WO2014017077A1 - タッチ入力デバイス制御装置およびタッチ入力デバイス制御方法 - Google Patents
タッチ入力デバイス制御装置およびタッチ入力デバイス制御方法 Download PDFInfo
- Publication number
- WO2014017077A1 WO2014017077A1 PCT/JP2013/004478 JP2013004478W WO2014017077A1 WO 2014017077 A1 WO2014017077 A1 WO 2014017077A1 JP 2013004478 W JP2013004478 W JP 2013004478W WO 2014017077 A1 WO2014017077 A1 WO 2014017077A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- drive
- line
- voltage
- lines
- output voltage
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/01—Input arrangements or combined input and output arrangements for interaction between user and computer
- G06F3/03—Arrangements for converting the position or the displacement of a member into a coded form
- G06F3/041—Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
- G06F3/0414—Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means using force sensing means to determine a position
- G06F3/04144—Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means using force sensing means to determine a position using an array of force sensing means
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/01—Input arrangements or combined input and output arrangements for interaction between user and computer
- G06F3/03—Arrangements for converting the position or the displacement of a member into a coded form
- G06F3/041—Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
- G06F3/0414—Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means using force sensing means to determine a position
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/01—Input arrangements or combined input and output arrangements for interaction between user and computer
- G06F3/03—Arrangements for converting the position or the displacement of a member into a coded form
- G06F3/041—Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
- G06F3/0412—Digitisers structurally integrated in a display
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/01—Input arrangements or combined input and output arrangements for interaction between user and computer
- G06F3/03—Arrangements for converting the position or the displacement of a member into a coded form
- G06F3/041—Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
- G06F3/0416—Control or interface arrangements specially adapted for digitisers
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/01—Input arrangements or combined input and output arrangements for interaction between user and computer
- G06F3/03—Arrangements for converting the position or the displacement of a member into a coded form
- G06F3/041—Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
- G06F3/0416—Control or interface arrangements specially adapted for digitisers
- G06F3/04166—Details of scanning methods, e.g. sampling time, grouping of sub areas or time sharing with display driving
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/01—Input arrangements or combined input and output arrangements for interaction between user and computer
- G06F3/03—Arrangements for converting the position or the displacement of a member into a coded form
- G06F3/041—Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
- G06F3/045—Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means using resistive elements, e.g. a single continuous surface or two parallel surfaces put in contact
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/01—Input arrangements or combined input and output arrangements for interaction between user and computer
- G06F3/03—Arrangements for converting the position or the displacement of a member into a coded form
- G06F3/041—Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
- G06F3/047—Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means using sets of wires, e.g. crossed wires
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F2203/00—Indexing scheme relating to G06F3/00 - G06F3/048
- G06F2203/041—Indexing scheme relating to G06F3/041 - G06F3/045
- G06F2203/04104—Multi-touch detection in digitiser, i.e. details about the simultaneous detection of a plurality of touching locations, e.g. multiple fingers or pen and finger
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F2203/00—Indexing scheme relating to G06F3/00 - G06F3/048
- G06F2203/041—Indexing scheme relating to G06F3/041 - G06F3/045
- G06F2203/04106—Multi-sensing digitiser, i.e. digitiser using at least two different sensing technologies simultaneously or alternatively, e.g. for detecting pen and finger, for saving power or for improving position detection
Definitions
- the present invention relates to an apparatus and method for controlling a touch input device.
- Interface devices such as touch panels and touchpads that allow input by directly touching the display screen with a finger are widely used in personal computers, various portable devices and mobile phones. Recently, in addition to the coordinates of the touch point, devices that can acquire attribute information related to the touch point such as the strength of the touch (pressure) and the direction of the finger have appeared.
- Patent Document 1 discloses a portable image display device having display screens on both sides.
- a multi-touch panel called a projection type that performs time-division scanning by arranging detection points in an XY grid has become mainstream.
- multi-touch input for touching a plurality of locations on such a projection-type touch panel or touch pad it is difficult to detect the positions and pressures of the plurality of touch points with high accuracy.
- voltage is detected from locations that are not actually touched, and as a result, a certain pressure is felt as if touching locations that are not actually touched. The problem of “ghost touch” is detected.
- the present invention has been made in view of these problems, and an object of the present invention is to provide a technique capable of accurately detecting a multi-touch input.
- a touch input device control apparatus includes a plurality of conductor lines arranged in each of the first direction and the second direction, and the two conductor lines intersecting each other.
- a touch input device provided with a pressure-sensitive resistor and a conductor line arranged in the first direction as a drive line
- one drive line is sequentially selected from a plurality of drive lines and driven to the selected drive line
- a voltage detection unit that selects a sensing line sequentially from a plurality of sensing lines and detects an output voltage of the selected sensing line
- a drive unit that applies a voltage and a conductor line arranged in the second direction as a sensing line
- the selected drive line and the selected sensing line based on the drive voltage and the output voltage
- a computing section for obtaining the resistance value of the piezo resistance provided at a position crossing.
- the drive unit applies a bias voltage of 0 or smaller than the drive voltage to drive lines other than the selected drive line.
- the device includes a touch input device in which a plurality of conductor lines are arranged in each of a first direction and a second direction, and a pressure sensitive resistor is provided at a location where two conductor lines intersect, and the first direction
- a drive unit that sequentially selects one drive line from a plurality of drive lines using the conductor line arranged in the drive line as a drive line, and applies a drive voltage to the selected drive line, and a conductor arranged in the second direction
- a single sensing line is sequentially selected from a plurality of sensing lines, and a voltage detection unit that detects an output voltage of the selected sensing line, and the selected based on the drive voltage and the output voltage
- a calculation unit for obtaining a resistance value of a pressure-sensitive resistor provided at a location where the drive line and the selected sensing line intersect.
- a scanning operation including supplying a driving voltage to the drive line by the driving unit and detecting an output voltage from the sensing line by the voltage detecting unit is performed in two stages. In the first stage scanning operation and the second stage scanning operation, The electrical state given to the drive lines other than the selected drive line by the drive unit is different, and the calculation unit is configured to output a first output voltage detected by the voltage detection unit in a first-stage scanning operation. And a second output voltage detected by the voltage detection unit in the second-stage scanning operation to obtain a final output voltage, and based on the drive voltage and the final output voltage
- the resistance value of the pressure-sensitive resistor provided at the intersection of the selected drive line and the selected sensing line Mel.
- Still another aspect of the present invention is a touch input device control method. This method is applied to a touch input device in which a plurality of conductor lines are arranged in each of a first direction and a second direction, and a pressure sensitive resistor is provided at a location where two conductor lines intersect.
- a drive step in which a conductor line arranged in one direction is used as a drive line, one drive line is sequentially selected from a plurality of drive lines, and a drive voltage is applied to the selected drive line, and the drive line is arranged in the second direction.
- a voltage detection step of sequentially selecting one sensing line from a plurality of sensing lines, using the conductor line as a sensing line, and detecting an output voltage of the selected sensing line, The resistance value of the pressure-sensitive resistor provided at the intersection of the selected drive line and the selected sensing line And a Mel operation step.
- a bias voltage of 0 or smaller than the driving voltage is applied to drive lines other than the selected drive line.
- Still another aspect of the present invention is also a touch input device control method.
- This method is applied to a touch input device in which a plurality of conductor lines are arranged in each of a first direction and a second direction, and a pressure sensitive resistor is provided at a location where two conductor lines intersect.
- a drive step in which a conductor line arranged in one direction is used as a drive line, one drive line is sequentially selected from a plurality of drive lines, and a drive voltage is applied to the selected drive line, and the drive line is arranged in the second direction.
- a voltage detection step of sequentially selecting one sensing line from a plurality of sensing lines, using the conductor line as a sensing line, and detecting an output voltage of the selected sensing line, The resistance value of the pressure-sensitive resistor provided at the intersection of the selected drive line and the selected sensing line And a Mel operation step.
- a scanning operation including supplying a drive voltage to the drive line by the driving step and detecting an output voltage from the sensing line by the voltage detecting step is performed in two stages. In the first stage scanning operation and the second stage scanning operation, The electrical state that the drive step gives to other drive lines other than the selected drive line is different, and the calculation step includes a first output voltage detected by the voltage detection step in a first-stage scanning operation.
- multi-touch input can be detected with high accuracy.
- FIG. 10 is a diagram for describing a modification in which a drive voltage is applied to a drive line to be scanned and a bias voltage is applied to another drive line in the first-stage scanning.
- FIG. 1 is a configuration diagram of a touch input processing device 100 according to an embodiment.
- a part or all of the functional configuration of the touch input processing device 100 illustrated in FIG. 1 can be implemented by hardware, software, or a combination thereof in a personal computer, a game machine, a portable device, a portable terminal, or the like as an example.
- the touch input processing device 100 includes a touch input device unit 140, a main processor 150, and a memory 160.
- the touch input device unit 140 includes a touch input device 110 and a touch input device controller 130 connected to the touch input device 110 by a flexible substrate 120.
- the touch input device 110 uses various methods to make contact points (positions) of fingers or the like (hereinafter referred to as “touch points (positions)”) and capacitances or electrical resistances indicating contact states at the touch points (positions). Or the like (hereinafter referred to as “touch state amount”).
- An example of the touch input device 110 is a touch panel.
- the touch panel is a transparent panel device, and is placed over a display device such as a liquid crystal display or an organic EL (electroluminescence) display. Thereby, the user can input an operation on the screen by directly touching the touch panel with a finger while looking at the screen of the display.
- a touch pad is another example of the touch input device 110 .
- the touchpad is an opaque touch input device and does not come with a display.
- the touch input device controller 130 measures the amount of change in capacitance at each point of the touch input device 110 and detects the position of the touch point and the capacitance value of the touch point.
- the touch input device controller 130 measures the amount of change in pressure at each point of the touch input device 110 and detects the position of the touch point and the pressure value at the touch point. In the present embodiment, an example based on the pressure-sensitive touch input device 110 will be described.
- An example of a pressure-sensitive touchpad is a special pressure-sensitive material printed on a PET film, touching with a feather, such as “feather touch”, and putting pressure on the fingertip. It is possible to measure pressure with a wide dynamic range up to high pressure touch.
- the main processor 150 acquires time-series data of the position and state quantity of the touch point detected by the touch input device controller 130, and reads / writes data from / to the memory 160.
- FIG. 2 is a functional configuration diagram of the touch input device controller 130.
- the touch input device controller 130 includes a drive unit 10, a voltage detection unit 20, an A / D conversion unit 30, a calculation / control unit 40, an output buffer 50, and an output unit 90.
- the drive unit 10 supplies a drive voltage to the drive line of the touch input device 110, and the voltage detection unit 20 detects an output voltage from the sensing line of the touch input device 110.
- the A / D conversion unit 30 performs A / D conversion on the detected output voltage.
- the calculation / control unit 40 obtains the resistance value of the pressure-sensitive resistor provided at the intersection of the drive line and the sensing line from the drive voltage and the output voltage, and adds the pressure-sensitive resistor from the characteristic of the pressure-sensitive resistor. The obtained pressure is obtained and held in the output buffer 50.
- the calculation / control unit 40 controls the timing at which the driving unit 10 drives the drive line and the timing at which the voltage detection unit 20 scans the sensing line.
- the output unit 90 reads data indicating the pressure at each intersection of the drive line and the sensing line from the output buffer 50 and transmits the data to the main processor 150.
- FIG. 3 is a diagram for explaining the internal structure of the touch input device 110.
- strip-like conductor lines are arranged in the horizontal direction and the vertical direction, respectively, and a pressure-sensitive resistor is applied to the intersection of the conductor lines.
- the conductor line is made of a material such as silver, copper, or carbon.
- a pressure-sensitive resistor is a material whose resistance value varies greatly depending on the applied pressure.
- the m conductor lines (horizontal lines) arranged in the horizontal direction of the touch input device 110 are drive lines for applying a voltage
- the n conductor lines (vertical lines) arranged in the vertical direction have a voltage value. It is a sensing line to read.
- the driving unit 10 applies the driving voltage Vcc to the i-th driving line among the m driving lines, and the voltage detecting unit 20 detects the output voltage Vout from the j-th sensing line among the n sensing lines. To do.
- the A / D conversion unit 30 performs A / D conversion on the detected output voltage Vout.
- the arithmetic / control unit 40 obtains the resistance value R of the pressure-sensitive resistor at the intersection (i, j) of the i-th drive line and the j-th sensing line from the drive voltage Vcc and the output voltage Vout.
- the resistance value R of the pressure-sensitive resistor at the intersection (i, j) to be sensed is a function of the applied pressure f, if written as R (f), the output voltage Vout is the sense of the intersection with the drive voltage Vcc.
- Rp is a pull-down resistor Rp connected to each sensing line. This has the effect of stabilizing the voltage value of the sensing line at 0 volts when the intersection is not touched.
- the value of the pull-down resistor Rp is set according to the change range of the resistance value of the pressure sensitive resistor.
- the pull-down resistor Rp is set larger than the maximum value of R (f) to be detected. For example, it is common to set from 1 k ⁇ to 100 k ⁇ .
- the resistance values R (f) of the pressure sensitive resistors at all intersections can be obtained.
- m drive lines and n sensing lines m ⁇ n output voltage detection and A / D conversion are performed.
- FIG. 4 is a graph showing the relationship between the pressure f applied to the pressure sensitive resistor and the resistance value R of the pressure sensitive resistor.
- the unit of the pressure f is N / m 2 and the unit of the resistance value R is ⁇ . Instead of pressure, a unit N force may be used.
- the fR curve is generally a monotone decreasing curve as shown in the figure, and the resistance value decreases as the pressure increases. The order and shape of the curve vary depending on the pressure sensitive resistor material.
- a graph showing the fR characteristic of the pressure sensitive resistor in a table is held in the output buffer 50.
- the calculation / control unit 40 obtains the pressure f corresponding to the resistance value R of the pressure sensitive resistor based on the graph or table indicating the fR characteristic of the pressure sensitive resistor, and outputs the pressure f at the sensed intersection. Store in buffer 50. If the pressure f is 0 or more than a predetermined threshold value, the intersection can be regarded as being touched.
- the output unit 90 reads out and outputs data indicating the pressure at each intersection from the output buffer 50.
- FIG. 5 is a flowchart for explaining the sensing procedure of the pressure-sensitive multi-touch panel.
- the drive unit 10 supplies the drive voltage Vcc to the drive line i of the touch input device 110 (S14).
- the voltage detection unit 20 detects the output voltage Vout of the sensing line j of the touch input device 110, and the A / D conversion unit 30 performs A / D conversion on the detected output voltage Vout (S16).
- the arithmetic / control unit 40 calculates the resistance value R of the pressure-sensitive resistor at the intersection (i, j) from the drive voltage Vcc and the output voltage Vout based on the above equation (2) (S18).
- the calculation / control unit 40 obtains the pressure f applied to the intersection (i, j) from the resistance value R of the pressure-sensitive resistor based on the fR curve (S20).
- variable j designating the sensing line is incremented by 1 (S22). If the variable j is n or less (N in S24), the process returns to step S14, and steps S14 to S22 are repeated. If the variable j exceeds n (Y in S24), the variable i specifying the drive line is incremented by 1 (S26). If the variable i is less than or equal to m (N in S28), the process returns to step S12, Repeat steps S12 to S26. If the variable i exceeds m (Y in S28), the process is terminated.
- Multi-touch input can be detected by such a sensing procedure.
- a problem of “ghost touch” in which the pressure f is detected from an intersection that is not actually touched may occur.
- 6A and 6B are diagrams for explaining a ghost touch that occurs during multi-touch input.
- the intersection (1, 1) reference numeral 200a
- the intersection (4, 1) reference numeral 200b
- the intersection (4, 5) reference numeral 200c
- the drive voltage Vcc is supplied to the drive line 1 and the output voltage Vout of the sensing line 5 is detected while touching these three points simultaneously. Since the intersection (1, 5) is not touched in principle, the resistance value R of the pressure-sensitive resistor at the intersection (1, 5) is infinite, and the output voltage Vout should be zero.
- FIG. 7 is a diagram for explaining a conventional pressure-sensitive multi-touch panel scanning method.
- the drive voltage Vcc is applied only to the drive line to be scanned, and the other drive lines are set to high impedance (Hi-Z).
- Hi-Z high impedance
- lines other than the line which detects a signal can be electrically insulated, and the sensitivity and dynamic range of pressure sensing can be increased.
- drive lines other than the drive line to be scanned can be at any potential, the current as described in FIG. 6B flows, and the intersection (reference numeral 210) of the drive line to be scanned and the sensing line. It is inevitable that a ghost touch occurs in
- FIG. 8A shows the first stage scanning
- FIG. 8B shows the second stage scanning.
- the drive unit 10 applies the drive voltage Vcc to the drive line 1, and the other drive lines 2 to 5 are set to 0 volts.
- the voltage detector 20 detects the output voltage V1 from the sensing line 5, and the A / D converter 30 A / D converts the detected output voltage V1.
- the scanning of the intersection (1, 5) has been described.
- the driving voltage Vcc is applied to the drive line to be scanned at the other intersections, and the other driving lines are driven to 0 volt. To detect the output voltage V1.
- the drive unit 10 applies the drive voltage Vcc to the drive line 1 and sets the other drive lines 2 to 5 to high impedance.
- the voltage detection unit 20 detects the output voltage V2 from the sensing line 5, and the A / D conversion unit 30 performs A / D conversion on the detected output voltage V2.
- the second stage scanning method is the same as the conventional scanning method of FIG.
- the calculation / control unit 40 obtains the resistance value R of the intersection from the drive voltage Vcc and the output voltage Vout based on the equation (2), and obtains the pressure f of the intersection from the fR graph.
- the intersection (1, 1) (reference numeral 200a), the intersection (4, 1) (reference numeral 200b), and the intersection (4, 5) (reference numeral 200c) are actually touched, and the intersection (1, 5 ) Consider the case where it is not actually touched.
- the resistance values of the pressure sensitive resistors at the intersection (1, 1), the intersection (4, 1), and the intersection (4, 5) are R1, R2, and R3, respectively.
- FIG. 9 (a) is a diagram for explaining the output voltage V1 detected in the first stage scanning
- FIG. 9 (b) is an equivalent circuit of FIG. 9 (a).
- a drive voltage Vcc is applied to the drive line 1
- the drive line 4 is driven to 0 volt
- a 10 k ⁇ resistor is connected to the sensing line 5 as a pull-down resistor Rp.
- the output voltage V1 is always 0 volt when the intersection (1, 5) is not actually touched. Become.
- FIG. 10 (a) is a diagram for explaining the output voltage V2 detected in the second stage scanning
- FIG. 10 (b) is an equivalent circuit of FIG. 10 (a).
- a drive voltage Vcc is applied to the drive line 1
- the drive line 4 is set to high impedance
- a 10 k ⁇ resistor is connected to the sensing line 5 as a pull-down resistor Rp.
- the output voltage V2 becomes a positive value when the intersection (1, 5) is not actually touched. (It will not be zero). That is, the second stage scanning is the same as the conventional scanning, and thus a ghost touch is detected.
- Vout V2 ⁇ V1 / (ADC dynamic range) ⁇ 0. That is, since V1 ⁇ 0, when the intersection (1, 5) is actually touched, the output voltage Vout can be obtained with high sensitivity.
- the final output voltage Vout is obtained by multiplying the output voltage V1 detected by the first stage scanning and the output voltage V2 detected by the second stage scanning.
- the output voltage Vout becomes zero and the ghost touch is cancelled.
- the output voltage Vout is detected with high sensitivity.
- the drive line must be in three electrical states: Vcc, 0V, and Hi-Z, but the general microcomputer I / O port can be software controlled in three states, so additional hardware is also required for mounting. do not need.
- 11 to 13 are flowcharts for explaining the sensing procedure of the touch input device 110 according to the present embodiment.
- FIG. 11 is a flowchart for explaining the first-stage scanning procedure.
- the drive unit 10 supplies the drive voltage Vcc to the drive line i and sets the other drive lines to 0 V (S34).
- the voltage detector 20 detects the output voltage V1 of the sensing line j, and the A / D converter 30 A / D converts the detected output voltage V1 (S36).
- the detected output voltage V1 is held in the output buffer 50.
- variable j that designates the sensing line is incremented by 1 (S38). If the variable j is n or less (N in S40), the process returns to step S34, and steps S34 to S38 are repeated. If the variable j exceeds n (Y in S40), the variable i specifying the drive line is incremented by 1 (S42). If the variable i is less than or equal to m (N in S44), the process returns to step S32, Repeat steps S32 to S42. If the variable i exceeds m (Y in S44), the process is terminated.
- FIG. 12 is a flowchart for explaining the scanning procedure in the second stage.
- the drive unit 10 supplies the drive voltage Vcc to the drive line i and sets the other drive lines to Hi-Z (S54).
- the voltage detector 20 detects the output voltage V2 of the sensing line j, and the A / D converter 30 A / D converts the detected output voltage V2 (S56).
- the detected output voltage V2 is held in the output buffer 50.
- variable j that designates the sensing line is incremented by 1 (S58). If the variable j is n or less (N in S60), the process returns to Step S54, and Steps S54 to S58 are repeated. If the variable j exceeds n (Y in S60), the variable i designating the drive line is incremented by 1 (S62). If the variable i is less than or equal to m (N in S64), the process returns to step S52. Repeat steps S52 to S62. If the variable i exceeds m (Y in S64), the process is terminated.
- FIG. 13 calculates the final output voltage Vout by calculating the output voltage V1 detected by the first-stage scanning and the output voltage V2 detected by the second-stage scanning, and calculates the resistance value at the intersection to be scanned. It is a flowchart explaining the procedure which calculates
- variable i specifying the drive line is initialized to 1 (S70).
- variable j for designating a sensing line is initialized to 1 (S72).
- the calculation / control unit 40 acquires the output voltage V1 detected by the first-stage scanning of the intersection (i, j) and the output voltage V2 detected by the second-stage scanning from the output buffer 50 (S74).
- the arithmetic / control unit 40 multiplies the detection voltage V1 at the first stage by the detection voltage V2 at the second stage and divides by the dynamic range of the A / D conversion, thereby obtaining the final intersection (i, j).
- the output voltage Vout is calculated (S76).
- the calculation / control unit 40 calculates the resistance value R of the pressure-sensitive resistor at the intersection (i, j) from the drive voltage Vcc and the final output voltage Vout based on the above equation (2) (S78).
- the calculation / control unit 40 obtains the pressure f applied to the intersection (i, j) from the resistance value R of the pressure-sensitive resistor based on the fR curve (S80).
- variable j that designates the sensing line is incremented by 1 (S82). If the variable j is n or less (N in S84), the process returns to Step S74, and Steps S74 to S82 are repeated. If the variable j exceeds n (Y in S84), the variable i designating the drive line is incremented by 1 (S86). If the variable i is less than or equal to m (N in S88), the process returns to step S72, Steps S72 to S86 are repeated. If the variable i exceeds m (Y in S88), the process ends.
- the drive voltage Vcc is applied to the drive line to be scanned and the other drive lines are set to 0 volts, but the other drive lines are biased to a non-zero bias voltage Vbias smaller than Vcc. The same sensing is possible even if applied.
- a modification in which the bias voltage Vbias is applied to another drive line will be described with reference to FIG.
- FIG. 14A illustrates the output voltage V1 detected in the first-stage scanning in a modification in which the drive voltage Vcc is applied to the drive line to be scanned and the non-zero bias voltage Vbias is applied to the other drive lines.
- FIG. 14 (b) is an equivalent circuit of FIG. 14 (a).
- a drive voltage Vcc is applied to the drive line 1
- a bias voltage Vbias is applied to the drive line 4
- a 10 k ⁇ resistor is connected to the sensing line 5 as a pull-down resistor Rp.
- Vcc> Vbias the output voltage V1 does not become a value higher than the bias voltage Vbias. Therefore, even if a ghost touch is detected at the intersection (i, j) (reference numeral 210), the output voltage V1 is suppressed to the bias voltage Vbias or lower.
- the voltage VR (f1) Vcc ⁇ Rp / (Rp + R (f1)) detected when the resistance value R (f1) of the pressure-sensitive resistor corresponding to the minimum pressure f1 to be detected is obtained in advance, and the object to be scanned If the bias voltage Vbias of the drive lines other than the drive line is set to be equal to or lower than the voltage VR (f1), if the output voltage V1 is equal to or lower than the bias voltage Vbias, the output is regarded as a ghost touch. A cancel process for discarding the voltage V1 can be performed.
- the method for detecting the output voltage V2 in the second-stage scanning is the same as the method described in FIG.
- the final output voltage Vout can be obtained by the following equation.
- the functional configurations provided in the touch input device controller 130 may be implemented using the main processor 150 and the memory 160.
- the function of the arithmetic / control unit 40 may be implemented by the main processor 150, and the output buffer 50 may be provided in the memory 160.
- the output unit 90 transmits the output voltage V1 detected by the first stage scanning and the output voltage V2 detected by the second stage scanning to the main processor 150, and the main processor 150 performs the first stage and the second stage scanning.
- 10 drive unit 20 voltage detection unit, 30 A / D conversion unit, 40 calculation / control unit, 50 output buffer, 90 output unit, 100 touch input processing device, 110 touch input device, 120 flexible substrate, 130 touch input device controller 140 touch input device unit, 150 main processor, 160 memory.
- the present invention can be used for technology for controlling a touch input device.
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Human Computer Interaction (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Position Input By Displaying (AREA)
- Electronic Switches (AREA)
Abstract
Description
Vout=Vcc×Rp/(R(f)+Rp) (1)
R(f)=Rp×(Vcc-Vout)/Vout (2)
これにより、駆動電圧Vccのもとで出力電圧Voutを検出すれば、交点の感圧抵抗体の抵抗値R(f)を求めることができる。
Vout=V2×V1/(ADCダイナミックレンジ)
Vout=V2×(V1-Vbias)/(ADCダイナミックレンジ)
ただし、Vout<0となる場合(すなわちV1<Vbias)となるときは、Vout=0とする。
Claims (10)
- 第1方向および第2方向それぞれに複数の導電体ラインが配置され、2本の導電体ラインが交差する箇所に感圧抵抗体が設けられたタッチ入力デバイスと、
前記第1方向に配置された導電体ラインをドライブラインとして、複数のドライブラインから順次一本のドライブラインを選択し、選択したドライブラインに駆動電圧をかける駆動部と、
前記第2方向に配置された導電体ラインをセンシングラインとして、複数のセンシングラインから順次一本のセンシングラインを選択し、選択したセンシングラインの出力電圧を検出する電圧検出部と、
前記駆動電圧および前記出力電圧にもとづいて、前記選択したドライブラインと前記選択したセンシングラインが交差する箇所に設けられた感圧抵抗体の抵抗値を求める演算部とを含み、
前記駆動部は、前記選択したドライブライン以外の他のドライブラインに0または前記駆動電圧よりも小さいバイアス電圧をかけることを特徴とするタッチ入力デバイス制御装置。 - 前記タッチ入力デバイスの前記第2方向の導電体ラインは、前記第1方向の導電体ラインと直交することを特徴とする請求項1に記載のタッチ入力デバイス制御装置。
- 前記電圧検出部は、前記バイアス電圧以下の出力電圧を検出した場合は、検出結果を破棄するキャンセル処理を行うことを特徴とする請求項1または2に記載のタッチ入力デバイス制御装置。
- 第1方向および第2方向それぞれに複数の導電体ラインが配置され、2本の導電体ラインが交差する箇所に感圧抵抗体が設けられたタッチ入力デバイスと、
前記第1方向に配置された導電体ラインをドライブラインとして、複数のドライブラインから順次一本のドライブラインを選択し、選択したドライブラインに駆動電圧をかける駆動部と、
前記第2方向に配置された導電体ラインをセンシングラインとして、複数のセンシングラインから順次一本のセンシングラインを選択し、選択したセンシングラインの出力電圧を検出する電圧検出部と、
前記駆動電圧および前記出力電圧にもとづいて、前記選択したドライブラインと前記選択したセンシングラインが交差する箇所に設けられた感圧抵抗体の抵抗値を求める演算部とを含み、
前記駆動部によりドライブラインへの駆動電圧の供給と前記電圧検出部によるセンシングラインからの出力電圧の検出を含むスキャニング動作を2段階で行い、第1段階のスキャニング動作と第2段階のスキャニング動作において前記駆動部が前記選択したドライブライン以外の他のドライブラインに与える電気的状態は異なっており、
前記演算部は、第1段階のスキャニング動作において前記電圧検出部により検出される第1の出力電圧と、第2段階のスキャニング動作おいて前記電圧検出部により検出される第2の出力電圧とを演算して、最終的な出力電圧を求め、前記駆動電圧および前記最終的な出力電圧にもとづいて、前記選択したドライブラインと前記選択したセンシングラインが交差する箇所に設けられた感圧抵抗体の抵抗値を求めることを特徴とするタッチ入力デバイス制御装置。 - 第1段階のスキャニング動作において、前記駆動部が前記選択したドライブライン以外の他のドライブラインに0または前記駆動電圧よりも小さいバイアス電圧をかけた状態で、前記電圧検出部が前記選択したセンシングラインの第1の出力電圧を検出し、
第2段階のスキャニングにおいて、前記駆動部が前記選択したドライブライン以外の他のドライブラインをハイインピーダンスにした状態で、前記電圧検出部が前記選択したセンシングラインの第2の出力電圧を検出し、
前記演算部は、前記第1の出力電圧と前記第2の出力電圧を演算して最終的な出力電圧を求め、前記駆動電圧および前記最終的な出力電圧にもとづいて、前記選択したドライブラインと前記選択したセンシングラインが交差する箇所に設けられた感圧抵抗体の抵抗値を求めることを特徴とする請求項4に記載のタッチ入力デバイス制御装置。 - 第1段階のスキャニング動作において、前記電圧検出部は、前記バイアス電圧以下の出力電圧を検出した場合は、検出結果を破棄するキャンセル処理を行うことを特徴とする請求項5に記載のタッチ入力デバイス制御装置。
- 第1方向および第2方向それぞれに複数の導電体ラインが配置され、2本の導電体ラインが交差する箇所に感圧抵抗体が設けられたタッチ入力デバイスに対して、前記第1方向に配置された導電体ラインをドライブラインとして、複数のドライブラインから順次一本のドライブラインを選択し、選択したドライブラインに駆動電圧をかける駆動ステップと、
前記第2方向に配置された導電体ラインをセンシングラインとして、複数のセンシングラインから順次一本のセンシングラインを選択し、選択したセンシングラインの出力電圧を検出する電圧検出ステップと、
前記駆動電圧および前記出力電圧にもとづいて、前記選択したドライブラインと前記選択したセンシングラインが交差する箇所に設けられた感圧抵抗体の抵抗値を求める演算ステップとを含み、
前記駆動ステップは、前記選択したドライブライン以外の他のドライブラインに0または前記駆動電圧よりも小さいバイアス電圧をかけることを特徴とするタッチ入力デバイス制御方法。 - 第1方向および第2方向それぞれに複数の導電体ラインが配置され、2本の導電体ラインが交差する箇所に感圧抵抗体が設けられたタッチ入力デバイスに対して、前記第1方向に配置された導電体ラインをドライブラインとして、複数のドライブラインから順次一本のドライブラインを選択し、選択したドライブラインに駆動電圧をかける駆動ステップと、
前記第2方向に配置された導電体ラインをセンシングラインとして、複数のセンシングラインから順次一本のセンシングラインを選択し、選択したセンシングラインの出力電圧を検出する電圧検出ステップと、
前記駆動電圧および前記出力電圧にもとづいて、前記選択したドライブラインと前記選択したセンシングラインが交差する箇所に設けられた感圧抵抗体の抵抗値を求める演算ステップとを含み、
前記駆動ステップによりドライブラインへの駆動電圧の供給と前記電圧検出ステップによるセンシングラインからの出力電圧の検出を含むスキャニング動作を2段階で行い、第1段階のスキャニング動作と第2段階のスキャニング動作において前記駆動ステップが前記選択したドライブライン以外の他のドライブラインに与える電気的状態は異なっており、
前記演算ステップは、第1段階のスキャニング動作において前記電圧検出ステップにより検出される第1の出力電圧と、第2段階のスキャニング動作おいて前記電圧検出ステップにより検出される第2の出力電圧とを演算して、最終的な出力電圧を求め、前記駆動電圧および前記最終的な出力電圧にもとづいて、前記選択したドライブラインと前記選択したセンシングラインが交差する箇所に設けられた感圧抵抗体の抵抗値を求めることを特徴とするタッチ入力デバイス制御方法。 - 第1方向および第2方向それぞれに複数の導電体ラインが配置され、2本の導電体ラインが交差する箇所に感圧抵抗体が設けられたタッチ入力デバイスに対して、前記第1方向に配置された導電体ラインをドライブラインとして、複数のドライブラインから順次選択されるドライブラインに駆動電圧をかけ、前記選択されたドライブライン以外の他のドライブラインに0または前記駆動電圧よりも小さいバイアス電圧をかけた状態で、前記第2方向に配置された導電体ラインをセンシングラインとして、複数のセンシングラインから順次選択されるセンシングラインから検出された出力電圧を受け取り、前記駆動電圧および前記出力電圧にもとづいて、前記選択されたドライブラインと前記選択されたセンシングラインが交差する箇所に設けられた感圧抵抗体の抵抗値を求める演算機能をコンピュータに実現させることを特徴とするプログラム。
- 第1方向および第2方向それぞれに複数の導電体ラインが配置され、2本の導電体ラインが交差する箇所に感圧抵抗体が設けられたタッチ入力デバイスに対して、前記第1方向に配置された導電体ラインをドライブラインとして、複数のドライブラインから順次選択されるドライブラインに駆動電圧をかけた状態で、前記第2方向に配置された導電体ラインをセンシングラインとして、複数のセンシングラインから順次選択されるセンシングラインから検出された出力電圧を受け取り、前記駆動電圧および前記出力電圧にもとづいて、前記選択されたドライブラインと前記選択されたセンシングラインが交差する箇所に設けられた感圧抵抗体の抵抗値を求める演算機能をコンピュータに実現させ、
ドライブラインへの駆動電圧の供給とセンシングラインからの出力電圧の検出を含むスキャニング動作を2段階で行い、第1段階のスキャニング動作と第2段階のスキャニング動作において前記選択されたドライブライン以外の他のドライブラインに与える電気的状態は異なっており、
前記演算機能は、第1段階のスキャニング動作において前記選択されたセンシングラインから検出される第1の出力電圧と、第2段階のスキャニング動作おいて前記選択されたセンシングラインから検出される第2の出力電圧とを演算して、最終的な出力電圧を求め、前記駆動電圧および前記最終的な出力電圧にもとづいて、前記選択されたドライブラインと前記選択されたセンシングラインが交差する箇所に設けられた感圧抵抗体の抵抗値を求めることを特徴とするプログラム。
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201380037957.7A CN104487924B (zh) | 2012-07-26 | 2013-07-23 | 触摸输入设备控制装置、以及触摸输入设备控制方法 |
RU2015106412/08A RU2589294C1 (ru) | 2012-07-26 | 2013-07-23 | Устройство управления устройством сенсорного ввода и способ управления устройством сенсорного ввода |
EP13822683.2A EP2879031B1 (en) | 2012-07-26 | 2013-07-23 | Touch input device control device, and touch input device control method |
BR112015001526-3A BR112015001526B1 (pt) | 2012-07-26 | 2013-07-23 | Aparelho e método de controle de dispositivo de entrada de toque, e, meio de armazenamento não transitório legível por computador |
US14/415,215 US9710094B2 (en) | 2012-07-26 | 2013-07-23 | Touch inputting device controlling apparatus and touch inputting device controlling method |
IN266KON2015 IN2015KN00266A (ja) | 2012-07-26 | 2015-01-29 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012-166304 | 2012-07-26 | ||
JP2012166304A JP5851955B2 (ja) | 2012-07-26 | 2012-07-26 | タッチ入力デバイス制御装置およびタッチ入力デバイス制御方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014017077A1 true WO2014017077A1 (ja) | 2014-01-30 |
Family
ID=49996904
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2013/004478 WO2014017077A1 (ja) | 2012-07-26 | 2013-07-23 | タッチ入力デバイス制御装置およびタッチ入力デバイス制御方法 |
Country Status (8)
Country | Link |
---|---|
US (1) | US9710094B2 (ja) |
EP (1) | EP2879031B1 (ja) |
JP (1) | JP5851955B2 (ja) |
CN (1) | CN104487924B (ja) |
BR (1) | BR112015001526B1 (ja) |
IN (1) | IN2015KN00266A (ja) |
RU (1) | RU2589294C1 (ja) |
WO (1) | WO2014017077A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110582744A (zh) * | 2017-04-21 | 2019-12-17 | 佩拉泰克控股有限公司 | 检测多个手动交互 |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101569339B1 (ko) | 2014-08-19 | 2015-11-27 | 크루셜텍 주식회사 | 센서 패드 및 신호 배선의 용해와 이동이 방지된 플렉시블 터치 검출 장치 및 이의 제어 방법 |
KR101648632B1 (ko) * | 2014-09-18 | 2016-08-16 | 장욱 | 멀티 터치 장치 및 그 장치의 동작 방법 |
US9696831B2 (en) * | 2014-09-26 | 2017-07-04 | Symbol Technologies, Llc | Touch sensor and method for detecting touch input |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003216337A (ja) * | 2002-01-18 | 2003-07-31 | Tokai Rika Co Ltd | タッチパネル |
WO2008026280A1 (fr) * | 2006-08-31 | 2008-03-06 | Pioneer Corporation | Dispositif d'écran tactile matriciel |
JP2010026064A (ja) | 2008-07-16 | 2010-02-04 | Sony Computer Entertainment Inc | 携帯型画像表示装置、その制御方法、プログラム及び情報記憶媒体 |
JP2011243081A (ja) * | 2010-05-20 | 2011-12-01 | Panasonic Corp | タッチパネル装置 |
JP2012515990A (ja) * | 2009-01-23 | 2012-07-12 | クアルコム,インコーポレイテッド | 導電性マルチタッチタッチパネル |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2451981C2 (ru) * | 2006-10-23 | 2012-05-27 | Ей Джин ОХ | Устройство ввода |
TW201007149A (en) * | 2008-08-13 | 2010-02-16 | Ind Tech Res Inst | Array type pressure sensing apparatus and pressure measurement method |
CA2734427C (en) | 2010-03-19 | 2018-05-08 | Xavier Pierre-Emmanuel Saynac | Systems and methods for determining the location and pressure of a touchload applied to a touchpad |
JP5429814B2 (ja) * | 2010-03-29 | 2014-02-26 | 株式会社ワコム | 指示体検出装置および検出センサ |
US20120162122A1 (en) * | 2010-12-27 | 2012-06-28 | 3M Innovative Properties Company | Force sensitive device with force sensitive resistors |
-
2012
- 2012-07-26 JP JP2012166304A patent/JP5851955B2/ja active Active
-
2013
- 2013-07-23 WO PCT/JP2013/004478 patent/WO2014017077A1/ja active Application Filing
- 2013-07-23 RU RU2015106412/08A patent/RU2589294C1/ru active
- 2013-07-23 EP EP13822683.2A patent/EP2879031B1/en active Active
- 2013-07-23 US US14/415,215 patent/US9710094B2/en active Active
- 2013-07-23 CN CN201380037957.7A patent/CN104487924B/zh active Active
- 2013-07-23 BR BR112015001526-3A patent/BR112015001526B1/pt active IP Right Grant
-
2015
- 2015-01-29 IN IN266KON2015 patent/IN2015KN00266A/en unknown
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003216337A (ja) * | 2002-01-18 | 2003-07-31 | Tokai Rika Co Ltd | タッチパネル |
WO2008026280A1 (fr) * | 2006-08-31 | 2008-03-06 | Pioneer Corporation | Dispositif d'écran tactile matriciel |
JP2010026064A (ja) | 2008-07-16 | 2010-02-04 | Sony Computer Entertainment Inc | 携帯型画像表示装置、その制御方法、プログラム及び情報記憶媒体 |
JP2012515990A (ja) * | 2009-01-23 | 2012-07-12 | クアルコム,インコーポレイテッド | 導電性マルチタッチタッチパネル |
JP2011243081A (ja) * | 2010-05-20 | 2011-12-01 | Panasonic Corp | タッチパネル装置 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110582744A (zh) * | 2017-04-21 | 2019-12-17 | 佩拉泰克控股有限公司 | 检测多个手动交互 |
Also Published As
Publication number | Publication date |
---|---|
EP2879031B1 (en) | 2018-11-07 |
CN104487924B (zh) | 2018-08-24 |
US20150177898A1 (en) | 2015-06-25 |
EP2879031A4 (en) | 2016-04-27 |
BR112015001526B1 (pt) | 2022-03-15 |
RU2589294C1 (ru) | 2016-07-10 |
BR112015001526A2 (pt) | 2017-07-04 |
IN2015KN00266A (ja) | 2015-06-12 |
EP2879031A1 (en) | 2015-06-03 |
US9710094B2 (en) | 2017-07-18 |
JP5851955B2 (ja) | 2016-02-03 |
JP2014026465A (ja) | 2014-02-06 |
CN104487924A (zh) | 2015-04-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9459738B2 (en) | Calibration for pressure effects on touch sensor panels | |
JP6221033B2 (ja) | 迅速なセンサセトリングを行うためのタッチセンサ駆動方法 | |
US20090322700A1 (en) | Method and apparatus for detecting two simultaneous touches and gestures on a resistive touchscreen | |
US9606670B2 (en) | Real-time spectral noise monitoring for proximity sensing device | |
JP2008058925A (ja) | タッチパネル式液晶表示器 | |
EP4216043A2 (en) | Open close detection of foldable phone lid angle calculation | |
JP2015532744A5 (ja) | ||
KR101077308B1 (ko) | 터치패널의 압력센싱 모듈 및 그 작동방법 | |
KR101452097B1 (ko) | 터치스크린 장치 | |
US20090085888A1 (en) | Resistive multi-touch panel and detecting method thereof | |
US20120249599A1 (en) | Method of identifying a multi-touch scaling gesture and device using the same | |
TWI766940B (zh) | 施加信號至觸碰感測器 | |
WO2014017077A1 (ja) | タッチ入力デバイス制御装置およびタッチ入力デバイス制御方法 | |
US20130100069A1 (en) | Touch sensing device and method thereof | |
US20220334671A1 (en) | Touch screen controller for determining relationship between a user's hand and a housing of an electronic device | |
US20140347314A1 (en) | Method of detecting touch force and detector | |
US20120013568A1 (en) | Driving method of touch device | |
US10126867B2 (en) | Matched filter for a first order sigma delta capacitance measurement system and a method to determine the same | |
JP5676531B2 (ja) | 入力デバイス制御装置および入力デバイス制御方法 | |
US20150169103A1 (en) | Touch display apparatus | |
US20150138133A1 (en) | Touchscreen device and method of driving the same | |
KR20160025802A (ko) | 터치스크린 장치 및 터치 감지 방법 | |
KR100988724B1 (ko) | 터치 스크린 및 그 터치 감지 방법 | |
JP2011123772A (ja) | タッチセンサを有する装置、データ記憶方法及びデータ記憶プログラム |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13822683 Country of ref document: EP Kind code of ref document: A1 |
|
DPE1 | Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101) | ||
WWE | Wipo information: entry into national phase |
Ref document number: 2013822683 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14415215 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2015106412 Country of ref document: RU Kind code of ref document: A |
|
REG | Reference to national code |
Ref country code: BR Ref legal event code: B01A Ref document number: 112015001526 Country of ref document: BR |
|
ENP | Entry into the national phase |
Ref document number: 112015001526 Country of ref document: BR Kind code of ref document: A2 Effective date: 20150123 |