WO2014016532A2 - Dispositif de reglage dynamique de la tension d'un reseau electrique - Google Patents

Dispositif de reglage dynamique de la tension d'un reseau electrique Download PDF

Info

Publication number
WO2014016532A2
WO2014016532A2 PCT/FR2013/051810 FR2013051810W WO2014016532A2 WO 2014016532 A2 WO2014016532 A2 WO 2014016532A2 FR 2013051810 W FR2013051810 W FR 2013051810W WO 2014016532 A2 WO2014016532 A2 WO 2014016532A2
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
network
voltage network
phase
transformer
Prior art date
Application number
PCT/FR2013/051810
Other languages
English (en)
Other versions
WO2014016532A3 (fr
Inventor
Philippe Trifigny
Jean-Francis Faltermeier
Original Assignee
Transfix
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Transfix filed Critical Transfix
Priority to EP13756607.1A priority Critical patent/EP2878075A2/fr
Publication of WO2014016532A2 publication Critical patent/WO2014016532A2/fr
Publication of WO2014016532A3 publication Critical patent/WO2014016532A3/fr

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M5/00Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases
    • H02M5/02Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc
    • H02M5/04Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters
    • H02M5/10Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters using transformers
    • H02M5/12Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters using transformers for conversion of voltage or current amplitude only
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J13/00Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network
    • H02J13/00002Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network characterised by monitoring
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/12Circuit arrangements for ac mains or ac distribution networks for adjusting voltage in ac networks by changing a characteristic of the network load
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/18Arrangements for adjusting, eliminating or compensating reactive power in networks
    • H02J3/1807Arrangements for adjusting, eliminating or compensating reactive power in networks using series compensators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/18Arrangements for adjusting, eliminating or compensating reactive power in networks
    • H02J3/1878Arrangements for adjusting, eliminating or compensating reactive power in networks using tap changing or phase shifting transformers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P13/00Arrangements for controlling transformers, reactors or choke coils, for the purpose of obtaining a desired output
    • H02P13/06Arrangements for controlling transformers, reactors or choke coils, for the purpose of obtaining a desired output by tap-changing; by rearranging interconnections of windings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/30Reactive power compensation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/70Smart grids as climate change mitigation technology in the energy generation sector
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/22Flexible AC transmission systems [FACTS] or power factor or reactive power compensating or correcting units
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/30State monitoring, e.g. fault, temperature monitoring, insulator monitoring, corona discharge

Definitions

  • the present invention relates to a device for adjusting the voltage of electrical networks.
  • the present invention relates more particularly to a device for dynamic adjustment of the voltage which is intended to equip electrical networks and which comprises a first voltage electrical network having a determined number of phases and a second voltage electrical network. Such networks are connected to each other by a distribution transformer thus making it possible to modify a voltage U1 of the first voltage electrical network.
  • a device for dynamic adjustment of the voltage which is intended to equip electrical networks and which comprises a first voltage electrical network having a determined number of phases and a second voltage electrical network.
  • Such networks are connected to each other by a distribution transformer thus making it possible to modify a voltage U1 of the first voltage electrical network.
  • a medium-voltage / low-voltage distribution transformer used on state-of-the-art electrical distribution networks prior to the invention is a generally three-phase voltage-lowering transformer.
  • the power source is located upstream of the medium-voltage network, the powered loads are located downstream of the low-voltage network powered by the same transformer.
  • compound voltage is the potential difference between two conductors of different phases in a polyphase system.
  • the voltage delivered to these loads must respect a contractual voltage of 400 V per year. example, within a tolerance of +/- 10%.
  • the tolerance on the medium voltage network is also +/- 10%.
  • the conventional transformer comprises a static adjustment device for adjusting in a standard manner its transformation ratio according to these voltage drops.
  • a device whose primary (medium-voltage) and secondary (low-voltage) voltages are respectively 20 000 V and 400 V will offer the possibility of choosing between 5 reports, ie: 19000/400 V (-5 %), 19500/400 V (-2.5%), 20 000/400 V (0), 20500/400 V (+ 2.5%) or 21000/400 V (+5%).
  • This static adjustment device consists of a three-phase switch connected to different jacks made at the medium-voltage windings of the transformer and to vary the number of active turns within these windings.
  • the switch can only be operated in the absence of voltage, therefore only before the transformer is put into service.
  • decentralized energy production sources for example photovoltaic power plants installed in single-family dwellings and more particularly connected to low-voltage public distribution networks
  • these decentralized sources operate randomly depending on weather conditions. It follows that the energy flow through the medium-voltage / low-voltage transformer, which feeds the low-voltage network to which these production sources are connected, can pass from the medium-voltage to the low-voltage, or conversely, from low voltage to medium voltage. It is then necessary to compensate differently for the internal voltage drop of the distribution transformer, as well as the voltage drops due to the networks, according to the direction of the energy flow and therefore dynamically and not lump-sum. The static adjustment device mentioned above is therefore no longer suitable for these new operating conditions.
  • Load voltage regulators for power transformers are available on the market. Such a device is described, for example, in DE 10 2008 027 274. This patent describes complex and expensive systems, requiring periodic maintenance, reserved for high-power transformers, which makes their use unthinkable together with medium distribution transformers. -tension / low-voltage. Indeed, the large number of these reduced power transformers on the public electricity distribution networks implies the choice of economic solutions and do not require regular maintenance.
  • patent application DE 10 2009 014 243 A1 presents a solution for dynamically adjusting the voltage from an autotransformer connected to a secondary winding of the distribution transformer and having different taps on this winding.
  • the voltage adjustment is made by switching from one outlet to another by means of thyristor switching.
  • the advantage of this type of switching is to avoid the dead time during the passage between two consecutive holds, corresponding to an interruption that would cause a disruption of the distribution of energy.
  • the electronic control allows a cutoff at the initial setting and a closing at the desired take that are perfectly simultaneous.
  • the system as a whole consisting mainly of electronic components, has a lifetime and reliability vis-à-vis operating constraints that make it globally unlikely to be compatible with public distribution networks. Indeed, the life of such a system is of the order of 15 years, where power electrotechnical equipment, such as transformers of distribution, are operated without maintenance for more than 30 years. In addition, these devices must be able to withstand overvoltages of the order of ten kilovolts, as well as overload or short-circuit currents of several kiloamperes generating significant adiabatic heating, to which the solutions based on the use of thyristors are not suitable.
  • the objective of the present invention is to provide a voltage adjusting device, this device being associated with the distribution transformer, that is to say located nearby in a specific envelope, or integrated in the envelope of the distribution transformer itself, and to compensate for voltage drops dynamically and not lump sum, in a simple and economical way, and without the need for regular maintenance.
  • This device uses conventional switching means while avoiding disturbances during the switching phases. It is also adapted to operating constraints specific to medium-voltage / low-voltage distribution networks and does not cause significant energy losses in comparison with those of the distribution transformer with which it is associated.
  • the device of the invention is essentially such that it comprises a control transformer whose number of phases is identical to that of the first voltage network, the regulating transformer comprising, for each phase of the first voltage network, a secondary winding connected in series with the first voltage network and a primary winding of which a variable number of turns is connected to the second voltage network so as to obtain at the terminals of the secondary winding a voltage U3 chosen to be added to the voltage U1 of the first voltage network, to adjust a voltage U2 of said second voltage network.
  • the adjustment device comprises as many single-phase control transformers as the first voltage network comprises phases.
  • the primary winding comprises jacks arranged along its length so that the variability of the number of turns connected to the second voltage network is obtained, the jacks being connected or disconnected from the second network. voltage by means of switching members of the adjusting device.
  • the various switching members are actuated in a logical order defined by a truth table stored in a control interface of the adjustment device.
  • the first voltage electrical network being polyphase, it comprises, for each phase, a tertiary winding said stabilization positioned parallel to the other two windings and in the immediate vicinity of the secondary winding, each tertiary winding d a phase being coupled in series with the tertiary windings of the other phases.
  • the switching members specific to each phase of the first voltage electrical network are operable independently of those connected to the other phases and voluntarily non-simultaneous.
  • the primary winding comprises two inputs which can be connected independently of one another to a first phase or a second phase of the second voltage network.
  • the first voltage network is a medium-voltage network and the second voltage network is a low-voltage network
  • the distribution transformer is a medium-voltage / low-voltage distribution transformer .
  • the adjustment transformer of the adjustment device is integrated in the distribution transformer.
  • the various switching members are controlled by the control interface on receipt of and according to information conveyed by means of an electrical or optical signal and supplied to the control device by an information exchange device with a network manager.
  • the information is representative of the voltages composed of the first voltage network, measured between the secondary windings of the control transformer and the distribution transformer.
  • the information is a combination of the components. vectors of the compound voltages U2 of the low-voltage network and the vector components of the currents 12 flowing in the different phases of the low-voltage network.
  • FIG. 1 represents a single-wire electrical diagram of a first voltage network, having a rated voltage U1, and a second voltage network, having a rated voltage U2, these networks being connected to each other by a distribution transformer and a device dynamic voltage regulation according to the present invention.
  • FIG. 2 represents a single-wire electrical diagram of the device for dynamically adjusting the voltage according to a first embodiment.
  • FIG. 3 shows an alternative embodiment of the device for dynamically adjusting the voltage illustrated in FIG. 2.
  • FIG. 4a represents a truth table containing the choice and order of tilting of cut-off members of the device for dynamic adjustment of the voltage according to its variant embodiment illustrated in FIG. 4b.
  • FIG. 4b represents an alternative embodiment of the device for dynamically adjusting the voltage illustrated in FIG. 3 which comprises a control interface.
  • FIG. 5 represents a diagram of a three-phase system comprising, on each phase of the dynamic voltage control device according to this embodiment of the invention, a tertiary stabilization winding in addition to the primary and secondary windings.
  • FIG. 1 shows in a single-wire fashion an electrical distribution system comprising a first voltage network 1 having a rated voltage U1 and a second voltage network 2 having a rated voltage U2. These networks are connected to each other at least by one Distribution transformer 5.
  • the distribution transformer 5 is connected to the first voltage network 1 by means of a voltage adjusting device 3. The latter introduced between the input and output of the distribution transformer 5 a voltage U3 variable and selected. Between the device 3 and the first distribution transformer 5 is located a first electrical connection 6.
  • the adjustment device 3 takes the necessary power at the outputs of the distribution transformer 5 connected to the second voltage network 2 by the intermediate of a second electrical connection 4.
  • the adjustment device 3 is located between the distribution transformer 5 and the second voltage network 2.
  • the device comprises only elements subjected to a low voltage.
  • the intensities transited are high.
  • the networks 1 and 2 are respectively medium and low-voltage networks.
  • these networks may have a destination other than that of the public distribution of electrical energy. Their respective voltage may lie in a field other than those of the medium-voltage or the low-voltage.
  • FIG. 2 shows the single-wire electrical diagram of the adjustment device 3 according to a first embodiment.
  • the adjustment device 3 comprises a regulating transformer 7 whose number of phases is adapted to that of the distribution transformer 5.
  • a primary winding 8 of the regulating transformer 7 is connected to the low-voltage network 2 via the second electrical connection 4 consisting of phases 4a and 4b.
  • this primary winding 8 comprises setting taps 9 separated from each other by a defined number of turns, and capable of being connected to the link 4b via switching members 10a, 10b , 10c, 10d, which are typically low-voltage contactors.
  • the number of sockets 9a, 9b, 9c, 9d and switching members 10a, 10b, 10c, 10d depends on the number of desired adjustment steps, which in this example is equal to 4.
  • a secondary winding 1 1 of the regulating transformer 7 is connected in series between the first voltage network 1 and the electrical connection 6 supplying the distribution transformer 5.
  • the control transformer 7 is dimensioned so as to generate, across its secondary winding 11, a potential difference U3 equal, for example, to 2.5%, 5%, 7.5%, 10% of the single voltage of the network 1 depending on whether the socket 9a, 9b, 9c or 9d is connected to the phase 4a via a cut-off member 10a, 10b, 10c or 10d in the closed position.
  • This member may be unipolar or on the contrary have as many poles that the adjustment device 3 comprises phases.
  • the voltage U3 can be made equal to 0 by short-circuiting the two inputs of the winding 8 by means of an additional cut-off member 12 which is here a bipolar contactor. This provides a setting range from 0 to + 10% in steps of 2.5% with 4 shots. But this range, as well as the importance of the steps of adjustment, can be chosen differently according to the needs, by adapting the number 9a, 9b, 9c, 9d and the number of turns of the primary winding 8 which separate them.
  • the tap change is done simultaneously on each phase of the system to maintain a balance of voltages.
  • the cut-off devices 10a, 10b, 10c, 10d and 12 may for example be three-phase contactors.
  • Figure 3 shows a variant with respect to Figure 2 for reducing the overall power of the system for an equivalent effect.
  • a setting range of the voltage ranging from 0 to 10% assumes a power of the adjustment device 3 as described in Figure 2 equal to 10% of the power of the distribution transformer 5.
  • the principle shown in the figure 3 allows to reduce by half this power while maintaining the same amplitude of adjustment.
  • This advantage is obtained from the possibility of reversing the phases 4a and 4b supplying the two inputs 15 and 16 of the primary winding 8 of the control transformer 7.
  • the voltage U3 appearing across the winding secondary 1 1 can be added to or subtracted from the voltage of the first voltage network 1.
  • a setting range of 10% can therefore be covered by a device having a range of 5%, for example with 3 positions 0, + 2.5%, + 5%, which according to the order of the phases 4a and 4b supplying the 8 'primary winding, will actually offer a range -5%, -2.5%, 0, + 2.5%, + 5%.
  • 4a and 4b is obtained by the tilting of two bipolar contactors 14 or, according to another possible variant (not shown), by the successive switching of four unipolar contactors.
  • the technical solutions presented in FIGS. 2 and 3 use switching elements 10a, 10b, 10c, 10d, 12, 13, 14 which are unipolar or bipolar contactors, single phase or polyphase electromechanical type whose tilt is obtained using an electric actuator generally consisting of a solenoid.
  • switching elements 10a, 10b, 10c, 10d, 12, 13, 14 which are unipolar or bipolar contactors, single phase or polyphase electromechanical type whose tilt is obtained using an electric actuator generally consisting of a solenoid.
  • it is also possible to replace these electromechanical switching members by switching devices based on power semi-conductors such as thyristors. Nevertheless, the characteristics of these components as they can be currently supplied greatly limit their scope given the operating constraints.
  • 10c, 10d, 12, 14 is contained in a truth table, an example of which is given in FIG. 4a which applies to the diagram of FIG. 4b.
  • This truth table is stored in a control-command function carried out by a control interface 17 integrated in the adjustment device 3.
  • the choice of the position results from information which may be of external origin to the device, coming from an information exchange device with a network manager, or possibly an internal one.
  • different criteria can be used, for example the compound voltages U1 of the first voltage network 1 measured between the phases constituting the first electrical connection 6 situated between the control transformer 7 and the distribution transformer 5, or the composed voltages U2 measured between the phases of the second voltage network 2 associated with currents 12 discharged in the different phases of this same second voltage network 2.
  • the main difficulty to overcome is to overcome the voltage transient occurring in the time interval between the opening of a switching member prior to the closed position and the closure of another organ previously opened. Indeed, two switching members can not be simultaneously closed without creating prejudicial short circuit situation for the distribution system. Furthermore, the brief time interval during which no switching member would be closed and during which the primary winding 8 would be open would result in a high impedance across the secondary winding 1 1 and therefore in a voltage transient no acceptable for the operation of the system.
  • Figure 5 shows the solution that has been made to remedy this problem. It is represented here for a three-phase system, but can be considered for any type of polyphase system.
  • a tertiary winding 13 On each phase of the control transformer 7, in addition to the primary windings 8 and secondary 1 1 is added a tertiary winding 13 said stabilization, positioned parallel to the other two windings and in the immediate vicinity of the secondary winding January 1.
  • Each tertiary winding 13 of a phase is connected in series with the tertiary windings 13 of the other phases, to form for example a delta coupling if it is a three-phase system.
  • Wait times of 50 ms approximately correspond to the mechanical switchover delay and the time of interruption or establishment of the electrical current. It follows a total switching time for a three-phase system of the order of 250 ms, fully compatible with the application of the adjustment device 3 relating to the public distribution of electrical energy. These delays can have a different value, depending on the speed of the contactors used.
  • the advantage of the tertiary winding 13 stabilization is to replace the primary winding 8 during the period during which it is found in an open situation, that is to say during the waiting period between the opening of the N plug and the closing of the N + 1 plug, providing the necessary ampere-turns for compensation of the current flowing through the secondary winding 1 1.
  • These ampere-turns are taken from the other phases on which no commutation is in progress.
  • the secondary winding January 1 of the adjustment device 3 can be inserted between the distribution transformer 5 and the first voltage network 1 or between the distribution transformer 5 and the second voltage network 2.
  • the choice may depend the power of the distribution transformer 5, and thus the transient intensities, but also the respective voltages of the networks 1 and 2. According to these characteristics and according to the technology adopted for producing the control transformer 7 included in the adjustment device 3, the one of the two options may be more economical.
  • the adjustment transformer 7 of the adjustment device 3 is integrated directly into the envelope of the distribution transformer 5. This results in the saving of the second electrical connection 4 medium-voltage and connection interfaces associated with it. This gives a set whose size is less than that resulting from the combination of two separate devices.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Control Of Electrical Variables (AREA)

Abstract

La présente invention se rapporte à un dispositif de réglage destiné à équiper des réseaux électriques et plus particulièrement à un dispositif de réglage dynamique de la tension 3 d'un réseau électrique de première tension 1 et d'un réseau électrique de seconde tension 2, ces réseaux étant connectés entre eux par un premier transformateur 5 permettant de modifier une tension U1 dudit réseau de première tension, le dispositif comportant un transformateur de réglage dont le nombre de phases est identique à celui du réseau de première tension, le transformateur de réglage comportant pour chaque phase un enroulement secondaire connecté en série au réseau de première tension et un enroulement primaire comportant un nombre variable de spires connectées au réseau de seconde tension de manière à obtenir aux bornes de l'enroulement secondaire une tension U3 permettant de régler une tension U2 dudit réseau de seconde tension.

Description

DISPOSITIF DE REGLAGE DYNAMIQUE DE LA TENSION D'UN
RESEAU ELECTRIQUE
Domaine technique
La présente invention se rapporte à un dispositif de réglage de la tension de réseaux électriques.
La présente invention se rapporte plus particulièrement à un dispositif de réglage dynamique de la tension qui est destiné à équiper des réseaux électriques et qui comprend un réseau électrique de première tension ayant un nombre de phases déterminé et un réseau électrique de seconde tension. De tels réseaux sont connectés entre eux par un transformateur de distribution permettant ainsi de modifier une tension U1 du réseau électrique de première tension. Etat de la technique
Un transformateur de distribution moyenne-tension / basse-tension utilisé sur les réseaux électriques de distribution publique de l'état de l'art antérieur à l'invention est un transformateur abaisseur de tension généralement triphasé. La source d'alimentation est située en amont du réseau moyenne-tension, les charges alimentées sont situées en aval du réseau basse-tension alimenté par ce même transformateur.
Il est à noter ici que l'on entend par tension composée la différence de potentiel entre deux conducteurs de phases différentes dans un système polyphasé.
Selon la réglementation en vigueur (En France, il s'agit de l'arrêté interministériel du 24 décembre 2007 qui reprend l'exigence de la norme européenne EN61000), la tension délivrée à ces charges doit respecter une tension contractuelle, de 400 V par exemple, dans une tolérance de +/- 10 %. Par ailleurs, la tolérance sur le réseau moyenne tension est également de +/- 10 %. Compte-tenu de ces exigences, il apparaît nécessaire de compenser les chutes de tension occasionnées par les impédances des réseaux moyenne et basse-tension, de même que par l'impédance du transformateur. Dans ce but, le transformateur conventionnel comporte un dispositif de réglage statique permettant d'ajuster de manière forfaitaire son rapport de transformation en fonction de ces chutes de tension. A titre d'exemple, un appareil dont les tensions primaire (moyenne-tension) et secondaire (basse-tension) sont respectivement 20 000 V et 400 V offrira la possibilité de choisir entre 5 rapports, soit : 19000 / 400 V (-5 %), 19500 / 400 V (-2,5 %), 20 000 / 400 V (0), 20500 / 400 V (+2,5 %) ou 21 000 / 400 V (+5 %).
Ce dispositif de réglage statique est constitué d'un commutateur triphasé connecté à différentes prises aménagées au niveau des enroulements moyenne-tension du transformateur et permettant de faire varier le nombre de spires actives au sein de ces enroulements. Le commutateur ne peut être manœuvré qu'en l'absence de tension, donc uniquement avant mise en service du transformateur.
L'avènement de sources de production d'énergie décentralisées, par exemple des centrales photovoltaïques installées dans des habitations individuelles et plus particulièrement connectées aux réseaux de distribution publique basse-tension, conduit à devoir remettre en cause le principe précédent. En effet, ces sources décentralisées fonctionnent de manière aléatoire au gré de conditions météorologiques. Il s'en suit que le flux d'énergie traversant le transformateur moyenne-tension / basse- tension, lequel alimente le réseau basse-tension auquel sont raccordées ces sources de production, peut transiter de la moyenne-tension vers la basse-tension, ou inversement, de la basse-tension vers la moyenne- tension. Il est alors nécessaire de compenser différemment la chute de tension interne du transformateur de distribution, de même que les chutes de tension dues aux réseaux, selon le sens du flux d'énergie et donc de manière dynamique et non plus forfaitaire. Le dispositif de réglage statique évoqué précédemment ne convient donc plus à ces nouvelles conditions d'exploitation. Des dispositifs de réglage de la tension en charge pour transformateurs de puissance sont disponibles sur le marché. Un tel dispositif est décrit par exemple dans le brevet DE 10 2008 027 274. Ce brevet décrit des systèmes complexes et onéreux, exigeant une maintenance périodique, réservés aux transformateurs de grande puissance, ce qui rend leur utilisation inenvisageable conjointement avec des transformateurs de distribution moyenne-tension / basse-tension. En effet, le nombre important de ces transformateurs de puissance réduite sur les réseaux de distribution publique de l'énergie électrique implique le choix de solutions économiques et ne nécessitant pas de maintenance régulière.
Pour faire face au besoin exprimé précédemment, d'autres solutions plus adaptées ont été imaginées. A titre d'exemple, la demande de brevet DE 10 2009 014 243 A1 présente une solution de réglage dynamique de la tension à partir d'un autotransformateur connecté à un enroulement secondaire du transformateur de distribution et présentant différentes prises sur cet enroulement. Le réglage de tension se fait par le passage d'une prise à l'autre au moyen d'une commutation par thyristors. L'avantage de ce type de commutation est d'éviter le temps mort durant le passage entre deux prises consécutives, correspondant à une interruption qui occasionnerait une perturbation de la distribution de l'énergie. La commande électronique permet en effet une coupure au niveau de la prise initiale et une fermeture au niveau de la prise désirée qui sont parfaitement simultanées.
Par contre, le système dans son ensemble, constitué essentiellement de composants électroniques, présente une durée de vie et une fiabilité vis-à-vis des contraintes d'exploitation qui le rendent globalement peu compatible avec les réseaux de distribution publique. En effet, la durée de vie d'un tel système est de l'ordre de 15 ans, là ou les matériels électrotechniques de puissance, comme les transformateurs de distribution, sont exploités sans maintenance pendant plus de 30 ans. Par ailleurs, ces matériels doivent être en mesure de supporter des surtensions de l'ordre de la dizaine de kilovolts, de même que des courants de surcharge ou de court-circuit de plusieurs kilo ampères générant des échauffements adiabatiques importants, ce à quoi les solutions basées sur l'utilisation de thyristors ne sont pas adaptées. Un autre inconvénient significatif concerne les pertes ohmiques engendrées par ces thyristors quand ils sont parcourus par un courant de service. Non seulement elles imposent l'utilisation de dispositifs de refroidissement des composants pour les maintenir à des températures acceptables, mais en plus elles affectent significativement l'efficacité énergétique du système constitué par le transformateur de distribution et le dispositif de réglage dynamique de la tension.
L'objectif visé par la présente invention est de fournir un dispositif de réglage de la tension, ce dispositif étant associé au transformateur de distribution, c'est-à-dire situé à proximité dans une enveloppe spécifique, ou intégré dans l'enveloppe du transformateur de distribution elle-même, et permettant de compenser les chutes de tension de manière dynamique et non forfaitaire, d'une manière simple et économique, et sans nécessité une maintenance régulière. Ce dispositif fait appel à des moyens de commutation conventionnels tout en évitant les perturbations durant les phases de commutation. Il est par ailleurs adapté aux contraintes d'exploitation propres aux réseaux de distribution moyenne-tension / basse-tension et n'occasionne pas de pertes énergétiques significatives, en comparaison à celles du transformateur de distribution auquel il est associé.
Description de l'invention
A cette fin, le dispositif de l'invention, par ailleurs conforme à la définition générique qu'en donne le préambule ci-dessus, est essentiellement tel qu'il comporte un transformateur de réglage dont le nombre de phases est identique à celui du réseau de première tension, le transformateur de réglage comportant, pour chaque phase du réseau de première tension, un enroulement secondaire connecté en série au réseau de première tension et un enroulement primaire dont un nombre variable de spires est connecté au réseau de seconde tension de manière à obtenir aux bornes de l'enroulement secondaire une tension U3 choisie venant s'additionner à la tension U1 du réseau de première tension, pour régler une tension U2 dudit réseau de seconde tension.
Selon une première particularité, le dispositif de réglage comporte autant de transformateurs de réglage monophasés que le réseau de première tension comporte de phases.
Selon un premier mode de réalisation du dispositif de réglage, l'enroulement primaire comprend des prises aménagées sur son long de sorte que soit obtenue la variabilité du nombre de spires connectées au réseau de seconde tension, les prises étant connectées ou déconnectées du réseau de seconde tension au moyen d'organes de commutation du dispositif de réglage.
Selon le premier mode de réalisation du dispositif de réglage, les différents organes de commutation sont actionnés selon un ordre logique défini par une table de vérité mémorisée dans une interface de commande du dispositif de réglage.
Selon une variante du dispositif de réglage, le réseau électrique de première tension étant polyphasé, il comporte, pour chaque phase, un enroulement tertiaire dit de stabilisation positionné parallèlement aux deux autres enroulements et à proximité immédiate de l'enroulement secondaire, chaque enroulement tertiaire d'une phase étant couplé en série avec les enroulements tertiaires des autres phases.
Selon une particularité de cette variante, les organes de commutation propres à chaque phase du réseau électrique de première tension sont actionnables indépendamment de ceux connectés aux autres phases et de manière volontairement non simultanée. Selon une particularité du dispositif de réglage, l'enroulement primaire comprend deux entrées qui peuvent être connectées indépendamment l'une de l'autre à une première phase ou à une seconde phase du réseau de seconde tension.
Selon une application particulière du dispositif de réglage, le réseau de première tension est un réseau moyenne-tension et le réseau de seconde tension est un réseau basse-tension, et le transformateur de distribution est un transformateur de distribution moyenne-tension / basse- tension.
Selon une autre particularité du dispositif de réglage, le transformateur de réglage du dispositif de réglage est intégré au transformateur de distribution.
Selon une variante du premier mode de réalisation du dispositif de réglage, les différents organes de commutation sont commandés par l'interface de commande à réception de et selon une information véhiculée au moyen d'un signal électrique ou optique et fournie au dispositif de réglage par un dispositif d'échange d'information avec un gestionnaire du réseau.
Selon une particularité de cette variante du premier mode de réalisation du dispositif de réglage, l'information est représentative des tensions composées du réseau de première tension, mesurées entre les enroulements secondaires du transformateur de réglage et le transformateur de distribution.
Selon une autre particularité de cette variante du premier mode de réalisation du dispositif de réglage appliqué à un système de distribution moyenne-tension / basse-tension, chaque tension et chaque courant étant représentée vectoriellement par des composantes, l'information est une combinaison des composantes vectorielles des tensions composées U2 du réseau basse-tension et des composantes vectorielles des courants 12 circulant dans les différentes phases du réseau basse-tension. D'autres avantages pourront encore apparaître à l'homme du métier à la lecture des exemples ci-dessous, illustrés par les figures annexées, donnés à titre illustratif.
Brève description des figures
- La figure 1 représente un schéma électrique unifilaire d'un réseau de première tension, ayant une tension assignée U1 , et un réseau de seconde tension, ayant une tension assignée U2, ces réseaux étant connectés entre eux par un transformateur de distribution et un dispositif de réglage dynamique de la tension selon la présente invention.
- La figure 2 représente un schéma électrique unifilaire du dispositif de réglage dynamique de la tension selon un premier mode de réalisation.
La figure 3 représente une variante de réalisation du dispositif de réglage dynamique de la tension illustré sur la figure 2.
- La figure 4a représente une table de vérité contenant le choix et l'ordre de basculement d'organes de coupure du dispositif de réglage dynamique de la tension selon sa variante de réalisation illustrée sur la figure 4b.
La figure 4b représente une variante de réalisation du dispositif de réglage dynamique de la tension illustré sur la figure 3 qui comprend une interface de commande.
La figure 5 représente un schéma d'un système triphasé comprenant, sur chaque phase du dispositif de réglage dynamique de la tension selon ce mode de réalisation de l'invention, un enroulement tertiaire de stabilisation en plus des enroulements primaire et secondaire.
La figure 1 montre de manière unifilaire un système de distribution électrique comprenant un réseau de première tension 1 , ayant une tension assignée U1 , et un réseau de seconde tension 2, ayant une tension assignée U2. Ces réseaux sont connectés entre eux au moins par un transformateur de distribution 5. Selon cette figure 1 et selon un mode de réalisation préféré, le transformateur de distribution 5 est raccordé au réseau de première tension 1 par l'intermédiaire d'un dispositif de réglage de tension 3. Ce dernier introduit entre l'entrée et la sortie du transformateur de distribution 5 une tension U3 variable et choisie. Entre le dispositif 3 et le premier transformateur de distribution 5 est située une première liaison électrique 6. Par ailleurs, le dispositif de réglage 3 prélève la puissance nécessaire au niveau des sorties du transformateur de distribution 5 connectées au réseau de seconde tension 2 par l'intermédiaire d'une seconde liaison électrique 4.
Ceci dit, une autre configuration est possible selon laquelle le dispositif de réglage 3 est situé entre le transformateur de distribution 5 et le réseau de seconde tension 2. Dans ce second cas, le dispositif ne comporte que des éléments soumis à une basse tension. Mais par contre, les intensités transitées sont élevées. Selon les caractéristiques de tension et de puissance de l'installation, et selon le fait que le dispositif est intégré ou associé au transformateur, l'une de ces deux solutions peut s'avérer plus économique. Au vu de la destination du dispositif de réglage 3, destination relative à la distribution publique d'énergie électrique, les réseaux 1 et 2 sont respectivement des réseaux moyenne et basse-tension. Toutefois ces réseaux peuvent avoir une autre destination que celle de la distribution publique d'énergie électrique. Leur tension respective peut se situer dans un domaine autre que ceux de la moyenne-tension ou de la basse-tension. De même, bien que la figure 1 présente à titre d'exemple le schéma unifilaire d'un système triphasé, le principe évoqué ici s'applique à des réseaux dont le nombre de phases peut être différent. La figure 2 présente le schéma électrique unifilaire du dispositif de réglage 3 selon un premier mode de réalisation. Le dispositif de réglage 3 comprend un transformateur de réglage 7 dont le nombre de phases est adapté à celui du transformateur de distribution 5. Un enroulement primaire 8 du transformateur de réglage 7 est connecté au réseau basse-tension 2 par l'intermédiaire de la seconde liaison électrique 4 constituée des phases 4a et 4b. A l'une de ses extrémités, cet enroulement primaire 8 comporte des prises de réglage 9 séparées entre elles par un nombre défini de spires, et susceptibles d'être connectées à la liaison 4b par l'intermédiaire d'organes de commutation 10a, 10b, 10c, 10d, qui sont typiquement des contacteurs basse-tension. Le nombre de prises 9a, 9b, 9c, 9d et d'organes de commutation 10a, 10b, 10c, 10d dépend du nombre de pas de réglage souhaité, qui est, dans le présent exemple, égal à 4.
Un enroulement secondaire 1 1 du transformateur de réglage 7 est connecté en série entre le réseau de première tension 1 et la liaison électrique 6 alimentant le transformateur de distribution 5.
Le transformateur de réglage 7 est dimensionné de manière à générer aux bornes de son enroulement secondaire 1 1 une différence de potentiel U3 égale par exemple à 2,5 %, 5 %, 7,5 %, 10 % de la tension simple du réseau 1 selon que la prise 9a, 9b, 9c ou 9d soit mise en relation avec la phase 4a par l'intermédiaire d'un organe de coupure 10a, 10b, 10c ou 10d en position fermée. Cet organe peut être unipolaire ou au contraire présenter autant de pôles que le dispositif de réglage 3 comprend de phases. La tension U3 peut être rendue égale à 0 en court-circuitant les deux entrées de l'enroulement 8 au moyen d'un organe de coupure supplémentaire 12 qui est ici un contacteur bipolaire. On dispose ainsi d'une plage de réglage allant de 0 à + 10 % par pas de 2,5 % à l'aide de 4 prises. Mais cette plage, de même que l'importance des pas de réglage, peuvent être choisis différemment selon les besoin, en adaptant le nombre de prises 9a, 9b, 9c, 9d et le nombre de spires de l'enroulement primaire 8 qui les séparent.
Dans le cas de systèmes polyphasés, et selon le schéma correspondant à la figure 2, le changement de prise se fait simultanément sur chacune des phases du système pour maintenir un équilibrage des tensions. Dans le cas d'un système triphasé, les organes de coupure 10a, 10b, 10c, 10d et 12 peuvent être par exemple des contacteurs triphasés.
La figure 3 présente une variante par rapport à la figure 2 permettant de réduire la puissance globale du système pour un effet équivalent. En effet, une plage de réglage de la tension allant de 0 à 10 % suppose une puissance du dispositif de réglage 3 tel que décrit à la figure 2 égale à 10 % de la puissance du transformateur de distribution 5. Le principe présenté sur la figure 3 permet de réduire de moitié cette puissance tout en conservant la même amplitude de réglage. Cet avantage est obtenu à partir de la possibilité d'inverser les phases 4a et 4b alimentant les deux entrées 15 et 16 de l'enroulement primaire 8 du transformateur de réglage 7. Par ce biais, la tension U3 apparaissant aux bornes de l'enroulement secondaire 1 1 peut soit s'additionner, soit se soustraire à la tension du réseau de première tension 1 . Une plage de réglage de 10 % peut donc être couverte par un dispositif présentant une plage de 5 %, par exemple avec 3 positions 0, +2,5 %, +5 %, qui selon l'ordre des phases 4a et 4b alimentant l'enroulement primaire 8, offrira en fait une plage -5 %, -2,5 %, 0, +2,5 %, +5 %. Cette inversion des phases
4a et 4b s'obtient par le basculement de deux contacteurs bipolaires 14 ou, selon une autre variante possible (non représentée), par le basculement successif de quatre contacteurs unipolaires. Les solutions techniques présentées dans les figures 2 et 3 font appel à des organes de commutation respectivement 10a, 10b, 10c, 10d, 12, 13, 14 qui sont des contacteurs unipolaires ou bipolaires, monophasés ou polyphasés de type électromécanique dont le basculement est obtenu à l'aide d'un actionneur électrique constitué généralement d'un solénoïde. Toutefois, il est également possible de remplacer ces organes de commutation électromécaniques par des organes de commutation à base de semi-conducteurs de puissance tels que des thyristors. Néanmoins, les caractéristiques de ces composants tels qu'ils peuvent être approvisionnés actuellement limitent fortement leur champ d'application compte-tenu des contraintes d'exploitation.
Le choix et l'ordre de basculement des organes de coupure 10a, 10b,
10c, 10d, 12, 14 est contenu dans une table de vérité dont un exemple est donné à la figure 4a qui s'applique au schéma de la figure 4b. Cette table de vérité est mémorisée dans une fonction de contrôle-commande réalisée par une interface de commande 17 intégrée au dispositif de réglage 3. Le choix de la position résulte d'une information qui peut être d'origine externe au dispositif, en provenance d'un dispositif d'échange d'information avec un gestionnaire du réseau, ou éventuellement interne. Dans ce second cas, différents critères peuvent être utilisés comme par exemple les tensions composées U1 du réseau de première tension 1 relevées entre les phases constituant la première liaison électrique 6 située entre le transformateur de réglage 7 et le transformateur de distribution 5, ou encore les tensions composées U2 relevées entre les phases du réseau de seconde tension 2 associées aux courants 12 débités dans les différentes phases de ce même réseau de seconde tension 2.
Comme cela a été évoqué précédemment, la principale difficulté à surmonter consiste à s'affranchir du transitoire de tension apparaissant dans l'intervalle de temps séparant l'ouverture d'un organe de commutation préalablement en position fermée et la fermeture d'un autre organe de commutation préalablement ouvert. En effet, deux organes de commutation ne peuvent se trouver simultanément fermés sans créer de situation de court-circuit préjudiciable pour le système de distribution. Par ailleurs, le bref intervalle de temps pendant lequel aucun organe de commutation ne serait fermé et durant lequel l'enroulement primaire 8 serait ouvert se traduirait par une impédance élevée aux bornes de l'enroulement secondaire 1 1 et donc à un transitoire de tension non acceptable pour l'exploitation du système.
La figure 5 présente la solution qui a été apportée pour remédier à ce problème. Elle est représentée ici pour un système triphasé, mais peut s'envisager pour tout type de système polyphasé.
Sur chaque phase du transformateur de réglage 7, en plus des enroulements primaire 8 et secondaire 1 1 est ajouté un enroulement tertiaire 13 dit de stabilisation, positionné parallèlement aux deux autres enroulements et à proximité immédiate de l'enroulement secondaire 1 1 . Chaque enroulement tertiaire 13 d'une phase est connecté en série avec les enroulements tertiaires 13 des autres phases, pour constituer par exemple un couplage en triangle s'il s'agit d'un système triphasé.
Par ailleurs, le changement de position des organes de commutation 10a, 10b, 10c, 10d et 12 repérés sur la figure 2 n'est plus réalisé simultanément sur les différentes phases du système, mais au contraire avec un léger décalage de temps. Ainsi, le passage d'une prise N à une prise voisine N+1 se passera selon le séquencement suivant, défini ici pour un système triphasé :
- Étape I : Sur la phase A, ouverture du contacteur de la prise N ;
Délai d'attente de 50 ms - Fermeture de la prise N+1 ; Délai d'attente de 50 ms.
- Étape II : sur la phase B, ouverture du contacteur de la prise N ;
Délai d'attente de 50 ms ; Fermeture de la prise N+1 ; Délai d'attente de 50 ms. - Étape III : sur la phase C, ouverture du contacteur de la prise N ; Délai d'attente de 50 ms ; Fermeture de la prise N+1 .
Les délais d'attente de 50 ms correspondent approximativement au délai de basculement mécanique et au délai d'interruption ou d'établissement du courant électrique. Il s'en suit une durée totale de commutation pour un système triphasé de l'ordre de 250 ms, tout à fait compatible avec l'application du dispositif de réglage 3 relative à la distribution publique d'énergie électrique. Ces délais peuvent avoir une valeur différente, selon la rapidité des contacteurs utilisés.
L'intérêt de l'enroulement tertiaire 13 de stabilisation est de se substituer à l'enroulement primaire 8 pendant le délai durant lequel celui-ci se retrouve en situation ouverte, c'est-à-dire durant le délai d'attente compris entre l'ouverture de la prise N et la fermeture de la prise N+1 , en fournissant les ampères-tours nécessaires pour une compensation du courant parcourant l'enroulement secondaire 1 1 . Ces ampères-tours sont prélevés sur les autres phases sur lesquelles aucune commutation n'est en cours. Ainsi, l'homme du métier comprendra que l'ordre selon lequel les phases sont successivement commutées importe peu.
Comme évoqué précédemment, l'enroulement secondaire 1 1 du dispositif de réglage 3 peut être inséré entre le transformateur de distribution 5 et le réseau de première tension 1 ou entre le transformateur de distribution 5 et le réseau de seconde tension 2. Le choix peut dépendre de la puissance du transformateur de distribution 5, donc des intensités transitées, mais également des tensions respectives des réseaux 1 et 2. Selon ces caractéristiques et selon la technologie retenue pour réaliser le transformateur de réglage 7 inclus dans le dispositif de réglage 3, l'une des deux options peut s'avérer plus économique.
Dans une autre variante qui peut être également avantageuse, le transformateur de réglage 7 du dispositif de réglage 3 est intégré directement dans l'enveloppe du transformateur de distribution 5. Il s'en suit l'économie de la seconde liaison électrique 4 moyenne-tension et des interfaces de raccordement qui lui sont associés. On obtient ainsi un ensemble dont l'encombrement est inférieur à celui résultant de l'association des deux appareils distincts.

Claims

REVENDICATIONS
1 . Dispositif de réglage dynamique de la tension (3) destiné à équiper des réseaux électriques comprenant un réseau électrique de première tension (1 ) ayant un nombre de phases déterminé et un réseau électrique de seconde tension (2), les réseaux (1 ) et (2) étant connectés entre eux par un transformateur de distribution (5) permettant de modifier une tension U1 dudit réseau électrique de première tension (1 ), le dispositif comportant un transformateur de réglage (7) dont le nombre de phases est identique à celui du réseau de première tension (1 ), le transformateur de réglage (7) comportant, pour chaque phase du réseau de première tension, un enroulement secondaire (1 1 ) connecté en série au réseau de première tension (1 ) et un enroulement primaire (8) dont un nombre variable de spires est connecté au réseau de seconde tension (2) de manière à obtenir aux bornes de l'enroulement secondaire (1 1 ) une tension U3 choisie venant s'additionner à la tension U1 du réseau de première tension, pour régler une tension U2 dudit réseau de seconde tension (2), caractérisé en ce que l'enroulement primaire (8) comprend des prises (9a, 9b, 9c, 9d) aménagées sur son long de sorte que soit obtenue la variabilité du nombre de spires connectées au réseau de seconde tension (2), les prises (9a, 9b, 9c, 9d) étant connectées ou déconnectées du réseau de seconde tension (2) au moyen d'organes de commutation (10a, 10b, 10c, 10d, 12) du dispositif de réglage (3).
2. Dispositif (3) selon la revendication 1 , caractérisé en ce qu'il comporte autant de transformateurs de réglage (7) monophasés que le réseau de première tension (1 ) comporte de phases.
3. Dispositif selon la revendication 1 , caractérisé en ce que les différents organes de commutation (10a, 10b, 10c, 10d, 12) sont actionnés selon un ordre logique défini par une table de vérité mémorisée dans une interface de commande (17) du dispositif de réglage (3).
4. Dispositif selon l'une quelconque des revendications 1 à 3, caractérisé en ce que, le réseau électrique de première tension (1 ) étant polyphasé, il comporte, pour chaque phase, un enroulement tertiaire (13) dit de stabilisation positionné parallèlement aux deux autres enroulements et à proximité immédiate de l'enroulement secondaire (1 1 ), chaque enroulement tertiaire (13) d'une phase étant couplé en série avec les enroulements tertiaires (13) des autres phases.
5. Dispositif selon la revendication 4 conjointement avec la revendication 4, caractérisé en ce que les organes de commutation (10a, 10b, 10c, 10d, 12) propres à chaque phase du réseau électrique de première tension (1 ) sont actionnables indépendamment de ceux connectés aux autres phases et de manière volontairement non simultanée.
6. Dispositif selon l'une quelconque des revendications 1 à 5, caractérisé en ce que l'enroulement primaire (8) comprend deux entrées (15 et 16) qui peuvent être connectées indépendamment l'une de l'autre à une première phase ou à une seconde phase du réseau de seconde tension (2).
7. Dispositif selon l'une quelconque des revendications 1 à 6, caractérisé en ce que le réseau de première tension (1 ) est un réseau moyenne-tension et le réseau de seconde tension (2) est un réseau basse-tension, et le transformateur de distribution (5) est un transformateur de distribution moyenne-tension / basse- tension.
8. Dispositif selon l'une quelconque des revendications 1 à 7, caractérisé en ce que le transformateur de réglage (7) du dispositif de réglage (3) est intégré au transformateur de distribution (5).
9. Dispositif selon la revendication 3, caractérisé en ce que les différents organes de commutation (10a, 10b, 10c, 10d, 12) sont commandés par l'interface de commande (17) à réception de et selon une information véhiculée au moyen d'un signal électrique ou optique et fournie au dispositif de réglage (3) par un dispositif d'échange d'information avec un gestionnaire du réseau.
10. Dispositif selon la revendication 9, caractérisé en ce que l'information est représentative des tensions composées du réseau de première tension (1 ), mesurées entre les enroulements secondaires (1 1 ) du transformateur de réglage (7) et le transformateur de distribution (5).
1 1 . Dispositif selon les revendications 8 et 10, caractérisé en ce que, chaque tension et chaque courant étant représentée vectoriellement par des composantes, l'information est une combinaison des composantes vectorielles des tensions composées U2 du réseau basse-tension et des composantes vectorielles des courants 12 circulant dans les différentes phases du réseau basse-tension.
PCT/FR2013/051810 2012-07-26 2013-07-26 Dispositif de reglage dynamique de la tension d'un reseau electrique WO2014016532A2 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP13756607.1A EP2878075A2 (fr) 2012-07-26 2013-07-26 Dispositif de reglage dynamique de la tension d'un reseau electrique

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1257274 2012-07-26
FR1257274A FR2994039B1 (fr) 2012-07-26 2012-07-26 Dispositif de reglage dynamique de la tension d'un reseau electrique

Publications (2)

Publication Number Publication Date
WO2014016532A2 true WO2014016532A2 (fr) 2014-01-30
WO2014016532A3 WO2014016532A3 (fr) 2014-09-12

Family

ID=47049276

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2013/051810 WO2014016532A2 (fr) 2012-07-26 2013-07-26 Dispositif de reglage dynamique de la tension d'un reseau electrique

Country Status (3)

Country Link
EP (1) EP2878075A2 (fr)
FR (1) FR2994039B1 (fr)
WO (1) WO2014016532A2 (fr)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105305835A (zh) * 2014-05-27 2016-02-03 江苏省电力公司南京供电公司 多级有载调压防覆冰变压器
WO2016083411A1 (fr) * 2014-11-24 2016-06-02 Thales Dispositif de conversion d'energie electrique a caracteristiques ameliorees
WO2017099628A1 (fr) * 2015-11-18 2017-06-15 Александр Борисович КЛАВСУЦ Régulateur de courant alternatif

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3032310B1 (fr) * 2015-01-29 2017-02-03 Transfix Dispositif de reglage dynamique de la tension d'un reseau electrique, et ensemble comprenant un tel dispositif

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1188093A (fr) * 1957-12-03 1959-09-18 Forges Ateliers Const Electr Perfectionnements aux transformateurs réglables
DE2753464A1 (de) * 1977-11-30 1979-05-31 Transformatoren Union Ag Einrichtung zur einstellung der spannung an transformatoren unter last
JPS57207314A (en) * 1981-06-16 1982-12-20 Toshiba Corp On-load tap changing transformer
KR100926968B1 (ko) * 2009-06-08 2009-11-17 (주)아토전기 자동 전압 조절기
EP2219277A1 (fr) * 2009-02-12 2010-08-18 Viserge Ltd. Connexion CA d'un parc éolien en mer à un réseau électrique sur terre
DE102010040969A1 (de) * 2010-09-17 2012-03-22 Siemens Aktiengesellschaft Transformator mit Einrichtung zur Aufaddierung einer Spannung

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1188093A (fr) * 1957-12-03 1959-09-18 Forges Ateliers Const Electr Perfectionnements aux transformateurs réglables
DE2753464A1 (de) * 1977-11-30 1979-05-31 Transformatoren Union Ag Einrichtung zur einstellung der spannung an transformatoren unter last
JPS57207314A (en) * 1981-06-16 1982-12-20 Toshiba Corp On-load tap changing transformer
EP2219277A1 (fr) * 2009-02-12 2010-08-18 Viserge Ltd. Connexion CA d'un parc éolien en mer à un réseau électrique sur terre
KR100926968B1 (ko) * 2009-06-08 2009-11-17 (주)아토전기 자동 전압 조절기
DE102010040969A1 (de) * 2010-09-17 2012-03-22 Siemens Aktiengesellschaft Transformator mit Einrichtung zur Aufaddierung einer Spannung

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JOAQUÍN VAQUERO LÓPEZ ET AL: "Analysis of Fast Onload Multitap-Changing Clamped-Hard-Switching AC Stabilizers", IEEE TRANSACTIONS ON POWER DELIVERY, IEEE SERVICE CENTER, NEW YORK, NY, US, vol. 21, no. 2, 1 avril 2006 (2006-04-01), pages 852-861, XP001546368, ISSN: 0885-8977, DOI: 10.1109/TPWRD.2005.859298 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105305835A (zh) * 2014-05-27 2016-02-03 江苏省电力公司南京供电公司 多级有载调压防覆冰变压器
WO2016083411A1 (fr) * 2014-11-24 2016-06-02 Thales Dispositif de conversion d'energie electrique a caracteristiques ameliorees
WO2017099628A1 (fr) * 2015-11-18 2017-06-15 Александр Борисович КЛАВСУЦ Régulateur de courant alternatif

Also Published As

Publication number Publication date
EP2878075A2 (fr) 2015-06-03
WO2014016532A3 (fr) 2014-09-12
FR2994039A1 (fr) 2014-01-31
FR2994039B1 (fr) 2016-01-22

Similar Documents

Publication Publication Date Title
EP2580860B1 (fr) Onduleur de tension et procede de commande d'un tel onduleur
CA2078796C (fr) Dispositif electronique de conversion d'energie electrique
US7521825B2 (en) Interface switch for distributed energy resources
WO2014016532A2 (fr) Dispositif de reglage dynamique de la tension d'un reseau electrique
EP2289161A1 (fr) Circuit redresseur a forte puissance notamment pour électrolyse de l'aluminium
EP2660095A2 (fr) Etage de conversion, convertisseur électrique comportant un tel étage de conversion, dispositif de conversion d'un courant alternatif en un courant continu comportant un tel convertisseur, et borne de rechargement d'une batterie électrique comportant un tel convertisseur ou dispositif de conversion
EP2794343B1 (fr) Procede d'echange d'energie electrique entre un reseau electrique vehiculant une grandeur electrique continue ou alternative et une unite de stockage d'energie electrique pour vehicule hybride ou electrique
EP2984663B1 (fr) Transformateur muni de moyens d'ajustement du rapport de transformation en charge
EP3251190B1 (fr) Dispositif de réglage dynamique de la tension d'un réseau électrique, ensemble et réaseau électrique comprenant un tel dispositif
EP3179597A1 (fr) Dispositif de fourniture d'electricite monophasee et triphasee ameliore
EP1410488B1 (fr) Dispositif de conversion d'energie
FR3112039A1 (fr) Système de transfert de puissance entre un réseau à courant alternatif et une turbine hydraulique réversible
FR2998115A1 (fr) Etage de conversion, convertisseur electrique comportant un tel etage de conversion, dispositif de conversion d'un courant alternatif en un courant continu comportant un tel convertisseur, et borne de rechargement d'une batterie electrique comportant un tel convertisseur ou dispositif de conversion
EP4078755B1 (fr) Convertisseur de tension dc/dc muni d'un dispositif coupe-circuit
EP3888217B1 (fr) Système intégrant une solution de reconfiguration de connexion d'un dispositif de contrôle de flux de puissance dans un réseau maillé
WO2021038155A1 (fr) Convertisseur modulaire multiniveaux pour application basse tension avec inductances optimisees et un nombre de niveaux augmente
EP0405653A2 (fr) Convertisseur de puissance d'énergie électrique dont la commutation est assistée moyennant un contrôle actif de la tension d'alimentation du circuit inverseur de tension
BE416049A (fr)
WO2016097590A1 (fr) Commutateur ou onduleur de courant triphase
FR2498390A1 (fr) Dispositif de reglage de tension et de reactance dans des reseaux electriques
BE533303A (fr)
BE374400A (fr)
BE467160A (fr)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13756607

Country of ref document: EP

Kind code of ref document: A2

WWE Wipo information: entry into national phase

Ref document number: 2013756607

Country of ref document: EP