WO2014014161A1 - Heat transfer structure using binder for bonding reaction-bonded silicon carbide sintered body, and method for manufacturing same - Google Patents

Heat transfer structure using binder for bonding reaction-bonded silicon carbide sintered body, and method for manufacturing same Download PDF

Info

Publication number
WO2014014161A1
WO2014014161A1 PCT/KR2012/008448 KR2012008448W WO2014014161A1 WO 2014014161 A1 WO2014014161 A1 WO 2014014161A1 KR 2012008448 W KR2012008448 W KR 2012008448W WO 2014014161 A1 WO2014014161 A1 WO 2014014161A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat transfer
transfer structure
binder
solid solution
silicon
Prior art date
Application number
PCT/KR2012/008448
Other languages
French (fr)
Korean (ko)
Inventor
황성식
손녕경
Original Assignee
에스케이씨솔믹스 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 에스케이씨솔믹스 주식회사 filed Critical 에스케이씨솔믹스 주식회사
Publication of WO2014014161A1 publication Critical patent/WO2014014161A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B37/00Joining burned ceramic articles with other burned ceramic articles or other articles by heating
    • C04B37/02Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B37/00Joining burned ceramic articles with other burned ceramic articles or other articles by heating
    • C04B37/003Joining burned ceramic articles with other burned ceramic articles or other articles by heating by means of an interlayer consisting of a combination of materials selected from glass, or ceramic material with metals, metal oxides or metal salts
    • C04B37/006Joining burned ceramic articles with other burned ceramic articles or other articles by heating by means of an interlayer consisting of a combination of materials selected from glass, or ceramic material with metals, metal oxides or metal salts consisting of metals or metal salts
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B37/00Joining burned ceramic articles with other burned ceramic articles or other articles by heating
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B37/00Joining burned ceramic articles with other burned ceramic articles or other articles by heating
    • C04B37/003Joining burned ceramic articles with other burned ceramic articles or other articles by heating by means of an interlayer consisting of a combination of materials selected from glass, or ceramic material with metals, metal oxides or metal salts
    • C04B37/005Joining burned ceramic articles with other burned ceramic articles or other articles by heating by means of an interlayer consisting of a combination of materials selected from glass, or ceramic material with metals, metal oxides or metal salts consisting of glass or ceramic material
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/0006Honeycomb structures
    • C04B38/0016Honeycomb structures assembled from subunits
    • C04B38/0019Honeycomb structures assembled from subunits characterised by the material used for joining separate subunits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D9/00Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D9/0031Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other
    • F28D9/0037Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other the conduits for the other heat-exchange medium also being formed by paired plates touching each other
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F21/00Constructions of heat-exchange apparatus characterised by the selection of particular materials
    • F28F21/04Constructions of heat-exchange apparatus characterised by the selection of particular materials of ceramic; of concrete; of natural stone
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/02Aspects relating to interlayers, e.g. used to join ceramic articles with other articles by heating
    • C04B2237/04Ceramic interlayers
    • C04B2237/09Ceramic interlayers wherein the active component for bonding is not the largest fraction of the interlayer
    • C04B2237/095The active component for bonding being silicon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/02Aspects relating to interlayers, e.g. used to join ceramic articles with other articles by heating
    • C04B2237/12Metallic interlayers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/02Aspects relating to interlayers, e.g. used to join ceramic articles with other articles by heating
    • C04B2237/12Metallic interlayers
    • C04B2237/123Metallic interlayers based on iron group metals, e.g. steel
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/02Aspects relating to interlayers, e.g. used to join ceramic articles with other articles by heating
    • C04B2237/12Metallic interlayers
    • C04B2237/124Metallic interlayers based on copper
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/02Aspects relating to interlayers, e.g. used to join ceramic articles with other articles by heating
    • C04B2237/12Metallic interlayers
    • C04B2237/126Metallic interlayers wherein the active component for bonding is not the largest fraction of the interlayer
    • C04B2237/128The active component for bonding being silicon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/36Non-oxidic
    • C04B2237/365Silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/50Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
    • C04B2237/61Joining two substrates of which at least one is porous by infiltrating the porous substrate with a liquid, such as a molten metal, causing bonding of the two substrates, e.g. joining two porous carbon substrates by infiltrating with molten silicon
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2255/00Heat exchanger elements made of materials having special features or resulting from particular manufacturing processes
    • F28F2255/18Heat exchanger elements made of materials having special features or resulting from particular manufacturing processes sintered

Definitions

  • the present invention relates to a heat transfer structure and a method for manufacturing the same, and more particularly, heat transfer is required, such as a heat sink, a heat exchanger, and the like, manufactured using a bonding agent for bonding a sintered Reaction Bonded Silicon Carbide (RBSC). It relates to a heat transfer structure and a manufacturing method thereof.
  • RBSC sintered Reaction Bonded Silicon Carbide
  • Heat transfer refers to the transfer of heat and generally refers to three types of heat transfer, convection, and heat radiation between objects, but in a narrow sense, heat transfer is a phenomenon in which heat is transferred between a fluid and a solid surface.
  • This heat transfer is widely used as a structure such as a heat radiator for radiating heat to the outside, a heat exchanger for energy saving.
  • the structure using heat transfer requires high temperature heat processing in many cases, and is operating in high temperature environment.
  • the silicon carbide sintered body is usually produced by the reaction sintering method, the silicon carbide sintered body thus produced is called reaction sintered silicon carbide (RBSC).
  • RBSC has good thermal conductivity, corrosion resistance, chemical resistance and low coefficient of thermal expansion, and is suitable as a material used in high temperature region because it is less likely to be damaged even after long-term use. Accordingly, RBSC is in the spotlight as a material suitable for heat transfer structures that transmit heat such as radiators and heat exchangers.
  • RBSC since RBSC has a high strength, it takes a lot of time to shape and process the heat transfer structure, so that it is required to shorten the processing time while maintaining the high temperature characteristics of the RBSC.
  • the RBSC heat transfer structure is not molded as a whole, but a method of joining and manufacturing a single component constituting the structure with a bonding agent for ceramic bonding has been proposed.
  • the conventional bonding agent for ceramic bonding includes sodium silicate, silica, alumina, zirconium oxide, and the like.
  • the structure is prepared by attaching the single product in the form of ultrafine particles or slurry of these materials and then heating and joining in vacuum. have.
  • the bonding agent it is necessary for the bonding agent to maintain sufficient bonding strength. That is, the joints should not be damaged by mechanical shocks, residual stresses caused by thermal environmental changes, thermal shocks due to high temperatures, etc., which may be received during the manufacture or operation of the heat transfer structure.
  • heat treatment is necessary at a temperature of about 800 ° C. or more in order to bond the components and the bonding agent.
  • the conventional binder is difficult to perform the heat treatment at a temperature of about 800 °C or more.
  • the silica series which is mainly used as a conventional bonding material, has a short lifespan in a high temperature process of about 800 ° C. or higher, and thus it is almost impossible to manufacture a heat transfer structure using the same.
  • the RBSC heat transfer structure is mainly used in high temperature environment of about 800 ° C. or higher for low temperature and about 1100 ° C. or higher for high temperature, the binder composition changes with time if the conventional binder is used for a long time at the above temperature. And a large stress concentration occurs at the joint. This stress concentration causes cracks in the joints.
  • the problem to be solved by the present invention is the reaction sintered silicon carbide which can shorten the time for forming and processing, while maintaining the physical properties of the reaction-sintered silicon carbide sintered body without damaging the bonded portion in the process of manufacturing or operating the heat transfer structure
  • a heat transfer structure using a bonding agent for sintered body bonding and a method of manufacturing the same are provided.
  • the heat transfer structure using the binder for the reaction sintered silicon carbide sintered body bonding of the present invention for solving the above problems is a Si 1-x R x (R; X; is an atomic weight ratio) binder, wherein the unit is a medium in which heat of high and low temperatures is exchanged with each other.
  • the heat transfer structure may be a radiator or a heat exchanger.
  • the solid solution of the Si 1-x R x (R; is a solid solution; x is atomic weight ratio) of the silicon solid solution is maintained in the liquid phase with the silicon in the region rich in silicon, melting point It may be a material that is 800 °C or more.
  • the solid solution material may be at least one selected from aluminum, titanium, iron, magnesium, copper and germanium.
  • the aluminum is 10 to 70 at%
  • the titanium is 14 to 18 at%
  • the iron is 11 to 25 at%
  • the magnesium is 8 to 45 at%
  • the copper may be 13 to 62 at% and the germanium may be 10 to 90 at%.
  • a method of manufacturing a heat transfer structure using a binder for bonding a reaction sintered silicon carbide sintered body first prepares a plurality of RBSC units which are mediators in which heat of high temperature and low temperature are exchanged with each other. Thereafter, the unit is joined with a Si 1-x R x (R; silver solid solution; x is atomic weight ratio) binder, which is a silicon solid solution.
  • R silver solid solution
  • x is atomic weight ratio
  • the heat transfer structure may be a radiator or a heat exchanger.
  • the solid solution of the Si 1-x R x (R; is a solid solution; x is atomic weight ratio) of the silicon solid solution maintains the liquid phase with the silicon in the region rich in silicon, melting point
  • the atomic weight ratio (x) of the solid solution of the present invention which forms a solid solution of 800 ° C. or more, the aluminum is 10 to 70 at%, the titanium is 14 to 18 at%, the iron is 11 to 25 at%, and the magnesium 8 to 45 at% silver, 13 to 62 at% copper and 10 to 90 at% germanium.
  • the Si 1-x R x (R; silver solid solution; x is atomic weight ratio) binder containing the solid solution having a lower melting point than the silicon is first sintered at a temperature higher than the melting point of the solid solution, Secondary sintering can be carried out at a higher temperature than the primary sintering. Specifically, the solid solution is first sintered to coat the outside of the silicon, and the second solid solution reacts with the silicon through the second sintering Si 1-x R x (R; is a solid solution; x is Atomic weight ratio) binders can be achieved.
  • the heat transfer structure in the manufacturing method of the present invention is heated to 900 °C for 3 minutes, maintained for 10 minutes and then repeated 15 times the thermal shock cycle (cycle) to lower for 5 minutes to 200 °C measured the measured strength of thermal shock Preferably less than 10 MPa, more preferably less than 5 MPa compared to before adding.
  • a heat transfer structure is manufactured by manufacturing a heat transfer structure by joining a single component of the RBSC sintered compact with a bonding agent composed of a solid solution of silicon. In the process, the bonding part is not damaged and the time for forming and processing can be shortened while maintaining the physical properties of the RBSC sintered body.
  • FIG. 1 is a cross-sectional view showing a radiator according to the present invention.
  • FIG. 2 is a perspective view showing a heat exchanger according to the present invention.
  • Embodiment of the present invention by bonding a single piece consisting of a reaction bonded silicon carbide (RBSC) sintered body with a bonding agent made of a solid solution of silicon to produce a heat transfer structure, the joint portion in the process of manufacturing or operating the heat transfer structure
  • the present invention provides a heat transfer structure using a bonding agent for bonding RBSC sintered compacts and a method of manufacturing the same, which can shorten the time for forming and processing while maintaining the physical properties of the RBSC sintered compact without causing damage.
  • the heat transfer structure refers to the exchange of heat between the fluid and the solid surface
  • the embodiment of the present invention proposes a heat sink and a heat exchanger as a heat transfer structure. At this time, since the embodiment of the present invention solves the problem of the conventional heat transfer structure, the present invention limits its application to the heat transfer structure.
  • RBSC sintered body has a structure in which silicon (Si) is melted and impregnated into a porous network structure made of silicon carbide, and a part of the silicon is again carbonized to become silicon carbide, and the remainder is silicon.
  • the bonding agent for bonding the RBSC sintered body can be bonded at a temperature at which silicon remaining in the RBSC does not elute, and the bonding agent must maintain stability at a high temperature.
  • the binder should be melted and easily impregnated with RBSC, and the coefficient of thermal expansion between the binder and RBSC should be similar.
  • a silicon solid solution Si 1-x R x (R; is a solid solution; x is an atomic weight ratio) as a binder for bonding RBSC sintered bodies satisfying the above conditions.
  • the solid solution (R) has a crystal structure such as silicon, has a similar atomic radius, a similar electronegativity, and a similar electrical appliance.
  • a material capable of maintaining a liquid phase with silicon and stably synthesizing with silicon is particularly preferable in a silicon-rich region on the state diagram.
  • the solid solution (R) that satisfies all of these conditions may include at least one selected from aluminum (Al), titanium (Ti), iron (Fe), magnesium (Mg), copper (Cu), and germanium (Ge).
  • the atomic weight ratio (x) of Si 1-x R x is such that the solid solution (R) is made of aluminum because the RBSC sintered body to which the bonding is made must satisfy the above conditions in an environment of high temperature, for example, about 800 ° C. or higher.
  • X is 10 to 70 at%
  • titanium is 14 to 18 at%
  • iron is 11 to 25 at%
  • magnesium is 8 to 45 at%
  • copper is 13 to 62 at%
  • germanium is 10 to 90 at% Is preferred.
  • Si 1-x R x according to the present invention that satisfies the atomic weight ratio (x) has a melting point of at least 800 ° C. or higher, and therefore can be easily applied to the high temperature environment sought in the present invention.
  • the binder may be prepared by mixing the silicon and the solid solution (R) in powder form, respectively, and may be preferably mixed by ball milling, and the mixing may include two powders having an average particle diameter of about 50 ⁇ m. Can be mixed via ball milling for approximately 6 hours.
  • the powder mixed in this way may be used as the binder by the sintered body itself by the sintering process, or may be used as a binder in the form of powder obtained by grinding the sintered body.
  • the pressing powder may be selectively pressed on the powder mixed before the sintering process. It is also possible to use a powdered binder in the form of a slurry mixed with a solvent (preferably an organic solvent which can act as a carbon source).
  • the binder may be prepared by a conventional one-step sintering process (also called a single sintering process).
  • the melting point of the solid solution (R) is lower than silicon can be made in two steps. That is, first, the solid solution (R) is applied to the silicon, the first sintering at a temperature slightly higher than the melting point of the solid solution to melt the solid solution (R), the solid solution (R) diffuses around the silicon powder In this way, the solid solution R easily diffuses into the silicon. Thereafter, the secondary sintering proceeds at a temperature higher than the primary sintering temperature to complete the bonding agent.
  • the Si 1-x R x binder is injected into the bonding surface of the RBSC unit, and then manufactured by sintering it.
  • Table 1 shows a process for preparing a silicon solid solution binder applied to the heat transfer structure according to the embodiment of the present invention according to the lower limit atomic ratio (at%) and the upper limit atomic ratio (at%) of the solid solution (R). And the temperature of the process (bonding process) of joining a heat transfer structure using the said bonding agent.
  • Table 1 Solid substance Process name Lower limit maximum at% Temperature range (°C) at% Temperature range (°C) aluminum Binder manufacturing 10 600-1300 70 600-810 Bonding process 1350-1400 800-1400 titanium Binder manufacturing 14 1000-1200 18 1000-1300 Bonding process 1350-1400 1350-1400 iron Binder manufacturing 11 900-1300 25 900-1200 Bonding process 1350-1400 1220-1400 magnesium Binder manufacturing 8 900-1300 45 900-1000 Bonding process 1350-1400 1050-1400 Copper Binder manufacturing 13 810-1300 62 700-900 Bonding process 1350-1400 950-1400 germanium Binder manufacturing 10 1000-1300 90 900-950 Bonding process 1350-1400 1050-1400
  • the heat transfer structure produced by the bonding agent of the present invention is produced through heat treatment at a temperature of about 80 °C to 1400 °C. Accordingly, the bonding agent according to the embodiment of the present invention maintains stability at the heat treatment temperature performed to manufacture the heat transfer structure, and can be bonded at a temperature at which silicon remaining in the RBSC does not elute. That is, since the binder of the present invention has a lower melting point than that of the RBSC sintered body, which is a joined object, silicon is not eluted from the RBSC sintered body.
  • the binder of the present invention contains a liquid phase, it is easy to impregnate the RBSC sintered body, and the thermal expansion coefficient of the binder and the RBSC sintered body is similar because it is a solid solution of silicon forming the RBSC sintered body.
  • the heat transfer structure using the binder for the reaction sintered silicon carbide sintered body bonding of the present invention can be applied to all structures made of a method of exchanging heat between high and low temperatures by exchanging heat.
  • the radiator and the heat exchanger operate in such a manner that the heat of the high temperature and the low temperature exchange with each other, and when used for a long time, the binder composition should not cause a change over time.
  • the radiator and heat exchanger made of the RBSC sintered body to which the binder of the present invention is applied will be described.
  • the high temperature characteristics of the conventional silica binder and the silicon solid solution binder of the present invention were compared through thermal shock strength.
  • radiator 1 is a cross-sectional view showing a radiator according to an embodiment of the present invention. Since only one example of a radiator is presented here, all of the radiators manufactured using the Si 1-x R x binder in the scope of the present invention, that is, the RBSC sintered body, will be applied. At this time, the radiator refers to a device for dissipating heat by radiation, convection, etc. by receiving steam or hot water.
  • the radiator 100 of the present invention is attached to a heat-radiating body 10 for radiating heat, for example, a deposition apparatus, and in some cases, may be a dummy wafer of the deposition apparatus.
  • the radiator 100 includes a heat sink 16, which is a main body of heat transfer, and a supporting rod 12 supporting the heat sink 16.
  • the heat dissipation plate 16 is preferably in the form of a disc, is made of an RBSC sintered body, and is spaced apart from each other at regular intervals.
  • the support rod 12 is made of an RBSC sintered body and passes through a plurality of holes in the heat dissipation plate 16 to connect with the support 14 and the heat-radiating body 10.
  • the heat sink 16 is fixed to the support rod 12 by the Si 1-x R x bonding agent 18 of the present invention, it may be formed in the junction of the support rod 12 to increase the adhesive force.
  • the heat sink 100 is manufactured by fixing the heat sink 16 to the support rod 12 by the Si 1-x R x bonding agent 18, thereby shortening the time for forming and processing.
  • Thermal shock strength was confirmed by measuring the normal three-point bending strength at room temperature before and after the thermal shock.
  • the bending strength refers to the maximum tensile stress at the time of breakdown, and the breakage of the radiator made of ceramic occurs at the point where the tensile stress is dominant.
  • Thermal shock was raised to 900 °C for 3 minutes using a Rapid Thermal Annealing (RTA) equipment, and then maintained for 10 minutes, and then 15 times to lower the temperature in 5 minutes to 200 °C.
  • RTA Rapid Thermal Annealing
  • Table 2 compares the bending strengths of the radiator according to the present invention and the conventional radiator.
  • Experimental Example 1 was prepared by mixing after mixing Si: Ge in the ratio of 71:29 at% to the RBSC sintered body as a radiator of the present invention, using a binder, Comparative Experimental Example 1 is commercialized to RBSC sintered body as a conventional radiator Silica binder was used. Si: Ge was prepared here at 71:29 at%. Since the bonding material was suitable for the radiator, it was selected to confirm the properties of the bonding agent of the present invention.
  • heat treatment was performed at 1350 ° C. for 1.5 hours to bond the single parts, but the conventional commercial silica-based binders have low resistance to heat and thus lower temperatures. Heat treatment was carried out at phosphorus 900 ⁇ 1000 °C to join a single product.
  • the radiator of the present invention After the thermal shock was applied, the radiator of the present invention had a bending strength lowered to about 4 MPa, while the conventional radiator dropped by about 16 MPa. That is, the heat radiator of the present invention is suitable for use at high temperatures due to its high resistance to thermal shock, but a conventional heat radiator may be easily broken by thermal shock when used at high temperatures. Accordingly, it was confirmed that the radiator of the present invention maintains the physical properties of the RBSC sintered body without damaging the bonding portion in the process of manufacturing or operating the radiator.
  • FIG. 2 is a perspective view showing a heat exchanger according to an embodiment of the present invention. Since only one example of a heat exchanger is presented here, all of the heat exchangers fabricated using the Si 1-x R x binder in the scope of the present invention, that is, the RBSC sintered body will be applied. At this time, the heat exchanger refers to a device that performs heat transfer between the low temperature fluid and the high temperature fluid. For reference, since the metal heat exchanger has a use temperature of about 750 ° C. or lower and cannot be used in a corrosive gas atmosphere, a ceramic heat exchanger is preferable at a high temperature of about 800 ° C. or higher.
  • the heat exchanger 200 of the present invention uses the Si 1-x R x binder 54 of the present invention to provide RBSC units 51 and 53 that provide passages through which fluid flows through partition walls. It is made by laminating them.
  • the heat exchanger 200 is completed by finishing the one side of the laminations 51 and 53 with the RBSC cover 50.
  • the single products 51 and 53 are laminated
  • the first fluid may be a hot gas
  • the second fluid may be air at room temperature.
  • the heat exchanger 200 is manufactured by laminating the single products 51 and 53 with the Si 1-x R x bonding agent 54, whereby the time for forming and processing can be shortened.
  • Table 3 compares the bending strength of the heat exchanger according to the present invention and the conventional heat exchanger.
  • Experimental Example 2 used a SiGe binder in the RBSC sintered body as the heat exchanger of the present invention
  • Comparative Example 2 used silica in the RBSC sintered body as a conventional heat exchanger.
  • the bending strength was measured in the same manner as in Table 2.
  • the heat exchanger of the present invention was reduced in bending strength by about 4 MPa, while the conventional radiator was dropped by about 18 MPa. That is, the heat exchanger of the present invention is suitable for use at high temperatures because of its high resistance to thermal shock, but the conventional heat exchanger can be easily broken by thermal shock when used at high temperatures. Accordingly, it was confirmed that the heat exchanger of the present invention maintains the physical properties of the RBSC sintered body without damaging the bonded portion in the process of manufacturing or operating the same.
  • the conventional radiator and the heat exchanger have a bending strength of about 16 MPa and 18 MPa, respectively, in the thermal shock test. It is apparent that such a decrease in bending strength cannot be used for a long time in a high temperature environment of a conventional radiator and heat exchanger. Therefore, if the bending strength is less than 10 MPa in the thermal shock test conditions, it can be used as a radiator and heat exchanger, preferably 7MPa, more preferably 5MPa.
  • the radiator and heat exchanger of the present invention satisfies the above conditions because the bending strength fluctuates by about 4 MPa.
  • the binder proposed in the present invention is the optimal binder that satisfies this. Therefore, when the said radiator and heat exchanger are manufactured using the binder of this invention, it can operate stably at high temperature. This is because the conventional radiator and heat exchanger did not solve the problem of cracking when used for a long time, but because the problem of cracking during the operation of the radiator and heat exchanger made of RBSC sintered body by the bonding agent of the present invention has been solved.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Ceramic Products (AREA)

Abstract

The present invention relates to a heat transfer structure using a binder for bonding a reaction-bonded silicon carbide sintered body, and to a method for manufacturing same, which can prevent a bonded part from being damaged during the production or operation of the heat transfer structure, and can reduce molding and processing time while maintaining the physical properties of the reaction-bonded silicon carbide sintered body. In the structure and the method according to the present invention, bonding is achieved by using a silicon solid solution, i.e. a Si1-xRx (R: solute, X: atomic weight ratio) binder, which is a medium through which high-temperature heat and low-temperature heat is exchanged and by means of which a plurality of single components consisting of RBSC sintered bodies are bonded, and then sintering.

Description

반응소결 탄화규소 소결체 접합용 접합제를 이용한 열전달 구조체 및 그 제조방법Heat transfer structure using the binder for reaction sintered silicon carbide sintered body and its manufacturing method
본 발명은 열전달 구조체 및 그 제조방법에 관한 것으로, 보다 상세하게는 반응소결 탄화규소(Reaction Bonded Silicon Carbide; RBSC) 소결체를 접합하기 위한 접합제를 이용하여 제조된 방열기, 열교환기 등과 같이 열전달을 필요로 하는 열전달 구조체 및 그 제조방법에 관한 것이다. The present invention relates to a heat transfer structure and a method for manufacturing the same, and more particularly, heat transfer is required, such as a heat sink, a heat exchanger, and the like, manufactured using a bonding agent for bonding a sintered Reaction Bonded Silicon Carbide (RBSC). It relates to a heat transfer structure and a manufacturing method thereof.
열전달이란 열(熱)이 이동하는 것을 말하며, 일반적으로 물체들 사이에 열전도, 대류 및 열복사 등 3가지 형태를 총칭하는 것이지만, 좁은 의미로는 유체와 고체 표면 사이에서 열을 주고받는 현상을 가리킨다. 이러한 열전달은 열을 외부로 방출하는 방열기, 에너지 절감을 위한 열교환기 등의 구조체로써 매우 다양하게 활용되고 있다. 그런데, 열전달을 이용한 구조체는, 많은 경우에, 고온의 열처리가 필요하고, 또한 고온의 환경에서 운전되고 있다. Heat transfer refers to the transfer of heat and generally refers to three types of heat transfer, convection, and heat radiation between objects, but in a narrow sense, heat transfer is a phenomenon in which heat is transferred between a fluid and a solid surface. This heat transfer is widely used as a structure such as a heat radiator for radiating heat to the outside, a heat exchanger for energy saving. By the way, the structure using heat transfer requires high temperature heat processing in many cases, and is operating in high temperature environment.
한편, 탄화규소 소결체는 통상적으로 반응소결법에 의해 제조되는 데, 이와 같이 제조된 탄화규소 소결체를 반응소결 탄화규소(RBSC)라고 한다. RBSC는 열전도성, 내식성, 내화학성이 좋고 열팽창률이 낮아서, 장기간 사용해도 파손의 우려가 적어 고온 영역에서 사용되는 재료로 적합하다. 이에 따라, RBSC는 방열기, 열교환기와 같이 열을 주고받는 열전달 구조체에 적합한 재료로 각광을 받고 있다. 그런데, RBSC는 강도가 높기 때문에, 열전달 구조체를 성형하고 가공하는 데 많은 시간이 소요되므로 가공시간을 단축하면서, RBSC의 고온 특성은 그대로 유지하는 것이 요구된다. On the other hand, the silicon carbide sintered body is usually produced by the reaction sintering method, the silicon carbide sintered body thus produced is called reaction sintered silicon carbide (RBSC). RBSC has good thermal conductivity, corrosion resistance, chemical resistance and low coefficient of thermal expansion, and is suitable as a material used in high temperature region because it is less likely to be damaged even after long-term use. Accordingly, RBSC is in the spotlight as a material suitable for heat transfer structures that transmit heat such as radiators and heat exchangers. However, since RBSC has a high strength, it takes a lot of time to shape and process the heat transfer structure, so that it is required to shorten the processing time while maintaining the high temperature characteristics of the RBSC.
최근에는 상기 RBSC 열전달 구조체를 전체적으로 성형하는 것이 아니고, 상기 구조체를 이루는 단품을 세라믹 접합용 접합제로 접합하여 제조하는 방법이 제시되고 있다. 한편, 종래의 세라믹 접합용 접합제는 규산 탄산나트륨, 실리카, 알루미나, 산화지르코늄 등이 있으며, 이러한 물질들의 초미세한 입자 또는 슬러리 상태로 상기 단품을 부착한 후 진공 중에 가열하여 접합시켜 상기 구조체를 제작하고 있다. Recently, the RBSC heat transfer structure is not molded as a whole, but a method of joining and manufacturing a single component constituting the structure with a bonding agent for ceramic bonding has been proposed. Meanwhile, the conventional bonding agent for ceramic bonding includes sodium silicate, silica, alumina, zirconium oxide, and the like. The structure is prepared by attaching the single product in the form of ultrafine particles or slurry of these materials and then heating and joining in vacuum. have.
한편, 상기 접합제는 접합 부분이 충분한 접합 강도를 유지하는 것이 필요하다. 즉, 열전달 구조체의 제작 또는 운전 중일 때 받을 수 있는 기계적 충격, 열적인 환경 변화에 의한 잔류응력, 고온으로 인한 열충격 등에 의해 접합 부분이 손상되지 않아야 한다. 구체적으로, RBSC 열전달 구조체를 접합하기 위해서는, 상기 구조체의 단품 사이에 상기 접합제를 바른 후, 상기 단품과 접합제를 결합시키기 위하여 약 800℃ 이상의 온도에서 열처리가 필수적이다. 그런데, 종래의 접합제는 약 800℃ 이상의 온도에서 열처리를 수행하기 어렵다. On the other hand, it is necessary for the bonding agent to maintain sufficient bonding strength. That is, the joints should not be damaged by mechanical shocks, residual stresses caused by thermal environmental changes, thermal shocks due to high temperatures, etc., which may be received during the manufacture or operation of the heat transfer structure. Specifically, in order to bond the RBSC heat transfer structure, after the bonding agent is applied between the components of the structure, heat treatment is necessary at a temperature of about 800 ° C. or more in order to bond the components and the bonding agent. By the way, the conventional binder is difficult to perform the heat treatment at a temperature of about 800 ℃ or more.
또한, 종래의 접합재로 주로 사용되고 있는 실리카 계열은 약 800℃ 이상의 고온 공정에서는 수명이 짧아져서, 이를 이용하여 열전달 구조체를 제작하는 것은 거의 불가능하다. 왜냐하면, RBSC 열전달 구조체는 저온용으로는 약 800℃ 이상, 고온용으로는 약 1100℃ 이상의 고온의 환경에서 주로 사용하는 데, 종래의 접합제는 위의 온도에서 장시간 사용한다면 접합제 조성물은 경시변화를 일으키고, 접합 부분에 큰 응력집중이 발생하게 된다. 이러한 응력집중에 의해 접합 부분에는 크랙(crack)이 발생하게 된다.In addition, the silica series, which is mainly used as a conventional bonding material, has a short lifespan in a high temperature process of about 800 ° C. or higher, and thus it is almost impossible to manufacture a heat transfer structure using the same. Because the RBSC heat transfer structure is mainly used in high temperature environment of about 800 ° C. or higher for low temperature and about 1100 ° C. or higher for high temperature, the binder composition changes with time if the conventional binder is used for a long time at the above temperature. And a large stress concentration occurs at the joint. This stress concentration causes cracks in the joints.
본 발명이 해결하고자 하는 과제는 열전달 구조체를 제작하거나 운전하는 과정에서 접합 부분의 손상이 일어나지 않고, 반응소결 탄화규소 소결체의 물성을 유지하면서, 성형 및 가공하는 시간을 단축할 수 있는 반응소결 탄화규소 소결체 접합용 접합제를 이용한 열전달 구조체 및 그 제조방법을 제공하는 데 있다. The problem to be solved by the present invention is the reaction sintered silicon carbide which can shorten the time for forming and processing, while maintaining the physical properties of the reaction-sintered silicon carbide sintered body without damaging the bonded portion in the process of manufacturing or operating the heat transfer structure A heat transfer structure using a bonding agent for sintered body bonding and a method of manufacturing the same are provided.
상기 과제를 해결하기 위한 본 발명의 반응소결 탄화규소 소결체 접합용 접합제를 이용한 열전달 구조체는 RBSC 소결체로 이루어진 복수개의 단품 및 상기 단품을 결합시키는 실리콘 고용체인 Si1-xRx(R;은 고용물질; x는 원자량 비) 접합제로 이루어지며, 상기 단품은 고온과 저온의 열이 서로 교환되는 매개체이다. 이때, 상기 열전달 구조체는 방열기 또는 열교환기일 수 있다.The heat transfer structure using the binder for the reaction sintered silicon carbide sintered body bonding of the present invention for solving the above problems is a Si 1-x R x (R; X; is an atomic weight ratio) binder, wherein the unit is a medium in which heat of high and low temperatures is exchanged with each other. In this case, the heat transfer structure may be a radiator or a heat exchanger.
본 발명의 구조체에 있어서, 상기 실리콘 고용체인 Si1-xRx(R;은 고용물질; x는 원자량 비) 접합제의 고용물질은 실리콘이 풍부한 영역에서 상기 실리콘과 함께 액상을 유지하고, 융점이 800℃ 이상인 물질일 수 있다. 여기서, 상기 고용물질은 알루미늄, 티타늄, 철, 마그네슘, 구리 및 게르마늄 중에서 선택된 적어도 어느 하나일 수 있다.In the structure of the present invention, the solid solution of the Si 1-x R x (R; is a solid solution; x is atomic weight ratio) of the silicon solid solution is maintained in the liquid phase with the silicon in the region rich in silicon, melting point It may be a material that is 800 ℃ or more. Here, the solid solution material may be at least one selected from aluminum, titanium, iron, magnesium, copper and germanium.
본 발명의 고용물질의 원자량 비(x)에 있어서, 상기 알루미늄은 10 내지 70 at%, 상기 티타늄은 14 내지 18 at%, 상기 철은 11 내지 25 at%, 상기 마그네슘은 8 내지 45 at%, 상기 구리는 13 내지 62 at% 및 게르마늄은 10 내지 90 at%일 수 있다. In the atomic weight ratio (x) of the solid solution of the present invention, the aluminum is 10 to 70 at%, the titanium is 14 to 18 at%, the iron is 11 to 25 at%, the magnesium is 8 to 45 at%, The copper may be 13 to 62 at% and the germanium may be 10 to 90 at%.
상기 과제를 해결하기 위한 본 발명의 반응소결 탄화규소 소결체 접합용 접합제를 이용한 열전달 구조체의 제조방법은 먼저 고온과 저온의 열이 서로 교환되는 매개체인 복수개의 RBSC 단품을 준비한다. 그후, 상기 단품을 실리콘 고용체인 Si1-xRx(R;은 고용물질; x는 원자량 비) 접합제로 접합시킨다. 상기 접합제에 의해 결합된 상기 단품들을 소결하여 고온과 저온의 열이 서로 교환되는 열전달 구조체를 제작한다. 이때, 상기 열전달 구조체는 방열기 또는 열교환기일 수 있다.In order to solve the above problems, a method of manufacturing a heat transfer structure using a binder for bonding a reaction sintered silicon carbide sintered body according to the present invention first prepares a plurality of RBSC units which are mediators in which heat of high temperature and low temperature are exchanged with each other. Thereafter, the unit is joined with a Si 1-x R x (R; silver solid solution; x is atomic weight ratio) binder, which is a silicon solid solution. By sintering the units joined by the bonding agent to produce a heat transfer structure in which high and low temperature heat is exchanged with each other. In this case, the heat transfer structure may be a radiator or a heat exchanger.
본 발명의 방법에 있어서, 상기 실리콘 고용체인 Si1-xRx(R;은 고용물질; x는 원자량 비) 접합제의 고용물질은 실리콘이 풍부한 영역에서 상기 실리콘과 함께 액상을 유지하고, 융점이 800℃ 이상인 고용체를 이루는 본 발명의 고용물질의 원자량 비(x)에 있어서, 상기 알루미늄은 10 내지 70 at%, 상기 티타늄은 14 내지 18 at%, 상기 철은 11 내지 25 at%, 상기 마그네슘은 8 내지 45 at%, 상기 구리는 13 내지 62 at% 및 게르마늄은 10 내지 90 at%일 수 있다. 상기 실리콘보다 융점이 낮은 상기 고용물질이 포함된 상기 Si1-xRx(R;은 고용물질; x는 원자량 비) 접합제는 상기 고용물질의 융점보다 높은 온도에서 1차 소결하고, 상기 1차 소결보다 높은 온도에서 2차 소결을 할 수 있다. 구체적으로, 고용물질을 실리콘의 외부에 코팅시키기위해 1차 소결하고, 2차 소결을 통하여 상기 고용물질이 상기 실리콘과 반응하여 실리콘 고용체인 Si1-xRx(R;은 고용물질; x는 원자량 비) 접합제를 이룰 수 있다.In the method of the present invention, the solid solution of the Si 1-x R x (R; is a solid solution; x is atomic weight ratio) of the silicon solid solution maintains the liquid phase with the silicon in the region rich in silicon, melting point In the atomic weight ratio (x) of the solid solution of the present invention, which forms a solid solution of 800 ° C. or more, the aluminum is 10 to 70 at%, the titanium is 14 to 18 at%, the iron is 11 to 25 at%, and the magnesium 8 to 45 at% silver, 13 to 62 at% copper and 10 to 90 at% germanium. The Si 1-x R x (R; silver solid solution; x is atomic weight ratio) binder containing the solid solution having a lower melting point than the silicon is first sintered at a temperature higher than the melting point of the solid solution, Secondary sintering can be carried out at a higher temperature than the primary sintering. Specifically, the solid solution is first sintered to coat the outside of the silicon, and the second solid solution reacts with the silicon through the second sintering Si 1-x R x (R; is a solid solution; x is Atomic weight ratio) binders can be achieved.
본 발명의 제조방법에서의 상기 열전달 구조체는 3분 동안 900℃까지 승온시키고 10분 동안 유지한 후 200℃까지 5분 동안 하강시키는 열충격 사이클(cycle)을 15회 반복한 다음 측정된 굽힘 강도는 열충격을 가하기 전에 비해 10 MPa보다 작은 것이 바람직하고, 5 MPa보다 작은 것이 더욱 바람직하다.The heat transfer structure in the manufacturing method of the present invention is heated to 900 ℃ for 3 minutes, maintained for 10 minutes and then repeated 15 times the thermal shock cycle (cycle) to lower for 5 minutes to 200 ℃ measured the measured strength of thermal shock Preferably less than 10 MPa, more preferably less than 5 MPa compared to before adding.
본 발명에 의한 RBSC 소결체 접합용 접합제를 이용한 열전달 구조체 및 그 제조방법에 따르면, RBSC 소결체로 이루어진 단품을 실리콘 고용체로 이루어진 접합제에 의해 접합하여 열전달 구조체를 제조함으로써, 열전달 구조체를 제작하거나 운전하는 과정에서 접합 부분의 손상이 일어나지 않고, RBSC 소결체의 물성을 유지하면서, 성형 및 가공하는 시간을 단축할 수 있다.According to the heat transfer structure using the bonding agent for bonding the RBSC sintered compact according to the present invention and a method for manufacturing the same, a heat transfer structure is manufactured by manufacturing a heat transfer structure by joining a single component of the RBSC sintered compact with a bonding agent composed of a solid solution of silicon. In the process, the bonding part is not damaged and the time for forming and processing can be shortened while maintaining the physical properties of the RBSC sintered body.
도 1은 본 발명에 의한 방열기를 나타내는 단면도이다.1 is a cross-sectional view showing a radiator according to the present invention.
도 2는 본 발명에 의한 열교환기를 나타내는 사시도이다.2 is a perspective view showing a heat exchanger according to the present invention.
이하 첨부된 도면을 참조하면서 본 발명의 바람직한 실시예를 상세히 설명한다. 다음에서 설명되는 실시예는 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 아래에서 상술되는 실시예에 한정되는 것은 아니다. 본 발명의 실시예는 당 분야에서 통상의 지식을 가진 자에게 본 발명을 보다 완전하게 설명하기 위하여 제공되는 것이다. Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings. The embodiments described below may be modified in various other forms, and the scope of the present invention is not limited to the embodiments described below. The embodiments of the present invention are provided to more completely explain the present invention to those skilled in the art.
본 발명의 실시예는 반응소결 탄화규소(Reaction Bonded Silicon Carbide; RBSC) 소결체로 이루어진 단품을 실리콘 고용체로 이루어진 접합제에 의해 접합하여 열전달 구조체를 제조함으로써, 열전달 구조체를 제작하거나 운전하는 과정에서 접합 부분의 손상이 일어나지 않고, RBSC 소결체의 물성을 유지하면서, 성형 및 가공하는 시간을 단축할 수 있는 RBSC 소결체 접합용 접합제를 이용한 열전달 구조체 및 그 제조방법을 제시한다. 여기서, 열전달 구조체란 유체와 고체 표면 사이에서 열을 주고받는 것을 말하며, 본 발명의 실시예에서는 열전달 구조체로서 방열기와 열교환기를 제시한다. 이때, 본 발명의 실시예는 종래의 열전달 구조체의 문제점을 해결하였으므로, 본 발명은 그 적용을 열전달 구조체에 한정한다. Embodiment of the present invention by bonding a single piece consisting of a reaction bonded silicon carbide (RBSC) sintered body with a bonding agent made of a solid solution of silicon to produce a heat transfer structure, the joint portion in the process of manufacturing or operating the heat transfer structure The present invention provides a heat transfer structure using a bonding agent for bonding RBSC sintered compacts and a method of manufacturing the same, which can shorten the time for forming and processing while maintaining the physical properties of the RBSC sintered compact without causing damage. Here, the heat transfer structure refers to the exchange of heat between the fluid and the solid surface, the embodiment of the present invention proposes a heat sink and a heat exchanger as a heat transfer structure. At this time, since the embodiment of the present invention solves the problem of the conventional heat transfer structure, the present invention limits its application to the heat transfer structure.
RBSC 소결체는 탄화규소로 이루어지는 다공 네트워크 구조체에 실리콘(Si)이 용융되어 함침되고, 이러한 실리콘의 일부는 다시 탄화되어 탄화규소로 변하고, 나머지는 실리콘으로 남아 있는 구조를 가지고, 대개는 고온의 운전조건에서 사용된다. 이에 따라, RBSC 소결체의 접합을 위한 접합제는 상기 RBSC 내에 잔류하고 있는 실리콘이 용출하지 않는 온도에서 접합이 가능하고, 접합제는 고온에서 안정성을 유지하여야 한다. 또한, 접합제는 용융되어 RBSC로 함침이 용이하여야 하며, 접합제와 RBSC 사이의 열팽창 계수가 유사하여야 한다.RBSC sintered body has a structure in which silicon (Si) is melted and impregnated into a porous network structure made of silicon carbide, and a part of the silicon is again carbonized to become silicon carbide, and the remainder is silicon. Used in Accordingly, the bonding agent for bonding the RBSC sintered body can be bonded at a temperature at which silicon remaining in the RBSC does not elute, and the bonding agent must maintain stability at a high temperature. In addition, the binder should be melted and easily impregnated with RBSC, and the coefficient of thermal expansion between the binder and RBSC should be similar.
본 발명의 실시예에서는 앞의 조건을 만족하는 RBSC 소결체 접합용 접합제로서 실리콘 고용체인 Si1-xRx(R;은 고용물질; x는 원자량 비)를 제시한다. 구체적으로 고용물질(R)은 실리콘과 같은 결정구조를 가지고, 원자반경이 유사하며, 전기음성도가 비슷하고, 가전자가 유사한 물질이다. 그 중에서도 특히 상태도 상에서 실리콘이 풍부한 영역에서 실리콘과 함께 액상을 유지하고 실리콘과 안정적으로 합성될 수 있는 물질이 바람직하다. 이러한 조건을 모두 만족하는 고용물질(R)로는 알루미늄(Al), 티타늄(Ti), 철(Fe), 마그네슘(Mg), 구리(Cu) 및 게르마늄(Ge) 중에서 선택된 적어도 어느 하나를 들 수 있다. In an embodiment of the present invention, a silicon solid solution Si 1-x R x (R; is a solid solution; x is an atomic weight ratio) as a binder for bonding RBSC sintered bodies satisfying the above conditions. Specifically, the solid solution (R) has a crystal structure such as silicon, has a similar atomic radius, a similar electronegativity, and a similar electrical appliance. Among them, a material capable of maintaining a liquid phase with silicon and stably synthesizing with silicon is particularly preferable in a silicon-rich region on the state diagram. The solid solution (R) that satisfies all of these conditions may include at least one selected from aluminum (Al), titanium (Ti), iron (Fe), magnesium (Mg), copper (Cu), and germanium (Ge). .
이에 따라, Si1-xRx의 원자량 비(x)는 접합이 이루어진 RBSC 소결체가 고온, 예를 들어 약 800℃ 이상 온도의 환경에서 상기한 조건들을 만족해야 하므로, 고용물질(R)이 알루미늄인 경우는 x는 10 내지 70 at%, 티타늄은 14 내지 18 at%, 철은 11 내지 25 at%, 마그네슘은 8 내지 45 at%, 구리는 13 내지 62 at% 및 게르마늄은 10 내지 90 at%가 바람직하다. 상기 원자량 비(x)를 만족하는 본 발명에 의한 Si1-xRx는 융점이 적어도 800℃ 이상이므로, 본 발명에서 추구하는 고온의 환경에 용이하게 적용할 수 있다.Accordingly, the atomic weight ratio (x) of Si 1-x R x is such that the solid solution (R) is made of aluminum because the RBSC sintered body to which the bonding is made must satisfy the above conditions in an environment of high temperature, for example, about 800 ° C. or higher. X is 10 to 70 at%, titanium is 14 to 18 at%, iron is 11 to 25 at%, magnesium is 8 to 45 at%, copper is 13 to 62 at% and germanium is 10 to 90 at% Is preferred. Si 1-x R x according to the present invention that satisfies the atomic weight ratio (x) has a melting point of at least 800 ° C. or higher, and therefore can be easily applied to the high temperature environment sought in the present invention.
접합제는 상기 실리콘 및 고용물질(R)을 각각 분말 상태로 혼합하여 제조할 수 있고, 바람직하게는 볼 밀링을 통하여 이를 혼합할 수 있고, 이러한 혼합은 구체적으로 평균입경이 50 ㎛ 내외의 두 분말을 대략 6 시간 동안의 볼 밀링을 통하여 혼합할 수 있다. 이와 같이 혼합된 분말은 소결공정에 의한 소결체 자체를 접합제로 사용하거나, 상기 소결체를 분쇄한 분말 형태의 접합제로 사용될 수 있다. 상기 소결공정 전에 혼합된 분말에 대하여 선택적으로 가압성형을 할 수도 있음은 물론이다. 또한 분말 상태의 접합제를 용매(바람직하게는 탄소 공급원으로 작용할 수 있는 유기용매)와 혼합한 슬러리 형태로 사용할 수도 있다. The binder may be prepared by mixing the silicon and the solid solution (R) in powder form, respectively, and may be preferably mixed by ball milling, and the mixing may include two powders having an average particle diameter of about 50 μm. Can be mixed via ball milling for approximately 6 hours. The powder mixed in this way may be used as the binder by the sintered body itself by the sintering process, or may be used as a binder in the form of powder obtained by grinding the sintered body. Of course, the pressing powder may be selectively pressed on the powder mixed before the sintering process. It is also possible to use a powdered binder in the form of a slurry mixed with a solvent (preferably an organic solvent which can act as a carbon source).
이때, 상기 접합제는 통상의 1단계 소결공정(단일 소결공정이라고도 함)으로 제조할 수 있다. 그런데, 실리콘보다 고용물질(R)의 녹는점이 더 낮은 경우에는 2단계를 거쳐서 만들 수 있다. 즉, 먼저 고용물질(R)을 실리콘에 도포하고, 상기 고용물질의 녹는점보다 약간 높은 온도에서 1차 소결을 하여 고용물질(R)을 용융하면, 고용물질(R)이 실리콘 분말 주위로 확산하게 하여, 고용물질(R)이 실리콘으로 쉽게 확산하게 한다. 그후, 1차 소결온도보다 높은 온도에서 2차 소결이 진행되도록 하여 접합제를 완성한다. 상기 접합제를 이용하여 본 발명의 실시예에 의한 열전달 구조체를 제조하기 위하여, RBSC 단품의 접합면에 Si1-xRx 접합제를 주입한 후, 이를 소결하여 제조한다. In this case, the binder may be prepared by a conventional one-step sintering process (also called a single sintering process). However, if the melting point of the solid solution (R) is lower than silicon can be made in two steps. That is, first, the solid solution (R) is applied to the silicon, the first sintering at a temperature slightly higher than the melting point of the solid solution to melt the solid solution (R), the solid solution (R) diffuses around the silicon powder In this way, the solid solution R easily diffuses into the silicon. Thereafter, the secondary sintering proceeds at a temperature higher than the primary sintering temperature to complete the bonding agent. In order to manufacture the heat transfer structure according to the embodiment of the present invention using the binder, the Si 1-x R x binder is injected into the bonding surface of the RBSC unit, and then manufactured by sintering it.
표 1은 상술한 본 발명의 실시예에 의한 열전달 구조체에 적용된 실리콘 고용체 접합제를 고용물질(R)의 하한 원자량비(at%)와 상한 원자량비(at%)에 따른 만드는 공정(접합제 제조) 및 상기 접합제를 이용하여 열전달 구조체를 접합하는 공정(접합 공정)의 온도를 제시한 것이다. Table 1 shows a process for preparing a silicon solid solution binder applied to the heat transfer structure according to the embodiment of the present invention according to the lower limit atomic ratio (at%) and the upper limit atomic ratio (at%) of the solid solution (R). And the temperature of the process (bonding process) of joining a heat transfer structure using the said bonding agent.
표 1
고용물질 공정 명칭 하한 상한
at% 온도범위(℃) at% 온도범위(℃)
알루미늄 접합제 제조 10 600~1300 70 600~810
접합 공정 1350~1400 800~1400
티타늄 접합제 제조 14 1000~1200 18 1000~1300
접합 공정 1350~1400 1350~1400
접합제 제조 11 900~1300 25 900~1200
접합 공정 1350~1400 1220~1400
마그네슘 접합제 제조 8 900~1300 45 900~1000
접합 공정 1350~1400 1050~1400
구리 접합제 제조 13 810~1300 62 700~900
접합 공정 1350~1400 950~1400
게르마늄 접합제 제조 10 1000~1300 90 900~950
접합 공정 1350~1400 1050~1400
Table 1
Solid substance Process name Lower limit maximum
at% Temperature range (℃) at% Temperature range (℃)
aluminum Binder manufacturing 10 600-1300 70 600-810
Bonding process 1350-1400 800-1400
titanium Binder manufacturing 14 1000-1200 18 1000-1300
Bonding process 1350-1400 1350-1400
iron Binder manufacturing 11 900-1300 25 900-1200
Bonding process 1350-1400 1220-1400
magnesium Binder manufacturing 8 900-1300 45 900-1000
Bonding process 1350-1400 1050-1400
Copper Binder manufacturing 13 810-1300 62 700-900
Bonding process 1350-1400 950-1400
germanium Binder manufacturing 10 1000-1300 90 900-950
Bonding process 1350-1400 1050-1400
표 1에 의하면, 본 발명의 접합제에 의해 제조되는 열전달 구조체는 약 80℃ 내지 1400℃의 온도에서 열처리를 거쳐 제작된다. 이에 따라, 본 발명의 실시예에 의한 접합제는 상기 열전달 구조체를 제작하기 위하여 수행되는 열처리 온도에 안정성을 유지하며, 상기 RBSC 내에 잔류하고 있는 실리콘이 용출하지 않는 온도에서 접합이 가능하다. 즉, 본 발명의 접합제는 피접합체인 RBSC 소결체보다 낮은 융점을 가지므로 RBSC 소결체에서 실리콘이 용출되지 않는다. 또한, 본 발명의 접합제는 액상을 포함하므로 RBSC 소결체로의 함침이 용이하며, RBSC 소결체를 이루는 실리콘의 고용체이므로 접합제와 RBSC 소결체와의 열팽창 계수가 유사하다.According to Table 1, the heat transfer structure produced by the bonding agent of the present invention is produced through heat treatment at a temperature of about 80 ℃ to 1400 ℃. Accordingly, the bonding agent according to the embodiment of the present invention maintains stability at the heat treatment temperature performed to manufacture the heat transfer structure, and can be bonded at a temperature at which silicon remaining in the RBSC does not elute. That is, since the binder of the present invention has a lower melting point than that of the RBSC sintered body, which is a joined object, silicon is not eluted from the RBSC sintered body. In addition, since the binder of the present invention contains a liquid phase, it is easy to impregnate the RBSC sintered body, and the thermal expansion coefficient of the binder and the RBSC sintered body is similar because it is a solid solution of silicon forming the RBSC sintered body.
본 발명의 반응소결 탄화규소 소결체 접합용 접합제를 이용한 열전달 구조체는 열을 주고받는 것으로 고온과 저온의 열이 서로 교환하는 방식으로 이루어지는 모든 구조체에 적용될 수 있다. 그 중에서, 특히 방열기 및 열교환기는 고온과 저온의 열이 서로 교환하는 방식으로 작동하며, 장시간 사용할 때, 접합제 조성물은 경시변화를 일으키지 않아야 한다. 이하에서는 본 발명의 접합제가 적용된 RBSC 소결체로 이루어진 방열기 및 열교환기를 살펴보기로 한다. 본 발명의 방열기 및 열교환기의 고온 특성을 확인하고자, 본 발명의 실험예에서는 종래의 실리카 접합제 및 본 발명의 실리콘 고용체 접합제를 사용한 것의 고온 특성을 열충격 강도를 통하여 비교하였다. The heat transfer structure using the binder for the reaction sintered silicon carbide sintered body bonding of the present invention can be applied to all structures made of a method of exchanging heat between high and low temperatures by exchanging heat. Among them, in particular, the radiator and the heat exchanger operate in such a manner that the heat of the high temperature and the low temperature exchange with each other, and when used for a long time, the binder composition should not cause a change over time. Hereinafter, the radiator and heat exchanger made of the RBSC sintered body to which the binder of the present invention is applied will be described. In order to confirm the high temperature characteristics of the radiator and heat exchanger of the present invention, in the experimental example of the present invention, the high temperature characteristics of the conventional silica binder and the silicon solid solution binder of the present invention were compared through thermal shock strength.
도 1은 본 발명의 실시예에 의한 방열기를 나타내는 단면도이다. 여기서는 방열기의 하나의 사례를 제시한 것이 불과하므로, 본 발명의 범주, 즉 RBSC 소결체에 Si1-xRx 접합제를 사용하여 제작한 방열기는 모두 적용된다고 할 것이다. 이때, 방열기는 증기나 온수 등을 공급받아 복사, 대류 등에 의해 열을 발산시키는 장치를 말한다. 1 is a cross-sectional view showing a radiator according to an embodiment of the present invention. Since only one example of a radiator is presented here, all of the radiators manufactured using the Si 1-x R x binder in the scope of the present invention, that is, the RBSC sintered body, will be applied. At this time, the radiator refers to a device for dissipating heat by radiation, convection, etc. by receiving steam or hot water.
도 1에 의하면, 본 발명의 방열기(100)는 방열을 하기 위한 피방열체(10), 예를 들어 증착장치에 부착되며, 경우에 따라 상기 증착장치의 더미 웨이퍼일 수 있다. 방열기(100)는 열전달의 주체가 되는 방열판(16)과 방열판(16)의 지지하는 지봉(12)을 포함한다. 방열판(16)은 바람직하게는 원판 형태이고, RBSC 소결체로 이루어지며, 서로 일정한 간격만큼 떨어져 배치된다. 지지봉(12)은 RBSC 소결체로 이루어지며 방열판(16) 내의 복수개의 구멍을 통과하여 지지대(14)와 피방열체(10)와 연결한다. 이때, 방열판(16)은 본 발명의 Si1-xRx 접합제(18)에 의해 지지봉(12)에 고정되며, 접착력을 높이기 위하여 지지봉(12)의 접합부분에 홈을 형성할 수도 있다. 이와 같이, 방열기(100)는 방열판(16)을 Si1-xRx 접합제(18)에 의해 지지봉(12)에 고정하여 제조함으로써, 성형 및 가공하는 시간을 단축할 수 있다. Referring to FIG. 1, the radiator 100 of the present invention is attached to a heat-radiating body 10 for radiating heat, for example, a deposition apparatus, and in some cases, may be a dummy wafer of the deposition apparatus. The radiator 100 includes a heat sink 16, which is a main body of heat transfer, and a supporting rod 12 supporting the heat sink 16. The heat dissipation plate 16 is preferably in the form of a disc, is made of an RBSC sintered body, and is spaced apart from each other at regular intervals. The support rod 12 is made of an RBSC sintered body and passes through a plurality of holes in the heat dissipation plate 16 to connect with the support 14 and the heat-radiating body 10. At this time, the heat sink 16 is fixed to the support rod 12 by the Si 1-x R x bonding agent 18 of the present invention, it may be formed in the junction of the support rod 12 to increase the adhesive force. As described above, the heat sink 100 is manufactured by fixing the heat sink 16 to the support rod 12 by the Si 1-x R x bonding agent 18, thereby shortening the time for forming and processing.
열충격 강도는 열충격을 가하기 전과 가한 후의 상온에서 통상의 3점 굽힘 강도를 측정하여 확인하였다. 여기서, 굽힘 강도는 파괴시의 최대 인장응력을 말하며, 인장응력이 지배적인 지점에서 세라믹으로 이루어진 방열기의 파괴가 일어나므로 인장강도보다 크게 나타나게 된다. 열충격은 RTA(Rapid Thermal Annealing) 장비를 이용하여, 3분 동안 900℃까지 승온시키고, 이어서 10분 동안 유지한 후, 200℃까지 5분에 온도를 하강시키는 것을 15회 반복하였다. Thermal shock strength was confirmed by measuring the normal three-point bending strength at room temperature before and after the thermal shock. Here, the bending strength refers to the maximum tensile stress at the time of breakdown, and the breakage of the radiator made of ceramic occurs at the point where the tensile stress is dominant. Thermal shock was raised to 900 ℃ for 3 minutes using a Rapid Thermal Annealing (RTA) equipment, and then maintained for 10 minutes, and then 15 times to lower the temperature in 5 minutes to 200 ℃.
표 2는 본 발명에 의한 방열기와 종래의 방열기의 굽힘 강도를 비교한 것이다. 이때, 실험예1은 본 발명의 방열기로서 RBSC 소결체에 Si:Ge를 71:29 at%의 비율로 믹싱 후 합성하여 접합제를 사용 제조하였고, 비교실험예1은 종래의 방열기로서 RBSC 소결체에 상용화된 실리카 접합제를 이용하였다. 여기서 Si:Ge를 71:29 at%로 제조하였다. 상기 접합재는 방열기에 적합하였기 때문에 이를 선정하여 본 발명의 접합제의 특성을 확인하였다. 본 발명에서는 합성된 접합제를 이용하여 각각의 단품에 코팅 후, 1350℃에서 1.5시간 동안 열처리를 수행하여 단품을 접합하였으나 기존의 상용화된 실리카 계열의 접합제는 열에 대한 저항력이 낮아, 보다 낮은 온도인 900~1000℃에서 열처리를 하여 단품을 접합하였다. Table 2 compares the bending strengths of the radiator according to the present invention and the conventional radiator. At this time, Experimental Example 1 was prepared by mixing after mixing Si: Ge in the ratio of 71:29 at% to the RBSC sintered body as a radiator of the present invention, using a binder, Comparative Experimental Example 1 is commercialized to RBSC sintered body as a conventional radiator Silica binder was used. Si: Ge was prepared here at 71:29 at%. Since the bonding material was suitable for the radiator, it was selected to confirm the properties of the bonding agent of the present invention. In the present invention, after coating the individual parts using the synthesized binder, heat treatment was performed at 1350 ° C. for 1.5 hours to bond the single parts, but the conventional commercial silica-based binders have low resistance to heat and thus lower temperatures. Heat treatment was carried out at phosphorus 900 ~ 1000 ℃ to join a single product.
표 2
구 분 열충격 전 굽힘 강도 열충격 후 굽힘 강도
실험예1 250±12 MPa 246±16 MPa
비교실험예1 63±9 MPa 47±11 MPa
TABLE 2
division Bending strength before thermal shock Bending strength after thermal shock
Experimental Example 1 250 ± 12 MPa 246 ± 16 MPa
Comparative Example 1 63 ± 9 MPa 47 ± 11 MPa
표 2에 의하면, 본 발명의 실험예1과 종래의 비교실험예1은 열충격 전의 굽힘 강도에서 현저한 굽힘 강도의 차이를 보였다. 이는 열충격 이전에도 Si:Ge를 71:29 at%로 구성된 접합제를 사용한 본 발명의 방열기가 실리카 접합제에 의한 종래의 방열기에 비해 기계적인 강도가 훨씬 크다는 것을 의미한다. 다시 말해, 본 발명의 SiGe 접합제를 적용한 방열기가 보다 견고한 접합력을 가진 것을 알 수 있었다. 이에 따라, 본 발명의 SiGe 접합제를 사용한 방열기가 종래의 방열기보다 열전달 구조체로 적합하다는 것을 알 수 있었다. According to Table 2, Experimental Example 1 and Comparative Example 1 of the present invention showed a significant difference in the bending strength before the thermal shock. This means that even before thermal shock, the heat radiator of the present invention using a binder composed of Si: Ge of 71:29 at% has a much higher mechanical strength than a conventional heat radiator using a silica binder. In other words, it was found that the radiator to which the SiGe bonding agent of the present invention is applied has a stronger bonding force. Accordingly, it was found that the radiator using the SiGe bonding agent of the present invention is more suitable as a heat transfer structure than the conventional radiator.
열충격을 가한 후의 경우, 본 발명의 방열기는 굽힘 강도가 약 4 MPa 정도로 저하되었으나, 종래의 방열기는 약 16 MPa 만큼 떨어졌다. 즉, 본 발명의 방열기는 열충격에 대한 저항성이 커서 고온에서 사용하기에 적합하지만, 종래의 방열기는 고온에서 사용하면 열충격에 의해 쉽게 파손될 수 있다. 이에 따라, 본 발명의 방열기는 이를 제작하거나 운전하는 과정에서 접합 부분의 손상이 일어나지 않고, RBSC 소결체의 물성을 유지하는 것이 확인되었다.After the thermal shock was applied, the radiator of the present invention had a bending strength lowered to about 4 MPa, while the conventional radiator dropped by about 16 MPa. That is, the heat radiator of the present invention is suitable for use at high temperatures due to its high resistance to thermal shock, but a conventional heat radiator may be easily broken by thermal shock when used at high temperatures. Accordingly, it was confirmed that the radiator of the present invention maintains the physical properties of the RBSC sintered body without damaging the bonding portion in the process of manufacturing or operating the radiator.
도 2는 본 발명의 실시예에 의한 열교환기를 나타내는 사시도이다. 여기서는 열교환기의 하나의 사례를 제시한 것이 불과하므로, 본 발명의 범주, 즉 RBSC 소결체에 Si1-xRx 접합제를 사용하여 제작한 열교환기는 모두 적용된다고 할 것이다. 이때, 열교환기는 저온의 유체와 고온의 유체 사이에서 열의 이동을 실시하는 장치를 말한다. 참고로, 금속제 열교환기는 사용온도가 약 750℃ 이하이고, 부식성 가스 분위에서는 사용할 수 없기 때문에, 약 800℃ 이상의 고온에서는 세라믹 열교환기가 바람직하다. 2 is a perspective view showing a heat exchanger according to an embodiment of the present invention. Since only one example of a heat exchanger is presented here, all of the heat exchangers fabricated using the Si 1-x R x binder in the scope of the present invention, that is, the RBSC sintered body will be applied. At this time, the heat exchanger refers to a device that performs heat transfer between the low temperature fluid and the high temperature fluid. For reference, since the metal heat exchanger has a use temperature of about 750 ° C. or lower and cannot be used in a corrosive gas atmosphere, a ceramic heat exchanger is preferable at a high temperature of about 800 ° C. or higher.
도 2에 따르면, 본 발명의 열교환기(200)는 격벽에 의해 유체가 이동하는 통로를 제공하는 RBSC 단품(51, 53)을 본 발명의 Si1-xRx 접합제(54)에 의해 각각 접합하여, 이를 적층하여 만들어진다. 단품(51, 53)이 적층된 일측을 RBSC 덮개(50)로 마무리하면 열교환기(200)가 완성된다. 단품(51, 53)은, 서로 엇갈리는 방향으로 적층되어, 각각 제1 유체가 흐르는 제1 통로(56)와 제2 유체가 흐르는 제2 통로(58)를 형성한다. 여기서, 제1 유체는 고온의 가스일 수 있고, 제2 유체는 상온의 공기일 수 있다. 이와 같이, 열교환기(200)는 단품(51, 53)을 Si1-xRx 접합제(54)에 의해 적층하여 제조함으로써, 성형 및 가공하는 시간을 단축할 수 있다. According to FIG. 2, the heat exchanger 200 of the present invention uses the Si 1-x R x binder 54 of the present invention to provide RBSC units 51 and 53 that provide passages through which fluid flows through partition walls. It is made by laminating them. The heat exchanger 200 is completed by finishing the one side of the laminations 51 and 53 with the RBSC cover 50. The single products 51 and 53 are laminated | stacked in the mutually staggered direction, respectively, and form the 1st channel | path 56 through which a 1st fluid flows, and the 2nd channel | channel 58 through which a 2nd fluid flows. Here, the first fluid may be a hot gas, and the second fluid may be air at room temperature. As described above, the heat exchanger 200 is manufactured by laminating the single products 51 and 53 with the Si 1-x R x bonding agent 54, whereby the time for forming and processing can be shortened.
표 3은 본 발명에 의한 열교환기와 종래의 열교환기의 굽힘 강도를 비교한 것이다. 이때, 실험예2는 본 발명의 열교환기로서 RBSC 소결체에 SiGe 접합제를 사용하였고, 비교실험예2는 종래의 열교환기로서 RBSC 소결체에 실리카를 이용하였다. 이때, 굽힘 강도는 표 2에서와 동일한 방법으로 측정하였다. Table 3 compares the bending strength of the heat exchanger according to the present invention and the conventional heat exchanger. At this time, Experimental Example 2 used a SiGe binder in the RBSC sintered body as the heat exchanger of the present invention, Comparative Example 2 used silica in the RBSC sintered body as a conventional heat exchanger. At this time, the bending strength was measured in the same manner as in Table 2.
표 3
구 분 열충격 전 굽힘 강도 열충격 후 굽힘 강도
실험예2 262±15 MPa 258±8 MPa
비교실험예2 62±8 MPa 44±13 MPa
TABLE 3
division Bending strength before thermal shock Bending strength after thermal shock
Experimental Example 2 262 ± 15 MPa 258 ± 8 MPa
Comparative Experiment 2 62 ± 8 MPa 44 ± 13 MPa
표 3에 따르면, 본 발명의 실험예2와 종래의 비교실험예2는 열충격 전의 굽힘 강도에서 현저한 굽힘 강도의 차이를 보였다. 이는 열충격 이전에도 SiGe 접합제를 사용한 본 발명의 열교환기가 실리카 접합제에 의한 종래의 열교환기에 비해 기계적인 강도가 훨씬 크다는 것을 의미한다. 다시 말해, 본 발명의 SiGe 접합제를 적용한 열교환기가 보다 견고한 접합력을 가진 것을 알 수 있었다. 이에 따라, 본 발명의 SiGe 접합제를 사용한 열교환기가 종래의 열교환기보다 열전달 구조체로 적합하다는 것을 알 수 있었다. According to Table 3, Experimental Example 2 of the present invention and the conventional Comparative Experimental Example 2 showed a significant difference in bending strength in the bending strength before the thermal shock. This means that even before thermal shock, the heat exchanger of the present invention using SiGe binder has a much higher mechanical strength than the conventional heat exchanger with silica binder. In other words, it was found that the heat exchanger to which the SiGe binder of the present invention is applied has a more firm bonding force. Accordingly, it was found that the heat exchanger using the SiGe bonding agent of the present invention is more suitable as a heat transfer structure than the conventional heat exchanger.
열충격을 가한 후의 경우, 본 발명의 열교환기는 굽힘 강도가 약 4 MPa 정도로 저하되었으나, 종래의 방열기는 약 18 MPa 만큼 떨어졌다. 즉, 본 발명의 열교환기는 열충격에 대한 저항성이 커서 고온에서 사용하기에 적합하지만, 종래의 열교환기는 고온에서 사용하면 열충격에 의해 쉽게 파손될 수 있다. 이에 따라, 본 발명의 열교환기는 이를 제작하거나 운전하는 과정에서 접합 부분의 손상이 일어나지 않고, RBSC 소결체의 물성을 유지하는 것이 확인되었다. After the thermal shock was applied, the heat exchanger of the present invention was reduced in bending strength by about 4 MPa, while the conventional radiator was dropped by about 18 MPa. That is, the heat exchanger of the present invention is suitable for use at high temperatures because of its high resistance to thermal shock, but the conventional heat exchanger can be easily broken by thermal shock when used at high temperatures. Accordingly, it was confirmed that the heat exchanger of the present invention maintains the physical properties of the RBSC sintered body without damaging the bonded portion in the process of manufacturing or operating the same.
구체적으로, 종래의 방열기와 열교환기는 열충격 실험에서 굽힘 강도가 각각 약 16 MPa, 18 MPa만큼 저하되었다. 이와 같은 굽힘 강도의 저하는 종래의 방열기와 열교환기는 고온의 환경에서 장시간 사용할 수 없다는 것은 자명하다. 따라서 열충격 실험조건에서 굽힘 강도가 10 MPa보다 작으면, 방열기와 열교환기로 사용이 가능하며, 바람직하게는 7MPa, 더욱 바람직하게는 5MPa이다. 본 발명의 방열기와 열교환기는 굽힘 강도가 약 4 MPa만큼의 변동이 있으므로, 위의 조건을 충분하게 만족하였다. Specifically, the conventional radiator and the heat exchanger have a bending strength of about 16 MPa and 18 MPa, respectively, in the thermal shock test. It is apparent that such a decrease in bending strength cannot be used for a long time in a high temperature environment of a conventional radiator and heat exchanger. Therefore, if the bending strength is less than 10 MPa in the thermal shock test conditions, it can be used as a radiator and heat exchanger, preferably 7MPa, more preferably 5MPa. The radiator and heat exchanger of the present invention satisfies the above conditions because the bending strength fluctuates by about 4 MPa.
방열기와 열교환기는, 장시간 사용할 때, 접합제 조성물은 경시변화를 일으키지 않아야 한다. 그런데, 앞에서 살펴본 바와 같이, 본 발명에서 제시하는 접합제가 이를 만족시키는 최적의 접합제이다. 따라서 본 발명의 접합제를 사용하여 상기 방열기 및 열교환기를 제작하면, 고온에서 안정적으로 운전할 수 있다. 이는 종래의 방열기 및 열교환기는 장시간 사용할 때 크랙이 발생하는 문제를 해결하지 못하였으나, 본 발명의 접합제에 의해 RBSC 소결체로 이루어진 방열기 및 열교환기는 운전 중에 크랙이 발생하는 문제가 해결되었기 때문이다. When used for a long time, the radiator and the heat exchanger should not cause a change in the binder composition over time. By the way, as mentioned above, the binder proposed in the present invention is the optimal binder that satisfies this. Therefore, when the said radiator and heat exchanger are manufactured using the binder of this invention, it can operate stably at high temperature. This is because the conventional radiator and heat exchanger did not solve the problem of cracking when used for a long time, but because the problem of cracking during the operation of the radiator and heat exchanger made of RBSC sintered body by the bonding agent of the present invention has been solved.
이상, 본 발명은 바람직한 실시예를 들어 상세하게 설명하였으나, 본 발명은 상기 실시예에 한정되지 않으며, 본 발명의 기술적 사상의 범위 내에서 당 분야에서 통상의 지식을 가진 자에 의하여 여러 가지 변형이 가능하다. As mentioned above, although the present invention has been described in detail with reference to preferred embodiments, the present invention is not limited to the above embodiments, and various modifications may be made by those skilled in the art within the scope of the technical idea of the present invention. It is possible.
[부호의 설명][Description of the code]
100; 방열기 10; 피방열체 100; Radiator 10; Heating element
12; RBSC 지지봉 14; 지지대 12; RBSC support rod 14; support fixture
16; RBSC 방열판 18; Si1-xRx 접합제16; RBSC heat sink 18; Si 1-x R x binder
200; 열교환기 50; 덮개200; Heat exchanger 50; cover
51, 53; 단품 54; Si1-xRx 접합제51, 53; Single item 54; Si 1-x R x binder
56; 제1 유체통로 58; 제2 유체통로56; First fluid passage 58; Second fluid passage

Claims (19)

  1. RBSC 소결체로 이루어진 복수개의 단품 및 상기 단품을 결합시키는 실리콘 고용체인 Si1-xRx(R;은 고용물질; x는 원자량 비) 접합제로 이루어지며, 상기 단품은 고온과 저온의 열이 서로 교환되는 매개체인 것을 특징으로 하는 반응소결 탄화규소 소결체 접합용 접합제를 이용한 열전달 구조체.It consists of a plurality of single parts made of a RBSC sintered body and a Si 1-x R x (R; is a solid solution; x is an atomic weight ratio) binder, which is a silicon solid solution that binds the single parts, and the single parts exchange heat between high and low temperatures. A heat transfer structure using a binder for reaction sintered silicon carbide sintered body bonding, which is a medium to be used.
  2. 제1항에 있어서, 상기 열전달 구조체는 방열기인 것을 특징으로 하는 반응소결 탄화규소 소결체 접합용 접합제를 이용한 열전달 구조체.The heat transfer structure according to claim 1, wherein the heat transfer structure is a radiator.
  3. 제1항에 있어서, 상기 열전달 구조체는 열교환기인 것을 특징으로 하는 반응소결 탄화규소 소결체 접합용 접합제를 이용한 열전달 구조체.The heat transfer structure using a bonding agent for joining reaction-sintered silicon carbide sintered compact according to claim 1, wherein the heat transfer structure is a heat exchanger.
  4. 제1항에 있어서, 상기 실리콘 고용체인 Si1-xRx(R;은 고용물질; x는 원자량 비) 접합제의 고용물질은 실리콘이 풍부한 영역에서 상기 실리콘과 함께 액상을 유지하고, 융점이 800℃ 이상인 물질인 것을 특징으로 하는 반응소결 탄화규소 소결체 접합용 접합제를 이용한 열전달 구조체.The solid solution of the Si 1-x R x (R; silver solid solution; x is atomic weight ratio) binder of the silicon solid solution maintains a liquid phase with the silicon in a region rich in silicon, and has a melting point. A heat transfer structure using a binder for reaction sintered silicon carbide sintered body bonding, characterized in that the material is 800 ° C. or higher.
  5. 제4항에 있어서, 상기 고용물질은 알루미늄, 티타늄, 철, 마그네슘, 구리 및 게르마늄 중에서 선택된 적어도 어느 하나인 것을 특징으로 하는 반응소결 탄화규소 소결체 접합용 접합제를 이용한 열전달 구조체.The heat transfer structure of claim 4, wherein the solid solution is at least one selected from aluminum, titanium, iron, magnesium, copper, and germanium.
  6. 제5항에 있어서, 상기 알루미늄은 상기 원자량의 비(x)가 10 내지 70 at%인 것을 특징으로 하는 반응소결 탄화규소 소결체 접합용 접합제를 이용한 열전달 구조체.The heat transfer structure according to claim 5, wherein the aluminum has a ratio (x) of 10 to 70 at% of the atomic weight.
  7. 제5항에 있어서, 상기 티타늄은 상기 원자량의 비(x)가 14 내지 18 at%인 것을 특징으로 하는 반응소결 탄화규소 소결체 접합용 접합제를 이용한 열전달 구조체.6. The heat transfer structure according to claim 5, wherein the titanium has a ratio (x) of 14 to 18 at% of the atomic weight.
  8. 제5항에 있어서, 상기 철은 상기 원자량의 비(x)가 11 내지 25 at%인 것을 특징으로 하는 반응소결 탄화규소 소결체 접합용 접합제를 이용한 열전달 구조체.The heat transfer structure according to claim 5, wherein the iron has a ratio (x) of 11 to 25 at% of the atomic weight.
  9. 제5항에 있어서, 상기 마그네슘은 상기 원자량의 비(x)가 8 내지 45 at%인 것을 특징으로 하는 반응소결 탄화규소 소결체 접합용 접합제를 이용한 열전달 구조체.6. The heat transfer structure according to claim 5, wherein the magnesium has a ratio (x) of 8 to 45 at% of the atomic weight.
  10. 제5항에 있어서, 상기 구리는 상기 원자량의 비(x)가 13 내지 62 at%인 것을 특징으로 하는 반응소결 탄화규소 소결체 접합용 접합제를 이용한 열전달 구조체.The heat transfer structure according to claim 5, wherein the copper has a ratio (x) of 13 to 62 at% of the atomic weight.
  11. 제5항에 있어서, 상기 게르마늄은 상기 원자량의 비(x)가 10 내지 90 at%인 것을 특징으로 하는 반응소결 탄화규소 소결체 접합용 접합제를 이용한 열전달 구조체.The heat transfer structure according to claim 5, wherein the germanium has a ratio (x) of 10 to 90 at% of the atomic weight.
  12. 고온과 저온의 열이 서로 교환되는 매개체인 복수개의 RBSC 단품을 준비하는 단계; Preparing a plurality of RBSC components, which are mediums for exchanging heat of high and low temperatures;
    상기 단품을 실리콘 고용체인 Si1-xRx(R;은 고용물질; x는 원자량 비) 접합제로 접합시키는 단계; 및Bonding the unit with a Si 1-x R x (R; silver solid solution; x is atomic weight ratio) binder which is a silicon solid solution; And
    상기 접합제에 의해 결합된 상기 단품들을 소결하여 고온과 저온의 열이 서로 교환되는 열전달 구조체를 제작하는 단계를 포함하는 반응소결 탄화규소 소결체 접합용 접합제를 이용한 열전달 구조체의 제조방법.A method of manufacturing a heat transfer structure using a binder for reacting sintered silicon carbide sintered body bonding, comprising the step of sintering the units joined by the bonding agent to produce a heat transfer structure in which high-temperature and low-temperature heat are exchanged with each other.
  13. 제12항에 있어서, 상기 열전달 구조체는 방열기인 것을 특징으로 하는 반응소결 탄화규소 소결체 접합용 접합제를 이용한 열전달 구조체의 제조방법.The method of claim 12, wherein the heat transfer structure is a radiator. 13.
  14. 제12항에 있어서, 상기 열전달 구조체는 열교환기인 것을 특징으로 하는 반응소결 탄화규소 소결체 접합용 접합제를 이용한 열전달 구조체의 제조방법.The method of manufacturing a heat transfer structure using a binder for joining reaction-sintered silicon carbide sintered compacts according to claim 12, wherein the heat transfer structure is a heat exchanger.
  15. 제12항에 있어서, 상기 실리콘 고용체인 Si1-xRx(R;은 고용물질; x는 원자량 비) 접합제의 고용물질은 실리콘이 풍부한 영역에서 상기 실리콘과 함께 액상을 유지하고, 융점이 800℃ 이상인 물질인 것을 특징으로 하는 반응소결 탄화규소 소결체 접합용 접합제를 이용한 열전달 구조체의 제조방법.The solid solution of the Si 1-x R x (R; silver solid solution; x is atomic weight ratio) binder of the silicon solid solution maintains a liquid phase with the silicon in a region rich in silicon, and has a melting point. A method of producing a heat transfer structure using a binder for bonding reaction sintered silicon carbide sintered compact, characterized in that the material is 800 ° C. or higher.
  16. 제12항에 있어서, 상기 실리콘보다 융점이 낮은 상기 고용물질이 포함된 상기 Si1-xRx(R;은 고용물질; x는 원자량 비) 접합제는 상기 실리콘에 상기 고용물질을 도포하고 상기 고용물질의 융점보다 높은 온도에서 1차 소결하고, 상기 1차 소결보다 높은 온도에서 2차 소결을 하는 것을 특징으로 하는 반응소결 탄화규소 소결체 접합용 접합제를 이용한 열전달 구조체의 제조방법.The method of claim 12, wherein the Si 1-x R x (R; silver solid solution; x is an atomic weight ratio) binder containing the solid solution having a lower melting point than the silicon is applied to the silicon and the solid solution is A method of manufacturing a heat transfer structure using a binder for bonding a sintered silicon carbide sintered compact, characterized in that the first sintering at a temperature higher than the melting point of the solid solution material and the second sintering at a temperature higher than the first sintering.
  17. 제16항에 있어서, 상기 고용물질은 알루미늄, 티타늄, 철, 마그네슘 및 구리 중의 하나인 것을 특징으로 하는 반응소결 탄화규소 소결체 접합용 접합제를 이용한 열전달 구조체의 제조방법.17. The method of claim 16, wherein the solid solution is one of aluminum, titanium, iron, magnesium, and copper.
  18. 제12항에 있어서, 상기 열전달 구조체는 3분 동안 900℃까지 승온시키고 10분 동안 유지한 후 200℃까지 5분 동안 하강시키는 열충격 사이클(cycle)을 15회 반복한 다음 측정된 굽힘 강도는 열충격을 가하기 전에 비해 10 MPa보다 작은 것을 특징으로 하는 반응소결 탄화규소 소결체 접합용 접합제를 이용한 열전달 구조체의 제조방법.The heat transfer structure of claim 12, wherein the heat transfer structure is heated to 900 ° C. for 3 minutes, maintained for 10 minutes, and then repeated 15 times in a thermal shock cycle for 5 minutes to 200 ° C., and then the measured bending strength is determined by thermal shock. A method for producing a heat transfer structure using a binder for joining reaction sintered silicon carbide sintered compact, characterized in that it is smaller than 10 MPa compared to before applying.
  19. 제18항에 있어서, 상기 굽힘 강도는 상기 열충격을 가하기 전에 비해 5 MPa보다 작은 것을 특징으로 하는 반응소결 탄화규소 소결체 접합용 접합제를 이용한 열전달 구조체의 제조방법.19. The method of claim 18, wherein the bending strength is less than 5 MPa compared to before the thermal shock is applied.
PCT/KR2012/008448 2012-07-20 2012-10-17 Heat transfer structure using binder for bonding reaction-bonded silicon carbide sintered body, and method for manufacturing same WO2014014161A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020120079085A KR20140012383A (en) 2012-07-20 2012-07-20 Heat transfer structure using binder for rbsc assembly and method of manufacturing the same
KR10-2012-0079085 2012-07-20

Publications (1)

Publication Number Publication Date
WO2014014161A1 true WO2014014161A1 (en) 2014-01-23

Family

ID=49948972

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2012/008448 WO2014014161A1 (en) 2012-07-20 2012-10-17 Heat transfer structure using binder for bonding reaction-bonded silicon carbide sintered body, and method for manufacturing same

Country Status (2)

Country Link
KR (1) KR20140012383A (en)
WO (1) WO2014014161A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4699762A (en) * 1981-12-30 1987-10-13 Danfoss A/S Method for connecting reaction-sintered silicon carbide parts with iron- or metal parts, and embodiment of an ionization electrode according to the method
KR940011452B1 (en) * 1984-01-23 1994-12-15 케네코 코포레이션 Silicon carbide refractories having modified silicon nitride bond
KR100379743B1 (en) * 2000-06-12 2003-04-11 (주)글로벌코센테크 Method for Jointing Porous SiC Body
KR100958097B1 (en) * 2007-07-13 2010-05-14 한국과학기술연구원 Fabrication method of reaction bonded silicon carbide porous body by continuous process
KR20110029026A (en) * 2009-09-14 2011-03-22 성균관대학교산학협력단 Preparation method of silicon carbide ceramics
KR101121001B1 (en) * 2009-08-19 2012-03-05 에스케이씨솔믹스 주식회사 Binder for rbsc assembly and method of binding rbsc assembly using the same
KR20120064164A (en) * 2010-12-09 2012-06-19 엘지이노텍 주식회사 Hot press sintering device for manufacturing sintered body and mold of 3d structure and method of manufacture sintered body and mold the same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4699762A (en) * 1981-12-30 1987-10-13 Danfoss A/S Method for connecting reaction-sintered silicon carbide parts with iron- or metal parts, and embodiment of an ionization electrode according to the method
KR940011452B1 (en) * 1984-01-23 1994-12-15 케네코 코포레이션 Silicon carbide refractories having modified silicon nitride bond
KR100379743B1 (en) * 2000-06-12 2003-04-11 (주)글로벌코센테크 Method for Jointing Porous SiC Body
KR100958097B1 (en) * 2007-07-13 2010-05-14 한국과학기술연구원 Fabrication method of reaction bonded silicon carbide porous body by continuous process
KR101121001B1 (en) * 2009-08-19 2012-03-05 에스케이씨솔믹스 주식회사 Binder for rbsc assembly and method of binding rbsc assembly using the same
KR20110029026A (en) * 2009-09-14 2011-03-22 성균관대학교산학협력단 Preparation method of silicon carbide ceramics
KR20120064164A (en) * 2010-12-09 2012-06-19 엘지이노텍 주식회사 Hot press sintering device for manufacturing sintered body and mold of 3d structure and method of manufacture sintered body and mold the same

Also Published As

Publication number Publication date
KR20140012383A (en) 2014-02-03

Similar Documents

Publication Publication Date Title
CN108147671B (en) Microcrystalline glass brazing filler metal for connecting silicon nitride ceramics and preparation method thereof
TW456157B (en) Carrier
CN110028246B (en) Glass solder and preparation method and application thereof
CN102145978B (en) Glass solder for connecting SiC ceramics, and preparation method and application thereof
CN103553559B (en) CaO-B2O3-SiO2The composite of glass+aluminium nitride ceramics and preparation method
US11780781B2 (en) Bonding dissimilar ceramic components
CN102730690A (en) Al4SiC4 material synthetic method
CN104445953B (en) A kind of calcium Pyrex base low-temperature cofired ceramic material and preparation method thereof
CN105130500A (en) Deformation control method in rigid heat-insulating tile coating forming process
CN113185314B (en) Boron nitride-based ceramic welding sealing component and preparation method thereof
CN104310976A (en) Highly wear-resistant high-temperature ceramic
CN111302812A (en) Pressing-sintering leveling method for ceramic substrate
CN110903074A (en) High-temperature oxidation-resistant coating on surface of silicon carbide substrate and preparation method thereof
CN106882950B (en) Method for enhancing high-temperature-resistant phosphate adhesive by using silica sol
WO2014014161A1 (en) Heat transfer structure using binder for bonding reaction-bonded silicon carbide sintered body, and method for manufacturing same
KR101770790B1 (en) Direct immersion heating rod or pipe type metallizing ceramic heater manufacturing method
CN109320279A (en) A kind of quick connecting method for ceramic material
WO2011043535A1 (en) Wc-fe-based hard metal-brazed material, and method for preparing same
KR20190079114A (en) Glass bonding member, and manufacturing method and using method of the same
JP4489344B2 (en) Stage member
JP2882996B2 (en) Jig for manufacturing ceramic joined body and method for manufacturing ceramic joined body using the jig
WO2018088751A1 (en) Metal foam and preparation method therefor
JP3035230B2 (en) Manufacturing method of multilayer ceramics
JP2582495B2 (en) Inorganic bonding material
CN113563092B (en) Hollow sphere ceramic fiber brick and preparation method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12881176

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12881176

Country of ref document: EP

Kind code of ref document: A1