WO2014016954A1 - Solar cell - Google Patents

Solar cell Download PDF

Info

Publication number
WO2014016954A1
WO2014016954A1 PCT/JP2012/069141 JP2012069141W WO2014016954A1 WO 2014016954 A1 WO2014016954 A1 WO 2014016954A1 JP 2012069141 W JP2012069141 W JP 2012069141W WO 2014016954 A1 WO2014016954 A1 WO 2014016954A1
Authority
WO
WIPO (PCT)
Prior art keywords
solar cell
flakes
bus bar
ratio
finger
Prior art date
Application number
PCT/JP2012/069141
Other languages
French (fr)
Japanese (ja)
Inventor
翔士 佐藤
悟司 東方田
Original Assignee
三洋電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三洋電機株式会社 filed Critical 三洋電機株式会社
Priority to JP2014526685A priority Critical patent/JPWO2014016954A1/en
Priority to PCT/JP2012/069141 priority patent/WO2014016954A1/en
Publication of WO2014016954A1 publication Critical patent/WO2014016954A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0236Special surface textures
    • H01L31/02363Special surface textures of the semiconductor body itself, e.g. textured active layers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention relates to a solar cell.
  • the solar cell is provided with comb-like fingers 12 and bus bars 14 on the front and back surfaces of the photoelectric conversion unit 10.
  • the fingers 12 and the bus bar 14 are used as collecting electrodes that extract the electric power generated by the photoelectric conversion unit 10 to the outside of the solar cell.
  • Finger 12 and bus bar 14 are formed by applying a conductive paste on photoelectric conversion unit 10 using screen printing or the like.
  • a conductive paste for example, a resin-type conductive paste in which a resin material such as an epoxy resin is used as a binder and conductive particles such as silver particles are mixed as a filler can be used.
  • the shape of the conductive particles may be a mixture of flakes and spheres, a mixture of particles having different sizes, or an uneven shape on the surface.
  • One aspect of a solar cell according to the present invention includes a power generation unit that generates power upon receiving light, and a collector electrode including silver that is electrically connected to the power generation unit.
  • the collector electrode includes silver particles. It includes a network structure welded to each other and flakes that are particles of a conductive material, and the ratio of the flakes is 60% by weight or less.
  • the output can be improved in the solar cell having a network structure on the collector electrode.
  • the solar cell 100 includes a photoelectric conversion unit 20, fingers 22, and a bus bar 24 as shown in FIGS.
  • FIG. 1 is a plan view of the solar cell 100 on the light receiving surface side.
  • FIG. 2 is a plan view of the back side of the solar cell 100.
  • FIG. 3 shows a cross-sectional view along line AA in FIGS.
  • light-receiving surface means a main surface on which sunlight mainly enters from the outside of the solar cell
  • back surface means a main surface opposite to the light-receiving surface. For example, more than 50% to 100% of sunlight incident on the solar cell 100 enters from the light receiving surface side.
  • the photoelectric conversion unit 20 has a semiconductor junction such as a pn or pin junction, a crystalline semiconductor material such as single crystal Si or polycrystalline Si, a thin film semiconductor material such as an amorphous Si alloy or CuInSe, or GaAs. It is made of a semiconductor material such as a compound semiconductor material such as InP. Further, an organic material such as a dye-sensitized type may be used.
  • the photoelectric conversion unit 20 includes a substrate 20a, an i-type amorphous silicon layer 20b, a p-type amorphous silicon layer 20c, a transparent conductive layer 20d, an i-type amorphous silicon layer 20e, and an n-type amorphous silicon layer. 20f and the transparent conductive layer 20g can be comprised.
  • An i-type amorphous silicon layer 20b and a p-type amorphous silicon layer 20c are provided on the upper surface side of the substrate 20a.
  • a transparent conductive layer 20d is provided on the p-type amorphous silicon layer 20c.
  • an i-type amorphous silicon layer 20e and an n-type amorphous silicon layer 20f are provided on the lower surface side of the substrate 20a. Further, a transparent conductive layer 20g is provided on the n-type amorphous silicon layer 20f.
  • Such a solar cell 100 having the photoelectric conversion unit 20 has an intrinsic (i-type) amorphous semiconductor film interposed between a crystalline semiconductor and a pn junction formed of a p-type amorphous semiconductor film. By inserting, the conversion efficiency is dramatically improved.
  • the i-type amorphous silicon layer 20b, the p-type amorphous silicon layer 20c, the i-type amorphous silicon layer 20e, and the p-type amorphous silicon layer 20f are formed by PECVD (Plasma Enhanced Chemical Vapor Deposition), Cat-CVD ( (Catalytic Chemical Vapor Deposition), sputtering, or the like.
  • PECVD any method such as RF plasma CVD, high-frequency VHF plasma CVD, or microwave plasma CVD may be used.
  • an i-type amorphous silicon layer 20b having a thickness of about 5 nm is formed on the light-receiving surface side of the substrate 20a, and a p-type amorphous silicon layer 20c having a thickness of about 5 nm is further formed.
  • an i-type amorphous silicon layer 20e having a thickness of about 5 nm is formed on the back side of the substrate 20a, and an n-type amorphous silicon layer 20f having a thickness of about 20 nm is further formed.
  • the transparent conductive layers 20d and 20g include, for example, at least one metal oxide such as indium oxide, zinc oxide, tin oxide, or titanium oxide, and these metal oxides include tin, zinc, tungsten, A dopant such as antimony, titanium, cerium, or gallium may be doped.
  • the transparent conductive layers 20d and 20g can be formed by a film forming method such as an evaporation method, a CVD method, or a sputtering method.
  • the material constituting the photoelectric conversion unit 20 is not particularly limited, and various materials can be used.
  • the finger 22 and the bus bar 24 are provided on the transparent conductive layers 20d and 20g.
  • the finger 22 is an electrode for collecting carriers generated by the photoelectric conversion unit 20.
  • the fingers 22 In order to collect carriers from the photoelectric conversion unit 20 as evenly as possible, the fingers 22 have a linear shape having a width of about 100 ⁇ m, for example, and are arranged every 2 mm.
  • the bus bar 24 is a current collecting electrode for carriers collected by the plurality of fingers 22.
  • the bus bar 24 has a linear shape having a width of 1 mm, for example, and is arranged so as to intersect the fingers 22. That is, a plurality of narrow fingers 22 and a wide bus bar 24 are combined to form a comb-shaped collector electrode.
  • the numbers and areas of the fingers 22 and the bus bars 24 are appropriately set in consideration of the size and resistance of the solar cell 100.
  • the bus bar 24 may not be provided.
  • the installation area of the finger 22 and the bus bar 24 provided on the light receiving surface side of the solar cell 100 is smaller than the back surface side. That is, on the light receiving surface side of the solar cell 100, the light shielding loss can be reduced by making the area that blocks the incident light as small as possible. On the other hand, it is not necessary to consider incident light on the back surface side, and a collecting electrode may be provided so as to cover the entire back surface of the solar cell 100 instead of the fingers 22.
  • the finger 22 and the bus bar 24 are formed of a conductive paste.
  • a resin-type conductive paste using a resin material such as an epoxy resin as a binder and conductive particles such as silver particles as a filler can be used.
  • the binder is mixed mainly for adhesion. In order to maintain reliability, the binder is required to be excellent in moisture resistance and heat resistance.
  • the binder for example, at least one selected from an epoxy resin, an acrylic resin, a polyimide resin, a phenol resin, a urethane resin, a silicone resin, or a mixture or copolymerization of these resins may be applied.
  • the filler is mixed for the purpose of obtaining electrical conductivity of the finger 22 and the bus bar 24.
  • Silver particles having different sizes may be mixed, or those having an uneven shape on the surface may be mixed.
  • you may add a solvent to an electrically conductive paste as needed.
  • the solvent may be butyl carbitol acetate (BCA) or the like.
  • conductive particle flakes are also mixed with the conductive paste.
  • the flake means that the ratio of the long diameter to the thickness of the conductive material powder particles is long diameter / thickness ⁇ 10 and the average particle diameter is 2 to 5 ⁇ m or more.
  • the flake-shaped conductive particles can be obtained by, for example, processing granular conductive particles using a pulverizer using balls as pulverizing media such as a rolling mill, a planetary mill, a tower mill, and a medium agitating mill. Obtainable.
  • the flakes may be made of a material containing silver.
  • the finger 22 and the bus bar 24 can be formed by applying such a conductive paste in a desired pattern on the transparent conductive layers 20d and 20g by a method such as screen printing and offset printing, and curing by heating. .
  • a network structure 30 in which a large number of silver particles are welded to each other can be provided as shown in the schematic cross-sectional view of FIG.
  • the silver particles of the finger 22 and the bus bar 24 have the network structure 30, it is possible to confirm a structure in which more than half of the silver particles of the finger 22 and the bus bar 24 are welded and connected to each other in the observation range of the microscopic observation.
  • a solar cell created by a low-temperature process such as a HIT solar cell is applied as the solar cell 100, it is cured in a temperature range (200 ° C. or less) in which the thermal damage to each amorphous semiconductor layer is small, and the network structure It is preferable to use a conductive paste forming 30.
  • a plurality of solar cells 100 are connected to each other by conductive connection members called tabs.
  • the connecting member may be connected along the bus bar 24.
  • a light-transmitting filler such as EVA may be used.
  • the conductivity of the finger 22 and the bus bar 24 is improved, and the resistance loss of the solar cell 100 is reduced. Can do.
  • the shrinkage stress in the finger 22 and the bus bar 24 increases due to the welding of the silver particles.
  • the stress difference between the finger 22 and the bus bar 24 and the transparent conductive layers 20d and 20g also increases, and the finger 22 and the bus bar 24 easily peel off at these interfaces.
  • the contact resistance is increased, and the characteristics of the solar cell 100 are deteriorated.
  • the network structure 30 of the silver particles is divided by the flakes 32, and the contraction stress in the fingers 22 and the bus bar 24 can be reduced.
  • the flakes 32 may be randomly distributed within the network structure 30. Accordingly, as shown in the schematic cross-sectional view of FIG. 5, the ratio of the flakes 32 in the finger 22 and the bus bar 24 as shown in FIG. 5A is low to the flake 32 as shown in FIG. 5B.
  • disconnection location of the network structure 30 of a silver particle can be increased, and the increase in contraction stress can be suppressed.
  • an increase in the flake 32 ratio results in an increase in the bulk resistance of the fingers 22 and bus bar 24.
  • FIG. 6 shows the relationship between the ratio of the flakes 32 included in the finger 22 and the bus bar 24, the short circuit current density Isc, the fill factor FF, and the maximum power generation amount Pmax.
  • the horizontal axis of FIG. 6 shows the ratio of translucency by the flakes 32 included in the fingers 22 and the bus bar 24 in weight%, and the vertical axis shows the case where the ratio of the flakes 32 is 24% by weight.
  • the relative values of the short circuit current density Isc, the fill factor FF, and the maximum power generation amount Pmax are shown.
  • the ratio of the flakes 32 in the finger 22 and the bus bar 24 exceeds 60% by weight, the silver particle network structure 30 is not formed even if the conductive paste is cured.
  • the desired electrical and mechanical properties were not obtained. Therefore, the ratio of the flakes 32 in the fingers 22 and the bus bar 24 is preferably 60% by weight or less.
  • the short-circuit current density Isc increases. This is because, as the flake 32 ratio is higher, the thixotropy ratio of the conductive paste is increased, the bleeding at the time of printing the finger 22 and the bus bar 24 is reduced, and as a result, the light shielding loss due to the finger 22 and the bus bar 24 is reduced. Conceivable. Further, the fill factor FF increases as the ratio of the flakes 32 contained in the finger 22 and the bus bar 24 increases from 0 to 24% by weight, shows a maximum value at 24% by weight, and gradually decreases when the ratio exceeds 24% by weight. did.
  • the ratio of the flakes 32 When the ratio of the flakes 32 is reduced when the ratio of the flakes 32 is less than 24% by weight, the number of portions where the network structure 30 of the silver particles is divided by the flakes 32 is reduced. Thereby, the shrinkage stress in the finger 22 and the bus bar 24 is increased, the finger 22 and the bus bar 24 are easily peeled off, and it is assumed that the fill factor FF is decreased because the contact resistance is increased. On the other hand, when the ratio of the flakes 32 is increased in the range where the ratio of the flakes 32 exceeds 24% by weight, the number of places where the silver particle network structure 30 is divided by the flakes 32 increases. Thereby, it is guessed that the bulk resistance of the finger 22 and the bus bar 24 increased, and the fill factor FF decreased.
  • the maximum power generation amount Pmax of the solar cell 100 becomes a high value when the ratio of the flakes 32 is 10 wt% or more and 30 wt% or less, and reaches a maximum value at 24 wt%. Indicated. For this reason, it is preferable that the ratio of the flakes 32 in the finger 22 and the bus bar 24 is 10 wt% or more and 30 wt% or less.
  • the fingers 22 and the bus bars 24 have a thickness distribution in the width direction (W direction) perpendicular to the longitudinal direction (L direction), and the film thickness becomes thinner toward the end.
  • the density of the flakes 32 at the center is higher than the density of the flakes 32 at the ends.
  • a texture structure 34 may be provided on the transparent conductive layer 20d or 20g.
  • the stress in the network structure 30 is the direction in which the fingers 22 and the bus bars 24 are peeled from the side walls of the texture structure 34 (arrow direction in the figure). It becomes easy to act on.
  • Such local concentration of stress facilitates the finger 22 and the bus bar 24 to be peeled off from the transparent conductive layer 20d or 20g. Therefore, when the finger 22 and the bus bar 24 are formed on the texture structure 34, it is preferable to have the flakes 32 in a region in the recess of the texture structure 34.
  • the ratio of the flakes 32 in the region in the concave portion of the texture structure 34 is higher than that in the region above the texture structure 34.
  • conductive pastes having different flake 32 ratios may be applied in multiple layers. For example, as the first layer, a conductive paste having a higher flake 32 ratio is applied so as to fill the concave portion of the texture structure 34, and as the second layer, a conductive paste having a lower flake 32 ratio exceeds the texture structure 34. What is necessary is just to apply
  • the network structure 30 of silver particles is cut by the texture structure 34 in the lower layer, and the stress is relaxed. Therefore, when considering the entire finger 22 and the bus bar 24, it is preferable to have the flakes 32 in a region above the texture structure 34 that is not divided by the texture structure 34. Moreover, as shown in FIG. 9, it is preferable to make the ratio of the flakes 32 in the upper layer higher than the lower layer having the texture structure 34.
  • conductive pastes having different flake 32 ratios may be applied in multiple layers. For example, as a first layer, a conductive paste having a lower ratio of flakes 32 is applied so as to fill the concave portion of the texture structure 34, and as a second layer, a conductive paste having a higher ratio of flakes 32 exceeds the texture structure 34. What is necessary is just to apply

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Photovoltaic Devices (AREA)

Abstract

A solar cell, comprising: a photoelectric conversion unit that receives incident light and generates power; and a collecting electrode electrically connected to the photoelectric conversion unit and including silver. The collecting electrode includes a network structure having silver particles reciprocally deposited therein and flakes, being particles of a conductive material, having a ratio between the major axis and the thickness thereof of major axis/thickness ≥ 10, and having an average particle diameter of at least 2-5 µm. The flake ratio is no more than 60 wt%.

Description

太陽電池Solar cell
 本発明は、太陽電池に関する。 The present invention relates to a solar cell.
 太陽電池は、図10に示すように、光電変換部10の表面及び裏面に櫛状のフィンガー12及びバスバー14が設けられている。フィンガー12及びバスバー14は、光電変換部10で発電された電力を太陽電池の外部へ取り出す集電極として利用される。 As shown in FIG. 10, the solar cell is provided with comb-like fingers 12 and bus bars 14 on the front and back surfaces of the photoelectric conversion unit 10. The fingers 12 and the bus bar 14 are used as collecting electrodes that extract the electric power generated by the photoelectric conversion unit 10 to the outside of the solar cell.
 フィンガー12及びバスバー14は、スクリーン印刷等を用いて導電性ペーストを光電変換部10上に塗布することによって形成される。導電性ペーストとしては、例えば、エポキシ樹脂等の樹脂材料をバインダとし、銀粒子等の導電性粒子をフィラーとして混合した樹脂型導電性ペーストを用いることができる。さらには、導電性粒子の形状としては、フレーク状のものと球状のものを混合したり、サイズの異なるものを混合したり、あるいは表面に凹凸形状を設けたりしたものであってもよい。 Finger 12 and bus bar 14 are formed by applying a conductive paste on photoelectric conversion unit 10 using screen printing or the like. As the conductive paste, for example, a resin-type conductive paste in which a resin material such as an epoxy resin is used as a binder and conductive particles such as silver particles are mixed as a filler can be used. Furthermore, the shape of the conductive particles may be a mixture of flakes and spheres, a mixture of particles having different sizes, or an uneven shape on the surface.
特開2011-181966号公報JP 2011-181966 A
 ところで、導電性粒子とフレーク状粒子とが混合されたフィンガー及びバスバーを備えた太陽電池においてさらなる出力の向上が望まれている。 Incidentally, further improvement in output is desired in a solar cell including fingers and bus bars in which conductive particles and flaky particles are mixed.
 本発明に係る太陽電池の一態様は、光の入射を受けて発電を行う発電部と、発電部に電気的に接続された銀を含む集電極と、を備え、集電極は、銀粒子が相互に溶着されたネットワーク構造と、導電性材料の粒子であるフレークと、を含み、フレークの比率が60重量%以下である。 One aspect of a solar cell according to the present invention includes a power generation unit that generates power upon receiving light, and a collector electrode including silver that is electrically connected to the power generation unit. The collector electrode includes silver particles. It includes a network structure welded to each other and flakes that are particles of a conductive material, and the ratio of the flakes is 60% by weight or less.
 本発明に係る太陽電池によれば、集電極にネットワーク構造を有する太陽電池において出力を向上させることができる。 According to the solar cell of the present invention, the output can be improved in the solar cell having a network structure on the collector electrode.
本発明の実施の形態における太陽電池の受光面側からみた平面図である。It is the top view seen from the light-receiving surface side of the solar cell in embodiment of this invention. 本発明の実施の形態における太陽電池を裏面側からみた平面図である。It is the top view which looked at the solar cell in embodiment of this invention from the back surface side. 本発明の実施の形態における太陽電池の断面図である。It is sectional drawing of the solar cell in embodiment of this invention. 本発明の実施の形態における集電極(フィンガー及びバスバー)の断面模式図である。It is a cross-sectional schematic diagram of the collector electrode (finger and bus bar) in the embodiment of the present invention. 本発明の実施の形態における集電極(フィンガー及びバスバー)の断面模式図である。It is a cross-sectional schematic diagram of the collector electrode (finger and bus bar) in the embodiment of the present invention. 本発明の実施の形態における太陽電池の特性を示す図である。It is a figure which shows the characteristic of the solar cell in embodiment of this invention. 本発明の実施の形態における集電極(フィンガー及びバスバー)の平面図及び断面模式図である。It is the top view and cross-sectional schematic diagram of the collector electrode (finger and bus bar) in embodiment of this invention. 本発明の実施の形態における集電極(フィンガー及びバスバー)の断面模式図である。It is a cross-sectional schematic diagram of the collector electrode (finger and bus bar) in the embodiment of the present invention. 本発明の実施の形態における集電極(フィンガー及びバスバー)の断面模式図である。It is a cross-sectional schematic diagram of the collector electrode (finger and bus bar) in the embodiment of the present invention. 従来の太陽電池の構成を示す図である。It is a figure which shows the structure of the conventional solar cell.
 本実施の形態における太陽電池100は、図1~図3に示すように、光電変換部20、フィンガー22及びバスバー24を含んで構成される。図1は、太陽電池100の受光面側の平面図を示す。図2は、太陽電池100の裏面側の平面図を示す。図3は、図1及び図2のラインA-Aに沿った断面図を示す。 The solar cell 100 according to the present embodiment includes a photoelectric conversion unit 20, fingers 22, and a bus bar 24 as shown in FIGS. FIG. 1 is a plan view of the solar cell 100 on the light receiving surface side. FIG. 2 is a plan view of the back side of the solar cell 100. FIG. 3 shows a cross-sectional view along line AA in FIGS.
 なお、図面は模式的なものであり、説明を分かり易くするために各寸法の比率等は現実のものとは異なる。また、図面相互間においても互いの寸法の関係や比率が異なる部分が含まれている。 Note that the drawings are schematic, and the ratios of dimensions and the like are different from actual ones for easy understanding of the explanation. Moreover, the part from which the relationship and ratio of a mutual dimension differ also in between drawings is contained.
 ここで、「受光面」とは太陽電池の外部から太陽光が主に入射する主面を、「裏面」とは受光面と反対側の主面をそれぞれ意味する。例えば、太陽電池100に入射する太陽光のうち50%超過~100%が受光面側から入射する。 Here, “light-receiving surface” means a main surface on which sunlight mainly enters from the outside of the solar cell, and “back surface” means a main surface opposite to the light-receiving surface. For example, more than 50% to 100% of sunlight incident on the solar cell 100 enters from the light receiving surface side.
 光電変換部20は、pn或いはpin接合等の半導体接合を有しており、単結晶Si、多結晶Si等の結晶系半導体材料、非晶質Si系合金或いはCuInSe等の薄膜半導体材料、或いはGaAs、InP等の化合物半導体材料等の半導体材料から構成されている。また、色素増感型等の有機材料を用いてもよい。 The photoelectric conversion unit 20 has a semiconductor junction such as a pn or pin junction, a crystalline semiconductor material such as single crystal Si or polycrystalline Si, a thin film semiconductor material such as an amorphous Si alloy or CuInSe, or GaAs. It is made of a semiconductor material such as a compound semiconductor material such as InP. Further, an organic material such as a dye-sensitized type may be used.
 例えば、光電変換部20は、基板20a、i型非晶質シリコン層20b、p型非晶質シリコン層20c、透明導電層20d、i型非晶質シリコン層20e、n型非晶質シリコン層20f及び透明導電層20gを含んで構成することができる。基板20aの上面側にi型非晶質シリコン層20b及びp型非晶質シリコン層20cが設けられる。さらに、p型非晶質シリコン層20c上に透明導電層20dが設けられる。一方、基板20aの下面側にはi型非晶質シリコン層20e及びn型非晶質シリコン層20fが設けられる。さらに、n型非晶質シリコン層20f上に透明導電層20gが設けられる。このような、光電変換部20を有する太陽電池100は、結晶系半導体とp型の非晶質半導体膜で形成されるpn接合の間に、真性(i型)の非晶質半導体膜を介挿することによって変換効率を飛躍的に向上させたものである。 For example, the photoelectric conversion unit 20 includes a substrate 20a, an i-type amorphous silicon layer 20b, a p-type amorphous silicon layer 20c, a transparent conductive layer 20d, an i-type amorphous silicon layer 20e, and an n-type amorphous silicon layer. 20f and the transparent conductive layer 20g can be comprised. An i-type amorphous silicon layer 20b and a p-type amorphous silicon layer 20c are provided on the upper surface side of the substrate 20a. Further, a transparent conductive layer 20d is provided on the p-type amorphous silicon layer 20c. On the other hand, an i-type amorphous silicon layer 20e and an n-type amorphous silicon layer 20f are provided on the lower surface side of the substrate 20a. Further, a transparent conductive layer 20g is provided on the n-type amorphous silicon layer 20f. Such a solar cell 100 having the photoelectric conversion unit 20 has an intrinsic (i-type) amorphous semiconductor film interposed between a crystalline semiconductor and a pn junction formed of a p-type amorphous semiconductor film. By inserting, the conversion efficiency is dramatically improved.
 i型非晶質シリコン層20b、p型非晶質シリコン層20c、i型非晶質シリコン層20e及びp型非晶質シリコン層20fは、PECVD(Plasma Enhansed Chemical Vapor Deposition)、Cat-CVD(Catalytic Chemical Vapor Deposition)、スパッタリング法等により形成することができる。PECVDは、RFプラズマCVD法、周波数の高いVHFプラズマCVD法、さらにはマイクロ波プラズマCVD法などいずれの手法を用いてもよい。例えば、基板20aの受光面側に約5nmの厚みを有するi型非晶質シリコン層20bを形成し、さらに約5nmの厚みを有するp型非晶質シリコン層20cを形成する。また、基板20aの裏面側に約5nmの厚みを有するi型非晶質シリコン層20eを形成し、さらに約20nmの厚みを有するn型非晶質シリコン層20fを形成する。 The i-type amorphous silicon layer 20b, the p-type amorphous silicon layer 20c, the i-type amorphous silicon layer 20e, and the p-type amorphous silicon layer 20f are formed by PECVD (Plasma Enhanced Chemical Vapor Deposition), Cat-CVD ( (Catalytic Chemical Vapor Deposition), sputtering, or the like. For PECVD, any method such as RF plasma CVD, high-frequency VHF plasma CVD, or microwave plasma CVD may be used. For example, an i-type amorphous silicon layer 20b having a thickness of about 5 nm is formed on the light-receiving surface side of the substrate 20a, and a p-type amorphous silicon layer 20c having a thickness of about 5 nm is further formed. Further, an i-type amorphous silicon layer 20e having a thickness of about 5 nm is formed on the back side of the substrate 20a, and an n-type amorphous silicon layer 20f having a thickness of about 20 nm is further formed.
 透明導電層20d及び20gは、例えば、酸化インジウム、酸化亜鉛、酸化錫、または酸化チタンなどの金属酸化物を少なくとも一つを含んで構成され、これらの金属酸化物に、錫、亜鉛、タングステン、アンチモン、チタン、セリウム、ガリウムなどのドーパントがドープされていてもよい。透明導電層20d及び20gは、蒸着法、CVD法、スパッタリング法等の成膜方法により形成することができる。 The transparent conductive layers 20d and 20g include, for example, at least one metal oxide such as indium oxide, zinc oxide, tin oxide, or titanium oxide, and these metal oxides include tin, zinc, tungsten, A dopant such as antimony, titanium, cerium, or gallium may be doped. The transparent conductive layers 20d and 20g can be formed by a film forming method such as an evaporation method, a CVD method, or a sputtering method.
 ただし、光電変換部20を構成する材料は特に限定されるものではなく、種々の材料を用いることができる。 However, the material constituting the photoelectric conversion unit 20 is not particularly limited, and various materials can be used.
 フィンガー22及びバスバー24は、透明導電層20d及び20g上に設けられる。フィンガー22は、光電変換部20で生成されたキャリアの収集用の電極である。フィンガー22は、光電変換部20からできるだけ均等にキャリアを収集するために、例えば100μm程度の幅を有する線形状とされ、2mmおきに配置される。また、バスバー24は、複数のフィンガー22で収集されたキャリアの集電用電極である。バスバー24は、例えば1mmの幅を有する線形状とされ、フィンガー22と交差するように配置される。すなわち、複数の幅狭のフィンガー22と幅広のバスバー24とが組み合わされて櫛型状の集電極とされる。フィンガー22及びバスバー24の本数や面積は、太陽電池100の大きさや抵抗を考慮して適宜に設定される。なお、バスバー24を設けない構成としてもよい。 The finger 22 and the bus bar 24 are provided on the transparent conductive layers 20d and 20g. The finger 22 is an electrode for collecting carriers generated by the photoelectric conversion unit 20. In order to collect carriers from the photoelectric conversion unit 20 as evenly as possible, the fingers 22 have a linear shape having a width of about 100 μm, for example, and are arranged every 2 mm. The bus bar 24 is a current collecting electrode for carriers collected by the plurality of fingers 22. The bus bar 24 has a linear shape having a width of 1 mm, for example, and is arranged so as to intersect the fingers 22. That is, a plurality of narrow fingers 22 and a wide bus bar 24 are combined to form a comb-shaped collector electrode. The numbers and areas of the fingers 22 and the bus bars 24 are appropriately set in consideration of the size and resistance of the solar cell 100. The bus bar 24 may not be provided.
 なお、太陽電池100の受光面側に設けられるフィンガー22及びバスバー24の設置面積は裏面側よりも小さくすることが好ましい。すなわち、太陽電池100の受光面側では、入射光を遮る面積をできるだけ小さくすることによって遮光ロスを低減することができる。一方、裏面側では入射光を考慮する必要がなく、フィンガー22の代りに太陽電池100の裏面全面を覆うように集電極を設けてもよい。 In addition, it is preferable that the installation area of the finger 22 and the bus bar 24 provided on the light receiving surface side of the solar cell 100 is smaller than the back surface side. That is, on the light receiving surface side of the solar cell 100, the light shielding loss can be reduced by making the area that blocks the incident light as small as possible. On the other hand, it is not necessary to consider incident light on the back surface side, and a collecting electrode may be provided so as to cover the entire back surface of the solar cell 100 instead of the fingers 22.
 また、上記構成において、フィンガー22とバスバー24とは、導電性ペーストにより形成される。導電性ペーストとして、例えば、エポキシ樹脂等の樹脂材料をバインダとし、銀粒子等の導電性粒子をフィラーとした樹脂型導電性ペーストを用いることができる。バインダは、接着を主目的として混合される。信頼性を維持するためには、バインダは、耐湿性や耐熱性に優れていることが要求される。バインダは、例えば、エポキシ樹脂、アクリル樹脂、ポリイミド樹脂、フェノール樹脂、ウレタン樹脂、シリコーン樹脂等から選ばれる少なくとも一種、あるいは、これらの樹脂の混合、共重合などを適用すればよい。フィラーは、フィンガー22とバスバー24の電気伝導性を得ることを目的に混入される。銀粒子は、サイズの異なるものを混合したり、表面に凹凸形状を設けたものを混合したりしてもよい。また、必要に応じて、導電性ペーストに溶剤を加えてもよい。溶剤は、ブチルカルビトールアセテート(BCA)等とすればよい。 In the above configuration, the finger 22 and the bus bar 24 are formed of a conductive paste. As the conductive paste, for example, a resin-type conductive paste using a resin material such as an epoxy resin as a binder and conductive particles such as silver particles as a filler can be used. The binder is mixed mainly for adhesion. In order to maintain reliability, the binder is required to be excellent in moisture resistance and heat resistance. As the binder, for example, at least one selected from an epoxy resin, an acrylic resin, a polyimide resin, a phenol resin, a urethane resin, a silicone resin, or a mixture or copolymerization of these resins may be applied. The filler is mixed for the purpose of obtaining electrical conductivity of the finger 22 and the bus bar 24. Silver particles having different sizes may be mixed, or those having an uneven shape on the surface may be mixed. Moreover, you may add a solvent to an electrically conductive paste as needed. The solvent may be butyl carbitol acetate (BCA) or the like.
 さらに、本実施の形態では、導電性ペーストに導電性粒子のフレークも混合する。フレークとは、導電性材料の粉末粒子の長径と厚みの比が長径/厚み≧10であり、平均粒子径が2~5μm以上のことをいう。フレーク形状の導電性粒子は、例えば、粒状の導電性粒子を転動ミル、遊星ミル、塔式ミル、媒体攪拌ミル、等の粉砕メディアとしてボールを用いた粉砕機を使用して加工することにより得ることができる。フレークは、例えば、銀を含む材料とするとよい。 Further, in the present embodiment, conductive particle flakes are also mixed with the conductive paste. The flake means that the ratio of the long diameter to the thickness of the conductive material powder particles is long diameter / thickness ≧ 10 and the average particle diameter is 2 to 5 μm or more. The flake-shaped conductive particles can be obtained by, for example, processing granular conductive particles using a pulverizer using balls as pulverizing media such as a rolling mill, a planetary mill, a tower mill, and a medium agitating mill. Obtainable. For example, the flakes may be made of a material containing silver.
 フィンガー22とバスバー24は、このような導電性ペーストをスクリーン印刷、オフセット印刷等の手法により透明導電層20d及び20g上に所望のパターンで塗布し、加熱して硬化させることによって形成することができる。このとき、銀粒子の特性や加熱温度を調整することによって、図4の断面模式図に示すように、多数の銀粒子が相互に溶着したネットワーク構造30を持たせることができる。フィンガー22とバスバー24の銀粒子がネットワーク構造30を有する場合、顕微鏡観察の観察範囲においてフィンガー22とバスバー24の銀粒子の半分以上が溶着して互いに繋がり合った構造を確認することができる。ただし、太陽電池100としてHIT太陽電池等の低温プロセスで作成する太陽電池を適用する場合には、各非晶質半導体層への熱ダメージが小さい温度範囲(200℃以下)で硬化され、ネットワーク構造30を形成する導電性ペーストを用いることが好ましい。 The finger 22 and the bus bar 24 can be formed by applying such a conductive paste in a desired pattern on the transparent conductive layers 20d and 20g by a method such as screen printing and offset printing, and curing by heating. . At this time, by adjusting the characteristics and heating temperature of the silver particles, a network structure 30 in which a large number of silver particles are welded to each other can be provided as shown in the schematic cross-sectional view of FIG. When the silver particles of the finger 22 and the bus bar 24 have the network structure 30, it is possible to confirm a structure in which more than half of the silver particles of the finger 22 and the bus bar 24 are welded and connected to each other in the observation range of the microscopic observation. However, when a solar cell created by a low-temperature process such as a HIT solar cell is applied as the solar cell 100, it is cured in a temperature range (200 ° C. or less) in which the thermal damage to each amorphous semiconductor layer is small, and the network structure It is preferable to use a conductive paste forming 30.
 太陽電池100をモジュール化した太陽電池モジュールでは、複数の太陽電池100がタブと呼ばれる導電性の接続部材によって相互に接続される。接続部材は、バスバー24に沿って接続すればよい。さらに、ガラス、透光性プラスチックのなどの透光性を有する受光面側の封止材とPET(Poly EthyleneTerephtalate)等の樹脂フィルム又はアルミニウム(Al)箔を樹脂フィルムでサンドイッチした構造の積層フィルム等からなる裏面側の封止材とによって封止してもよい。封止にはEVA等の透光性を有する充填材を用いるとよい。 In a solar cell module in which the solar cells 100 are modularized, a plurality of solar cells 100 are connected to each other by conductive connection members called tabs. The connecting member may be connected along the bus bar 24. Furthermore, a laminated film having a structure in which a sealing material on the light-receiving surface side having transparency, such as glass and translucent plastic, and a resin film such as PET (Polyethylene Etherephthalate) or an aluminum (Al) foil are sandwiched between resin films, etc. You may seal with the sealing material of the back surface side which consists of. For sealing, a light-transmitting filler such as EVA may be used.
 ところで、本実施の形態にように、フィンガー22及びバスバー24に銀粒子のネットワーク構造30を持たせることによって、フィンガー22及びバスバー24の導電性が向上し、太陽電池100の抵抗損失を低減することができる。 By the way, as in the present embodiment, by providing the finger 22 and the bus bar 24 with the network structure 30 of silver particles, the conductivity of the finger 22 and the bus bar 24 is improved, and the resistance loss of the solar cell 100 is reduced. Can do.
 また、銀粒子のネットワーク構造30が形成されると、銀粒子同士の溶着によってフィンガー22及びバスバー24内の収縮応力が大きくなる。これによって、フィンガー22及びバスバー24と透明導電層20d及び20gとの間の応力差も大きくなり、これらの界面においてフィンガー22及びバスバー24が剥がれ易くなる。透明導電層20d及び20gからフィンガー22又はバスバー24が剥がれると、接触抵抗が大きくなり、太陽電池100の特性が低下する。 Further, when the silver particle network structure 30 is formed, the shrinkage stress in the finger 22 and the bus bar 24 increases due to the welding of the silver particles. Thereby, the stress difference between the finger 22 and the bus bar 24 and the transparent conductive layers 20d and 20g also increases, and the finger 22 and the bus bar 24 easily peel off at these interfaces. When the finger 22 or the bus bar 24 is peeled off from the transparent conductive layers 20d and 20g, the contact resistance is increased, and the characteristics of the solar cell 100 are deteriorated.
 一方、フィンガー22及びバスバー24に導電性粒子のフレーク32を混在させることによって、フレーク32によって銀粒子のネットワーク構造30が分断され、フィンガー22及びバスバー24内の収縮応力を低減することができる。フレーク32は、ネットワーク構造30内にランダムに分散されてもよい。したがって、図5の断面模式図に示すように、図5(a)のようなフィンガー22及びバスバー24内のフレーク32の比率が低い状態から図5(b)のようなフレーク32に比率が高い状態とすることによって、銀粒子のネットワーク構造30の切断箇所を増加させ、収縮応力の増加を抑制することができる。しかしながら、フレーク32の比率の増加は、フィンガー22及びバスバー24のバルク抵抗の増大を招く。 On the other hand, by mixing the conductive particle flakes 32 in the fingers 22 and the bus bar 24, the network structure 30 of the silver particles is divided by the flakes 32, and the contraction stress in the fingers 22 and the bus bar 24 can be reduced. The flakes 32 may be randomly distributed within the network structure 30. Accordingly, as shown in the schematic cross-sectional view of FIG. 5, the ratio of the flakes 32 in the finger 22 and the bus bar 24 as shown in FIG. 5A is low to the flake 32 as shown in FIG. 5B. By setting it as a state, the cutting | disconnection location of the network structure 30 of a silver particle can be increased, and the increase in contraction stress can be suppressed. However, an increase in the flake 32 ratio results in an increase in the bulk resistance of the fingers 22 and bus bar 24.
 図6は、フィンガー22及びバスバー24に含まれるフレーク32の比率と短絡電流密度Isc、曲線因子FF及び最大発電量Pmaxとの関係を示す。図6の横軸は、フィンガー22及びバスバー24に含まれるフレーク32による透光性の比率を重量%で示し、縦軸は、フレーク32の比率が24重量%であるときを1とした場合の短絡電流密度Isc、曲線因子FF及び最大発電量Pmaxの相対値を示す。 FIG. 6 shows the relationship between the ratio of the flakes 32 included in the finger 22 and the bus bar 24, the short circuit current density Isc, the fill factor FF, and the maximum power generation amount Pmax. The horizontal axis of FIG. 6 shows the ratio of translucency by the flakes 32 included in the fingers 22 and the bus bar 24 in weight%, and the vertical axis shows the case where the ratio of the flakes 32 is 24% by weight. The relative values of the short circuit current density Isc, the fill factor FF, and the maximum power generation amount Pmax are shown.
 なお、フィンガー22及びバスバー24内のフレーク32の比率が60重量%を超えると、導電性ペーストを硬化させても銀粒子の銀粒子のネットワーク構造30が形成されなくなり、フィンガー22及びバスバー24内として所望の電気的及び機械的な特性が得られなかった。したがって、フィンガー22及びバスバー24内のフレーク32の比率は60重量%以下とすることが好適である。 When the ratio of the flakes 32 in the finger 22 and the bus bar 24 exceeds 60% by weight, the silver particle network structure 30 is not formed even if the conductive paste is cured. The desired electrical and mechanical properties were not obtained. Therefore, the ratio of the flakes 32 in the fingers 22 and the bus bar 24 is preferably 60% by weight or less.
 また、図6から、フィンガー22及びバスバー24に含まれるフレーク32の比率が増加すると、短絡電流密度Iscも増加した。これは、フレーク32の比率が高いほど、導電性ペーストのチクソ比が増加し、フィンガー22及びバスバー24の印刷時のにじみが減少し、結果的にフィンガー22及びバスバー24による遮光損失が低下したためと考えられる。また、曲線因子FFは、フィンガー22及びバスバー24に含まれるフレーク32の比率が0から24重量%にかけて増加すると共に増加し、24重量%において最大値を示し、24重量%を超えると徐々に低下した。フレーク32の比率が24重量%未満においてフレーク32の比率が低下すると、フレーク32によって銀粒子のネットワーク構造30が分断される箇所が低減する。これにより、フィンガー22及びバスバー24内の収縮応力が高まり、フィンガー22及びバスバー24が剥がれ易くなり、接触抵抗が増加したために曲線因子FFが低下したと推察される。一方、フレーク32の比率が24重量%を超える範囲においてフレーク32の比率が増加すると、フレーク32によって銀粒子のネットワーク構造30が分断される箇所が増加する。これにより、フィンガー22及びバスバー24のバルク抵抗が大きくなり、曲線因子FFが低下したと推察される。 Further, from FIG. 6, as the ratio of the flakes 32 included in the finger 22 and the bus bar 24 increases, the short-circuit current density Isc also increases. This is because, as the flake 32 ratio is higher, the thixotropy ratio of the conductive paste is increased, the bleeding at the time of printing the finger 22 and the bus bar 24 is reduced, and as a result, the light shielding loss due to the finger 22 and the bus bar 24 is reduced. Conceivable. Further, the fill factor FF increases as the ratio of the flakes 32 contained in the finger 22 and the bus bar 24 increases from 0 to 24% by weight, shows a maximum value at 24% by weight, and gradually decreases when the ratio exceeds 24% by weight. did. When the ratio of the flakes 32 is reduced when the ratio of the flakes 32 is less than 24% by weight, the number of portions where the network structure 30 of the silver particles is divided by the flakes 32 is reduced. Thereby, the shrinkage stress in the finger 22 and the bus bar 24 is increased, the finger 22 and the bus bar 24 are easily peeled off, and it is assumed that the fill factor FF is decreased because the contact resistance is increased. On the other hand, when the ratio of the flakes 32 is increased in the range where the ratio of the flakes 32 exceeds 24% by weight, the number of places where the silver particle network structure 30 is divided by the flakes 32 increases. Thereby, it is guessed that the bulk resistance of the finger 22 and the bus bar 24 increased, and the fill factor FF decreased.
 これら短絡電流密度Isc及び曲線因子FFの影響により、太陽電池100の最大発電量Pmaxは、フレーク32の比率が10重量%以上30重量%以下の範囲において高い値となり、24重量%において極大値を示した。このことから、フィンガー22及びバスバー24内のフレーク32の比率は10重量%以上30重量%以下とすることが好適である。 Due to the influence of the short-circuit current density Isc and the fill factor FF, the maximum power generation amount Pmax of the solar cell 100 becomes a high value when the ratio of the flakes 32 is 10 wt% or more and 30 wt% or less, and reaches a maximum value at 24 wt%. Indicated. For this reason, it is preferable that the ratio of the flakes 32 in the finger 22 and the bus bar 24 is 10 wt% or more and 30 wt% or less.
 また、フィンガー22及びバスバー24は、図7に示すように、長手方向(L方向)に垂直な幅方向(W方向)に厚みの分布があり、端に近づくほど膜厚が薄くなる。フィンガー22及びバスバー24が厚くなるほどネットワーク構造30による銀粒子間の応力が大きくなる。したがって、フィンガー22及びバスバー24が厚い領域のフレーク32の比率を高くし、銀粒子のネットワーク構造30の切断箇所をより多くすることが好適である。例えば、図7に示すように、フィンガー22及びバスバー24の長手方向に垂直な幅方向において、中央部のフレーク32の密度を端部のフレーク32の密度より高くすることが好ましい。 Further, as shown in FIG. 7, the fingers 22 and the bus bars 24 have a thickness distribution in the width direction (W direction) perpendicular to the longitudinal direction (L direction), and the film thickness becomes thinner toward the end. The thicker the fingers 22 and the bus bars 24, the greater the stress between silver particles due to the network structure 30. Therefore, it is preferable to increase the ratio of the flakes 32 in the region where the fingers 22 and the bus bars 24 are thick, and to increase the number of cut points of the network structure 30 of silver particles. For example, as shown in FIG. 7, in the width direction perpendicular to the longitudinal direction of the fingers 22 and the bus bar 24, it is preferable that the density of the flakes 32 at the center is higher than the density of the flakes 32 at the ends.
 また、図8に示すように、透明導電層20d又は20gにテクスチャ構造34が設けられることがある。この場合、テクスチャ構造34の凹部に銀粒子のネットワーク構造30が形成されると、ネットワーク構造30内の応力がテクスチャ構造34の側壁からフィンガー22及びバスバー24を引きはがす方向(図中の矢印方向)に作用し易くなる。このような応力の局所的な集中によって、フィンガー22及びバスバー24が透明導電層20d又は20gから剥離し易くなる。したがって、フィンガー22及びバスバー24がテクスチャ構造34上に形成されている場合、テクスチャ構造34の凹部内の領域にフレーク32を有することが好ましい。さらに、図8に示すように、テクスチャ構造34の凹部内の領域のフレーク32の比率をテクスチャ構造34より上層の領域より高くすることが好ましい。 Also, as shown in FIG. 8, a texture structure 34 may be provided on the transparent conductive layer 20d or 20g. In this case, when the network structure 30 of silver particles is formed in the concave portion of the texture structure 34, the stress in the network structure 30 is the direction in which the fingers 22 and the bus bars 24 are peeled from the side walls of the texture structure 34 (arrow direction in the figure). It becomes easy to act on. Such local concentration of stress facilitates the finger 22 and the bus bar 24 to be peeled off from the transparent conductive layer 20d or 20g. Therefore, when the finger 22 and the bus bar 24 are formed on the texture structure 34, it is preferable to have the flakes 32 in a region in the recess of the texture structure 34. Furthermore, as shown in FIG. 8, it is preferable that the ratio of the flakes 32 in the region in the concave portion of the texture structure 34 is higher than that in the region above the texture structure 34.
 テクスチャ構造34の凹部内の領域のフレーク32の比率を上層の領域より高くするには、フレーク32の比率が異なる導電性ペーストを多層に分けて塗布すればよい。例えば、一層目として、フレーク32の比率がより高い導電性ペーストをテクスチャ構造34の凹部を埋めるように塗布し、二層目として、フレーク32の比率がより低い導電性ペーストをテクスチャ構造34を超える上層領域に塗布すればよい。 In order to make the ratio of the flakes 32 in the area in the concave portion of the texture structure 34 higher than that in the upper layer area, conductive pastes having different flake 32 ratios may be applied in multiple layers. For example, as the first layer, a conductive paste having a higher flake 32 ratio is applied so as to fill the concave portion of the texture structure 34, and as the second layer, a conductive paste having a lower flake 32 ratio exceeds the texture structure 34. What is necessary is just to apply | coat to an upper layer area | region.
 一方、フィンガー22及びバスバー24全体に亘って考えると、下層ではテクスチャ構造34によって銀粒子のネットワーク構造30が切断されており応力が緩和されているといえる。そこで、フィンガー22及びバスバー24全体に亘って考慮した場合、テクスチャ構造34によって分断されていないテクスチャ構造34より上層領域にフレーク32を有することが好ましい。また、図9に示すように、テクスチャ構造34を有する下層より上層におけるフレーク32の比率を高くすることが好ましい。 On the other hand, considering the entire finger 22 and bus bar 24, it can be said that the network structure 30 of silver particles is cut by the texture structure 34 in the lower layer, and the stress is relaxed. Therefore, when considering the entire finger 22 and the bus bar 24, it is preferable to have the flakes 32 in a region above the texture structure 34 that is not divided by the texture structure 34. Moreover, as shown in FIG. 9, it is preferable to make the ratio of the flakes 32 in the upper layer higher than the lower layer having the texture structure 34.
 このような構成もフレーク32の比率が異なる導電性ペーストを多層に分けて塗布すればよい。例えば、一層目として、フレーク32の比率がより低い導電性ペーストをテクスチャ構造34の凹部を埋めるように塗布し、二層目として、フレーク32の比率がより高い導電性ペーストをテクスチャ構造34を超える上層領域に塗布すればよい。 In such a configuration, conductive pastes having different flake 32 ratios may be applied in multiple layers. For example, as a first layer, a conductive paste having a lower ratio of flakes 32 is applied so as to fill the concave portion of the texture structure 34, and as a second layer, a conductive paste having a higher ratio of flakes 32 exceeds the texture structure 34. What is necessary is just to apply | coat to an upper layer area | region.
 以上、実施形態に基づき本発明を説明したが、本発明は上記実施形態に限られるものではなく、本発明の趣旨を逸脱しない範囲で、変更を加えてもよいし、各実施形態(各変形例)を組み合わせるようにしてもよい。 The present invention has been described above based on the embodiments. However, the present invention is not limited to the above embodiments, and modifications may be made without departing from the spirit of the present invention. Example) may be combined.
 10 光電変換部、12 フィンガー、14 バスバー、20 光電変換部、20a 基板、20b i型非晶質シリコン層、20c p型非晶質シリコン層、20d 透明導電層、20e i型非晶質シリコン層、20f n型非晶質シリコン層、20g 透明導電層、22 フィンガー、24 バスバー、30 ネットワーク構造、32 フレーク、34 テクスチャ構造、100 太陽電池。
 
DESCRIPTION OF SYMBOLS 10 Photoelectric conversion part, 12 Finger, 14 Bus bar, 20 Photoelectric conversion part, 20a Substrate, 20b i-type amorphous silicon layer, 20cp p-type amorphous silicon layer, 20d Transparent conductive layer, 20e i-type amorphous silicon layer 20 f n-type amorphous silicon layer, 20 g transparent conductive layer, 22 fingers, 24 bus bar, 30 network structure, 32 flakes, 34 texture structure, 100 solar cell.

Claims (6)

  1.  光電変換部と、
     前記光電変換部に電気的に接続された銀を含む集電極と、
    を備え、
     前記集電極は、
     銀粒子が相互に溶着されたネットワーク構造と、
     導電性材料の粒子であるフレークと、を含み、
     前記フレークの比率が60重量%以下である、太陽電池。
    A photoelectric conversion unit;
    A collector electrode containing silver electrically connected to the photoelectric converter;
    With
    The collector electrode is
    A network structure in which silver particles are welded to each other;
    Flakes that are particles of conductive material,
    The solar cell whose ratio of the said flakes is 60 weight% or less.
  2.  請求項1に記載の太陽電池であって、
     前記フレークの比率が10重量%以上30重量%以下である、太陽電池。
    The solar cell according to claim 1,
    The solar cell whose ratio of the said flakes is 10 to 30 weight%.
  3.  請求項1又は2に記載の太陽電池であって、
     前記集電極は、前記集電極の長手方向に垂直な幅方向において中央部の前記フレークの密度が端部の前記フレークの密度より高い、太陽電池。
    The solar cell according to claim 1 or 2,
    The collector electrode is a solar cell in which the density of the flakes in the center portion is higher than the density of the flakes in the end portion in the width direction perpendicular to the longitudinal direction of the collector electrode.
  4.  請求項1~3のいずれか1項に記載の太陽電池であって、
     前記集電極は、テクスチャ構造上に形成されており、前記テクスチャ構造の凹部内の領域に前記フレークを有する、太陽電池。
    The solar cell according to any one of claims 1 to 3,
    The said collector electrode is a solar cell which is formed on the texture structure and has the said flakes in the area | region in the recessed part of the said texture structure.
  5.  請求項1~3のいずれか1項に記載の太陽電池であって、
     前記集電極は、テクスチャ構造上に形成されており、前記テクスチャ構造より上層の領域に前記フレークを有する、太陽電池。
    The solar cell according to any one of claims 1 to 3,
    The said collector electrode is a solar cell which is formed on the texture structure and has the said flakes in the area | region of the upper layer from the said texture structure.
  6.  請求項1~5のいずれか1項に記載の太陽電池であって、
     前記フレークは、長径と厚みの比が長径/厚み≧10であり、平均粒子径が2~5μm以上である、太陽電池。
     
    A solar cell according to any one of claims 1 to 5,
    The flakes are solar cells in which the ratio of major axis to thickness is major axis / thickness ≧ 10 and the average particle diameter is 2 to 5 μm or more.
PCT/JP2012/069141 2012-07-27 2012-07-27 Solar cell WO2014016954A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2014526685A JPWO2014016954A1 (en) 2012-07-27 2012-07-27 Solar cell
PCT/JP2012/069141 WO2014016954A1 (en) 2012-07-27 2012-07-27 Solar cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/069141 WO2014016954A1 (en) 2012-07-27 2012-07-27 Solar cell

Publications (1)

Publication Number Publication Date
WO2014016954A1 true WO2014016954A1 (en) 2014-01-30

Family

ID=49996787

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/069141 WO2014016954A1 (en) 2012-07-27 2012-07-27 Solar cell

Country Status (2)

Country Link
JP (1) JPWO2014016954A1 (en)
WO (1) WO2014016954A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3324446A1 (en) * 2016-11-17 2018-05-23 LG Electronics Inc. Solar cell
CN108400173A (en) * 2017-02-07 2018-08-14 Lg电子株式会社 Solar cell
EP3437144A4 (en) * 2016-03-28 2019-12-18 LG Electronics Inc. -1- Solar cell panel

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61208701A (en) * 1985-03-13 1986-09-17 株式会社村田製作所 Conducting paste
JPH05222546A (en) * 1992-02-07 1993-08-31 Narumi China Corp Silver paste
WO1996024938A1 (en) * 1995-02-08 1996-08-15 Hitachi Chemical Co., Ltd. Composite conductive powder, conductive paste, method of producing conductive paste, electric circuit and method of fabricating electric circuit
JP2005209415A (en) * 2004-01-20 2005-08-04 Daiken Kagaku Kogyo Kk Conductive paste and manufacturing method of ceramic electronic component
JP2007224191A (en) * 2006-02-24 2007-09-06 Sanyo Electric Co Ltd Electroconductive paste composition, solar battery cell using the paste composition, and solar battery module using the cell
WO2011016217A1 (en) * 2009-08-05 2011-02-10 日立化成工業株式会社 Cu-Al ALLOY POWDER, ALLOY PASTE UTILIZING SAME, AND ELECTRONIC COMPONENT
JP2011100573A (en) * 2009-11-04 2011-05-19 Kyoto Elex Kk Thermosetting conductive paste composition

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5630111B2 (en) * 2010-07-12 2014-11-26 横浜ゴム株式会社 Solar cell electrode paste and solar cell

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61208701A (en) * 1985-03-13 1986-09-17 株式会社村田製作所 Conducting paste
JPH05222546A (en) * 1992-02-07 1993-08-31 Narumi China Corp Silver paste
WO1996024938A1 (en) * 1995-02-08 1996-08-15 Hitachi Chemical Co., Ltd. Composite conductive powder, conductive paste, method of producing conductive paste, electric circuit and method of fabricating electric circuit
JP2005209415A (en) * 2004-01-20 2005-08-04 Daiken Kagaku Kogyo Kk Conductive paste and manufacturing method of ceramic electronic component
JP2007224191A (en) * 2006-02-24 2007-09-06 Sanyo Electric Co Ltd Electroconductive paste composition, solar battery cell using the paste composition, and solar battery module using the cell
WO2011016217A1 (en) * 2009-08-05 2011-02-10 日立化成工業株式会社 Cu-Al ALLOY POWDER, ALLOY PASTE UTILIZING SAME, AND ELECTRONIC COMPONENT
JP2011100573A (en) * 2009-11-04 2011-05-19 Kyoto Elex Kk Thermosetting conductive paste composition

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3437144A4 (en) * 2016-03-28 2019-12-18 LG Electronics Inc. -1- Solar cell panel
EP3324446A1 (en) * 2016-11-17 2018-05-23 LG Electronics Inc. Solar cell
JP2018082179A (en) * 2016-11-17 2018-05-24 エルジー エレクトロニクス インコーポレイティド Solar cell
KR20180055676A (en) * 2016-11-17 2018-05-25 엘지전자 주식회사 Solar cell
CN108091706A (en) * 2016-11-17 2018-05-29 Lg电子株式会社 Solar cell
KR102005445B1 (en) * 2016-11-17 2019-07-30 엘지전자 주식회사 Solar cell
US10439087B2 (en) 2016-11-17 2019-10-08 Lg Electronics Inc. Solar cell
CN108400173A (en) * 2017-02-07 2018-08-14 Lg电子株式会社 Solar cell
JP2018129511A (en) * 2017-02-07 2018-08-16 エルジー エレクトロニクス インコーポレイティド Solar battery
US11211504B2 (en) 2017-02-07 2021-12-28 Lg Electronics Inc. Solar cell
US11581442B2 (en) 2017-02-07 2023-02-14 Shangrao Jinko Solar Technology Development Co Ltd Solar cell

Also Published As

Publication number Publication date
JPWO2014016954A1 (en) 2016-07-07

Similar Documents

Publication Publication Date Title
Barnes et al. Single-wall carbon nanotube networks as a transparent back contact in CdTe solar cells
US8791359B2 (en) High efficiency photovoltaic cells
US8314327B2 (en) Photovoltaic cells based on nano or micro-scale structures
US8309843B2 (en) Photovoltaic cells based on nanoscale structures
JP5014503B2 (en) Solar cell and solar cell module
JP2008135655A (en) Solar battery module, manufacturing method therefor, and solar battery cell
JP2010041012A (en) Solar cell module
WO2011150178A1 (en) Photovoltaic modules with improved electrical characteristics and methods thereof
US10985289B2 (en) Solar cell and solar cell module
JP2010239167A (en) Solar cell module
CN114930542A (en) Double-sided cascaded photovoltaic cells and modules
WO2014016954A1 (en) Solar cell
EP2806465B1 (en) Solar cell and method for manufacturing the same
JP6619273B2 (en) Photoelectric conversion device
US9209335B2 (en) Solar cell system
KR101694553B1 (en) Solar cell module
JP5014502B2 (en) Method for manufacturing solar cell and method for manufacturing solar cell module
US8841546B2 (en) Paste and solar cell using the same
US20140144479A1 (en) Photoelectric conversion module
KR101587267B1 (en) Aluminium paste complex and solar battery using the same
US8624108B1 (en) Photovoltaic cells based on nano or micro-scale structures
KR101338549B1 (en) Solar cell and method of fabricating the same
EP3573113A1 (en) Photovoltaic module
TW201414001A (en) Intentionally-doped cadmium oxide layer for solar cells
WO2014083803A1 (en) Solar cell

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12881560

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014526685

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12881560

Country of ref document: EP

Kind code of ref document: A1