WO2014015586A1 - 全金属封装的耐高温光纤光栅传感器及其制造方法 - Google Patents

全金属封装的耐高温光纤光栅传感器及其制造方法 Download PDF

Info

Publication number
WO2014015586A1
WO2014015586A1 PCT/CN2012/084805 CN2012084805W WO2014015586A1 WO 2014015586 A1 WO2014015586 A1 WO 2014015586A1 CN 2012084805 W CN2012084805 W CN 2012084805W WO 2014015586 A1 WO2014015586 A1 WO 2014015586A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal
layer
temperature
fiber grating
fiber
Prior art date
Application number
PCT/CN2012/084805
Other languages
English (en)
French (fr)
Inventor
涂善东
徒芸
齐一华
韩鹏
张显程
轩福贞
Original Assignee
华东理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华东理工大学 filed Critical 华东理工大学
Priority to US14/417,386 priority Critical patent/US9551596B2/en
Publication of WO2014015586A1 publication Critical patent/WO2014015586A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D7/00Electroplating characterised by the article coated
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/32Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
    • G01D5/34Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
    • G01D5/353Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • C23C14/024Deposition of sublayers, e.g. to promote adhesion of the coating
    • C23C14/025Metallic sublayers
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/16Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon
    • C23C14/165Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon by cathodic sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/18Metallic material, boron or silicon on other inorganic substrates
    • C23C14/185Metallic material, boron or silicon on other inorganic substrates by cathodic sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/04Electroplating: Baths therefor from solutions of chromium
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/12Electroplating: Baths therefor from solutions of nickel or cobalt
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/32Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
    • G01D5/34Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
    • G01D5/353Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre
    • G01D5/35306Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre using an interferometer arrangement
    • G01D5/35309Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre using an interferometer arrangement using multiple waves interferometer
    • G01D5/35316Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre using an interferometer arrangement using multiple waves interferometer using a Bragg gratings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/02057Optical fibres with cladding with or without a coating comprising gratings
    • G02B6/02076Refractive index modulation gratings, e.g. Bragg gratings
    • G02B6/02171Refractive index modulation gratings, e.g. Bragg gratings characterised by means for compensating environmentally induced changes
    • G02B6/02176Refractive index modulation gratings, e.g. Bragg gratings characterised by means for compensating environmentally induced changes due to temperature fluctuations
    • G02B6/0218Refractive index modulation gratings, e.g. Bragg gratings characterised by means for compensating environmentally induced changes due to temperature fluctuations using mounting means, e.g. by using a combination of materials having different thermal expansion coefficients
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/02057Optical fibres with cladding with or without a coating comprising gratings
    • G02B6/02076Refractive index modulation gratings, e.g. Bragg gratings
    • G02B6/02171Refractive index modulation gratings, e.g. Bragg gratings characterised by means for compensating environmentally induced changes
    • G02B6/02176Refractive index modulation gratings, e.g. Bragg gratings characterised by means for compensating environmentally induced changes due to temperature fluctuations
    • G02B6/02185Refractive index modulation gratings, e.g. Bragg gratings characterised by means for compensating environmentally induced changes due to temperature fluctuations based on treating the fibre, e.g. post-manufacture treatment, thermal aging, annealing
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/02057Optical fibres with cladding with or without a coating comprising gratings
    • G02B6/02076Refractive index modulation gratings, e.g. Bragg gratings
    • G02B6/02209Mounting means, e.g. adhesives, casings

Definitions

  • the invention relates to an all-metal packaged high temperature resistant fiber grating sensor and a method of manufacturing the same.
  • Optical fiber sensors are devices that use optical fibers as a medium to detect changes in optical transmission characteristics due to changes in the environment (physical quantity, chemical quantity, or biomass) of all or part of the fiber when the light propagates through the fiber.
  • Fiber optic sensors are widely used in various industries due to their small size, light weight, high precision and sensitivity, resistance to electromagnetic interference, radiation, corrosion, fire, explosion and long life.
  • the fiber grating sensor is a type of fiber sensor and belongs to a wavelength modulation type fiber sensor.
  • the fiber grating sensor acquires sensing information by wavelength modulation caused by changes in the environment (physical quantity, chemical quantity, or biomass) of the fiber grating.
  • Fiber-optic grating sensor based on wavelength coding not only has all the advantages of fiber-optic sensor, but also self-reference, multi-physical (temperature, strain, pressure, etc.) simultaneous measurement, wavelength division multiplexing, easy to communicate with communication fiber to form a distributed sensor network , to achieve remote transmission and other advantages, and can form a "smart material" in the distributed embedded material.
  • FBG sensors have been widely used in civil engineering, wind power, composite materials and other fields.
  • Fiber Bragg grating is the most common and widely used fiber grating. Its refractive index is periodically modulated, and the refractive index modulation depth and grating period are constant. The grating wave vector direction and fiber. The axes are aligned. When a beam of light passes through the fiber grating, a strong reflection is produced for the light satisfying the Bragg phase matching condition, and only a weak portion of the light that does not satisfy the Bragg phase matching condition is reflected back. According to Maxwell's classical equation and fiber coupled wave theory, when the phase matching condition is satisfied, the Bragg wavelength 4 of the fiber grating is:
  • 2" eff A ( 1 ) where: ⁇ is the effective refractive index of the core; ⁇ is the grating grid period.
  • the factors affecting the Bragg wavelength are mainly the effective refractive index of the core and the grating grid period ⁇ , and any change that can cause the octave change can be caused.
  • the temperature and stress pass the thermo-optic effect and the bounce effect respectively. It should affect 3 ⁇ 4f , affecting ⁇ by thermal expansion effect and elastic deformation, resulting in a change in Bragg wavelength ⁇ . Therefore, temperature and stress can be known by detecting the change of the Bragg wavelength of the fiber grating.
  • FBG sensors have been researched and applied in the fields of civil engineering, wind power, composite materials, etc. It is relatively easy to stick or internally embed FBG sensors on the surface of these components, because the forming process and the temperature of these components are not high. .
  • the metal components to be monitored are mostly under high temperature conditions.
  • the commonly used fiber grating sensors have the following obvious shortcomings:
  • the grating reflectivity starts to decay at over 200 °C, and it will be completely “erased” at around 680 °C, so ordinary FBG sensors can only be used below 200 °C;
  • the organic coating layer on the surface of the fiber is usually stripped, the fiber is exposed to a humid environment, and the surface is susceptible to mechanical damage, which causes the strength of the fiber to be greatly reduced. After writing to the grating, it must be recoated and protected.
  • the re-coating of the existing FBG sensor is mainly made of an organic polymer material, such as a metal-encapsulated fiber grating sensor disclosed in Chinese Patent Application No. 201110135194.2 and a method of fabricating the same. Polymer materials are prone to aging and creep, which restrict the performance of the sensor and prevent it from being used in harsh environments such as humidity and high temperature.
  • the polymer material softens or even decomposes, generating hydrogen which has a stress corrosion effect on the quartz fiber, and accelerates the fatigue process of the silica fiber.
  • the temperature is higher than 400 °C, the polymer material is completely decomposed, so that the optical fiber loses its protection in a harsh environment, and the surface is prone to cracking due to the heat-machine load and slowly spreads with time, causing the fiber strength to decrease and eventually causing the fracture, which is difficult. Achieve long-term monitoring of high temperature equipment.
  • the existing FBG sensor and the tested component are mostly connected by organic binder.
  • the organic binder will generate redundancy in the measurement, the strain transmission efficiency is low, and the linearity and repeatability are poor. Long-term reliability is poor, and as the temperature increases, the organic binder accelerates aging. When the temperature exceeds 250 °C, most of the organic binder begins to soften or even decompose, and the connection between the sensor and the high-temperature member to be tested cannot be achieved.
  • thermo-optic coefficient and thermal expansion coefficient are relatively small, so that the temperature sensitivity of the unpackaged fiber Bragg grating sensor is low.
  • both fiber gratings are required.
  • the body is resistant to high temperatures, and requires a high-temperature resistant metallized coating package for the fiber grating to be buried inside the metal member to be tested or to be attached to the surface of the metal member to be tested.
  • high temperature resistant fiber gratings for example: writing gratings in special doped fibers, etching gratings on the flat side surface of D-type fibers, using femtosecond lasers Write a grating, etc.
  • special doped fibers are expensive; surface etched gratings require high manufacturing precision, and because they are etched in fiber cladding, packaging becomes a problem; devices such as femtosecond lasers are expensive and costly.
  • the metallization method for realizing the surface of the optical fiber is mainly used in the fields of casting, laser cladding, electroless plating, electroless plating and electroplating, and vacuum evaporation.
  • Casting and laser cladding methods are more restrictive to coated metals.
  • Low melting point metals are difficult to achieve high temperature applications.
  • the melting temperature of high melting point metals is too high, which easily damages the fiber grating, and at the same time generates large thermal stress, which easily leads to fiber breakage.
  • neither of these methods can guarantee a uniform thickness of the metal coating layer on the surface of the fiber grating in the axial direction, thereby causing a polarization phenomenon to affect the spectral quality; a method of electroless plating, such as the Chinese patent application No.
  • the combination of fibers is poor, the uniformity of the coating is poor, and it is difficult to meet the requirements of high-sensitivity sensors.
  • the roughening and sensitization process of the pre-treatment will damage the surface of the fiber, reduce the strength of the fiber, and directly oppose the fiber due to electroless plating. Exposure to water and acid, alkaline corrosive plating solution will greatly reduce the strength of the fiber; the adhesion between the vacuum evaporation coating and the surface of the substrate is weak, and the high-melting substance and low vapor pressure vacuum coating are very Difficult to make, the material used for evaporating the material will also evaporate, become impurities in the coating, and the coating obtained by evaporation is too thin to protect the fiber and not to transmit the strain of the member to be tested. Summary of the invention
  • the technical problem to be solved by the present invention is to provide an all-metal packaged high temperature resistant fiber grating
  • the sensor and its manufacturing method are suitable for long-term reliable operation under high temperature conditions, and have high temperature sensitivity, strain sensitivity and strain transmission efficiency.
  • the present invention provides a method for manufacturing a high-temperature-packaged high-temperature fiber grating sensor, comprising the following steps: (1) obtaining a regenerated fiber grating by annealing a fiber grating; (2) regenerating the fiber grating a bonding layer obtained by magnetron sputtering, a conductive layer obtained by magnetron sputtering, and a protective layer obtained by electroplating are sequentially formed on the surface; (3) a regenerated fiber grating obtained by the step (2) and a A fixed connection of the metal substrate results in the fiber grating sensor.
  • the bonding layer is formed by magnetron sputtering of titanium or chromium
  • the conductive layer is formed by magnetron sputtering of silver, gold or molybdenum
  • the protection is formed by electroplating nickel or chromium Floor.
  • the process parameters of magnetron sputtering titanium and silver include:
  • the process parameters for electroplating nickel include:
  • the regenerated fiber grating obtained in the step (2) is fixedly connected to the metal substrate by electroplating.
  • the process parameters of the plating include:
  • the regenerated fiber grating obtained by the step (2) is fixedly connected to the metal substrate by soldering.
  • the annealing process parameters include:
  • the present invention also provides an all-metal-packaged high-temperature fiber grating sensor manufactured by the above method, comprising: a regenerated fiber grating having an adhesive layer, a conductive layer and a protective layer on the surface; and fixing with the regenerated fiber grating Connected metal substrate.
  • the bonding layer is a titanium layer or a chromium layer
  • the conductive layer is a silver layer, a gold layer or a molybdenum layer
  • the protective layer is a nickel layer or a chromium layer.
  • the metal substrate is a flexible structure.
  • the metal substrate is made of heat resistant steel or a superalloy.
  • the all-metal-packaged high-temperature fiber grating sensor of the invention and the manufacturing method thereof use the regenerated fiber grating obtained by high-temperature annealing treatment as a sensitive component, and the grating is not erased when used at a high temperature;
  • a better magnetron sputtering method forms a bonding layer and a conductive layer on the surface of the optical fiber.
  • the method is carried out in a water-free environment, and there is no process such as roughening and sensitization of electroless plating, so that damage to the optical fiber is small; magnetron sputtering
  • the protective layer is formed by electroplating thickening, and the optical fiber is embedded in the flexible structural metal substrate by electroplating, thereby realizing the full metal encapsulation, and no organic polymer material is used in the whole process, thereby ensuring the application of the sensor at high temperature, and The temperature sensitivity and strain sensitivity are improved, and the flexible structural metal substrate also improves strain transmission efficiency and is easy to install.
  • FIG. 1 shows a manufacturing flow of an all metal packaged high temperature resistant fiber Bragg grating sensor of the present invention
  • FIG. 2 shows a magnetron sputtering apparatus for manufacturing an all metal packaged high temperature resistant fiber grating sensor of the present invention
  • Figure 4 shows the metal substrate of the all-metal encapsulated high temperature resistant fiber optic light sensor of the present invention
  • Figure 5 shows the temperature sensing of the all metal packaged high temperature resistant fiber optic light sensor of the present invention and the unpackaged bare regenerated fiber grating Performance comparison
  • Figure 6 shows a high temperature strain sensing performance comparison of the all metal packaged high temperature resistant fiber optic sensor of the present invention with an unpackaged bare regenerated fiber grating.
  • Figure 1 is a diagram showing the manufacturing process of the all-metal packaged high temperature resistant FBG sensor of the present invention, which specifically includes the following steps:
  • the purchased commercial fiber grating needs to be annealed to produce a regenerated fiber grating which can withstand high temperature.
  • the specific process parameters are shown in Table 1.
  • the annealed regenerated fiber grating can withstand temperatures up to 1000 °C, and the organic coating of the grating gate and its surrounding portion has been completely removed.
  • Nickel has excellent physical, chemical and mechanical properties, and has excellent high-temperature properties and can provide good protection. Therefore, the present invention uses electroplated nickel (Ni) as a protective layer.
  • Ni nickel
  • Cr chromium
  • the main component of the optical fiber quartz (Si0 2 ), is an inorganic non-metallic material.
  • the metal particles and the metal material matrix have good bonding properties, and the non-metallic material matrix has poor adhesion.
  • some metals such as titanium (Ti), chromium (Cr) and other oxophilic metals have strong bonding strength with oxides. This property allows these metals to act as bonding layers to promote metal materials that are weakly bonded. Between metal materials Combination of.
  • the magnetron sputtering method is based on the sputtering effect generated when the ionizable ions bombard the target.
  • the entire sputtering process is based on the glow discharge, that is, the sputtering ions are derived from the gas discharge.
  • Magnetron sputtering has many advantages: (1) Any material can be sputtered, especially high melting point, low vapor pressure elements and compounds; (2) good adhesion between the sputtered film and the substrate; (3) The sputtered film has high density, few pinholes, and high purity of the film layer; (4) The film thickness is controllable and repeatable. Therefore, the present invention forms a bonding layer and a conductive layer by a magnetron sputtering method.
  • a section of fiber (with grating grating included) of about 250 mm in length is intercepted and fixed in a magnetron sputtering apparatus as shown in Fig. 2.
  • a magnetron sputtering apparatus As shown in FIG. 2, an existing magnetron sputtering coating machine is improved.
  • the disc 1 for loading the magnetron sputtering substrate is a basic component of the conventional magnetron sputtering coating machine, and the disc 1 is rotated around the center thereof in the direction of the arrow A in the figure to realize the circle. Uniform sputtering of the planar substrate on the disc 1.
  • the disc 1 is provided with a set of motors 3, and the optical fiber 2 is fixedly connected to the shaft 4 of the motor 3 along the direction of the axis 4 of the motor 3, and the optical fiber 2 is parallel to the surface of the disc 1 and The grating gate region is located in the central region of the disk.
  • the motor 3 drives the optical fiber 2 to "rotate" about the axis 4 as indicated by the arrow B, and the optical fiber 2 is rotated around the center of the disk 1 as indicated by the arrow A as the disk 1 rotates. "Revolution", thereby ensuring the uniformity of the thickness of the magnetron sputtering film layer.
  • the slender fiber 2 In order to prevent the slender fiber 2 from being excessively bent, it can be supported and fixed by two protective sleeves 5. After the fiber is fixed, the fiber is cleaned with acetone, and the acetone column is considered to be cleaned as it flows down the fiber until no droplets remain. Then, a bonding layer and a conductive layer are sequentially formed by magnetron sputtering on the surface of the clean optical fiber.
  • magnetron sputtering titanium is used as an example of the bonding layer
  • magnetron sputtering silver is used as an example of the conductive layer.
  • the specific process parameters are shown in Table 2. The preferred thickness of the titanium layer and the silver layer is about ⁇
  • the fused optical fiber 10 is fixedly disposed in a thin copper tube 9, and the grating gate region is located outside the thin copper tube 9, and the cathode of the power source 12 is connected to the thin copper tube 9, and the anode is connected to
  • the nickel plate 8 and the optical fiber 10 are placed in the plating solution of the plating tank 7 to be plated outside the thin copper tube 9 (the grating gate region is included), and the plating tank 7 is placed in the constant temperature water bath 6 so as to be The bath temperature is controlled, and one end of the optical fiber 10 not immersed in the plating solution is connected to the fiber grating demodulator 11.
  • the device not only solves the problem that the optical fiber is difficult to be fixedly connected during the electroplating process, but also can monitor the stress in the electroplating process in real time through the fiber grating demodulator 11 .
  • electroplated nickel as a protective layer
  • a special high-stress nickel plating process is adopted, mainly by adjusting the current density and the bath temperature to increase the residual stress of electroplating.
  • the applicable process parameters are as shown in Table 3.
  • One of the preferred embodiments results in a nickel layer having a thickness of about 250 ⁇ m.
  • the metalized fiber is fixedly connected to a metal substrate.
  • the groove of the metal substrate 13 as shown in FIG. 4 may be buried by electroplating.
  • the metal substrate 13 is preferably a flexible structure made of heat-resistant steel or a high-temperature alloy, and the base portion other than the groove 14 may be coated with a resist paint to resist plating, or may be metallized by brazing.
  • the optical fiber is fixedly connected to the metal substrate, and the metal substrate may be provided with a defect point to be connected to the metal member to be tested in a simple and reliable manner such as a point ⁇ .
  • heat-resistant steel or high temperature Alloy refers to a metal material that works at high temperatures. It has excellent resistance to high temperature oxidation, high temperature corrosion and creep resistance, sufficient high temperature endurance, good high temperature fatigue performance, and proper high temperature plasticity.
  • the embedding process uses a low-stress plating process, and the applicable process parameters are shown in Table 4.
  • the FBG sensor obtained by the above-mentioned step of the present invention comprises: a regenerated fiber grating having an adhesive layer, a conductive layer and a protective layer on the surface; and a metal substrate fixedly connected to the regenerated fiber grating.
  • the bonding layer is a titanium layer or a chromium layer
  • the conductive layer is a silver layer, a gold layer or a molybdenum layer
  • the protective layer is a nickel layer or a chromium layer.
  • the regenerated fiber grating obtained by high-temperature annealing treatment is used as a sensitive component, the grating is not erased when used at a high temperature; the magnetron sputtering method for better bonding of the optical fiber and the metal is used to form a bond on the surface of the optical fiber. Layer and conductive layer, the method is carried out in an anhydrous environment, and there is no process such as roughening and sensitization of electroless plating, so the damage to the optical fiber is small; after magnetron sputtering, the protective layer is thickened by electroplating, and is plated.
  • the method embeds the optical fiber in the flexible structural metal substrate to realize the full metal encapsulation, and does not use any organic binder in the whole process, thereby ensuring the application of the sensor at high temperature, and greatly improving the temperature sensitivity and strain sensitivity, and the flexible structure.
  • the metal substrate also improves strain transmission efficiency and is easy to install.
  • Figure 5 compares the temperature sensing performance of the all metal packaged high temperature fiber Bragg grating sensor of the present invention with the unpackaged bare regenerated fiber grating.
  • the temperature sensitivity of the unpackaged bare regenerated fiber grating is about 13.8 pm / °C, and the temperature sensitivity of the regenerated fiber grating after metallization is about 30 pm / °C, that is, the temperature sensitivity is increased by 2.1 times that of the bare regenerated fiber grating. .
  • the coefficient of linear correlation between the central wavelength variation of the regenerated fiber grating and the temperature after metallization is R 2 >0.99, indicating that the all-metal encapsulated high temperature fiber Bragg grating sensor has a high linearity to temperature. It can be seen from this that The all metal packaged high temperature fiber Bragg grating sensor of the present invention can be used at 600 ° C and has good temperature sensing performance at 20-600 ° C.
  • Figure 6 compares the high temperature strain sensing performance of the all metal packaged high temperature fiber Bragg grating sensor of the present invention with the unpackaged bare regenerated fiber grating.
  • the strain sensitivity of the unpackaged bare fiber grating is about 1.23 pm/ ⁇
  • the strain sensitivity of the metallized packaged regenerated fiber grating at high temperature is about 1.67 ⁇ / ⁇ ⁇ , that is, the strain sensitivity is improved to the bare regenerated fiber grating. More than 1.3 times, no strain desensitization occurs, and strain transmission efficiency is high.
  • the coefficient of linear correlation between the central wavelength variation of the regenerated fiber grating and the strain after metallization is R 2 >0.99, indicating that the all-metal-packaged high-temperature fiber Bragg grating sensor has a higher linearity. Therefore, the all metal packaged high temperature fiber Bragg grating sensor of the present invention can be used for high temperature strain monitoring.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Electrochemistry (AREA)
  • Mechanical Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Optical Transform (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Measuring Temperature Or Quantity Of Heat (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)

Abstract

一种全金属封装的耐高温光纤光栅传感器的制造方法,其包括:采用经高温退火处理得到的再生光纤光栅作为敏感元件,使得在高温下使用时光栅也不会被擦除;采用使光纤和金属结合性更好的磁控溅射方法在光纤表面形成粘结层和导电层,由于该方法在无水环境中进行,无化学镀的粗化、敏化等过程,因此对光纤损伤小;磁控溅射后采用电镀方法增厚形成保护层,并通过电镀方法将光纤埋入柔性结构金属基底中,实现了全金属封装,整个过程中没有使用任何有机高分子材料,保证了传感器在高温下的应用,并提高了温度灵敏度和应变灵敏度,同时柔性结构金属基底也提高了应变传递效率,且安装方便。还提供了一种全金属封装的耐高温光纤光栅传感器。

Description

全金属封装的耐髙温光纤光栅传感器及其制造方法 技术领域
本发明涉及一种全金属封装的耐高温光纤光栅传感器及其制造方法。
光纤传感器是以光纤为媒介, 用来检测光在光纤中传播时, 因光纤的全 部或部分环节所在环境 (物理量、 化学量或生物量等) 的变化带来光传输特 性改变的装置。 光纤传感器具有尺寸小、 重量轻、 精度和灵敏度高、 抗电磁 干扰、 抗辐射、 耐腐蚀、 防火、 防爆、 寿命长等优点而被广泛应用于各行业。
光纤光栅传感器是光纤传感器的一种, 属于波长调制型光纤传感器。 光 纤光栅传感器是通过光纤光栅所在环境 (物理量、 化学量或生物量) 的变化 引起波长调制获取传感信息。 基于波长编码的光纤光栅传感器, 不仅具有光 纤传感器的所有优点, 还具有自参考, 多物理量 (温度、 应变、 压力等) 同 时测量, 波分复用, 易与通信光纤熔接组成分布式传感网络、 实现远程传输 等优点, 且可分布式的埋入材料中形成 "智能材料"。 目前光纤光栅传感器已 经广泛应用于土木、 风电、 复合材料等领域。
光纤布拉格光栅(fiber Bragg grating, FBG) 是最常见、 应用最广的一种 光纤光栅, 其折射率呈周期性调制分布, 且折射率调制深度与光栅周期均为 常数, 光栅波矢方向与光纤轴线方向相一致。 当一束光经过光纤光栅时, 对 满足布拉格相位匹配条件的光产生很强的反射, 对不满足布拉格相位匹配条 件的光只有微弱的部分被反射回来。 由麦克斯韦经典方程和光纤耦合波理论 可得, 当满足相位匹配条件时, 光纤光栅的布拉格波长 4为:
^ = 2"effA ( 1 ) 式中: ^为纤芯的有效折射率; Λ为光栅栅格周期。
由式(1 )可知影响布拉格波长 的因素主要为纤芯的有效折射率 和光 栅栅格周期 Λ, 任何能够引起八和^变化的因素都能导致 的改变。 当光纤 光栅受到外界温度或应力的作用时, 温度和应力分别通过热光效应和弹光效 应影响 ¾f, 通过热膨胀效应和弹性变形影响 Λ, 从而导致布拉格波长 ^发生 变化。 因此, 通过检测光纤光栅的布拉格波长 ^的变化即可获知温度、 应力
/应变的变化, 从而对被测构件进行实时监测。
迄今, 光纤光栅传感器在土木、 风电、 复合材料等领域的研究与应用比 较多, 这些领域的构件表面粘贴或内部埋入光纤光栅传感器相对较易, 因为 这些构件材料成形过程和使用的温度不高。 然而在核电、 火电、 石油化工和 航空航天等领域, 需要监测的金属构件多处于高温条件下, 在这种情况下, 目前常用的光纤光栅传感器存在着以下明显不足:
( 1 )对于普通光纤光栅,在超过 200 °C时光栅反射率开始衰减,在 680 °C 左右就会彻底 "擦除", 所以普通光纤光栅传感器仅能在 200 °C以下使用;
(2 )在制备光纤光栅时, 通常会剥除光纤表面的有机涂覆层, 使光纤暴 露在潮湿环境中, 且易受到机械损伤导致表面萌生裂紋, 这都使得光纤的强 度大大降低, 因此在写入光栅后必须对其进行再涂覆封装保护。 而现有光纤 光栅传感器的再涂覆封装使用的主要是有机高分子材料, 例如申请号为 201110135194.2 的中国专利公开的一种金属封装的光纤光栅传感器及其制作 方法。 高分子材料容易老化和蠕变等特性制约了传感器性能的发挥, 更无法 在潮湿和高温等恶劣环境中使用。 当温度高于正常使用温度时, 高分子材料 会软化甚至分解, 产生对石英光纤具有应力腐蚀作用的氢气, 加速石英光纤 的疲劳过程。 当温度高于 400 °C时, 高分子材料彻底分解, 使得光纤在恶劣 环境中失去保护, 易受热-机载荷作用导致表面萌生裂紋并随时间缓慢扩展, 造成光纤强度降低并最终导致断裂, 难于实现对高温设备的长期监测。
(3 ) 现有光纤光栅传感器和被测构件之间多采用有机粘合剂进行连接, 有机粘合剂会在测量中产生冗余, 应变传递效率较低, 线性度和可重复性较 差, 长期可靠性差, 并且随着温度的升高有机粘合剂加速老化, 当温度超过 250 °C后大多数有机粘合剂开始软化甚至分解,无法实现传感器与高温被测构 件的连接。
(4) 由于光纤的主要成分是石英(Si02), 其热光系数和热膨胀系数都比 较小, 使得未经封装的光纤光栅传感器的温度灵敏度较低。
因此, 为实现高温条件下金属构件的长期有效监测, 既要求光纤光栅本 身能够耐高温, 又要求对光纤光栅实现耐高温的金属化涂覆封装, 以便将其 埋入被测金属构件内部或悍接在被测金属构件表面。
为满足高温条件下应用的要求, 国内外已提出了许多技术方法制备耐高 温的光纤光栅, 例如: 在特殊掺杂光纤中刻写光栅, 在 D型光纤平边表面刻 蚀光栅, 用飞秒激光器刻写光栅等。 然而, 特殊掺杂光纤价格昂贵; 表面刻 蚀光栅对制造精度要求较高, 且由于是在光纤包层刻蚀, 封装亦成为一个难 题; 飞秒激光器等设备价格昂贵, 成本太高。
实现光纤表面的金属化方法, 目前国内外普遍采用的主要是铸造、 激光 熔覆、 化学镀、 化学镀和电镀相结合、 真空蒸镀等方法。 铸造和激光熔覆方 法对被覆金属限制较多, 低熔点金属难以实现高温应用要求, 高熔点金属的 熔融温度太高, 容易损坏光纤光栅, 同时会产生很大的热应力, 容易导致光 纤断裂, 而且这两种方法都无法保证在光纤光栅表面沿轴向方向得到均匀厚 度的金属涂覆层, 从而会产生偏振现象影响光谱质量; 采用化学镀的方法, 例如申请号为 200410061378.9的中国专利公开的一种光纤敏感元件金属化封 装结构及其方法, 申请号为 200510020086.5的中国专利公开的一种石英光纤 光栅表面湿化学金属化工艺, 申请号为 201010504623.4的中国专利公开的一 种石英光纤表面化学镀的方法; 以及采用化学镀和电镀相结合的方法, 例如 申请号为 02816378.8 的中国专利公开的一种镀金属的光纤和申请号为 03804115.4 的中国专利公开的一种金属被覆光纤, 化学镀得到的镀层和光纤 之间的结合性较差, 镀层均匀度差, 难以满足高灵敏度传感器的需求, 前处 理的粗化和敏化过程会对光纤表面造成损伤, 降低光纤的强度, 且由于化学 镀直接将光纤暴露在含水和酸、 碱性腐蚀物的镀液中, 也会大大降低光纤的 强度; 真空蒸镀的镀膜与基体表面之间的结合力较弱, 高熔点物质和低蒸气 压的真空镀膜很难制作, 蒸发物质所用坩埚材料也会蒸发, 混入镀膜之中成 为杂质, 且蒸镀得到的镀层太薄, 既不足以保护光纤, 也不足以传递被测构 件的应变。 发明内容
本发明所要解决的技术问题是, 提供一种全金属封装的耐高温光纤光栅 传感器及其制造方法, 适于在高温条件下长期可靠地工作, 并具有较高温度 灵敏度、 应变灵敏度和应变传递效率。
为了达到上述目的, 本发明提供一种全金属封装的耐高温光纤光栅传感 器的制造方法, 包括如下歩骤: (1 )通过退火处理光纤光栅得到再生光纤光 栅; (2) 在所述再生光纤光栅的表面上依次形成通过磁控溅射得到的粘接 层、 通过磁控溅射得到的导电层以及通过电镀得到的保护层; (3 )将歩骤(2) 所得到的再生光纤光栅与一金属基底固定连接得到所述光纤光栅传感器。
所述歩骤 (2) 中, 通过磁控溅射钛或铬形成所述粘接层, 通过磁控溅射 银、 金或钼形成所述导电层, 并且通过电镀镍或铬形成所述保护层。
所述歩骤 (2) 中, 磁控溅射钛和银的工艺参数包括:
Figure imgf000006_0001
所述歩骤 (2) 中, 电镀镍的工艺参数包括:
Figure imgf000006_0002
所述歩骤 (3 ) 中, 通过电镀将歩骤 (2) 所得到的再生光纤光栅与所述 金属基底固定连接。
所述歩骤 (3 ) 中, 电镀的工艺参数包括:
六水合硫酸镍浓度 (g/L) 250-300
六水合二氯化镍浓度 (g/L) 20-40
硼酸浓度 (g/L) 35-40
十二垸基硫酸钠浓度 (g/L) 0.3-2 镀液温度 (°C) 25-55
电流密度 (A/dm2) 1-5
所述歩骤 (3 ) 中, 通过钎悍将歩骤 (2 ) 所得到的再生光纤光栅与所述 金属基底固定连接。
所述歩骤 (1 ) 中, 退火的工艺参数包括:
Figure imgf000007_0001
本发明还提供一种采用上述方法制造的全金属封装的耐高温光纤光栅传 感器, 包括: 表面上依次覆有粘接层、 导电层和保护层的再生光纤光栅; 以 及与所述再生光纤光栅固定连接的金属基底。
其中, 所述粘接层为钛层或铬层, 所述导电层为银层、 金层或钼层, 所 述保护层为镍层或铬层。
所述金属基底为柔性结构。
所述金属基底由耐热钢或高温合金制成。
本发明的全金属封装的耐高温光纤光栅传感器及其制造方法, 采用经高 温退火处理得到的再生光纤光栅作为敏感元件, 在高温下使用时光栅也不会 被擦除; 采用使光纤和金属结合更好的磁控溅射方法在光纤表面形成粘接层 和导电层, 该方法在无水环境中进行, 也无化学镀的粗化、 敏化等过程, 因 此对光纤损伤小; 磁控溅射后采用电镀增厚形成保护层, 并通过电镀将光纤 埋入柔性结构金属基底中, 实现了全金属封装, 整个过程中没有使用任何有 机高分子材料, 保证了传感器在高温下的应用, 并提高了温度灵敏度和应变 灵敏度, 同时柔性结构金属基底也提高了应变传递效率, 且安装方便。 附图说明
图 1示出本发明的全金属封装的耐高温光纤光栅传感器的制造流程; 图 2示出用于制造本发明的全金属封装的耐高温光纤光栅传感器的磁控 溅射设备; 设备; 图 4示出本发明的全金属封装的耐高温光纤光 传感器的金属基底; 图 5示出本发明的全金属封装的耐高温光纤光 传感器与未封装的裸再 生光纤光栅的温度传感性能对比;
图 6示出本发明的全金属封装的耐高温光纤光 传感器与未封装的裸再 生光纤光栅的高温应变传感性能对比。 具体实施方式
以下结合附图及具体实施例, 对本发明做进一歩说明。
图 1示出本发明的全金属封装的耐高温光纤光栅传感器的制造流程, 具 体包括如下歩骤:
( 1 ) 通过退火处理光纤光栅得到再生光纤光栅
为了防止光栅在高温下被擦除, 需对购买到的商业化光纤光栅进行退火 处理, 以产生可以耐高温的再生光纤光栅, 具体工艺参数如表 1所示。 经过 退火处理后的再生光纤光栅可以耐受的温度高达 1000 °c, 光栅栅区及其周边 部分的有机涂覆层已完全去除。
表 1
Figure imgf000008_0001
(2) 在所述再生光纤光栅的表面上依次形成通过磁控溅射得到的粘接 层、 通过磁控溅射得到的导电层以及通过电镀得到的保护层
镍具有优良的物理、 化学和力学性能, 且高温性能优良, 能起到很好的 保护作用, 因此本发明采用电镀镍 (Ni) 作为保护层。 当然, 也可选择具有 类似性质的铬 (Cr) 作为保护层。
光纤的主要成分石英(Si02)属于无机非金属材料, 而通常情况下金属粒 子和金属材料基体结合性良好, 与非金属材料基体结合性较差。 但是有些金 属, 如钛 (Ti)、 铬 (Cr) 等亲氧性金属与氧化物结合力很强, 这种特性使这 些金属可以作为粘接层来促进本来结合力很弱的金属材料与非金属材料之间 的结合。 但是由于钛、 铬的导电性很差, 很难在其表面直接进行电镀加厚保 护,故在钛或铬的表面先形成一层导电性较好的银(Ag)、金(Au)或钼(Mo) 膜作为导电层, 然后在导电层的表面进行电镀镍或铬。
磁控溅射法是基于荷能离子轰击靶材时产生的溅射效应, 整个溅射过程 都是建立在辉光放电的基础上, 即溅射离子都来源于气体放电。 磁控溅射法 具有诸多优点: (1 ) 任何材料都可以溅射, 尤其是高熔点、 低蒸气压的元素 和化合物; (2) 溅射膜与基体之间的附着性好; (3 ) 溅射膜密度高、 针孔少, 且膜层纯度很高; (4) 膜厚可控性和重复性好。 故本发明采用磁控溅射的方 法形成粘接层以及导电层。
以下分别对磁控溅射和电镀的过程、 设备、 参数等进行详细阐述。
首先, 截取长为 250mm左右的一段光纤 (光栅栅区包含在内), 将其固 定在如图 2所示的磁控溅射设备中。 为了便于对光纤此类具有圆柱形表面的 基体进行均匀溅射, 在此对现有磁控溅射镀膜机进行了改进。 如图 2所示, 用于装载磁控溅射基体的圆盘 1是现有磁控溅射镀膜机的基本部件, 圆盘 1 沿图中箭头 A方向绕其中心进行转动, 可实现对圆盘 1上平面基体的均匀溅 射。 与现有工艺不同的是, 圆盘 1上设有一组电机 3, 沿着电机 3的轴 4方向 将光纤 2固定连接到电机 3的轴 4上, 并且保证光纤 2与圆盘 1面平行且光 栅栅区位于圆盘的中心区域。 溅射过程中, 电机 3带动光纤 2绕轴 4进行如 箭头 B所示的 "自转", 同时光纤 2又随着圆盘 1的转动而绕圆盘 1的中心进 行如箭头 A所示的 "公转", 从而保证了磁控溅射膜层厚度的均匀性。 为了防 止细长的光纤 2弯曲扰度过大, 可用两个保护套 5对其进行支撑固定。 光纤 固定完成后用丙酮对光纤进行清洗, 丙酮液柱沿光纤流下至无液滴残留时认 为清洗干净。 然后, 在洁净的光纤表面依次通过磁控溅射形成粘接层和导电 层。 此处以磁控溅射钛作为粘接层的示例, 以磁控溅射银作为导电层的示例, 具体工艺参数如表 2所示, 其中一个优选实例得到的钛层和银层总厚度约为 Ιμηΐο
表 2
溅射功率 (W) 气压 (Pa) 温度 (°C) 时间 (min) 磁控溅射钛 120-180 0.5-0.8 60-150 磁控溅射银 70-90 0.4-0.75 10-60 接下来, 使用光纤熔接机对磁控溅射后的光纤进行熔接, 熔接后的光纤 再次用丙酮清洗, 然后连接到如图 3所示的电镀设备中。 如图 3所示, 熔接 后的光纤 10固定设置在一根细铜管 9中, 并且保证光栅栅区位于细铜管 9之 外, 电源 12的阴极连接到细铜管 9上, 阳极连接到镍板 8上, 镍板 8和光纤 10位于细铜管 9外的待镀部分(光栅栅区包含在内)浸入镀槽 7的镀液之中, 镀槽 7置于恒温水浴槽 6中以便控制镀液温度, 光纤 10未浸入镀液的一端连 接到光纤光栅解调仪 11上。 该设备既解决了电镀过程中光纤难以固定连接的 问题, 又可以通过光纤光栅解调仪 11对电镀过程中的应力进行实时监测。 以 电镀镍作为保护层的示例, 为了防止高温下热应力过大导致光纤断裂, 采用 特有的高应力镀镍工艺, 主要是通过调整电流密度和镀液温度两个参数来增 大电镀的残余应力, 适用的工艺参数范围如表 3所示, 其中一个优选实施例 得到镍层厚度约为 250μηι。
表 3
Figure imgf000010_0001
(3 ) 将歩骤 (2) 所得到的再生光纤光栅与一金属基底固定连接得到所 述光纤光栅传感器
为了方便与被测金属构件的连接, 同时提高应变传递效率, 需要将金属 化后的光纤固定连接到一金属基底上, 例如可以采用电镀的方式埋入如图 4 所示的金属基底 13的沟槽 14中, 金属基底 13优选为由耐热钢或高温合金制 成的柔性结构, 沟槽 14以外的基底部分可刷上阻镀漆以便阻镀, 或者通过钎 悍的方式将金属化后的光纤与金属基底固定连接, 该金属基底上可设有悍点, 以便通过点悍等简单可靠的方式与被测金属构件连接。 其中, 耐热钢或高温 合金是指在高温下工作的金属材料, 具有优良的抗高温氧化、 抗高温腐蚀及 抗蠕变性能, 足够的高温持久强度, 良好的高温疲劳性能, 适当的高温塑性。 埋入过程采用低应力电镀工艺, 适用的工艺参数范围如表 4所示。
表 4
Figure imgf000011_0001
本发明通过上述歩骤获得的光纤光栅传感器包括: 表面上依次覆有粘接 层、 导电层和保护层的再生光纤光栅; 以及与该再生光纤光栅固定连接的金 属基底。 其中, 所述粘接层为钛层或铬层, 所述导电层为银层、 金层或钼层, 所述保护层为镍层或铬层。
由于采用了经高温退火处理得到的再生光纤光栅作为敏感元件, 在高温 下使用时光栅也不会被擦除; 采用使光纤和金属结合性更好的磁控溅射方法 在光纤表面形成粘接层和导电层, 该方法在无水环境中进行, 也无化学镀的 粗化、 敏化等过程, 因此对光纤损伤小; 磁控溅射后采用电镀方法增厚形成 保护层, 并通过电镀方法将光纤埋入柔性结构金属基底中, 实现了全金属封 装, 整个过程中没有使用任何有机粘合剂, 保证了传感器在高温下的应用, 并大大提高了温度灵敏度和应变灵敏度, 同时柔性结构金属基底也提高了应 变传递效率, 且安装方便。
图 5将本发明的全金属封装的耐高温光纤光栅传感器与未封装的裸再生 光纤光栅的温度传感性能进行了对比。 未封装的裸再生光纤光栅的温度灵敏 度约为 13.8 pm/ °C, 而金属化封装后再生光纤光栅的温度灵敏度约为 30 pm/ °C, 即温度灵敏度提高为裸再生光纤光栅的 2.1倍多。而且金属化封装后再生 光纤光栅的中心波长变化量与温度之间线性相关的判定系数 R2>0.99, 说明全 金属封装的耐高温光纤光栅传感器对温度具有较高线性度。 由此可以看出, 本发明的全金属封装的耐高温光纤光栅传感器可以在 600 °C下使用, 并且在 20-600 °C内具有良好的温度传感性能。
图 6将本发明的全金属封装的耐高温光纤光栅传感器与未封装的裸再生 光纤光栅在高温应变传感性能进行了对比。 未经封装的裸光纤光栅的应变灵 敏度约为 1.23 pm/με,而金属化封装后的再生光纤光栅在高温下的应变灵敏度 约为 1.67 ρηι/με, 即应变灵敏度提高为裸再生光纤光栅的 1.3倍多, 未出现应 变减敏的现象, 应变传递效率高。 而且金属化封装后再生光纤光栅的中心波 长变化量与应变之间线性相关的判定系数 R2>0.99, 说明全金属封装的耐高温 光纤光栅传感器对应变具有较高线性度。 因此, 本发明的全金属封装的耐高 温光纤光栅传感器可用于高温应变监测。
以上所述的, 仅为本发明的较佳实施例, 并非用以限定本发明的范围, 本发明的上述实施例还可以做出各种变化。 即凡是依据本发明申请的权利要 求书及说明书内容所作的简单、 等效变化与修饰, 皆落入本发明专利的权利 要求保护范围。

Claims

权 利 要 求 书
1. 一种全金属封装的耐高温光纤光栅传感器的制造方法, 其特征在于, 包括如下歩骤:
( 1 ) 通过退火处理光纤光栅得到再生光纤光栅;
(2) 在所述再生光纤光栅的表面上依次形成通过磁控溅射得到的粘接 层、 通过磁控溅射得到的导电层以及通过电镀得到的保护层;
(3 ) 将歩骤 (2) 所得到的再生光纤光栅与一金属基底固定连接得到所 述光纤光栅传感器。
2. 如权利要求 1所述的全金属封装的耐高温光纤光栅传感器的制造方 法, 其特征在于, 所述歩骤 (2) 中, 通过磁控溅射钛或铬形成所述粘接层, 通过磁控溅射银、 金或钼形成所述导电层, 并且通过电镀镍或铬形成所述保 护层。
3. 如权利要求 2所述的全金属封装的耐高温光纤光栅传感器的制造方 法, 其特征在于, 所述歩骤 (2) 中, 磁控溅射钛和银的工艺参数包括:
Figure imgf000013_0001
4. 如权利要求 2所述的全金属封装的耐高温光纤光栅传感器的制造方 法, 其特征在于, 所述歩骤 (2) 中, 电镀镍的工艺参数包括:
六水合硫酸镍浓度 (g/L) 250-300
六水合二氯化镍浓度 (g/L) 20-40
硼酸浓度 (g/L) 35-40
十二垸基硫酸钠浓度 (g/L) 0.3-2
镀液温度 (°C) 25-35
电流密度 (A/dm2) 6-12
电镀时间 (min) 30-300
5. 如权利要求 1或 2所述的全金属封装的耐高温光纤光栅传感器的制造 方法, 其特征在于, 所述歩骤 (3 ) 中, 通过电镀将歩骤 (2) 所得到的再生 光纤光栅与所述金属基底固定连接。
6. 如权利要求 5所述的全金属封装的耐高温光纤光栅传感器的制造方 法, 其特征在于, 所述歩骤 (3 ) 中, 电镀的工艺参数包括:
Figure imgf000014_0001
7. 如权利要求 1或 2所述的全金属封装的耐高温光纤光栅传感器的制造 方法, 其特征在于, 所述歩骤 (3 ) 中, 通过钎悍将歩骤 (2) 所得到的再生 光纤光栅与所述金属基底固定连接。
8. 如权利要求 1或 2所述的全金属封装的耐高温光纤光栅传感器的制造 方法, 其特征在于, 所述歩骤 (1 ) 中, 退火的工艺参数包括:
Figure imgf000014_0002
9. 一种采用权利要求 1的方法制造的全金属封装的耐高温光纤光栅传感 器, 其特征在于, 包括:
表面上依次覆有粘接层、 导电层和保护层的再生光纤光栅; 以及 与所述再生光纤光栅固定连接的金属基底。
10. 如权利要求 9所述的全金属封装的耐高温光纤光栅传感器,其特征在 于, 所述粘接层为钛层或铬层, 所述导电层为银层、 金层或钼层, 所述保护 层为镍层或铬层。
11. 如权利要求 9或 10所述的全金属封装的耐高温光纤光栅传感器, 其 特征在于, 所述金属基底为柔性结构。
12. 如权利要求 9或 10所述的全金属封装的耐高温光纤光栅传感器, 其 特征在于, 所述金属基底由耐热钢或高温合金制成。
PCT/CN2012/084805 2012-07-27 2012-11-19 全金属封装的耐高温光纤光栅传感器及其制造方法 WO2014015586A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/417,386 US9551596B2 (en) 2012-07-27 2012-11-19 High-temperature-resistant metal-packaged fiber bragg grating sensor and manufacturing method therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210264642.3 2012-07-27
CN201210264642.3A CN102788603B (zh) 2012-07-27 2012-07-27 全金属封装的耐高温光纤光栅传感器及其制造方法

Publications (1)

Publication Number Publication Date
WO2014015586A1 true WO2014015586A1 (zh) 2014-01-30

Family

ID=47154079

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/084805 WO2014015586A1 (zh) 2012-07-27 2012-11-19 全金属封装的耐高温光纤光栅传感器及其制造方法

Country Status (3)

Country Link
US (1) US9551596B2 (zh)
CN (1) CN102788603B (zh)
WO (1) WO2014015586A1 (zh)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013215522A1 (de) * 2013-08-07 2015-02-12 Robert Bosch Gmbh Sensorvorrichtung zur Bestimmung wenigstens eines Parameters eines durch einen Kanal strömenden fluiden Mediums
PL406197A1 (pl) * 2013-11-22 2015-05-25 Inphotech Spółka Z Ograniczoną Odpowiedzialnością Sposób łączenia włókien światłowodowych pokrytych warstwą przewodzącą z elementami metalowymi
DE102016201068A1 (de) * 2016-01-26 2017-07-27 Dr. Johannes Heidenhain Gmbh Maßverkörperung und Positionsmesseinrichtung mit dieser Maßverkörperung
CN106001827B (zh) * 2016-06-14 2018-03-09 华中科技大学 一种基于回流焊的光纤光栅磁传感器的制备方法
CN106248122B (zh) * 2016-08-23 2018-05-08 李国� 一种耐高温光纤传感器
CN106546182B (zh) * 2016-11-03 2019-01-18 北京信息科技大学 一种倾斜结构的耐高温光纤光栅应变传感器
CN106546355B (zh) * 2016-11-03 2019-04-30 北京信息科技大学 一种全金属化的耐低温光纤光栅温度传感器及其封装方法
DE102017201524A1 (de) * 2017-01-31 2018-08-02 Hochschule für angewandte Wissenschaften München Faseroptische Erfassungseinrichtung sowie Verfahren zum Betreiben einer solchen faseroptischen Erfassungseinrichtung
US10746534B2 (en) 2017-07-03 2020-08-18 Saudi Arabian Oil Company Smart coating device for storage tank monitoring and calibration
CN108267812B (zh) * 2018-01-17 2020-08-11 武汉理工大学 具有梯度结构涂覆层的耐高温光纤
CN108332878B (zh) * 2018-01-31 2020-09-18 北京航天控制仪器研究所 一种光纤光栅温度传感器及制备方法
CN109445018B (zh) * 2018-10-24 2020-01-31 武汉理工大学 再生弱光栅阵列的制备方法及系统
CN115235331A (zh) * 2020-12-31 2022-10-25 厦门市诺盛测控技术有限公司 一种焊点镀膜的应变计制备模版
CN113363005A (zh) * 2021-06-01 2021-09-07 中国航空工业集团公司沈阳飞机设计研究所 一种用于航空航天的高强轻质光纤电力复合缆缆芯
CN114353840B (zh) * 2021-12-02 2023-08-22 长飞光纤光缆股份有限公司 一种一体化成型隧道用光纤光栅传感器及其制作方法
CN114660706B (zh) * 2022-04-08 2023-06-06 武汉理工大学 耐高温拉丝塔光栅传感光纤及其制备方法
CN114858077B (zh) * 2022-05-08 2023-08-15 湖南大学 一种改进的多尺度高温散斑制备方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6356683B1 (en) * 1999-06-14 2002-03-12 Industrial Technology Research Institute Optical fiber grating package
US20020141699A1 (en) * 2001-02-13 2002-10-03 Broptics Communication Corporation Optical fiber bragg grating thermal compensating device and method for manufacturing same
TW586035B (en) * 2002-06-03 2004-05-01 Yung-Bin Lin Temperature compensation method and apparatus of optical fiber grating
CN1648702A (zh) * 2004-12-17 2005-08-03 武汉理工大学 光纤敏感元件金属化封装结构及其方法
JP2007164213A (ja) * 2007-02-19 2007-06-28 Furukawa Electric Co Ltd:The グレーティング型光部品のパッケージング方法
CN101009520A (zh) * 2006-12-29 2007-08-01 北京交通大学 一种新型光纤光栅温度补偿封装的方法
CN200993682Y (zh) * 2006-12-29 2007-12-19 北京品傲光电科技有限公司 一种金属化光纤光栅及光纤光栅应变传感器
CN101097972A (zh) * 2007-07-04 2008-01-02 武汉大学 一种制备太阳能电池对电极的方法
CN102323447A (zh) * 2011-08-08 2012-01-18 武汉理工大学 一种小型的光纤光栅加速度传感器的制备方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6044189A (en) * 1996-12-03 2000-03-28 Micron Optics, Inc. Temperature compensated fiber Bragg gratings
US6181851B1 (en) * 1997-05-29 2001-01-30 E-Tek Dynamics, Inc. Temperature-compensated optical fiber package
US6175674B1 (en) * 1999-03-08 2001-01-16 Uconn Technology Inc. Adjustable compensation device for fiber bragg gratings
TW476013B (en) * 2000-08-07 2002-02-11 Ind Tech Res Inst Electric fiber grating filter with switchable central wavelength

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6356683B1 (en) * 1999-06-14 2002-03-12 Industrial Technology Research Institute Optical fiber grating package
US20020141699A1 (en) * 2001-02-13 2002-10-03 Broptics Communication Corporation Optical fiber bragg grating thermal compensating device and method for manufacturing same
TW586035B (en) * 2002-06-03 2004-05-01 Yung-Bin Lin Temperature compensation method and apparatus of optical fiber grating
CN1648702A (zh) * 2004-12-17 2005-08-03 武汉理工大学 光纤敏感元件金属化封装结构及其方法
CN101009520A (zh) * 2006-12-29 2007-08-01 北京交通大学 一种新型光纤光栅温度补偿封装的方法
CN200993682Y (zh) * 2006-12-29 2007-12-19 北京品傲光电科技有限公司 一种金属化光纤光栅及光纤光栅应变传感器
JP2007164213A (ja) * 2007-02-19 2007-06-28 Furukawa Electric Co Ltd:The グレーティング型光部品のパッケージング方法
CN101097972A (zh) * 2007-07-04 2008-01-02 武汉大学 一种制备太阳能电池对电极的方法
CN102323447A (zh) * 2011-08-08 2012-01-18 武汉理工大学 一种小型的光纤光栅加速度传感器的制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
FAN, DIAN: "Experimental Study of Sense Characteristic Based on Metalized Package Fiber Bragg Grating", CHINESE JOURNAL OF SENSORS AND ACTUATORS, vol. 19, no. 4, August 2006 (2006-08-01), pages 1234 - 1237 *
SHUI, BIAO: "Study on Sesing Technology of Metal Coating Fiber Bragg Grating", ELECTRONIC TECHNOLOGY & INFORMATION SCIENCE, CHINA MASTER'S S THESES FULL-TEXT DATABASE (MONTHLY), no. 10, 31 October 2012 (2012-10-31), pages 12 - 27 *

Also Published As

Publication number Publication date
US9551596B2 (en) 2017-01-24
CN102788603B (zh) 2016-02-24
CN102788603A (zh) 2012-11-21
US20150247744A1 (en) 2015-09-03

Similar Documents

Publication Publication Date Title
WO2014015586A1 (zh) 全金属封装的耐高温光纤光栅传感器及其制造方法
Li et al. Metal coating of fiber Bragg grating and the temperature sensing character after metallization
Tu et al. Fabrication and thermal characteristics of multilayer metal-coated regenerated grating sensors for high-temperature sensing
CN101915865A (zh) 微型光纤电流传感器探头及其制作方法
CN102175619A (zh) 多层复合敏感膜光纤氢气传感探头及其制作方法
Wang et al. Highly-sensitive fiber Bragg grating temperature sensors with metallic coatings
He et al. A novel high temperature resistant Mo-Cu functional gradient coating for optic fiber Bragg grating
Benounis et al. Elaboration of an optical fibre corrosion sensor for aircraft applications
CN105021308B (zh) 一种铝修饰增强型光纤光栅温度传感器制造方法
CN102758203B (zh) 一种光纤表面金属化方法
Wang et al. Development of highly-sensitive and reliable fiber Bragg grating temperature sensors with gradient metallic coatings for cryogenic temperature applications
Liang et al. Metal-coated high-temperature strain optical fiber sensor based on cascaded air-bubble FPI-FBG structure
Stańczyk et al. Electrolytic joints between metal surfaces and metal-coated fibers for application in high temperature optical fiber sensors
Li et al. An electroplating method for surface mounting optical fiber sensors on the metal substrate
Xie et al. A study of the temperature sensitivity of fiber Bragg gratings after metallization
CN103048064A (zh) 一种焊接封装的光纤宏弯损耗温度传感器制造方法
Alshaikhli et al. The study of temperature and refractive index sensitivity of polyimide coated etched (3LPGs-FBG) sensor
Li et al. Study of temperature sensing performance of bimetallic layer MFBG
CN108181230A (zh) 一种铁碳合金膜聚合物光纤腐蚀传感器及其制备方法
CN111025457B (zh) 一种适用于海洋环境的特种光纤光栅及其制备方法
Alshaikhli et al. Low Temperature Sensor Based on Etched LPFG with Different Materials Coating.
García-Miquel et al. Current sensor based on a fiber Bragg grating coated by electroplated magnetostrictive material
CN110987777A (zh) 一种用于钢筋腐蚀监测的铁碳镀膜长周期光纤光栅传感器
Tu et al. Thermal characteristics of silver-recoated regenerated grating sensors for high-temperature sensing
CN109655171A (zh) 基于离子束镀膜的液体管路温度传感器及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12881588

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14417386

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12881588

Country of ref document: EP

Kind code of ref document: A1