride. Further, depending on the use conditions, for example, a polyimide-based resin or a fluorine-based resin (for example, fluoroethylenepropylene or polytetrafluoroethylene) having excellent high-temperature characteristics can be used. As the rubber, for example, nitrile rubber, ethylene propylene rubber, acrylic rubber, urethane rubber, chloroprene rubber, silicone rubber, fluorine-based rubber, and the like can be used.
 また、絶縁性のシート状繊維体としては、織布の他、不織布やフェルトを用いることができる。中でも、不織布は、空気清浄機やマスク等に用いられるエレクトレットフィルターに利用されており、良好なエレクトレットの特性を有している。このような不織布の材質としては、前述したプラスチックの材質と同様のものを用いることができる。 Further, as the insulating sheet-like fiber body, non-woven fabric or felt can be used in addition to woven fabric. Especially, the nonwoven fabric is utilized for the electret filter used for an air cleaner, a mask, etc., and has the characteristic of a favorable electret. As the material of such a nonwoven fabric, the same material as that of the plastic described above can be used.
 図1(a)に示すように、スペーサ7を介して接合される以外の部位において、エレクトレット誘電体3と電極5a、5bとの間には非接合部9が形成され、空隙6(ギャップ)が存在する。すなわち、非接合部9(空隙6)においては、エレクトレット誘電体3と電極5a、5bの少なくとも一方が変形することで、互いの距離が容易に変化する。例えば、電極5a、5bの変形によって、電極5a、5bを、エレクトレット誘電体3の表面と接触させることもできる。 As shown in FIG. 1A, a non-joining portion 9 is formed between the electret dielectric 3 and the electrodes 5a and 5b at a portion other than those joined via the spacer 7, and a gap 6 (gap) is formed. Exists. That is, in the non-joint part 9 (gap 6), the distance between the electret dielectric 3 and the electrodes 5a and 5b is easily changed by deformation. For example, the electrodes 5a and 5b can be brought into contact with the surface of the electret dielectric 3 by deformation of the electrodes 5a and 5b.
<振動発電体1の発電機構について>
 次に、振動発電体1の発電機構について説明する。図3(a)、図3(b)は図1のA部拡大図である。図3(a)に示すように、例えば定常状態(外力が付与されていない状態。以下同様。)では、電極5bとエレクトレット誘電体3との間には、非接合部9での空隙6においてスペーサ7の厚みに応じたギャップ長Bが形成される。この状態から、図3(b)に示すように、外力Cが振動発電体1の厚さ方向に付与されると、電極5b(およびエレクトレット誘電体3)が変形し、ギャップ長Bが小さくなる方向に変化する。ここで、付与する外力Cの大きさや時間によっては、図3(b)に示すように電極5bとエレクトレット誘電体3とが接触部11で接触する。
<About the power generation mechanism of the vibration power generator 1>
Next, the power generation mechanism of the vibration power generator 1 will be described. 3 (a) and 3 (b) are enlarged views of part A in FIG. As shown in FIG. 3A, for example, in a steady state (a state in which no external force is applied; the same applies hereinafter), a gap 6 between the electrode 5b and the electret dielectric 3 is formed in the gap 6 at the non-joint portion 9. A gap length B corresponding to the thickness of the spacer 7 is formed. From this state, as shown in FIG. 3B, when the external force C is applied in the thickness direction of the vibration power generator 1, the electrode 5b (and the electret dielectric 3) is deformed, and the gap length B is reduced. Change direction. Here, depending on the magnitude and time of the external force C to be applied, the electrode 5b and the electret dielectric 3 are in contact with each other at the contact portion 11 as shown in FIG.
 この際、接触部11に対応する位置においては、電極5bとエレクトレット誘電体3の厚さ方向の距離(ギャップ長B)が0になるまで変化できる。更に、接触部11では、電極5bとエレクトレット誘電体3の接触後に外力Cによってエレクトレット誘電体3の変形が生じてエレクトレット誘電体3の厚さが変化する。したがって、電極5bとエレクトレット誘電体3との厚さ方向の距離(ギャップ長B)の変化に応じて、電極5a、電極5bのそれぞれに逆極性の電荷が静電誘導されて発電するものと考えられる。また、エレクトレット誘電体3の表裏面および内部(空孔4の近傍)において、極性を異にして帯電する電荷によって形成される双極子の双極子モーメントが、エレクトレット誘電体3の変形(厚さの変化)に伴い変化する。その際、エレクトレット誘電体3の厚さの変化に応じて、エレクトレット誘電体3を挟む電極5a、電極5bのそれぞれに逆極性の電荷が静電誘導されて発電するものと考えられる。なお、図3(b)の状態から図3(a)の状態に戻る際にも、同様に電極5bとエレクトレット誘電体3の厚さ方向の距離(ギャップ長B)の変化とエレクトレット誘電体3の厚さの変化に応じた静電誘導による発電が行われる。ここで、電極5a、5bにそれぞれ誘起される電荷の極性は、電極5bとエレクトレット誘電体3との距離が近づく方向に変化し、エレクトレット誘電体3の厚さが小さくなる方向に変化していく場合と、電極5bとエレクトレット誘電体3との距離が離れる方向に変化し、エレクトレット誘電体3の厚さが大きくなる方向に変化していく場合とで逆極性となる。したがって、繰り返しの外力変化(振動含む)を与えた際の振動発電体1から得られる出力電圧は交流電圧となる。なお、詳細は後述するが、電極5bとエレクトレット誘電体3との距離変化およびエレクトレット誘電体3の厚さの変化に伴う発電出力電圧は、電極5bとエレクトレット誘電体3とが変形によって接触する直前および剥離した直後が最も高くなる。 At this time, the position corresponding to the contact portion 11 can be changed until the distance (gap length B) in the thickness direction between the electrode 5b and the electret dielectric 3 becomes zero. Further, in the contact portion 11, after the electrode 5 b and the electret dielectric 3 are contacted, the electret dielectric 3 is deformed by the external force C, and the thickness of the electret dielectric 3 is changed. Therefore, it is considered that electric charges of opposite polarity are electrostatically induced in each of the electrode 5a and the electrode 5b in accordance with a change in the distance (gap length B) between the electrode 5b and the electret dielectric 3 in the thickness direction. It is done. In addition, the dipole moment of the dipole formed by the charges charged with different polarities on the front and back surfaces and inside of the electret dielectric 3 (in the vicinity of the holes 4) causes deformation (thickness of the electret dielectric 3). Change). At that time, it is considered that charges of opposite polarity are electrostatically induced in each of the electrodes 5a and 5b sandwiching the electret dielectric 3 in accordance with the change in the thickness of the electret dielectric 3 to generate power. Similarly, when returning from the state of FIG. 3B to the state of FIG. 3A, the change in the distance in the thickness direction (gap length B) between the electrode 5b and the electret dielectric 3 and the electret dielectric 3 are the same. Electricity is generated by electrostatic induction according to the change in the thickness of the substrate. Here, the polarities of the charges induced in the electrodes 5a and 5b change in the direction in which the distance between the electrode 5b and the electret dielectric 3 approaches, and in the direction in which the thickness of the electret dielectric 3 decreases. The case where the distance between the electrode 5b and the electret dielectric 3 is changed in the direction away from each other and the thickness of the electret dielectric 3 is changed in the opposite direction is opposite. Therefore, the output voltage obtained from the vibration power generator 1 when a repeated external force change (including vibration) is applied is an alternating voltage. Although details will be described later, the power generation output voltage accompanying the change in the distance between the electrode 5b and the electret dielectric 3 and the change in the thickness of the electret dielectric 3 is immediately before the electrode 5b and the electret dielectric 3 come into contact with each other due to deformation. And immediately after peeling.
 このように、本発明では、電極5a、5bをエレクトレット誘電体3に対して厚さ方向に変形させて、そのギャップ長Bを変化させることと、エレクトレット誘電体3自体の厚さを変化させることによって発電させることができる。なお、振動発電体1の全体で効率良く発電を行うためには、電極5a、5bとエレクトレット誘電体3との距離変化の方向(減少する方向あるいは増加する方向)およびエレクトレット誘電体3の厚さ変化の方向(減少する方向あるいは増加する方向)とそれらのタイミング(位相)を振動発電体1の各部で一致させることが望ましい。例えば、電極5a、5bとエレクトレット誘電体3とが接触および剥離を繰り返す場合には、この接触および剥離のタイミングを振動発電体1の各部で一致させることが望ましい。 As described above, in the present invention, the electrodes 5a and 5b are deformed in the thickness direction with respect to the electret dielectric 3, and the gap length B is changed, and the thickness of the electret dielectric 3 itself is changed. Can generate electricity. In addition, in order to generate electric power efficiently with the whole vibration electric power generation body 1, the direction of the distance change (decrease direction or increase direction) of electrode 5a, 5b and the electret dielectric material 3, and the thickness of the electret dielectric material 3 It is desirable that the change direction (decreasing direction or increasing direction) and the timing (phase) thereof coincide with each other in each part of the vibration power generator 1. For example, when the electrodes 5a and 5b and the electret dielectric 3 are repeatedly contacted and peeled, it is desirable to match the timing of the contact and peeling between the parts of the vibration power generator 1.
 ここで、スペーサ7が配置される部位は、その材質にも依存するが、外力の付与に対する非接合部9(空隙6)のギャップ長の変化と比較してスペーサ7の厚さは変化しにくい。すなわち、スペーサ7が配置される部位は、電極5a、5bとエレクトレット誘電体3との距離変化がしにくい。このため、スペーサ7が配置される部位は発電に寄与しにくい。したがって、スペーサ7は、できるだけ小さくし、かつ振動発電体1に占めるスペーサ7の総面積をできるだけ小さくすることが望ましい。また、非接合部9(空隙6)に対してギャップ長Bを保持することができる程度に互いに所定の距離をあけてスペーサ7を配置することが望ましい。また、前述のように、エレクトレット誘電体3の表裏で電極5a、5bとエレクトレット誘電体3との距離変化の方向とタイミングを一致させるために、エレクトレット誘電体3の表裏におけるスペーサ7の平面配置を一致させることが望ましい。 Here, the portion where the spacer 7 is arranged depends on the material, but the thickness of the spacer 7 is less likely to change compared to the change in the gap length of the non-joining portion 9 (gap 6) with respect to the application of external force. . That is, the distance between the electrodes 5a and 5b and the electret dielectric 3 is unlikely to change at the portion where the spacer 7 is disposed. For this reason, the site | part in which the spacer 7 is arrange | positioned does not contribute easily to electric power generation. Therefore, it is desirable to make the spacer 7 as small as possible and make the total area of the spacer 7 in the vibration power generator 1 as small as possible. In addition, it is desirable to dispose the spacers 7 at a predetermined distance from each other to such an extent that the gap length B can be maintained with respect to the non-joining portion 9 (gap 6). Further, as described above, the planar arrangement of the spacers 7 on the front and back of the electret dielectric 3 is made in order to match the timing and the direction of the distance change between the electrodes 5a and 5b and the electret dielectric 3 on the front and back of the electret dielectric 3. It is desirable to match.
 なお、スペーサ7は、エレクトレット誘電体3の表面において、例えば、ドット状、ストライプ状、格子状などの形状(形態)にて、所定の間隔をあけて配置される。スペーサ7がドット状の場合には、スペーサ7の平面視における形状は、円形、楕円形、正方形、長方形など任意の形状で形成すればよい。この際、各スペーサの振動発電体1に占める面積をできるだけ小さくし、非接合部9を広くすることが望ましい。 Note that the spacers 7 are arranged on the surface of the electret dielectric 3 in a shape (form) such as a dot shape, a stripe shape, and a lattice shape with a predetermined interval. When the spacer 7 has a dot shape, the shape of the spacer 7 in plan view may be an arbitrary shape such as a circle, an ellipse, a square, or a rectangle. At this time, it is desirable to make the area occupied by the vibration power generator 1 of each spacer as small as possible and to widen the non-joining portion 9.
 なお、振動発電体1が外力により変形を繰り返す場合、電極5a、5bとエレクトレット誘電体3とが接触および剥離を繰り返すが、その際に、電極5a、5bとエレクトレット誘電体3との間の空隙6で空気放電が生じることが考えられる。このような空気放電が生じると、エレクトレット誘電体3の表面と裏面との電位差が低下する恐れがある。したがって、振動発電体1を使用するにつれて発電が行われなくなる恐れがある。しかし、発明者らは、このような電極5a、5bとエレクトレット誘電体3とが互いに接触と剥離とを繰り返しても、振動発電体1の発電出力が直ちに低下して発電が行われなくなるようなことはないことを見出した。電極5a、5bとエレクトレット誘電体3との間の空隙6における空気放電の発生は、前述した通り、パッシェンの法則におよそ従うと考えられる。したがって、空隙6における電極5a、5bとエレクトレット誘電体3との間の距離と、エレクトレット誘電体3の帯電電位(エレクトレット誘電体3の表面と裏面との電位差)とを、パッシェンの法則において空気放電が発生しない範囲に設定することが望ましい。 When the vibration power generator 1 is repeatedly deformed by an external force, the electrodes 5a and 5b and the electret dielectric 3 are repeatedly contacted and peeled, but at this time, the gap between the electrodes 5a and 5b and the electret dielectric 3 is repeated. 6 is considered to cause air discharge. When such air discharge occurs, the potential difference between the front and back surfaces of the electret dielectric 3 may be reduced. Therefore, there is a possibility that power generation is not performed as the vibration power generator 1 is used. However, the inventors have found that even if the electrodes 5a and 5b and the electret dielectric 3 are repeatedly contacted and separated from each other, the power generation output of the vibration power generator 1 is immediately reduced and power generation is not performed. I found that there was nothing. The generation of air discharge in the gap 6 between the electrodes 5a, 5b and the electret dielectric 3 is considered to approximately follow Paschen's law as described above. Therefore, the distance between the electrodes 5a and 5b in the gap 6 and the electret dielectric 3 and the electrification potential of the electret dielectric 3 (potential difference between the front and back surfaces of the electret dielectric 3) are expressed by the air discharge according to Paschen's law. It is desirable to set in a range where no occurrence occurs.
 また、本発明では、図1(b)に示すように、一方の電極5bとエレクトレット誘電体3との間のみにスペーサ7が設けられた振動発電体1aを用いることもできる。振動発電体1aは、振動発電体1と略同様の構成であるが、電極5aはスペーサ7を介さずに直接エレクトレット誘電体3に全面にわたって接合される。この場合は、一方の電極5bとエレクトレット誘電体3との間に配置されるスペーサ7によって空隙6(非接合部9)が形成される。したがって、振動発電体1と同様の機構によって発電を行うことができる。なお、この場合にも、前述した理由によりエレクトレット誘電体3の表面と裏面との電位差Vは、200~600V程度とすることが望ましい。 Moreover, in this invention, as shown in FIG.1 (b), the vibration electric power generation body 1a in which the spacer 7 was provided only between one electrode 5b and the electret dielectric material 3 can also be used. The vibration power generation body 1 a has substantially the same configuration as the vibration power generation body 1, but the electrode 5 a is directly bonded to the electret dielectric 3 over the entire surface without the spacer 7. In this case, a gap 6 (non-joined portion 9) is formed by the spacer 7 disposed between the one electrode 5b and the electret dielectric 3. Therefore, power generation can be performed by a mechanism similar to that of the vibration power generator 1. Also in this case, it is desirable that the potential difference V 0 between the front surface and the back surface of the electret dielectric 3 is about 200 to 600 V for the reasons described above.
 なお、電極5aとエレクトレット誘電体3とは、例えば熱融着により融着してもよい。または、両者を接着剤や粘着剤により接着してもよい。または両者を粘着テープで接合してもよい。接着剤、粘着剤、粘着テープは、導電材や半導電材も使用可能であるが、絶縁性の高い(電気抵抗率が高い)部材であることが望ましい。但し、接着剤や粘着剤、粘着テープを用いる場合には、それらの厚さをできるだけ薄くすることが望ましい。例えば、電極5a、5b間の距離やエレクトレット誘電体3の厚さに対し、十分薄くすることが望ましい。 The electrode 5a and the electret dielectric 3 may be fused by, for example, heat fusion. Or you may adhere | attach both with an adhesive agent or an adhesive. Or you may join both with an adhesive tape. For the adhesive, the pressure-sensitive adhesive, and the pressure-sensitive adhesive tape, a conductive material or a semiconductive material can be used, but a member having high insulation (high electrical resistivity) is desirable. However, when using an adhesive, a pressure-sensitive adhesive, or a pressure-sensitive adhesive tape, it is desirable to make their thickness as thin as possible. For example, it is desirable to make it sufficiently thin with respect to the distance between the electrodes 5 a and 5 b and the thickness of the electret dielectric 3.
 振動発電体1aは、電極5aがエレクトレット誘電体3と全面にわたって接合されているため、一方の電極5bとエレクトレット誘電体3との距離変化とエレクトレット誘電体3の厚さ変化で発電が行われる。しかし、電極5a、5bのそれぞれとエレクトレット誘電体3との双方の距離変化とエレクトレット誘電体3の厚さ変化で発電を行う振動発電体1においては、例えば、電極5a、5bのそれぞれとエレクトレット誘電体3との双方の距離変化の方向とタイミング(位相)が一致しないと、電極5a、5b間に生じる発電出力電圧が互いに打ち消しあってしまう恐れがある。したがって、電極5a、5bのそれぞれとエレクトレット誘電体3との距離変化の方向とタイミング(位相)を一致させる必要がある。 Since the electrode 5a is joined to the entire surface of the electret dielectric 3 in the vibration power generator 1a, power is generated by a change in the distance between the one electrode 5b and the electret dielectric 3 and a change in the thickness of the electret dielectric 3. However, in the vibration power generator 1 that generates power by changing the distance between each of the electrodes 5 a and 5 b and the electret dielectric 3 and changing the thickness of the electret dielectric 3, for example, each of the electrodes 5 a and 5 b and the electret dielectric If the distance change direction and the timing (phase) of both of the body 3 and the body 3 do not coincide with each other, the power generation output voltages generated between the electrodes 5a and 5b may cancel each other. Therefore, it is necessary to match the direction and timing (phase) of the distance change between each of the electrodes 5 a and 5 b and the electret dielectric 3.
 これに対し、振動発電体1aでは、一方の電極5bとエレクトレット誘電体3との距離変化とエレクトレット誘電体3の厚さ変化によって発電されるため、例えば、振動発電体1のように電極5a、5bのそれぞれとエレクトレット誘電体3との双方の距離変化の方向とタイミング(位相)を一致させる必要がない。また、図1(a)の振動発電体1と比較して、振動発電体1aはスペーサ7の厚み分だけ、全厚を薄くすることができる。このように、構造を簡易にできることによるコスト減や、薄肉化が可能である点などを考慮すれば、振動発電体1aを用いることもできる。 On the other hand, in the vibration power generator 1a, power is generated by a change in the distance between the one electrode 5b and the electret dielectric 3 and a change in the thickness of the electret dielectric 3, so that the electrode 5a, There is no need to match the direction and timing (phase) of the distance change between each of 5b and the electret dielectric 3. Further, compared with the vibration power generation body 1 of FIG. 1A, the vibration power generation body 1 a can be reduced in total thickness by the thickness of the spacer 7. In this way, the vibration power generator 1a can be used in consideration of the cost reduction due to the simplification of the structure and the point that the thickness can be reduced.
 以上、本実施の形態の振動発電体は、エレクトレット誘電体3が、内部に空孔4を有する多孔質材で構成されるため、その帯電処理が容易である。また、空孔4によって、部材が柔軟となるため、容易に変形させることができる。したがって、小さな外力でも、エレクトレット誘電体3を容易に変形させることができるため、発電効率が良い。また、振動発電体1を、設置部の形態に応じて、自由に折り曲げて設置することができる。また、空孔4によって、振動発電体1を軽量とすることができる。 As mentioned above, since the electret dielectric 3 is comprised with the porous material which has the void | hole 4 inside the vibration electric power generation body of this Embodiment, the electrification process is easy. Moreover, since the member becomes flexible by the air holes 4, it can be easily deformed. Accordingly, since the electret dielectric 3 can be easily deformed even with a small external force, the power generation efficiency is good. Moreover, the vibration electric power generation body 1 can be freely bent and installed according to the form of the installation part. In addition, the vibration power generator 1 can be reduced in weight by the holes 4.
 また、スペーサ7によって、電極5a、5bとエレクトレット誘電体3との間に、所定のギャップ長を保持することができる。このため、外力による電極5a、5bの変形代(電極5a、5bとエレクトレット誘電体3との距離が変化するような厚み方向の変形代)を確保することができる。また、スペーサ7の厚みを適正化することで、電極5a、5bとエレクトレット誘電体3との接触および剥離を繰り返させることもできる。このため、高い発電力を得ることができる。なお、ギャップ長を保持するスペーサ7の厚みを30μm~100μmとすることで、効率よく発電を行うことができる。 Further, the spacer 7 can maintain a predetermined gap length between the electrodes 5 a and 5 b and the electret dielectric 3. For this reason, it is possible to secure a deformation allowance of the electrodes 5a and 5b due to an external force (a deformation allowance in the thickness direction in which the distance between the electrodes 5a and 5b and the electret dielectric 3 changes). In addition, by optimizing the thickness of the spacer 7, the contact and peeling between the electrodes 5a and 5b and the electret dielectric 3 can be repeated. For this reason, high power generation can be obtained. Note that power generation can be efficiently performed by setting the thickness of the spacer 7 that holds the gap length to 30 μm to 100 μm.
<実施形態2>
 次に、他の実施の形態について説明する。なお、以下の説明において、振動発電体1と同様の機能を奏する構成については図1等と同一の符号を付し、重複する説明を省略する。
<Embodiment 2>
Next, another embodiment will be described. In the following description, components having the same functions as those of the vibration power generator 1 are denoted by the same reference numerals as those in FIG.
 図4(a)に示す振動発電体30は、振動発電体1と略同様の構成であるが、電極5a、5bに代えて、電極31a、31bが用いられる点で異なる。電極31a、31bは、導電層33と樹脂層35が積層して構成され、それぞれの導電層33がエレクトレット誘電体3と対向するように配置される。 The vibration power generation body 30 shown in FIG. 4A has substantially the same configuration as that of the vibration power generation body 1, but differs in that electrodes 31a and 31b are used instead of the electrodes 5a and 5b. The electrodes 31 a and 31 b are configured by laminating a conductive layer 33 and a resin layer 35, and are arranged so that each conductive layer 33 faces the electret dielectric 3.
 このような電極31a、31bは、樹脂シートと金属箔とを接着剤や熱溶着等によって接合したものであってもよく、樹脂シートの表面に金属蒸着や金属めっきを施したものであってもよい。いずれにせよ、シート(フィルム)状の樹脂上に導体層を形成できればよい。なお、導体としては、アルミニウム、錫、銅あるいはこれらの合金など適宜選択することができる。 Such electrodes 31a and 31b may be obtained by bonding a resin sheet and a metal foil by an adhesive, heat welding, or the like, or by performing metal vapor deposition or metal plating on the surface of the resin sheet. Good. In any case, it is sufficient that the conductor layer can be formed on the sheet (film) resin. The conductor can be appropriately selected from aluminum, tin, copper, and alloys thereof.
 なお、このような樹脂としては、例えばポリエチレン、ポリプロピレン、ポリエチレンテレフタレートなどの樹脂を用いることができる。また、使用条件に応じて、例えば高温特性に優れるポリイミド系の樹脂やフッ素系の樹脂(例えばフルオロエチレンプロピレンやポリテトラフルオロエチレン)を用いることができる。また、ニトリルゴム、エチレンプロピレンゴム、アクリルゴム、ウレタンゴム、クロロプレンゴム、シリコーンゴム、フッ素系ゴムなどのゴム材料を用いることもできる。 In addition, as such resin, resin, such as polyethylene, a polypropylene, a polyethylene terephthalate, can be used, for example. Further, depending on the use conditions, for example, a polyimide-based resin or a fluorine-based resin (for example, fluoroethylenepropylene or polytetrafluoroethylene) having excellent high-temperature characteristics can be used. In addition, rubber materials such as nitrile rubber, ethylene propylene rubber, acrylic rubber, urethane rubber, chloroprene rubber, silicone rubber, and fluorine rubber can also be used.
 二層構造の電極31a、31bを用いることで、外力等に対する電極の追従性を向上させることができる。例えば、薄い導体のみでは、外力によって変形した後、元の形状への復元力が小さくなる。しかし、導体のみで剛性を高めようとすると、導体部の厚みを厚くする必要があるため重量増の問題がある。また、これにより、電極の動きが鈍くなる恐れがある。 By using the electrodes 31a and 31b having a two-layer structure, it is possible to improve the followability of the electrode with respect to an external force or the like. For example, with only a thin conductor, after being deformed by an external force, the restoring force to the original shape becomes small. However, if the rigidity is increased only with the conductor, there is a problem of an increase in weight because it is necessary to increase the thickness of the conductor portion. In addition, this may cause the movement of the electrode to become dull.
 これに対し、本実施形態では、樹脂層35を設けることで、重量増による問題を抑制するとともに、外力に対する電極31a、31bの追従性、すなわち剛性を高めることができる。また、電極31a、31bと外部環境との電気的絶縁を図ることができる。なお、本実施形態でも、図4(b)に示す振動発電体30aのように、一方の電極31aを、スペーサ7を用いずに直接エレクトレット誘電体3に全面にわたって接合してもよい。 On the other hand, in the present embodiment, by providing the resin layer 35, it is possible to suppress problems due to weight increase and increase the followability of the electrodes 31a and 31b with respect to external force, that is, rigidity. Moreover, electrical insulation between the electrodes 31a and 31b and the external environment can be achieved. In this embodiment, one electrode 31a may be directly joined to the electret dielectric 3 over the entire surface without using the spacer 7, as in the vibration power generator 30a shown in FIG.
<実施形態3>
 次に、さらに他の実施の形態にかかる振動発電体40について説明する。図5に示すように、ケーブル状である振動発電体40は、主に、中心電極41、エレクトレット誘電体3、外部電極43、被覆部45等から構成される。
<Embodiment 3>
Next, a vibration power generator 40 according to still another embodiment will be described. As shown in FIG. 5, the vibration power generator 40 having a cable shape mainly includes a center electrode 41, an electret dielectric 3, an external electrode 43, a covering portion 45, and the like.
 振動発電体40の中心には、中心電極41が設けられる。中心電極41の外周にはエレクトレット誘電体3が設けられる。また、エレクトレット誘電体3の外周には、外部電極43が設けられる。すなわち、エレクトレット誘電体3は、中心電極41と外部電極43とで挟まれる。また、外部電極43の外周には、被覆部45が設けられる。このように、振動発電体40は、中心電極41、エレクトレット誘電体3、外部電極43、被覆部45が同軸状に配置され、構成されたケーブルである。 A center electrode 41 is provided at the center of the vibration power generator 40. An electret dielectric 3 is provided on the outer periphery of the center electrode 41. An external electrode 43 is provided on the outer periphery of the electret dielectric 3. That is, the electret dielectric 3 is sandwiched between the center electrode 41 and the external electrode 43. A covering portion 45 is provided on the outer periphery of the external electrode 43. As described above, the vibration power generator 40 is a cable in which the center electrode 41, the electret dielectric 3, the external electrode 43, and the covering portion 45 are arranged coaxially.
 外力を付与した際、少なくとも外部電極43とエレクトレット誘電体3の互いの界面形状は、振動発電体40の長さ方向と直交する断面において、その部分的な変形が可能である。また、中心電極41、エレクトレット誘電体3、外部電極43は、それぞれ可撓性を有し、振動発電体40を任意の形態に曲げて変形させることが可能である。 When an external force is applied, at least the mutual interface shape of the external electrode 43 and the electret dielectric 3 can be partially deformed in a cross section perpendicular to the length direction of the vibration power generator 40. Further, the center electrode 41, the electret dielectric 3 and the external electrode 43 are each flexible, and the vibration power generator 40 can be bent and deformed into an arbitrary form.
 中心電極41、外部電極43としては、導電性が高い材料が望ましいが、半導電性の材料でも良い。導電性材料としては、例えばアルミニウム、銅、錫、鉄あるいはこれらの合金等の金属を用いることができる。また、これらの金属の表面に、錫、銀、亜鉛、ニッケル等のめっき処理を施しても良い。 As the center electrode 41 and the external electrode 43, a highly conductive material is desirable, but a semiconductive material may be used. As the conductive material, for example, a metal such as aluminum, copper, tin, iron, or an alloy thereof can be used. In addition, the surface of these metals may be plated with tin, silver, zinc, nickel or the like.
 なお、中心電極41は、例えば、単心の導体素線や、複数の導体素線を撚り合わせて形成すれば良い。また、外部電極43は、例えば、金属製の編組線や、金属テープ巻き、導体素線の螺旋巻きなどで形成することができるが、外力による柔軟性や耐久性を考慮すると、金属製の編組線であることが望ましい。 The center electrode 41 may be formed by, for example, twisting a single conductor wire or a plurality of conductor wires. The external electrode 43 can be formed by, for example, a metal braided wire, a metal tape winding, a spiral winding of a conductor wire, or the like, but considering flexibility and durability due to external force, a metal braid A line is desirable.
 図6(a)に示すように、エレクトレット誘電体3は、内面側である中心電極41側が正に帯電し、外面側である外部電極43側が負に帯電している。すなわち、エレクトレット誘電体3の両面は、互いに逆極性の電荷で半永久的に帯電している。このようなエレクトレット誘電体3は、所定の帯電処理を施すことで形成することができる。なお、図6(b)に示すように、エレクトレット誘電体3は、内面側である中心電極41側を負に帯電させ、外面側である外部電極43側を正に帯電させてもよい。ここで、エレクトレット誘電体3の内部には、前述の通り内部に空孔4(図2(b))が形成されている。 As shown in FIG. 6A, the electret dielectric 3 is positively charged on the center electrode 41 side which is the inner surface side and negatively charged on the outer electrode 43 side which is the outer surface side. That is, both surfaces of the electret dielectric 3 are semi-permanently charged with opposite polarities. Such an electret dielectric 3 can be formed by performing a predetermined charging process. As shown in FIG. 6B, the electret dielectric 3 may be negatively charged on the center electrode 41 side which is the inner surface side and positively charged on the outer electrode 43 side which is the outer surface side. Here, inside the electret dielectric 3, the holes 4 (FIG. 2B) are formed inside as described above.
<振動発電体40の発電機構について>
 次に、振動発電体40の発電機構について説明する。図7(a)に示すように、例えば定常状態(外力が付与されていない状態。以下同様。)では、中心電極41と外部電極43との間には、エレクトレット誘電体3の厚み分の距離が保たれている。
<About the power generation mechanism of the vibration power generator 40>
Next, the power generation mechanism of the vibration power generator 40 will be described. As shown in FIG. 7A, for example, in a steady state (a state in which no external force is applied; the same applies hereinafter), a distance corresponding to the thickness of the electret dielectric 3 is provided between the center electrode 41 and the external electrode 43. Is maintained.
 これに対し、図7(b)に示すように、例えば外方から圧縮力(図中矢印G方向の力)が付与されると、外部電極43およびエレクトレット誘電体3の互いの界面形状が部分的に変形する。したがって、エレクトレット誘電体3の厚さと中心電極41と外部電極43との距離の双方が変化する。この際、エレクトレット誘電体3の変形(厚さの変化)と、中心電極41と外部電極43との相対位置変化とに応じて、それぞれの電極に互いに極性を異にする電荷が誘起され、発電する。 On the other hand, as shown in FIG. 7B, for example, when a compressive force (force in the direction of arrow G in the figure) is applied from the outside, the mutual interface shape of the external electrode 43 and the electret dielectric 3 is partially Deforms. Accordingly, both the thickness of the electret dielectric 3 and the distance between the center electrode 41 and the external electrode 43 change. At this time, according to the deformation (change in thickness) of the electret dielectric 3 and the relative position change between the center electrode 41 and the external electrode 43, charges having different polarities are induced in the respective electrodes, thereby generating power. To do.
 このように、中心電極41と外部電極43とに電荷が誘起されるメカニズムとしては、以下のように考えられる。エレクトレット誘電体3の両面において、極性を異にして帯電する電荷によって形成される双極子の双極子モーメントが、エレクトレット誘電体3の変形に伴い変化する。この際、エレクトレット誘電体3の内面側と外面側に配置される中心電極41と外部電極43とに逆極性の電荷がそれぞれ静電誘導されて発電するものと考えられる。 As described above, the mechanism by which charges are induced in the center electrode 41 and the external electrode 43 can be considered as follows. On both surfaces of the electret dielectric 3, the dipole moment of the dipole formed by charges charged with different polarities changes as the electret dielectric 3 is deformed. At this time, it is considered that charges having opposite polarities are electrostatically induced in the center electrode 41 and the external electrode 43 disposed on the inner surface side and the outer surface side of the electret dielectric 3, respectively, to generate electric power.
 また、中心電極41と外部電極43との相対的な位置が部分的に変化するため、中心電極41と外部電極43との間の静電容量が変化する。したがって、エレクトレット誘電体3の存在によって、各電極に誘起される電荷量に変化が生じ、発電するものと考えられる。 Further, since the relative position between the center electrode 41 and the external electrode 43 partially changes, the capacitance between the center electrode 41 and the external electrode 43 changes. Therefore, it is considered that the electric charge induced in each electrode changes due to the presence of the electret dielectric 3 to generate power.
 なお、実際には、エレクトレット誘電体3の内面側と外面側とで帯電する電荷量が異なる点や、各構成部材が同軸状に配置されている点などから、中心電極41と外部電極43とに電荷が誘起されるメカニズムは複雑である。しかし、いずれのメカニズムを想定しても、中心電極41および外部電極43にそれぞれ誘起される電荷の極性は、エレクトレット誘電体3の厚さが小さくなり、中心電極41と外部電極43との距離が近づく方向に変形していく場合と、エレクトレット誘電体3の厚さが大きくなり、中心電極41と外部電極43との距離が離れる方向に変形していく場合とで逆極性となる。 Actually, the center electrode 41 and the external electrode 43 are different from each other in that the amount of charge to be charged is different between the inner surface side and the outer surface side of the electret dielectric 3 and that the constituent members are arranged coaxially. The mechanism by which electric charges are induced is complicated. However, regardless of which mechanism is assumed, the polarity of the charges induced in the center electrode 41 and the external electrode 43 is such that the thickness of the electret dielectric 3 is small and the distance between the center electrode 41 and the external electrode 43 is The case of deformation in the approaching direction and the case of deformation in the direction in which the thickness of the electret dielectric 3 increases and the distance between the center electrode 41 and the external electrode 43 increases are opposite.
 一方、振動発電体40に外力が加わっていても、振動発電体40の形状に変化がない状態(変形が止まっている状態)では、中心電極41と外部電極43とには電荷が誘起されず、発電は行われない。この際、中心電極41と外部電極43とに電気的に接続された外部回路のインピーダンスが非常に大きい場合、仮にインピーダンスが無限大の場合には外部回路には電荷が流れず、振動発電体40の形状の変化が止まるまでに中心電極41と外部電極43とに誘起された電荷量は保持される。したがって、保持される電荷量に応じた中心電極41と外部電極43との電位差が維持される。一方、中心電極41と外部電極43とに電気的に接続される外部回路のインピーダンスが低い場合には、外部回路を介して電荷が流れるため、中心電極41と外部電極43との電位差はゼロとなる。以上のことから、繰り返しの外力変化(振動含む)を与えた際の振動発電体40から得られる出力電圧は交流電圧となる。 On the other hand, even if an external force is applied to the vibration power generation body 40, no charge is induced in the center electrode 41 and the external electrode 43 in a state where the shape of the vibration power generation body 40 does not change (a state where the deformation is stopped). No power is generated. At this time, when the impedance of the external circuit electrically connected to the center electrode 41 and the external electrode 43 is very large, if the impedance is infinite, no charge flows through the external circuit, and the vibration power generator 40 The amount of charge induced in the center electrode 41 and the external electrode 43 is held until the change in the shape of is stopped. Therefore, the potential difference between the center electrode 41 and the external electrode 43 corresponding to the amount of charge held is maintained. On the other hand, when the impedance of the external circuit electrically connected to the center electrode 41 and the external electrode 43 is low, electric charge flows through the external circuit, so that the potential difference between the center electrode 41 and the external electrode 43 is zero. Become. From the above, the output voltage obtained from the vibration power generator 40 when a repeated external force change (including vibration) is applied is an alternating voltage.
 また、エレクトレット誘電体3と中心電極41あるいは外部電極43の少なくとも一方との間には非接合部が形成されることが望ましい。すなわち、エレクトレット誘電体3は、中心電極41、外部電極43に対して、容易に剥離可能であることが望ましい。また、図8(a)に示すように、エレクトレット誘電体3は、中心電極41あるいは外部電極43と、完全に接触していなくてもよく、部分的に隙間が形成されていても良い。図示した例では、図8(a)のI部が、外部電極43とエレクトレット誘電体3とが剥離してその間に空隙6が生じている状態を示す。 Further, it is desirable that a non-joint portion is formed between the electret dielectric 3 and at least one of the center electrode 41 or the external electrode 43. That is, it is desirable that the electret dielectric 3 can be easily separated from the center electrode 41 and the external electrode 43. Further, as shown in FIG. 8A, the electret dielectric 3 may not be completely in contact with the center electrode 41 or the external electrode 43, and a gap may be partially formed. In the illustrated example, part I of FIG. 8A shows a state in which the external electrode 43 and the electret dielectric 3 are separated and a gap 6 is generated therebetween.
 この状態から、例えば振動発電体40の径方向(図中矢印H方向)の外力変化が生じて外部電極43とエレクトレット誘電体3の互いの界面形状が部分的に変形すると、図8(b)に示すように、外部電極43とエレクトレット誘電体3との非接合部における接触状態が変化する。例えば、図8(b)のI部では、図8(a)のI部で示す外部電極43とエレクトレット誘電体3とが剥離している剥離状態から接触する状態へと変化した状態を示している。この時、エレクトレット誘電体3自体も外力によって変形しやすいため、エレクトレット誘電体3自体の厚さも変化する。すなわち、外部電極43とエレクトレット誘電体3との互いの距離が部分的に変化し、外部電極43とエレクトレット誘電体3とが接触した部分ではエレクトレット誘電体3の厚さも変化するため、中心電極41と外部電極43との互いの距離が部分的に変化する。 From this state, for example, when an external force change in the radial direction of the vibration power generation body 40 (in the direction of arrow H in the figure) occurs and the mutual interface shape between the external electrode 43 and the electret dielectric 3 is partially deformed, FIG. As shown, the contact state at the non-joint portion between the external electrode 43 and the electret dielectric 3 changes. For example, part I of FIG. 8B shows a state where the external electrode 43 and the electret dielectric 3 shown in part I of FIG. 8A have changed from a peeled state to a contacted state. Yes. At this time, since the electret dielectric 3 itself is easily deformed by an external force, the thickness of the electret dielectric 3 itself also changes. That is, the distance between the external electrode 43 and the electret dielectric 3 partially changes, and the thickness of the electret dielectric 3 also changes at the portion where the external electrode 43 and the electret dielectric 3 are in contact with each other. And the external electrode 43 partially change in distance.
 このようにすることで、エレクトレット誘電体3と中心電極41あるいは外部電極43との非接合部における界面において、振動発電体40の変形時に、互いに接触及び剥離または摩擦が生じる領域を形成することができ、かつエレクトレット誘電体3自体の厚さを部分的に変化させることができる。この際、中心電極41および外部電極43に電荷が誘起され、発電を行うことができる。 By doing in this way, in the interface in the non-junction part of the electret dielectric material 3 and the center electrode 41 or the external electrode 43, the area | region where a mutual contact, peeling, or friction arises at the time of deformation | transformation of the vibration electric power generation body 40 can be formed. And the thickness of the electret dielectric 3 itself can be partially changed. At this time, electric charges are induced in the center electrode 41 and the external electrode 43, and power generation can be performed.
 このように、エレクトレット誘電体3と中心電極41あるいは外部電極43との非接合部における接触状態が変化することで、各電極に電荷が誘起されるメカニズムとしては、以下のように考えられる。 As described above, the mechanism by which the charge is induced in each electrode by changing the contact state at the non-junction portion between the electret dielectric 3 and the center electrode 41 or the external electrode 43 is considered as follows.
 第1は、エレクトレット誘電体3と中心電極41あるいは外部電極43との非接合部において、互いに接触及び剥離を繰り返すことで、エレクトレット誘電体3表面と中心電極41あるいは外部電極43のそれぞれの表面との相対的な位置が変化する。また、剥離と接触とを繰り返すことで、エレクトレット誘電体3と中心電極41あるいは外部電極43との間において、空気層の形成及び消失が繰り返される。それらの際に、静電誘導によって、各電極に極性を異にする電荷が誘起されるものと考えられる。また、エレクトレット誘電体3と中心電極41あるいは外部電極43とが接触及び剥離を繰り返す領域では、エレクトレット誘電体3にも外力が作用するため、エレクトレット誘電体3の厚さも変化する。特に、内部に空孔4を有する多孔質性のエレクトレット誘電体3では、空孔4を有さない場合と比較して外力によって容易に厚さが変化する。この際、エレクトレット誘電体3の厚さの変化によって、エレクトレット誘電体3の双極子モーメントが変化するため、静電誘導によって、各電極に極性を異にする電荷が誘起されるものと考えられる。 First, by repeating contact and peeling between the electret dielectric 3 and the center electrode 41 or the external electrode 43 at the non-joint portion, the surface of the electret dielectric 3 and the respective surfaces of the center electrode 41 or the external electrode 43 The relative position of changes. Moreover, formation and disappearance of an air layer are repeated between the electret dielectric 3 and the center electrode 41 or the external electrode 43 by repeating peeling and contact. At that time, it is considered that charges having different polarities are induced in each electrode by electrostatic induction. Further, in the region where the electret dielectric 3 and the center electrode 41 or the external electrode 43 are repeatedly contacted and peeled, an external force is also applied to the electret dielectric 3, so that the thickness of the electret dielectric 3 also changes. In particular, the thickness of the porous electret dielectric material 3 having the pores 4 therein is easily changed by an external force as compared with the case where the pores 4 are not provided. At this time, since the dipole moment of the electret dielectric 3 changes due to the change in the thickness of the electret dielectric 3, it is considered that charges having different polarities are induced by the electrostatic induction.
 第2は、エレクトレット誘電体3と中心電極41あるいは外部電極43との非接合部において、互いに接触及び剥離または摩擦が生じする際に、帯電する現象(剥離帯電、接触帯電、摩擦帯電など)が発生し、中心電極41および外部電極43にそれぞれ電荷が誘起されて発電するものである。異種物質同士が接触、剥離、摩擦をする際の帯電現象は、その時の状態や条件によって、帯電量や極性が異なり、複雑な現象である。したがって、本発明においては、エレクトレット誘電体3と中心電極41あるいは外部電極43との接触状態の変化に伴い、各電極に電荷が誘起されるメカニズムは、前者が支配的であると考えられる。 Secondly, there is a phenomenon of charging (peeling charging, contact charging, frictional charging, etc.) when contact, delamination or friction occurs between the electret dielectric 3 and the center electrode 41 or the external electrode 43. The electric charge is generated in each of the central electrode 41 and the external electrode 43 to generate electric power. The charging phenomenon when different kinds of substances come into contact with each other, peel off, and friction is a complicated phenomenon because the charge amount and polarity differ depending on the state and conditions at that time. Therefore, in the present invention, it is considered that the former is dominant in the mechanism in which charges are induced in each electrode in accordance with the change in the contact state between the electret dielectric 3 and the center electrode 41 or the external electrode 43.
 なお、発明者らは、エレクトレット誘電体3と中心電極41および外部電極43とを完全に接合したものよりも、非接合状態として、エレクトレット誘電体3と各電極とが互いに接触および剥離が可能な状態とした場合の方が、発電出力電圧が大きいことを見出した。したがって、エレクトレット誘電体3と中心電極41あるいは外部電極43との間に非接合部を設けた振動発電体40では、前述したエレクトレット誘電体3の変形に伴う双極子モーメントの変化に起因した発電よりも、エレクトレット誘電体3と中心電極41あるいは外部電極43との非接合部における接触状態の変化に伴う発電の方が支配的であると考えられる。 In addition, the inventors can contact and peel the electret dielectric 3 and each electrode from each other in a non-bonded state, rather than the case where the electret dielectric 3 is completely bonded to the center electrode 41 and the external electrode 43. It has been found that the power generation output voltage is larger in the state. Therefore, in the vibration power generation body 40 in which the non-junction portion is provided between the electret dielectric 3 and the center electrode 41 or the external electrode 43, the power generation due to the change in the dipole moment accompanying the deformation of the electret dielectric 3 described above. However, it is considered that the power generation accompanying the change in the contact state at the non-joint portion between the electret dielectric 3 and the center electrode 41 or the external electrode 43 is dominant.
 なお、図1(a)、図1(b)、図4(a)、図4(b)に示した振動発電体1、1a、30、30aは、スペーサ7により空隙6が保持され、外力を付与することで、スペーサ7以外の非接合部9において、各電極とエレクトレット誘電体3との距離を変化させることができる。しかし、スペーサ7を用いたとしても、非接合部9のギャップ長を一定に保つことができない場合もある。したがって、非接合部9において、外力が付与されない状態でも電極5a、5bとエレクトレット誘電体3とが部分的に接触する場合がある。しかし、前述の通り、外力によって、電極5a、5bとエレクトレット誘電体3との厚み方向の距離が部分的にでも変化可能であれば(図8(a)、図8(b))、電極5a、5bに電荷を誘起することができる。したがって、振動発電体1、1a、30、30aにおいて、部分的に非接合部を形成すれば、必ずしもスペーサ7は必要ではない。 The vibration power generators 1, 1a, 30, 30a shown in FIGS. 1 (a), 1 (b), 4 (a), and 4 (b) have the gap 6 held by the spacer 7 so that the external force By providing the above, it is possible to change the distance between each electrode and the electret dielectric 3 in the non-joining portion 9 other than the spacer 7. However, even if the spacer 7 is used, the gap length of the non-joined portion 9 may not be kept constant. Therefore, in the non-joined part 9, the electrodes 5a and 5b and the electret dielectric 3 may be in partial contact even when no external force is applied. However, as described above, if the distance in the thickness direction between the electrodes 5a and 5b and the electret dielectric 3 can be partially changed by an external force (FIGS. 8A and 8B), the electrode 5a 5b can induce charge. Therefore, the spacer 7 is not necessarily required if the vibration power generators 1, 1a, 30, and 30a are partially formed with non-joining portions.
<実施形態4>
 前述のように、本発明の振動発電体40は、外力による変形に応じて発電を行うことができる。したがって、振動発電体40は、容易に変形するものであることが望ましい。このため、図9(a)に示すように、中空の中心電極41を有する振動発電体40aを用いても良い。振動発電体40aでは、中心電極41の内部に空間47が形成されているため、外力による振動発電体40aの断面の変形が容易である。
<Embodiment 4>
As described above, the vibration power generator 40 of the present invention can generate power in response to deformation caused by an external force. Therefore, it is desirable that the vibration power generator 40 be easily deformed. For this reason, as shown in FIG. 9A, a vibration power generator 40a having a hollow center electrode 41 may be used. In the vibration power generation body 40a, since the space 47 is formed inside the center electrode 41, the deformation of the cross section of the vibration power generation body 40a by an external force is easy.
 また、図9(b)に示すように、中空の中心電極41の内部に弾性体49を配置した振動発電体40bを用いても良い。弾性体としては、容易に変形が可能であり、形状の復元力が高いものが望ましく、例えば、ゴム製の紐部材または線部材を用いることができる。この場合、弾性体49の外表面に、金属蒸着、金属メッキ等を施して中心電極41を形成しても良い。また、弾性体49の外周に、金属テープや金属素線を巻きつけて、中心電極41を形成しても良い。また、弾性体49の外周に、例えば管状に銅編組線を被せて中心電極41を形成しても良い。なお、中心電極41の断面形状は、真円でなくてもよく、楕円その他の形状であっても良い。 Further, as shown in FIG. 9B, a vibration power generation body 40b in which an elastic body 49 is disposed inside the hollow center electrode 41 may be used. As the elastic body, one that can be easily deformed and has a high shape restoring force is desirable. For example, a rubber string member or a wire member can be used. In this case, the center electrode 41 may be formed on the outer surface of the elastic body 49 by metal deposition, metal plating, or the like. Further, the center electrode 41 may be formed by winding a metal tape or a metal wire around the outer periphery of the elastic body 49. Further, the center electrode 41 may be formed by covering the outer periphery of the elastic body 49 with, for example, a copper braided wire in a tubular shape. The cross-sectional shape of the center electrode 41 may not be a perfect circle, but may be an ellipse or other shapes.
<振動発電体40の製造方法について>
 次に、振動発電体40の製造方法について説明する。エレクトレット誘電体3は、中心電極41の外周に絶縁性の発泡プラスチックまたは発泡ゴムを押し出し被覆して形成することができる。絶縁性の発泡プラスチックまたは発泡ゴムであるエレクトレット誘電体3の基材を押し出し被覆後、さらに外周に外部電極43を形成し、前記外部電極43の外周に被覆部45を押し出し被覆すればよい。その後、中心電極41と外部電極43との間に直流電圧を付与し、エレクトレット誘電体3の帯電処理を行えばよい。
<About the manufacturing method of the vibration electric power generation body 40>
Next, a method for manufacturing the vibration power generator 40 will be described. The electret dielectric 3 can be formed by extruding and covering an insulating foamed plastic or foamed rubber on the outer periphery of the center electrode 41. After the base material of the electret dielectric 3 made of insulating foamed plastic or foam rubber is extruded and coated, an external electrode 43 is formed on the outer periphery, and the covering portion 45 is extruded and coated on the outer periphery of the external electrode 43. Thereafter, a DC voltage may be applied between the center electrode 41 and the external electrode 43 to charge the electret dielectric 3.
 また、本発明のように、エレクトレット誘電体3の内部に空孔4が分散して存在する場合や、エレクトレット誘電体3と中心電極41あるいは外部電極43との間に空隙部が存在する場合には、前述のように中心電極41と外部電極43との間に直流電圧を付与してもよいが、交流電圧を付与することでもエレクトレット誘電体3の帯電処理を行うことができる。この際、交流電圧を印加する場合の方が、直流電圧を印加する場合と比較して、より低い印加電圧で空隙部や空孔部において空気放電を発生させることができるため、エレクトレット誘電体3内に帯電領域を形成しやすい。したがって、エレクトレット誘電体3の帯電処理が容易となる。 Further, as in the present invention, when the holes 4 are dispersed and exist inside the electret dielectric 3, or when a gap exists between the electret dielectric 3 and the center electrode 41 or the external electrode 43. As described above, a DC voltage may be applied between the center electrode 41 and the external electrode 43, but the electret dielectric 3 can be charged by applying an AC voltage. At this time, when the AC voltage is applied, air discharge can be generated in the gap portion or the hole portion with a lower applied voltage than when the DC voltage is applied. It is easy to form a charged region inside. Accordingly, the electret dielectric 3 can be easily charged.
 また、エレクトレット誘電体3は、他の方法で形成しても良い。例えば、樹脂テープ51を中心電極41の周囲に1層または複数層となるように巻き付けることで形成しても良い。
 この場合、図10(a)に示すように、樹脂テープ51が、互いの端部同士がラップするように螺旋状に巻きつけられてもよい(ラップ巻き)。また、図10(b)に示すように、樹脂テープ51同士が、互いの端部間にギャップが形成されるように空隙6を空けて螺旋状に巻きつけられても良い(ギャップ巻き)。
The electret dielectric 3 may be formed by other methods. For example, the resin tape 51 may be formed by winding the resin tape 51 around the center electrode 41 so as to form one or more layers.
In this case, as shown to Fig.10 (a), the resin tape 51 may be wound helically so that each edge part may wrap (wrap winding). Further, as shown in FIG. 10B, the resin tapes 51 may be spirally wound with a gap 6 therebetween so that a gap is formed between the end portions (gap winding).
 樹脂テープ51をラップ巻きする場合や、ギャップ巻きする場合には、複数層に巻きつけられる樹脂テープ51の層間に螺旋状の空隙6が形成される。空隙6は本発明の空孔4として機能する。すなわち、樹脂テープ51として空孔のない材質のものを用いても、樹脂テープ51を巻いて形成したエレクトレット誘電体3は、前述した、多孔質な材料で形成されたエレクトレット誘電体3と同様の働きをする。すなわち空隙6は、本発明の空孔4として機能する。 When the resin tape 51 is wrapped or a gap is wound, a spiral gap 6 is formed between the layers of the resin tape 51 wound around a plurality of layers. The gap 6 functions as the hole 4 of the present invention. That is, even if the resin tape 51 is made of a material without pores, the electret dielectric 3 formed by winding the resin tape 51 is the same as the electret dielectric 3 formed of the porous material described above. Work. That is, the gap 6 functions as the hole 4 of the present invention.
 なお、樹脂テープ51の材質には、前述したエレクトレット誘電体3と同様のものを用いることもできる。すなわち、樹脂テープ51として、絶縁性の多孔質プラスチックテープ、多孔質ゴムテープ、繊維体テープ等を用いることができる。多孔質な材質からなる樹脂テープ51を用いる場合は、図10(c)に示すように、樹脂テープ51が互いの端部にラップ部やギャップ部が形成されないように隙間なく突き合わされて螺旋状に巻きつけられても良い(突き合わせ巻き)。また、中心導体に樹脂テープを縦添えして1層または複数層巻いてもよい。 It should be noted that the resin tape 51 may be made of the same material as the electret dielectric 3 described above. That is, as the resin tape 51, an insulating porous plastic tape, porous rubber tape, fiber tape, or the like can be used. When the resin tape 51 made of a porous material is used, as shown in FIG. 10C, the resin tape 51 is abutted with no gap so that no wrap portion or gap portion is formed at each end portion. It may be wrapped around (butt wrap). Further, one layer or a plurality of layers may be wound with a resin tape vertically attached to the center conductor.
 また、中心電極41の外周に、絶縁性の発泡プラスチックまたは発泡ゴムであるエレクトレット誘電体3の基材を押し出し被覆後、外部電極43の形成前に、帯電処理を施すこともできる。すなわち、例えば、エレクトレット誘電体3の基材を中心電極41の外周に押し出し被覆後、外部コロナ放電発生装置を用いてエレクトレット誘電体3の表面を帯電処理し、その後に外部電極43、被覆部45を順次形成して振動発電体40を製造する方法をとることができる。また、樹脂テープ51を用いる場合には、樹脂テープ51を巻きつけた後に帯電処理を行ってもよく、予め帯電処理を施した樹脂テープ51を巻き付けてもよい。 Also, electrification treatment can be performed before the external electrode 43 is formed after the base material of the electret dielectric 3 made of insulating foam plastic or foam rubber is extruded and coated on the outer periphery of the center electrode 41. That is, for example, after the base material of the electret dielectric 3 is extruded and coated on the outer periphery of the center electrode 41, the surface of the electret dielectric 3 is charged using an external corona discharge generator, and then the external electrode 43 and the covering portion 45 are charged. Can be sequentially formed to manufacture the vibration power generator 40. When the resin tape 51 is used, the charging process may be performed after the resin tape 51 is wound, or the resin tape 51 that has been previously charged may be wound.
<振動発電体40の変形と発電出力電圧との関係について>
 図11は、振動発電体40の変形と発電出力電圧との関係を評価した結果を示す図であり、横軸が時間、縦軸が発電出力電圧である。なお、振動発電体40としては、中心電極41に直径1mmの銅線を用い、エレクトレット誘電体3は、厚さ約1mmの発泡ポリプロピレンを中心電極上に押し出し被覆して設けた。外部電極43には、錫メッキ銅編組線を用い、被覆部45としては厚さ約0.5mmのポリ塩化ビニルを用いた。なお、エレクトレット誘電体3には、発泡ポリプロピレンの他に、発泡ポリエチレン、発泡ポリ塩化ビニル、発泡シリコーンゴム、発泡エチレンプロピレンゴムを厚さ約1mmで中心電極41上に押し出して、同一構成とした振動発電体40についても同様に評価した。
<Relationship between the deformation of the vibration power generator 40 and the power generation output voltage>
FIG. 11 is a diagram illustrating a result of evaluating the relationship between the deformation of the vibration power generation body 40 and the power generation output voltage, where the horizontal axis represents time and the vertical axis represents the power generation output voltage. As the vibration power generator 40, a copper wire having a diameter of 1 mm was used for the center electrode 41, and the electret dielectric 3 was provided by extruding and covering a foamed polypropylene having a thickness of about 1 mm on the center electrode. A tin-plated copper braided wire was used for the external electrode 43, and polyvinyl chloride having a thickness of about 0.5 mm was used for the covering portion 45. In addition to the expanded polypropylene, expanded foam, expanded polyvinyl chloride, expanded silicone rubber, expanded ethylene propylene rubber is extruded on the center electrode 41 with a thickness of about 1 mm for the electret dielectric 3 and has the same configuration. The power generator 40 was similarly evaluated.
 得られた振動発電体40には、常温にて中心電極41と外部電極43との間に、直流電圧4kVを1時間印加して、エレクトレット誘電体3の分極帯電処理を施した。なお、直流電圧の極性に関しては、中心電極41側を負極、外部電極43側を正極とした場合と、その逆とした場合の両方について評価した。また、いずれの振動発電体40においても、エレクトレット誘電体3と中心電極41および外部電極43とは非接合状態であり、振動発電体40の変形によって、互いに接触及び剥離あるいは摩擦が生じることが可能である。ここでは、簡単のため、外部電極43とエレクトレット誘電体3との互いの界面形状および接触状態の変化に着目して、図11の振動発電体40の変形と発電出力電圧の関係を説明する。 The obtained vibration power generator 40 was subjected to polarization charging treatment of the electret dielectric 3 by applying a DC voltage of 4 kV for 1 hour between the center electrode 41 and the external electrode 43 at room temperature. Regarding the polarity of the DC voltage, both the case where the central electrode 41 side is a negative electrode and the external electrode 43 side is a positive electrode and vice versa were evaluated. Further, in any vibration power generation body 40, the electret dielectric 3, the center electrode 41, and the external electrode 43 are in a non-bonded state, and deformation, deformation, or friction between the vibration power generation body 40 can occur. It is. Here, for the sake of simplicity, the relationship between the deformation of the vibration power generation body 40 of FIG. 11 and the power generation output voltage will be described by focusing on the changes in the interface shape and the contact state between the external electrode 43 and the electret dielectric 3.
 図11は、一例として振動発電体40に対し、押圧力を付与し、一定時間保持後にその押圧を取り除いた際の発電出力波形をオシロスコープにて観測した例である。ここで、オシロスコープの入力インピーダンスはDC1MΩとした。また、エレクトレット誘電体3の負電荷が帯電する表面側に対向する電極の電位を基準電位とした。 FIG. 11 shows an example of observing, using an oscilloscope, a power generation output waveform when a pressing force is applied to the vibration power generation body 40 and the pressing force is removed after holding for a certain period of time. Here, the input impedance of the oscilloscope was DC 1 MΩ. Further, the potential of the electrode facing the surface side where the negative charge of the electret dielectric 3 is charged was used as the reference potential.
 まず、定常状態において、外部電極43とエレクトレット誘電体3との互いの界面形状および接触状態が変化していない場合には、発電が行われない。この状態から、振動発電体40を押圧して変形させていくと、押圧を受けた領域の外部電極43とエレクトレット誘電体3との界面形状が変化する。例えば、図8(a)のI部に示すように空隙が形成されていた部分では、図8(b)のI部に示すように外部電極43とエレクトレット誘電体3との間の距離が小さくなり、いずれは接触するように変化する。外部電極43とエレクトレット誘電体3とが接触する領域では、エレクトレット誘電体3に外力(押圧)が作用するため、エレクトレット誘電体3も変形を受け、エレクトレット誘電体3の厚さが小さくなる方向に変化する。また、同時に、押圧を受けた領域では、外部電極43と中心電極41との間の距離も小さくなる方向に変化していく。この際、振動発電体40では、正極性の電圧が発生する(図11中I)。 First, in the steady state, power generation is not performed when the interface shape and the contact state between the external electrode 43 and the electret dielectric 3 are not changed. From this state, when the vibration power generation body 40 is pressed and deformed, the interface shape between the external electrode 43 and the electret dielectric 3 in the pressed area changes. For example, in a portion where a gap is formed as shown in part I of FIG. 8A, the distance between the external electrode 43 and the electret dielectric 3 is small as shown in part I of FIG. 8B. Will eventually change to touch. In the region where the external electrode 43 and the electret dielectric 3 are in contact with each other, an external force (pressing) acts on the electret dielectric 3, so that the electret dielectric 3 is also deformed and the thickness of the electret dielectric 3 is reduced. Change. At the same time, in the pressed area, the distance between the external electrode 43 and the center electrode 41 also changes in the direction of decreasing. At this time, a positive voltage is generated in the vibration power generator 40 (I in FIG. 11).
 その後、振動発電体40に押圧が付与された状態で、振動発電体40の形状変化が止まると、外部電極43とエレクトレット誘電体3との互いの界面形状および接触状態の変化、およびエレクトレット誘電体3の厚さの変化が止まる。このようにそれら互いの界面形状および接触状態、エレクトレット誘電体3の厚さが保持されると、振動発電体40では発電が行われなくなり、それ以前に中心電極41と外部電極43の双方に誘起されていた電荷がオシロスコープの入力インピーダンスを介して流れてしまうため、振動発電体40の発電出力電圧は0となる(図11中II)。この状態から、押圧を開放すると、押圧を受けた領域の振動発電体40の形状はもとの定常状態における形状に戻る方向に変形する。このため、外部電極43とエレクトレット誘電体3との互いの界面形状および接触状態、およびエレクトレット誘電体3の厚さも、定常状態における界面形状および接触状態、およびエレクトレット誘電体3の厚さに戻る方向に変形していく。すなわち、外部電極43とエレクトレット誘電体3は剥離する方向(双方の距離が離れる方向)に変形していき、エレクトレット誘電体3の厚さは大きくなる方向に変化していく。また、同時に、押圧が開放された領域では、外部電極43と中心電極41との間の距離も大きくなる方向に変化していく。この際には前述とは逆極性である負電圧が振動発電体40で発生する(図11中III)。続いて、押圧を開放してから振動発電体40の形状変化が止まると、外部電極43とエレクトレット誘電体3との互いの界面形状および接触状態の変化、およびエレクトレット誘電体3の厚さの変化が止まり、振動発電体40では発電が行われなくなる。この際、前述と同様にそれ以前に中心電極41と外部電極43の双方に誘起されていた電荷がオシロスコープの入力インピーダンスを介して流れてしまうため、振動発電体40の発電出力電圧は0となる。 Thereafter, when the change in shape of the vibration power generation body 40 is stopped in a state where the pressure is applied to the vibration power generation body 40, the mutual interface shape and contact state between the external electrode 43 and the electret dielectric 3 change, and the electret dielectric The thickness change of 3 stops. If the interface shape and the contact state of each other and the thickness of the electret dielectric 3 are maintained in this way, the vibration power generator 40 does not generate power and induces both the center electrode 41 and the external electrode 43 before that. Since the generated charge flows through the input impedance of the oscilloscope, the power generation output voltage of the vibration power generator 40 becomes 0 (II in FIG. 11). When the pressure is released from this state, the shape of the vibration power generation body 40 in the area subjected to the pressure is deformed so as to return to the shape in the original steady state. For this reason, the mutual interface shape and contact state between the external electrode 43 and the electret dielectric 3, and the thickness of the electret dielectric 3 also return to the interface shape and contact state in the steady state and the thickness of the electret dielectric 3. It will be transformed into. That is, the external electrode 43 and the electret dielectric 3 are deformed in a peeling direction (a direction in which both distances are separated), and the thickness of the electret dielectric 3 is changed in an increasing direction. At the same time, in the region where the pressure is released, the distance between the external electrode 43 and the center electrode 41 also changes in a direction that increases. At this time, a negative voltage having a polarity opposite to that described above is generated in the vibration power generator 40 (III in FIG. 11). Subsequently, when the shape change of the vibration power generator 40 stops after releasing the pressure, the mutual interface shape and contact state between the external electrode 43 and the electret dielectric 3 and the thickness of the electret dielectric 3 change. Stops, and the vibration power generator 40 does not generate power. At this time, similarly to the above, since the charge previously induced in both the center electrode 41 and the external electrode 43 flows through the input impedance of the oscilloscope, the power generation output voltage of the vibration power generator 40 becomes zero. .
 このように、本発明では、振動発電体40におけるエレクトレット誘電体3と外部電極43あるいは中心電極41との互いの界面形状および接触状態の変化(接触と剥離)、更にはエレクトレット誘電体3の変形による厚さの変化によって、高い効率で発電を行うことができる。なお、このような傾向は、エレクトレット誘電体3の材質を変えても同様であった。また、エレクトレット誘電体3の帯電の極性を逆にしても、同様の傾向であった。 As described above, in the present invention, the shape of the interface between the electret dielectric 3 and the external electrode 43 or the center electrode 41 in the vibration power generator 40 and the change in the contact state (contact and peeling), and further the deformation of the electret dielectric 3 Due to the change in thickness due to, power can be generated with high efficiency. Such a tendency was the same even when the material of the electret dielectric 3 was changed. The same tendency was observed even when the electret dielectric 3 was charged with the opposite polarity.
 なお、振動発電体1、1a、30、30a、40a、40bにおいても、図11に示すように同様な振動発電体の変形と発電出力電圧の関係があることが確認された。特に、電極とエレクトレット誘電体3との間にスペーサ7を設け、空隙6を形成することで、より高い発電力が得られた。具体的には、押圧を加えて変形させていく過程では、電極がエレクトレット誘電体3と接触する直前に最も大きな発電出力電圧を示した。また、押圧を開放してもとの定常状態に戻る過程では、電極がエレクトレット誘電体3から剥離した直後が最も大きな発電出力電圧となった。したがって、振動発電体を変形させた際に、電極とエレクトレット誘電体3とが接触と剥離とを繰り返すように構成することが望ましい。 In addition, it was confirmed that the vibration power generation bodies 1, 1a, 30, 30a, 40a, and 40b have the same relationship between the deformation of the vibration power generation body and the power generation output voltage as shown in FIG. In particular, by providing the spacer 7 between the electrode and the electret dielectric 3 and forming the gap 6, higher power generation was obtained. Specifically, in the process of applying pressure and deforming, the largest generated output voltage was shown immediately before the electrode contacted the electret dielectric 3. Also, in the process of returning to the original steady state even when the pressure is released, the power generation output voltage was the largest immediately after the electrode was peeled from the electret dielectric 3. Therefore, it is desirable that the electrode and the electret dielectric 3 repeat contact and peeling when the vibration power generator is deformed.
 また、本発明にかかる振動発電体1、1a、30、30a、40、40a、40bは、直列または並列に複数接続して用いることもできる。このようにすることで、より大きな発電出力電圧を得ることができる。この場合、例えば、正電荷が誘起される電極同士および負電荷が誘起される電極同士を並列に接続してもよく、異なる極性の電荷が誘起される電極同士を直列に接続してもよい。また、振動発電体1、1a、30、30a、40を複数層に積層してもよく、平面上に複数併設して配置しても良く、または、これらを組み合わせて配置しても良い。 Moreover, the vibration power generators 1, 1a, 30, 30a, 40, 40a, 40b according to the present invention can be used by connecting them in series or in parallel. By doing so, a larger power generation output voltage can be obtained. In this case, for example, electrodes in which positive charges are induced and electrodes in which negative charges are induced may be connected in parallel, or electrodes in which charges of different polarities are induced may be connected in series. Further, the vibration power generators 1, 1a, 30, 30a, 40 may be laminated in a plurality of layers, arranged in a plurality on the plane, or may be arranged in combination.
 また、本発明にかかる振動発電体1、1a、30、30a、40、40a、40bは可撓性を有するため、前記振動発電体を曲げて用いることもできる。例えば、振動発電体1、1a、30、30aを折り畳んだ状態で使用しても良く、この場合には、複数の振動発電体を積層してそれぞれの電極同士を極性を合わせて並列に接続した場合と同様の効果が得られる。また、振動発電体40、40a、40bを渦状に曲げた状態で用いることもできる。 Moreover, since the vibration power generator 1, 1a, 30, 30a, 40, 40a, 40b according to the present invention has flexibility, the vibration power generator can be bent and used. For example, the vibration power generators 1, 1a, 30, 30a may be used in a folded state. In this case, a plurality of vibration power generators are stacked and the electrodes are connected in parallel with the polarities aligned. The same effect as the case can be obtained. Further, the vibration power generators 40, 40a, and 40b can be used in a state of being bent in a spiral shape.
<実施形態5>
 次に、本発明にかかる振動発電体1、1a、30、30a、40、40a、40bで発電した発電出力を蓄電する方法について説明する。図12に示すように、振動発電装置60は、振動発電体1、整流回路67、蓄電回路69等から構成される。なお、図12では、振動発電体1を用いる例について説明するが、振動発電体1a、30、30a、40、40a、40bに対しても同様に適用することができる。
<Embodiment 5>
Next, a method for storing the power generation output generated by the vibration power generator 1, 1a, 30, 30a, 40, 40a, 40b according to the present invention will be described. As shown in FIG. 12, the vibration power generator 60 includes the vibration power generator 1, a rectifier circuit 67, a power storage circuit 69, and the like. In addition, although the example using the vibration electric power generation body 1 is demonstrated in FIG. 12, it is applicable similarly to the vibration electric power generation bodies 1a, 30, 30a, 40, 40a, 40b.
 整流回路67には、4つのダイオード61を組み合わせた全波整流回路が用いられる。整流回路67は、振動発電体1からの出力電圧を整流する。また、蓄電回路69は、コンデンサや充電可能なバッテリーなどの蓄電部63とスイッチ65から構成される。なお、ダイオード61は、順方向の抵抗が小さく、逆方向の抵抗が大きく、かつ、時間応答速度が速く、ロスの少ないものが望ましい。また、コンデンサあるいはバッテリーは、充電状態での漏れ電流が小さく、充電ロスの小さなものが望ましい。 As the rectifier circuit 67, a full-wave rectifier circuit in which four diodes 61 are combined is used. The rectifier circuit 67 rectifies the output voltage from the vibration power generator 1. The power storage circuit 69 includes a power storage unit 63 such as a capacitor and a rechargeable battery, and a switch 65. The diode 61 preferably has a low forward resistance, a high reverse resistance, a fast time response speed, and a small loss. Further, it is desirable that the capacitor or the battery has a small leakage current in a charged state and a small charging loss.
 前述の通り、繰り返しの外力が付与された際の振動発電体1の出力電圧は交流となる。したがって、振動発電体1の出力電圧を整流回路67で整流し、整流回路67の出力を蓄電回路69に蓄電することが望ましい。 As described above, the output voltage of the vibration power generator 1 when a repeated external force is applied is alternating current. Therefore, it is desirable that the output voltage of the vibration power generator 1 is rectified by the rectifier circuit 67 and the output of the rectifier circuit 67 is stored in the storage circuit 69.
 また、複数の振動発電体1を用いる場合には、全ての振動発電体1の電極5a、5b同士を並列に接続した後に整流回路67に接続してもよいが、個々の振動発電体1に対して整流回路67を設けることが望ましい。すなわち、個々の振動発電体1に対して整流回路67を設けて接続し、各整流回路67からの出力を、極性を合わせて並列に蓄電回路69に接続することが望ましい。これは、各振動発電体1における発電のタイミングや発電出力電圧の極性が一致しない場合に、互いの発電出力の打ち消しあいによる発電出力の低下を防止するためである。また、互いの発電出力の打ち消しあいがない場合でも、発電しない振動発電体1が含まれる場合には、発電しない振動発電体1が他の発電している振動発電体1に対して外部負荷として機能してしまうことによる発電出力の低下を防止するためである。 When a plurality of vibration power generation bodies 1 are used, the electrodes 5a and 5b of all vibration power generation bodies 1 may be connected in parallel and then connected to the rectifier circuit 67. On the other hand, it is desirable to provide a rectifier circuit 67. That is, it is desirable to provide a rectifier circuit 67 for each vibration power generator 1 and connect it, and connect the output from each rectifier circuit 67 to the power storage circuit 69 in parallel with the same polarity. This is to prevent a decrease in power generation output due to cancellation of each other's power generation output when the timing of power generation and the polarity of the power generation output voltage in each vibration power generator 1 do not match. In addition, even when there is no mutual cancellation of the power generation output, when the vibration power generation body 1 that does not generate power is included, the vibration power generation body 1 that does not generate power as an external load with respect to the other vibration power generation bodies 1 that generate power This is to prevent a decrease in power generation output due to functioning.
 以下に示す種々の振動発電体を用いて、発電出力電圧を評価した。 The power generation output voltage was evaluated using various vibration power generators shown below.
(実施例1)
 実施例1は、振動発電体30(図4(a))に示す構造とした。振動発電体のサイズは、約100mm×約100mm×約0.5mmとした。また、電極31a、31bは、導電層33として厚さ12μmのアルミニウム箔を用い、樹脂層35として厚さ100μmのPET(ポリエチレンテレフタレート)フィルムを用い、それら熱溶着によって接合したものを用いた。エレクトレット誘電体3としては、厚さ100μmの発泡ポリプロピレンフィルムを用い、発泡ポリプロピレンフィルム全体に対してコロナ放電によって均一に帯電処理を行った。なお、エレクトレット誘電体3の両表面間の電位差は約200Vであった。
(Example 1)
In Example 1, the structure shown in the vibration power generation body 30 (FIG. 4A) was adopted. The size of the vibration power generator was about 100 mm × about 100 mm × about 0.5 mm. The electrodes 31a and 31b were formed by using a 12 μm thick aluminum foil as the conductive layer 33 and using a 100 μm thick PET (polyethylene terephthalate) film as the resin layer 35 and bonding them by thermal welding. As the electret dielectric 3, a foamed polypropylene film having a thickness of 100 μm was used, and the entire foamed polypropylene film was uniformly charged by corona discharge. The potential difference between both surfaces of the electret dielectric 3 was about 200V.
 なお、スペーサ7としては、絶縁性の接着剤を用いた。両電極のアルミニウム箔面とエレクトレット誘電体3とはマスクパターンを用いて平面方向に2次元的に等間隔となるようにドット状に絶縁性接着剤を塗布して接着した。接着後の接着パターンとしては、直径約1mmの円形であり、厚さ100μmとし、互いのスペーサ間隔を等間隔で配置した。すなわち、エレクトレット誘電体3と電極31a、31bのそれぞれとのギャップ長は100μmとした。なお、スペーサ7の中心間距離は10mmとし、エレクトレット誘電体3の両面に設けたスペーサ7の配置関係は、平面視において同一の位置となるように配置した。 In addition, as the spacer 7, an insulating adhesive was used. The aluminum foil surfaces of both electrodes and the electret dielectric 3 were adhered by applying an insulating adhesive in the form of dots using a mask pattern so as to be equally spaced two-dimensionally in the plane direction. The adhesion pattern after adhesion was a circle having a diameter of about 1 mm, a thickness of 100 μm, and the spacers were arranged at equal intervals. That is, the gap length between the electret dielectric 3 and each of the electrodes 31a and 31b was 100 μm. The distance between the centers of the spacers 7 was 10 mm, and the arrangement relationship of the spacers 7 provided on both surfaces of the electret dielectric 3 was arranged at the same position in plan view.
(実施例2)
 実施例2は、実施例1と略同様であるが、振動発電体30a(図4(b))に示す構造とした。振動発電体のサイズは、約100mm×約100mm×約0.4mmとした。また、電極31a、31bおよびエレクトレット誘電体3は実施例1と同様である。なお、一方の電極31aのアルミニウム箔面(導電層33)は、エレクトレット誘電体3と加熱融着によって全面接着されている。他方の電極31bとエレクトレット誘電体3とは、実施例1と同様にして、ドット状に接着剤を塗布してスペーサ7を形成した。
(Example 2)
Example 2 is substantially the same as Example 1, but has the structure shown in the vibration power generator 30a (FIG. 4B). The size of the vibration power generator was about 100 mm × about 100 mm × about 0.4 mm. The electrodes 31a and 31b and the electret dielectric 3 are the same as in the first embodiment. Note that the aluminum foil surface (conductive layer 33) of one electrode 31a is bonded to the electret dielectric 3 by heat fusion. The other electrode 31b and the electret dielectric 3 were coated with dots in the same manner as in Example 1 to form spacers 7.
(比較例1)
 比較例1は、実施例1と略同様であるが、エレクトレット誘電体3として多孔質材ではない厚さ100μmのポリプロピレンフィルムを用いた。
(Comparative Example 1)
Comparative Example 1 is substantially the same as Example 1, except that a 100 μm thick polypropylene film that is not a porous material is used as the electret dielectric 3.
(比較例2)
 比較例2は、実施例2と略同様であるが、エレクトレット誘電体3として多孔質材ではない厚さ100μmのポリプロピレンフィルムを用いた。
(Comparative Example 2)
Comparative Example 2 was substantially the same as Example 2, but a 100 μm thick polypropylene film that was not a porous material was used as the electret dielectric 3.
(比較例3)
 比較例3は、実施例2と略同様であるが、両側の電極31a、31bをエレクトレット誘電体3の全面に接着した。すなわち、両側のいずれの電極に対しても非接合部を形成せずに電極31a、31bとエレクトレット誘電体3の全面を接着した。
(Comparative Example 3)
Comparative Example 3 is substantially the same as Example 2, except that electrodes 31 a and 31 b on both sides are bonded to the entire surface of the electret dielectric 3. That is, the entire surfaces of the electrodes 31a and 31b and the electret dielectric 3 were bonded to each other without forming a non-bonded portion with respect to any of the electrodes on both sides.
(比較例4)
 比較例4は、実施例2と略同様であるが、エレクトレット誘電体3として多孔質材ではない厚さ100μmのポリプロピレンフィルムを用いるとともに、両側の電極31a、31bをエレクトレット誘電体3の全面に接着した。すなわち、両側のいずれの電極に対しても非接合部を形成せずに電極31a、31bとエレクトレット誘電体3の全面を接着した。
(Comparative Example 4)
Comparative Example 4 is substantially the same as Example 2, except that a 100 μm thick polypropylene film that is not a porous material is used as the electret dielectric 3, and the electrodes 31 a and 31 b on both sides are bonded to the entire surface of the electret dielectric 3. did. That is, the entire surfaces of the electrodes 31a and 31b and the electret dielectric 3 were bonded to each other without forming a non-bonded portion with respect to any of the electrodes on both sides.
 図13は、実施例1~実施例2および比較例1~比較例4の各振動発電体について、同一の振動(振動周波数は1Hz)を与えた場合の発電出力電圧の評価結果を示す。なお、発電出力電圧としては、実施例1の振動発電体の発電出力電圧を1として、規格化した相対的な発電出力電圧を示す。 FIG. 13 shows the evaluation results of the power generation output voltage when the same vibration (vibration frequency is 1 Hz) is applied to the vibration power generators of Examples 1 to 2 and Comparative Examples 1 to 4. In addition, as a power generation output voltage, the power generation output voltage of the vibration power generation body of Example 1 is set to 1, and the normalized relative power generation output voltage is shown.
 図13より、エレクトレット誘電体3の材質として多孔質材を適用した実施例1、2は、多孔質材ではない比較例1、2に対して、相対的に高い発電出力電圧を示した。このことは、比較例3と比較例4とを比較しても同様である。すなわち、多孔質材であるエレクトレット誘電体3を用いることで、エレクトレット誘電体3が変形しやすくなり、これにより、発電出力電圧が向上する結果となった。 13, Examples 1 and 2 in which a porous material is applied as the material of the electret dielectric 3 showed a relatively high power generation output voltage compared to Comparative Examples 1 and 2 that are not porous materials. This is the same even if the comparative example 3 and the comparative example 4 are compared. That is, by using the electret dielectric 3 which is a porous material, the electret dielectric 3 is easily deformed, and as a result, the power generation output voltage is improved.
 また、比較例3は多孔質材を用いてはいるものの、電極31a、31bとエレクトレット誘電体3とが全面で接着されているため、実施例1、2よりも発電出力電圧は劣った。しかし、エレクトレット誘電体3に空孔がない比較例4と比較すると、発電出力電圧が格段に大きく、エレクトレット誘電体3を多孔質にすることで、発電出力電圧は向上する。また、電極31a、31bとエレクトレット誘電体3との間に非接合部を設けることで、ギャップを形成すると、発電出力電圧はさらに向上する。 Moreover, although the comparative example 3 uses the porous material, since the electrodes 31a and 31b and the electret dielectric 3 are adhered on the entire surface, the power generation output voltage is inferior to those of Examples 1 and 2. However, compared with Comparative Example 4 in which the electret dielectric 3 has no holes, the power generation output voltage is remarkably large, and the power generation output voltage is improved by making the electret dielectric 3 porous. Moreover, when a gap is formed by providing a non-joining portion between the electrodes 31a and 31b and the electret dielectric 3, the power generation output voltage is further improved.
 また、ギャップをエレクトレット誘電体3の両側に形成した実施例1と、ギャップを片面のみに形成した実施例2の比較からも明らかなように、ギャップは両側に形成した方が発電出力電圧は高い傾向はあるものの、その差は小さい。このことは、比較例1と比較例2とを比較しても同様である。すなわち、振動発電体の製造性や使用環境、取り扱い性などを考慮して、ギャップを両面に形成するか、片面とするかは適宜設定すればよい。 Further, as is clear from comparison between Example 1 in which the gap is formed on both sides of the electret dielectric 3 and Example 2 in which the gap is formed on only one side, the generated output voltage is higher when the gap is formed on both sides. Although there is a tendency, the difference is small. This is the same even if the comparative example 1 and the comparative example 2 are compared. That is, in consideration of manufacturability, use environment, and handleability of the vibration power generator, whether the gap is formed on both surfaces or only one surface may be appropriately set.
 以上のように、エレクトレット誘電体として多孔質材を用い、少なくとも一方の電極とエレクトレット誘電体との間にギャップ(非接合部)を形成することで、より高い発電出力電圧を得ることができるという結果となった。 As described above, a porous material is used as the electret dielectric, and a higher power generation output voltage can be obtained by forming a gap (non-joined portion) between at least one electrode and the electret dielectric. As a result.
 なお、図示は省略するが、実施例2において、ギャップ長(接着剤厚みあるいはスペーサ厚み)を変えた振動発電体1aをいくつか製作し、電極5bとエレクトレット誘電体3とが接触と剥離を繰り返すような繰り返し外力(振動)を付与した場合には、ギャップ長が大きくなるにつれて発電出力電圧は増加した。すなわち、電極5bとエレクトレット誘電体3とが接触と剥離とを繰り返す場合において、電極5bとエレクトレット誘電体3との距離の変化量が大きくなるほど、発電出力電圧は大きくなる。 In addition, although illustration is abbreviate | omitted, in Example 2, several vibration electric power generation bodies 1a which changed gap length (adhesive thickness or spacer thickness) are manufactured, and the electrode 5b and the electret dielectric material 3 repeat a contact and peeling. When such external force (vibration) was repeatedly applied, the power generation output voltage increased as the gap length increased. That is, when the electrode 5b and the electret dielectric 3 are repeatedly contacted and peeled, the power generation output voltage increases as the amount of change in the distance between the electrode 5b and the electret dielectric 3 increases.
 しかし、ギャップ長が100μmを超えると、それ以上ギャップ長の増加量に対する発電出力電圧の増加量は小さくなる。また、ギャップ長が大きくなると、電極5bとエレクトレット誘電体3とを接触させるために必要な外力あるいは振動も大きくなる。また、ギャップ長を大きくすることで、振動発電体の全厚が厚くなる。したがって、ギャップ長(スペーサの厚み)は100μm以下であることが望ましい。 However, when the gap length exceeds 100 μm, the increase amount of the generated output voltage with respect to the increase amount of the gap length becomes smaller. Further, when the gap length is increased, the external force or vibration necessary for bringing the electrode 5b and the electret dielectric 3 into contact with each other also increases. Further, the total thickness of the vibration power generator is increased by increasing the gap length. Therefore, the gap length (spacer thickness) is preferably 100 μm or less.
(実施例3)
 次に、振動発電体40(図5)に示す振動発電体について評価した。実施例3は、中心電極41に、直径1mmの銅線を用い、エレクトレット誘電体3としては、厚さ約1mmの発泡ポリプロピレンを中心電極41上に押し出し被覆して設けた。外部電極43には、錫メッキ銅編組線を用い、被覆部45としては厚さ約0.5mmのポリ塩化ビニルを用いた。
(Example 3)
Next, the vibration power generator shown in the vibration power generator 40 (FIG. 5) was evaluated. In Example 3, a copper wire having a diameter of 1 mm was used for the center electrode 41, and as the electret dielectric 3, foamed polypropylene having a thickness of about 1 mm was extruded and coated on the center electrode 41. A tin-plated copper braided wire was used for the external electrode 43, and polyvinyl chloride having a thickness of about 0.5 mm was used for the covering portion 45.
 得られた振動発電体には、常温にて中心電極41と外部電極43との間に、直流電圧4kVを1時間印加して、エレクトレット誘電体3の帯電処理を施した。なお、直流電圧の極性に関しては、中心電極側を負極、外部電極側を正極とした場合について評価したが、その逆とした場合も同様の結果であった。 The obtained vibration power generator was subjected to the electret dielectric 3 charging process by applying a DC voltage of 4 kV for 1 hour between the center electrode 41 and the external electrode 43 at room temperature. Regarding the polarity of the DC voltage, the case where the central electrode side was the negative electrode and the external electrode side was the positive electrode was evaluated, but the opposite result was also obtained.
(実施例4)
 実施例4は、実施例3と略同様であるが、エレクトレット誘電体3を押出成形せずに、発泡ポリプロピレン製の絶縁テープ(厚さ約100μm、幅約5mm)を多層に螺旋状にラップ巻きして、厚さ約1mmのエレクトレット誘電体3を形成した。その他の構成および帯電処理の方法は、実施例3と同様である。
Example 4
Example 4 is substantially the same as Example 3, but without the electret dielectric 3 being extruded, a foamed polypropylene insulating tape (thickness: about 100 μm, width: about 5 mm) is spirally wrapped in multiple layers. Thus, an electret dielectric 3 having a thickness of about 1 mm was formed. Other configurations and charging methods are the same as those in the third embodiment.
(比較例5)
 比較例5は、実施例3と略同様であるが、中心電極41上に、多孔質材ではないポリプロピレンを押し出し被覆してエレクトレット誘電体3を設けた。その他の構成は、実施例3と同様である。
(Comparative Example 5)
Comparative Example 5 is substantially the same as Example 3, but the electret dielectric 3 was provided on the center electrode 41 by extruding and covering polypropylene that is not a porous material. Other configurations are the same as those of the third embodiment.
(比較例6)
 比較例6は、実施例4と略同様であるが、エレクトレット誘電体3として、多孔質材ではないポリプロピレン製の絶縁テープ(厚さ約100μm、幅約5mm)を多層に螺旋状にラップ巻きして、厚さ約1mmのエレクトレット誘電体3を形成した。その他の構成および帯電処理の方法は、実施例4と同様である。
(Comparative Example 6)
Comparative Example 6 is substantially the same as Example 4, except that a polypropylene insulating tape (thickness: about 100 μm, width: about 5 mm) that is not a porous material is spirally wrapped in multiple layers as the electret dielectric 3. Thus, an electret dielectric 3 having a thickness of about 1 mm was formed. Other configurations and the charging method are the same as those in the fourth embodiment.
 図14は、実施例3~実施例4および比較例5~比較例6の各振動発電体について、2枚の剛性の高い板間に各振動発電体を挟み込み、2枚の板の外側から同一の振動(振動周波数は1Hz)を与えた場合の発電出力電圧の評価結果を示す。なお、発電出力電圧としては、実施例3の振動発電体の発電出力電圧を1として、規格化した相対的な発電出力電圧を示す。 FIG. 14 shows the vibration power generators of Examples 3 to 4 and Comparative Examples 5 to 6, with the vibration power generators sandwiched between two rigid plates and the same from the outside of the two plates. The evaluation result of the power generation output voltage when the vibration (vibration frequency is 1 Hz) is given. In addition, as a power generation output voltage, the power generation output voltage of the vibration power generation body of Example 3 is set to 1, and the normalized relative power generation output voltage is shown.
 図14より、エレクトレット誘電体3の材質として多孔質材を用いた実施例3、4は、多孔質材を用いていない比較例5、6に対して、相対的に高い発電出力電圧を示した。すなわち、エレクトレット誘電体3を変形しやすくすることで、発電出力電圧は向上する。 As shown in FIG. 14, Examples 3 and 4 using a porous material as the material of the electret dielectric 3 showed a relatively high power generation output voltage compared to Comparative Examples 5 and 6 using no porous material. . That is, the power generation output voltage is improved by making the electret dielectric 3 easier to deform.
 ここで、比較例5、6の発電出力電圧が極めて小さい理由として、実施例3、4と比較してエレクトレット誘電体3が変形しにくいことのほかに、エレクトレット誘電体3の帯電量が極めて小さいことが考えられる。すなわち、振動発電体の中心電極と外部電極との間に直流電圧4kVを印加することで、帯電処理を行っているが、比較例5、6では、この印加した直流電圧がエレクトレット誘電体3を帯電処理するのに十分ではないと思われる。 Here, the reason why the power generation output voltage of Comparative Examples 5 and 6 is extremely small is that the electret dielectric 3 is not easily deformed compared to Examples 3 and 4, and the electret dielectric 3 has a very small charge amount. It is possible. That is, charging is performed by applying a DC voltage of 4 kV between the center electrode and the external electrode of the vibration power generator. In Comparative Examples 5 and 6, the applied DC voltage is applied to the electret dielectric 3. It seems that it is not enough to charge.
 すなわち、多孔質材によりエレクトレット誘電体3を構成すると、直流電圧4kV程度の印加電圧でも、空孔内で空気放電を生させるのに十分な印加電圧であるため、エレクトレット誘電体3を十分に帯電させることが可能である。一方、内部に空孔を有さないエレクトレット誘電体3に対しては、直流電圧4kVでは、十分に帯電させることが困難であったものと推定される。すなわち、エレクトレット誘電体3に多孔質材を用いることで、帯電処理の電圧を低くすることが可能となる。また、比較例6では、エレクトレット誘電体3として多孔質材ではない絶縁テープを用いているものの、絶縁テープを多層にラップ巻きしてエレクトレット誘電体3を形成しているため、図10(a)に示すような空隙6がエレクトレット誘電体内部に存在する。しかし、実施例3と実施例4との比較から分かるように、エレクトレット誘電体内部に図10(a)に示すような空隙6が存在する実施例4の方が、そのような空隙6が存在しない実施例3と比較して発電出力電圧がやや高くなってはいるが、比較例5、6と比較して実施例3、4の発電出力電圧が飛躍的に高くなっている理由は、多孔質なエレクトレット誘電体3を用いているためであると考えられる。したがって、比較例5と比較すると、図10(a)に示すような空隙6がエレクトレット誘電体内部に存在する比較例6の方が発電出力電圧はやや高くなるが、実施例3、4と比較すると前述したようにエレクトレット誘電体3の帯電が十分ではない理由により、発電出力電圧がかなり低くなったものと考えられる。 That is, when the electret dielectric 3 is made of a porous material, the applied voltage is sufficient to generate air discharge in the air holes even with an applied voltage of about 4 kV, so that the electret dielectric 3 is sufficiently charged. It is possible to make it. On the other hand, it is presumed that it was difficult to sufficiently charge the electret dielectric 3 having no voids inside at a DC voltage of 4 kV. That is, by using a porous material for the electret dielectric 3, it is possible to reduce the voltage of the charging process. Moreover, in the comparative example 6, although the insulating tape which is not a porous material is used as the electret dielectric material 3, since the electret dielectric material 3 is formed by wrapping the insulating tape in multiple layers, FIG. A gap 6 as shown in FIG. However, as can be seen from a comparison between Example 3 and Example 4, Example 4 in which the gap 6 as shown in FIG. 10A exists inside the electret dielectric has such a gap 6 present. The reason why the power generation output voltage of Examples 3 and 4 is remarkably higher than that of Comparative Examples 5 and 6 is that although the power generation output voltage is slightly higher than that of Example 3, This is considered to be because the quality electret dielectric 3 is used. Therefore, compared with Comparative Example 5, the power generation output voltage is slightly higher in Comparative Example 6 in which the gap 6 as shown in FIG. 10A exists in the electret dielectric, but compared with Examples 3 and 4. Then, as described above, it is considered that the power generation output voltage is considerably lowered because the electret dielectric 3 is not sufficiently charged.
(実施例5)
 次に、振動発電体40(図5)に示す振動発電体について、他のエレクトレット誘電体3の帯電処理方法および振動発電体の製造方法を施した振動発電体について評価した。実施例5の振動発電体の構成、構造は、実施例3と略同様である。実施例5は、中心電極41にエレクトレット誘電体3として発泡ポリプロピレンを押出成形した後、前記発泡ポリプロピレンの外周に隙間をあけて配置されたコロナ放電装置によって、前記発泡ポリプロピレンの表面電位を-4kV(中心電極の電位を基準)までおおよそ均一に帯電させてエレクトレット誘電体3を形成した。その後、外部電極43である錫メッキ銅編組線、被覆部45であるポリ塩化ビニルを順次被覆して振動発電体を完成させた。
(Example 5)
Next, with respect to the vibration power generation body shown in the vibration power generation body 40 (FIG. 5), the vibration power generation body subjected to another electret dielectric 3 charging method and manufacturing method of the vibration power generation body was evaluated. The configuration and structure of the vibration power generator of Example 5 are substantially the same as those of Example 3. In Example 5, after the foamed polypropylene is extruded as the electret dielectric 3 on the center electrode 41, the surface potential of the foamed polypropylene is set to −4 kV (by a corona discharge device disposed with a gap around the outer periphery of the foamed polypropylene. The electret dielectric 3 was formed by approximately uniformly charging the potential of the center electrode to the reference). Thereafter, a tin-plated copper braided wire as the external electrode 43 and polyvinyl chloride as the covering portion 45 were sequentially coated to complete the vibration power generator.
(実施例6)
 実施例6は、実施例5と略同様であるが、エレクトレット誘電体3を押出成形せずに、発泡ポリプロピレン製の絶縁テープ(厚さ約100μm、幅約5mm)を多層に螺旋状にラップ巻きして、厚さ約1mmのエレクトレット誘電体3を形成した。その他の構成、エレクトレット誘電体の帯電処理方法および振動発電体の製造方法は、実施例5と同様である。
(Example 6)
Example 6 is substantially the same as Example 5, but without the electret dielectric 3 being extruded, a foamed polypropylene insulating tape (thickness: about 100 μm, width: about 5 mm) is spirally wrapped in multiple layers. Thus, an electret dielectric 3 having a thickness of about 1 mm was formed. Other configurations, the electret dielectric charging method, and the vibration power generator manufacturing method are the same as in the fifth embodiment.
(比較例7)
 比較例7は、実施例5と略同様であるが、エレクトレット誘電体3として、多孔質材ではないポリプロピレンを、中心電極41上に押し出し被覆して設けた。その他の構成、エレクトレット誘電体3の帯電処理方法および振動発電体の製造方法は、実施例5と同様である。
(Comparative Example 7)
Comparative Example 7 is substantially the same as Example 5, except that polypropylene, which is not a porous material, is extruded and coated on the center electrode 41 as the electret dielectric 3. Other configurations, the electret dielectric 3 charging method, and the vibration power generator manufacturing method are the same as in the fifth embodiment.
(比較例8)
 比較例8は、実施例6と略同様であるが、エレクトレット誘電体3として、多孔質材ではないポリプロピレン製の絶縁テープ(厚さ約100μm、幅約5mm)を多層に螺旋状にラップ巻きして、厚さ約1mmのエレクトレット誘電体3を形成した。その他の構成、エレクトレット誘電体3の帯電処理方法および振動発電体の製造方法は、実施例6と同様である。
(Comparative Example 8)
Comparative Example 8 is substantially the same as Example 6, but as the electret dielectric 3, a polypropylene insulating tape (thickness: about 100 μm, width: about 5 mm) that is not a porous material is spirally wrapped in multiple layers. Thus, an electret dielectric 3 having a thickness of about 1 mm was formed. Other configurations, the electret dielectric 3 charging method, and the vibration power generator manufacturing method are the same as those in the sixth embodiment.
 図15は、実施例5~実施例6および比較例7~比較例8の各振動発電体について、2枚の剛性の高い板間に各振動発電体を挟み込み、2枚の板の外側から同一の振動(振動周波数は1Hz)を与えた場合の発電出力電圧の評価結果を示す。なお、発電出力電圧としては、実施例5の振動発電体の発電出力電圧を1として、規格化した相対的な発電出力電圧を示す。 FIG. 15 shows the vibration power generators of Examples 5 to 6 and Comparative Examples 7 to 8, with the vibration power generators sandwiched between two rigid plates and the same from the outside of the two plates. The evaluation result of the power generation output voltage when the vibration (vibration frequency is 1 Hz) is given. In addition, as a power generation output voltage, the power generation output voltage of the vibration power generation body of Example 5 is set to 1, and a normalized relative power generation output voltage is shown.
 前述の通り、実施例5、6および比較例7、8でのエレクトレット誘電体3は、全て同じ表面電位となるように帯電処理が施されているが、エレクトレット誘電体3の材質として多孔質材を用いた実施例5、6は、多孔質材を用いていない比較例7、8に対して、相対的に高い発電出力電圧を示した。すなわち、エレクトレット誘電体3を変形しやすくすることで、発電出力電圧は向上する。 As described above, the electret dielectrics 3 in Examples 5 and 6 and Comparative Examples 7 and 8 are all charged so as to have the same surface potential, but the electret dielectric 3 is made of a porous material. In Examples 5 and 6 using, the power generation output voltage was relatively high compared to Comparative Examples 7 and 8 in which no porous material was used. That is, the power generation output voltage is improved by making the electret dielectric 3 easier to deform.
 なお、前述の通り、エレクトレット誘電体3を押出成形した実施例5と、絶縁テープによって形成した実施例6との比較からも明らかなように、絶縁テープによってエレクトレット誘電体3を形成する方が発電出力電圧は高い傾向はあるものの、その差は小さい。すなわち、振動発電体の製造性などを考慮して、いずれの構成とするかは適宜設定すればよい。 As described above, as is clear from a comparison between Example 5 in which the electret dielectric 3 is extrusion-molded and Example 6 in which the electret dielectric 3 is formed with an insulating tape, it is more efficient to form the electret dielectric 3 with the insulating tape. Although the output voltage tends to be high, the difference is small. That is, in consideration of the manufacturability of the vibration power generator, which configuration is to be set may be appropriately set.
 また、実施例3と実施例5、実施例4と実施例6、比較例5と比較例7、比較例6と比較例8は、それぞれ振動発電体の構成、構造が同じであるが、エレクトレット誘電体3の帯電処理方法および振動発電体の製造方法が異なる。ここで、図14と図15における各振動発電体の発電出力電圧を比較すると、振動発電体の構成、構造が同じであるにも関わらず、実施例3、実施例4に対する比較例5、比較例6の発電出力電圧の比は、実施例5、実施例6に対する比較例7、比較例8の発電出力電圧の比と比べるとかなり小さい。これは、前述したように比較例5、比較例6におけるエレクトレット誘電体3の帯電が十分でないことが理由の一つである。このようなエレクトレット誘電体3の不十分な帯電が生じた理由としては、エレクトレット誘電体3の帯電処理方法と振動発電体の製造方法の差に起因しているものと考えられる。すなわち、振動発電体の最終工程としてエレクトレット誘電体3を挟む一対の電極間に電圧を印加してエレクトレットを帯電処理する場合には(実施例3、4、比較例5、6)、多孔質なエレクトレット誘電体に対しては比較的低い電圧(直流電圧あるいは交流電圧)で帯電処理が可能である。これに対し、多孔質でないエレクトレット誘電体3に対しては比較的高い電圧で帯電処理を行う必要がある。このため、双方のエレクトレット誘電体3を同一電圧値で帯電処理した場合には、多孔質でないエレクトレット誘電体での帯電不足が生じる可能性がある。一方、振動発電体の製造工程の中間工程として、エレクトレット誘電体を帯電処理する場合には(実施例5、6、比較例7、8)、外部に設けたコロナ放電発生装置によって、強制的にエレクトレット誘電体3の表面電位を調整できるため、エレクトレット誘電体3の帯電不足は生じない。両者のエレクトレット誘電体3の帯電方法および振動発電体の製造方法には一長一短はあるものの、振動発電体の製造工程の最終工程で振動発電体の電極間に電圧を印加することによりエレクトレット誘電体3の帯電処理を行う方法は、外部に大掛かりなコロナ放電発生装置を設ける必要がない点や、振動発電体の製造工程の品質管理の点で利便性が高い。そして、多孔質なエレクトレット誘電体3を振動発電体に用いることで、そのような振動発電体の製造方法を採用することが容易となる。 Further, Example 3 and Example 5, Example 4 and Example 6, Comparative Example 5 and Comparative Example 7, and Comparative Example 6 and Comparative Example 8 have the same configuration and structure of the vibration power generator, respectively. The charging method of the dielectric 3 and the method of manufacturing the vibration power generator are different. Here, when the power generation output voltage of each vibration power generation body in FIGS. 14 and 15 is compared, although the configuration and structure of the vibration power generation body are the same, Comparative Example 5 and Comparison with Example 3 and Example 4 are compared. The ratio of the power generation output voltage of Example 6 is considerably smaller than the ratio of the power generation output voltage of Comparative Example 7 and Comparative Example 8 to Example 5 and Example 6. This is one of the reasons that the electret dielectric 3 in Comparative Example 5 and Comparative Example 6 is not sufficiently charged as described above. The reason why the electret dielectric 3 is insufficiently charged is considered to be caused by a difference between the electret dielectric 3 charging method and the vibration power generator manufacturing method. That is, when the electret is charged by applying a voltage between a pair of electrodes sandwiching the electret dielectric 3 as a final step of the vibration power generator (Examples 3 and 4, Comparative Examples 5 and 6), The electret dielectric can be charged with a relatively low voltage (DC voltage or AC voltage). On the other hand, the electret dielectric 3 that is not porous needs to be charged at a relatively high voltage. Therefore, when both electret dielectrics 3 are charged with the same voltage value, there is a possibility that insufficient electrification with non-porous electret dielectrics will occur. On the other hand, when electret dielectrics are charged as an intermediate step in the manufacturing process of the vibration power generator (Examples 5 and 6, Comparative Examples 7 and 8), the corona discharge generator provided externally forcibly Since the surface potential of the electret dielectric 3 can be adjusted, the electret dielectric 3 is not insufficiently charged. Although there are advantages and disadvantages in both the electret dielectric 3 charging method and the vibration power generator manufacturing method, the electret dielectric 3 is applied by applying a voltage between the electrodes of the vibration power generator in the final step of the vibration power generator manufacturing process. This charging method is highly convenient in that it is not necessary to provide a large-scale corona discharge generator outside and in terms of quality control in the manufacturing process of the vibration power generator. And it becomes easy to employ | adopt the manufacturing method of such a vibration electric power generation body by using the porous electret dielectric material 3 for a vibration electric power generation body.
 以上のように、多孔質材であるエレクトレット誘電体3を用いることで、高い発電出力電圧を得ることができる。 As described above, a high power generation output voltage can be obtained by using the electret dielectric 3 that is a porous material.
 以上、本発明によれば、帯電処理が容易であり、フレキシブル性や自在加工性に優れ、大面積化も容易な振動発電体を得ることができる。本発明の振動発電体としては、例えば、道路下や橋梁、高速道路等に設置される防音壁、鉄道のレールや枕木などの車両等が通行することで振動する対象物等へ設置することができる。この際、得られた電力によって、振動対象物の周囲の状態(温度、湿度、明るさ、振動加速度、歪、変位、風速、車両の通行速度や重量など)を感知し、計測するセンサを駆動させることができる。また、センサで得られた情報を有線または無線によって送信する情報収集システムや監視システムの電源として使用することができる。 As described above, according to the present invention, it is possible to obtain a vibration power generator that can be easily charged, has excellent flexibility and free workability, and can easily be increased in area. As the vibration power generation body of the present invention, for example, it can be installed on an object that vibrates when a vehicle such as a sound barrier, a railroad rail or a sleeper installed under a road, a bridge, or a highway passes. it can. At this time, the obtained electric power senses the surrounding conditions (temperature, humidity, brightness, vibration acceleration, distortion, displacement, wind speed, vehicle speed and weight, etc.) of the vibration object, and drives the sensor for measurement. Can be made. Further, it can be used as a power source for an information collecting system or a monitoring system that transmits information obtained by a sensor by wire or wireless.
 また、得られる電力が大きい場合には、道路等の照明や信号機の補助電源や、スマートグリッド構想での分散電源の一つとして使用することもできる。また、道路等において、車両や人が通行した際の振動によって発電させ、これによって車両や人が通過したという情報と周囲の明るさを感知させてもよい。この場合、周囲が暗い場合にのみ、貯蔵していた電力を利用して車両や人の前方の照明や、案内板、誘導灯等を点灯させることもできる。 Also, when the power obtained is large, it can also be used as one of distributed power sources for lighting such as roads, auxiliary power sources for traffic lights, and smart grid concepts. In addition, on a road or the like, power may be generated by vibration when a vehicle or a person passes, thereby sensing information that the vehicle or person has passed and ambient brightness. In this case, only when the surroundings are dark, the stored power can be used to light the front of the vehicle or person, the guide plate, the guide light, and the like.
 また、本発明の振動発電体は、それ自体が振動等の外力変化を検知するセンサとして用いることもできる。例えば、敷地や通路などに振動発電体を設置し、不審人物が侵入した際の振動で発電させ、不審人物侵入情報を送信するセキュリティシステムに使用することもできる。 Also, the vibration power generator of the present invention can itself be used as a sensor for detecting a change in external force such as vibration. For example, it can be used in a security system in which a vibration power generator is installed in a site, a passage or the like, and power is generated by vibration when a suspicious person invades, thereby transmitting suspicious person intrusion information.
 また、本発明は、車両や航空機、人、動物などのそれ自体が振動する移動体に適用することもできる。例えば、自動車の車体やサスペンション、タイヤ(タイヤのゴム内部あるいはゴム内面、ホイール部など)などに振動発電体や振動発電体ケーブルを設置し、発電した電力で、各種センサを駆動させることもできる。また、得られる電力が大きい場合には、自動車の二次電池への補助充電用の電源としても使用できる。同様に、鉄道車両の車体、車両内部、車輪、ダンパー部、サスペンションなどに適用し、各種センサを駆動させて車両各部の健全性を監視するシステム用の電源、車内照明、非常灯、広告用表示パネル等の(補助)電源として使用することもできる。 Also, the present invention can be applied to a moving body that itself vibrates, such as a vehicle, an aircraft, a person, or an animal. For example, a vibration power generator or a vibration power generator cable may be installed in a car body, a suspension, a tire (such as the inside of a tire, a rubber inner surface, or a wheel portion) of an automobile, and various sensors may be driven by the generated power. Moreover, when the electric power obtained is large, it can also be used as a power source for auxiliary charging to a secondary battery of an automobile. Similarly, it is applied to the body of a railway vehicle, the inside of a vehicle, wheels, dampers, suspensions, etc., and power for systems that monitor various parts of the vehicle by driving various sensors, interior lighting, emergency lights, advertising displays It can also be used as an (auxiliary) power source for panels and the like.
 また、車両等の座席に振動発電体を設置し、人が着座した際または着座中の振動によって発電させ、人の着座を検知し、運転席や操縦席に情報を知らせるシステムのセンサおよび電源として使用することもできる。 As a system sensor and power supply, a vibration power generator is installed in the seat of a vehicle, etc., and when a person is seated or generated by vibration during seating, it detects the person's seating and informs the driver's seat or cockpit. It can also be used.
 また、ビルや工場、住宅等の建築構造物あるいは建築構造物に内包される構造物に振動発電体や振動発電ケーブルを適用することもできる。例えば、上述の建築構造物は、地面の振動、風の影響、内部の人の移動、内部に設置された機械装置(例えば、モータなどの回転機や工場内の生産設備、エレベータやエスカレータなどの昇降機、空調ファンなど)が作動する際の振動等を受けて、それ自体が振動する。したがって、このような振動を受けやすい部位に振動発電体を設置して発電させ、非常用電源や各種センサや通信用電源等の駆動電源として使用することもできる。 Also, a vibration power generator or a vibration power cable can be applied to a building structure such as a building, factory, or house, or a structure included in a building structure. For example, the above-mentioned building structure includes the vibration of the ground, the influence of wind, the movement of people inside, the mechanical devices installed inside (for example, rotating machines such as motors, production equipment in factories, elevators and escalators, etc. In response to vibration when an elevator, an air conditioning fan, etc.) are operating, it itself vibrates. Therefore, it is possible to install a vibration power generator in a site that is susceptible to such vibration and generate electric power, and use it as a driving power source such as an emergency power source, various sensors, or a communication power source.
 また、本発明の振動発電体を、パソコンや携帯電話、リモコンなどの携帯用電子機器や、タッチパネルやキーボード、プッシュボタンなどの入力装置にも適用することができる。例えば、パソコンや携帯電話などの携帯用電子機器の筐体に振動発電体を設置し、それらの機器の運搬時や使用時の振動によって発電させ、二次電池への補助充電用電源等に用いることもできる。また、入力装置の振動によって発電させ、入力情報を親局等に送信するシステムの電源としても使用することができる。 Also, the vibration power generator of the present invention can be applied to portable electronic devices such as personal computers, mobile phones, and remote controllers, and input devices such as touch panels, keyboards, and push buttons. For example, a vibration power generator is installed in the casing of a portable electronic device such as a personal computer or a mobile phone, and the power is generated by vibration during transportation or use of the device and used as an auxiliary charging power source for a secondary battery. You can also. It can also be used as a power source for a system that generates power by vibration of an input device and transmits input information to a master station or the like.
 以上、添付図を参照しながら、本発明の実施の形態を説明したが、本発明の技術的範囲は、前述した実施の形態に左右されない。当業者であれば、特許請求の範囲に記載された技術的思想の範疇内において各種の変更例または修正例に想到し得ることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される。 The embodiment of the present invention has been described above with reference to the accompanying drawings, but the technical scope of the present invention is not affected by the above-described embodiment. It is obvious for those skilled in the art that various modifications or modifications can be conceived within the scope of the technical idea described in the claims, and these are naturally within the technical scope of the present invention. It is understood that it belongs.
1、1a、30、40、40a、40b………振動発電体
3………エレクトレット誘電体
4………空孔
5a、5b、31a、31b………電極
6………空隙
7………スペーサ
9………非接合部
11………接触部
33………導体層
35………樹脂層
41………中心電極
43………外部電極
45………被覆部
47………空間
49………弾性体
51………樹脂テープ
60………振動発電装置
61………ダイオード
63………蓄電部
65………スイッチ
67………整流回路
69………蓄電回路
 
1, 1a, 30, 40, 40a, 40b ......... Vibration generator 3 ......... Electret dielectric 4 ...... Hole 5a, 5b, 31a, 31b ......... Electrode 6 ...... Gap 7 ......... Spacer 9 ......... Non-joint part 11 ... Contact part 33 ... Conductor layer 35 ... Resin layer 41 ... Center electrode 43 ... External electrode 45 ... Cover part 47 ... Space 49 ......... Elastic body 51 ......... Resin tape 60 ......... Vibration power generator 61 ......... Diode 63 ......... Power storage unit 65 ......... Switch 67 ......... Rectifier circuit 69 ......... Power storage circuit

Claims (5)

  1.  一対の電極と、
     前記一対の電極の間に設けられ、電荷を保持したエレクトレット誘電体と、
     を具備し、
     前記エレクトレット誘電体は内部に空孔を有する多孔質材で構成された可撓性を有するものであり、
     外力が付与された際、一対の前記電極の少なくとの一方と前記エレクトレット誘電体との距離が、少なくとも一部において変化可能であることを特徴とする振動発電体。
    A pair of electrodes;
    An electret dielectric that is provided between the pair of electrodes and retains a charge;
    Comprising
    The electret dielectric is a flexible material composed of a porous material having pores inside.
    A vibration power generator, wherein when an external force is applied, a distance between at least one of the pair of electrodes and the electret dielectric can be changed at least in part.
  2.  少なくとも一方の前記電極と前記エレクトレット誘電体との間には、互いに接合されない非接合部が形成され、
     外力が付与された際、前記非接合部の少なくとも一部において、前記エレクトレット誘電体と、少なくとも一方の前記電極との距離が変化可能であることを特徴とする請求項1記載の振動発電体。
    Between at least one of the electrodes and the electret dielectric, a non-joined portion that is not joined to each other is formed,
    The vibration power generator according to claim 1, wherein when an external force is applied, a distance between the electret dielectric and at least one of the electrodes is changeable in at least a part of the non-joining portion.
  3.  前記エレクトレット誘電体と少なくとも一方の前記電極との間には、部分的にスペーサが設けられ、少なくとも一部の前記スペーサを介して、前記エレクトレット誘電体と前記電極とが接合され、前記スペーサ以外の部位が、前記非接合部となることを特徴とする請求項2記載の振動発電体。 A spacer is partially provided between the electret dielectric and at least one of the electrodes, and the electret dielectric and the electrode are joined via at least a part of the spacer, and other than the spacer The vibration power generator according to claim 2, wherein a part is the non-joining part.
  4.  前記一対の電極の一方は中心電極であり、他方は外部電極であり、
     前記エレクトレット誘電体は、前記中心電極の外周に設けられ、前記外部電極は、前記エレクトレット誘電体の外周に設けられ、
     前記外部電極の外周が被覆部で被覆されることを特徴とする請求項1記載の振動発電体。
    One of the pair of electrodes is a center electrode, the other is an external electrode,
    The electret dielectric is provided on the outer periphery of the center electrode, and the external electrode is provided on the outer periphery of the electret dielectric,
    The vibration power generator according to claim 1, wherein an outer periphery of the external electrode is covered with a covering portion.
  5.  振動発電体の製造方法であって、
     一対の電極と、前記一対の電極の間に設けられ、内部に空孔を有する多孔質材であるエレクトレット誘電体と、を具備し、少なくとも一方の前記電極と前記エレクトレット誘電体との間には互いに接合されない非接合部を有し、前記非接合部の少なくとも一部には空隙を有する帯電処理前の振動発電体を用い、
     前記一対の電極の間に電圧を付与し、前記空孔の内部あるいは前記空隙の内部で放電を生じさせることで、前記エレクトレット誘電体を帯電させることを特徴とする振動発電体の製造方法。
     
    A method of manufacturing a vibration power generator,
    A pair of electrodes, and an electret dielectric that is a porous material provided between the pair of electrodes and having pores therein, and between at least one of the electrodes and the electret dielectric Using non-bonded portions that are not bonded to each other, using a vibration power generation body before charging treatment having a gap in at least a part of the non-bonded portions,
    A method of manufacturing a vibration power generator, wherein a voltage is applied between the pair of electrodes to cause discharge in the voids or in the gaps, thereby charging the electret dielectric.
PCT/JP2013/065856 2012-07-25 2013-06-07 Vibration power generation body and method for producing same WO2014017184A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012165191A JP5691080B2 (en) 2012-07-25 2012-07-25 Vibrating power generator, manufacturing method thereof and power generation method
JP2012-165191 2012-07-25

Publications (1)

Publication Number Publication Date
WO2014017184A1 true WO2014017184A1 (en) 2014-01-30

Family

ID=49997001

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/065856 WO2014017184A1 (en) 2012-07-25 2013-06-07 Vibration power generation body and method for producing same

Country Status (2)

Country Link
JP (1) JP5691080B2 (en)
WO (1) WO2014017184A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016075882A1 (en) * 2014-11-13 2016-05-19 Ricoh Company, Ltd. Element and electric power generator
WO2016117285A1 (en) * 2015-01-22 2016-07-28 Ricoh Company, Ltd. Element and electric generator
WO2017159023A1 (en) * 2016-03-14 2017-09-21 株式会社リコー Input element and input device
JP2017215867A (en) * 2016-06-01 2017-12-07 株式会社リコー Input element and input device
EP3330986A1 (en) * 2016-12-05 2018-06-06 Chambre de Commerce et d'Industrie de Région Paris Ile de France (ESIEE Paris) Compressible fibrous electret structure and electrostatic transducer for kinetic energy harvesting
JP2018188128A (en) * 2017-05-11 2018-11-29 ハンコック タイヤ カンパニー リミテッド Tire including contact-charging self-generating module
US10248241B2 (en) 2015-05-07 2019-04-02 Ricoh Company, Ltd. Digital signage system
WO2023276941A1 (en) * 2021-06-29 2023-01-05 株式会社村田製作所 Structure

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6540125B2 (en) 2015-03-18 2019-07-10 株式会社リコー Power generation element and power generation apparatus
US10305020B2 (en) 2015-05-15 2019-05-28 Ricoh Company, Ltd. Element and electric generator
JP6736861B2 (en) 2015-09-28 2020-08-05 株式会社リコー Power generating element, light emitting element, band-shaped light emitter, and rescue display device
US11189778B2 (en) 2016-03-07 2021-11-30 Ricoh Company, Ltd. Element, cell, and power generation device
JP7432298B2 (en) * 2017-09-29 2024-02-16 住友理工株式会社 Transducer and its manufacturing method
JP7182384B2 (en) * 2017-12-27 2022-12-02 住友理工株式会社 Transducer and manufacturing method thereof
WO2019065960A1 (en) * 2017-09-29 2019-04-04 住友理工株式会社 Transducer and method for manufacturing same
JP7250490B2 (en) * 2018-11-29 2023-04-03 住友理工株式会社 transducer
JP7029946B2 (en) * 2017-11-30 2022-03-04 住友理工株式会社 Transducer
JP7132808B2 (en) * 2018-09-27 2022-09-07 住友理工株式会社 Transducer and manufacturing method thereof
EP3668115A4 (en) * 2017-11-30 2021-03-17 Sumitomo Riko Company Limited Transducer and method for manufacturing same
JP7132805B2 (en) * 2018-09-25 2022-09-07 住友理工株式会社 transducer
CN113647118B (en) * 2019-03-28 2024-03-08 住友理工株式会社 Electrostatic transducer and electrostatic transducer unit
JP7370517B2 (en) * 2019-04-05 2023-10-30 国立大学法人京都工芸繊維大学 Piezoelectric element
JPWO2020217855A1 (en) * 2019-04-26 2020-10-29
JP2021064690A (en) 2019-10-11 2021-04-22 株式会社リコー Element and method for manufacturing element
JP2022147757A (en) 2021-03-23 2022-10-06 株式会社リコー element

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5414696A (en) * 1977-07-04 1979-02-03 Lewiner Jacques Electromechanical transducer
JP2008053527A (en) * 2006-08-25 2008-03-06 Nsk Ltd Dielectric rubber laminate, and its manufacturing method
JP2010089496A (en) * 2008-09-12 2010-04-22 Yupo Corp Electret having electro-conductive layer
JP2011529153A (en) * 2008-07-23 2011-12-01 シングル・ブイ・ムアリングス・インコーポレイテッド Wave energy converter
EP2448030A1 (en) * 2010-10-26 2012-05-02 Bayer MaterialScience AG Electromechanical converter with a dual layer base element and method for producing an electromechanical converter

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5414696A (en) * 1977-07-04 1979-02-03 Lewiner Jacques Electromechanical transducer
JP2008053527A (en) * 2006-08-25 2008-03-06 Nsk Ltd Dielectric rubber laminate, and its manufacturing method
JP2011529153A (en) * 2008-07-23 2011-12-01 シングル・ブイ・ムアリングス・インコーポレイテッド Wave energy converter
JP2010089496A (en) * 2008-09-12 2010-04-22 Yupo Corp Electret having electro-conductive layer
EP2448030A1 (en) * 2010-10-26 2012-05-02 Bayer MaterialScience AG Electromechanical converter with a dual layer base element and method for producing an electromechanical converter

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016075882A1 (en) * 2014-11-13 2016-05-19 Ricoh Company, Ltd. Element and electric power generator
JP2016103967A (en) * 2014-11-13 2016-06-02 株式会社リコー Element and power generation device
CN107004757A (en) * 2014-11-13 2017-08-01 株式会社理光 Element and generator
US10777731B2 (en) 2014-11-13 2020-09-15 Ricoh Company, Ltd. Element and electric power generator
WO2016117285A1 (en) * 2015-01-22 2016-07-28 Ricoh Company, Ltd. Element and electric generator
JP2016139779A (en) * 2015-01-22 2016-08-04 株式会社リコー Element and power generator
US10636958B2 (en) 2015-01-22 2020-04-28 Ricoh Company, Ltd. Element and electric generator
US10248241B2 (en) 2015-05-07 2019-04-02 Ricoh Company, Ltd. Digital signage system
JPWO2017159023A1 (en) * 2016-03-14 2018-09-27 株式会社リコー Input element and input device
CN108780370A (en) * 2016-03-14 2018-11-09 株式会社理光 Input element and input unit
WO2017159023A1 (en) * 2016-03-14 2017-09-21 株式会社リコー Input element and input device
US11010004B2 (en) 2016-03-14 2021-05-18 Ricoh Company, Ltd. Input element and input device
CN108780370B (en) * 2016-03-14 2021-10-15 株式会社理光 Input element and input device
JP2017215867A (en) * 2016-06-01 2017-12-07 株式会社リコー Input element and input device
WO2018104244A1 (en) * 2016-12-05 2018-06-14 Chambre De Commerce Et D'industrie De Region Paris Ile De France (Esiee Paris) Electrostatic transducer for kinetic energy harvesting or mechanical sensing
EP3330986A1 (en) * 2016-12-05 2018-06-06 Chambre de Commerce et d'Industrie de Région Paris Ile de France (ESIEE Paris) Compressible fibrous electret structure and electrostatic transducer for kinetic energy harvesting
JP2018188128A (en) * 2017-05-11 2018-11-29 ハンコック タイヤ カンパニー リミテッド Tire including contact-charging self-generating module
WO2023276941A1 (en) * 2021-06-29 2023-01-05 株式会社村田製作所 Structure

Also Published As

Publication number Publication date
JP5691080B2 (en) 2015-04-01
JP2014027756A (en) 2014-02-06

Similar Documents

Publication Publication Date Title
JP5691080B2 (en) Vibrating power generator, manufacturing method thereof and power generation method
JP5691085B2 (en) Vibration generator and power generation method using the same
JP5480414B2 (en) Vibration power generation cable, manufacturing method thereof, and vibration power generation body
Xia et al. A triboelectric nanogenerator based on waste tea leaves and packaging bags for powering electronic office supplies and behavior monitoring
KR101928088B1 (en) Single-Electrode Friction Nano Generator, Power Generation Method And Self-Driven Tracker
CN104868777B (en) friction nanometer generator, generator set and power generation method
WO2014208683A1 (en) Power transmitter, power supply device, power consumption device, power supply system and method for producing power transmitter
US10770637B2 (en) Energy harvester
JP5411871B2 (en) Electret electrode, actuator using the same, vibration power generator, vibration power generation device, and communication device equipped with the vibration power generation device
CN101384102B (en) Electrostatic electroacoustic transducers
JP4663035B2 (en) Vibration power generator, vibration power generation device, and communication device equipped with vibration power generation device
US20150048715A1 (en) Paper-base flexible power-generation apparatus, and manufacturing method thereof
JP2014515704A (en) Multilayer composite with electroactive layer
JP6133118B2 (en) Vibration generator
JP6133050B2 (en) Stacked power generator
JP2014207391A (en) Power generation element, power generation device, power generation unit, and power generation element installation method
JP6097550B2 (en) Laminated power generator
JP2014207867A (en) Vibration power generation body, manufacturing method thereof, and power generation method
JP6278619B2 (en) Vibration generator
JP2015045967A (en) Pressure-sensitive input member and device using the same
JP5545091B2 (en) Electrostatic speaker
JP6247928B2 (en) Vibration generator
WO2015129393A1 (en) Power generation device and piezoelectric device
JP6133051B2 (en) Laminated power generator, power generation method of laminated power generator
JP6155242B2 (en) Vibration power generation body and method for electrification of vibration power generation body

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13823634

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13823634

Country of ref document: EP

Kind code of ref document: A1