WO2014015505A1 - 用于筒仓的方法和系统 - Google Patents

用于筒仓的方法和系统 Download PDF

Info

Publication number
WO2014015505A1
WO2014015505A1 PCT/CN2012/079218 CN2012079218W WO2014015505A1 WO 2014015505 A1 WO2014015505 A1 WO 2014015505A1 CN 2012079218 W CN2012079218 W CN 2012079218W WO 2014015505 A1 WO2014015505 A1 WO 2014015505A1
Authority
WO
WIPO (PCT)
Prior art keywords
belt conveyor
silo
level
belt
temperature
Prior art date
Application number
PCT/CN2012/079218
Other languages
English (en)
French (fr)
Inventor
顾大钊
谢友泉
刘林
邢承海
刘国安
陈祖武
韩宇文
王军
肖明
苏志国
潘攀
左来宝
王明乐
刘鑫
霍宁宁
孙立伟
宋郁民
刘松
刘晓光
施伟
李景玺
张羽
许恩明
韩冬冬
Original Assignee
中国神华能源股份有限公司
神华黄骅港务有限责任公司
神华天津煤炭码头有限责任公司
中交第一航务工程勘察设计院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国神华能源股份有限公司, 神华黄骅港务有限责任公司, 神华天津煤炭码头有限责任公司, 中交第一航务工程勘察设计院有限公司 filed Critical 中国神华能源股份有限公司
Priority to PCT/CN2012/079218 priority Critical patent/WO2014015505A1/zh
Publication of WO2014015505A1 publication Critical patent/WO2014015505A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G47/00Article or material-handling devices associated with conveyors; Methods employing such devices
    • B65G47/34Devices for discharging articles or materials from conveyor 
    • B65G47/46Devices for discharging articles or materials from conveyor  and distributing, e.g. automatically, to desired points
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/06Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling

Definitions

  • the present application relates to methods and systems for silos.
  • the port is the hub of the transport artery. Specialized, automated storage, transportation and shipping processes are essential to achieve safe and efficient freight pivoting at the port. According to the characteristics of materials, the scale of freight transportation and the efficiency of material storage and transportation, a variety of material storage scheduling schemes are adopted in port transportation today to coordinate freight transportation. For example, for grain, cement and other materials, silo storage is used, and for coal ore, open storage is used.
  • Silo storage coal has been used in power plants and coal mines, but coal mines and power plants have short coal storage time, small storage capacity, single process flow, low efficiency requirements, single coal varieties and no mixing of different coal types.
  • the most important concern for port coal storage is high efficiency, multi-variety, mixed coal, high throughput and long storage time. Therefore, in order to realize large-scale coal storage in silos, it must be existing. Coal storage silos are properly modified and improved in terms of structure, function and usage.
  • the present invention provides a method comprising the steps of: setting a Gray bus and an antenna box; an address code transmitting unit generating an address coded signal and transmitting an address coded signal through a core of the Gray bus; detecting the address coded signal through an antenna box And transmitting the address coded signal to the address decoding receiving unit; the address decoding receiving unit decodes the received address coded signal to obtain location information of the unloading trolley, and transmits the location information of the unloading trolley to the control unit; And the control unit controls the operation of the unloading trolley according to the obtained position information of the unloading trolley.
  • a system is also provided, wherein the system includes a control unit, a Gray bus, an antenna box, an address code transmitting unit, and an address decoding receiving unit, wherein the address code transmitting unit is connected to the Gray bus, the Gray bus and The antenna box communicates by electromagnetic coupling, the antenna box is connected to the address decoding receiving unit, the address decoding receiving unit is connected to the control unit, and the address encoding transmitting unit is configured to generate an address encoded signal and pass The core of the Gray bus transmits the address coded signal; the antenna box is configured to detect the address coded signal and transmit the address coded signal to an address decode receiving unit; and the address decode receiving unit is configured to receive the address Decoding the address coded signal to obtain position information of the unloading trolley, and transmitting position information of the unloading trolley to the control unit; the control unit controls the unloading according to the obtained position information of the unloading trolley The operation of the trolley.
  • FIG. 1 is a schematic view showing a discharge trolley control system in accordance with an embodiment of the present invention
  • FIG. 2 is a schematic structural view showing a change control system according to an embodiment of the present invention.
  • FIG. 3 is a flow chart showing a change control process in accordance with an embodiment of the present invention.
  • FIG. 4 is a flow chart showing a discharge control process of a silo according to an embodiment of the present invention.
  • FIG. 5 is a schematic structural view showing a discharge control system of a silo according to an embodiment of the present invention.
  • Figure 6 shows an exemplary silo schematic
  • Figure 7 illustrates a silo level balance control method in accordance with an embodiment of the present invention
  • Figure 8 illustrates a silo level balance control method in accordance with another embodiment of the present invention.
  • Figure 9 illustrates a silo level balance control method in accordance with yet another embodiment of the present invention.
  • Figure 10 is a schematic view showing a silo level balance control system in accordance with an embodiment of the present invention.
  • Figure 11 is a schematic view showing a silo level balance control system according to another embodiment of the present invention.
  • Figure 12 is a schematic view showing a silo level balance control system according to still another embodiment of the present invention.
  • Figure 13 illustrates a silo level balance control method in accordance with an embodiment of the present invention
  • Figure 14 illustrates a silo level balance control method in accordance with another embodiment of the present invention.
  • Figure 15 illustrates a silo level balance control method in accordance with yet another embodiment of the present invention.
  • Figure 16 is a schematic view showing a silo level balance control system in accordance with an embodiment of the present invention
  • Figure 17 is a schematic view showing a silo level balance control system according to another embodiment of the present invention
  • Figure 18 is a schematic view showing a silo level balance control system according to still another embodiment of the present invention
  • Figure 19 illustrates a silo level balance control method in accordance with an embodiment of the present invention
  • Figure 20 illustrates a silo level balance control method in accordance with another embodiment of the present invention.
  • Figure 22 is a schematic view showing a silo level balance control system in accordance with an embodiment of the present invention.
  • Figure 23 is a schematic view showing a silo level balance control system according to another embodiment of the present invention.
  • Figure 24 is a schematic view showing a silo level balance control system according to still another embodiment of the present invention.
  • Figure 25 is a schematic illustration of a silo-based compound coal control system in accordance with an embodiment of the present invention.
  • 26 is a schematic structural view of a binning system according to an embodiment of the present invention.
  • Figure 27 is a flow chart showing a method of cascading a warehouse according to an embodiment of the present invention.
  • FIG. 28 is a schematic structural view of a binning system according to an embodiment of the present invention.
  • 29 is a flow chart of a method of cascading a warehouse according to an embodiment of the present invention.
  • Figure 30 is a schematic structural view of a level detecting system for a silo according to an embodiment of the present invention.
  • Figure 31 is a schematic structural view of a level detecting system for a silo according to an embodiment of the present invention.
  • FIG. 32 is a schematic structural view of a temperature detecting system for a silo according to an embodiment of the present invention.
  • Figure 33 is a flow chart of a method of temperature detection for a silo in accordance with an embodiment of the present invention.
  • the unloading trolley is used to discharge materials such as coal through the conveyor to unload the material on the loading belt conveyor in the target silo.
  • the unloading trolley can travel back and forth along the loading belt conveyor.
  • a system provided by the present invention may include a control unit, a Gray bus 11, an antenna box 12, an address code transmitting unit 13, and an address decoding receiving unit 14, wherein the address code transmitting unit 13 is connected to the Gray bus 11.
  • the gray bus bar 11 communicates with the antenna box 12 by electromagnetic coupling, the antenna box 12 is connected to the address decoding receiving unit 14, and the address decoding receiving unit 14 is connected to the control unit, the address
  • the code transmitting unit 13 is configured to generate an address coded signal and transmit the address coded signal through a core line of the Gray bus bar 11;
  • the antenna box 12 is configured to detect the address coded signal and transmit the address coded signal to an address decode receiver
  • the unit 14 is configured to decode the received address encoded signal to obtain location information of the unloading trolley, and transmit the location information of the unloading trolley to the control unit;
  • the unit controls the operation of the unloading trolley according to the obtained position information of the unloading trolley.
  • the solution of the invention detects the position information of the unloading trolley through the Gray busbar 11, and the control unit controls the operation of the unloading trolley according to the position information, for example, controlling the unloading trolley to walk forward, backward walking, stopping walking or stopping discharging. Etc., so that the unloading trolley unloads the material on the loading belt conveyor in the designated position.
  • the control unit can control the operation of the unloading trolley by controlling the driving means of the unloading trolley (e.g., controlling the forward, reverse, and stop of the motor, etc.).
  • the flat-shaped Gray bus bar 11 and the antenna case 12 which are close to each other communicate by electromagnetic coupling, and the position of the antenna case 12 in the longitudinal direction of the Gray bus bar 11 is detected while communicating.
  • the Gray bus is composed of a pair of reference lines (R lines) and a plurality of pairs of address lines (G lines) arranged according to the Gray code.
  • the address lines intersect at regular intervals to form an inductive loop that is regularly arranged by Gray code.
  • the reference lines do not cross over the entire gray grid.
  • the address coded signal is transmitted and received by the address code transmitting unit 13 and the address decode receiving unit 14, thereby positioning the unloading cart.
  • Gray busbar consisting of a pair of address lines and a pair of reference lines
  • an alternating magnetic field is generated near the gray bus, Gray bus.
  • each pair of Gray busbar cores produces an induced electromotive force.
  • the address code transmitting unit 13 generates an address coded signal and transmits the address coded signal through the core of the Gray bus, and the address coded signal is transmitted to the antenna box via the electromagnetic coupling, thereby being received by the address decode receiving unit 14.
  • the address decoding receiving unit 14 performs phase comparison on the received signal, the signal phase of the cross line is the same as the signal phase of the parallel line, and the address is "0"; the signal phase of the cross line Contrary to the phase of the parallel line signal, the address is "1", so the sensed position information is Gray coded and never repeated, thus determining the position of the unloading trolley in the length direction of the Gray bus.
  • control unit may be a PLC 15, the address code transmitting unit 13 and the Gray bus bar 11 are installed beside the track of the unloading trolley, the antenna box 12, the address A code receiving unit and the PLC 15 are mounted on the unloading trolley.
  • the system may further include a communication protocol conversion module, the communication protocol conversion module being coupled between the address decoding receiving unit 14 and the control unit.
  • the communication protocol conversion module can be a data interface of the RS 232 or RS 485 communication protocol.
  • the system may further include a frequency converter, the frequency converter is connected to the control unit, and the control unit adjusts a running speed of the unloading trolley by the frequency converter, for example,
  • the position of the unloading trolley in the working compartment changes to adjust the speed of the unloading trolley, so that the trolley is fast at both ends of the rail and slow in the middle of the rail.
  • the system may further comprise an alarm device and two proximity switches, the two proximity switches being mounted at two ends of the track of the unloading trolley, the alarm device being connected to the two proximity switches, when unloading When the trolley enters the detection range of the proximity switch, the alarm device issues an alarm message, thereby preventing the unloading trolley from running beyond the limit of both ends of the rail and causing a drop to prevent a safety accident.
  • a level gauge can also be arranged in the silo, and the control unit is connected with the level gauge, the level gauge is used for detecting the height of the material level, and sending the height information of the material level to The control unit further controls the operation of the unloading trolley according to the received height information of the material level.
  • the level gauge can be any level gauge that can detect the level and output a detection signal.
  • it can be a capacitive level gauge.
  • the capacitive level gauge is a position sensor with a switching output.
  • the measuring head forms a capacitance detecting surface. When the level of the object to be detected rises to the capacitance detecting surface, the position sensor outputs a switching signal to realize the material level. Detection.
  • the high coal level allowed by the coal material accumulated in the silo can be set to a predetermined upper limit value, and the level gauge is set on the inner side of the silo top or the inner wall of the silo, and the control unit receives from the level gauge.
  • the material level height information when the material level height reaches the predetermined level upper limit value, the control unit controls the unloading trolley to stop discharging.
  • control unit may include a PLC 15 and a host computer
  • the upper computer is in remote communication with the PLC 15
  • the PLC 15 is connected to the address decoding receiving unit 14 and is remotely controlled according to the upper computer.
  • the upper computer may have a display that can display the position information of the trolley and/or the level information of the silo detected by the level gauge.
  • the method provided by the present invention may include the following steps:
  • the address code transmitting unit 13 generates an address coded signal and transmits an address coded signal through the core line of the Gray bus bar 11; detects the address coded signal through the antenna box 12 and transmits the address coded signal to the address decode receiving unit 14; The receiving unit 14 decodes the received address encoded signal to obtain position information of the unloading trolley, and transmits the position information of the unloading trolley to the control unit;
  • the control unit controls the operation of the unloading trolley according to the obtained position information of the unloading trolley.
  • control unit includes a PLC 15, and the unloading trolley control method further includes installing the address code transmitting unit 13 and the Gray bus bar 11 beside the track of the unloading trolley, and the antenna box 12.
  • the address code receiving unit and the PLC 15 are mounted on the unloading trolley.
  • two proximity switches may be installed at both ends of the track of the unloading trolley, and when the unloading trolley enters the detection range of the proximity switch, an alarm message is sent by the alarm device, thereby preventing the unloading trolley from running more than The limit at both ends of the track causes a drop to prevent a safety accident.
  • the unloading trolley control method further comprises: detecting a material level height by a level gauge, and transmitting the material level height information to the control unit, wherein the control unit further controls the unloading trolley according to the received material level height information.
  • Running For example, the high coal level allowed by the coal material accumulated in the silo can be set as the upper limit value of the silo material level, and the level gauge can be set on the inner side of the silo top or the inner wall of the silo, and the control unit is from the level gauge.
  • the control unit controls the unloading trolley to stop discharging.
  • control unit may include a PLC 15 and a host computer, and the PLC 15 is connected to the address decoding receiving unit 14, the upper computer performs remote communication with the PLC 15, and the PLC 15 according to the The remote control signal of the upper computer controls the operation of the unloading trolley.
  • the system may include: a level detecting device 210 for detecting a level in the silo; and a control device 220 electrically connected to the level detecting device 210 for the silo
  • the unloading device is controlled to stop unloading the silo, and then the other silo is unloaded.
  • level detecting device 210 Various embodiments of the level detecting device 210 and the layout in the silo will be described below.
  • the silo has a plurality of discharge ports
  • the material level detecting device 210 may include a material level meter corresponding to the plurality of discharge ports respectively, for respectively detecting materials at the plurality of discharge ports
  • the control device 220 is electrically connected to the level gauge for controlling the unloading device to stop the silo when the material level at one of the plurality of discharge ports exceeds a predetermined value Unloading.
  • the material level detecting device 210 may also be two material level switches respectively located on the two cloth mouth sides of the upper part of the silo, and the material level switch may detect whether the material level reaches a predetermined value, and When the material level reaches a predetermined value, a signal is sent to the control device 220, and the control device 220 can control the unloading when one of the two level switches detects that the material in the silo reaches a predetermined value. The material device stops unloading the silo.
  • the material switch can be a vibrating high level detection switch, or an RF capacitive level switch, a rotary type level switch, and the like.
  • the level detecting device 210 may also include the above-mentioned level gauge corresponding to the plurality of discharge ports and the two level switches on the side of the cloth outlet, and the control device 220 may be any of them (the level gauge) Or level switch) When the detected level reaches a predetermined value, the unloading device is controlled to stop discharging the silo.
  • the present invention is not limited thereto, and any device that can realize material measurement can be applied thereto.
  • the unloading device may include a dumper, a belt conveyor and a unloading trolley, and the dumper unloads the material onto the belt conveyor, and the belt conveyor transports the material to the unloading trolley and unloads the material onto the unloading trolley. After that, the unloading trolley then unloads the material into the silo.
  • the control device 220 controls the dumper, the belt conveyor and the unloading trolley to stop unloading when the material level in the silo reaches a predetermined value, and controls the unloading trolley to move to another silo, and then controls the rollover.
  • the machine, belt conveyor and unloading trolley began to unload. Thereby, automatic change control can be realized.
  • the unloading device is not limited to the combination of the above-mentioned dumper, belt conveyor and unloading trolley, one or more of the dumper, the belt conveyor and the unloading trolley, and other devices capable of discharging the material. Both combinations and combinations can be applied thereto.
  • control device 220 is configured to control the dumper to stop unloading when the remaining capacity in the silo is equal to the capacity of a dumper, and the belt conveyor and the unloading trolley continue to discharge until the unloading is completed, after which The unloading trolley is controlled to move to another silo, and the dumper, the belt conveyor and the unloading trolley start discharging again.
  • the unloading trolley is controlled to move to another silo, and the dumper, the belt conveyor and the unloading trolley start discharging again.
  • the belt conveyor and the unloading trolley can be prevented from transporting the remaining materials stacked on the silo to the next silo after the material is filled, thereby causing inconvenience.
  • the belt conveyor and the unloading trolley can be idling to the next silo, which saves energy consumption and prevents the belt conveyor and the unloading trolley from transferring to the next silo under the load of materials. Possible material spillage.
  • the method may further include: Step 1): detecting a level in the silo; and step 2): reaching a level in the silo
  • the unloading device is controlled to stop unloading the silo, and in turn, unloading the other silo.
  • the silo may have a plurality of discharge ports
  • the step 1) may include: separately detecting the material levels at the plurality of discharge ports; and the step 2) comprises: When the level of the material at one of the ports exceeds a predetermined value, the unloading device is controlled to stop unloading the silo.
  • the unloading device may include a dumper, a belt conveyor and a unloading trolley
  • the step 2) comprises: controlling the dumper, the belt conveyor and the unloading trolley when the material level in the silo reaches a predetermined value The unloading is stopped, and the unloading trolley is controlled to move to another silo, and then the dumper, the belt conveyor, and the unloading trolley are controlled to start unloading.
  • the step 2) may further include: when the remaining capacity in the silo is equal to the capacity of a dumper, controlling the dumper to stop unloading, and the belt conveyor and the unloading trolley continue to discharge until the unloading is completed, after which The unloading trolley is controlled to move to another silo, and the dumper, the belt conveyor and the unloading trolley start discharging again.
  • the bottom of the large coal storage silo of the port is provided with a plurality of discharge ports, and the setting of the plurality of feeders for discharging the feed at each discharge port can increase the maximum discharge capacity.
  • the number of feeders and the arrangement of the feeder at the bottom of the bin are set by factors such as the force demand and the limit of the discharge speed.
  • At least one belt conveyor may be disposed under the plurality of feeders, and the coal material stored in the silo may be discharged from the discharge port by the action of the feeder, and then discharged to the belt conveyor for transportation, thereby realizing the coal material. Out of the warehouse.
  • the method may include the following steps: S1) measuring the material flow rate on the opened belt conveyor; S2) comparing the measured material flow rate with the belt conveyor preset value; and S3) adjusting according to the comparison result The discharge amount of the at least one feeder 2 corresponding to the belt conveyor.
  • the material flow on the opened belt conveyor can be measured by setting a belt scale behind the belt conveyor.
  • the belt scale is usually disposed at the back of the belt conveyor, and is a measuring device for real-time acquisition of the weight of the material placed on the belt conveyor and outputting the material flow rate.
  • the flow rate measured by the belt scale can be collected in real time to obtain the material flow rate on the belt conveyor.
  • the flow rate of the material to be transported may be set to a preset value of the belt conveyor according to the production scheduling plan of the coal port, and the measured material flow rate is compared with the preset value of the belt conveyor.
  • step S3) according to the comparison result of the material flow rate and the preset value of the belt conveyor, the discharge amount of the feeder corresponding to the opened belt conveyor can be adjusted, thereby realizing the control of the material flow rate of the belt conveyor:
  • the discharge amount of the feeder corresponding to the belt conveyor can be increased (ie, the percentage of the discharge amount of the feeder and the maximum discharge amount is adjusted), and when measured When the material flow rate is greater than the preset value of the belt conveyor, the discharge amount of the feeder corresponding to the belt conveyor can be reduced.
  • the material flow rate of the belt conveyor can be controlled at all times. It is in accordance with the preset value of the belt conveyor, thereby realizing the control of the material flow.
  • a belt conveyor has a plurality of feeders
  • when adjusting the discharge amount of the feeder only one of the feeders can be adjusted according to actual operation requirements, or The discharge amount of all the plurality of feeders is adjusted, and the present invention does not limit the adjustment manner and sequence of the feeder.
  • the preset value of the belt conveyor can be set according to the production scheduling plan of the coal port, or can be set according to the rated maximum flow value of the belt conveyor.
  • the actual material flow rate of the belt conveyor conforms to the preset value of the belt conveyor, thereby achieving the purpose of controlling the material flow rate.
  • the method further comprises the following steps: S4) calculating the total amount of materials on the belt conveyor opened during the predetermined time period, and comparing the total amount of the materials with the fatigue value of the belt conveyor.
  • step S5 measuring the running time of the opened belt conveyor, and comparing the running time with the fatigue time; and S6) judging whether the opened belt conveyor is in fatigue operation according to the comparison result of step S4) or step S5) State, and in the case of judging the fatigue of the belt conveyor, controlling the belt conveyor and the corresponding feeder of the belt conveyor to be closed, or controlling the belt conveyor and the corresponding feeder of the belt conveyor to be closed while controlling other The feeder of the belt conveyor and other belt conveyors is turned on.
  • step S4 it can be judged whether the total amount of materials on the belt conveyor opened within the predetermined time period exceeds the belt machine fatigue value (step S4), or by judging whether the running time of the opened belt conveyor exceeds the belt conveyor.
  • the fatigue time (S5)) is used to judge whether the opened belt conveyor is in a fatigue running state, and under the condition of either of step S4) and step S5), it can be judged that the opened belt conveyor is in fatigue operation. The state, thereby controlling the belt conveyor and the corresponding feeder of the belt conveyor to be closed to avoid damage to the belt conveyor caused by continuous operation.
  • a plurality of feeders correspond to only one belt conveyor (ie, an embodiment in which a single belt conveyor operates), whereby when the belt conveyor is judged to be in a fatigue running state, only the belt conveyor and the belt are controlled.
  • the feeder of the belt conveyor can be closed.
  • a plurality of feeders correspond to more than one belt conveyor (ie, an embodiment in which a plurality of belt conveyors are operated), whereby, when it is judged that the belt conveyor is in a fatigue running state, it is also possible to control only The belt conveyor and the feeder corresponding to the belt conveyor can be closed.
  • the belt conveyor and the feeder corresponding to the belt conveyor can be controlled. Close, and also control the feeder of other belt conveyors and other belt conveyors, and switch the working mode through multiple belt conveyors to achieve high-efficiency material transportation.
  • the predetermined time period, the fatigue time, and the fatigue value of the belt conveyor can all be set according to the factory rated parameters of the belt conveyor.
  • the unloading bin can be implemented using different types of feeders, which can be, for example, any of an activating feeder, a vibrating feeder, a ring feeder, or an impeller feeder.
  • the feeder is an activated feeder.
  • FIG. 5 is a schematic structural view showing a discharge control system of a silo according to an embodiment of the present invention.
  • the system may include: a belt scale 54 disposed behind each belt conveyor 53; and a discharge control unit 51, the discharge control unit 51 and the plurality of feeders 52, respectively A belt conveyor 53 and a belt scale 54 behind each belt conveyor 53 are electrically connected.
  • the discharge control unit 51 is configured to perform the following steps: S1) measuring the belt conveyor 53 by the belt scale 54 after the belt conveyor 53 is turned on. of Material flow rate; S2) comparing the measured material flow rate with a preset value of the belt conveyor; and S3) adjusting the discharge amount of the at least one feeder 52 corresponding to the belt conveyor 53 according to the comparison result.
  • the material flow rate on the opened belt conveyor 53 can be measured by providing a belt scale 54 behind the belt conveyor 53.
  • the belt scale 54 is usually disposed at the back of the belt conveyor 53, and is a measuring device for real-time acquisition of the weight of the material placed on the belt conveyor 53 and outputting the flow rate of the material.
  • the discharge control unit 51 may be a PLC (Programmable Logic Controller).
  • the PLC internally stores instructions for performing various operations, and various types of execution components can be controlled by outputting operation instructions.
  • the discharge control unit 51 is electrically connected to the plurality of feeders 52, the at least one belt conveyor 53, and the belt scale 54 after each belt conveyor 53, respectively.
  • the control unit 51 can perform corresponding measurement, comparison and control steps in accordance with preset control commands to effect control of the feeder 52.
  • the PLC is a controller commonly used in the field of automatic control, and its specific structure and working principle are well known to those skilled in the art.
  • the discharge control unit 51 pre-stores a preset value of the belt conveyor, and can set the flow rate of the material to be transported to be the preset of the belt conveyor according to the production scheduling plan of the coal port. value. Based on the operation instructions stored therein, the discharge control unit 51 may first perform step Sl) to acquire the flow rate of the material on the belt conveyor 53 by collecting the flow rate value measured by the belt scale 54 in real time. Next, step S2) is performed to compare the measured material flow rate with the belt conveyor preset value.
  • the discharge control unit 51 then performs step S3) to adjust the discharge amount of the feeder 52 corresponding to the opened belt conveyor 53 based on the comparison result of the material flow rate and the preset value of the belt conveyor, thereby realizing the belt conveyor 53.
  • Control of material flow rate When the measured material flow rate is less than the preset value of the belt conveyor, the discharge control unit 1 can control the discharge amount of the feeder 52 corresponding to the belt conveyor 3 to be adjusted (ie, adjust the feeder 52).
  • the discharge amount is a percentage of the maximum discharge amount, and when the measured material flow rate is greater than the preset value of the belt conveyor, the discharge control unit 51 can control the discharge amount of the feeder 52 corresponding to the belt conveyor 53 to be small.
  • the discharge control unit 51 can always control the material flow rate of the belt conveyor 53 to conform to the preset value of the belt conveyor, thereby realizing the control of the material flow rate. .
  • one belt conveyor 53 corresponds to a plurality of feeders 52
  • the discharge control unit 51 adjusts the discharge amount of the feeder 52, only one of them can be adjusted according to actual operation needs.
  • the discharge amount of the material machine 52, or the discharge amount of all the plurality of feeders 52, the present invention does not limit the adjustment manner and sequence of the feeder 52 by the discharge control unit 51.
  • the preset value of the belt conveyor can be set in the discharge control unit 51 according to the production schedule of the coal port, or can be set according to the rated maximum flow value of the belt conveyor 53.
  • the discharge control unit 51 is used to adjust the discharge amount of the bottom feeder 52 of the silo, so that the actual material flow rate of the belt conveyor 53 conforms to the preset value of the belt conveyor, thereby achieving the control of the material flow rate. purpose.
  • the discharge control unit 51 is preferably further configured to perform the following steps: S4) calculating the total amount of material on the belt conveyor 53 opened during the predetermined time period, and The total amount of the material is compared with the fatigue value of the belt conveyor; or S5) measuring the running time of the belt conveyor 53 that is turned on, and comparing the running time with the fatigue time; and S6) comparing according to step S4) or step S5)
  • S4) calculating the total amount of material on the belt conveyor 53 opened during the predetermined time period, and The total amount of the material is compared with the fatigue value of the belt conveyor; or S5) measuring the running time of the belt conveyor 53 that is turned on, and comparing the running time with the fatigue time; and S6) comparing according to step S4) or step S5)
  • the belt conveyor 53 and the feeder 52 corresponding to the belt conveyor 53 are controlled to be closed, or the belt is controlled. While the machine 53 and the feeder 52 corresponding to the belt conveyor 53 are closed, the other belt conveyors 53 and the feeders 52 corresponding to the other belt conveyors 53 are also controlled
  • the discharge control unit 51 is internally provided with a predetermined time period, a fatigue time, and a belt fatigue value, and the internal program of the discharge control unit 51 can be set to determine that the predetermined time period is turned on. Whether the total amount of material on the belt conveyor 53 exceeds the belt machine fatigue value (step S4)), or by judging whether the running time of the opened belt conveyor 53 exceeds the fatigue time of the belt conveyor 53 (S5)) Whether the belt conveyor 53 is in a fatigue running state, and under the condition of either of the steps S4) and S5), the discharge control unit 51 can judge that the opened belt conveyor 53 is in a fatigue running state, thereby controlling the The belt conveyor 53 and the feeder 52 corresponding to the belt conveyor 53 are closed to avoid damage to the belt conveyor 53 caused by continuous operation.
  • the plurality of feeders 52 correspond to only one belt conveyor 53 (i.e., the embodiment in which the single belt conveyor 53 operates), whereby when the belt conveyor 53 is judged to be in a fatigue running state, the discharge control is performed.
  • the unit 51 only controls the belt conveyor 53 and the feeder 52 corresponding to the belt conveyor 53 to be closed.
  • the plurality of feeders 52 correspond to more than one belt conveyor 53 (i.e., the embodiment in which the plurality of belt conveyors 53 operate), whereby when it is judged that the belt conveyor 53 is in a fatigue running state,
  • the discharge control unit 51 can also control only the skin
  • the belt feeder 53 and the feeder 52 corresponding to the belt conveyor 53 are closed.
  • the discharge control unit 51 can control the belt conveyor 53. And the feeder 52 corresponding to the belt conveyor 53 is closed, and at the same time, the other belt conveyor 53 and the feeder 52 corresponding to the other belt conveyors 53 are controlled to be opened, and the working mode is switched by the plurality of belt conveyors 53, so that efficient material transportation can be realized. .
  • the predetermined time period, the fatigue time, and the belt machine fatigue value may all be set in the discharge control unit 51 in accordance with the factory rated parameters of the belt conveyor 53.
  • the discharge bin 52 can be implemented using different types of feeders 52, which can be, for example, any of an activating feeder, a vibrating feeder, a ring feeder, or an impeller feeder.
  • the feeder 52 is an activated feeder.
  • the flow rate of the material to be transported can be set as the preset value of the belt conveyor according to the production scheduling plan of the coal port, and the system is used to adjust the discharge amount of the bottom feeder 52 of the silo, so that the belt is made.
  • the actual material flow rate of the machine 53 conforms to the preset value of the belt conveyor, and the purpose of controlling the material flow rate can be achieved.
  • a plurality of feeders for unloading can be placed at the bottom of the tank to increase the maximum discharge capacity and to contribute to the level balance.
  • the number of feeders and the arrangement of the feeder at the bottom of the bin can be set according to factors such as the size and shape of the bottom of the bin, the size of the feeder, the demand for unloading capacity, and the limitation of the unloading speed.
  • silo level balance problem For a silo structure with multiple bottom feeders, it is better able to solve the silo level balance problem than a small silo with only one feeder, but considering the shape of the stored material Factors such as quality, size, etc., various conditions may occur during unloading (such as blockage due to insufficient openness of the feeder), which may have unpredictable effects on the unloading process and may cause material failure. balance. Based on this, it is necessary to further perform level balance control on the silo having a plurality of feeders at the bottom of the warehouse.
  • FIG. An exemplary silo is shown in FIG. Wherein the silo 610 has a plurality of feeders 630 at the bottom of the bin, and the contents of the silos 610 can be dumped by the feeder 630 onto the belt conveyor 650 and transported by the belt conveyor 650 to a designated location.
  • the silo 610 in order to achieve detection and control of the level in the silo 610, it may be necessary to provide some attachments that may be part of the material balance control system proposed by the present invention, such as a level gauge 620 and A belt scale 640, etc., will be described in detail below.
  • Figure 7 illustrates a silo level balance control method in accordance with an embodiment of the present invention.
  • step 710 a plurality of level gauges are utilized to detect the fill level within the silo.
  • step 720 the amount of discharge of at least one of the plurality of feeders is adjusted based on the level of material detected by the plurality of level gauges.
  • the function of the level value at a specific location associated with a feeder or the value of the material level at a plurality of specific locations can determine the discharge amount of the feeder. Therefore, when the value of the function of the level value or the level value at the one or more specific locations is detected to be too large (eg, compared to the average of the level values of all the level gauges in the silo), The discharge amount of the feeder should be reduced, and conversely, the discharge amount of the feeder should be increased.
  • the simulated material level surface in the silo may be first determined according to the material level detected by the plurality of level gauges, that is, in the silo detected by the plurality of level gauges.
  • the fill level at a specific location fits a surface whose ideal shape should match the shape of the surface of the material in the silo, so it is called an analog fill surface.
  • the material level value at any position in the silo can be obtained through the simulated material level surface, and the discharge amount of at least one of the plurality of feeders can be further adjusted by the obtained material level value. .
  • the level gauge can be set as much as possible over a wide range to obtain a more ideal analog level surface. It is also preferable to first set the level gauge at a critical point (such as directly above the feeder, at the midpoint between the two feeders, etc.) so that cost savings can be achieved with a certain accuracy.
  • the level gauge can be placed just above the feeder such that the plurality of level gauges correspond one-to-one with the plurality of feeders.
  • the discharge amount of the feeder can be adjusted according to the level gauge directly above a feeder, when the level value of the level gauge is too large (for example, with the level of all the level gauges in the silo) If the average value of the value is compared, the discharge amount of the feeder should be reduced, and conversely, the discharge amount of the feeder should be increased.
  • the feeder is an activated feeder.
  • the silo has a plurality of feeders 630 for discharging at the bottom (refer to FIG. 6 for a specific structure), and the system may further include: A plurality of level gauges 620 for the fill level in the silo; a feeder control unit 1010 electrically coupled to the plurality of level gauges 620 and the plurality of feeders 630, respectively.
  • the feeder control unit 1010 is configured to receive the detected fill levels from the plurality of level gauges 620 and adjust the plurality of feedstocks based on the detected fill levels The discharge amount of at least one of the feeders 630.
  • the feeder control unit determines an analog material level surface in the silo according to the material level detected by the plurality of level gauges, and according to the simulated material level surface, the plurality of The discharge amount of at least one of the feeders is adjusted.
  • the plurality of level gauges are in one-to-one correspondence with the plurality of feeders, and are respectively placed directly above the corresponding feeders.
  • the feeder control unit respectively adjusts the discharge amount of the feeder corresponding to the level gauge according to the material level detected by each of the plurality of level gauges, For example, adjust the average of the level values of all the level gauges in the silo.
  • FIG. 8 shows a silo level balance control method according to another embodiment of the present invention, wherein the silo bottom is provided with a plurality of feeders for discharging, and the silos are further provided with parallels below A plurality of belt conveyors, wherein each belt conveyor corresponds to at least one of the plurality of feeders, respectively.
  • step 810 one of the plurality of belt conveyors and all or a portion of the feeders corresponding to the belt conveyor are opened.
  • step 820 a plurality of level gauges are utilized to detect the fill level within the silo.
  • the plurality of level gauges are in one-to-one correspondence with the plurality of feeders, and are respectively placed directly above the corresponding feeders to respectively detect the level of materials at the corresponding feeders.
  • the feeder is an activated feeder.
  • step 830 according to the material level detected by the plurality of level gauges or when the belt conveyor running time exceeds the first predetermined time, the opened belt conveyor and the feeder corresponding to the belt conveyor are closed. And opening another belt conveyor of the plurality of belt conveyors different from the belt conveyor being used and all or part of the feeders corresponding to the other belt conveyor.
  • steps 820 and 830 are repeated in the method to achieve continuous detection and control of the entire discharge process.
  • steps 810-830 and in the process of repeatedly performing steps 820 and 830 if all the feeders corresponding to a certain belt conveyor are turned on, the materials are adjusted according to the detected level of the plurality of level gauges. The amount of material discharged from the currently open feeder. This adjustment method is consistent with the content of the method in Figure 7, and will not be described here.
  • steps 810-830 and in the process of repeatedly performing steps 820 and 830 if only M feeders corresponding to a certain belt conveyor are opened (where M is greater than or equal to 1 and less than all corresponding to the belt conveyor)
  • the number of the feeders is selected according to the material level detected by the plurality of level gauges or when the belt conveyor running time exceeds the second predetermined time, using all the feeders corresponding to the belt conveyor
  • the M feeders that are not identical to the M feeders currently open replace the currently opened M feeders, so as to avoid the material level imbalance caused by a certain feeder being closed for a long time. .
  • the bottom of the silo is provided with a plurality of feeders 630 for discharging, and a plurality of belt conveyors 650 are arranged below the silos, wherein each belt is provided
  • the machine 650 respectively corresponds to at least one of the plurality of feeders 630 (see FIG. 6 for a specific structure), and the system may further include a plurality of material levels for detecting the material level in the silo Meter 620; a control unit 1110 electrically coupled to the plurality of level gauges 620, the plurality of feeders 630, and the plurality of belt conveyors 650, respectively.
  • control unit 1110 is configured to open one of the plurality of belt conveyors 650 and all or part of the feeders corresponding to the belt conveyor; receive the detected from the plurality of level gauges 620 The material level detected according to the plurality of level gauges 620 or when the belt conveyor 650 runs for more than the first predetermined time, the opened belt conveyor and the feeder corresponding to the belt conveyor are closed. And opening another belt conveyor of the plurality of belt conveyors 650 different from the belt conveyor being used and all or part of the feeders corresponding to the other belt conveyor.
  • control unit is further configured to: when all the feeders corresponding to a belt conveyor are opened, adjust the discharge of the currently opened feeder according to the material level detected by the plurality of level gauges the amount.
  • control unit is further configured to: when only the M feeders corresponding to a belt conveyor are opened (M is greater than or equal to 1 and less than the number of all feeders corresponding to the belt conveyor), according to the The material level detected by the plurality of level gauges or when the belt conveyor running time exceeds the second predetermined time, using the M feeders selected from all the feeders corresponding to the belt conveyor and the currently opened M feeders that are not identical replace the currently opened M feeders for unloading.
  • M is greater than or equal to 1 and less than the number of all feeders corresponding to the belt conveyor
  • the plurality of level gauges are in one-to-one correspondence with the plurality of feeders, and are respectively placed directly above the corresponding feeders to respectively detect the level of materials at the corresponding feeders.
  • the feeder is an activated feeder.
  • FIG. 9 shows a silo level balance control method according to still another embodiment of the present invention, wherein the silo bottom is provided with a plurality of feeders for discharging, and the silos are further provided with parallels below a plurality of belt conveyors, wherein each belt conveyor respectively corresponds to at least one of the plurality of feeders, and each belt conveyor has at least one belt scale.
  • step 910 one of the plurality of belt conveyors and all or a portion of the feeders corresponding to the belt conveyor are opened.
  • step 920 the material flow on the belt conveyor is measured using a belt scale on the opened belt conveyor.
  • the feeder is an activated feeder.
  • step 930 according to the material flow measurement result or when the belt conveyor running time exceeds the first predetermined time, the opened belt conveyor and the feeder corresponding to the belt conveyor are closed, and the plurality of belt conveyors are turned on. Another belt conveyor different from the belt conveyor being used and all or part of the feeder corresponding to the other belt conveyor.
  • steps 920 and 930 are repeated in the method to achieve continuous detection and control of the entire discharge process.
  • steps 910-930 and in the process of repeatedly performing steps 920 and 930 if only M feeders corresponding to a belt conveyor are opened (where M is greater than or equal to 1 and less than all feedstocks corresponding to the belt conveyor) The number of machines), when the belt conveyor running time exceeds the second predetermined time, using M selected from all the feeders corresponding to the belt conveyor and not exactly the same as the currently opened M feeders The feeder replaces the currently opened M feeders to unload the material to avoid unbalanced material levels caused by a certain feeder not working for a long time.
  • the method of Figure 9 may further include a step 940 in which a plurality of level gauges are utilized to detect the fill level within the silo.
  • step 920-930 the opened belt conveyor and the feeder corresponding to the belt conveyor are closed according to the material flow measurement result, and the plurality of belt conveyors are opened and in use.
  • the same level can be performed according to the material level detected by the plurality of level gauges. operating. This adjustment method is consistent with the content of the method in FIG. 8, and will not be described again here.
  • the level of the detected level of the plurality of level gauges is more high.
  • the opening is started.
  • the first belt conveyor closes the second belt conveyor because the judgment based on the detected material level has a higher priority.
  • the plurality of level gauges are in one-to-one correspondence with the plurality of feeders, and are respectively placed directly above the corresponding feeders to respectively detect the level of materials at the corresponding feeders.
  • the bottom of the silo is provided with a plurality of feeders 630 for discharging, and a plurality of belt conveyors 650 are arranged below the silos, each of which The belt conveyors respectively correspond to at least one of the plurality of feeders 630 (see FIG. 6 for a specific structure), the system may further include a plurality of belt scales 640, wherein the plurality of belt conveyors 650 At least one belt scale 640 is disposed on each belt conveyor; a control unit 1210 electrically coupled to the plurality of feeders 630, the plurality of belt conveyors 650, and the plurality of belt scales 640, respectively.
  • the control unit 1210 is configured to open one of the plurality of belt conveyors 650 and all or part of the feeders corresponding to the belt conveyor; receive materials measured by the belt scale 640 from the opened belt conveyor Flowing; according to the material flow rate or when the belt conveyor running time exceeds the first predetermined time, closing the opened belt conveyor and the feeder corresponding to the belt conveyor, and opening the plurality of belt conveyors
  • the other belt conveyor that is in use is different from the belt conveyor and all or part of the feeders corresponding to the other belt conveyor.
  • control unit is further configured to: when only the M feeders corresponding to a belt conveyor are opened (where M is greater than or equal to 1 and less than the number of all feeders corresponding to the belt conveyor), If the belt conveyor running time exceeds the second predetermined time, the current feeder is replaced with M feeders selected from all the feeders corresponding to the belt conveyor and not identical to the currently opened M feeders. The M feeders are unloaded.
  • control unit is further configured to detect a level in the silo using a plurality of level gauges.
  • control unit is further configured to: when all the feeders corresponding to a belt conveyor are opened, adjust the discharge of the currently opened feeder according to the material level detected by the plurality of level gauges the amount.
  • the control unit closes the opened belt conveyor and the feeder corresponding to the belt conveyor according to the material flow measurement result and opens another one of the plurality of belt conveyors different from the belt conveyor being used.
  • the same operation as described above can also be performed based on the material levels detected by the plurality of level gauges. More preferably, when the same operation is performed according to the detected level of the plurality of level gauges and the material flow measurement result, the level of the detected level of the plurality of level gauges is prioritized Higher level.
  • the plurality of level gauges are in one-to-one correspondence with the plurality of feeders, and are respectively placed directly above the corresponding feeders, To separately detect the level of the material at the corresponding feeder.
  • the level gauge is used to detect the material level in the silo, and the detected material level is used to determine whether the feed rate of the feeder is adjusted, so that the material level in the silo can be In the event of an imbalance, the material level is adjusted in time to ensure the safety and stability of the entire unloading process without affecting the operation.
  • Figure 13 illustrates a silo level balance control method in accordance with an embodiment of the present invention.
  • step 1310 a plurality of level gauges are utilized to detect the fill level within the silo.
  • step 1320 the amount of discharge of at least one of the plurality of feeders is adjusted based on the level of material detected by the plurality of level gauges.
  • the function of the level value at a specific location associated with a feeder or the value of the material level at a plurality of specific locations can determine the discharge amount of the feeder. Therefore, when the value of the function of the level value or the level value at the one or more specific locations is detected to be too large (eg, compared to the average of the level values of all the level gauges in the silo), The discharge amount of the feeder should be reduced, and conversely, the discharge amount of the feeder should be increased.
  • the simulated material level surface in the silo may be first determined according to the material level detected by the plurality of level gauges, that is, in the silo detected by the plurality of level gauges.
  • the fill level at a specific location fits a surface whose ideal shape should match the shape of the surface of the material in the silo, so it is called an analog fill surface.
  • the material level value at any position in the silo can be obtained through the simulated material level surface, and the discharge amount of at least one of the plurality of feeders can be further adjusted by the obtained material level value. .
  • the level gauge can be set as much as possible over a wide range to obtain a more ideal analog level surface. It is also preferable to first set the level gauge at a critical point (such as directly above the feeder, at the midpoint between the two feeders, etc.) so that cost savings can be achieved with a certain accuracy.
  • the level gauge can be placed just above the feeder such that the plurality of level gauges correspond one-to-one with the plurality of feeders.
  • the discharge amount of the feeder can be adjusted according to the level gauge directly above a feeder, when the level value of the level gauge is too large (for example, with the level of all the level gauges in the silo) If the average value of the value is compared, the discharge amount of the feeder should be reduced, and conversely, the discharge amount of the feeder should be increased.
  • the feeder is an activated feeder.
  • the silo has a plurality of feeders 630 for discharging at the bottom (refer to Fig. 6 for a specific structure).
  • the system can include: a plurality of level gauges 620 for detecting fill levels in the silo; and feeder control for electrically connecting the plurality of level gauges 620 and the plurality of feeders 630, respectively Unit 1610.
  • the feeder control unit 1610 is configured to receive the detected level from the plurality of level gauges 620 and adjust at least one of the plurality of feeders 630 based on the detected level. The discharge amount of the feeder.
  • the feeder control unit determines an analog material level surface in the silo according to the material level detected by the plurality of level gauges, and according to the simulated material level surface, the plurality of The discharge amount of at least one of the feeders is adjusted.
  • the plurality of level gauges are in one-to-one correspondence with the plurality of feeders, and are respectively placed directly above the corresponding feeders.
  • the feeder control unit respectively adjusts the discharge amount of the feeder corresponding to the level gauge according to the material level detected by each of the plurality of level gauges, For example, adjust the average of the level values of all the level gauges in the silo.
  • Figure 14 illustrates a silo level balance control method according to another embodiment of the present invention, wherein the silo bottom is provided with a plurality of feeders for discharging, and the silos are also provided with parallels below A plurality of belt conveyors, wherein each belt conveyor corresponds to at least one of the plurality of feeders, respectively.
  • step 1410 one of the plurality of belt conveyors and all or a portion of the feeders corresponding to the belt conveyor are opened.
  • step 1420 a plurality of level gauges are utilized to detect the fill level within the silo.
  • the plurality of level gauges are in one-to-one correspondence with the plurality of feeders, and are respectively placed directly above the corresponding feeders to respectively detect the level of materials at the corresponding feeders.
  • the feeder is an activated feeder.
  • step 1430 according to the material level detected by the plurality of level gauges or when the belt conveyor running time exceeds the first predetermined time, the opened belt conveyor and the feeder corresponding to the belt conveyor are closed. And opening another belt conveyor of the plurality of belt conveyors different from the belt conveyor being used and all or part of the feeders corresponding to the other belt conveyor.
  • steps 1420 and 1430 are repeated in the method to achieve continuous detection and control of the entire discharge process.
  • steps 1410-1430 and in the process of repeatedly performing steps 1420 and 1430 if only M feeders corresponding to a certain belt conveyor are opened (where M is greater than or equal to 1 and less than all corresponding to the belt conveyor)
  • the number of the feeders is selected according to the material level detected by the plurality of level gauges or when the belt conveyor running time exceeds the second predetermined time, using all the feeders corresponding to the belt conveyor
  • the M feeders that are not identical to the M feeders currently open replace the currently opened M feeders, so as to avoid the material level imbalance caused by a certain feeder being closed for a long time. .
  • the bottom of the silo is provided with a plurality of feeders 630 for discharging, and a plurality of belt conveyors 650 in parallel are disposed under the silos, each of which The belt conveyors 650 respectively correspond to at least one of the plurality of feeders 630 (see FIG. 6 for a specific structure), and the system may include a plurality of material levels for detecting the level in the silo Meter 620; a control unit 1710 electrically coupled to the plurality of level gauges 620, the plurality of feeders 630, and the plurality of belt conveyors 650, respectively.
  • control unit 1710 is configured to open one of the plurality of belt conveyors 650 and all or part of the feeders corresponding to the belt conveyor; receive the detected from the plurality of level gauges 620 The material level detected according to the plurality of level gauges 620 or when the belt conveyor 650 runs for more than the first predetermined time, the opened belt conveyor and the feeder corresponding to the belt conveyor are closed. And opening another belt conveyor of the plurality of belt conveyors 650 different from the belt conveyor being used and all or part of the feeders corresponding to the other belt conveyor.
  • control unit is further configured to: when all the feeders corresponding to a belt conveyor are opened, adjust the discharge of the currently opened feeder according to the material level detected by the plurality of level gauges the amount.
  • control unit is further configured to: when only the M feeders corresponding to a belt conveyor are opened (M is greater than or equal to 1 and less than the number of all feeders corresponding to the belt conveyor), according to the The material level detected by the plurality of level gauges or when the belt conveyor running time exceeds the second predetermined time, using the M feeders selected from all the feeders corresponding to the belt conveyor and the currently opened M feeders that are not identical replace the currently opened M feeders for unloading.
  • M is greater than or equal to 1 and less than the number of all feeders corresponding to the belt conveyor
  • the plurality of level gauges are in one-to-one correspondence with the plurality of feeders, and are respectively placed directly above the corresponding feeders to respectively detect the level of materials at the corresponding feeders.
  • the feeder is an activated feeder.
  • FIG. 15 shows a silo level balance control method according to still another embodiment of the present invention, wherein a bottom of the silo is provided with a plurality of feeders for discharging, and the silos are further provided with parallels below a plurality of belt conveyors, wherein each belt conveyor respectively corresponds to at least one of the plurality of feeders, and each belt conveyor has at least one belt scale.
  • step 1510 one of the plurality of belt conveyors and all or a portion of the feeders corresponding to the belt conveyor are opened.
  • step 1520 the material flow on the belt conveyor is measured using a belt scale on the opened belt conveyor.
  • the feeder is an activated feeder.
  • step 1530 according to the material flow measurement result or when the belt conveyor running time exceeds the first predetermined time, the opened belt conveyor and the feeder corresponding to the belt conveyor are closed, and the plurality of belt conveyors are turned on. Another belt conveyor different from the belt conveyor being used and all or part of the feeder corresponding to the other belt conveyor.
  • steps 1520 and 1530 are repeated in the method to achieve continuous detection and control of the entire discharge process.
  • steps 1510-1530 and during the repeated execution of steps 1520 and 1530 if only M feeders corresponding to a belt conveyor are opened (where M is greater than or equal to 1 and less than all feedstocks corresponding to the belt conveyor) The number of machines), when the belt conveyor running time exceeds the second predetermined time, using M selected from all the feeders corresponding to the belt conveyor and not exactly the same as the currently opened M feeders The feeder replaces the currently opened M feeders to unload the material to avoid unbalanced material levels caused by a certain feeder not working for a long time.
  • the method of Figure 15 may further include a step 1540 in which a plurality of level gauges are utilized to detect the level of material within the cartridge.
  • steps 1510-1530 and during the repeated execution of steps 1520 and 1530 when all the feeders corresponding to a belt conveyor are turned on, the current level is adjusted according to the material levels detected by the plurality of level gauges. The amount of material discharged from the feeder. This adjustment method is consistent with the content of the method in Fig. 13, and will not be described again here.
  • the opened belt conveyor and the feeder corresponding to the belt conveyor are turned off according to the material flow measurement result in steps 1520-1530, and the plurality of belt conveyors are opened and in use.
  • the material level detected by the plurality of level gauges may also be used. To perform the same operation as above. This adjustment method is consistent with the content of the method in FIG. 14, and will not be described again here.
  • the level of the detected level of the plurality of level gauges is more high.
  • the opening is started.
  • the first belt conveyor closes the second belt conveyor because the judgment based on the detected material level has a higher priority.
  • the plurality of level gauges are in one-to-one correspondence with the plurality of feeders, and are respectively placed directly above the corresponding feeders to respectively detect the level of materials at the corresponding feeders.
  • the bottom of the silo is provided with a plurality of feeders 630 for discharging, and a plurality of belt conveyors 650 in parallel are disposed under the silos, each of which The belt conveyors respectively correspond to at least one of the plurality of feeders 630 (see FIG. 6 for a specific structure), the system may include a plurality of belt scales 640, wherein each of the plurality of belt conveyors 650 At least one belt scale is disposed on a belt conveyor; a control unit 1810 electrically coupled to the plurality of feeders 630, the plurality of belt conveyors 650, and the plurality of belt scales 640, respectively.
  • the control unit 1810 is configured to open one of the plurality of belt conveyors 650 and all or part of the feeders corresponding to the belt conveyor; receive materials measured by the belt scale 640 from the opened belt conveyor Flowing; according to the material flow rate or when the belt conveyor running time exceeds the first predetermined time, closing the opened belt conveyor and the feeder corresponding to the belt conveyor, and opening the plurality of belt conveyors
  • the other belt conveyor that is in use is different from the belt conveyor and all or part of the feeders corresponding to the other belt conveyor.
  • control unit is further configured to: when only the M feeders corresponding to a belt conveyor are opened (where M is greater than or equal to 1 and less than the number of all feeders corresponding to the belt conveyor), If the belt conveyor running time exceeds the second predetermined time, the current feeder is replaced with M feeders selected from all the feeders corresponding to the belt conveyor and not identical to the currently opened M feeders. The M feeders are unloaded.
  • control unit is further configured to detect a level in the silo using a plurality of level gauges.
  • control unit is further configured to: when all the feeders corresponding to a belt conveyor are opened, adjust the discharge of the currently opened feeder according to the material level detected by the plurality of level gauges the amount.
  • the control unit closes the opened belt conveyor and the feeder corresponding to the belt conveyor according to the material flow measurement result and opens another one of the plurality of belt conveyors different from the belt conveyor being used.
  • the same operation as described above can also be performed based on the material levels detected by the plurality of level gauges. More preferably, when the same operation is performed according to the detected level of the plurality of level gauges and the material flow measurement result, the level of the detected level of the plurality of level gauges is prioritized Higher level.
  • the plurality of level gauges are in one-to-one correspondence with the plurality of feeders, and are respectively placed directly above the corresponding feeders to respectively detect the level of materials at the corresponding feeders.
  • the level gauge is used to detect the material level in the silo, and the detected material level is used to determine whether to switch the belt conveyor, so that the material level in the silo may be unbalanced.
  • the timely adjustment of the material level ensures the safety and stability of the entire unloading process without affecting the operation.
  • Figure 19 illustrates a silo level balance control method in accordance with an embodiment of the present invention.
  • step 1910 a plurality of level gauges are utilized to detect the fill level within the silo.
  • step 1920 the amount of discharge of at least one of the plurality of feeders is adjusted based on the level of material detected by the plurality of level gauges.
  • the function of the level value at a specific location associated with a feeder or the value of the material level at a plurality of specific locations can determine the discharge amount of the feeder. Therefore, when the value of the function of the level value or the level value at the one or more specific locations is detected to be too large (eg, compared to the average of the level values of all the level gauges in the silo), The discharge amount of the feeder should be reduced, and conversely, the discharge amount of the feeder should be increased.
  • the simulated material level surface in the silo may be first determined according to the material level detected by the plurality of level gauges, that is, in the silo detected by the plurality of level gauges.
  • the fill level at a specific location fits a surface whose ideal shape should match the shape of the surface of the material in the silo, so it is called an analog fill surface.
  • the material level value at any position in the silo can be obtained through the simulated material level surface, and the discharge amount of at least one of the plurality of feeders can be further adjusted by the obtained material level value. .
  • the level gauge can be set as much as possible over a wide range to obtain a more ideal analog level surface. It is also preferred to first set the level gauge at a critical point (such as directly above the feeder, at the midpoint between the two feeders, etc.) so that a certain accuracy is guaranteed In case of cost savings.
  • the level gauge can be placed just above the feeder such that the plurality of level gauges correspond one-to-one with the plurality of feeders.
  • the discharge amount of the feeder can be adjusted according to the level gauge directly above a feeder, when the level value of the level gauge is too large (for example, with the level of all the level gauges in the silo) If the average value of the value is compared, the discharge amount of the feeder should be reduced, and conversely, the discharge amount of the feeder should be increased.
  • the feeder is an activated feeder.
  • the silo has a plurality of feeders 630 for discharging at the bottom (refer to Fig. 6 for a specific structure).
  • the system can include: a plurality of level gauges 620 for detecting fill levels in the silo; and feeder control for electrically connecting the plurality of level gauges 620 and the plurality of feeders 630, respectively Unit 2210.
  • the feeder control unit 2210 is configured to receive the detected level from the plurality of level gauges 620 and adjust at least one of the plurality of feeders 630 based on the detected level. The discharge amount of the feeder.
  • the feeder control unit determines an analog material level surface in the silo according to the material level detected by the plurality of level gauges, and according to the simulated material level surface, the plurality of The discharge amount of at least one of the feeders is adjusted.
  • the plurality of level gauges are in one-to-one correspondence with the plurality of feeders, and are respectively placed directly above the corresponding feeders.
  • the feeder control unit respectively adjusts the discharge amount of the feeder corresponding to the level gauge according to the material level detected by each of the plurality of level gauges, For example, adjust the average of the level values of all the level gauges in the silo.
  • FIG. 20 shows a silo level balance control method according to another embodiment of the present invention, wherein the silo bottom is provided with a plurality of feeders for discharging, and the silos are further provided with parallels below A plurality of belt conveyors, wherein each belt conveyor corresponds to at least one of the plurality of feeders, respectively.
  • step 2010 one of the plurality of belt conveyors and all or part of the feeders corresponding to the belt conveyor are opened.
  • step 2020 a plurality of level gauges are utilized to detect the fill level within the silo.
  • the plurality of level gauges are in one-to-one correspondence with the plurality of feeders, and are respectively placed directly above the corresponding feeders to respectively detect the level of materials at the corresponding feeders.
  • the feeder is an activated feeder.
  • step 2030 according to the material level detected by the plurality of level gauges or when the belt conveyor running time exceeds the first predetermined time, the opened belt conveyor and the feeder corresponding to the belt conveyor are closed. And opening another belt conveyor of the plurality of belt conveyors different from the belt conveyor being used and all or part of the feeders corresponding to the other belt conveyor.
  • steps 2020 and 2030 are repeated in the method to achieve continuous detection and control of the entire discharge process.
  • steps 2010-2030 and during the repeated execution of steps 2020 and 2030 if all the feeders corresponding to a belt conveyor are turned on, the materials are adjusted according to the detected level of the plurality of level gauges. The amount of material discharged from the currently open feeder. This adjustment method is consistent with the content of the method in FIG. 21 and will not be described here.
  • the bottom of the silo is provided with a plurality of feeders 630 for discharging, and a plurality of belt conveyors 650 are arranged below the silos, each of which Belt conveyors 650 respectively correspond to at least one of the plurality of feeders 630 (see Figure 6 for a specific structure), the system including a plurality of level gauges for detecting the level of material in the silo 620; a control unit 2310 electrically connected to the plurality of level gauges 620, the plurality of feeders 630, and the plurality of belt conveyors 650, respectively.
  • control unit 2310 is configured to open one of the plurality of belt conveyors 650 and all or part of the feeders corresponding to the belt conveyor; receive the detected from the plurality of level gauges 620 The material level detected according to the plurality of level gauges 620 or when the belt conveyor 650 runs for more than the first predetermined time, the opened belt conveyor and the feeder corresponding to the belt conveyor are closed. And opening another belt conveyor of the plurality of belt conveyors 650 different from the belt conveyor being used and all or part of the feeders corresponding to the other belt conveyor.
  • control unit is further configured to: when all the feeders corresponding to a belt conveyor are opened, adjust the discharge of the currently opened feeder according to the material level detected by the plurality of level gauges the amount.
  • control unit is further configured to: when only the M feeders corresponding to a belt conveyor are opened (M is greater than or equal to 1 and less than the number of all feeders corresponding to the belt conveyor), according to the The level of material detected by multiple level gauges or when the belt is transported When the line time exceeds the second predetermined time, the M feeders currently opened are replaced with M feeders selected from all the feeders corresponding to the belt conveyor and not identical to the currently opened M feeders. The machine performs unloading.
  • M is greater than or equal to 1 and less than the number of all feeders corresponding to the belt conveyor
  • the plurality of level gauges are in one-to-one correspondence with the plurality of feeders, and are respectively placed directly above the corresponding feeders to respectively detect the level of materials at the corresponding feeders.
  • the feeder is an activated feeder.
  • 21 shows a silo level balance control method according to still another embodiment of the present invention, wherein the silo bottom is provided with a plurality of feeders for discharging, and the silos are further provided with parallels below a plurality of belt conveyors, wherein each belt conveyor respectively corresponds to at least one of the plurality of feeders, and each belt conveyor has at least one belt scale.
  • step 2110 one of the plurality of belt conveyors and all or a portion of the feeders corresponding to the belt conveyor are opened.
  • step 2120 the material flow on the belt conveyor is measured using a belt scale on the opened belt conveyor.
  • the feeder is an activated feeder.
  • step 2130 according to the material flow measurement result or when the belt conveyor running time exceeds the first predetermined time, the opened belt conveyor and the feeder corresponding to the belt conveyor are closed, and the plurality of belt conveyors are turned on. Another belt conveyor different from the belt conveyor being used and all or part of the feeder corresponding to the other belt conveyor.
  • the first predetermined time may also be referred to as fatigue time.
  • step 2130 preferably, according to the comparison result of the accumulated value of the material flow measurement result of the belt conveyor in the third predetermined time and the fatigue value, the opened belt conveyor and the feeder corresponding to the belt conveyor are closed. And opening another belt conveyor of the plurality of belt conveyors different from the belt conveyor being used and all or part of the feeders corresponding to the other belt conveyor.
  • the third predetermined time is less than the first predetermined time.
  • the fatigue value can be preset when the belt conveyor is shipped from the factory.
  • steps 2120 and 2130 are repeated in the method to achieve continuous detection and control of the entire discharge process.
  • steps 2110-2130 and during the repeated execution of steps 2120 and 2130 if only M feeders corresponding to a belt conveyor are opened (where M is greater than or equal to 1 and less than all feedstocks corresponding to the belt conveyor) The number of machines), when the belt conveyor running time exceeds the second predetermined time, using M selected from all the feeders corresponding to the belt conveyor and not exactly the same as the currently opened M feeders The feeder replaces the currently opened M feeders to unload the material to avoid unbalanced material levels caused by a certain feeder not working for a long time.
  • the method of Figure 21 may further include a step 2140 in which a plurality of level gauges are utilized to detect the level of material within the cartridge.
  • the opened belt conveyor and the feeder corresponding to the belt conveyor are turned off according to the material flow measurement result in steps 2120-2130, and the plurality of belt conveyors are opened and in use.
  • the same level can be performed according to the material level detected by the plurality of level gauges. operating. This adjustment method is consistent with the content of the method in FIG. 20 and will not be described here.
  • the level of the detected level of the plurality of level gauges is more high.
  • the opening is started.
  • the first belt conveyor closes the second belt conveyor because the judgment based on the detected material level has a higher priority.
  • the plurality of level gauges are in one-to-one correspondence with the plurality of feeders, and are respectively placed directly above the corresponding feeders to respectively detect the level of materials at the corresponding feeders.
  • the bottom of the silo is provided with a plurality of feeders 630 for discharging, and a plurality of belt conveyors 650 in parallel are disposed under the silos, each of which The belt conveyors respectively correspond to at least one of the plurality of feeders 630 (see FIG. 6 for a specific structure), the system may include a plurality of belt scales 640, wherein each of the plurality of belt conveyors 650 At least one belt scale is disposed on a belt conveyor; a control unit 2410 electrically coupled to the plurality of feeders 630, the plurality of belt conveyors 650, and the plurality of belt scales 640, respectively.
  • control unit 2410 is configured to open one of the plurality of belt conveyors 650 and all or part of the feeders corresponding to the belt conveyor; receive materials measured by the belt scale 640 from the opened belt conveyor Flowing; closing the opened belt conveyor and the feeder corresponding to the belt conveyor according to the material flow rate or when the belt conveyor running time exceeds the first predetermined time, and Another belt conveyor of the plurality of belt conveyors different from the belt conveyor being used and all or part of the feeders corresponding to the other belt conveyor are opened.
  • control unit is further configured to close the opened belt conveyor and the corresponding belt conveyor according to a comparison result between the accumulated value of the material flow measurement result of the belt conveyor and the fatigue value in the third predetermined time.
  • the third predetermined time is less than the first predetermined time.
  • the fatigue value can be preset in the delivery of the belt conveyor.
  • control unit is further configured to: when only the M feeders corresponding to a belt conveyor are opened (where M is greater than or equal to 1 and less than the number of all feeders corresponding to the belt conveyor), If the belt conveyor running time exceeds the second predetermined time, the current feeder is replaced with M feeders selected from all the feeders corresponding to the belt conveyor and not identical to the currently opened M feeders. The M feeders are unloaded.
  • control unit is further configured to detect a level in the silo using a plurality of level gauges.
  • control unit is further configured to: when all the feeders corresponding to a belt conveyor are opened, adjust the discharge of the currently opened feeder according to the material level detected by the plurality of level gauges the amount.
  • the control unit closes the opened belt conveyor and the feeder corresponding to the belt conveyor according to the material flow measurement result and opens another one of the plurality of belt conveyors different from the belt conveyor being used.
  • the same operation as described above can also be performed based on the material levels detected by the plurality of level gauges. More preferably, when the same operation is performed according to the detected level of the plurality of level gauges and the material flow measurement result, the level of the detected level of the plurality of level gauges is prioritized Higher level.
  • the plurality of level gauges are in one-to-one correspondence with the plurality of feeders, and are respectively placed directly above the corresponding feeders to respectively detect the level of materials at the corresponding feeders.
  • the belt weigher is used to detect the material flow rate, and the detected material flow rate is used to determine whether to switch the belt conveyor, so that the material can be timelyly unbalanced when the material level in the silo is unbalanced.
  • the position is adjusted to ensure the safety and stability of the entire unloading process without affecting the operation.
  • Figure 25 is a schematic illustration of a silo-based compound coal control system.
  • a plurality of silos 251 there are a plurality of silos 251, and the bottom of each of the plurality of silos 251 has at least one discharge port for discharging, and a feeder is provided at each of the discharge ports.
  • a belt conveyor 253 is Provided below the discharge opening of the plurality of silos 251, a belt conveyor 253 is arranged, the plurality of silos 251 are arranged along the conveying direction of the belt conveyor 253, and the plurality of silos 251 store at least two kinds of coal products.
  • the method may include: calculating a preset dosing amount of each coal product according to a predetermined coal product ratio; adjusting a unit time discharging amount of the feeder 252 of the plurality of silos 251 according to the calculated preset feeding amount
  • the discharge of the plurality of silos 251 is controlled to obtain a compounded coal having a compounding ratio of a predetermined coal content.
  • each silo 251 are located above the belt conveyor 253 and arranged along the conveying direction of the belt conveyor 253, and each silo 251 may have one or more discharge ports, each of which is provided with a discharge port
  • the hopper 252, each silo 251 is discharged downward through the feeder 252 at its discharge port, the material unloaded from the feeder 252 will fall onto the belt conveyor 253, and the belt conveyor 253 will be discharged from the silo
  • the 251 removed material is transported to the desired location, such as to the destination yard or to the cargo ship.
  • the plurality of silos 251 can store different kinds of coal products.
  • Fig. 25 shows five silos, each having two feed ports, but it should be understood that the present invention is not limited to the case shown in Fig. 25, and other counts of silos as needed. And the feed port is also possible.
  • the preset dosing amount of each coal product based on the predetermined coal product ratio.
  • the proportion of the mixed coal is 1: 1
  • the ratio of the preset feed amount of the two coal products can also be calculated as 1: 1, such as two kinds of coal products.
  • the preset feed rate can be 1000t/h. This example is for explanation only and is not intended to limit the invention, and any other predetermined amount of feed for each coal product calculated on a case-by-case basis is possible.
  • the discharge amount per unit time of the feeder 252 of the plurality of silos 251 is adjusted to control the discharge of the plurality of silos 251, and the ratio of the compound to the predetermined coal ratio can be obtained.
  • Mixed coal According to an embodiment, the plurality of silos 251 may be adjusted by a control unit such as a PLC
  • the feeder time of the feeder 252 is the unit time.
  • the plurality of silos 251 can be discharged in a desired ratio, and can be respectively under the belt conveyor 253.
  • a belt scale is provided at a position corresponding to at least one of the feeders 252, and preferably a belt scale may be provided at a position corresponding to each of the feeders 252, that is, the belt scale and the feeder 252 may be arranged point-to-point.
  • the amount of material on the belt conveyor 253 is measured by a belt scale, and the measured amount of material is compared with a preset amount of feed, and the amount of discharge per unit time of the feeder 252 is controlled according to the comparison result, thereby The unit time discharge amount of the feeder 252 corresponding to each belt scale is adjusted by data feedback of each belt scale.
  • the control when the amount of material measured by the belt scale is greater than the predetermined amount of material, the control reduces the amount of discharge of the feeder 252 corresponding to the belt scale; and/or when When the amount of material measured by the belt scale is less than the predetermined amount of feed, the control causes the discharge amount of the feeder 252 corresponding to the belt scale to increase.
  • the feeder 252 may be at least one of an activating feeder, a vibrating feeder, a ring feeder, and an impeller feeder.
  • the activated feeder is particularly suitable for complex coal blending systems because the activated feeder can continuously adjust the amount of coal from zero to the maximum set.
  • any of the feeders 252 in the feeder 252 at the discharge port of the plurality of silos 251 can be controlled according to specific needs. For example, in the case of two silos 251, each of which has two discharge ports, that is, each of the silos 251 has two feeders 252, two Each of the feeders 252 of the silo 251 is opened for feeding, or only a portion of the feeders 252 can be opened such that one or more of the feeders 252 are closed and not fed.
  • the system can include: a belt conveyor 253, a feeder 252, and a control unit.
  • the bottom of each of the silos 251 has at least one discharge port for discharging, and a feeder 252 is disposed at each of the discharge ports, and the belt conveyor 253 is disposed in the plurality of silos Below the discharge opening of 251, the plurality of silos 251 are arranged along the conveying direction of the belt conveyor 253, the plurality of silos 251 storing at least two kinds of coal products, and the control unit is connected to the feeder 252 And controlling the discharge of the plurality of silos 251 by adjusting the unit time discharge amount of the feeder 252 of the plurality of silos 251 according to the calculated preset feeding amount, so as to obtain a compounding ratio for the predetermined ratio
  • the control unit can be implemented by a PLC.
  • the system may further include at least one belt scale.
  • the belt scales are respectively disposed at positions corresponding to at least one of the feeders 252 below the belt conveyor 253 for measuring the amount of material on the belt conveyor 253.
  • the control unit is coupled to the belt scale for comparing and measuring the measured amount of material with a predetermined amount of feed amount, and controlling the amount of discharge per unit time of the feeder 252 based on the comparison result.
  • the control unit determines that the amount of material measured by the belt weigher is greater than the preset amount of material
  • the control causes the amount of material discharged from the feeder 252 corresponding to the belt scale to be reduced.
  • the control causes the discharge amount of the feeder 252 corresponding to the belt scale to increase.
  • the discharge amount of each feeder 252 can be adjusted in real time, so that the feeder 252 can accurately control the mixing ratio of different types of coal products according to the preset feed amount.
  • the feeder 252 is at least one of an activating feeder, a vibrating feeder, a ring feeder, and an impeller feeder. Since the activated feeder can continuously adjust the amount of coal between zero and the maximum set amount, the activated feeder is especially suitable for complex coal blending systems.
  • the control unit may also control the opening and closing of any of the feeders 252 in the feeder 252 at the discharge port of the plurality of silos 251, depending on the particular needs.
  • two cylinders can be made according to the ratio of coal blending
  • Each of the feeders 252 of the bin 251 is opened for feeding, or only a portion of the feeders 252 can be opened, such that one or more of the feeders 252 are closed and not fed.
  • the belt conveyor may be one or more. When multiple belt conveyors are used to convey the materials, the plurality of belt conveyors will be arranged in parallel and disposed under the feeder 252 of the plurality of silos 251 for simultaneous or separate The material dropped by the feeder 252 above it is conveyed.
  • Figure 26 is a schematic view showing the structure of a binning system according to an embodiment of the present invention.
  • the system may include: a material handling device 2610 for transporting material in the silo to a binning area located outside the silo; and a control device 2620,
  • a control device 2620 is electrically coupled to the material handling device 2610 for controlling the material handling device 2610 to transport material within the silo to the inverted bin in the presence of the possibility of spontaneous combustion.
  • the material conveying device 2610 is controlled to transport the materials in the silo to the unloading area; or the control device 2620 can automatically control the material conveying according to the detection result of the detecting device.
  • Device 2610 transports the contents of the silo to the binning area.
  • the system may further include a combustible gas concentration infrared detecting device located in the silo and electrically connected to the control device 2620 for detecting combustible gas in the silo Concentration, and sending the detection result to the control device 2620; the control device 2620 controls the material conveying device 2610 to transport the material in the silo to the inverted storage area when the combustible gas concentration is greater than a predetermined value .
  • the flammable gas concentration can be used as an index for judging whether or not there is a possibility of spontaneous combustion.
  • the system may further include a combustible gas concentration sampling detecting device electrically connected to the control device 2620 for detecting a composite concentration or chain of CO and hydrocarbon in the silo. Comparing, and transmitting the detection result to the control device 2620; the control device 2620 controls the material conveying device 2610 to transport the material in the silo to the said when the composite concentration or the chain ratio is greater than a predetermined value Down the warehouse area.
  • a combustible gas concentration sampling detecting device electrically connected to the control device 2620 for detecting a composite concentration or chain of CO and hydrocarbon in the silo. Comparing, and transmitting the detection result to the control device 2620; the control device 2620 controls the material conveying device 2610 to transport the material in the silo to the said when the composite concentration or the chain ratio is greater than a predetermined value Down the warehouse area.
  • the flammable gas concentration sampling detecting device may include a fixed on-site gas collecting head and a gas analysis system, and the fixed on-site gas collecting head may be multiple and fixed on the top of the silo, and the collected gas passes through the pipeline and The valve block is led to a gas analysis system that analyzes the collected gas (and backflushs the gas inside the pipe after the analysis to avoid residual gas affecting the gas collected next time) to obtain CO Complex concentration or chain to enthalpy ratio of hydrocarbons (CH4, C2H4, C2H6, CH3CH2CH3, etc.).
  • a gas analysis system that analyzes the collected gas (and backflushs the gas inside the pipe after the analysis to avoid residual gas affecting the gas collected next time) to obtain CO Complex concentration or chain to enthalpy ratio of hydrocarbons (CH4, C2H4, C2H6, CH3CH2CH3, etc.).
  • the system may further include a smoke concentration detecting device electrically connected to the control device 2620 for detecting a smoke concentration in the silo, and transmitting the detection result to the control device 2620
  • the control device 2620 controls the material handling device 2610 to transport the material in the silo to the inverted bin when the smoke concentration is greater than a predetermined value.
  • the smoke concentration can be used as an index for judging whether or not there is a possibility that spontaneous combustion occurs.
  • the material conveying device 2610 may be a belt conveyor that extends from the silo discharge opening to the unloading area.
  • the material in the silo can be dumped onto the belt of the belt conveyor through the discharge port of the silo, and then transported to the dumping area.
  • the material conveying device 2610 is not limited to a belt conveyor, and other devices that can realize material transportation can also be used.
  • control device 2620 can control the non-existence of the front side of the silo in the transport direction of the belt conveyor when controlling the belt conveyor to transport the material in the silo to the dumping area
  • the silo of the possibility of spontaneous combustion is discharged to lay a layer of material on the belt of the belt conveyor.
  • a material in the silo without the possibility of spontaneous combustion may be pre-plated on the belt to be used for the silo having the possibility of spontaneous combustion.
  • the material inside is isolated from the belt to avoid direct melting or burning of the belt caused by placing the material in the silo where there is a possibility of spontaneous combustion on the belt.
  • the belt of the belt conveyor is made of a flame retardant rubber to prevent the material located on the belt from melting or burning due to the higher temperature.
  • Figure 27 is a flow chart of the method of cascading the present invention. Accordingly, as shown in FIG. 27, the method includes: Step 2710): setting a reversed area located outside the silo; and step 2720): when there is a possibility of spontaneous combustion occurring The material in the bin is transported to the dumping area.
  • the step 2720) includes: detecting an environmental parameter in the silo; and transporting material in the silo to the unloading area when the environmental parameter is greater than a predetermined value.
  • the environmental parameter may include one or more of a combustible gas concentration, a combined concentration of CO and hydrocarbon, a chain to enthalpy ratio, and a smoke concentration.
  • transporting the material in the silo to the unwinding zone may be performed by a belt conveyor
  • the step 2720) may further include: transporting the material in the silo to the dumping area by controlling the belt conveyor At the time of controlling the unloading of the silo at the front side of the silo in the direction of transport of the belt conveyor, a layer of material is laid on the belt of the belt conveyor.
  • the predetermined value mentioned above may be set to a different value depending on the object to be compared with, and the predetermined value may be set according to actual conditions.
  • the material in the silo can be transported to the dumping area for cooling in the case of the possibility of spontaneous combustion in the silo, and the material is sprayed and cooled to avoid spontaneous combustion or reduce the cause of the material.
  • the loss caused by spontaneous combustion of the material can be carried to the dumping area for cooling in the case of the possibility of spontaneous combustion in the silo, and the material is sprayed and cooled to avoid spontaneous combustion or reduce the cause of the material.
  • FIG. 28 is a schematic structural view of a binning system according to an embodiment of the present invention.
  • the system may include: a material conveying device 2810 for transporting material in the silo to a reversed area outside the silo; temperature detecting device 2820, the temperature detecting Apparatus 2820 for detecting a temperature within the silo; and control means 2830 electrically coupled to the temperature detecting means 2820 and material handling means 2810 for temperature and/or within the silo Or when the rate of temperature rise is greater than a predetermined value, the material handling device 2810 is controlled to transport the contents of the silo to the binning zone.
  • the heating rate refers to an increment of the temperature in the silo in a unit time, and is compared with the temperature and/or the heating rate.
  • the predetermined value is a predetermined value corresponding to the temperature and the temperature increase rate, respectively, and the predetermined value can be set according to actual conditions.
  • the temperature detecting device 2820 may include a plurality of temperature measuring points located at a lower portion and a bottom portion of the silo wall of the silo for detecting a temperature of a lower portion and a bottom portion of the silo wall; 2830 controls the material handling device 2810 to transport material within the silo to the binning zone when the temperature and/or rate of temperature increase detected by the one or more temperature sensing points is above a predetermined value.
  • the temperature measurement point may be a platinum thermal temperature measurement point.
  • the distance between the temperature measuring point and the top of the silo is greater than 250 mm to ensure the accuracy of the temperature measurement in the silo.
  • the temperature at the lower and bottom of the silo wall is quite different from the temperature at the center of the silo, and the temperature at the lower and bottom of the silo wall cannot accurately express the temperature in the silo. .
  • the silo may include a plurality of temperature detecting regions
  • the temperature detecting device 2820 includes a plurality of temperature measuring cables respectively corresponding to the plurality of temperature detecting regions and at respective temperatures
  • the middle of the detection zone is suspended (the temperature measuring cable is fixed by a steel wire and suspended along the middle of the area, and the bottom weight is fixed) for detecting the temperatures of the plurality of temperature detecting zones respectively;
  • the control device 2830 is at one or more
  • the material conveying device 2810 is controlled to transport the material in the silo to the unloading zone.
  • the temperature can be detected in the area that cannot be measured by the temperature measuring points distributed in the lower part and the bottom part of the silo wall, and the position can be reversed according to the detection result to avoid the safety hazard caused by the local temperature in the silo being too high.
  • the material conveying device 2810 may be a belt conveyor that extends from the silo discharge opening to the unloading area. The material in the silo can be dumped onto the belt of the belt conveyor through the discharge port of the silo, and then transported to the dumping area.
  • the material conveying device 2810 is not limited to a belt conveyor, and other devices that can realize material transportation can also be used.
  • control device 2830 can control the temperature and the temperature rise on the front side of the silo in the transport direction of the belt conveyor when controlling the belt conveyor to transport the materials in the silo to the dumping area.
  • the silos are discharged at a rate less than a predetermined value to lay a layer of material on the belt of the belt conveyor.
  • Material to isolate the material in the silo with a temperature and/or a heating rate greater than a predetermined value from the belt, thereby avoiding direct placement of material in the silo having a temperature and/or a heating rate greater than a predetermined value on the belt The belt causes the belt to melt or burn.
  • the belt of the belt conveyor is made of a flame retardant rubber to prevent the material located on the belt from melting or burning due to the higher temperature.
  • the method may include: Step 2910): setting a reverse bin area outside the silo; step 2920): detecting a temperature in the silo; and step 2930) : transporting material in the silo to the binning zone when the temperature and/or rate of temperature increase within the silo is greater than a predetermined value.
  • the step 2920) includes: providing a plurality of temperature measuring points at a lower portion and a bottom portion of the silo wall of the silo to detect a temperature of a lower portion and a bottom portion of the silo wall; the step 2930) comprising: at one or more When the temperature and/or the rate of temperature increase detected by the temperature measurement points is higher than a predetermined value, the material conveying device 2810 is controlled to transport the materials in the silo to the unloading area.
  • the silo may include a plurality of temperature detecting regions
  • the step 2920) includes: respectively setting a temperature measuring cable in the plurality of temperature detecting regions, the temperature measuring cable hanging down in the middle of the temperature detecting region, Detecting the temperature of the temperature detection zone; the step 2930) includes: controlling the material delivery device 2810 to material in the silo when the temperature and/or the temperature increase rate of the one or more temperature detection zones is higher than a predetermined value Shipped to the reversed area.
  • transporting the material in the silo to the unwinding zone may be performed by a belt conveyor
  • the step 2930) may further include: transporting the material in the silo to the dumping area by controlling the belt conveyor At the time, the silo discharge at a temperature on the front side of the silo and a heating rate in the conveying direction of the belt conveyor is controlled to be less than a predetermined value to lay a layer of material on the belt of the belt conveyor.
  • the material in the silo is transported to the dumping area for cooling.
  • the material is sprayed with water to cool down to avoid self-ignition or reduce the loss caused by spontaneous combustion of the material.
  • a large coal storage silo in the port is set up.
  • the silo is a sealed structure.
  • the silo has a plurality of cloth outlets 302, and a plurality of cloth outlets 302 are disposed at the top of the warehouse.
  • the coal material from the coal-bearing train is transported to the top of the warehouse through a fixed feeding belt conveyor connected to the silo roof, and the unloading trolley working with the feeding belt conveyor reciprocates in a straight line at the top of the silo to discharge the coal.
  • the plurality of cloth outlets 302 are discharged into the silo.
  • the system may include: corresponding to the plurality of cloth outlets 302 for detecting Whether the material level below the cloth opening 302 reaches the upper limit value of the silo material level, and outputs the first electric signal when the material level below the cloth outlet 302 reaches the upper limit value of the silo material level a bit switch 309; and an output control feed skin in the case of receiving the first electrical signal output by any of the first level switches 309
  • the cloth outlets 302 may be two, and the two cloth outlets 302 are all elongated, arranged side by side on the top of the silo, and may be in the form of a single-line discharge into the warehouse, through the warehouse.
  • a feeding belt conveyor is arranged at the top to perform the coal unloading operation, and the unloading trolley working with the feeding belt conveyor runs in a reciprocating straight line at the top of the warehouse, whereby the coal material is discharged from the two cloth outlets 302 into the silo for storage.
  • a tapered stack is formed, and a high coal level as a cone peak is formed directly under the cloth opening 302.
  • the cloth outlets 302 may be four, and the four cloth outlets 302 are all elongated, arranged side by side on the top of the silo, and may be in the form of a double-line discharge into the warehouse.
  • Two feeding belt conveyors are arranged at the top of the warehouse to perform the unloading operation, and the unloading trolleys working with the feeding belt conveyor are reciprocating linearly at the top of the warehouse to discharge the material, whereby the coal material is discharged from the four cloth outlets 302.
  • the silo is stored, forming a tapered stack, and a high coal level as a cone peak is formed directly under the cloth opening 302.
  • the number and arrangement of the cloth outlets 302 can be set according to the needs of actual operation, and the present invention is not limited to the above two embodiments.
  • the system further includes a first level switch 309 corresponding to the plurality of cloth outlets 302, that is, a corresponding first level switch 309 is disposed under each of the cloth outlets 302.
  • the first level switch 309 is any level detecting device capable of detecting the level and outputting a detection signal, such as a level gauge, and the level gauge can be, for example, a capacitive level gauge.
  • the capacitive level gauge is a position sensor with a switching output.
  • the measuring head forms a capacitance detecting surface. When the level of the object to be detected rises to the capacitance detecting surface, the position sensor outputs a switching signal to realize the material level. Detection.
  • Capacitive level gauges are commonly known as level sensing devices in the art, and the principles of operation are well known to those skilled in the art.
  • the high coal level allowed by the coal material accumulated in the silo can be set as the upper limit value of the silo level, and the first level switch 309 is set inside the top of the silo. Or the inner wall of the silo, as long as the measuring head of the first level switch 309 is directly under the cloth opening 302 and the capacitance detecting surface is formed at the upper limit of the silo material level, the present invention is not correct for the first level switch 309.
  • the setting method is subject to any restrictions.
  • the upper limit value of the silo material level can be set according to the actual height of the silo, as long as the material level does not exceed the level of the cloth outlet, and the coal material overflows.
  • the first level switch 309 outputs a first electrical signal when it is detected that the level below the cloth opening 302 reaches the upper limit of the silo level.
  • the system provided by the present invention further includes a belt conveyor controller (not shown) for controlling the operation of the feed belt conveyor, the belt conveyor controller being further electrically connected to the first level switch 309 for use And outputting an electrical signal for controlling the feed conveyor to stop feeding to the feeding belt conveyor according to the received first electrical signal from the first level switch 309 to control the feeding belt conveyor to stop running.
  • a belt conveyor controller (not shown) for controlling the operation of the feed belt conveyor, the belt conveyor controller being further electrically connected to the first level switch 309 for use And outputting an electrical signal for controlling the feed conveyor to stop feeding to the feeding belt conveyor according to the received first electrical signal from the first level switch 309 to control the feeding belt conveyor to stop running.
  • the belt conveyor controller may be a PLC (Programmable Logic Controller), and the PLC internally stores instructions for performing various operations, and various types of execution components can be controlled by outputting operation instructions.
  • the belt conveyor controller may output an operation instruction for controlling the feeding belt conveyor to stop feeding according to the received first electrical signal from the first level switch 309 to the feeding belt conveyor, Achieve control of the feed belt conveyor.
  • the PLC is a controller commonly used in the field of automatic control, and its specific structure and working principle are well known to those skilled in the art.
  • the material level in the silo can be detected, and when the material level in the silo reaches the upper limit of the silo material level, the feeding belt conveyor is controlled to stop feeding, and the feeding is avoided. Too much material ensures the safety of the silo operation.
  • the port large coal storage silo also has a plurality of discharge ports 308, and the plurality of discharge ports 308 are disposed at the bottom of the silo, and each of the discharge ports 308 is provided with a feeder, and the coal stored in the silo passes through The action of the feeder is transported from the discharge port 308 to the belt conveyor at the bottom of the bin, thereby achieving the discharge of the coal.
  • the height of the coal seam at the bottom of the silo is not enough, which causes the coal material to fall directly from the top of the silo at the next feeding, causing damage to the feeder at the bottom of the silo.
  • the system provided by the invention further includes: corresponding to the plurality of discharge ports 308, for detecting whether the material level above the discharge port 308 is lower than the lower limit of the silo material level, and when detecting a second level switch 3010 for outputting a second electrical signal when the level above the discharge port 308 is lower than the lower limit of the silo level; and a second output for receiving the output of any of the second level switches 3010
  • a feeder controller that outputs an electrical signal that controls the closing of the feeder at the discharge port 308 corresponding to the second level switch 3010; the feeder controller and the second The level switch 3010 is electrically connected.
  • the discharge port 308 may be six, and the six discharge ports 308 are square, and the two are arranged side by side at the bottom of the silo, whereby the coal accumulated in the silo passes through The action of the feeder is removed from the six discharge ports 308 to achieve the coal out of the bin.
  • the number and arrangement of the discharge ports 308 can be set according to the needs of actual operation, and the present invention is not limited to the above embodiments.
  • the system further includes a second level switch 3010 corresponding to the plurality of discharge ports 308, that is, A corresponding second level switch 3010 is disposed above each discharge port 308.
  • the two-position switch 3010 is any material level detecting device capable of realizing material level detection and outputting a detection signal, such as a level meter, and the level meter can be, for example, a capacitive level meter.
  • the measuring head of the capacitive level gauge constitutes a capacitance detecting surface. When the material level of the object to be detected falls to the capacitance detecting surface, the position sensor outputs a switching signal to realize the level detection.
  • the minimum coal level allowed by the coal material in the bottom of the silo can be set as the lower limit value of the silo material level, and the second level switch 3010 can be set.
  • the present invention is not correct.
  • the manner of setting the two level switch 3010 is not limited.
  • the lower limit value of the silo material level can be set according to the actual operation requirements, as long as the bottom coal material is sufficient to ensure that the coal falling will not damage the feeder.
  • the second level switch 3010 when it is detected that the material level above the discharge port 308 reaches the lower limit value of the silo material level, the second level switch 3010 outputs a second electric signal.
  • the system provided by the present invention further includes a feeder controller (not shown) for controlling the feeder to be turned on or off, the feeder controller also being electrically coupled to the second level switch 3010 And a connection for outputting an electrical signal for controlling the closing of the feeder to the feeder according to the received second electrical signal from the second level switch 3010 to control the feeder to be turned off.
  • a feeder controller (not shown) for controlling the feeder to be turned on or off, the feeder controller also being electrically coupled to the second level switch 3010 And a connection for outputting an electrical signal for controlling the closing of the feeder to the feeder according to the received second electrical signal from the second level switch 3010 to control the feeder to be turned off.
  • the feeder controller may be a PLC, and the PLC internally stores instructions for performing various operations, and the output operation commands can control various types of execution components. According to the technical solution of the present invention, the feeder controller can output an operation instruction for controlling the closing of the feeder to the feeder according to the received second electrical signal from the second level switch 3010, so as to achieve the pairing Feeder control.
  • the material level in the silo can also be detected, and when the material level in the silo reaches the lower limit of the silo material level, the feeder is controlled to be closed, avoiding The coal in the silo is too small, causing the coal to damage the feeder.
  • the belt conveyor controller and the feeder controller may be independent PLCs for controlling the operation of the feeding belt conveyor of the silo top and the feeder of the bottom, respectively, the belt controller and The feeder controllers can also be integrated into one, and their respective functions are realized by being integrated in the same PLC.
  • the height of the coal seam at the bottom of the silo is not enough, so that the coal material falls directly from the top of the silo at the next feeding, causing damage to the feeder at the bottom of the silo, preferably, such as As shown in FIG.
  • the system may further include: corresponding to the plurality of discharge ports 318, for detecting whether the material level above the discharge port 318 is lower than a lower limit of the silo material level, and Detecting a second level switch 3110 outputting a second electrical signal when the level above the discharge port 318 is lower than the lower limit of the silo level; and for receiving the output of any of the second level switches 3110 a feeder controller that outputs an electrical signal that is turned off by the feeder at the discharge port 318 corresponding to the second level switch 3110 in the case of the second electrical signal; the feeder controller and the feeder The second level switch 3110 is electrically connected.
  • the discharge port 318 may be six, and the six discharge ports 318 are square, and the two are arranged side by side at the bottom of the silo, whereby the coal accumulated in the silo passes through The action of the feeder is removed from the six discharge ports 318 to achieve the coal out of the bin.
  • the number and arrangement of the discharge ports 318 can be set according to the needs of actual operations, and the present invention is not limited to the above embodiments.
  • the system further includes a second level switch 3110 corresponding to the plurality of discharge ports 318, that is, a corresponding second is disposed above each of the discharge ports 318.
  • Level switch 3110. The two level switch 3110 is any level detecting device that can realize the level detection and output the detection signal, such as a level gauge, and the level gauge can be, for example, a capacitive level gauge.
  • the capacitive level gauge is a position sensor with a switching output.
  • the measuring head of the capacitive level gauge constitutes a capacitance detecting surface. When the level of the object to be detected drops to the capacitance detecting surface, the position sensor outputs a switch. Signal to achieve level detection.
  • Capacitive level gauges are commonly known as level sensing devices in the art, and the principles of operation are well known to those skilled in the art.
  • the minimum coal level allowed by the coal material in the bottom of the silo can be set as the lower limit value of the silo material level, and the second material level switch 3110 is set.
  • the second material level switch 3110 is set on the inner side of the bottom of the silo or the inner wall of the silo, as long as the measuring head of the second level switch 3110 is above the discharge port 318 and the capacitance detecting surface is formed at the lower limit of the silo level, the present invention is not correct.
  • the setting manner of the two level switch 3110 is not limited.
  • the lower limit value of the silo material level can be set according to the actual operation requirements, as long as the bottom coal material is sufficient to ensure that the coal falling will not damage the feeder.
  • the second level switch 3110 when it is detected that the material level above the discharge port 318 reaches the lower limit value of the silo material level, the second level switch 3110 outputs a second electric signal.
  • the system provided by the present invention further includes a feeder controller for controlling the feeder to be turned on or off, the giving The material controller is further electrically connected to the second level switch 3110 for outputting an electrical signal for controlling the closing of the feeder to the feeder according to the received second electrical signal from the second level switch 3110. To control the feeder to shut down.
  • the feeder controller may be a PLC (Programmable Logic Controller), and the PLC internally stores instructions for performing various operations, and various types of execution components can be controlled by outputting operation instructions.
  • the feeder controller can output an operation instruction for controlling the closing of the feeder to the feeder according to the received second electrical signal from the second level switch 3110, so as to achieve the pairing Feeder control.
  • the PLC is a controller commonly used in the field of automatic control, and its specific structure and working principle are well known to those skilled in the art.
  • the material level in the silo can also be detected, and when the material level in the silo reaches the lower limit of the silo material level, the feeder is controlled to be closed, and the silo is avoided. Too little coal is used to cause the coal to damage the feeder.
  • the system provided by the present invention preferably includes: corresponding to the plurality of cloth outlets 312 for detecting Whether the material level below the cloth opening 2 reaches the upper limit value of the silo material level, and outputs the first electric signal when the material level below the cloth opening 312 reaches the upper limit value of the silo material level a position switch 319; and a belt conveyor controller for outputting an electrical signal for controlling the feed belt conveyor to stop feeding in the case of receiving the first electrical signal output by any one of the first level switches 319;
  • the controller is electrically coupled to the first level switch 319.
  • the cloth outlets 312 may be two, and the two cloth outlets 312 are all elongated, arranged side by side on the top of the silo, and may be in the form of single-line discharge into the warehouse, through the warehouse.
  • a feeding belt conveyor is arranged at the top to perform the coal unloading operation, and the unloading trolley working with the feeding belt conveyor runs in a reciprocating straight line at the top of the warehouse, whereby the coal material is discharged from the two cloth outlets 312 into the silo for storage.
  • a tapered pile is formed, and a high coal level as a cone peak is formed directly under the cloth opening 2.
  • the cloth outlets 312 may be four, and the four cloth outlets 312 are all elongated, arranged side by side on the top of the silo, and may be in the form of a double-line discharge loading process.
  • Two feeding belt conveyors are arranged at the top of the warehouse to perform the unloading operation, and the unloading trolleys working in cooperation with the feeding belt conveyor are reciprocating in a straight line at the top of the warehouse, and the coal material is discharged from the four cloth outlets 312.
  • the silo is stored, forming a conical pile, and a high coal level as a cone peak is formed directly under the cloth opening 312.
  • the number and arrangement of the cloth openings 312 can be set according to the actual operation, and the present invention is not limited to the above two embodiments.
  • the system further includes a first level switch 319 corresponding to the plurality of cloth outlets 312, that is, a corresponding first level is disposed under each of the cloth outlets 312.
  • Switch 319 is any level detecting device that can realize level detection and output a detection signal, such as a level gauge, and the level gauge can be, for example, a capacitive level gauge.
  • the measuring head of the capacitive level gauge constitutes a capacitance detecting surface. When the material level of the object to be detected rises to the capacitance detecting surface, the position sensor outputs a switching signal to realize the level detection.
  • the high coal level allowed by the coal accumulated in the silo can be set as the upper limit of the silo level, and the first level switch 319 is set inside the top of the silo. Or the inner wall of the silo, as long as the measuring head of the first level switch 319 is directly under the cloth outlet 312 and the capacitance detecting surface is formed at the upper limit of the silo material level, the present invention is not correct for the first level switch 319.
  • the setting method is subject to any restrictions.
  • the upper limit value of the silo material level can be set according to the actual height of the silo, as long as the material level does not exceed the level of the cloth outlet, and the coal material overflows.
  • the first level switch 319 outputs a first electrical signal when it is detected that the level below the cloth opening 312 reaches the upper limit of the silo level.
  • the system provided by the present invention further includes a belt conveyor controller for controlling the operation of the feed belt conveyor, the belt conveyor controller being further electrically connected to the first level switch 319 for receiving The first electrical signal from the first level switch 319 outputs an electrical signal that controls the feed belt conveyor to stop feeding to the feed belt conveyor to control the feed belt conveyor to stop operating.
  • the belt conveyor controller may be a PLC, and the PLC internally stores instructions for performing various operations, and the output operation commands can control various types of execution components. According to the technical solution of the present invention, the belt conveyor controller may output an operation instruction for controlling the feeding belt conveyor to stop feeding according to the received first electrical signal from the first level switch 319 to the feeding belt conveyor, Achieve control of the feed belt conveyor.
  • the material level in the silo can be detected, and when the material level in the silo reaches the upper limit of the silo material level, the feeding belt conveyor is controlled to stop feeding. , to avoid excessive feeding, to ensure the safety of the silo operation.
  • the belt conveyor controller and the feeder controller may be independent PLCs for controlling the operation of the feeding belt conveyor of the silo top and the feeder of the bottom, respectively, the belt controller and The feeder controllers can also be integrated into one, Integrated in the same PLC to achieve their respective functions.
  • the system may include: a plurality of temperature measuring cables 3210 placed in a silo, each measuring temperature The cable 3210 is provided with a plurality of temperature measuring points; the control device 3220 stores a predetermined temperature parameter, the control device 3220 is coupled to each of the temperature measuring cables 3210, and the control device 3220 is configured to receive the temperature measuring points from the respective temperature measuring points.
  • the temperature is compared with the stored predetermined temperature parameter, and an alarm signal is determined based on the comparison result. Therefore, the abnormality of the temperature inside the silo can be found in time to facilitate the treatment and avoid serious accidents.
  • the temperature parameter comprises a predetermined alarm temperature and/or a predetermined temperature increase alarm rate
  • a predetermined temperature point of a temperature measurement point or all temperature measurement points exceeds a predetermined alarm temperature
  • the control device 3220 issues an alarm signal when the rate of temperature increase exceeds a predetermined temperature increase alarm rate.
  • the predetermined ratio, the predetermined alarm temperature, and the predetermined temperature increase alarm rate may be preset.
  • the temperature measuring cable 3210 can transmit the temperature detected by each temperature measuring point to the control device 3220.
  • the temperature measuring cable 3210 can be determined to be disposed in the silo in a suitable manner according to specific needs. For example, one end of the temperature measuring cable 3210 can be fixed to the bottom surface of the silo, and the temperature measuring cable 3210 can be kept vertical; alternatively, The temperature measuring cable 3210 can also be fixed to the side wall of the silo through a protective sleeve to prevent the temperature measuring cable 3210 from being damaged.
  • the protective sleeve can be made of a steel pipe or the like.
  • the temperature measuring cable 3210 can be evenly distributed in the silo.
  • the number of the temperature measuring cables 3210 and the number of temperature measuring points on each temperature measuring cable 3210 can be set as needed, for example, four temperature measuring cables 3210 and four temperature measuring cables 3210. Temperature measurement point.
  • the temperature measuring point may be a thermal resistor or the like.
  • the distance between each temperature measuring point and the top of the silo is greater than a predetermined height, for example, 250 mm, thereby ensuring that the temperature of the temperature measuring point is deep enough in the silo to facilitate detecting the temperature inside the silo.
  • the system may further include a plurality of temperature sensing points disposed at the lower and bottom portions of the silo, the plurality of temperature sensing points being coupled to the control device 3220, respectively.
  • the temperature of the lower part and the bottom of the silo can be detected as needed, and then compared with the stored predetermined temperature parameter, and the next processing is performed according to the comparison result.
  • the system may further include a material conveying device 3230 coupled with the control device 3220 for transporting the material in the silo out of the silo;
  • the control device 3220 controls whether the material conveying device 3230 transports the material in the silo out of the silo according to the comparison result.
  • the control device 3220 controls the material handling device 3230 to transport material from the silo out of the silo when the bin temperature and/or temperature ramp rate exceeds a predetermined temperature increase bin rate.
  • the material conveying device 3230 may be a belt conveyor or the like, and the belt conveyor may extend from the discharge opening of the silo to a designated emptying area outside the silo, thereby transporting the material in the silo to the emptying outside the silo. region.
  • the predetermined down temperature and the predetermined temperature increase down rate may be set according to requirements, for example, may be the same as the predetermined alarm temperature and the predetermined temperature increase alarm rate, or may be greater than the predetermined alarm temperature and the predetermined temperature respectively. High alarm rate.
  • the system can also include a display device 3240 coupled to the control device 3220 for displaying the temperature received by the control device 3220. This allows the staff to visually see the temperature inside the silo.
  • control device 3220 can acquire the temperature of each temperature measurement point by using a patrol detection temperature point to save power.
  • Figure 33 is a flow chart of a method of temperature detection for a silo in accordance with an embodiment of the present invention.
  • the method includes: at step 3310, a plurality of temperature measuring cables 3210 are disposed in the silo, and a plurality of temperature measuring points are disposed on each of the temperature measuring cables 3210; and in step 3320, each temperature is measured.
  • the point detects the temperature in the silo; in step 3330, the temperature detected by each temperature measuring point is compared with the stored predetermined temperature parameter, and an alarm is determined based on the comparison result. Therefore, the abnormality of the temperature inside the silo can be found in time to facilitate the treatment and avoid serious accidents.
  • the number of the temperature measuring cables 3210 and the number of temperature measuring points on each temperature measuring cable 3210 can be set as needed, for example, four temperature measuring cables 3210 and four temperature measuring cables 3210. Temperature measurement point.
  • the temperature measuring point may be a thermal resistor or the like.
  • the distance between each temperature measuring point and the top of the silo is greater than a predetermined height, for example 250 mm, to ensure that the depth of the temperature measuring point is deep enough into the silo to facilitate detection of the temperature inside the silo.
  • the temperature parameter may include a predetermined temperature and a predetermined temperature increase rate.
  • the temperature detecting method for the silo provided by the present invention may further include: at step 3340, when a temperature measuring point or all the temperature measuring points are An alarm is issued when the temperature of the predetermined temperature measurement point exceeds the predetermined alarm temperature and/or the temperature increase rate exceeds the predetermined temperature increase rate.
  • the predetermined alarm temperature and the predetermined temperature increase alarm rate may be preset.
  • the temperature detecting method for the silo provided by the present invention may further comprise: determining whether to transport the material in the silo out of the silo according to the comparison result.
  • the temperature parameter includes a predetermined down temperature and/or a predetermined temperature increase down rate
  • the temperature detecting method for the silo provided by the present invention may further include: when a temperature measuring point or all
  • the temperature of the predetermined temperature measurement point in the temperature measurement point exceeds the predetermined reverse temperature and/or the temperature increase rate exceeds the predetermined temperature increase down rate, the material in the silo is transported out of the silo.
  • the predetermined down temperature and the predetermined temperature increase down rate may be set according to requirements, for example, may be the same as the predetermined alarm temperature and the predetermined temperature increase alarm rate, or may be greater than the predetermined alarm temperature and the predetermined temperature respectively. High alarm rate.
  • the method can also include displaying the temperature detected at each temperature measurement point. This allows the staff to visually see the temperature inside the silo.
  • the method may further include patrolling the temperature points to obtain the temperature detected by each of the temperature measuring points, thereby achieving the purpose of saving power.
  • the control device 3220 can be coupled to the temperature measurement cable 3210 to obtain a temperature change detected by the temperature measurement point on the temperature measurement cable 3210 as the control device 3220 passes directly to the detection point on the temperature measurement cable 3210. Coupled to obtain the temperature it detects.

Landscapes

  • Engineering & Computer Science (AREA)
  • Business, Economics & Management (AREA)
  • Human Resources & Organizations (AREA)
  • Economics (AREA)
  • Strategic Management (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Operations Research (AREA)
  • Physics & Mathematics (AREA)
  • Educational Administration (AREA)
  • Marketing (AREA)
  • Development Economics (AREA)
  • Quality & Reliability (AREA)
  • Tourism & Hospitality (AREA)
  • Game Theory and Decision Science (AREA)
  • General Business, Economics & Management (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Filling Or Emptying Of Bunkers, Hoppers, And Tanks (AREA)
  • Control Of Conveyors (AREA)

Abstract

公开了一种用于筒仓的系统和方法,该系统和方法可以执行用于筒仓控制的以下功能中的至少一种:卸料小车控制、换仓控制、出料控制、料位平衡控制、混配煤控制、倒仓控制、料位检测控制以及温度检测。

Description

用于筒仓的方法和系统
技术领域
本申请涉及用于筒仓的方法和系统。
背景技术
港口是交通运输大动脉的枢纽, 为了在港口实现安全且有效地货运枢转功能, 专业化、 自动 化的存储、 运输以及装船工艺都是必不可少的。 根据物料的特性、 货运的规模以及物料存储运输的 效率等方面的要求, 当今港口运输中采用了多种物料存储调度方案来对货运进行协调。 比如, 对于 粮食、 水泥等物料多采用筒仓存储的方式, 而对煤炭矿石等多采用露天堆场存储的方式。
对于运煤港口来讲, 露天堆场存储会对环境造成很大的污染且堆放的物料容易受天气的影响, 而采用一般的封闭堆场或库房存储, 煤炭周转量会受到很大的限制, 并且整个存储及运输的效率不 高。 基于以上原因, 采用圆柱形筒仓在港口进行大规模的储煤将是比较理想的选择。
筒仓储煤在发电厂和煤矿已经有所采用, 但煤矿和电厂储煤时间短、 存储量小、 工艺流程单 一、 对效率要求不高、 煤炭品种单一且不涉及不同煤种的混配, 而港口储煤最关注的恰恰是高效率、 多品种、 混配煤、 高吞吐量和较长的堆存时间, 因此, 若要在港口实现筒仓大规模储煤的方案, 必 须对现有的储煤筒仓在结构、 功能以及使用方法上进行适当的改造和改进。
发明内容
本发明提供了一种方法, 包括以下步骤: 设置格雷母线和天线箱; 地址编码发射单元生成地 址编码信号并通过所述格雷母线的芯线发射地址编码信号; 通过天线箱检测所述地址编码信号并将 该地址编码信号传送给地址解码接收单元; 地址解码接收单元对接收的所述地址编码信号进行解码 以得到卸料小车的位置信息, 以及将该卸料小车的位置信息发送给控制单元; 以及所述控制单元根 据得到的所述卸料小车的位置信息来控制卸料小车的运行。
还提供了一种系统, 其中, 该系统包括控制单元、 格雷母线、 天线箱、 地址编码发射单元和 地址解码接收单元, 其中所述地址编码发射单元与所述格雷母线连接, 所述格雷母线与所述天线箱 通过电磁耦合进行通信, 所述天线箱与所述地址解码接收单元连接, 所述地址解码接收单元与所述 控制单元连接, 所述地址编码发射单元用于生成地址编码信号并通过所述格雷母线的芯线发射该地 址编码信号;所述天线箱用于检测所述地址编码信号并将该地址编码信号传送给地址解码接收单元; 所述地址解码接收单元用于对接收的所述地址编码信号进行解码以得到卸料小车的位置信息, 以及 将该卸料小车的位置信息发送给所述控制单元; 所述控制单元根据得到的所述卸料小车的位置信息 来控制该卸料小车的运行。
附图说明
图 1是示出了根据本发明的实施方式的卸料小车控制系统的示意图;
图 2是示出了根据本发明的实施方式的换仓控制系统的结构示意图;
图 3是示出了根据本发明的实施方式的换仓控制过程的流程图;
图 4是示出了根据本发明的实施方式的筒仓的出料控制过程的流程图;
图 5是示出了根据本发明的实施方式的筒仓的出料控制系统的结构示意图;
图 6示出了一种示例性的筒仓示意图;
图 7示出了根据本发明的一种实施方式的筒仓料位平衡控制方法;
图 8示出了根据本发明的另一种实施方式的筒仓料位平衡控制方法;
图 9示出了根据本发明的又一种实施方式的筒仓料位平衡控制方法;
图 10示出了根据本发明的一种实施方式的筒仓料位平衡控制系统示意图;
图 11示出了根据本发明的另一种实施方式的筒仓料位平衡控制系统示意图;
图 12示出了根据本发明的又一种实施方式的筒仓料位平衡控制系统示意图;
图 13示出了根据本发明的一种实施方式的筒仓料位平衡控制方法;
图 14示出了根据本发明的另一种实施方式的筒仓料位平衡控制方法;
图 15示出了根据本发明的又一种实施方式的筒仓料位平衡控制方法;
图 16示出了根据本发明的一种实施方式的筒仓料位平衡控制系统示意图; 图 17示出了根据本发明的另一种实施方式的筒仓料位平衡控制系统示意图; 图 18示出了根据本发明的又一种实施方式的筒仓料位平衡控制系统示意图;
图 19示出了根据本发明的一种实施方式的筒仓料位平衡控制方法;
图 20示出了根据本发明的另一种实施方式的筒仓料位平衡控制方法;
图 21示出了根据本发明的又一种实施方式的筒仓料位平衡控制方法;
图 22示出了根据本发明的一种实施方式的筒仓料位平衡控制系统示意图;
图 23示出了根据本发明的另一种实施方式的筒仓料位平衡控制系统示意图;
图 24示出了根据本发明的又一种实施方式的筒仓料位平衡控制系统示意图;
图 25是根据本发明的实施方式的基于筒仓的混配煤控制系统的示意图;
图 26为本发明的实施方式的倒仓系统的结构示意图;
图 27为本发明的实施方式的倒仓方法的流程图;
图 28为本发明的实施方式的倒仓系统的结构示意图;
图 29为本发明的实施方式的倒仓方法的流程图;
图 30是本发明的实施方式的用于筒仓的料位检测系统的结构示意图;
图 31是本发明的实施方式的用于筒仓的料位检测系统的结构示意图;
图 32是根据本发明的实施方式的用于筒仓的温度检测系统的结构示意图; 以及
图 33是根据本发明的实施方式的用于筒仓的温度检测方法的流程图。
具体实施方式
本申请提供的方法和系统可以用于实施以下功能中的至少一种或任意组合, 下面将详细介绍 这些功能。
I. 卸料小车控制
卸料小车用于将煤炭等物料通过输送机将上料皮带机上的料卸在目标料仓里。 为使一台卸料 小车能给不同的料仓卸料, 卸料小车能沿着上料皮带机往返行走。
目前, 往往不能精确地监控卸料小车的运行情况, 造成卸料小车卸下的原料偏离卸料口, 或 者卸料小车不在目标仓位卸料而出现混料事故。
图 1是示出了根据本发明的实施方式的卸料小车控制系统的示意图。参考图 1, 本发明提供了 的系统可以包括控制单元、格雷母线 11、天线箱 12、地址编码发射单元 13和地址解码接收单元 14, 其中所述地址编码发射单元 13与所述格雷母线 11连接, 所述格雷母线 11与所述天线箱 12通过电 磁耦合进行通信, 所述天线箱 12与所述地址解码接收单元 14连接, 所述地址解码接收单元 14与所 述控制单元连接, 所述地址编码发射单元 13用于生成地址编码信号并通过所述格雷母线 11的芯线 发射该地址编码信号;所述天线箱 12用于检测所述地址编码信号并将该地址编码信号传送给地址解 码接收单元 14; 所述地址解码接收单元 14用于对接收的所述地址编码信号进行解码以得到卸料小 车的位置信息, 以及将该卸料小车的位置信息发送给所述控制单元; 所述控制单元根据得到的所述 卸料小车的位置信息来控制该卸料小车的运行。
本发明的方案通过格雷母线 11来检测卸料小车的位置信息, 控制单元根据该位置信息来控制 卸料小车的运行, 例如控制卸料小车向前行走、 向后行走、 停止行走或停止卸料等, 从而使卸料小 车将上料皮带机上的原料卸在指定的仓位上。 控制单元可以通过控制所述卸料小车的驱动装置 (诸 如控制电机的正转、 反转和停止等) 来控制该卸料小车的运行。 其中, 相互靠近的扁平状的格雷母 线 11和天线箱 12之间通过电磁耦合来进行通信, 并在通信的同时检测到天线箱 12在格雷母线 11 长度方向上的位置。
下面将描述如何利用格雷母线来检测卸料小车的位置。格雷母线由一对基准线(R线)和多对 地址线 (G线) 按格雷码规律编排构成。 地址线每隔一定步长交叉一次, 构成格雷码规律编排的感 应环线, 基准线在整段格雷母线中不交叉。 由地址编码发射单元 13和地址解码接收单元 14来发射 和接收地址编码信号, 从而对卸料小车进行定位。 以一对地址线和一对基准线组成的格雷母线为例, 利用最简单的单匝线圈的感应原理,当天线箱通入交变电流时, 在格雷母线附近会产生交变磁场, 格 雷母线近似处在一个交变的、 均匀分布的磁场中,每对格雷母线芯线会产生感应电动势。 地址编码发 射单元 13生成地址编码信号并通过所述格雷母线的芯线发射该地址编码信号,该地址编码信号经由 电磁耦合方式传送到天线箱, 从而由地址解码接收单元 14接收。 地址解码接收单元 14对接收到的 信号进行相位比较, 交叉线的信号相位与平行线的信号相位相同, 地址为 "0"; 交叉线的信号相位 与平行线的信号相位相反, 地址为 " 1 ", 这样感应的位置信息是格雷码排列,永不重复, 由此确定卸 料小车在格雷母线长度方向上的位置。
根据本发明的一种优选实施方式, 所述控制单元可以为 PLC 15, 所述地址编码发射单元 13与 所述格雷母线 11安装在所述卸料小车的轨道旁, 所述天线箱 12、 地址编码接收单元和所述 PLC 15 安装在所述卸料小车上。
优选地, 该系统还可以包括通信协议转换模块, 所述通信协议转换模块连接在所述地址解码 接收单元 14和所述控制单元之间。该通信协议转换模块可以为 RS 232或 RS 485通信协议的数据接 Π。
优选地, 该系统还可以包括变频调速器, 该变频调速器与所述控制单元连接, 所述控制单元 通过所述变频调速器来调节所述卸料小车的运行速度, 例如可以随着卸料小车在工作仓的位置变化 来调整卸料小车的速度, 使得小车在轨道两端速度快, 在轨道中间速度慢。 可以理解的是, 该示例 是解释性的, 不用于限制本发明。
优选地, 该系统还可以包括报警装置和两个接近开关, 所述两个接近开关安装在所述卸料小 车的轨道两端, 所述报警装置与所述两个接近开关连接, 当卸料小车进入所述接近开关的检测范围 时所述报警装置发出报警信息, 从而防止卸料小车运行超过轨道两端极限而导致掉道, 防止发生安 全事故。
为了避免筒仓进料过多, 还可以在筒仓内设置料位计, 所述控制单元与该料位计连接, 该料 位计用于检测料位高度, 并将料位高度信息发送给所述控制单元, 所述控制单元还根据接收的该料 位高度信息来控制卸料小车的运行。 该料位计可以为任意可以实现料位检测并输出检测信号的料位 计, 例如可以为电容式料位计。 电容式料位计是一种具有开关量输出的位置传感器, 其测量头构成 电容检测面, 当待检测物体的料位上升到电容检测面时, 该位置传感器输出一个开关信号, 以实现 料位检测。 可以将筒仓内堆积的煤料所允许达到的高煤位设置为预定的料位上限值, 将料位计设置 在筒仓顶部内侧或筒仓内壁上, 控制单元从料位计接收到的料位高度信息, 当料位高度达到预定的 料位上限值时, 控制单元就控制卸料小车停止卸料。
优选地, 所述控制单元可以包括 PLC 15和上位机, 所述上位机与所述 PLC 15进行远程通信, 所述 PLC 15与所述地址解码接收单元 14连接并根据所述上位机的远程控制信号来控制卸料小车的 运行。 所述上位机可以具有显示器, 该显示器可以显示小车的位置信息和 /或料位计所检测到筒仓的 料位信息。
针对卸料小车控制, 本发明提供的方法可以包括以下步骤:
设置格雷母线 11和天线箱 12;
地址编码发射单元 13生成地址编码信号并通过所述格雷母线 11的芯线发射地址编码信号; 通过天线箱 12检测所述地址编码信号并将该地址编码信号传送给地址解码接收单元 14; 地址解码接收单元 14对接收的所述地址编码信号进行解码以得到卸料小车的位置信息, 以及 将该卸料小车的位置信息发送给控制单元;
所述控制单元根据得到的所述卸料小车的位置信息来控制卸料小车的运行。
优选地, 所述控制单元包括 PLC 15, 该卸料小车控制方法还包括将所述地址编码发射单元 13 与所述格雷母线 11 安装在所述卸料小车的轨道旁, 以及将所述天线箱 12、 地址编码接收单元和所 述 PLC 15安装在所述卸料小车上。
优选地, 还可以在所述卸料小车的轨道两端安装两个接近开关, 当卸料小车进入所述接近开 关的检测范围时由所述报警装置发出报警信息, 从而防止卸料小车运行超过轨道两端极限而导致掉 道, 防止发生安全事故。
优选地, 该卸料小车控制方法还包括通过料位计检测料位高度, 并将料位高度信息发送给所 述控制单元, 所述控制单元还根据接收的料位高度信息来控制卸料小车的运行。 例如, 可以将筒仓 内堆积的煤料所允许达到的高煤位设置为筒仓料位上限值, 将料位计设置在筒仓顶部内侧或筒仓内 壁上, 控制单元从料位计接收检测到的料位高度信息, 当料位高度达到筒仓料位上限值时, 控制单 元就控制卸料小车停止卸料。
优选地, 所述控制单元可以包括 PLC 15和上位机, 将所述 PLC 15与所述地址解码接收单元 14连接, 所述上位机与所述 PLC 15进行远程通信, 所述 PLC 15根据所述上位机的远程控制信号来 控制卸料小车的运行。 II. 换仓控制
图 2为本发明的实施方式的换仓控制系统的结构示意图。 如图 2所示, 该系统可以包括: 料 位检测装置 210, 用于检测筒仓内的料位; 以及控制装置 220, 与所述料位检测装置 210电连接, 用 于在所述筒仓内的料位达到预定值时, 控制卸料装置停止对该筒仓进行卸料, 转而对另一筒仓进行 卸料。
下面对所述料位检测装置 210的各种实施形式及于筒仓内的布局进行介绍。
其中, 所述筒仓具有多个出料口, 所述料位检测装置 210 可包括分别与该多个出料口相对应 的料位计, 用于分别检测该多个出料口处的料位; 所述控制装置 220与所述料位计电连接, 用于在 所述多个出料口中的一者处的料位超出预定值时, 控制所述卸料装置停止对所述筒仓进行卸料。 藉 此, 可避免在一出料口处的料位已达上限的情况下继续在该出料口所对应的位置处对筒仓进行卸料 而造成物料溢出, 可完全避免物料溢出的情形的发生。
其中, 所述料位检测装置 210 亦可为分别位于所述它筒仓上部中间两个布料口侧的两个料位 开关, 该料位开关可对料位是否达到预定值进行检测, 并当料位达到预定值时, 发出信号至所述控 制装置 220, 该控制装置 220可在该两个料位开关中的一者检测到所述筒仓内的物料达到预定值时, 控制所述卸料装置停止对所述筒仓进行卸料。 该物料开关可为振动式高料位检测开关, 亦可为射频 电容式料位开关、 阻旋式料位开关等。
所述料位检测装置 210 亦可同时包含上述与多个出料口相对应的料位计以及位于布料口侧的 两个料位开关, 所述控制装置 220可于任一者 (料位计或料位开关) 检测到料位达到预定值时, 控 制所述卸料装置停止对所述筒仓进行卸料。 当然, 本发明并不限于此, 任何可实现物料测量的装置 皆可应用于此。
其中, 所述卸料装置可包括翻车机、 皮带机以及卸料小车, 翻车机将物料卸载到皮带机上, 由皮带机将该物料运送到卸料小车处并将物料卸载到该卸料小车上, 之后卸料小车再将物料卸载到 筒仓内。 所述控制装置 220在所述筒仓内的料位达到预定值时, 控制翻车机、 皮带机以及卸料小车 停止卸料, 并控制所述卸料小车移动到另一筒仓, 之后控制翻车机、 皮带机以及卸料小车开始卸料。 藉此, 可实现自动换仓控制。 需要说明的是, 所述卸料装置并不限于上述翻车机、 皮带机以及卸料 小车的组合, 翻车机、 皮带机以及卸料小车中的一者或多者以及其他可实现卸料的装置及其组合皆 可应用于此。
优选地, 所述控制装置 220被配置为在所述筒仓内的剩余容量等于一翻车机的容量时, 控制 翻车机停止卸料, 皮带机及卸料小车继续卸料直至卸料完毕, 之后控制卸料小车移动到另一筒仓, 翻车机、 皮带机以及卸料小车再次开始卸料。 藉此, 可避免皮带机以及卸料小车在一筒仓存满物料 之后将其上所堆置的剩余物料输送到下一筒仓, 由此而造成不便。 通过采用该配置, 可皮带机及卸 料小车可空载转至下一筒仓, 既节省了能耗, 亦避免了皮带机及卸料小车在载有物料的情况下转至 下一筒仓所可能造成的物料溢出。
图 3为换仓控制过程的流程图, 如图 3所示, 该方法还可以包括: 步骤 1 ) : 检测筒仓内的料 位; 以及步骤 2) : 在所述筒仓内的料位达到预定值时, 控制卸料装置停止对该筒仓进行卸料, 转而 对另一筒仓进行卸料。
其中, 所述筒仓可以具有多个出料口, 所述步骤 1 )可以包括: 分别检测所述多个出料口处的 料位; 所述步骤 2) 包括: 在所述多个出料口中的一者处的料位超出预定值时, 控制所述卸料装置 停止对所述筒仓进行卸料。
其中, 所述卸料装置可包括翻车机、 皮带机以及卸料小车, 所述步骤 2)包括: 在所述筒仓内 的料位达到预定值时, 控制翻车机、 皮带机以及卸料小车停止卸料, 并控制所述卸料小车移动到另 一筒仓, 之后控制翻车机、 皮带机以及卸料小车开始卸料。
其中, 所述步骤 2)还可包括: 在所述筒仓内的剩余容量等于一翻车机的容量时, 控制翻车机 停止卸料, 皮带机及卸料小车继续卸料直至卸料完毕, 之后控制卸料小车移动到另一筒仓, 翻车机、 皮带机以及卸料小车再次开始卸料。
通过采用物料检测装置, 可实现对卸料装置的自动且合理有效的控制, 保证筒仓储煤的正常 运转, 在换仓的同时保证了安全性。
III. 出料控制
港口大型储煤筒仓的底部设置有多个出料口, 可以在每个出料口处对应设置用于卸料的给料 多个给料机的设置可以提高最大卸料能力。 可以根据仓底大小和形状、 给料机的大小、 卸料能 力需求和卸料速度的限制等因素来设置给料机的数量和给料机在仓底的排布形式。 可以在多个给料 机的下方设置至少一个皮带机, 筒仓内存储的煤料可以通过给料机的动作从出料口下料, 以卸至皮 带机上进行运送, 由此实现煤料的出仓。
图 4是示出了根据本发明的实施方式的筒仓的出料控制过程的流程图。 如图 4所示, 该方法 可以包括以下步骤: S1 ) 测量所开启的皮带机上的物料流量; S2) 将测得的物料流量与皮带机预设 值进行比较; 以及 S3 ) 根据比较结果来调整该皮带机对应的至少一个给料机 2的出料量。
可以通过在皮带机后设置皮带秤来测量所开启的皮带机上的物料流量。 所述皮带秤通常设置 在皮带机的背部,为本领域中用于实时获取放置于皮带机上的物料重量并输出物料流量的衡量装置。
如图 4所示, 在步骤 S l ), 首先可以通过实时采集皮带秤测得的流量数值来获取皮带机上的物 料流量。 在步骤 S2), 可以根据运煤港口的生产调度计划而将所需要运送的物料流量设定为皮带机 预设值, 并将测得的物料流量与皮带机预设值进行比较。 在步骤 S3 ), 可以根据物料流量与皮带机 预设值的比较结果来调整与所开启的皮带机对应的给料机的出料量, 由此实现对皮带机的物料流量 的控制: 当测得的物料流量小于皮带机预设值时, 可以将皮带机对应的给料机的出料量调大 (即调 整给料机出料量与最大出料量的百分比), 而当测得的物料流量大于皮带机预设值时, 可以将皮带机 对应的给料机的出料量调小, 通过不断地调整皮带机对应的给料机的出料量, 可以始终控制皮带机 的物料流量与皮带机预设值相符合, 由此实现对物料流量的控制。
根据本发明的技术方案, 由于一条皮带机对应有多个给料机, 在调整给料机的出料量时, 可 以根据实际操作的需要, 仅调整其中一个给料机的出料量, 或者调整所有多个给料机的出料量, 本 发明不对给料机的调整方式和顺序等进行任何限定。
所述皮带机预设值可以根据运煤港口的生产调度计划自行设定, 或者可以根据皮带机的额定 最大流量值进行设定。
由此, 采用本发明提供的方法, 通过调整筒仓底部给料机的出料量, 使得皮带机的实际物料 流量符合皮带机预设值, 从而达到控制物料流量的目的。
在皮带机连续工作的情况下, 有可能出现由于运行时间过长或一定时间段内运送物料总量过 大而导致的疲劳现象, 不利于运煤港口的高效运营, 并且还有可能导致皮带机的过劳损坏。 为了避 免皮带机的疲劳运行现象, 优选情况下, 该方法还包括以下步骤: S4) 计算预定时间段内所开启的 皮带机上的物料总量, 并将该物料总量与皮带机疲劳值进行比较; 或 S5 )测量所开启的皮带机的运 行时间, 并将该运行时间与疲劳时间进行比较; 以及 S6) 根据步骤 S4) 或步骤 S5 ) 的比较结果, 判断所开启的皮带机是否处于疲劳运行状态, 并在判断该皮带机疲劳的情况下, 控制该皮带机以及 该皮带机对应的给料机关闭, 或者在控制该皮带机以及该皮带机对应的给料机关闭的同时, 还控制 其他皮带机以及其他皮带机对应的给料机开启。
根据本发明的技术方案, 可以通过判断预定时间段内所开启的皮带机上的物料总量是否超过 皮带机疲劳值 (步骤 S4) ), 或者通过判断所开启的皮带机的运行时间是否超过皮带机的疲劳时间 ( S5 ) ), 来判断所开启的皮带机是否处于疲劳运行状态, 在符合步骤 S4)和步骤 S5 )中的任一者的 条件下, 均可以判断所开启的皮带机处于疲劳运行状态, 由此控制该皮带机以及该皮带机对应的给 料机关闭, 以避免持续运行造成皮带机的损坏。
根据本发明的一种实施方式,多个给料机仅对应一个皮带机(即单条皮带机运行的实施方式), 由此, 当判断皮带机处于疲劳运行状态后, 仅控制该皮带机以及该皮带机对应的给料机关闭即可。
根据本发明的另一种实施方式, 多个给料机对应多于一个皮带机 (即多条皮带机运行的实施 方式), 由此, 当判断皮带机处于疲劳运行状态后, 也可以仅控制该皮带机以及该皮带机对应的给料 机关闭即可。
根据本发明的又一种实施方式, 在多个给料机对应多于一个皮带机的情况下, 当判断皮带机 处于疲劳运行状态后, 可以控制该皮带机以及该皮带机对应的给料机关闭, 同时还控制其他皮带机 以及其他皮带机对应的给料机开启, 通过多条皮带机切换工作方式, 可以实现高效率的物料运送。
所述预定时间段、 疲劳时间、 皮带机疲劳值均可以根据皮带机的出厂额定参数进行设定。 可以采用不同形式的给料机来实现卸料出仓, 所述给料机例如可以为活化给料机、 振动给料 机、 环式给料机、 或叶轮给料机中的任一者。 优选情况下, 所述给料机为活化给料机。
图 5是示出了根据本发明的实施方式的筒仓的出料控制系统的结构示意图。 如图 5所示, 系 统可以包括: 设置在每个皮带机 53后的皮带秤 54; 以及出料控制单元 51, 该出料控制单元 51分别 与所述多个给料机 52、 所述至少一个皮带机 53以及每个皮带机 53后的皮带秤 54电连接, 该出料 控制单元 51用于执行以下步骤: S1 ) 利用所开启的皮带机 53后的皮带秤 54测量该皮带机 53上的 物料流量; S2)将测得的物料流量与皮带机预设值进行比较; 以及 S3 )根据比较结果来调整该皮带 机 53对应的至少一个给料机 52的出料量。
可以通过在皮带机 53后设置皮带秤 54来测量所开启的皮带机 53上的物料流量。 所述皮带秤 54通常设置在皮带机 53的背部, 为本领域中用于实时获取放置于皮带机 53上的物料重量并输出物 料流量的衡量装置。
所述出料控制单元 51可以是 PLC (Programmable Logic Controller, 可编程逻辑控制器), PLC 内部存储有执行各种操作的指令, 通过输出操作指令可以控制各种类型的执行部件工作。 根据本发 明的技术方案, 所述出料控制单元 51分别与所述多个给料机 52、 所述至少一个皮带机 53以及每个 皮带机 53后的皮带秤 54电连接,所述出料控制单元 51可以根据预先设定的控制指令执行相应的测 量、 比较和控制步骤, 以实现对给料机 52的控制。 PLC为自动控制领域中常用的控制器, 其具体结 构和工作原理为本领域技术人员所公知。
根据本发明的技术方案, 所述出料控制单元 51中预先存储有皮带机预设值, 可以根据运煤港 口的生产调度计划而将所需要运送的物料流量设定为所述皮带机预设值。 根据其内部存储的操作指 令, 出料控制单元 51首先可以执行步骤 Sl ), 通过实时采集皮带秤 54测得的流量数值来获取皮带 机 53上的物料流量。 其次执行步骤 S2), 将测得的物料流量与皮带机预设值进行比较。 出料控制单 元 51接着执行步骤 S3 ), 根据物料流量与皮带机预设值的比较结果来调整与所开启的皮带机 53对 应的给料机 52的出料量, 由此实现对皮带机 53的物料流量的控制: 当测得的物料流量小于皮带机 预设值时, 出料控制单元 1可以控制将皮带机 3对应的给料机 52的出料量调大 (即调整给料机 52 出料量与最大出料量的百分比), 而当测得的物料流量大于皮带机预设值时, 出料控制单元 51可以 控制将皮带机 53对应的给料机 52的出料量调小, 出料控制单元 51通过不断地调整皮带机 53对应 的给料机 52的出料量, 可以始终控制皮带机 53的物料流量与皮带机预设值相符合, 由此实现对物 料流量的控制。
根据本发明的技术方案, 由于一条皮带机 53对应有多个给料机 52, 出料控制单元 51在调整 给料机 52的出料量时, 可以根据实际操作的需要, 仅调整其中一个给料机 52的出料量, 或者调整 所有多个给料机 52的出料量,本发明不对出料控制单元 51对给料机 52的调整方式和顺序等进行任 何限定。
所述皮带机预设值可以根据运煤港口的生产调度计划而在出料控制单元 51中进行自行设定, 或者可以根据皮带机 53的额定最大流量值进行设定。
由此, 采用本发明提供的系统, 利用出料控制单元 51调整筒仓底部给料机 52的出料量, 使 得皮带机 53的实际物料流量符合皮带机预设值, 从而达到控制物料流量的目的。
在皮带机 53连续工作的情况下, 有可能出现由于运行时间过长或一定时间段内运送物料总量 过大而导致的疲劳现象, 不利于运煤港口的高效运营, 并且还有可能导致皮带机 53的过劳损坏。 为 了避免皮带机 53的疲劳运行现象, 优选情况下, 所述出料控制单元 51还可以用于执行以下步骤: S4)计算预定时间段内所开启的皮带机 53上的物料总量,并将该物料总量与皮带机疲劳值进行比较; 或 S5 ) 测量所开启的皮带机 53的运行时间, 并将该运行时间与疲劳时间进行比较; 以及 S6) 根据 步骤 S4) 或步骤 S5 ) 的比较结果, 判断所开启的皮带机 53是否处于疲劳运行状态, 并在判断该皮 带机 53疲劳的情况下, 控制该皮带机 53以及该皮带机 53对应的给料机 52关闭, 或者在控制该皮 带机 53以及该皮带机 53对应的给料机 52关闭的同时,还控制其他皮带机 53以及其他皮带机 53对 应的给料机 52开启。
根据本发明的技术方案, 出料控制单元 51内部预先设置有预定时间段、 疲劳时间、 以及皮带 机疲劳值, 可以对出料控制单元 51 内部程序进行设置, 通过判断预定时间段内所开启的皮带机 53 上的物料总量是否超过皮带机疲劳值 (步骤 S4) ), 或者通过判断所开启的皮带机 53的运行时间是 否超过皮带机 53的疲劳时间 (S5 ) ), 来判断所开启的皮带机 53是否处于疲劳运行状态, 在符合步 骤 S4)和步骤 S5 )中的任一者的条件下, 出料控制单元 51均可以判断所开启的皮带机 53处于疲劳 运行状态, 由此控制该皮带机 53以及该皮带机 53对应的给料机 52关闭, 以避免持续运行造成皮带 机 53的损坏。
根据本发明的一种实施方式, 多个给料机 52仅对应一个皮带机 53 (即单条皮带机 53运行的 实施方式), 由此, 当判断皮带机 53处于疲劳运行状态后, 出料控制单元 51仅控制该皮带机 53以 及该皮带机 53对应的给料机 52关闭即可。
根据本发明的另一种实施方式, 多个给料机 52对应多于一个皮带机 53 (即多条皮带机 53运 行的实施方式), 由此, 当判断皮带机 53处于疲劳运行状态后, 出料控制单元 51也可以仅控制该皮 带机 53以及该皮带机 53对应的给料机 52关闭即可。
根据本发明的又一种实施方式, 在多个给料机 52对应多于一个皮带机 53的情况下, 当判断 皮带机 53处于疲劳运行状态后, 出料控制单元 51可以控制该皮带机 53以及该皮带机 53对应的给 料机 52关闭, 同时还控制其他皮带机 53以及其他皮带机 53对应的给料机 52开启, 通过多条皮带 机 53切换工作方式, 可以实现高效率的物料运送。
所述预定时间段、 疲劳时间、 皮带机疲劳值均可以根据皮带机 53的出厂额定参数而在出料控 制单元 51中进行设定。
可以采用不同形式的给料机 52来实现卸料出仓, 所述给料机 52例如可以为活化给料机、 振 动给料机、 环式给料机、 或叶轮给料机中的任一者。 优选情况下, 所述给料机 52为活化给料机。
采用本发明提供系统, 可以根据运煤港口的生产调度计划而将所需要运送的物料流量设定为 皮带机预设值, 采用该系统调整筒仓底部给料机 52的出料量, 使得皮带机 53的实际物料流量符合 皮带机预设值, 可以达到控制物料流量的目的。
IV. 料位平衡控制
在筒仓结构中, 尤其是在大型筒仓结构中, 可以在仓底设置多个用于卸料的给料机, 以便提 高最大卸料能力, 并有助于实现料位平衡。 其中, 可以根据仓底大小和形状、 给料机的大小、 卸料 能力需求和卸料速度的限制等因素来设置给料机的数量和给料机在仓底的排布形式。
对于具有多个仓底给料机的筒仓结构来讲, 其相对于只有一个给料机的小型筒仓已经能够更 好的解决筒仓的料位平衡问题, 但考虑到存储的物料的形状、 质量、 大小等因素, 在卸料时可能会 出现各种状况(比如由于给料机开放程度不足造成堵塞等), 而对卸料过程产生不可预计的影响, 并 很有可能会造成物料不平衡。 基于此, 需要进一步对在仓底具有多个给料机的筒仓进行料位平衡控 制。
图 6中示出了一种示例性的筒仓。其中该筒仓 610在仓底具有多个给料机 630, 筒仓 610中的 物料可以通过给料机 630倾泻到皮带机 650上, 并通过皮带机 650运输到指定位置。 在本发明中, 为了实现对筒仓 610内的料位进行检测和控制, 还可能需要设置一些附属装置, 这些装置可以作为 本发明所提出的物料平衡控制系统的一部分, 比如料位计 620和皮带秤 640等, 下文将详细描述。
图 7示出了根据本发明的一种实施方式的筒仓料位平衡控制方法。
如图 7所示, 在步骤 710中, 利用多个料位计来检测所述筒仓内的料位。
在步骤 720 中, 根据所述多个料位计所检测到的料位来调整所述多个给料机中的至少一者的 出料量。
在该步骤中, 可以认定与一个给料机相关的一个特定位置处的料位值或多个特定位置处的料 位值的函数 (比如平均值) 能够决定该给料机的出料量, 因此, 当检测到该一个或多个特定位置处 的料位值或料位值的函数的值偏大 (比如, 与筒仓内所有料位计的料位值的平均值相比) 时, 则应 该减少该给料机的出料量, 反之, 则应该增加该给料机的出料量。
在该步骤中, 可以首先根据所述多个料位计所检测到的料位来确定所述筒仓中的模拟料位曲 面, 也就是根据多个料位计所检测到的筒仓内的特定位置的料位值来拟合出一个曲面, 该曲面的理 想形状应与筒仓内的物料表面形状一致, 因此称其为模拟料位曲面。 这样筒仓内任意位置处的料位 值都可以通过该模拟料位曲面得到, 并可以进一步通过获得的料位值来对所述多个给料机中的至少 一者的出料量进行调整。
料位计可以在大范围内尽可能多的设置, 以获得更为理想的模拟料位曲面。 也可以优选地先 在关键点处 (比如给料机正上方、 两个给料机之间的中点处等) 设置料位计, 这样在保证一定精度 的情况下能节约成本。
在一种替换的实施方式中, 可以只在给料机的正上方设置料位计使得所述多个料位计与所述 多个给料机一一对应。 如此, 可以根据一个给料机正上方的料位计来调整该给料机的出料量, 当该 料位计的料位值偏大时(比如与筒仓内所有料位计的料位值的平均值相比), 则应该减少该给料机的 出料量, 反之, 则应该增加该给料机的出料量。
优选地, 所述给料机为活化给料机。
与图 7中的方法相应的, 在图 10中, 该筒仓在底部具有多个用于卸料的给料机 630 (具体结 构可参考图 6), 该系统还可以包括: 用来检测所述筒仓内的料位的多个料位计 620; 分别与所述多 个料位计 620和所述多个给料机 630电连接的给料机控制单元 1010。 其中该给料机控制单元 1010 用于接收来自所述多个料位计 620的所检测到的料位, 并根据所检测到的料位来调整所述多个给料 机 630中的至少一个给料机的出料量。
优选地, 所述给料机控制单元根据所述多个料位计所检测到的料位来确定所述筒仓中的模拟 料位曲面, 并根据所述模拟料位曲面来对所述多个给料机中的至少一者的出料量进行调整。
可替换地, 所述多个料位计与所述多个给料机一一对应, 且分别置于相应的给料机的正上方。 所述给料机控制单元至少部分地根据所述多个料位计中的每一个料位计所检测到的料位来分别调整 与该料位计相对应的给料机的出料量, 比如, 结合筒仓内所有料位计的料位值的平均值来调整。
图 8 示出了根据本发明的另一种实施方式的筒仓料位平衡控制方法, 其中该筒仓底部设置有 用于卸料的多个给料机, 该筒仓的下方还设置有并行的多个皮带机, 其中每个皮带机分别对应于所 述多个给料机中的至少一个给料机。
如图 8所示, 在步骤 810中, 开启所述多个皮带机中的一皮带机和该皮带机所对应的全部或 部分给料机。
在步骤 820中, 利用多个料位计来检测所述筒仓内的料位。
优选地, 所述多个料位计与所述多个给料机一一对应, 且分别置于相应的给料机的正上方, 以分别检测相应的给料机处的料位。
优选地, 所述给料机为活化给料机。
在步骤 830 中, 根据所述多个料位计所检测到的料位或当所述皮带机运行时间超过第一预定 时间时, 关闭所开启的皮带机以及该皮带机所对应的给料机, 并开启所述多个皮带机中的与正在使 用的皮带机不同的另一皮带机以及该另一皮带机所对应的全部或部分给料机。
优选地, 在所述方法中重复执行步骤 820和步骤 830, 以实现对整个卸料过程的连续检测与控 制。
在上述步骤 810-830中以及反复执行步骤 820和 830的过程中,如果开启了某一皮带机所对应 的全部给料机, 则根据所述多个料位计所检测到的料位来调整当前开启的给料机的出料量。 这种调 整方法与图 7中的方法的内容一致, 此处不再赘述。
在上述步骤 810-830中以及反复执行步骤 820和 830的过程中,如果只开启了某一皮带机所对 应的 M个给料机(其中 M大于等于 1且小于该皮带机所对应的全部给料机的数量), 则根据所述多 个料位计所检测到的料位或当所述皮带机运行时间超过第二预定时间时, 使用从该皮带机所对应的 全部给料机中选择的与当前开启的 M个给料机不完全相同的 M个给料机替换当前开启的 M个给料 机进行卸料, 从而避免由于某个给料机长时间关闭所造成的料位不平衡。
与图 8中的方法相应的, 在图 11中, 筒仓底部设置有用于卸料的多个给料机 630, 该筒仓的 下方还设置有并行的多个皮带机 650, 其中每个皮带机 650分别对应于所述多个给料机 630中的至 少一个给料机 (具体结构可参见图 6), 该系统还可以包括用来检测所述筒仓内的料位的多个料位计 620;分别与所述多个料位计 620、所述多个给料机 630和所述多个皮带机 650电连接的控制单元 1110。
其中, 该控制单元 1110用于开启所述多个皮带机 650中的一皮带机和该皮带机所对应的全部 或部分给料机; 接收来自所述多个料位计 620的所检测到的料位; 根据所述多个料位计 620所检测 到的料位或当所述皮带机 650运行时间超过第一预定时间时, 关闭所开启的皮带机以及该皮带机所 对应的给料机, 并开启所述多个皮带机 650中的与正在使用的皮带机不同的另一皮带机以及该另一 皮带机所对应的全部或部分给料机。
优选地, 所述控制单元还用于当开启了一皮带机所对应的全部给料机时, 根据所述多个料位 计所检测到的料位来调整当前开启的给料机的出料量。
优选地, 所述控制单元还用于当只开启了一皮带机所对应的 M个给料机时 (M大于等于 1且 小于该皮带机所对应的全部给料机的数量),根据所述多个料位计所检测到的料位或当所述皮带机运 行时间超过第二预定时间时,使用从该皮带机所对应的全部给料机中选择的与当前开启的 M个给料 机不完全相同的 M个给料机替换当前开启的 M个给料机进行卸料。
优选地, 所述多个料位计与所述多个给料机一一对应, 且分别置于相应的给料机的正上方, 以分别检测相应的给料机处的料位。
优选地, 所述给料机为活化给料机。
图 9 示出了根据本发明的又一种实施方式的筒仓料位平衡控制方法, 其中该筒仓底部设置有 用于卸料的多个给料机, 该筒仓的下方还设置有并行的多个皮带机, 其中每个皮带机分别对应于所 述多个给料机中的至少一个给料机, 且每个皮带机上具有至少一个皮带秤。
如图 9所示, 在步骤 910中, 开启所述多个皮带机中的一皮带机和该皮带机所对应的全部或 部分给料机。 在步骤 920中, 利用开启的皮带机上的皮带秤测量该皮带机上的物料流量。
优选地, 所述给料机为活化给料机。
在步骤 930 中, 根据物料流量测量结果或当所述皮带机运行时间超过第一预定时间时, 关闭 所开启的皮带机以及该皮带机所对应的给料机, 并开启所述多个皮带机中的与正在使用的皮带机不 同的另一皮带机以及该另一皮带机所对应的全部或部分给料机。
优选地, 在所述方法中重复执行步骤 920和步骤 930, 以实现对整个卸料过程的连续检测与控 制。
在上述步骤 910-930中以及反复执行步骤 920和 930的过程中,如果只开启了一皮带机所对应 的 M个给料机(其中 M大于等于 1且小于该皮带机所对应的全部给料机的数量), 则当所述皮带机 运行时间超过第二预定时间时,使用从该皮带机所对应的全部给料机中选择的与当前开启的 M个给 料机不完全相同的 M个给料机替换当前开启的 M个给料机进行卸料, 以避免由于某个给料机长时 间不工作所造成的料位不平衡。
优选地, 图 9所述的方法中还可包括步骤 940, 在该步骤中, 利用多个料位计来检测所述筒仓 内的料位。
在上述步骤 910-930中以及反复执行步骤 920和 930的过程中,当开启了一皮带机所对应的全 部给料机时, 根据所述多个料位计所检测到的料位来调整当前开启的给料机的出料量。 这种调整方 法与图 7中的方法的内容一致, 此处不再赘述。
由于设置了多个料位计,在步骤 920-930中根据物料流量测量结果来关闭所开启的皮带机以及 该皮带机所对应的给料机并开启所述多个皮带机中的与正在使用的皮带机不同的另一皮带机以及该 另一皮带机所对应的全部或部分给料机的基础上, 还可以根据所述多个料位计所检测到的料位, 来 执行上述同样的操作。 这种调整方法与图 8中的方法的内容一致, 此处不再赘述。
优选地, 当根据所述多个料位计所检测到的料位以及所述物料流量测量结果均需要进行上述 相同操作时, 所述多个料位计所检测到的料位的优先级更高。 举例来讲, 如果根据第一皮带机上的 物料流量测量结果确定要切换到第二皮带机, 但同时根据料位计所检测到的料位应从第二皮带机切 换回第一皮带机, 则开启第一皮带机而关闭第二皮带机, 这是因为根据所检测到的料位所进行的判 断的优先级更高。
优选地, 所述多个料位计与所述多个给料机一一对应, 且分别置于相应的给料机的正上方, 以分别检测相应的给料机处的料位。
与图 9中的方法相应的, 在图 12中, 该筒仓底部设置有用于卸料的多个给料机 630, 该筒仓 的下方还设置有并行的多个皮带机 650, 其中每个皮带机分别对应于所述多个给料机 630中的至少 一个给料机 (具体结构参见图 6), 该系统还可以包括多个皮带秤 640, 其中在所述多个皮带机 650 中的每一个皮带机上都至少设置有一个皮带秤 640; 分别与所述多个给料机 630、 所述多个皮带机 650以及所述多个皮带秤 640电连接的控制单元 1210。
其中, 该控制单元 1210用于开启所述多个皮带机 650中的一皮带机和该皮带机所对应的全部 或部分给料机; 接收来自所开启的皮带机的皮带秤 640所测量的物料流量; 根据所述物料流量或当 所述皮带机运行时间超过第一预定时间时, 关闭所开启的皮带机以及该皮带机所对应的给料机, 并 开启所述多个皮带机中的与正在使用的皮带机不同的另一皮带机以及该另一皮带机所对应的全部或 部分给料机。
优选地, 所述控制单元还被配置为, 当只开启了一皮带机所对应的 M个给料机时(其中 M大 于等于 1 且小于该皮带机所对应的全部给料机的数量), 如果所述皮带机运行时间超过第二预定时 间, 则使用从该皮带机所对应的全部给料机中选择的与当前开启的 M个给料机不完全相同的 M个 给料机替换当前开启的 M个给料机进行卸料。
在以上系统中, 所述控制单元还用于利用多个料位计来检测所述筒仓内的料位。
优选地, 所述控制单元还用于当开启了一皮带机所对应的全部给料机时, 根据所述多个料位 计所检测到的料位来调整当前开启的给料机的出料量。
优选地, 所述控制单元在根据物料流量测量结果来关闭所开启的皮带机以及该皮带机所对应 的给料机并开启所述多个皮带机中的与正在使用的皮带机不同的另一皮带机以及该另一皮带机所对 应的全部或部分给料机的基础上, 还可以根据所述多个料位计所检测到的料位, 来执行上述同样的 操作。 更为优选地, 当根据所述多个料位计所检测到的料位以及所述物料流量测量结果均需要进行 上述相同操作时, 所述多个料位计所检测到的料位的优先级更高。
优选地, 所述多个料位计与所述多个给料机一一对应, 且分别置于相应的给料机的正上方, 以分别检测相应的给料机处的料位。
通过上述技术方案, 使用料位计来检测筒仓内的料位, 并通过所检测到的料位来确定是否对 给料机的泄料速度进行调整, 这样, 可以在筒仓内的料位出现不平衡的情况下及时的对料位进行调 整, 在不影响操作的同时, 保证了整个卸料过程的安全稳定。
下面介绍另一种附加或可替换的料位平衡控制方案。 图 13示出了根据本发明的一种实施方式 的筒仓料位平衡控制方法。
如图 13所示, 在步骤 1310中, 利用多个料位计来检测所述筒仓内的料位。
在步骤 1320中, 根据所述多个料位计所检测到的料位来调整所述多个给料机中的至少一者的 出料量。
在该步骤中, 可以认定与一个给料机相关的一个特定位置处的料位值或多个特定位置处的料 位值的函数 (比如平均值) 能够决定该给料机的出料量, 因此, 当检测到该一个或多个特定位置处 的料位值或料位值的函数的值偏大 (比如, 与筒仓内所有料位计的料位值的平均值相比) 时, 则应 该减少该给料机的出料量, 反之, 则应该增加该给料机的出料量。
在该步骤中, 可以首先根据所述多个料位计所检测到的料位来确定所述筒仓中的模拟料位曲 面, 也就是根据多个料位计所检测到的筒仓内的特定位置的料位值来拟合出一个曲面, 该曲面的理 想形状应与筒仓内的物料表面形状一致, 因此称其为模拟料位曲面。 这样筒仓内任意位置处的料位 值都可以通过该模拟料位曲面得到, 并可以进一步通过获得的料位值来对所述多个给料机中的至少 一者的出料量进行调整。
料位计可以在大范围内尽可能多的设置, 以获得更为理想的模拟料位曲面。 也可以优选地先 在关键点处 (比如给料机正上方、 两个给料机之间的中点处等) 设置料位计, 这样在保证一定精度 的情况下能节约成本。
在一种替换的实施方式中, 可以只在给料机的正上方设置料位计使得所述多个料位计与所述 多个给料机一一对应。 如此, 可以根据一个给料机正上方的料位计来调整该给料机的出料量, 当该 料位计的料位值偏大时(比如与筒仓内所有料位计的料位值的平均值相比), 则应该减少该给料机的 出料量, 反之, 则应该增加该给料机的出料量。
优选地, 所述给料机为活化给料机。
与图 13中的方法相应的, 在图 16中, 该筒仓在底部具有多个用于卸料的给料机 630 (具体结 构可参考图 6)。 该系统可以包括: 用来检测所述筒仓内的料位的多个料位计 620; 分别与所述多个 料位计 620和所述多个给料机 630电连接的给料机控制单元 1610。 其中该给料机控制单元 1610用 于接收来自所述多个料位计 620的所检测到的料位, 并根据所检测到的料位来调整所述多个给料机 630中的至少一个给料机的出料量。
优选地, 所述给料机控制单元根据所述多个料位计所检测到的料位来确定所述筒仓中的模拟 料位曲面, 并根据所述模拟料位曲面来对所述多个给料机中的至少一者的出料量进行调整。
可替换地, 所述多个料位计与所述多个给料机一一对应, 且分别置于相应的给料机的正上方。 所述给料机控制单元至少部分地根据所述多个料位计中的每一个料位计所检测到的料位来分别调整 与该料位计相对应的给料机的出料量, 比如, 结合筒仓内所有料位计的料位值的平均值来调整。
图 14示出了根据本发明的另一种实施方式的筒仓料位平衡控制方法, 其中该筒仓底部设置有 用于卸料的多个给料机, 该筒仓的下方还设置有并行的多个皮带机, 其中每个皮带机分别对应于所 述多个给料机中的至少一个给料机。
如图 14所示, 在步骤 1410中, 开启所述多个皮带机中的一皮带机和该皮带机所对应的全部 或部分给料机。
在步骤 1420中, 利用多个料位计来检测所述筒仓内的料位。
优选地, 所述多个料位计与所述多个给料机一一对应, 且分别置于相应的给料机的正上方, 以分别检测相应的给料机处的料位。
优选地, 所述给料机为活化给料机。
在步骤 1430中, 根据所述多个料位计所检测到的料位或当所述皮带机运行时间超过第一预定 时间时, 关闭所开启的皮带机以及该皮带机所对应的给料机, 并开启所述多个皮带机中的与正在使 用的皮带机不同的另一皮带机以及该另一皮带机所对应的全部或部分给料机。
优选地, 在所述方法中重复执行步骤 1420和步骤 1430, 以实现对整个卸料过程的连续检测与 控制。
在上述步骤 1410-1430中以及反复执行步骤 1420和 1430的过程中,如果开启了某一皮带机所 对应的全部给料机, 则根据所述多个料位计所检测到的料位来调整当前开启的给料机的出料量。 这 种调整方法与图 13中的方法的内容一致, 此处不再赘述。
在上述步骤 1410-1430中以及反复执行步骤 1420和 1430的过程中,如果只开启了某一皮带机 所对应的 M个给料机(其中 M大于等于 1且小于该皮带机所对应的全部给料机的数量), 则根据所 述多个料位计所检测到的料位或当所述皮带机运行时间超过第二预定时间时, 使用从该皮带机所对 应的全部给料机中选择的与当前开启的 M个给料机不完全相同的 M个给料机替换当前开启的 M个 给料机进行卸料, 从而避免由于某个给料机长时间关闭所造成的料位不平衡。
与图 14中的方法相应的, 在图 17中, 该筒仓底部设置有用于卸料的多个给料机 630, 该筒仓 的下方还设置有并行的多个皮带机 650, 其中每个皮带机 650分别对应于所述多个给料机 630中的 至少一个给料机(具体结构可参见图 6), 该系统可以包括用来检测所述筒仓内的料位的多个料位计 620; 分别与所述多个料位计 620、 所述多个给料机 630和所述多个皮带机 650 电连接的控制单元 1710。
其中, 该控制单元 1710用于开启所述多个皮带机 650中的一皮带机和该皮带机所对应的全部 或部分给料机; 接收来自所述多个料位计 620的所检测到的料位; 根据所述多个料位计 620所检测 到的料位或当所述皮带机 650运行时间超过第一预定时间时, 关闭所开启的皮带机以及该皮带机所 对应的给料机, 并开启所述多个皮带机 650中的与正在使用的皮带机不同的另一皮带机以及该另一 皮带机所对应的全部或部分给料机。
优选地, 所述控制单元还用于当开启了一皮带机所对应的全部给料机时, 根据所述多个料位 计所检测到的料位来调整当前开启的给料机的出料量。
优选地, 所述控制单元还用于当只开启了一皮带机所对应的 M个给料机时 (M大于等于 1且 小于该皮带机所对应的全部给料机的数量),根据所述多个料位计所检测到的料位或当所述皮带机运 行时间超过第二预定时间时,使用从该皮带机所对应的全部给料机中选择的与当前开启的 M个给料 机不完全相同的 M个给料机替换当前开启的 M个给料机进行卸料。
优选地, 所述多个料位计与所述多个给料机一一对应, 且分别置于相应的给料机的正上方, 以分别检测相应的给料机处的料位。
优选地, 所述给料机为活化给料机。
图 15示出了根据本发明的又一种实施方式的筒仓料位平衡控制方法, 其中该筒仓底部设置有 用于卸料的多个给料机, 该筒仓的下方还设置有并行的多个皮带机, 其中每个皮带机分别对应于所 述多个给料机中的至少一个给料机, 且每个皮带机上具有至少一个皮带秤。
如图 15所示, 在步骤 1510中, 开启所述多个皮带机中的一皮带机和该皮带机所对应的全部 或部分给料机。
在步骤 1520中, 利用开启的皮带机上的皮带秤测量该皮带机上的物料流量。
优选地, 所述给料机为活化给料机。
在步骤 1530中, 根据物料流量测量结果或当所述皮带机运行时间超过第一预定时间时, 关闭 所开启的皮带机以及该皮带机所对应的给料机, 并开启所述多个皮带机中的与正在使用的皮带机不 同的另一皮带机以及该另一皮带机所对应的全部或部分给料机。
优选地, 在所述方法中重复执行步骤 1520和步骤 1530, 以实现对整个卸料过程的连续检测与 控制。
在上述步骤 1510-1530中以及反复执行步骤 1520和 1530的过程中,如果只开启了一皮带机所 对应的 M个给料机(其中 M大于等于 1且小于该皮带机所对应的全部给料机的数量), 则当所述皮 带机运行时间超过第二预定时间时, 使用从该皮带机所对应的全部给料机中选择的与当前开启的 M 个给料机不完全相同的 M个给料机替换当前开启的 M个给料机进行卸料, 以避免由于某个给料机 长时间不工作所造成的料位不平衡。
优选地, 图 15所述的方法中还可包括步骤 1540, 在该步骤中, 利用多个料位计来检测所述筒 仓内的料位。
在上述步骤 1510-1530中以及反复执行步骤 1520和 1530的过程中,当开启了一皮带机所对应 的全部给料机时, 根据所述多个料位计所检测到的料位来调整当前开启的给料机的出料量。 这种调 整方法与图 13中的方法的内容一致, 此处不再赘述。
由于设置了多个料位计,在步骤 1520-1530中根据物料流量测量结果来关闭所开启的皮带机以 及该皮带机所对应的给料机并开启所述多个皮带机中的与正在使用的皮带机不同的另一皮带机以及 该另一皮带机所对应的全部或部分给料机的基础上, 还可以根据所述多个料位计所检测到的料位, 来执行上述同样的操作。 这种调整方法与图 14中的方法的内容一致, 此处不再赘述。 优选地, 当根据所述多个料位计所检测到的料位以及所述物料流量测量结果均需要进行上述 相同操作时, 所述多个料位计所检测到的料位的优先级更高。 举例来讲, 如果根据第一皮带机上的 物料流量测量结果确定要切换到第二皮带机, 但同时根据料位计所检测到的料位应从第二皮带机切 换回第一皮带机, 则开启第一皮带机而关闭第二皮带机, 这是因为根据所检测到的料位所进行的判 断的优先级更高。
优选地, 所述多个料位计与所述多个给料机一一对应, 且分别置于相应的给料机的正上方, 以分别检测相应的给料机处的料位。
与图 15中的方法相应的, 在图 18中, 该筒仓底部设置有用于卸料的多个给料机 630, 该筒仓 的下方还设置有并行的多个皮带机 650, 其中每个皮带机分别对应于所述多个给料机 630中的至少 一个给料机 (具体结构参见图 6), 该系统可以包括多个皮带秤 640, 其中在所述多个皮带机 650中 的每一个皮带机上都至少设置有一个皮带秤; 分别与所述多个给料机 630、 所述多个皮带机 650以 及所述多个皮带秤 640电连接的控制单元 1810。
其中, 该控制单元 1810用于开启所述多个皮带机 650中的一皮带机和该皮带机所对应的全部 或部分给料机; 接收来自所开启的皮带机的皮带秤 640所测量的物料流量; 根据所述物料流量或当 所述皮带机运行时间超过第一预定时间时, 关闭所开启的皮带机以及该皮带机所对应的给料机, 并 开启所述多个皮带机中的与正在使用的皮带机不同的另一皮带机以及该另一皮带机所对应的全部或 部分给料机。
优选地, 所述控制单元还被配置为, 当只开启了一皮带机所对应的 M个给料机时(其中 M大 于等于 1 且小于该皮带机所对应的全部给料机的数量), 如果所述皮带机运行时间超过第二预定时 间, 则使用从该皮带机所对应的全部给料机中选择的与当前开启的 M个给料机不完全相同的 M个 给料机替换当前开启的 M个给料机进行卸料。
在以上系统中, 所述控制单元还用于利用多个料位计来检测所述筒仓内的料位。
优选地, 所述控制单元还用于当开启了一皮带机所对应的全部给料机时, 根据所述多个料位 计所检测到的料位来调整当前开启的给料机的出料量。
优选地, 所述控制单元在根据物料流量测量结果来关闭所开启的皮带机以及该皮带机所对应 的给料机并开启所述多个皮带机中的与正在使用的皮带机不同的另一皮带机以及该另一皮带机所对 应的全部或部分给料机的基础上, 还可以根据所述多个料位计所检测到的料位, 来执行上述同样的 操作。 更为优选地, 当根据所述多个料位计所检测到的料位以及所述物料流量测量结果均需要进行 上述相同操作时, 所述多个料位计所检测到的料位的优先级更高。
优选地, 所述多个料位计与所述多个给料机一一对应, 且分别置于相应的给料机的正上方, 以分别检测相应的给料机处的料位。
通过上述技术方案, 使用料位计来检测筒仓内的料位, 并通过所检测到的料位来确定是否对 皮带机进行切换, 这样, 可以在筒仓内的料位出现不平衡的情况下及时的对料位进行调整, 在不影 响操作的同时, 保证了整个卸料过程的安全稳定。
还提供了另一种附加或可替换的料位平衡控制方案。 图 19示出了根据本发明的一种实施方式 的筒仓料位平衡控制方法。
如图 19所示, 在步骤 1910中, 利用多个料位计来检测所述筒仓内的料位。
在步骤 1920中, 根据所述多个料位计所检测到的料位来调整所述多个给料机中的至少一者的 出料量。
在该步骤中, 可以认定与一个给料机相关的一个特定位置处的料位值或多个特定位置处的料 位值的函数 (比如平均值) 能够决定该给料机的出料量, 因此, 当检测到该一个或多个特定位置处 的料位值或料位值的函数的值偏大 (比如, 与筒仓内所有料位计的料位值的平均值相比) 时, 则应 该减少该给料机的出料量, 反之, 则应该增加该给料机的出料量。
在该步骤中, 可以首先根据所述多个料位计所检测到的料位来确定所述筒仓中的模拟料位曲 面, 也就是根据多个料位计所检测到的筒仓内的特定位置的料位值来拟合出一个曲面, 该曲面的理 想形状应与筒仓内的物料表面形状一致, 因此称其为模拟料位曲面。 这样筒仓内任意位置处的料位 值都可以通过该模拟料位曲面得到, 并可以进一步通过获得的料位值来对所述多个给料机中的至少 一者的出料量进行调整。
料位计可以在大范围内尽可能多的设置, 以获得更为理想的模拟料位曲面。 也可以优选地先 在关键点处 (比如给料机正上方、 两个给料机之间的中点处等) 设置料位计, 这样在保证一定精度 的情况下能节约成本。
在一种替换的实施方式中, 可以只在给料机的正上方设置料位计使得所述多个料位计与所述 多个给料机一一对应。 如此, 可以根据一个给料机正上方的料位计来调整该给料机的出料量, 当该 料位计的料位值偏大时(比如与筒仓内所有料位计的料位值的平均值相比), 则应该减少该给料机的 出料量, 反之, 则应该增加该给料机的出料量。
优选地, 所述给料机为活化给料机。
与图 19中的方法相应的, 在图 22中, 该筒仓在底部具有多个用于卸料的给料机 630 (具体结 构可参考图 6)。 该系统可以包括: 用来检测所述筒仓内的料位的多个料位计 620; 分别与所述多个 料位计 620和所述多个给料机 630电连接的给料机控制单元 2210。 其中该给料机控制单元 2210用 于接收来自所述多个料位计 620的所检测到的料位, 并根据所检测到的料位来调整所述多个给料机 630中的至少一个给料机的出料量。
优选地, 所述给料机控制单元根据所述多个料位计所检测到的料位来确定所述筒仓中的模拟 料位曲面, 并根据所述模拟料位曲面来对所述多个给料机中的至少一者的出料量进行调整。
可替换地, 所述多个料位计与所述多个给料机一一对应, 且分别置于相应的给料机的正上方。 所述给料机控制单元至少部分地根据所述多个料位计中的每一个料位计所检测到的料位来分别调整 与该料位计相对应的给料机的出料量, 比如, 结合筒仓内所有料位计的料位值的平均值来调整。
图 20示出了根据本发明的另一种实施方式的筒仓料位平衡控制方法, 其中该筒仓底部设置有 用于卸料的多个给料机, 该筒仓的下方还设置有并行的多个皮带机, 其中每个皮带机分别对应于所 述多个给料机中的至少一个给料机。
如图 20所示, 在步骤 2010中, 开启所述多个皮带机中的一皮带机和该皮带机所对应的全部 或部分给料机。
在步骤 2020中, 利用多个料位计来检测所述筒仓内的料位。
优选地, 所述多个料位计与所述多个给料机一一对应, 且分别置于相应的给料机的正上方, 以分别检测相应的给料机处的料位。
优选地, 所述给料机为活化给料机。
在步骤 2030中, 根据所述多个料位计所检测到的料位或当所述皮带机运行时间超过第一预定 时间时, 关闭所开启的皮带机以及该皮带机所对应的给料机, 并开启所述多个皮带机中的与正在使 用的皮带机不同的另一皮带机以及该另一皮带机所对应的全部或部分给料机。
优选地, 在所述方法中重复执行步骤 2020和步骤 2030, 以实现对整个卸料过程的连续检测与 控制。
在上述步骤 2010-2030中以及反复执行步骤 2020和 2030的过程中,如果开启了某一皮带机所 对应的全部给料机, 则根据所述多个料位计所检测到的料位来调整当前开启的给料机的出料量。 这 种调整方法与图 21中的方法的内容一致, 此处不再赘述。
在上述步骤 2010-2030中以及反复执行步骤 2020和 2030的过程中,如果只开启了某一皮带机 所对应的 M个给料机(其中 M大于等于 1且小于该皮带机所对应的全部给料机的数量), 则根据所 述多个料位计所检测到的料位或当所述皮带机运行时间超过第二预定时间时, 使用从该皮带机所对 应的全部给料机中选择的与当前开启的 M个给料机不完全相同的 M个给料机替换当前开启的 M个 给料机进行卸料, 从而避免由于某个给料机长时间关闭所造成的料位不平衡。
与图 20中的方法相应的, 在图 23中, 该筒仓底部设置有用于卸料的多个给料机 630, 该筒仓 的下方还设置有并行的多个皮带机 650, 其中每个皮带机 650分别对应于所述多个给料机 630中的 至少一个给料机(具体结构可参见图 6), 该系统包括用来检测所述筒仓内的料位的多个料位计 620; 分别与所述多个料位计 620、 所述多个给料机 630和所述多个皮带机 650电连接的控制单元 2310。
其中, 该控制单元 2310用于开启所述多个皮带机 650中的一皮带机和该皮带机所对应的全部 或部分给料机; 接收来自所述多个料位计 620的所检测到的料位; 根据所述多个料位计 620所检测 到的料位或当所述皮带机 650运行时间超过第一预定时间时, 关闭所开启的皮带机以及该皮带机所 对应的给料机, 并开启所述多个皮带机 650中的与正在使用的皮带机不同的另一皮带机以及该另一 皮带机所对应的全部或部分给料机。
优选地, 所述控制单元还用于当开启了一皮带机所对应的全部给料机时, 根据所述多个料位 计所检测到的料位来调整当前开启的给料机的出料量。
优选地, 所述控制单元还用于当只开启了一皮带机所对应的 M个给料机时 (M大于等于 1且 小于该皮带机所对应的全部给料机的数量),根据所述多个料位计所检测到的料位或当所述皮带机运 行时间超过第二预定时间时,使用从该皮带机所对应的全部给料机中选择的与当前开启的 M个给料 机不完全相同的 M个给料机替换当前开启的 M个给料机进行卸料。
优选地, 所述多个料位计与所述多个给料机一一对应, 且分别置于相应的给料机的正上方, 以分别检测相应的给料机处的料位。
优选地, 所述给料机为活化给料机。
图 21示出了根据本发明的又一种实施方式的筒仓料位平衡控制方法, 其中该筒仓底部设置有 用于卸料的多个给料机, 该筒仓的下方还设置有并行的多个皮带机, 其中每个皮带机分别对应于所 述多个给料机中的至少一个给料机, 且每个皮带机上具有至少一个皮带秤。
如图 21所示,在步骤 2110中,开启所述多个皮带机中的一皮带机和该皮带机所对应的全部或 部分给料机。
在步骤 2120中, 利用开启的皮带机上的皮带秤测量该皮带机上的物料流量。
优选地, 所述给料机为活化给料机。
在步骤 2130中, 根据物料流量测量结果或当所述皮带机运行时间超过第一预定时间时, 关闭 所开启的皮带机以及该皮带机所对应的给料机, 并开启所述多个皮带机中的与正在使用的皮带机不 同的另一皮带机以及该另一皮带机所对应的全部或部分给料机。 其中所述第一预定时间也可称为疲 劳时间。
在步骤 2130中, 优选地根据所述皮带机的物料流量测量结果在第三预定时间内的累计值与疲 劳值的比较结果, 来关闭所开启的皮带机以及该皮带机所对应的给料机, 并开启所述多个皮带机中 的与正在使用的皮带机不同的另一皮带机以及该另一皮带机所对应的全部或部分给料机。 其中, 更 为优选地, 该第三预定时间小于第一预定时间。 其中所述疲劳值可以在皮带机出厂时预先设定。
优选地, 在所述方法中重复执行步骤 2120和步骤 2130, 以实现对整个卸料过程的连续检测与 控制。
在上述步骤 2110-2130中以及反复执行步骤 2120和 2130的过程中,如果只开启了一皮带机所 对应的 M个给料机(其中 M大于等于 1且小于该皮带机所对应的全部给料机的数量), 则当所述皮 带机运行时间超过第二预定时间时, 使用从该皮带机所对应的全部给料机中选择的与当前开启的 M 个给料机不完全相同的 M个给料机替换当前开启的 M个给料机进行卸料, 以避免由于某个给料机 长时间不工作所造成的料位不平衡。
优选地, 图 21所述的方法中还可包括步骤 2140, 在该步骤中, 利用多个料位计来检测所述筒 仓内的料位。
在上述步骤 2110-2130中以及反复执行步骤 2120和 2130的过程中,当开启了一皮带机所对应 的全部给料机时, 根据所述多个料位计所检测到的料位来调整当前开启的给料机的出料量。 这种调 整方法与图 19中的方法的内容一致, 此处不再赘述。
由于设置了多个料位计,在步骤 2120-2130中根据物料流量测量结果来关闭所开启的皮带机以 及该皮带机所对应的给料机并开启所述多个皮带机中的与正在使用的皮带机不同的另一皮带机以及 该另一皮带机所对应的全部或部分给料机的基础上, 还可以根据所述多个料位计所检测到的料位, 来执行上述同样的操作。 这种调整方法与图 20中的方法的内容一致, 此处不再赘述。
优选地, 当根据所述多个料位计所检测到的料位以及所述物料流量测量结果均需要进行上述 相同操作时, 所述多个料位计所检测到的料位的优先级更高。 举例来讲, 如果根据第一皮带机上的 物料流量测量结果确定要切换到第二皮带机, 但同时根据料位计所检测到的料位应从第二皮带机切 换回第一皮带机, 则开启第一皮带机而关闭第二皮带机, 这是因为根据所检测到的料位所进行的判 断的优先级更高。
优选地, 所述多个料位计与所述多个给料机一一对应, 且分别置于相应的给料机的正上方, 以分别检测相应的给料机处的料位。
与图 21中的方法相应的, 在图 24中, 该筒仓底部设置有用于卸料的多个给料机 630, 该筒仓 的下方还设置有并行的多个皮带机 650, 其中每个皮带机分别对应于所述多个给料机 630中的至少 一个给料机 (具体结构参见图 6), 该系统可以包括多个皮带秤 640, 其中在所述多个皮带机 650中 的每一个皮带机上都至少设置有一个皮带秤; 分别与所述多个给料机 630、 所述多个皮带机 650以 及所述多个皮带秤 640电连接的控制单元 2410。
其中, 该控制单元 2410用于开启所述多个皮带机 650中的一皮带机和该皮带机所对应的全部 或部分给料机; 接收来自所开启的皮带机的皮带秤 640所测量的物料流量; 根据所述物料流量或当 所述皮带机运行时间超过第一预定时间时, 关闭所开启的皮带机以及该皮带机所对应的给料机, 并 开启所述多个皮带机中的与正在使用的皮带机不同的另一皮带机以及该另一皮带机所对应的全部或 部分给料机。
优选地, 所述控制单元还用于根据所述皮带机的物料流量测量结果在第三预定时间内的累计 值与疲劳值的比较结果, 来关闭所开启的皮带机以及该皮带机所对应的给料机, 并开启所述多个皮 带机中的与正在使用的皮带机不同的另一皮带机以及该另一皮带机所对应的全部或部分给料机。 其 中, 更为优选地, 该第三预定时间小于第一预定时间。 其中所述疲劳值可以在皮带机出厂时预先设 定。
优选地, 所述控制单元还被配置为, 当只开启了一皮带机所对应的 M个给料机时(其中 M大 于等于 1 且小于该皮带机所对应的全部给料机的数量), 如果所述皮带机运行时间超过第二预定时 间, 则使用从该皮带机所对应的全部给料机中选择的与当前开启的 M个给料机不完全相同的 M个 给料机替换当前开启的 M个给料机进行卸料。
在以上系统中, 所述控制单元还用于利用多个料位计来检测所述筒仓内的料位。
优选地, 所述控制单元还用于当开启了一皮带机所对应的全部给料机时, 根据所述多个料位 计所检测到的料位来调整当前开启的给料机的出料量。
优选地, 所述控制单元在根据物料流量测量结果来关闭所开启的皮带机以及该皮带机所对应 的给料机并开启所述多个皮带机中的与正在使用的皮带机不同的另一皮带机以及该另一皮带机所对 应的全部或部分给料机的基础上, 还可以根据所述多个料位计所检测到的料位, 来执行上述同样的 操作。 更为优选地, 当根据所述多个料位计所检测到的料位以及所述物料流量测量结果均需要进行 上述相同操作时, 所述多个料位计所检测到的料位的优先级更高。
优选地, 所述多个料位计与所述多个给料机一一对应, 且分别置于相应的给料机的正上方, 以分别检测相应的给料机处的料位。
通过上述技术方案, 使用皮带秤来检测物料流量, 并通过所检测到的物料流量来确定是否对 皮带机进行切换, 这样, 可以在筒仓内的料位出现不平衡的情况下及时的对料位进行调整, 在不影 响操作的同时, 保证了整个卸料过程的安全稳定。
V. 混配煤控制
考虑到港口储煤规模大、 品种多和流程复杂等特点, 为了能够准确、 高效地进行混配煤, 发 明人认为采用筒仓在港口进行大规模的储煤并基于筒仓来进行混配煤将是更好的选择。 因此若要在 港口实现基于筒仓的混配煤方案, 必须用筒仓替代现有的露天堆场, 并采用一套改进的设备替代斗 轮式取料机或斗轮式堆取料机的混配煤装置。
图 25是基于筒仓的混配煤控制系统的示意图。 参考图 25, 筒仓 251为多个, 该多个筒仓 251 中的每一者的底部具有至少一个用于卸料的出料口, 在每个所述出料口处设置有给料机, 在所述多 个筒仓 251的出料口下方设置有皮带机 253, 该多个筒仓 251沿所述皮带机 253的传送方向排列, 多个筒仓 251储存至少两种煤品, 该方法可以包括: 根据预定煤品比例计算每种煤品的预设给料量; 按照计算的预设给料量通过调整所述多个筒仓 251的给料机 252的单位时间出料量来控制该多个筒 仓 251的出料, 以得到混配比例为预定煤品比例的混配煤。
其中, 多个筒仓 251位于皮带机 253的上方并沿着所述皮带机 253的传送方向排列, 每个筒 仓 251可以具有一个或多个出料口, 每个出料口处设置有给料机 252, 每个筒仓 251通过其出料口 处的给料机 252向下卸料, 从给料机 252卸下的物料将会落到皮带机 253上, 皮带机 253将从筒仓 251卸下的物料运送至所需位置, 例如运送到目的堆场, 或者运送到货船上。 所述多个筒仓 251可 以储存不同种类的煤品, 当第一个筒仓 251卸下的物料落到皮带机 253上后, 物料随着皮带机 253 向前传送而位于前方的第二个筒仓 251卸下的物料也将落到皮带机 253上, 并与第一个筒仓 251卸 下的物料混合, 这样就实现了不同种类煤品的混配。 图 25虽然示出了五个筒仓, 每个筒仓有两个给 料口的情况, 但是应该理解, 本发明的不局限于图 25示出的情况, 根据需要, 其它个数的筒仓和给 料口也是可能的。
为了按照比例来混配煤, 还需要根据预定煤品比例来计算每种煤品的预设给料量。 例如, 在 需要将两种煤品进行混配时,混配煤比例为 1 : 1,则可以计算两种煤品的预设给料量的比例也为 1 : 1, 诸如两种煤品的预设给料量可以都为 1000t/h。 该示例仅用于解释而非用于限制本发明, 其它任何根 据具体情况而计算得到的每种煤品的预设给料量都是可以的。 按照计算的预设给料量, 调整所述多 个筒仓 251的给料机 252的单位时间出料量来控制该多个筒仓 251的出料, 可以得到混配比例为预 定煤品比例的混配煤。 根据一种实施方式, 可以通过诸如 PLC的控制单元来调整所述多个筒仓 251 的给料机 252的单位时间出料量。
由于给料机 252很可能出料不均匀, 为了实时调节给料机 252的单位时间出料量, 使得多个 筒仓 251能够按照所需比例出料, 可以分别在所述皮带机 253下方与至少一个给料机 252对应的位 置处设置有皮带秤,优选可以在每个给料机 252对应的位置处都设有皮带秤,即皮带秤与给料机 252 可以点对点设置。 通过皮带秤来测量所述皮带机 253上的物料量, 并将测得的物料量与预设给料量 进行比较, 根据比较结果来控制所述给料机 252的单位时间出料量, 从而通过每个皮带秤的数据反 馈来调整与每个皮带秤相对应的给料机 252的单位时间出料量。
根据一种优选的实施方式, 当皮带秤测得的物料量大于所述预设给料量时, 控制使得与该皮 带秤所对应的给料机 252的出料量减小; 和 /或当皮带秤测得的物料量小于所述预设给料量时, 控制 使得与该皮带秤所对应的给料机 252的出料量增大。
其中, 所述给料机 252 可以为活化给料机、 振动给料机、 环式给料机和叶轮给料机中的至少 一者。 由于活化给料机可以在从零到最大设定量之间连续调整出煤量, 所以活化给料机尤其适合复 杂的配煤系统。
根据具体需要, 可以控制所述多个筒仓 251 的出料口处的给料机 252中的任意个给料机 252 的开启和关闭。 例如, 在有两个筒仓 251, 每个筒仓 251具有两个出料口, 即每个筒仓 251具有两 个给料机 252的情况下, 根据配煤比例的需要, 可以使得两个筒仓 251的每个给料机 252都开启以 用于给料, 也可以只开启其中一部分给料机 252, 而使得其中某一个或多个给料机 252关闭不给料。
相应地, 该系统可以包括: 皮带机 253、 给料机 252和控制单元。 每个所述筒仓 251的底部具 有至少一个用于卸料的出料口, 在每个所述出料口处设置有给料机 252, 所述皮带机 253设置于所 述多个筒仓 251的出料口下方, 所述多个筒仓 251沿所述皮带机 253的传送方向排列, 该多个筒仓 251储存至少两种煤品, 所述控制单元与所述给料机 252连接, 用于按照计算的预设给料量通过调 整所述多个筒仓 251的给料机 252的单位时间出料量来控制该多个筒仓 251的出料, 以得到混配比 例为预定煤品比例的混配煤, 其中所述预设给料量是根据预定煤品比例来计算得到的。 其中, 所述 控制单元可以通过 PLC来实现。
由于给料机 252很可能出料不均匀, 为了实时调节给料机 252的单位时间出料量, 使得多个 筒仓 251能够按照所需比例出料, 该系统还可以包括至少一个皮带秤, 所述皮带秤分别设置在所述 皮带机 253下方与至少一个所述给料机 252对应的位置处, 用于测量所述皮带机 253上的物料量。 所述控制单元与该皮带秤连接, 用于将并将测得的物料量与预设给料量值进行比较, 并根据比较结 果来控制所述给料机 252的单位时间出料量。
根据一种实施方式, 所述控制单元当确定由所述皮带秤测得的物料量大于所述预设给料量时, 控制使得所述皮带秤所对应的给料机 252的出料量减小; 和 /或当确定由所述皮带秤测得的物料量小 于所述预设给料量时, 控制使得所述皮带秤所对应的给料机 252的出料量增大。 这样, 就可以实时 调整每个给料机 252的出料量, 使得给料机 252能够按照预设给料量出量, 精确地控制了不同种类 的煤品的混配比例。
其中, 所述给料机 252为活化给料机、 振动给料机、 环式给料机和叶轮给料机中的至少一者。 由于活化给料机可以在从零到最大设定量之间连续调整出煤量, 所以活化给料机尤其适合复杂的配 煤系统。
根据具体需要, 所述控制单元还可以控制所述多个筒仓 251 的出料口处的给料机 252中的任 意个给料机 252的开启和关闭。 例如, 在有两个筒仓 251, 每个筒仓 251具有两个出料口, 即每个 筒仓 251具有两个给料机 252的情况下, 根据配煤比例需要, 可以使得两个筒仓 251的每个给料机 252都开启来给料, 也可以只开启其中一部分给料机 252, 而使得其中某一个或多个给料机 252关闭 不给料。
所述皮带机可以为一条或多条, 在采用多条皮带机来传送物料时, 该多条皮带机将平行排列, 设置在多个筒仓 251的给料机 252下方, 用于同时或分别输送其上方的给料机 252落下的物料。
VI. 倒仓控制
图 26为本发明的实施方式的倒仓系统的结构示意图。 如图 26所示, 该系统可以包括: 物料 输送装置 2610, 该物料输送装置 2610用于将所述筒仓内的物料运至一位于该筒仓外部的倒仓区; 以及控制装置 2620, 该控制装置 2620与所述物料输送装置 2610电连接, 用于在存在发生自燃的可 能性的情况下, 控制所述物料输送装置 2610将筒仓内的物料运至所述倒仓区。
筒仓是否存在发生自燃的可能性可由检测装置进行检测, 可利用该检测装置的检测结果, 人 为对控制装置 2620进行控制, 以控制所述物料输送装置 2610将筒仓内的物料运至所述倒仓区; 亦 可由控制装置 2620根据所述检测装置的检测结果, 自动控制所述物料输送装置 2610将筒仓内的物 料运至所述倒仓区。
其中, 所述系统可还包括可燃气体浓度红外检测装置, 该可燃气体浓度红外检测装置位于所 述筒仓内, 且与所述控制装置 2620电连接, 用于检测所述筒仓内的可燃气体浓度, 并将检测结果发 送至所述控制装置 2620; 所述控制装置 2620在所述可燃气体浓度大于预定值时, 控制所述物料输 送装置 2610将筒仓内的物料运至所述倒仓区。藉此, 可以以可燃气体浓度作为判断是否存在发生自 燃的可能性的指标。
其中, 所述系统可还包括可燃气体浓度采样检测装置, 该可燃气体浓度采样检测装置与所述 控制装置 2620电连接, 用于检测所述筒仓内 CO和碳氢化合物的复合浓度或链垸比, 并将检测结果 发送至所述控制装置 2620; 所述控制装置 2620在所述复合浓度或链垸比大于预定值时, 控制所述 物料输送装置 2610将筒仓内的物料运至所述倒仓区。该可燃气体浓度采样检测装置可包括固定式现 场采气头以及气体分析系统, 所述固定式现场采气头可为多个, 并固定于筒仓内顶部, 其所采集的 气体通过管路及阀组被引至气体分析系统, 该气体分析系统对所采集的气体进行分析 (并于分析完 之后对管道内的气体进行反吹, 以避免残留气体影响下一次所采集的气体), 得到 CO和碳氢化合物 (CH4、 C2H4、 C2H6以及 CH3CH2CH3等) 的复合浓度或链垸比。
其中, 所述系统可还包括烟雾浓度检测装置, 该烟雾浓度检测装置与所述控制装置 2620电连 接, 用于检测所述筒仓内的烟雾浓度, 并将检测结果发送至所述控制装置 2620; 所述控制装置 2620 在所述烟雾浓度大于预定值时,控制所述物料输送装置 2610将筒仓内的物料运至所述倒仓区。藉此, 可以以烟雾浓度作为判断是否存在发生自燃的可能性的指标。
其中, 所述物料输送装置 2610可为皮带机, 该皮带机从筒仓出料口延伸至所述倒仓区。 所述 筒仓内的物料可通过该筒仓的出料口而倾倒到至该皮带机的皮带上, 进而被运至倒仓区。 当然, 所 述物料输送装置 2610并不仅限于皮带机, 其他可实现物料输送的装置亦可运用于此。
其中, 所述控制装置 2620可在控制所述皮带机将所述筒仓内的物料运至倒仓区时, 控制在所 述皮带机的运送方向上位于所述筒仓前侧的不存在发生自燃可能性的筒仓卸料, 以于所述皮带机的 皮带上铺一层物料。 藉此, 可在将存在自燃可能性的筒仓内的物料至于皮带上之前, 预先于该皮带 上铺一层不存在自燃可能性的筒仓内的物料, 以将存在自燃可能性的筒仓内的物料与皮带相隔离, 避免直接将存在自燃可能性的筒仓内的物料置于皮带上所可能导致的致皮带融化或燃烧。
优选地, 所述皮带机的皮带由阻燃型橡胶制成, 以防止位于该皮带上的物料因温度较高而导 致皮带融化或燃烧。
图 27为本发明的倒仓方法的流程图。 相应地, 如图 27所示, 该方法包括: 步骤 2710) : 设置 一倒仓区, 该倒仓区位于筒仓外部; 以及步骤 2720) : 在存在发生自燃的可能性时, 将所述筒仓内 的物料运至所述倒仓区。
其中, 所述步骤 2720) 包括: 检测所述筒仓内的环境参数; 以及在所述环境参数大于预定值 时, 将所述筒仓内的物料运至所述倒仓区。
其中, 所述环境参数可包括可燃气体浓度、 CO和碳氢化合物的复合浓度、 链垸比以及烟雾浓 度中的一者或多者。
其中, 将所述筒仓内的物料运至所述倒仓区可由皮带机执行, 所述步骤 2720) 还可包括: 在 控制所述皮带机将所述筒仓内的物料运至倒仓区时, 控制在所述皮带机的运送方向上位于所述筒仓 前侧的不存在发生自燃可能性的筒仓卸料, 以于所述皮带机的皮带上铺一层物料。
需要说明的是, 上文中所提及的预定值可根据与其进行比较的对象不同而设定不同的值, 该 预定值可根据实际情况进行设定。
通过上述技术方案, 可于筒仓内存在发生自燃的可能性的情况下, 将筒仓内的物料运至倒仓 区进行冷却, 并对该物料喷水降温, 以避免物料发生自燃或减少因物料自燃所导致的损失。
还提供了附加或可替换的倒仓控制方案。图 28为本发明的实施方式的倒仓系统的结构示意图。 如图 28所示, 该系统可以包括: 物料输送装置 2810, 该物料输送装置 2810用于将筒仓内的物料运 至一位于该筒仓外部的倒仓区; 温度检测装置 2820, 该温度检测装置 2820用于检测所述筒仓内的 温度; 以及控制装置 2830, 该控制装置 2830与所述温度检测装置 2820和物料输送装置 2810电连 接, 用于在所述述筒仓内的温度和 /或升温速率大于预定值时, 控制所述物料输送装置 2810将所述 筒仓内的物料运至所述倒仓区。
其中, 所述升温速率指筒仓内的温度于单位时间内的增量, 与温度和 /或升温速率相比较的预 定值为分别与温度和升温速率相对应的预定值, 该预定值可根据实际情况进行设定。 所述温度检测装置 2820可包括多个测温点,该多个测温点位于所述筒仓的筒仓壁下部及底部, 用于检测该筒仓壁下部及底部的温度; 所述控制装置 2830在一个或多个测温点所检测的温度和 /或 升温速率高于预定值时, 控制所述物料输送装置 2810将筒仓内的物料运至所述倒仓区。所述测温点 可为铂热测温点。
其中, 所述测温点与所述筒仓顶部的距离大于 250mm, 以保证筒仓内的温度测量的准确性行。 在筒仓内堆满物料的情况下, 筒仓壁下部及底部处的温度与筒仓中心处的温度相差较大, 筒 仓壁下部及底部处的温度将无法准确地表达筒仓内的温度。 优选地, 所述筒仓可包括多个温度检测 区, 所述温度检测装置 2820包括多根测温电缆, 该多根测温电缆分别与该多个温度检测区相对应, 并于各自的温度检测区的中间垂下(该测温电缆用钢丝固定,并沿着区域中间垂下,底部重锤固定), 分别用于检测所述多个温度检测区的温度; 所述控制装置 2830在一个或多个温度检测区的温度和 / 或升温速率高于预定值时, 控制所述物料输送装置 2810将筒仓内的物料运至所述倒仓区。 藉此, 可 对分布于筒仓壁下部及底部的测温点所无法测量的区域进行温度检测, 并根据检测结果进行倒仓, 以避免筒仓内局部温度过高而导致的安全隐患。
其中, 所述物料输送装置 2810可为皮带机, 该皮带机从筒仓出料口延伸至所述倒仓区。 所述 筒仓内的物料可通过该筒仓的出料口而倾倒到至该皮带机的皮带上, 进而被运至倒仓区。 当然, 所 述物料输送装置 2810并不仅限于皮带机, 其他可实现物料输送的装置亦可运用于此。
其中, 所述控制装置 2830可在控制所述皮带机将所述筒仓内的物料运至倒仓区时, 控制在所 述皮带机的运送方向上位于所述筒仓前侧的温度及升温速率均小于预定值的筒仓卸料, 以于所述皮 带机的皮带上铺一层物料。 藉此, 可在将温度及升温速率均小于预定值 (即, 不可能发生自燃) 的 筒仓内的物料至于皮带上之前, 预先于该皮带上铺一层不存在自燃可能性的筒仓内的物料, 以将温 度和 /或升温速率大于预定值的筒仓内的物料与皮带相隔离,避免直接将温度和 /或升温速率大于预定 值的筒仓内的物料置于皮带上所可能导致的致皮带融化或燃烧。
优选地, 所述皮带机的皮带由阻燃型橡胶制成, 以防止位于该皮带上的物料因温度较高而导 致皮带融化或燃烧。
相应地, 如图 29所示, 该方法可以包括: 步骤 2910) : 设置一倒仓区, 该倒仓区位于筒仓外 部; 步骤 2920) : 检测所述筒仓内的温度; 以及步骤 2930) : 在所述述筒仓内的温度和 /或升温速率 大于预定值时, 将所述筒仓内的物料运至所述倒仓区。
其中, 所述步骤 2920) 包括: 于所述筒仓的筒仓壁下部及底部设置多个测温点, 检测该筒仓 壁下部及底部的温度; 所述步骤 2930)包括: 在一个或多个测温点所检测的温度和 /或升温速率高于 预定值时, 控制所述物料输送装置 2810将筒仓内的物料运至所述倒仓区。
其中, 所述筒仓可包括多个温度检测区, 所述步骤 2920) 包括: 于所述多个温度检测区内分 别设置测温电缆, 该测温电缆于所述温度检测区的中间垂下, 检测所述温度检测区的温度; 所述步 骤 2930)包括: 在一个或多个温度检测区的温度和 /或升温速率高于预定值时, 控制所述物料输送装 置 2810将筒仓内的物料运至所述倒仓区。
其中, 将所述筒仓内的物料运至所述倒仓区可由皮带机执行, 所述步骤 2930) 还可包括: 在 控制所述皮带机将所述筒仓内的物料运至倒仓区时, 控制在所述皮带机的运送方向上位于所述筒仓 前侧的温度和升温速率均小于预定值的筒仓卸料, 以于所述皮带机的皮带上铺一层物料。
通过上述技术方案, 可于筒仓内的温度和 /或升温速率大于预定值时, 即筒仓内存在发生自燃 的可能性的情况下, 将筒仓内的物料运至倒仓区进行冷却, 并对该物料喷水降温, 以避免物料发生 自燃或减少因物料自燃所导致的损失。
VII. 料位检测
为了在运煤港口实现煤料的存储和转运, 设置有港口大型储煤筒仓。 所述筒仓为密封结构, 为了实现进料, 如图 30所示, 所述筒仓具有多个布料口 302, 多个布料口 302均设置在仓顶。 来自 载煤列车的煤料通过连接至筒仓仓顶的固定式进料皮带机输送到仓顶, 与进料皮带机配合工作的卸 料小车在仓顶直线往复运行进行卸料, 将煤料通过所述多个布料口 302卸入到筒仓内。
为了实现筒仓内的料位检测并控制进料, 以避免筒仓进料过多, 如图 30所示, 该系统可以包 括: 与所述多个布料口 302—一对应的、 用于检测所述布料口 302下方的料位是否达到筒仓料位上 限值、 并当检测到所述布料口 302下方的料位达到筒仓料位上限值时输出第一电信号的第一料位开 关 309; 以及用于在接收到任一个第一料位开关 309输出的第一电信号的情况下、 输出控制进料皮 带机停止进料的电信号的皮带机控制器; 所述皮带机控制器与所述第一料位开关 309电连接。 根据本发明的一种实施方式, 所述布料口 302可以为两个, 两个布料口 302均为长条形, 并 列设置在筒仓顶部, 可以采用单线卸料进仓工艺形式, 通过在仓顶设置一条进料皮带机进行卸煤操 作, 与该进料皮带机配合工作的卸料小车在仓顶往复直线运行卸料, 由此煤料由两个布料口 302卸 入到筒仓内存储, 形成锥形堆积, 并在所述布料口 302正下方形成作为锥峰的高煤位。
根据本发明的另一种实施方式, 所述布料口 302可以为四个, 四个布料口 302均为长条形, 并列设置在筒仓顶部, 可以采用双线卸料进仓工艺形式, 通过在仓顶设置两条进料皮带机进行卸煤 操作,与所述进料皮带机配合工作的卸料小车在仓顶往复直线运行卸料, 由此煤料由四个布料口 302 卸入到筒仓内存储, 形成锥形堆积, 并在所述布料口 302正下方形成作为锥峰的高煤位。
可以根据实际操作的需要对布料口 302 的数量和排列方式进行设置, 本发明不局限于上述两 种实施方式。
根据本发明的技术方案, 该系统还包括与多个布料口 302—一对应的第一料位开关 309, 即每 个布料口 302下方设置有一个对应的第一料位开关 309。 所述第一料位开关 309为任意可以实现料 位检测并输出检测信号的料位检测装置, 例如料位计, 料位计例如可以为电容式料位计。 电容式料 位计是一种具有开关量输出的位置传感器, 其测量头构成电容检测面, 当待检测物体的料位上升到 电容检测面时, 该位置传感器输出一个开关信号, 以实现料位检测。 电容式料位计为本领域常用的 料位检测装置, 其工作原理为本领域技术人员所公知。
为了避免筒仓进料过多, 可以将筒仓内堆积的煤料所允许达到的高煤位设置为筒仓料位上限 值, 将所述第一料位开关 309设置在筒仓顶部内侧或筒仓内壁上, 只要保证第一料位开关 309的测 量头在布料口 302的正下方且在筒仓料位上限值处构成电容检测面即可, 本发明不对第一料位开关 309的设置方式进行任何限定。
所述筒仓料位上限值可以根据筒仓的实际高度进行设定, 只要保证料位不超出布料口水平面 而导致煤料溢出即可。
根据本发明的技术方案, 当检测到所述布料口 302 下方的料位达到筒仓料位上限值时, 所述 第一料位开关 309输出第一电信号。
本发明提供的系统还包括皮带机控制器 (未示出), 该皮带机控制器用于控制进料皮带机的运 行, 该皮带机控制器还与所述第一料位开关 309 电连接, 用于根据接收到的来自第一料位开关 309 的第一电信号而输出控制进料皮带机停止进料的电信号到进料皮带机,以控制进料皮带机停止运行。
所述皮带机控制器可以是 PLC (Programmable Logic Controller, 可编程逻辑控制器), PLC内 部存储有执行各种操作的指令, 通过输出操作指令可以控制各种类型的执行部件工作。 根据本发明 的技术方案, 所述皮带机控制器可以根据接收到的来自第一料位开关 309的第一电信号而输出控制 进料皮带机停止进料的操作指令到进料皮带机, 以实现对进料皮带机的控制。 PLC为自动控制领域 中常用的控制器, 其具体结构和工作原理为本领域技术人员所公知。
由此, 采用本发明提供的系统, 可以对筒仓内的料位进行检测, 并当筒仓内的料位达到筒仓 料位上限值时, 控制进料皮带机停止进料, 避免进料过多, 保证了筒仓作业的安全性。
港口大型储煤筒仓还具有多个出料口 308, 该多个出料口 308设置在筒仓的底部, 每个出料口 308处设置有给料机, 筒仓内存储的煤料通过给料机的动作从出料口 308下料到仓底的皮带机进行 运送, 由此实现煤料的出仓。
为了避免筒仓内留存的煤料过少, 筒仓垫底煤层高度不够, 导致下一次进料时煤料直接由筒 仓顶部坠落, 对筒仓底部的给料机造成损坏, 优选情况下, 本发明提供的系统还包括: 与所述多个 出料口 308—一对应的、 用于检测所述出料口 308上方的料位是否低于筒仓料位下限值、 并当检测 到所述出料口 308上方的料位低于筒仓料位下限值时输出第二电信号的第二料位开关 3010; 以及用 于在接收到任一个第二料位开关 3010输出的第二电信号的情况下、输出控制与该第二料位开关 3010 对应的出料口 308处的给料机关闭的电信号的给料机控制器; 所述给料机控制器与所述第二料位开 关 3010电连接。
根据本发明的一种实施方式, 所述出料口 308可以为六个, 六个出料口 308均为正方形, 两 两并列设置在筒仓底部, 由此, 筒仓内堆积的煤料通过给料机的动作从六个出料口 308卸下, 实现 煤料出仓。
可以根据实际操作的需要对出料口 308 的数量和排列方式进行设置, 本发明不局限于上述实 施方式。
根据本发明的技术方案, 该系统还包括与多个出料口 308—一对应的第二料位开关 3010, 即 每个出料口 308上方设置有一个对应的第二料位开关 3010。 所述二料位开关 3010为任意可以实现 料位检测并输出检测信号的料位检测装置, 例如料位计, 料位计例如可以为电容式料位计。 该电容 式料位计的测量头构成电容检测面, 当待检测物体的料位下降到电容检测面时, 该位置传感器输出 一个开关信号, 以实现料位检测。
为了避免筒仓内余料过少造成料位过低, 可以将筒仓内垫底的煤料所允许的最低煤位设置为 筒仓料位下限值, 将所述第二料位开关 3010设置在筒仓底部内侧或筒仓内壁上, 只要保证第二料位 开关 3010的测量头在出料口 308的上方且在筒仓料位下限值处构成电容检测面即可,本发明不对第 二料位开关 3010的设置方式进行任何限定。
所述筒仓料位下限值可以根据实际操作的需要进行设定, 只要保证垫底煤料足够以保证落煤 不会损坏给料机即可。
根据本发明的技术方案, 当检测到所述出料口 308 上方的料位达到筒仓料位下限值时, 所述 第二料位开关 3010输出第二电信号。
本发明提供的系统还包括给料机控制器 (未示出), 该给料机控制器用于控制给料机开启或关 闭,该给料机控制器还与所述第二料位开关 3010电连接,用于根据接收到的来自第二料位开关 3010 的第二电信号而输出控制给料机关闭的电信号到给料机, 以控制给料机关闭。
所述给料机控制器可以是 PLC, PLC 内部存储有执行各种操作的指令, 通过输出操作指令可 以控制各种类型的执行部件工作。 根据本发明的技术方案, 所述给料机控制器可以根据接收到的来 自第二料位开关 3010的第二电信号而输出控制给料机关闭的操作指令到给料机,以实现对给料机的 控制。
由此, 采用本发明提供的筒仓的系统, 还可以对筒仓内的料位进行检测, 并当筒仓内的料位 达到筒仓料位下限值时, 控制给料机关闭, 避免了筒仓内煤料过少而导致落煤损坏给料机。
所述皮带机控制器和所述给料机控制器可以为独立的 PLC, 分别用于控制筒仓仓顶的进料皮 带机以及仓底的给料机的工作, 所述皮带机控制器和所述给料机控制器两者也可以集成为一体, 通 过集成在同一个 PLC中来实现各自的功能。
为了避免筒仓内留存的煤料过少, 筒仓垫底煤层高度不够, 导致下一次进料时煤料直接由筒 仓顶部坠落, 对筒仓底部的给料机造成损坏, 优选情况下, 如图 31所示, 系统还可以包括: 与所述 多个出料口 318—一对应的、 用于检测所述出料口 318上方的料位是否低于筒仓料位下限值、 并当 检测到所述出料口 318上方的料位低于筒仓料位下限值时输出第二电信号的第二料位开关 3110; 以 及用于在接收到任一个第二料位开关 3110输出的第二电信号的情况下、输出控制与该第二料位开关 3110对应的出料口 318处的给料机关闭的电信号的给料机控制器; 所述给料机控制器与所述第二料 位开关 3110电连接。
根据本发明的一种实施方式, 所述出料口 318可以为六个, 六个出料口 318均为正方形, 两 两并列设置在筒仓底部, 由此, 筒仓内堆积的煤料通过给料机的动作从六个出料口 318卸下, 实现 煤料出仓。
可以根据实际操作的需要对出料口 318 的数量和排列方式进行设置, 本发明不局限于上述实 施方式。
根据本发明的技术方案, 如图 31所示, 该系统还包括与多个出料口 318—一对应的第二料位 开关 3110, 即每个出料口 318上方设置有一个对应的第二料位开关 3110。 所述二料位开关 3110为 任意可以实现料位检测并输出检测信号的料位检测装置, 例如料位计, 料位计例如可以为电容式料 位计。 电容式料位计是一种具有开关量输出的位置传感器, 该电容式料位计的测量头构成电容检测 面, 当待检测物体的料位下降到电容检测面时, 该位置传感器输出一个开关信号, 以实现料位检测。 电容式料位计为本领域常用的料位检测装置, 其工作原理为本领域技术人员所公知。
为了避免筒仓内余料过少造成料位过低, 可以将筒仓内垫底的煤料所允许的最低煤位设置为 筒仓料位下限值, 将所述第二料位开关 3110设置在筒仓底部内侧或筒仓内壁上, 只要保证第二料位 开关 3110的测量头在出料口 318的上方且在筒仓料位下限值处构成电容检测面即可,本发明不对第 二料位开关 3110的设置方式进行任何限定。
所述筒仓料位下限值可以根据实际操作的需要进行设定, 只要保证垫底煤料足够以保证落煤 不会损坏给料机即可。
根据本发明的技术方案, 当检测到所述出料口 318 上方的料位达到筒仓料位下限值时, 所述 第二料位开关 3110输出第二电信号。
本发明提供的系统还包括给料机控制器, 该给料机控制器用于控制给料机开启或关闭, 该给 料机控制器还与所述第二料位开关 3110电连接, 用于根据接收到的来自第二料位开关 3110的第二 电信号而输出控制给料机关闭的电信号到给料机, 以控制给料机关闭。
所述给料机控制器可以是 PLC (Programmable Logic Controller, 可编程逻辑控制器), PLC内 部存储有执行各种操作的指令, 通过输出操作指令可以控制各种类型的执行部件工作。 根据本发明 的技术方案,所述给料机控制器可以根据接收到的来自第二料位开关 3110的第二电信号而输出控制 给料机关闭的操作指令到给料机, 以实现对给料机的控制。 PLC为自动控制领域中常用的控制器, 其具体结构和工作原理为本领域技术人员所公知。
由此, 采用本发明提供的系统, 还可以对筒仓内的料位进行检测, 并当筒仓内的料位达到筒 仓料位下限值时, 控制给料机关闭, 避免了筒仓内煤料过少而导致落煤损坏给料机。
由于港口大型储煤筒仓的顶部设置有多个布料口 312,利用进料皮带机将煤料从布料口 312输 送进入筒仓内进行存储。 这样, 在煤料出仓和换仓不够及时的情况下, 筒仓内容易出现进料过多而 导致煤料溢出的问题, 对筒仓作业造成了影响, 严重时甚至可能引起爆炸。
为了实现筒仓内的料位检测并控制进料, 以避免筒仓进料过多, 优选情况下, 本发明提供的 系统包括: 与所述多个布料口 312—一对应的、 用于检测所述布料口 2下方的料位是否达到筒仓料 位上限值、 并当检测到所述布料口 312下方的料位达到筒仓料位上限值时输出第一电信号的第一料 位开关 319; 以及用于在接收到任一个第一料位开关 319输出的第一电信号的情况下、 输出控制进 料皮带机停止进料的电信号的皮带机控制器; 所述皮带机控制器与所述第一料位开关 319电连接。
根据本发明的一种实施方式, 所述布料口 312可以为两个, 两个布料口 312均为长条形, 并 列设置在筒仓顶部, 可以采用单线卸料进仓工艺形式, 通过在仓顶设置一条进料皮带机进行卸煤操 作, 与该进料皮带机配合工作的卸料小车在仓顶往复直线运行卸料, 由此煤料由两个布料口 312卸 入到筒仓内存储, 形成锥形堆积, 并在所述布料口 2正下方形成作为锥峰的高煤位。
根据本发明的另一种实施方式, 所述布料口 312可以为四个, 四个布料口 312均为长条形, 并列设置在筒仓顶部, 可以采用双线卸料进仓工艺形式, 通过在仓顶设置两条进料皮带机进行卸煤 操作,与所述进料皮带机配合工作的卸料小车在仓顶往复直线运行卸料, 由此煤料由四个布料口 312 卸入到筒仓内存储, 形成锥形堆积, 并在所述布料口 312正下方形成作为锥峰的高煤位。
可以根据实际操作的需要对布料口 312 的数量和排列方式进行设置, 本发明不局限于上述两 种实施方式。
根据本发明的技术方案, 如图 31所示, 该系统还包括与多个布料口 312—一对应的第一料位 开关 319, 即每个布料口 312下方设置有一个对应的第一料位开关 319。所述第一料位开关 319为任 意可以实现料位检测并输出检测信号的料位检测装置, 例如料位计, 料位计例如可以为电容式料位 计。 电容式料位计的测量头构成电容检测面, 当待检测物体的料位上升到电容检测面时, 该位置传 感器输出一个开关信号, 以实现料位检测。
为了避免筒仓进料过多, 可以将筒仓内堆积的煤料所允许达到的高煤位设置为筒仓料位上限 值, 将所述第一料位开关 319设置在筒仓顶部内侧或筒仓内壁上, 只要保证第一料位开关 319的测 量头在布料口 312的正下方且在筒仓料位上限值处构成电容检测面即可, 本发明不对第一料位开关 319的设置方式进行任何限定。
所述筒仓料位上限值可以根据筒仓的实际高度进行设定, 只要保证料位不超出布料口水平面 而导致煤料溢出即可。
根据本发明的技术方案, 当检测到所述布料口 312 下方的料位达到筒仓料位上限值时, 所述 第一料位开关 319输出第一电信号。
本发明提供的系统还包括皮带机控制器, 该皮带机控制器用于控制进料皮带机的运行, 该皮 带机控制器还与所述第一料位开关 319电连接, 用于根据接收到的来自第一料位开关 319的第一电 信号而输出控制进料皮带机停止进料的电信号到进料皮带机, 以控制进料皮带机停止运行。
所述皮带机控制器可以是 PLC, PLC 内部存储有执行各种操作的指令, 通过输出操作指令可 以控制各种类型的执行部件工作。 根据本发明的技术方案, 所述皮带机控制器可以根据接收到的来 自第一料位开关 319的第一电信号而输出控制进料皮带机停止进料的操作指令到进料皮带机, 以实 现对进料皮带机的控制。
由此, 采用本发明提供的筒仓的系统, 可以对筒仓内的料位进行检测, 并当筒仓内的料位达 到筒仓料位上限值时, 控制进料皮带机停止进料, 避免进料过多, 保证了筒仓作业的安全性。
所述皮带机控制器和所述给料机控制器可以为独立的 PLC, 分别用于控制筒仓仓顶的进料皮 带机以及仓底的给料机的工作, 所述皮带机控制器和所述给料机控制器两者也可以集成为一体, 通 过集成在同一个 PLC中来实现各自的功能。
IX. 温度检测
图 32是根据本发明的实施方式的用于筒仓的温度检测系统的结构示意图, 如图 32所示, 该 系统可以包括: 多根测温电缆 3210, 置于筒仓内, 每根测温电缆 3210上设置有多个测温点; 控制 装置 3220, 存储有预定温度参数, 该控制装置 3220分别与每根测温电缆 3210相耦合, 所述控制装 置 3220用于接收来自各个测温点的温度, 并与所存储的预定温度参数进行比较, 根据比较结果决定 是否发出报警信号。 从而能够及时发现筒仓内部的温度出现的异常, 以便于进行处理, 避免严重事 故的发生。
根据一种实施方式, 其中所述温度参数包括预定报警温度和 /或预定温度升高报警速率, 当一 个测温点或所有测温点中占预定比例的测温点的温度超过预定报警温度和 /或温度升高速率超过预 定温度升高报警速率时, 所述控制装置 3220发出报警信号。 其中所述预定比例、 预定报警温度、 预 定温度升高报警速率可以是预先设定好的。
其中测温电缆 3210可以将每个测温点检测到的温度传送给控制装置 3220。 测温电缆 3210可 以根据具体需要来决定以合适的方式来设置在筒仓中,例如可以将测温电缆 3210的一端固定在筒仓 底面, 并使得测温电缆 3210保持竖直; 可替换地, 也可以将测温电缆 3210通过保护套固定在筒仓 侧壁, 以防止测温电缆 3210被损坏, 所述保护套可以采用钢管等。
优选地, 为了更好地检测筒仓中的温度, 所述测温电缆 3210可以在筒仓中均匀分布。 设置的 测温电缆 3210的根数和每根测温电缆 3210上的测温点的个数可以根据需要来设定, 例如测温电缆 3210为 4根, 每根测温电缆 3210上有 4个测温点。 所述测温点可以采用热电阻等。
其中各个测温点与所述筒仓顶部的距离大于预定高度, 例如 250mm, 从而保证测温点深入筒 仓内的深度足够, 以便于检测到筒仓内部的温度。
优选地, 为了更全面地检测到筒仓内部的温度, 系统还可以包括设置在筒仓下部和底部的多 个测温点, 该多个测温点分别与所述控制装置 3220相耦合。从而可以根据需要检测到筒仓下部和底 部的温度, 进而与存储的预定温度参数进行比较, 根据比较结果进行下一步处理。
为了对筒仓内部的温度异常状况进行处理, 系统还可以包括物料输送装置 3230, 该物料输送 装置 3230与所述控制装置 3220相耦合,用于将所述筒仓内的物料运出筒仓;其中所述控制装置 3220 根据所述比较结果控制所述物料输送装置 3230是否将所述筒仓内的物料运出筒仓。
根据一种实施方式, 当所述温度参数包括预定倒仓温度和 /或预定温度升高倒仓速率, 当一个 测温点或所有测温点中占预定比例的测温点的温度超过预定倒仓温度和 /或温度升高速率超过预定 温度升高倒仓速率时, 所述控制装置 3220控制所述物料输送装置 3230将所述筒仓内的物料运出筒 仓。其中所述物料输送装置 3230可以为皮带机等, 该皮带机可以从筒仓的出料口延伸至筒仓外部指 定的倒仓区域, 从而将筒仓内的物料运送到筒仓外的倒仓区域。 其中所述预定倒仓温度和预定温度 升高倒仓速率可以根据需要来设定, 例如可以分别与预定报警温度和预定温度升高报警速率相同, 或者也可以分别大于预定报警温度和预定温度升高报警速率。
优选地, 系统还可以包括显示装置 3240, 该显示装置 3240与所述控制装置 3220相耦合, 用 于显示所述控制装置 3220接收到的温度。 从而可以使得工作人员直观地看到筒仓内部的温度。
优选地, 所述控制装置 3220可以采用巡检测温点的方式来获取各个测温点的温度, 以便节约 电量。
图 33是根据本发明的实施方式的用于筒仓的温度检测方法的流程图。 如图 33所示, 该方法 包括: 在步骤 3310, 在筒仓内设置多根测温电缆 3210, 在每根测温电缆 3210上设置多个测温点; 在步骤 3320, 由每个测温点检测筒仓内的温度; 在步骤 3330, 分别将每个测温点所检测到的温度与 所存储的预定温度参数进行比较, 根据比较结果决定是否进行报警。 从而能够及时发现筒仓内部的 温度出现的异常, 以便于进行处理, 避免严重事故的发生。
设置的测温电缆 3210的根数和每根测温电缆 3210上的测温点的个数可以根据需要来设定, 例如测温电缆 3210为 4根, 每根测温电缆 3210上有 4个测温点。 所述测温点可以采用热电阻等。 各个测温点与所述筒仓顶部的距离大于预定高度, 例如 250mm, 从而保证测温点深入筒仓内的深度 足够, 以便于检测到筒仓内部的温度。
其中所述温度参数可以包括预定温度和预定温度升高速率等参数, 本发明所提供的用于筒仓 的温度检测方法还可以包括: 在步骤 3340, 当一个测温点或所有测温点中占预定比例的测温点的温 度超过预定报警温度和 /或温度升高速率超过预定温度升高速率时, 进行报警。 其中所述预定比例、 预定报警温度、 预定温度升高报警速率都可以是预先设定好的。
为了对筒仓内部的温度异常状况进行处理, 本发明所提供的用于筒仓的温度检测方法还可以 包括: 根据所述比较结果来决定是否将所述筒仓内的物料运出筒仓。
根据一种实施方式, 所述温度参数包括预定倒仓温度和 /或预定温度升高倒仓速率, 本发明所 提供的用于筒仓的温度检测方法还可以包括: 当一个测温点或所有测温点中占预定比例的测温点的 温度超过预定倒仓温度和 /或温度升高速率超过预定温度升高倒仓速率时, 将所述筒仓内的物料运出 筒仓。 其中所述预定倒仓温度和预定温度升高倒仓速率可以根据需要来设定, 例如可以分别与预定 报警温度和预定温度升高报警速率相同, 或者也可以分别大于预定报警温度和预定温度升高报警速 率。
方法还可以包括显示每个测温点检测到的温度。 从而可以使得工作人员直观地看到筒仓内部 的温度。
方法还可以包括巡检测温点以获取每个测温点检测到的温度, 从而可以达到节约电量的目的。 可替换地, 例如, 可以将控制装置 3220通过与测温电缆 3210相耦合来获取测温电缆 3210上 的测温点检测到的温度改变为控制装置 3220通过直接与测温电缆 3210上的检测点相耦合来获取其 检测到的温度。
虽然在具体实施方式中分别用不同的实施方式来描述本发明提供的系统和方法的各个功能, 但是本领域技术人员可以理解的是, 本发明提供的方法和系统可以包括这些功能中的一个、 多个或 任意组合。 在上述的实施方式中描述的各个控制部件可以是单独的部件或者其子集或者全部可以整 合到一个装置中。
为了便于描述, 在以上的实施方式中, 不同的附图标记可以表示一些相同或类似的部件。 此外, 本发明的各种不同的实施方式之间也可以进行任意组合, 只要其不违背本发明的思想, 其同样应当视为本发明所公开的内容。

Claims

权利要求
1、 一种方法, 包括以下步骤:
设置格雷母线和天线箱;
地址编码发射单元生成地址编码信号并通过所述格雷母线的芯线发射地址编码信号; 通过天线箱检测所述地址编码信号并将该地址编码信号传送给地址解码接收单元; 地址解码接收单元对接收的所述地址编码信号进行解码以得到卸料小车的位置信息, 以及将 该卸料小车的位置信息发送给控制单元; 以及
所述控制单元根据得到的所述卸料小车的位置信息来控制卸料小车的运行。
2、 根据权利要求 1所述的方法, 所述控制单元包括 PLC, 其中, 该方法还包括: 将所述地址编码发射单元与所述格雷母线安装在所述卸料小车的轨道旁, 以及将所述天线箱、 地址编码接收单元和所述 PLC安装在所述卸料小车上。
3、 根据前述任一项权利要求所述的方法, 还包括:
在所述卸料小车的轨道两端安装两个接近开关, 当卸料小车进入所述接近开关的检测范围时 由所述报警装置发出报警信息。
4、 根据前述任一项权利要求所述的方法, 还包括:
通过料位计检测料位高度, 并将料位高度信息发送给所述控制单元, 所述控制单元还根据接 收的料位高度信息来控制卸料小车的运行。
5、 根据前述任一项权利要求所述的方法, 其中, 当所述控制单元从所述料位计得到的料位高 度信息表示料位高度达到预定的料位上限值时, 所述控制单元控制所述卸料小车停止卸料。
6、 根据前述任一项权利要求所述的方法, 还包括:
步骤 al ) : 检测筒仓内的料位; 以及
步骤 a2) : 在所述筒仓内的料位达到预定值时, 控制卸料装置停止对该筒仓进行卸料, 转而对 另一筒仓进行卸料。
7、 根据前述任一项权利要求所述的方法, 其中, 所述筒仓具有多个出料口,
所述步骤 al ) 包括: 分别检测所述多个出料口处的料位;
所述步骤 a2) 包括: 在所述多个出料口中的一者处的料位超出预定值时, 控制所述卸料装置 停止对所述筒仓进行卸料。
8、 根据前述任一项权利要求所述的方法, 其中, 所述卸料装置包括翻车机、 皮带机以及所述 卸料小车, 所述步骤 a2) 包括:
在所述筒仓内的料位达到预定值时, 控制翻车机、 皮带机以及卸料小车停止卸料, 并控制所 述卸料小车移动到另一筒仓, 之后控制翻车机、 皮带机以及卸料小车开始卸料; 以及
在所述筒仓内的剩余容量等于一翻车机的容量时, 控制翻车机停止卸料, 皮带机及卸料小车 继续卸料直至卸料完毕, 之后控制卸料小车移动到另一筒仓, 翻车机、 皮带机以及卸料小车再次开 始卸料。
9、 根据前述任一项权利要求所述的方法, 所述筒仓的底部设置有用于卸料的多个给料机, 所 述多个给料机的下方设置有至少一个皮带机,所述筒仓中的物料通过所述给料机卸至所述皮带机上, 其中, 该方法还包括以下步骤:
bl ) 测量所开启的皮带机上的物料流量;
hi) 将测得的物料流量与皮带机预设值进行比较;
b3 ) 根据比较结果来调整该皮带机对应的至少一个给料机的出料量;
b4) 计算预定时间段内所开启的皮带机上的物料总量, 并将该物料总量与皮带机疲劳值进行 比较; 或
, b5 ) 测量所开启的皮带机的运行时间, 并将该运行时间与疲劳时间进行比较; 以及 b6) 根据步骤 b4) 或步骤 b5 ) 的比较结果, 判断所开启的皮带机是否处于疲劳运行状态, 并 在判断该皮带机疲劳的情况下, 控制该皮带机以及该皮带机对应的给料机关闭, 或者在控制该皮带 机以及该皮带机对应的给料机关闭的同时, 还控制其他皮带机以及其他皮带机对应的给料机开启。
10、 根据前述任一项权利要求所述的方法, 其中该筒仓底部具有多个用于卸料的给料机, 该 方法还包括:
利用多个料位计来检测所述筒仓内的料位;
根据所述多个料位计所检测到的料位来调整所述多个给料机中的至少一者的出料量。
11、根据前述任一项权利要求所述的方法,其中至少部分地根据所述多个料位计中的每一个料 位计所检测到的料位来分别调整与该料位计相对应的给料机的出料量。
12、 根据前述任一项权利要求所述的方法, 其中所述根据检测到的料位来调整所述多个给料 机中的至少一者的出料量的步骤包括:
根据所述多个料位计所检测到的料位来确定所述筒仓中的模拟料位曲面;
根据所述模拟料位曲面来对所述多个给料机中的至少一者的出料量进行调整。
13、 根据前述任一项权利要求所述的方法, 其中该筒仓底部设置有用于卸料的多个给料机, 该筒仓的下方还设置有并行的多个皮带机, 其中每个皮带机分别对应于所述多个给料机中的至少一 个给料机, 该方法还包括:
cl ) 开启所述多个皮带机中的一皮带机和该皮带机所对应的全部或部分给料机;
c2) 利用多个料位计来检测所述筒仓内的料位;
c3 )根据所述多个料位计所检测到的料位或当所述皮带机运行时间超过第一预定时间时,关闭 所开启的皮带机以及该皮带机所对应的给料机, 并开启所述多个皮带机中的与正在使用的皮带机不 同的另一皮带机以及该另一皮带机所对应的全部或部分给料机。
14、 根据前述任一项权利要求所述的方法, 其中该筒仓底部设置有用于卸料的多个给料机, 该筒仓的下方还设置有并行的多个皮带机, 其中每个皮带机分别对应于所述多个给料机中的至少一 个给料机, 且每个皮带机上具有至少一个皮带秤, 该方法还包括:
dl ) 开启所述多个皮带机中的一皮带机和该皮带机所对应的全部或部分给料机;
d2) 利用开启的皮带机上的皮带秤测量该皮带机上的物料流量;
d3 ) 根据物料流量测量结果或当所述皮带机运行时间超过第一预定时间时, 关闭所开启的皮 带机以及该皮带机所对应的给料机, 并开启所述多个皮带机中的与正在使用的皮带机不同的另一皮 带机以及该另一皮带机所对应的全部或部分给料机。
15、 根据前述任一项权利要求所述的方法, 其中在步骤 d3 ) 中, 根据所述皮带机的物料流量 测量结果在第三预定时间内的累计值与疲劳值的比较结果, 来关闭所开启的皮带机以及该皮带机所 对应的给料机, 并开启所述多个皮带机中的与正在使用的皮带机不同的另一皮带机以及该另一皮带 机所对应的全部或部分给料机。
16、 根据前述任一项权利要求所述的方法, 其中当开启了一皮带机所对应的全部给料机时, 根据所述多个料位计所检测到的料位来调整当前开启的给料机的出料量。
17、 根据前述任一项权利要求所述的方法, 其中根据所述多个料位计所检测到的料位, 关闭 所开启的皮带机以及该皮带机所对应的给料机, 并开启所述多个皮带机中的与正在使用的皮带机不 同的另一皮带机以及该另一皮带机所对应的全部或部分给料机。
18、 根据前述任一项权利要求所述的方法, 其中优先根据所检测到的料位而不是所述物料流 量测量结果来确定是否关闭所开启的皮带机以及该皮带机所对应的给料机并开启所述多个皮带机中 的与正在使用的皮带机不同的另一皮带机以及该另一皮带机所对应的全部或部分给料机。
19、根据前述任一项权利要求所述的方法,其中当只开启了一皮带机所对应的 M个给料机时, 其中 M大于等于 1且小于该皮带机所对应的全部给料机的数量: 根据所述多个料位计所检测到的料位或当所述皮带机运行时间超过第二预定时间时, 使用从 该皮带机所对应的全部给料机中选择的与当前开启的 M个给料机不完全相同的 M个给料机替换当 前开启的 M个给料机进行卸料。
20、 根据前述任一项权利要求所述的方法, 其中, 所述筒仓为多个, 该多个筒仓中的每一者 的底部具有至少一个用于卸料的出料口, 在每个所述出料口处设置有给料机, 在所述多个筒仓的出 料口下方设置有皮带机, 该多个筒仓沿所述皮带机的传送方向排列, 多个筒仓储存至少两种煤品, 该方法包括:
根据预定煤品比例计算每种煤品的预设给料量;
按照计算的预设给料量通过调整所述多个筒仓的给料机的单位时间出料量来控制该多个筒仓 的出料, 以得到混配比例为预定煤品比例的混配煤。
21、 根据前述任一项权利要求所述的方法, 还包括: 在所述皮带机下方与至少一个所述给料 机对应的位置处设置有皮带秤, 通过皮带秤来测量所述皮带机上的物料量, 并将测得的物料量与预 设给料量进行比较, 根据比较结果来控制所述给料机的单位时间出料量。
22、 根据前述任一项权利要求所述的方法, 还包括:
当皮带秤测得的物料量大于所述预设给料量时, 控制使得与该皮带秤所对应的给料机的出料 量减小; 和 /或
当皮带秤测得的物料量小于所述预设给料量时, 控制使得与该皮带秤所对应的给料机的出料 量增大。
23、 根据前述任一项权利要求所述的方法, 还包括:
el ) : 设置一倒仓区, 该倒仓区位于筒仓外部; 以及
e2) : 在存在发生自燃的可能性时, 将所述筒仓内的物料运至所述倒仓区;
其中, 所述步骤 e2) 包括:
检测所述筒仓内的环境参数; 以及
在所述环境参数大于预定值时, 将所述筒仓内的物料运至所述倒仓区, 其中, 所述环境参数 包括可燃气体浓度、 CO和碳氢化合物的复合浓度、 链垸比以及烟雾浓度中的一者或多者。
24、 根据前述任一项权利要求所述的方法, 其中, 将所述筒仓内的物料运至所述倒仓区由皮 带机执行, 所述步骤 e2) 还包括:
在控制所述皮带机将所述筒仓内的物料运至倒仓区时, 控制在所述皮带机的运送方向上位于 所述筒仓前侧的不存在发生自燃可能性的筒仓卸料, 以于所述皮带机的皮带上铺一层物料。
25、 根据前述任一项权利要求所述的方法, 还包括:
fl ) : 设置一倒仓区, 该倒仓区位于筒仓外部;
O) : 检测所述筒仓内的温度; 以及
β ) : 在所述述筒仓内的温度和 /或升温速率大于预定值时, 将所述筒仓内的物料运至所述倒仓 区;
26、 根据前述任一项权利要求所述的方法, 其中, 所述步骤 f2) 包括: 于所述筒仓的筒仓壁 下部及底部设置多个测温点, 检测该筒仓壁下部及底部的温度;
所述步骤 f3 ) 包括: 在一个或多个测温点所检测的温度和 /或升温速率高于预定值时, 将所述 筒仓内的物料运至所述倒仓区。
27、 根据前述任一项权利要求所述的方法, 其中, 所述筒仓包括多个温度检测区, 所述步骤 f2)包括: 于所述多个温度检测区内分别设置测温电缆, 该测温电缆于所述温度检测区的中间垂下, 检测所述温度检测区的温度;
所述步骤 f3 ) 包括: 在一个或多个温度检测区的温度和 /或升温速率高于预定值时, 将所述筒 仓内的物料运至所述倒仓区。
28、 根据前述任一项权利要求所述的方法, 其中, 将所述筒仓内的物料运至所述倒仓区由皮 带机执行, 所述步骤 f3 ) 还包括:
在控制所述皮带机将所述筒仓内的物料运至倒仓区时, 控制在所述皮带机的运送方向上位于 所述筒仓前侧的温度和升温速率均小于预定值的筒仓卸料, 以于所述皮带机的皮带上铺一层物料。
29、 根据前述任一项权利要求所述的方法, 还包括:
在筒仓内设置多根测温电缆, 在每根测温电缆上设置多个测温点;
由每个测温点检测筒仓内的温度;
分别将每个测温点所检测到的温度与所存储的预定温度参数进行比较, 根据比较结果决定是 否进行报警。
30、 根据前述任一项权利要求所述的方法, 其中所述温度参数包括预定温度和 /或预定温度升 高速率, 所述方法还包括: 当一个测温点或所有测温点中占预定比例的测温点的温度超过预定温度 和 /或温度升高速率超过预定温度升高速率时, 进行报警。
31、 根据前述任一项权利要求所述的方法, 还包括根据所述比较结果来决定是否将所述筒仓 内的物料运出筒仓。
32、 根据前述任一项权利要求所述的方法, 其中所述温度参数包括预定倒仓温度和 /或预定温 度升高倒仓速率, 所述方法还包括: 当一个测温点或所有测温点中占预定比例的测温点的温度超过 预定倒仓温度和 /或温度升高速率超过预定温度升高倒仓速率时, 将所述筒仓内的物料运出筒仓。
33、 一种系统, 其中, 该系统包括控制单元、 格雷母线、 天线箱、 地址编码发射单元和地址 解码接收单元, 其中所述地址编码发射单元与所述格雷母线连接, 所述格雷母线与所述天线箱通过 电磁耦合进行通信, 所述天线箱与所述地址解码接收单元连接, 所述地址解码接收单元与所述控制 单元连接,
所述地址编码发射单元用于生成地址编码信号并通过所述格雷母线的芯线发射该地址编码信 号; 所述天线箱用于检测所述地址编码信号并将该地址编码信号传送给地址解码接收单元; 所述地 址解码接收单元用于对接收的所述地址编码信号进行解码以得到卸料小车的位置信息, 以及将该卸 料小车的位置信息发送给所述控制单元; 所述控制单元根据得到的所述卸料小车的位置信息来控制 该卸料小车的运行。
34、 根据权利要求 33所述的系统, 其中, 所述控制单元包括 PLC, 所述地址编码发射单元与 所述格雷母线安装在所述卸料小车的轨道旁, 所述天线箱、 地址编码接收单元和所述 PLC安装在所 述卸料小车上。
35、 根据权利要求 33-34中任一项所述的系统, 还包括报警装置和两个接近开关, 所述两个接 近开关安装在所述卸料小车的轨道两端, 所述报警装置与所述两个接近开关连接, 当卸料小车进入 所述接近开关的检测范围时所述报警装置发出报警信息。
36、 根据权利要求 33-35中任一项所述的系统, 还包括与所述控制单元连接的料位计, 该料位 计用于检测料位高度, 并将料位高度信息发送给所述控制单元, 所述控制单元还根据得到的该料位 高度信息来控制卸料小车的运行。
37、 根据权利要求 33-36中任一项所述的系统, 其中, 当所述控制单元从所述料位计得到的料 位高度信息表示料位高度达到预定的料位上限值时, 所述控制单元控制所述卸料小车停止卸料。
38、 根据权利要求 33-37中任一项所述的系统, 还包括变频调速器, 该变频调速器与所述控制 单元连接, 所述控制单元通过该变频调速器来调节所述卸料小车的运行速度。
39、 根据权利要求 33-38中任一项所述的系统, 其中, 所述控制单元包括 PLC和上位机, 所 述 PLC与所述地址解码接收单元连接, 所述上位机与所述 PLC进行远程通信, 所述 PLC根据所述 上位机的远程控制信号来控制卸料小车的运行。
40、 根据权利要求 33-39中任一项所述的系统, 还包括:
料位检测装置, 用于检测筒仓内的料位; 以及
控制装置, 与所述料位检测装置电连接, 用于在所述筒仓内的料位达到预定值时, 控制卸料 装置停止对该筒仓进行卸料, 转而对另一筒仓进行卸料。
41、 根据权利要求 33-40中任一项所述的系统, 其中,
所述筒仓具有多个出料口;
所述料位检测装置为分别与该多个出料口相对应的料位计, 用于分别检测该多个出料口处的 料位;
所述控制装置与所述料位计电连接, 用于在所述多个出料口中的一者处的料位超出预定值时, 控制所述卸料装置停止对所述筒仓进行卸料。
42、 根据权利要求 33-41中任一项所述的系统, 其中,
所述料位检测装置为分别位于所述它筒仓上部中间两个布料口侧的两个料位开关; 所述控制装置与所述两个料位开关电连接, 用于在该两个料位开关中的一者检测到所述筒仓 内的物料达到预定值时, 控制所述卸料装置停止对所述筒仓进行卸料。
43、 根据权利要求 33-42中任一项所述的系统, 其中, 所述卸料装置包括翻车机、 皮带机以及 所述卸料小车, 所述控制装置在所述筒仓内的料位达到预定值时, 控制翻车机、 皮带机以及卸料小 车停止卸料, 并控制所述卸料小车移动到另一筒仓, 之后控制翻车机、 皮带机以及卸料小车开始卸 料。
44、 根据权利要求 33-43中任一项所述的系统, 其中, 所述控制装置被配置为在所述筒仓内的 剩余容量等于一翻车机的容量时, 控制翻车机停止卸料, 皮带机及卸料小车继续卸料直至卸料完毕, 之后控制卸料小车移动到另一筒仓, 翻车机、 皮带机以及卸料小车再次开始卸料。
45、根据权利要求 33-44中任一项所述的系统,所述筒仓的底部设置有用于卸料的多个给料机, 所述多个给料机的下方设置有至少一个皮带机, 所述筒仓中的物料通过所述给料机卸至所述皮带机 上, 其中, 该系统还包括:
设置在每个皮带机后的皮带秤; 以及
出料控制单元, 该出料控制单元分别与所述多个给料机、 所述至少一个皮带机以及每个皮带 机后的皮带秤电连接, 该出料控制单元用于执行以下步骤:
bl ) 利用所开启的皮带机后的皮带秤测量该皮带机上的物料流量;
hi) 将测得的物料流量与皮带机预设值进行比较;
b3 ) 根据比较结果来调整该皮带机对应的至少一个给料机的出料量;
b4 ) 计算预定时间段内所开启的皮带机上的物料总量, 并将该物料总量与皮带机疲劳值 进行比较; 或
b5 ) 测量所开启的皮带机的运行时间, 并将该运行时间与疲劳时间进行比较; 以及 b6)根据步骤 b4)或步骤 b5 )的比较结果,判断所开启的皮带机是否处于疲劳运行状态, 并在判断该皮带机疲劳的情况下, 控制该皮带机以及该皮带机对应的给料机关闭, 或者在控制 该皮带机以及该皮带机对应的给料机关闭的同时,还控制其他皮带机以及其他皮带机对应的给 料机开启。
46、根据权利要求 33-45中任一项所述的系统, 其中所述筒仓在底部具有多个用于卸料的给料 机, 该系统还包括:
用来检测所述筒仓内的料位的多个料位计;
分别与所述多个料位计和所述多个给料机电连接的给料机控制单元, 该给料机控制单元用于 接收来自所述多个料位计的所检测到的料位, 并根据所检测到的料位来调整所述多个给料机中的至 少一者的出料量。
47、根据权利要求 33-46中任一项所述的系统, 其中所述给料机控制单元至少部分地根据所述 多个料位计中的每一个料位计所检测到的料位来分别调整与该料位计相对应的给料机的出料量。
48、根据权利要求 33-47中任一项所述的系统, 其中所述给料机控制单元根据所述多个料位计 所检测到的料位来确定所述筒仓中的模拟料位曲面, 并根据所述模拟料位曲面来对所述多个给料机 中的至少一者的出料量进行调整。
49、根据权利要求 33-48中任一项所述的系统, 其中所述筒仓底部设置有用于卸料的多个给料 机, 该筒仓的下方还设置有并行的多个皮带机, 其中每个皮带机分别对应于所述多个给料机中的至 少一个给料机, 该系统还包括:
用来检测所述筒仓内的料位的多个料位计;
分别与所述多个料位计、 所述多个给料机和所述多个皮带机电连接的控制单元, 该控制单元 用于:
开启所述多个皮带机中的一皮带机和该皮带机所对应的全部或部分给料机;
接收来自所述多个料位计的所检测到的料位;
根据所述多个料位计所检测到的料位或当所述皮带机运行时间超过第一预定时间时, 关闭所 开启的皮带机以及该皮带机所对应的给料机, 并开启所述多个皮带机中的与正在使用的皮带机不同 的另一皮带机以及该另一皮带机所对应的全部或部分给料机。
50、根据权利要求 33-49中任一项所述的系统, 其中所述控制单元还用于当开启了一皮带机所 对应的全部给料机时, 根据所述多个料位计所检测到的料位来调整当前开启的给料机的出料量。
51、根据权利要求 33-50中任一项所述的系统, 其中所述控制单元还用于当只开启了一皮带机 所对应的 M个给料机时,根据所述多个料位计所检测到的料位或当所述皮带机运行时间超过第二预 定时间时,使用从该皮带机所对应的全部给料机中选择的与当前开启的 M个给料机不完全相同的 M 个给料机替换当前开启的 M个给料机进行卸料, 其中 M大于等于 1且小于该皮带机所对应的全部 给料机的数量。
52、根据权利要求 33-51中任一项所述的系统,其中该筒仓底部设置有用于卸料的多个给料机, 该筒仓的下方还设置有并行的多个皮带机, 其中每个皮带机分别对应于所述多个给料机中的至少一 个给料机, 该系统还包括:
多个皮带秤, 其中在所述多个皮带机中的每一个皮带机上都至少设置有一个皮带秤; 分别与所述多个给料机、 所述多个皮带机以及所述多个皮带秤电连接的控制单元, 该控制单 元用于:
开启所述多个皮带机中的一皮带机和该皮带机所对应的全部或部分给料机;
接收来自所开启的皮带机的皮带秤所测量的物料流量;
根据所述物料流量或当所述皮带机运行时间超过第一预定时间时, 关闭所开启的皮带机以及 该皮带机所对应的给料机, 并开启所述多个皮带机中的与正在使用的皮带机不同的另一皮带机以及 该另一皮带机所对应的全部或部分给料机。
53、 根据权利要求 33-52中任一项所述的系统, 其中, 所述控制单元还用于根据所述皮带机的 物料流量测量结果在第三预定时间内的累计值与疲劳值的比较结果, 来关闭所开启的皮带机以及该 皮带机所对应的给料机, 并开启所述多个皮带机中的与正在使用的皮带机不同的另一皮带机以及该 另一皮带机所对应的全部或部分给料机。
54、根据权利要求 33-53中任一项所述的系统, 其中所述控制单元还用于利用多个料位计来检 测所述筒仓内的料位。
55、根据权利要求 33-54中任一项所述的系统, 其中所述控制单元还用于根据所述多个料位计 所检测到的料位, 关闭所开启的皮带机以及该皮带机所对应的给料机, 并开启所述多个皮带机中的 与正在使用的皮带机不同的另一皮带机以及该另一皮带机所对应的全部或部分给料机。
56、根据权利要求 33-55中任一项所述的系统, 其中所述控制单元优先根据所检测到的料位而 不是所述物料流量测量结果来确定是否关闭所开启的皮带机以及该皮带机所对应的给料机并开启所 述多个皮带机中的与正在使用的皮带机不同的另一皮带机以及该另一皮带机所对应的全部或部分给 料机。
57、 根据权利要求 33-56中任一项所述的系统, 其中, 所述多个筒仓的每个筒仓的底部具有至 少一个用于卸料的出料口, 在每个所述出料口处设置有给料机, 所述皮带机设置于所述多个筒仓的 出料口下方, 所述多个筒仓沿所述皮带机的传送方向排列, 该多个筒仓储存至少两种煤品, 所述控 制单元与所述给料机连接, 用于按照计算的预设给料量通过调整所述多个筒仓的给料机的单位时间 出料量来控制该多个筒仓的出料, 以得到混配比例为预定煤品比例的混配煤, 其中所述预设给料量 是根据预定煤品比例来计算得到的。
58、 根据权利要求 33-57中任一项所述的系统, 其中, 所述皮带秤分别设置在所述皮带机下方 与每个所述给料机对应的位置处, 用于测量所述皮带机上的物料量, 所述控制单元与该皮带秤连接, 用于将并将测得的物料量与预设给料量值进行比较, 并根据比较结果来控制所述给料机的单位时间 出料量。
59、 根据权利要求 33-58中任一项所述的系统, 其中, 所述控制单元当确定由所述皮带秤测得 的物料量大于所述预设给料量时, 控制使得所述皮带秤所对应的给料机的出料量减小; 和 /或
当确定由所述皮带秤测得的物料量小于所述预设给料量时, 控制使得所述皮带秤所对应的给 料机的出料量增大。
60、 根据权利要求 33-59中任一项所述的系统, 还包括:
物料输送装置, 该物料输送装置用于将所述筒仓内的物料运至一位于该筒仓外部的倒仓区; 控制装置, 该控制装置与所述物料输送装置电连接, 用于在存在发生自燃的可能性的情况下, 控制所述物料输送装置将筒仓内的物料运至所述倒仓区;
可燃气体浓度红外检测装置, 该可燃气体浓度红外检测装置位于所述筒仓内, 且与所述控制 装置电连接, 用于检测所述筒仓内的可燃气体浓度, 并将检测结果发送至所述控制装置;
所述控制装置在所述可燃气体浓度大于预定值时, 控制所述物料输送装置将筒仓内的物料运 至所述倒仓区;
可燃气体浓度采样检测装置, 该可燃气体浓度采样检测装置与所述控制装置电连接, 用于检 测所述筒仓内 CO和碳氢化合物的复合浓度或链垸比, 并将检测结果发送至所述控制装置;
所述控制装置在所述复合浓度或链垸比大于预定值时, 控制所述物料输送装置将筒仓内的物 料运至所述倒仓区; 以及
烟雾浓度检测装置, 该烟雾浓度检测装置与所述控制装置电连接, 用于检测所述筒仓内的烟 雾浓度, 并将检测结果发送至所述控制装置;
所述控制装置在所述烟雾浓度大于预定值时, 控制所述物料输送装置将筒仓内的物料运至所 述倒仓区。
61、根据权利要求 33-60中任一项所述的系统, 其中, 所述控制装置在控制所述皮带机将所述 筒仓内的物料运至倒仓区时, 控制在所述皮带机的运送方向上位于所述筒仓前侧的不存在发生自燃 可能性的筒仓卸料, 以于所述皮带机的皮带上铺一层物料。
62、 根据权利要求 33-61中任一项所述的系统, 还包括:
温度检测装置, 该温度检测装置用于检测所述筒仓内的温度;
所述控制装置与所述温度检测装置和物料输送装置电连接, 用于在所述述筒仓内的温度和 /或 升温速率大于预定值时, 控制所述物料输送装置将所述筒仓内的物料运至所述倒仓区。
63、 根据权利要求 33-62中任一项所述的系统, 其中, 所述温度检测装置包括多个测温点, 该 多个测温点位于所述筒仓的筒仓壁下部及底部, 用于检测该筒仓壁下部及底部的温度;
所述控制装置在一个或多个测温点所检测的温度和 /或升温速率高于预定值时, 控制所述物料 输送装置将筒仓内的物料运至所述倒仓区。
64、 根据权利要求 33-63中任一项所述的系统, 其中, 所述筒仓包括多个温度检测区, 所述温 度检测装置包括多根测温电缆, 该多根测温电缆分别与该多个温度检测区相对应, 并于各自的温度 检测区的中间垂下, 分别用于检测所述温度检测区的温度;
所述控制装置在一个或多个温度检测区的温度和 /或升温速率高于预定值时, 控制所述物料输 送装置将筒仓内的物料运至所述倒仓区。
65、根据权利要求 33-64中任一项所述的系统, 其中, 所述控制装置在控制所述皮带机将所述 筒仓内的物料运至倒仓区时, 控制在所述皮带机的运送方向上位于所述筒仓前侧的温度和升温速率 均小于预定值的筒仓卸料, 以于所述皮带机的皮带上铺一层物料。
66、根据权利要求 33-65中任一项所述的系统,其中,所述筒仓具有多个布料口, 该系统包括: 与所述多个布料口一一对应的、 用于检测所述布料口下方的料位是否达到筒仓料位上限值、 并当检 测到所述布料口下方的料位达到筒仓料位上限值时输出第一电信号的第一料位开关; 以及用于在接 收到任一个第一料位开关输出的第一电信号的情况下、 输出控制进料皮带机停止进料的电信号的皮 带机控制器; 所述皮带机控制器与所述第一料位开关电连接。
67、 根据权利要求 33-66中任一项所述的系统, 其中, 所述筒仓具有多个出料口, 该系统还包 括: 与所述多个出料口一一对应的、 用于检测所述出料口上方的料位是否低于筒仓料位下限值、 并 当检测到所述出料口上方的料位低于筒仓料位下限值时输出第二电信号的第二料位开关; 以及用于 在接收到任一个第二料位开关输出的第二电信号的情况下、 输出控制与该第二料位开关对应的出料 口处的给料机关闭的电信号的给料机控制器; 所述给料机控制器与所述第二料位开关电连接。
68、 根据权利要求 33-67中任一项所述的系统, 其中, 所述筒仓具有多个出料口, 该系统还包 括: 与所述多个出料口一一对应的、 用于检测所述出料口上方的料位是否低于筒仓料位下限值、 并 当检测到所述出料口上方的料位低于筒仓料位下限值时输出第二电信号的第二料位开关; 以及用于 在接收到任一个第二料位开关输出的第二电信号的情况下、 输出控制与该第二料位开关对应的出料 口处的给料机关闭的电信号的给料机控制器; 所述给料机控制器与所述第二料位开关电连接。
69、 根据权利要求 33-68中任一项所述的系统, 其中, 所述筒仓具有多个布料口, 该系统还包 括: 与所述多个布料口一一对应的、 用于检测所述布料口下方的料位是否达到筒仓料位上限值、 并 当检测到所述布料口下方的料位达到筒仓料位上限值时输出第一电信号的皮带机控制器; 以及用于 在接收到任一个皮带机控制器输出的第一电信号的情况下、 输出控制进料皮带机停止进料的电信号 的皮带机控制器; 所述皮带机控制器与所述皮带机控制器电连接。
70、 根据权利要求 33-69中任一项所述的系统, 还包括:
多根测温电缆, 置于筒仓内, 每根测温电缆上设置有多个测温点;
控制装置, 存储有预定温度参数, 该控制装置分别与每根测温电缆相耦合, 所述控制装置用 于接收来自各个测温点的温度, 并与所存储的预定温度参数进行比较, 根据比较结果决定是否发出 报警信号。
71、 根据权利要求 33-70 中任一项所述的系统, 其中所述温度参数包括预定报警温度和 /或预 定温度升高报警速率, 当一个测温点或所有测温点中占预定比例的测温点的温度超过预定报警温度 和 /或温度升高速率超过预定温度升高报警速率时, 所述控制装置发出报警信号。
72、 根据权利要求 33-71中任一项所述的系统, 还包括设置在筒仓下部和底部的多个测温点, 该多个测温点分别与所述控制装置相耦合。
73、 根据权利要求 33-72中任一项所述的系统, 还包括物料输送装置, 该物料输送装置与所述 控制装置相耦合, 用于将所述筒仓内的物料运出筒仓; 其中所述控制装置根据所述比较结果控制所 述物料输送装置是否将所述筒仓内的物料运出筒仓。
74、 根据权利要求 33-73 中任一项所述的系统, 其中所述温度参数包括预定倒仓温度和 /或预 定温度升高倒仓速率, 当一个测温点或所有测温点中占预定比例的测温点的温度超过预定倒仓温度 和 /或温度升高速率超过预定温度升高倒仓速率时, 所述控制装置控制所述物料输送装置将所述筒仓 内的物料运出筒仓。
PCT/CN2012/079218 2012-07-26 2012-07-26 用于筒仓的方法和系统 WO2014015505A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2012/079218 WO2014015505A1 (zh) 2012-07-26 2012-07-26 用于筒仓的方法和系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2012/079218 WO2014015505A1 (zh) 2012-07-26 2012-07-26 用于筒仓的方法和系统

Publications (1)

Publication Number Publication Date
WO2014015505A1 true WO2014015505A1 (zh) 2014-01-30

Family

ID=49996508

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/079218 WO2014015505A1 (zh) 2012-07-26 2012-07-26 用于筒仓的方法和系统

Country Status (1)

Country Link
WO (1) WO2014015505A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201012841Y (zh) * 2006-04-18 2008-01-30 武汉利德测控技术股份有限公司 自动化立体仓库的定位系统
CN201473048U (zh) * 2009-09-23 2010-05-19 首钢总公司 皮带机自动卸料小车
CN101934942A (zh) * 2010-07-30 2011-01-05 中国神华能源股份有限公司 用于调车设备的速度控制系统和调车系统
WO2011159290A1 (en) * 2010-06-16 2011-12-22 Otis Elevator Company Method and system for determining elevator car position
CN102359299A (zh) * 2011-07-26 2012-02-22 中国神华能源股份有限公司 筒仓

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201012841Y (zh) * 2006-04-18 2008-01-30 武汉利德测控技术股份有限公司 自动化立体仓库的定位系统
CN201473048U (zh) * 2009-09-23 2010-05-19 首钢总公司 皮带机自动卸料小车
WO2011159290A1 (en) * 2010-06-16 2011-12-22 Otis Elevator Company Method and system for determining elevator car position
CN101934942A (zh) * 2010-07-30 2011-01-05 中国神华能源股份有限公司 用于调车设备的速度控制系统和调车系统
CN102359299A (zh) * 2011-07-26 2012-02-22 中国神华能源股份有限公司 筒仓

Similar Documents

Publication Publication Date Title
CN209125989U (zh) 一种用于镁碳砖制品的生产线
CN102323805A (zh) 一种快速装车自动控制系统
CN102849424B (zh) 物料输送系统及方法
CN102756923A (zh) 港口煤炭转运方法和煤炭港口
JP2013112483A (ja) ベルトコンベヤ装置の制御方法並びにベルトコンベヤ設備
CN103910209B (zh) 铁合金电炉炉顶环形轨道加料系统
CN108238454A (zh) 搅拌站原料仓自动进料系统
CN103752378A (zh) 全自动加球系统
CN104495414A (zh) 一种多缓冲仓大流量多煤种快速配仓系统和方法
CN206724217U (zh) 一种立仓式无尘生物质燃料输送系统
CN205529796U (zh) 物料加热设备及沥青混凝土搅拌站
WO2014015505A1 (zh) 用于筒仓的方法和系统
CN108724513A (zh) Pvc自动混料系统
WO2020258752A1 (zh) 物料含水率检测系统、物料含水率检测方法及搅拌站
CN102756904B (zh) 散料输送方法及系统
CN104061789B (zh) 布料设备的布料方法
CN104444443B (zh) 一种火车自动定量发运控制装置及其方法
CN208103405U (zh) 一种用于生产电熔砖的自动化加料输送系统
CN207986214U (zh) 搅拌站原料仓自动进料系统
CN207044381U (zh) 压砖机供料仓自动上料装置
CN212241682U (zh) 一种pvc塑料制品自动化混料输送系统
CN103894092A (zh) 有色矿粉等非流动性物料的混掺加工设备及工艺
CN104876220B (zh) 一种电石炉进料系统及方法
CN204057128U (zh) 装载物料装置
CN203806717U (zh) 铁合金电炉炉顶环形加料车

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12881902

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12881902

Country of ref document: EP

Kind code of ref document: A1