WO2018088751A1 - Metal foam and preparation method therefor - Google Patents

Metal foam and preparation method therefor Download PDF

Info

Publication number
WO2018088751A1
WO2018088751A1 PCT/KR2017/012227 KR2017012227W WO2018088751A1 WO 2018088751 A1 WO2018088751 A1 WO 2018088751A1 KR 2017012227 W KR2017012227 W KR 2017012227W WO 2018088751 A1 WO2018088751 A1 WO 2018088751A1
Authority
WO
WIPO (PCT)
Prior art keywords
foam
metal
slurry
present
temperature
Prior art date
Application number
PCT/KR2017/012227
Other languages
French (fr)
Korean (ko)
Inventor
양현경
장형일
Original Assignee
부경대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 부경대학교 산학협력단 filed Critical 부경대학교 산학협력단
Priority to CN201780069042.2A priority Critical patent/CN109922908A/en
Publication of WO2018088751A1 publication Critical patent/WO2018088751A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/11Making porous workpieces or articles
    • B22F3/1121Making porous workpieces or articles by using decomposable, meltable or sublimatable fillers
    • B22F3/1125Making porous workpieces or articles by using decomposable, meltable or sublimatable fillers involving a foaming process
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/11Making porous workpieces or articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F5/00Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/11Making porous workpieces or articles
    • B22F3/1121Making porous workpieces or articles by using decomposable, meltable or sublimatable fillers
    • B22F3/1125Making porous workpieces or articles by using decomposable, meltable or sublimatable fillers involving a foaming process
    • B22F2003/1131Foaming in a liquid suspension and decomposition
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2203/00Controlling
    • B22F2203/11Controlling temperature, temperature profile

Definitions

  • the present invention relates to metal foams and methods of making them.
  • the radiator uses the principle of achieving thermal equilibrium by sharing heat energy of two materials when they meet each other. As a result, an object that can lower the temperature of the heat source by dividing the strong heat of the heat source.
  • Heat sinks are heat sinks attached to prevent temperature rise in electronic devices such as semiconductor devices.
  • heat sinks are manufactured in the form of fins to increase surface area. Since the large surface area of the heat sink has a large area of contact with the surrounding air, it is possible to efficiently heat convection heat from the heat source efficiently.
  • One object of the present invention is to provide a method for producing a metal foam having excellent heat dissipation characteristics.
  • Another object of the present invention is to provide a metal foam having excellent heat dissipation properties.
  • Method for producing a metal foam for one purpose of the present invention is to form a slurry by mixing a metal powder, activated carbon, and water, adding an acid to the slurry to foam the slurry, drying the foamed slurry To form a foam, and sintering the foam.
  • the acid may be at least one of hydrochloric acid, sulfuric acid, and nitric acid.
  • the foam in the step of sintering the foam, it can be sintered at a temperature below the melting point of the metal, under an inert gas.
  • the metal powder is gold (Au), silver (Ag), zinc (Zn), aluminum (Al), iron (Fe), magnesium (Mg), copper (Cu), titanium (Ti), and It may include at least one powder of tin (Sn).
  • the foamed slurry in the step of forming the foam, may be dried by heating at a temperature of more than 60 °C less than 300 °C.
  • Metal foams for other purposes of the present invention include metal oxides and activated carbon, but are formed by foaming and curing a slurry comprising metal powder and activated carbon.
  • the metal foam may be a heatsink.
  • the present invention can provide a porous metal foam having a uniform pore size and distribution.
  • the metal foam of the present invention may be uniformly and densely distributed throughout the metal foam with uniformly sized pores and exhibit a large surface area. Therefore, by contacting the air through a large area, heat can be effectively released.
  • an acid to prepare the metal foam by the addition of an acid to prepare the metal foam, an oxidized metal foam may be produced so that the metal foam may exhibit an insulating effect.
  • the metal foam of the present invention is a porous material formed with a plurality of pores, it may be lighter as compared with a heat sink made of a conventional metal. Due to these characteristics, the metal foam can be used as a heat sink of an electronic device.
  • the manufacturing cost of the heat sink can be reduced compared to the die casting process for manufacturing a conventional heat sink can be economical.
  • FIG. 2 is a view for explaining heat dissipation of metal foams according to embodiments of the present invention.
  • the present invention first prepares a slurry by mixing a metal powder, activated carbon, and water to prepare a metal foam (step S110).
  • the metal powder is selected from among gold (Au), silver (Ag), zinc (Zn), aluminum (Al), iron (Fe), magnesium (Mg), copper (Cu), titanium (Ti), and tin (Sn). It may include a powder of at least one metal. Although the metal powder is mentioned as an example, the present invention is not limited thereto.
  • Activated carbon is a material made of most carbonaceous material, and may mean the same as activated carbon.
  • the metal powder and the activated carbon are included in a foam formed by foaming the slurry, and thus the foam may have an excellent hardness and play a role in maintaining a shape.
  • a foaming agent that forms bubbles is added to the slurry including the metal powder and activated carbon, pores of fine size may be densely produced and foamed.
  • water may be added in an appropriate amount so that the metal powder and the activated carbon can be uniformly mixed.
  • step S120 an acid is added to the slurry to foam the slurry.
  • the acid may be at least one of hydrochloric acid, sulfuric acid, and nitric acid.
  • bubbles When acid is added to the slurry, bubbles may be generated in the slurry by the reaction of the metal powder of the slurry and the acid and the activated carbon. At this time, the size of the bubbles generated may be fine and uniform.
  • the pores may be foamed evenly and densely throughout the slurry, and the pore size may be micro size. That is, bubbles of uniform size and generally dense and uniformly distributed in the slurry can be formed.
  • the metal powder of the slurry can be oxidized.
  • step S130 the foamed slurry is dried to form a foam.
  • the foamed slurry may be dried by heating the slurry at a temperature of more than 60 °C below 300 °C. Through drying at the temperature conditions, moisture, impurities, etc. in the foamed slurry may be thermally decomposed. At this time, in the process of drying the foamed slurry, in addition to the formation of pores by the continuous reaction of the slurry and acid, pores may also be formed as the moisture of the slurry is removed.
  • the slurry When the slurry is heated at a temperature of 60 ° C. or less, moisture or impurities may not be thermally decomposed in the slurry. Alternatively, when the slurry is heated at a temperature of 300 ° C. or higher, pores may be unevenly formed in the slurry, irregular or excessively large pores may be formed, and the pores may overlap each other to cause cracks in the foam. It may be formed. Therefore, it may be desirable to dry the foamed slurry in a temperature range of more than 60 °C less than 300 °C.
  • step S140 the foam is sintered to prepare a metal foam of the present invention.
  • the foam may be sintered under an inert gas at a temperature at which the metal contained in the slurry does not melt, ie, below the melting point of the metal.
  • Sintering is a phenomenon in which the solid tightly adheres to each other by heating and solidifies, and the coupling reaction in which the pure solid phase or some liquid phases between solids are mixed may be referred to as sintering.
  • by heating and drying the foamed slurry moisture is removed and the foam containing the metal and the activated carbon is sintered to allow the metal to be bonded.
  • the metal constituting the metal foam is bonded, but the metal is not completely melted to maintain the shape of the foam. That is, pores formed in the metal foam can be maintained.
  • the mechanical strength of the metal foam can be improved through the bonding of the metal, and accordingly, the shape retention force of the metal foam can be improved.
  • the metal such as aluminum having excellent thermal conductivity
  • the sintering temperature of the foam may be 400 ° C to 800 ° C.
  • the metal may not be bonded, when sintering at a temperature higher than 800 °C, the metal of the foam may be melted and the shape of the foam may not be maintained.
  • the sintering temperature in the case of using aluminum is exemplarily mentioned, the sintering temperature may be an appropriate temperature at which the metal used may be bonded but not melted according to the type of metal used to manufacture the metal foam of the present invention as described above. have.
  • the metal foam of the present invention can be formed using various types of molds (frames) suitable for the desired use, shape, size, and the like.
  • the slurry may be selected from various molds and foamed in the mold, and then dried and sintered to form the metal foam of the present invention having a desired shape, size, and the like.
  • the present invention may use a fin in the form of a fin.
  • the metal foam of the present invention is fine and uniform formed by reacting metal powder and activated carbon with acid, without using a foaming agent such as liquid silicate, which is generally used in the manufacture of foam. It may comprise pores of size.
  • the metal foam may have a large surface area because it contains fine pores densely and uniformly, and since the metal foam is composed of metal, it has excellent thermal conductivity, and thus, heat is removed from the heat source by the large area in contact with the surrounding air and the excellent thermal conductivity. It can effectively allow natural convection heat dissipation.
  • the metal foam may be lightweight because a plurality of pores are formed.
  • a plurality of pores of fine and uniform size densely formed in the metal foam may serve to block electromagnetic waves generated from electronic devices.
  • the present invention in the manufacture of the metal foam, using a metal powder and activated carbon, without using a material such as a binder for maintaining the shape of the metal foam, the process of sintering the foam foamed by the acid Through, excellent mechanical strength and shape retention A metal foam having can be produced.
  • the metal foam may exhibit an insulation effect.
  • the metal foam of the present invention contains a metal oxide and activated carbon, which is excellent in thermal conductivity, and excellent heat dissipation characteristics due to the large surface area due to uniformly sized micropores that are densely and evenly distributed in the metal foam. It may represent, and may have excellent durability through sufficient mechanical strength and shape retention of the metal foam.
  • due to the foaming of the metal powder by the reaction with the acid and the oxidation of the metal powder may exhibit an insulating effect, dense and uniform pores may play a role in blocking the electromagnetic waves. Due to such a characteristic of the metal foam of the present invention, the metal foam of the present invention can be used as a heat sink for electronic equipment such as LED lighting.
  • a slurry was prepared by mixing 30 g of aluminum powder, 1 g of activated carbon, and water. Hydrochloric acid was then added to foam the slurry. Subsequently, the foamed slurry was dried at a temperature of 100 ° C., and then sintered at a temperature of 600 ° C. to prepare a metal foam (hereinafter, Al foam) according to Example 1 of the present invention.
  • Al foam a metal foam
  • metal powders zinc powder, iron powder, copper powder, and titanium powder are used as metal powders, respectively, and sintering is performed at 400 ° C for zinc, 1500 ° C for iron, 1050 ° C for copper, and 1600 for titanium for melting point temperature of each metal.
  • Metal foams according to Examples 2, 3, 4, and 5 of the present invention (hereinafter, respectively) under substantially the same conditions as those prepared for the Al foam according to Example 1, except that each was carried out at a temperature of Zn foams, Fe foams, Cu foams, and Ti foams).
  • the foams according to Examples 1 to 5 were configured as heat sinks of an electronic device including an LED chip to measure heat distribution.
  • the heat distribution was measured 3 hours after the operation of the electronics and the heat distribution was measured at each position of the LED chip and the heat sink and the difference was calculated.
  • the test environment temperature was 23 ⁇ 1 ° C. The result is shown in FIG.
  • FIG. 2 is a view for explaining heat dissipation of metal foams according to embodiments of the present invention.
  • the temperature at the LED chip position is 48.4 ° C, but the temperature of the heat sink is 42.2 ° C, which shows a temperature difference of 6.2 ° C.
  • the temperature in a heat sink shows a temperature difference of 9.0 degreeC to 39.6 degreeC.
  • the Fe foam heat sink exhibited a temperature difference of 11.3 ° C. with an LED chip of 51.7 ° C. and a heat sink of 40.4 ° C .. It can be seen that there is a difference.
  • the Ti foam heat sink has a temperature of 52.0 ° C. in the LED chip, but the temperature between the LED chip and the heat sink is 13.4 ° C. at a temperature of 38.6 ° C. in the heat sink.
  • the metal foams according to the embodiments of the present invention exhibit a difference in temperature measured at the position of the LED chip and the heat sink as a whole.
  • the mechanical strength of the metal foams according to the embodiments of the present invention are Al foam 1.97, Zn foam 4.14, Fe foam 2.56, Cu foam 2.84, and Ti foam 2.30, respectively, which is according to the present invention. It is meant that the mechanical strength of the metal foams accordingly has a sufficient mechanical strength for use as a heat sink.
  • the Zn foam of the metal foams of the present invention is the most excellent, relatively low mechanical strength of the Al foam, but it can be seen that the Al foam is also sufficient mechanical strength to be used as the heat sink of the electronic device.
  • a metal foam having sufficient mechanical strength available as a heat sink can be formed without using a separate binder.
  • the metal foams according to the present invention has excellent heat dissipation characteristics and excellent mechanical strength, and thus, can be used as a heat sink of an electronic device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Powder Metallurgy (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

The present invention relates to a metal foam and a preparation method therefor. A method for preparing a metal foam of the present invention comprises the steps of: mixing metal powder, active carbon, and water to form slurry; adding acid to the slurry to allow the slurry to foam; drying the foamed slurry to form a foam; and sintering the foam.

Description

금속 발포체 및 이의 제조 방법Metallic foams and methods of making the same
본 발명은 금속 발포체와 이를 제조하는 방법에 관한 것이다.The present invention relates to metal foams and methods of making them.
점차 전자 기기가 고집적화 되면서, 전자 기기에서 많은 열이 발생하고 있으며, 이에 열에 의한 오작동 및 고장 등의 발열과 관련된 문제들이 발생하고 있다. 때문에, 전가 기기에서 열을 방출하기 위한 방열체에 대한 관심이 높아지고 있다. 방열체는 두 물질이 만날 시 서로의 열에너지를 나눠가짐으로서 열평형을 이루려는 원리를 이용한 것으로, 결과적으로 열원의 강한 열을 나눠가짐으로서 그 열원의 온도를 낮춰줄 수 있는 물체이다.As the electronic devices are increasingly integrated, a lot of heat is generated in the electronic devices, and thus problems related to heat generation such as malfunctions and malfunctions caused by the heat are generated. Therefore, there is a growing interest in heat sinks for dissipating heat from the electric appliances. The radiator uses the principle of achieving thermal equilibrium by sharing heat energy of two materials when they meet each other. As a result, an object that can lower the temperature of the heat source by dividing the strong heat of the heat source.
히트싱크는 반도체 장치와 같은 전자 기기에서 온도 상승을 방지하기 위해 부착하는 방열체로, 일반적으로 표면적을 넓히기 위해 지느러미(fin)와 같은 형태로 제조되고 있다. 히트싱크의 넓은 표면적은 주변 공기와의 접촉하는 면적이 넓기 때문에, 열원으로부터 열을 효율적으로 자연 대류 방열하도록 할 수 있다. Heat sinks are heat sinks attached to prevent temperature rise in electronic devices such as semiconductor devices. In general, heat sinks are manufactured in the form of fins to increase surface area. Since the large surface area of the heat sink has a large area of contact with the surrounding air, it is possible to efficiently heat convection heat from the heat source efficiently.
그러나, 기존의 히트싱크를 제조하기 위해서는 많은 시간과 비용이 필요하고, 히트싱크로 제조되는 금속 종류에 따른 중량 문제 및 제작 한계에 따른 표면적의 한계 등의 문제점이 있다. However, it takes a lot of time and money to manufacture a conventional heat sink, there is a problem such as the weight problem according to the type of metal to be produced as the heat sink and the limitation of the surface area according to the manufacturing limitations.
그러나, 기존의 히트싱크는 제작에 많은 시간 및 비용이 소요되고, 금속에 따른 중량의 문제 및 제작 한계에 따른 표면적 크기의 한계 등의 문제가 있다.However, conventional heat sinks require a lot of time and cost to manufacture, and there are problems such as weight problems due to metal and limitation of surface area size due to manufacturing limitations.
본 발명의 일 목적은 우수한 방열 특성을 갖는 금속 발포체의 제조 방법을 제공하는 것이다.One object of the present invention is to provide a method for producing a metal foam having excellent heat dissipation characteristics.
본 발명의 다른 목적은 우수한 방열 특성을 갖는 금속 발포체를 제공하는 것이다.Another object of the present invention is to provide a metal foam having excellent heat dissipation properties.
본 발명의 일 목적을 위한 금속 발포체의 제조 방법은 금속 분말, 활성탄소, 및 물을 혼합하여 슬러리를 형성하는 단계, 상기 슬러리에 산을 첨가하여 상기 슬러리를 발포시키는 단계, 상기 발포된 슬러리를 건조하여 발포체를 형성하는 단계, 및 상기 발포체를 소결하는 단계를 포함한다.Method for producing a metal foam for one purpose of the present invention is to form a slurry by mixing a metal powder, activated carbon, and water, adding an acid to the slurry to foam the slurry, drying the foamed slurry To form a foam, and sintering the foam.
일 실시예에서, 상기 산은 염산, 황산, 및 질산 중 적어도 어느 하나일 수 있다.In one embodiment, the acid may be at least one of hydrochloric acid, sulfuric acid, and nitric acid.
일 실시예에서, 상기 발포체를 소결하는 단계에서, 불활성 기체 하에서, 상기 금속의 용융점 미만의 온도로 소결할 수 있다.In one embodiment, in the step of sintering the foam, it can be sintered at a temperature below the melting point of the metal, under an inert gas.
일 실시예에서, 상기 금속 분말은 금(Au), 은(Ag), 아연(Zn), 알루미늄(Al), 철(Fe), 마그네슘(Mg), 구리(Cu), 티타늄(Ti), 및 주석(Sn) 중 적어도 어느 하나의 분말을 포함할 수 있다.In one embodiment, the metal powder is gold (Au), silver (Ag), zinc (Zn), aluminum (Al), iron (Fe), magnesium (Mg), copper (Cu), titanium (Ti), and It may include at least one powder of tin (Sn).
일 실시예에서, 상기 발포체를 형성하는 단계에서, 상기 발포된 슬러리는 60 ℃ 초과 300 ℃ 미만의 온도에서 가열하여 건조할 수 있다.In one embodiment, in the step of forming the foam, the foamed slurry may be dried by heating at a temperature of more than 60 ℃ less than 300 ℃.
본 발명의 다른 목적을 위한 금속 발포체는 금속 산화물 및 활성 탄소를 포함하되, 금속 분말 및 활성 탄소를 포함하는 슬러리가 발포 및 경화되어 형성된다.Metal foams for other purposes of the present invention include metal oxides and activated carbon, but are formed by foaming and curing a slurry comprising metal powder and activated carbon.
일 실시예에서, 상기 금속 발포체는 히트싱크일 수 있다.In one embodiment, the metal foam may be a heatsink.
본 발명의 금속 발포체 및 이의 제조 방법에 따르면, 본 발명은 균일한 기공의 크기 및 분포를 갖는 다공성 금속 발포체를 제공할 수 있다. 본 발명의 금속 발포체는 균일한 크기의 기공들이 금속 발포체에 전반적으로 고르고 조밀하게 분포되어 있고 넓은 표면적을 나타낼 수 있다. 때문에, 공기와 넓은 면적을 통해 접촉함으로서, 열을 효과적으로 열을 방출할 수 있다. 본 발명에 따르면, 상기 금속 발포체를 제조하는데 산의 첨가에 의해, 산화된 금속 발포체가 제조되어 상기 금속 발포체는 절연 효과를 나타낼 수도 있다. 뿐만 아니라, 본 발명의 금속 발포체는 다수의 기공들이 형성된 다공성 물질이므로, 기존의 금속으로 제조된 히트싱크와 비교하여 경량일 수 있다. 이러한 특성들에 기인하여 상기 금속 발포체는 전자 기기의 히트싱크로 이용할 수 있다. 또한, 본 발명에 따르면, 기존의 히트싱크를 제조하기 위한 다이 캐스팅(die casting) 공정과 비교하여 히트싱크의 제조비용을 절감할 수 있어 경제적일 수 있다.According to the metal foam of the present invention and a manufacturing method thereof, the present invention can provide a porous metal foam having a uniform pore size and distribution. The metal foam of the present invention may be uniformly and densely distributed throughout the metal foam with uniformly sized pores and exhibit a large surface area. Therefore, by contacting the air through a large area, heat can be effectively released. According to the present invention, by the addition of an acid to prepare the metal foam, an oxidized metal foam may be produced so that the metal foam may exhibit an insulating effect. In addition, since the metal foam of the present invention is a porous material formed with a plurality of pores, it may be lighter as compared with a heat sink made of a conventional metal. Due to these characteristics, the metal foam can be used as a heat sink of an electronic device. In addition, according to the present invention, the manufacturing cost of the heat sink can be reduced compared to the die casting process for manufacturing a conventional heat sink can be economical.
도 1은 본 발명의 금속 발포체의 제조 방법을 설명하기 위한 도면이다.BRIEF DESCRIPTION OF THE DRAWINGS It is a figure for demonstrating the manufacturing method of the metal foam of this invention.
도 2는 본 발명의 실시예들에 따른 금속 발포체들의 방열성을 설명하기 위한 도면이다.2 is a view for explaining heat dissipation of metal foams according to embodiments of the present invention.
이하, 첨부한 도면을 참조하여 본 발명의 실시예에 대해 상세히 설명한다. 본 발명은 다양한 변경을 가할 수 있고 여러 가지 형태를 가질 수 있는 바, 특정 실시예들을 도면에 예시하고 본문에 상세하게 설명하고자 한다. 그러나 이는 본 발명을 특정한 개시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다.Hereinafter, with reference to the accompanying drawings will be described in detail an embodiment of the present invention. As the inventive concept allows for various changes and numerous embodiments, particular embodiments will be illustrated in the drawings and described in detail in the text. However, this is not intended to limit the present invention to a specific disclosed form, it should be understood to include all modifications, equivalents, and substitutes included in the spirit and scope of the present invention.
본 출원에서 사용한 용어는 단지 특정한 실시 예를 설명하기 위해 사용된 것으로서 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 출원에서, "포함하다" 또는 "가지다" 등의 용어는 명세서 상에 기재된 특징, 단계, 동작, 구성요소, 부분품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 단계, 동작, 구성요소, 부분품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.The terminology used herein is for the purpose of describing particular example embodiments only and is not intended to be limiting of the invention. Singular expressions include plural expressions unless the context clearly indicates otherwise. In this application, the terms "comprises" or "having" are intended to indicate that there is a feature, step, operation, component, part, or combination thereof described on the specification, and one or more other features or steps. It is to be understood that the present invention does not exclude, in advance, the possibility of the presence or the addition of an operation, a component, a part, or a combination thereof.
다르게 정의되지 않는 한, 기술적이거나 과학적인 용어를 포함해서 여기서 사용되는 모든 용어들은 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 것과 동일한 의미를 가지고 있다. 일반적으로 사용되는 사전에 정의되어 있는 것과 같은 용어들은 관련 기술의 문맥 상 가지는 의미와 일치하는 의미를 가지는 것으로 해석되어야 하며, 본 출원에서 명백하게 정의하지 않는 한, 이상적이거나 과도하게 형식적인 의미로 해석되지 않는다.Unless defined otherwise, all terms used herein, including technical or scientific terms, have the same meaning as commonly understood by one of ordinary skill in the art. Terms such as those defined in the commonly used dictionaries should be construed as having meanings consistent with the meanings in the context of the related art and shall not be construed in ideal or excessively formal meanings unless expressly defined in this application. Do not.
도 1은 본 발명의 금속 발포체의 제조 방법을 설명하기 위한 도면이다.BRIEF DESCRIPTION OF THE DRAWINGS It is a figure for demonstrating the manufacturing method of the metal foam of this invention.
도 1을 참조하면, 본 발명은 금속 발포체를 제조하기 위해, 먼저, 금속 분말, 활성 탄소 및 물을 혼합하여 슬러리를 제조한다(단계 S110).Referring to FIG. 1, the present invention first prepares a slurry by mixing a metal powder, activated carbon, and water to prepare a metal foam (step S110).
상기 금속 분말은 금(Au), 은(Ag), 아연(Zn), 알루미늄(Al), 철(Fe), 마그네슘(Mg), 구리(Cu), 티타늄(Ti), 및 주석(Sn) 중 적어도 어느 하나의 금속의 분말을 포함할 수 있다. 금속 분말을 예시적으로 언급하였으나, 본 발명이 이에 제한되는 것은 아니다.The metal powder is selected from among gold (Au), silver (Ag), zinc (Zn), aluminum (Al), iron (Fe), magnesium (Mg), copper (Cu), titanium (Ti), and tin (Sn). It may include a powder of at least one metal. Although the metal powder is mentioned as an example, the present invention is not limited thereto.
활성 탄소(activated carbon)는 대부분의 구성 물질이 탄소질로 이루어진 물질로, 활성탄과 같은 의미일 수 있다.Activated carbon is a material made of most carbonaceous material, and may mean the same as activated carbon.
상기 금속 분말 및 활성 탄소는 상기 슬러리가 발포되어 형성되는 발포체에 포함됨으로서, 상기 발포체가 우수한 경도를 갖고, 형상을 유지하는데 역할을 할 수 있다. 또한, 상기 금속 분말 및 활성 탄소를 포함하는 슬러리에 기포를 형성하는 발포제가 첨가되는 경우, 미세한 크기의 기공들이 조밀하게 생성되어 발포되도록 할 수 있다.The metal powder and the activated carbon are included in a foam formed by foaming the slurry, and thus the foam may have an excellent hardness and play a role in maintaining a shape. In addition, when a foaming agent that forms bubbles is added to the slurry including the metal powder and activated carbon, pores of fine size may be densely produced and foamed.
이때, 물은 금속 분말 및 활성 탄소가 균일하게 혼합될 수 있도록 적당량이 첨가될 수 있다. At this time, water may be added in an appropriate amount so that the metal powder and the activated carbon can be uniformly mixed.
그 다음, 슬러리에 산을 첨가하여, 슬러리를 발포시킨다(단계 S120).Then, an acid is added to the slurry to foam the slurry (step S120).
이때, 상기 산은 염산, 황산, 및 질산 중 적어도 어느 하나일 수 있다.In this case, the acid may be at least one of hydrochloric acid, sulfuric acid, and nitric acid.
상기 슬러리에 산을 첨가 시, 상기 슬러리의 금속 분말 및 활성 탄소와 산의 반응에 의해 상기 슬러리에 기포가 발생될 수 있다. 이때, 생성되는 기포의 크기는 미세하고 균일할 수 있다. 상기 슬러리 전반적으로 고르고 조밀하게 기공들이 발포될 수 있고, 상기 기공의 크기는 마이크로 크기일 수 있다. 즉, 크기가 균일하고 슬러리에 전반적으로 조밀하고 균일하게 분포된 기포들이 형성될 수 있다. 또한, 산을 상기 슬러리에 첨가함으로서, 상기 슬러리가 발포됨과 더불어, 상기 슬러리의 금속 분말이 산화될 수 있다.When acid is added to the slurry, bubbles may be generated in the slurry by the reaction of the metal powder of the slurry and the acid and the activated carbon. At this time, the size of the bubbles generated may be fine and uniform. The pores may be foamed evenly and densely throughout the slurry, and the pore size may be micro size. That is, bubbles of uniform size and generally dense and uniformly distributed in the slurry can be formed. In addition, by adding an acid to the slurry, while the slurry is foamed, the metal powder of the slurry can be oxidized.
이어서, 발포된 슬러리를 건조하여 발포체를 형성한다(단계 S130).Subsequently, the foamed slurry is dried to form a foam (step S130).
상기 발포된 슬러리는 상기 슬러리를 60 ℃ 초과 300 ℃ 미만의 온도에서 가열하여 건조할 수 있다. 상기 온도 조건에서 건조를 통해, 상기 발포된 슬러리 내의 수분, 불순물 등이 열 분해될 수 있다. 이때, 상기 발포된 슬러리를 건조시키는 과정에서, 상기 슬러리와 산의 지속적인 반응에 의한 기공의 형성과 더불어, 상기 슬러리의 수분이 제거됨에 따라서도 기공이 형성될 수도 있다.The foamed slurry may be dried by heating the slurry at a temperature of more than 60 ℃ below 300 ℃. Through drying at the temperature conditions, moisture, impurities, etc. in the foamed slurry may be thermally decomposed. At this time, in the process of drying the foamed slurry, in addition to the formation of pores by the continuous reaction of the slurry and acid, pores may also be formed as the moisture of the slurry is removed.
상기 슬러리를 60 ℃ 이하의 온도 조건에서 가열하는 경우, 상기 슬러리 내에 수분이나 불순물 등이 열 분해되지 않을 수 있다. 또는 상기 슬러리를 300 ℃ 이상의 온도에서 가열하는 경우, 상기 슬러리에 기공이 균일하지 않게 형성될 수 있고, 기공의 크기가 불규칙적이거나 과도하게 큰 기공들이 형성될 수 있으며, 기공들이 서로 겹쳐져 발포체 내에 크랙이 형성될 수도 있다. 때문에, 상기 발포된 슬러리는 60 ℃ 초과 300 ℃ 미만의 온도 범위에서 건조시키는 것이 바람직할 수 있다.When the slurry is heated at a temperature of 60 ° C. or less, moisture or impurities may not be thermally decomposed in the slurry. Alternatively, when the slurry is heated at a temperature of 300 ° C. or higher, pores may be unevenly formed in the slurry, irregular or excessively large pores may be formed, and the pores may overlap each other to cause cracks in the foam. It may be formed. Therefore, it may be desirable to dry the foamed slurry in a temperature range of more than 60 ℃ less than 300 ℃.
즉, 금속 분말 및 활성 탄소를 포함하는 슬러리와 산의 반응과 발포된 슬러리를 건조하는 과정에서 제거되는 수분에 의해, 미세 기공들이 조밀하고 균일하게 존재하는 발포체를 형성할 수 있다.That is, by the reaction of the slurry containing the metal powder and the activated carbon with the acid and the moisture removed during the drying of the foamed slurry, it is possible to form a foam in which fine pores are densely and uniformly present.
그 다음, 발포체를 소결하여, 본 발명의 금속 발포체를 제조한다(단계 S140).Then, the foam is sintered to prepare a metal foam of the present invention (step S140).
발포체는 불활성 기체 하에서, 상기 슬러리에 포함된 금속이 용융하지 않은 온도, 즉, 금속의 용융점 미만의 온도에서 소결할 수 있다. 소결은 가열에 의해 서로 단단히 밀착하여 고결하는 현상으로, 고체간의 순고체상 혹은 일부 액체상을 섞은 결합 반응을 소결이라 할 수 있다. 본 발명에서는 발포된 슬러리를 가열하여 건조함에 의해 수분은 제거되고 금속 및 활성 탄소를 포함하는 발포체를 소결하여, 상기 금속이 접합되도록 할 수 있다. 이때, 상기 발포체를 상기 슬러리에 포함되어 발포체를 이루는 금속의 용융점 미만의 온도에서 소결하면, 상기 금속 발포체를 구성하는 금속은 접합하지만, 금속이 완전히 용융되지는 않아 발포체의 형상을 유지할 수 있다. 즉, 상기 금속 발포체에 형성된 기공들이 유지될 수 있다. 또한, 금속의 접합을 통해 상기 금속 발포체의 기계적 강도가 향상될 수 있고, 이에 따라, 상기 금속 발포체는 형상 유지력이 향상될 수 있다.The foam may be sintered under an inert gas at a temperature at which the metal contained in the slurry does not melt, ie, below the melting point of the metal. Sintering is a phenomenon in which the solid tightly adheres to each other by heating and solidifies, and the coupling reaction in which the pure solid phase or some liquid phases between solids are mixed may be referred to as sintering. In the present invention, by heating and drying the foamed slurry, moisture is removed and the foam containing the metal and the activated carbon is sintered to allow the metal to be bonded. In this case, when the foam is sintered at a temperature less than the melting point of the metal included in the slurry to form a foam, the metal constituting the metal foam is bonded, but the metal is not completely melted to maintain the shape of the foam. That is, pores formed in the metal foam can be maintained. In addition, the mechanical strength of the metal foam can be improved through the bonding of the metal, and accordingly, the shape retention force of the metal foam can be improved.
일례로, 금속으로서 열전도율이 우수한 알루미늄과 같은 도체를 이용할 수 있다. 알루미늄을 이용하는 경우, 발포체의 소결 온도는 400℃ 내지 800℃일 수 있다. 상기 알루미늄을 포함하는 발포체를 400 ℃ 미만의 온도에서 소결하는 경우, 금속이 접합되지 않을 수 있고, 800 ℃ 보다 높은 온도에서 소결하는 경우, 발포체의 금속이 용융되어 발포체의 형상이 유지되지 않을 수 있다.For example, a conductor such as aluminum having excellent thermal conductivity can be used as the metal. When using aluminum, the sintering temperature of the foam may be 400 ° C to 800 ° C. When the foam including the aluminum is sintered at a temperature of less than 400 ℃, the metal may not be bonded, when sintering at a temperature higher than 800 ℃, the metal of the foam may be melted and the shape of the foam may not be maintained. .
상기에서 알루미늄을 이용한 경우의 소결 온도를 예시적으로 언급하였으나, 소결 온도는 상기에서 설명한 바와 같이 본 발명의 금속 발포체 제조에 이용하는 금속의 종류에 따라 이용하는 금속이 접합 가능하나 용융되지는 않는 적절한 온도일수 있다.Although the above-mentioned sintering temperature in the case of using aluminum is exemplarily mentioned, the sintering temperature may be an appropriate temperature at which the metal used may be bonded but not melted according to the type of metal used to manufacture the metal foam of the present invention as described above. have.
본 발명의 금속 발포체는 원하는 용도, 형상, 크기 등에 적합한 다양한 형태의 몰드(틀)를 이용하여 형성할 수 있다. 구체적으로, 상기 슬러리를 다양한 형태의 몰드를 선택하여 상기 몰드에서 발포시키고, 이를 건조 및 소결함으로서, 목적하는 형상, 크기 등을 갖는 본 발명의 금속 발포체를 형성할 수 있다. 일례로, 본 발명은 지느러미(fin) 형태의 몰드를 이용할 수 있다.The metal foam of the present invention can be formed using various types of molds (frames) suitable for the desired use, shape, size, and the like. Specifically, the slurry may be selected from various molds and foamed in the mold, and then dried and sintered to form the metal foam of the present invention having a desired shape, size, and the like. For example, the present invention may use a fin in the form of a fin.
본 발명에 따르면, 본 발명의 금속 발포체는 상기에서 설명한 바와 같이, 일반적으로 발포체의 제조에 많이 이용되는 액상규산염과 같은 발포제를 이용하지 않고도, 금속 분말 및 활성 탄소가 산과 반응하여 형성된 미세하고 균일한 크기의 기공들을 포함할 수 있다. 상기 금속 발포체는 미세 기공들을 조밀하고 균일하게 포함하고 있어 넓은 표면적을 가질 수 있고, 금속으로 구성되므로 열전도율이 우수하며, 이에 따라, 주변 공기와의 접촉하는 넓은 면적과 우수한 열전도율에 의해 열원으로부터 열을 효과적으로 자연 대류 방열하도록 할 수 있다. 또한, 상기 금속 발포체는 다수의 기공들이 형성되어 있으므로 경량일 수 있다. 뿐만 아니라, 상기 금속 발포체에 조밀하게 형성된 미세하고 균일한 크기의 다수의 기공들은 전자 기기로부터 발생되는 전자파를 차단 역할을 할 수 있다.According to the present invention, as described above, the metal foam of the present invention is fine and uniform formed by reacting metal powder and activated carbon with acid, without using a foaming agent such as liquid silicate, which is generally used in the manufacture of foam. It may comprise pores of size. The metal foam may have a large surface area because it contains fine pores densely and uniformly, and since the metal foam is composed of metal, it has excellent thermal conductivity, and thus, heat is removed from the heat source by the large area in contact with the surrounding air and the excellent thermal conductivity. It can effectively allow natural convection heat dissipation. In addition, the metal foam may be lightweight because a plurality of pores are formed. In addition, a plurality of pores of fine and uniform size densely formed in the metal foam may serve to block electromagnetic waves generated from electronic devices.
아울러, 본 발명은 금속 발포체를 제조함에 있어, 금속 발포체의 형상을 유지하기 위한 바인더와 같은 물질을 사용하지 않고, 금속 분말 및 활성 탄소만을 이용하며, 이들이 산에 의해 발포된 발포체를 소결하는 공정을 통해, 우수한 기계적 강도와 형상 유지력을 갖는 금속 발포체를 제조할 수 있다. 또한, 상기 산에 의해 금속 분말이 산화됨으로서, 상기 금속 발포체는 절연 효과를 나타낼 수 있다.In addition, the present invention in the manufacture of the metal foam, using a metal powder and activated carbon, without using a material such as a binder for maintaining the shape of the metal foam, the process of sintering the foam foamed by the acid Through, excellent mechanical strength and shape retention A metal foam having can be produced. In addition, as the metal powder is oxidized by the acid, the metal foam may exhibit an insulation effect.
다시 말하면, 본 발명의 금속 발포체는 금속 산화물 및 활성 탄소를 포함하고 있어 열 전도율이 우수하고, 상기 금속 발포체에 조밀하고 고르게 분포하는 균일한 크기의 미세 기공들에 기인한 넓은 표면적으로 인해 우수한 방열 특성을 나타낼 수 있고, 상기 금속 발포체의 충분한 기계적 강도와 형상 유지력을 통해 우수한 내구성을 가질 수 있다. 또한, 산과의 반응에 의한 금속 분말이 발포됨과 더불어 금속 분말이 산화됨에 기인하여 절연 효과를 나타낼 수 있고, 조밀하고 균일한 기공들이 전자파를 차단하는데 역할을 할 수 있다. 이러한 본 발명의 금속 발포체의 특성에 기인하여, 본 발명의 금속 발포체는 LED등기구 등과 같은 전자기기의 히트싱크로서 이용할 수 있다.In other words, the metal foam of the present invention contains a metal oxide and activated carbon, which is excellent in thermal conductivity, and excellent heat dissipation characteristics due to the large surface area due to uniformly sized micropores that are densely and evenly distributed in the metal foam. It may represent, and may have excellent durability through sufficient mechanical strength and shape retention of the metal foam. In addition, due to the foaming of the metal powder by the reaction with the acid and the oxidation of the metal powder may exhibit an insulating effect, dense and uniform pores may play a role in blocking the electromagnetic waves. Due to such a characteristic of the metal foam of the present invention, the metal foam of the present invention can be used as a heat sink for electronic equipment such as LED lighting.
이하에서는, 구체적인 실시예들을 들어, 본 발명의 금속 발포체 및 이의 제조 방법을 설명하기로 한다.Hereinafter, with reference to specific embodiments, it will be described in the metal foam of the present invention and its manufacturing method.
금속 분말로서 알루미늄을 사용하여, 알루미늄 분말 30 g, 활성 탄소 1 g, 및 물을 혼합하여 슬러리를 제조하였다. 그 다음, 염산을 첨가하여 상기 슬러리를 발포시켰다. 이어서, 발포된 슬러리를 100 ℃의 온도에서 건조한 후, 다시 600 ℃의 온도에서 소결하여, 본 발명의 실시예 1에 따른 금속 발포체(이하, Al 발포체)를 제조하였다.Using aluminum as the metal powder, A slurry was prepared by mixing 30 g of aluminum powder, 1 g of activated carbon, and water. Hydrochloric acid was then added to foam the slurry. Subsequently, the foamed slurry was dried at a temperature of 100 ° C., and then sintered at a temperature of 600 ° C. to prepare a metal foam (hereinafter, Al foam) according to Example 1 of the present invention.
또한, 각각 금속 분말로서 아연 분말, 철 분말, 구리 분말, 및 티타늄 분말을 사용하고, 소결을 각 금속의 녹는점 온도에 맞춰 아연은 400 ℃, 철은 1500 ℃, 구리는 1050 ℃, 티타늄은 1600 ℃의 온도에서 각각 수행한 것을 제외하고는 상기 실시예 1에 따라 Al 발포체를 제조한 것과 실질적으로 동일한 조건으로 본 발명의 실시예 2, 3, 4, 및 5에 따른 금속 발포체들(이하, 각각 Zn 발포체, Fe 발포체, Cu 발포체, 및 Ti 발포체)을 제조하였다.In addition, zinc powder, iron powder, copper powder, and titanium powder are used as metal powders, respectively, and sintering is performed at 400 ° C for zinc, 1500 ° C for iron, 1050 ° C for copper, and 1600 for titanium for melting point temperature of each metal. Metal foams according to Examples 2, 3, 4, and 5 of the present invention (hereinafter, respectively) under substantially the same conditions as those prepared for the Al foam according to Example 1, except that each was carried out at a temperature of Zn foams, Fe foams, Cu foams, and Ti foams).
이어서, 상기 실시예 1 내지 5에 따른 발포체들을 LED 칩(chip)을 포함하는 전자기기의 히트싱크로서 구성하여 열 분포를 측정하였다. 열 분포는 전자기기를 작동 시키고 3시간 후, LED 칩과 히트싱크 각각의 위치에서 열 분포를 측정하고 그 차이를 계산하였다. 테스트 환경 온도는 23 ± 1 ℃였다. 그 결과를 도 2에 나타낸다.Subsequently, the foams according to Examples 1 to 5 were configured as heat sinks of an electronic device including an LED chip to measure heat distribution. The heat distribution was measured 3 hours after the operation of the electronics and the heat distribution was measured at each position of the LED chip and the heat sink and the difference was calculated. The test environment temperature was 23 ± 1 ° C. The result is shown in FIG.
도 2는 본 발명의 실시예들에 따른 금속 발포체들의 방열성을 설명하기 위한 도면이다.2 is a view for explaining heat dissipation of metal foams according to embodiments of the present invention.
도 2를 참조하면, Al 발포체 히트싱크의 경우, LED 칩 위치에서의 온도는 48.4 ℃ 이나, 히트싱크의 온도는 42.2 ℃로 6.2 ℃의 온도 차이를 나타내고, Zn 발포체 히트싱크의 경우에는 LED 칩에서의 온도는 48.6 ℃이나, 히트싱크에서의 온도는 39.6 ℃로 9.0 ℃의 온도 차이를 나타내는 것을 확인할 수 있다. 또한, Fe 발포체 히트싱크는 LED 칩 51.7 ℃, 히트싱크 40.4 ℃로 11.3 ℃의 온도 차이를 나타내고, Cu 발포체 히트싱크는 LED 칩의 온도는 52.4 ℃, 히트싱크의 온도는 40.6 ℃으로 11.8 ℃의 온도 차이를 나타내는 것을 확인할 수 있다. 특히, Ti 발포체 히트싱크는 LED 칩에서의 온도는 52.0 ℃이나, 히트싱크에서는 38.6 ℃의 온도로 LED 칩과 히트싱크 사이의 온도가 13.4 ℃ 차이나는 것을 확인할 수 있다.2, in the case of the Al foam heat sink, the temperature at the LED chip position is 48.4 ° C, but the temperature of the heat sink is 42.2 ° C, which shows a temperature difference of 6.2 ° C., and in the case of the Zn foam heat sink, Although the temperature of 48.6 degreeC, the temperature in a heat sink shows a temperature difference of 9.0 degreeC to 39.6 degreeC. In addition, the Fe foam heat sink exhibited a temperature difference of 11.3 ° C. with an LED chip of 51.7 ° C. and a heat sink of 40.4 ° C .. It can be seen that there is a difference. In particular, it can be seen that the Ti foam heat sink has a temperature of 52.0 ° C. in the LED chip, but the temperature between the LED chip and the heat sink is 13.4 ° C. at a temperature of 38.6 ° C. in the heat sink.
즉, 본 발명의 실시예들에 따른 금속 발포체들이 전반적으로 LED 칩 위치와 히트싱크의 위치에서 측정한 온도에서 차이를 나타내는 것을 확인할 수 있고, 이것은 본 발명에 실시예들에 따른 금속 발포체들이 방열 특성을 가짐을 의미한다.That is, it can be seen that the metal foams according to the embodiments of the present invention exhibit a difference in temperature measured at the position of the LED chip and the heat sink as a whole. Means to have
또한, 본 발명의 실시예들에 따른 금속 발포체들의 기계적 강도를 확인하였다. 그 결과를 표 1에 나타낸다.In addition, the mechanical strength of the metal foams according to the embodiments of the present invention was confirmed. The results are shown in Table 1.
기계적 강도(MPa)Mechanical strength (MPa) 최대하중(Max-load) (kgf)Max-load (kgf)
Al 발포체Al foam 1.971.97 107.2107.2
Zn 발포체Zn foam 4.144.14 210.8210.8
Fe 발포체 Fe foam 2.562.56 138.8138.8
Cu 발포체Cu foam 2.842.84 140.0140.0
Ti 발포체Ti foam 2.302.30 120.0120.0
표 1을 참조하면, 본 발명의 실시예들에 따른 금속 발포체들의 기계적 강도가 각각 Al 발포체 1.97, Zn 발포체 4.14, Fe 발포체 2.56, Cu 발포체 2.84, 및 Ti 발포체 2.30임을 확인할 수 있고, 이것은 본 발명에 따른 금속 발포체들의 기계적 강도가 히트싱크로 이용하기에 충분한 기계적 강도를 갖는 것을 의미한다. 특히, 본 발명의 금속 발포체들 중 Zn 발포체의 강도가 가장 우수하며, 상대적으로 Al 발포체의 기계적 강도가 낮았으나 Al 발포체 또한 전자기기의 히트싱크로 이용하기에 충분한 기계적 강도임을 확인할 수 있다.Referring to Table 1, it can be seen that the mechanical strength of the metal foams according to the embodiments of the present invention are Al foam 1.97, Zn foam 4.14, Fe foam 2.56, Cu foam 2.84, and Ti foam 2.30, respectively, which is according to the present invention. It is meant that the mechanical strength of the metal foams accordingly has a sufficient mechanical strength for use as a heat sink. In particular, the Zn foam of the metal foams of the present invention is the most excellent, relatively low mechanical strength of the Al foam, but it can be seen that the Al foam is also sufficient mechanical strength to be used as the heat sink of the electronic device.
따라서, 본 발명에 따라 별도의 바인더를 사용하지 않고도 히트싱크로 이용 가능한 충분한 기계적 강도를 갖는 금속 발포체를 형성할 수 있음을 확인할 수 있다.Accordingly, it can be seen that according to the present invention, a metal foam having sufficient mechanical strength available as a heat sink can be formed without using a separate binder.
종합적으로, 상기 도 2 및 표 1을 참조하여 확인한 바와 같이, 본 발명에 따른 금속 발포체들은 우수한 방열 특성을 가지고 기계적 강도가 우수하며, 이에 따라, 전자기기의 히트싱크로 이용할 수 있음을 확인할 수 있다.Overall, as confirmed with reference to FIG. 2 and Table 1, the metal foams according to the present invention has excellent heat dissipation characteristics and excellent mechanical strength, and thus, can be used as a heat sink of an electronic device.
상기에서는 본 발명의 바람직한 실시예를 참조하여 설명하였지만, 해당 기술 분야의 숙련된 당업자는 하기의 특허 청구 범위에 기재된 본 발명의 사상 및 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경시킬 수 있음을 이해할 수 있을 것이다.While the foregoing has been described with reference to preferred embodiments of the present invention, those skilled in the art will be able to variously modify and change the present invention without departing from the spirit and scope of the invention as set forth in the claims below. It will be appreciated.

Claims (7)

  1. 금속 분말, 활성탄소, 및 물을 혼합하여 슬러리를 형성하는 단계;Mixing the metal powder, activated carbon, and water to form a slurry;
    상기 슬러리에 산을 첨가하여 상기 슬러리를 발포시키는 단계;Adding an acid to the slurry to foam the slurry;
    상기 발포된 슬러리를 건조하여 발포체를 형성하는 단계; 및Drying the foamed slurry to form a foam; And
    상기 발포체를 소결하는 단계를 포함하는,Sintering the foam;
    금속 발포체의 제조 방법.Method for producing metal foams.
  2. 제1항에 있어서,The method of claim 1,
    상기 산은 염산, 황산, 및 질산 중 적어도 어느 하나인 것을 특징으로 하는, 금속 발포체의 제조 방법.Wherein the acid is at least one of hydrochloric acid, sulfuric acid, and nitric acid.
  3. 제1항에 있어서,The method of claim 1,
    상기 발포체를 소결하는 단계에서,In the step of sintering the foam,
    불활성 기체 하에서, 상기 금속의 용융점 미만의 온도로 소결하는 것을 특징으로 하는,Sintering at a temperature below the melting point of the metal under an inert gas,
    금속 발포체의 제조 방법.Method for producing metal foams.
  4. 제1항에 있어서,The method of claim 1,
    상기 금속 분말은 금(Au), 은(Ag), 아연(Zn), 알루미늄(Al), 철(Fe), 마그네슘(Mg), 구리(Cu), 티타늄(Ti), 및 주석(Sn) 중 적어도 어느 하나의 분말을 포함하는 것을 특징으로 하는,The metal powder is selected from among gold (Au), silver (Ag), zinc (Zn), aluminum (Al), iron (Fe), magnesium (Mg), copper (Cu), titanium (Ti), and tin (Sn). Characterized in that it comprises at least one powder,
    금속 발포체의 제조 방법.Method for producing metal foams.
  5. 제1항에 있어서,The method of claim 1,
    상기 발포체를 형성하는 단계에서,In the forming of the foam,
    상기 발포된 슬러리는 60 ℃ 초과 300 ℃ 미만의 온도에서 가열하여 건조하는 것을 특징으로 하는,The foamed slurry is characterized in that the drying by heating at a temperature of less than 300 ℃ over 60 ℃,
    금속 발포체의 제조 방법.Method for producing metal foams.
  6. 금속 산화물 및 활성 탄소를 포함하되,Metal oxides and activated carbons,
    금속 분말 및 활성 탄소를 포함하는 슬러리가 발포 및 경화되어 형성된,A slurry comprising metal powder and activated carbon is formed by foaming and curing,
    금속 발포체.Metal foam.
  7. 제6항에 있어서,The method of claim 6,
    상기 금속 발포체는 히트싱크인 것을 특징으로 하는,The metal foam is characterized in that the heat sink,
    금속 발포체.Metal foam.
PCT/KR2017/012227 2016-11-08 2017-11-01 Metal foam and preparation method therefor WO2018088751A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201780069042.2A CN109922908A (en) 2016-11-08 2017-11-01 Metal foam and preparation method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020160147948A KR101891405B1 (en) 2016-11-08 2016-11-08 Metal foam and manufacturing method of the metal foam
KR10-2016-0147948 2016-11-08

Publications (1)

Publication Number Publication Date
WO2018088751A1 true WO2018088751A1 (en) 2018-05-17

Family

ID=62109318

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/012227 WO2018088751A1 (en) 2016-11-08 2017-11-01 Metal foam and preparation method therefor

Country Status (3)

Country Link
KR (1) KR101891405B1 (en)
CN (1) CN109922908A (en)
WO (1) WO2018088751A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102387629B1 (en) * 2018-06-29 2022-04-18 주식회사 엘지화학 Preparation method for metal foam

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040100224A (en) * 2003-05-22 2004-12-02 주식회사 바이오카본텍 The manufacturing method of polyvinyl acetal sponge mixing activated carbon
KR20080044344A (en) * 2005-10-07 2008-05-20 베일 인코 리미티드 High porosity metal biporous foam
JP2009249693A (en) * 2008-04-07 2009-10-29 Seiko Epson Corp Method for producing foamed metal sintered compact, and foamed metal sintered compact
KR20150034542A (en) * 2013-09-26 2015-04-03 한국에너지기술연구원 Synthesis method of transition metal alloy with high conductibility activated carbon complex

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3411228C1 (en) * 1984-03-27 1985-05-30 Du Pont de Nemours (Deutschland) GmbH, 4000 Düsseldorf Process for the environmentally friendly purification of photographic wash water from film processing machines and apparatus for carrying out the process
CN1191139C (en) * 2002-11-14 2005-03-02 中国地质大学(武汉) Preparation method of porous iron
US20040167632A1 (en) * 2003-02-24 2004-08-26 Depuy Products, Inc. Metallic implants having roughened surfaces and methods for producing the same
CN1218997C (en) * 2004-02-04 2005-09-14 安徽大维新材有限责任公司 Highly absorbent polyvinyl alcohol foam and process for preparing same
JP4986259B2 (en) * 2006-10-24 2012-07-25 三菱マテリアル株式会社 Mixed raw material for the production of porous metal sintered bodies with high foaming speed
KR100760040B1 (en) * 2007-01-26 2007-09-18 박민화 Manufacture method of foam ceramics
CN101418391B (en) * 2008-12-15 2010-08-25 哈尔滨理工大学 Method for preparing gradient porous material
CN101773817A (en) * 2009-01-13 2010-07-14 厦门绿邦膜技术有限公司 Composite absorption material for wastewater treatment and preparation method thereof
JP5526938B2 (en) * 2010-03-31 2014-06-18 三菱マテリアル株式会社 Method for producing porous aluminum sintered body
CN103586469A (en) * 2013-11-11 2014-02-19 广州有色金属研究院 Preparation method of foamed porous metal plate

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040100224A (en) * 2003-05-22 2004-12-02 주식회사 바이오카본텍 The manufacturing method of polyvinyl acetal sponge mixing activated carbon
KR20080044344A (en) * 2005-10-07 2008-05-20 베일 인코 리미티드 High porosity metal biporous foam
JP2009249693A (en) * 2008-04-07 2009-10-29 Seiko Epson Corp Method for producing foamed metal sintered compact, and foamed metal sintered compact
KR20150034542A (en) * 2013-09-26 2015-04-03 한국에너지기술연구원 Synthesis method of transition metal alloy with high conductibility activated carbon complex

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JANG, HYEONG IL: "Development and Characterization of Metal Foam by the LED Heatsink", SPECIALIZED GRADUATE SCHOOL SCIENCE & TECHNOLOGY CONVERGENCE, August 2016 (2016-08-01), pages 1 - 67 *

Also Published As

Publication number Publication date
KR101891405B1 (en) 2018-08-23
KR20180051082A (en) 2018-05-16
CN109922908A (en) 2019-06-21

Similar Documents

Publication Publication Date Title
WO2017082487A1 (en) Cellulose carbonized particle containing foam ceramic heat dissipating material, and method for manufacturing same
WO2012050271A1 (en) Alloy of tungsten (w) and copper (cu) having functionally graded material (fgm) layers, metal material having the same and manufacturing method for alloy of w and cu
CN104975200B (en) High-performance aluminum/carbon composite material and preparation method thereof
CN104058772A (en) Ceramic composite material substrate and manufacturing technology thereof
CN101925999A (en) Heat sink and method for producing heat sink
CN104445953B (en) A kind of calcium Pyrex base low-temperature cofired ceramic material and preparation method thereof
TW202006152A (en) Metal-silicon carbide composite body, and method for manufacturing metal-silicon carbide composite body
CN102531396B (en) Low-temperature co-fired glass ceramic composites and preparation method thereof
JP2011508447A (en) Method for forming pyrolytic graphite embedded heat sink
CN105130481A (en) Metal-ceramic composite base plate and preparation technology of same
WO2018088751A1 (en) Metal foam and preparation method therefor
CN106906388B (en) A kind of preparation method of silumin
CN104148645A (en) Composite ceramic heat-radiating material and preparation method thereof
JPH0123884B2 (en)
WO2014129696A1 (en) Method for manufacturing heat-dissipating plate having excellent heat conductivity in thickness direction and heat-dissipating plate manufactured by method
CN102515781A (en) Preparation method for silicon carbide preform based on water-based adhesive
TWI262178B (en) Carrier for sintering ceramic electronic part
JP2004160549A (en) Ceramic-metal complex and high heat-conductive substrate for heat radiation using the same
CN104446338B (en) A kind of calcium aluminosilicate glass base low-temperature cofired ceramic material and preparation method thereof
JP3913130B2 (en) Aluminum-silicon carbide plate composite
JP2008122024A (en) Heat pipe, heat pipe module and heat pipe manufacturing method
TWI640495B (en) Composite component, use and manufacturing method of the same
WO2015156459A1 (en) Led lamp heat radiation structure using mechanical alloying method and manufacturing method thereof
JP3847009B2 (en) Method for producing silicon carbide composite
JP3847012B2 (en) Method for producing silicon carbide composite

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17870117

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17870117

Country of ref document: EP

Kind code of ref document: A1