WO2014014067A1 - sp3炭素のメチル化法 - Google Patents

sp3炭素のメチル化法 Download PDF

Info

Publication number
WO2014014067A1
WO2014014067A1 PCT/JP2013/069548 JP2013069548W WO2014014067A1 WO 2014014067 A1 WO2014014067 A1 WO 2014014067A1 JP 2013069548 W JP2013069548 W JP 2013069548W WO 2014014067 A1 WO2014014067 A1 WO 2014014067A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon
boronic acid
methylation
acid ester
reaction
Prior art date
Application number
PCT/JP2013/069548
Other languages
English (en)
French (fr)
Inventor
正昭 鈴木
良祐 伊集院
久志 土居
浩子 古山
Original Assignee
独立行政法人理化学研究所
国立大学法人岐阜大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 独立行政法人理化学研究所, 国立大学法人岐阜大学 filed Critical 独立行政法人理化学研究所
Publication of WO2014014067A1 publication Critical patent/WO2014014067A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B59/00Introduction of isotopes of elements into organic compounds ; Labelled organic compounds per se
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C217/00Compounds containing amino and etherified hydroxy groups bound to the same carbon skeleton
    • C07C217/02Compounds containing amino and etherified hydroxy groups bound to the same carbon skeleton having etherified hydroxy groups and amino groups bound to acyclic carbon atoms of the same carbon skeleton
    • C07C217/04Compounds containing amino and etherified hydroxy groups bound to the same carbon skeleton having etherified hydroxy groups and amino groups bound to acyclic carbon atoms of the same carbon skeleton the carbon skeleton being acyclic and saturated
    • C07C217/06Compounds containing amino and etherified hydroxy groups bound to the same carbon skeleton having etherified hydroxy groups and amino groups bound to acyclic carbon atoms of the same carbon skeleton the carbon skeleton being acyclic and saturated having only one etherified hydroxy group and one amino group bound to the carbon skeleton, which is not further substituted
    • C07C217/14Compounds containing amino and etherified hydroxy groups bound to the same carbon skeleton having etherified hydroxy groups and amino groups bound to acyclic carbon atoms of the same carbon skeleton the carbon skeleton being acyclic and saturated having only one etherified hydroxy group and one amino group bound to the carbon skeleton, which is not further substituted the oxygen atom of the etherified hydroxy group being further bound to a carbon atom of a six-membered aromatic ring
    • C07C217/16Compounds containing amino and etherified hydroxy groups bound to the same carbon skeleton having etherified hydroxy groups and amino groups bound to acyclic carbon atoms of the same carbon skeleton the carbon skeleton being acyclic and saturated having only one etherified hydroxy group and one amino group bound to the carbon skeleton, which is not further substituted the oxygen atom of the etherified hydroxy group being further bound to a carbon atom of a six-membered aromatic ring the six-membered aromatic ring or condensed ring system containing that ring not being further substituted
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F5/00Compounds containing elements of Groups 3 or 13 of the Periodic Table
    • C07F5/02Boron compounds
    • C07F5/025Boronic and borinic acid compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B2200/00Indexing scheme relating to specific properties of organic compounds
    • C07B2200/05Isotopically modified compounds, e.g. labelled

Definitions

  • the present invention relates to a method for methylating allylic carbon or benzylic carbon, which is sp 3 carbon.
  • the present invention can be suitably used as a method for producing a tracer used for positron emission tomography (hereinafter referred to as “PET”).
  • PET positron emission tomography
  • a labeled compound labeled with a short-lived radionuclide that emits positron is administered into a living body, and gamma rays generated by the labeled compound (hereinafter referred to as “tracer”) are emitted from a PET camera (gamma ray scintillator and photomultiplier tube).
  • a PET camera gamma ray scintillator and photomultiplier tube
  • a tracer labeled with 11 C, 18 F or the like which is a short-lived radionuclide
  • 11 C is an ideal radionuclide because it uses a carbon atom present in an organic compound and has a very wide application range.
  • 11 C has a short half-life of 20 minutes, and the time from synthesis to measurement by the PET method has to be carried out in a very short time, so that the time given for synthesis is negligible.
  • the 11 C nuclides that can be produced by the cyclotron are extremely small (several tens to several hundreds nmol level; taking into account the inclusion of 12 C), and are very large for chemical reaction with ultra-diluted 11 C nuclides. It is carried out under special conditions in the presence of an excess of the labeled substrate. For this reason, the most important issue is how efficiently bioactive organic compounds and drug discovery candidate compounds can be converted into PET molecular probes in a short time.
  • Non-Patent Document 5 has a report example regarding methylation to sp 3 carbon, and the present inventors have used this method to carry out methylation of cinnamyl derivatives to allylic carbon under low-concentration CH 3 I conditions. As a result, the yield was extremely poor and it was found that labeling with [ 11 C] CH 3 I was difficult.
  • the present invention has been made in view of the above circumstances, and allylic carbon or benzyl which is sp 3 carbon under low concentration [ 11 C] CH 3 I conditions applicable to [ 11 C] methylation. It is an object to be solved to provide a method capable of performing rapid methylation to a coordination carbon.
  • the present inventors have intensively studied to solve the above problems.
  • a palladium complex represented by Pd [PR 1 R 2 R 3 ] 2 that was hardly used in the past as being lacking in stability (however, among the three substituents of R 1 , R 2 , and R 3 ) And at least one alkyl group), and when the cross-coupling reaction is performed in an aprotic polar solvent, dilute CH 3 I conditions with respect to the allylic carbon or benzylic carbon that is sp 3 carbon As a result, it was found that rapid methylation can be carried out in high yield, and the present invention has been completed.
  • the sp 3 carbon methylation method of the present invention comprises a boronic acid ester compound obtained by boronating an allylic or benzylic carbon and methyl iodide in an aprotic polar solvent, wherein the general formula is A palladium complex represented by Pd [PR 1 R 2 R 3 ] 2 (wherein at least one of the three substituents of R 1 , R 2 , and R 3 is an alkyl group) and a cross-cup under the condition in which a base is present It is made to ring.
  • typical PR 1 , R 2 , and R 3 that form a palladium complex represented by Pd [PR 1 R 2 R 3 ] 2 include, for example, trimethylphosphine, triethylphosphine, tri (n-propyl) phosphine, tri (Isopropyl) phosphine, tri (n-butyl) phosphine, tri (tert-butyl) phosphine, tri (cyclohexyl) phosphine, 2- (di-tert-butylphosphino) biphenyl, 2- (di-tert-butylphosphino) -2 '-Methylbiphenyl, 2- (di-tert-butylphosphino) -1,1'-binaphthyl, 2- (di-tert-butylphosphino) -2', 4 ', 6'-triisopropyl-3,6- And dimethoxy
  • the boronic acid ester compound is a concept including a pinacol ester group of boronic acid.
  • the base is not particularly limited, but alkali carbonates such as potassium carbonate, sodium carbonate, cesium carbonate, lithium carbonate and calcium carbonate, and alkali metal fluorides such as sodium fluoride, potassium fluoride and cesium fluoride. Can be used. Among these, from the viewpoint of speeding up the reaction and increasing the yield, alkali metal fluorides are preferable, and cesium fluoride is particularly preferable. This is probably because cesium ions have a large ion radius, so that the solubility and nucleophilicity of fluorine ions are increased.
  • Pd [PR 1 R 2 R 3 ] 2 in which a sterically bulky phosphine ligand is coordinated unsaturated with palladium creates an active reaction field (Pd is essentially four ligands) Can be coordinated, but because of the bulkiness of R, only two ligands can be coordinated).
  • the Pd [PR 1 R 2 R 3 ] 2 and methyl iodide react to form a divalent palladium complex in which a phosphine ligand is coordinated to CH 3 PdI.
  • a base is coordinated to boron of the boronic acid ester compound, and a boron art complex having an increased polarity between boron and carbon is formed.
  • the divalent palladium complex coordinated with the above phosphine ligand and the boron ate complex undergo a metal exchange reaction, and further, I ⁇ is desorbed from the anion to form a more stable boron ate complex. . Finally, a reductive elimination reaction occurs to obtain a compound in which a methyl group is bonded to an allylic or benzylic carbon. Since the above reaction is carried out in an aprotic polar solvent such as DMF, the aprotic polar solvent is coordinated to the vacant orbit of the palladium atom of the palladium complex generated during the reaction, reducing their instability, Side reactions such as decomposition can be minimized.
  • an aprotic polar solvent such as DMF
  • aprotic polar solvent examples include formamide solvents such as N, N-dimethylformamide and N, N-diethylformamide, acetamide solvents such as N, N-dimethylacetamide and N, N-diethylacetamide, and N-methyl.
  • Pyrrolidone solvents such as -2-pyrrolidone and N-vinyl-2-pyrrolidone
  • sulfoxide solvents such as dimethyl sulfoxide and diethyl sulfoxide, hexamethylphosphoramide, and ⁇ -butyrolactone can be used.
  • a formamide solvent, an acetamide solvent, and a pyrrolidone polar solvent are preferable.
  • the reaction solvent contains water.
  • the rapid methylation of the present invention yields higher yields when water is present in the aprotic polar solvent.
  • the amount of water to be added is preferably 0.1% by weight or more and 50% by weight or less. When water exceeds 50% by weight, the reaction substrate becomes difficult to dissolve. On the other hand, if the amount of water is less than 0.1% by weight, the effect of increasing the yield becomes small. More preferred is 1 to 20% by weight.
  • the palladium complex may be Pd [P (tert-C 4 H 9 ) 3 ] 2 .
  • the present inventors have confirmed that rapid methylation to an allylic or benzylic carbon can be performed reliably by using Pd [P (tert-C 4 H 9 ) 3 ] 2 as a palladium complex. is doing.
  • Pd [P (tert-C 4 H 9 ) 3 ] 2 as a palladium complex. is doing.
  • tri-o-tolylphosphine having a bulky ligand like Pd [P (tert-C 4 H 9 ) 3 ] 2 cannot be used. This means that the bulk of the ligand is not the only factor that exerts the effect of the present invention.
  • the boronic acid ester compound is preferably any of benzyl boronic acid ester and derivatives thereof, and cinnamyl boronic acid ester and derivatives thereof.
  • the benzyl boronic acid ester derivative means a compound in which a substituent is bonded to the benzene ring of the benzyl boronic acid ester.
  • the derivative of cinnamyl boronate refers to a compound in which a substituent is bonded to the benzene ring of cinnamyl boronate.
  • the number of moles of the boronic acid ester compound can be 40 times or more the number of moles of methyl iodide. In PET probed using [11 C] CH 3 I, inevitably dilute concentrations of [11 C] CH 3 I. If the number of moles of the boronic acid ester compound is 40 times or more of the number of moles of methyl iodide, it can be handled even under such dilute [ 11 C] CH 3 I conditions.
  • Examples 1 to 12 ethylbenzene (2) was synthesized by performing fast methylation with methyl iodide using benzylpinacol boronic ester (1) shown below in large excess.
  • the large excess of benzyl pinacol boronic acid ester (1) is that when synthesizing an actual PET tracer, a small amount of [ 11 C] CH 3 I synthesized with synchrotron is replaced with benzyl pinacol boronic acid. It was set with the reaction with ester (1) in mind.
  • a dry 10 mL Schlenk type reaction tube is used as a reaction vessel, and a predetermined amount of ⁇ Pd [P (tert-C 4 H 9 ) 3 ] 2 ⁇ is measured under an argon atmosphere.
  • a predetermined amount of ⁇ Pd [P (tert-C 4 H 9 ) 3 ] 2 ⁇ is measured under an argon atmosphere.
  • the obtained mixed solution was added into a Schlenk reaction tube containing ⁇ Pd [P (tert-C 4 H 9 ) 3 ] 2 ⁇ using a stainless steel cannula.
  • Comparative Examples 1-7 In Comparative Examples 1 to 7, it was used as a palladium complex. Table 1 shows the types of bases, solvent compositions, amounts of various chemicals, equivalents to methyl iodide, reaction temperatures, other reaction conditions and yields in Comparative Examples 1 to 7.
  • a sterically bulky phosphine ligand is coordinated unsaturated with respect to palladium. Therefore, ⁇ Pd [P (tert-C 4 H 9 ) 3 ] 2 ⁇ creates an active reaction field, and the concentration of methyl iodide is 1/40 in molar ratio to benzylpinacol boronic ester (1). (Furthermore, in the condition of f in Table 1, 1/200), it is presumed that although it was very low, a good yield was shown.
  • Examples 1, 2, 4, and 5 were reacted in DMF, which is an amide polar solvent, and it was found that the reaction proceeded smoothly in such a non-amide polar solvent.
  • the optimum reaction temperature is in the range of 70 ° C. to 110 ° C., and the yield tends to decrease if it is too high or too low.
  • a more preferred reaction temperature was 80 ° C to 100 ° C.
  • Example 13 to 26 and Reference Example 1 In Examples 13 to 24, methylation with methyl iodide was performed using various benzyl pinacol boronic esters as substrates. In Example 25, cinnamylboronate was used as a substrate, and in Example 26, o-methoxycinnamylboronate was used as a substrate. Furthermore, in Reference Example 1, trimethylboroxine was used as a substrate. Tables 2 and 3 show the substrates, types of bases, compositions of solvents, amounts of various drugs and equivalents to methyl iodide, reaction temperatures, other reaction conditions and yields in Examples 13 to 26 and Reference Example 1. Show.
  • [ 11 C] CH 3 can be introduced into an allylic or benzylic carbon and used as a PET tracer.
  • the specific method will be described in detail by taking p-methoxy- [ 11 C] ethylbenzene as an example.
  • p-Methoxybenzylpinacol boronate (2.5 mg, 10 ⁇ mol) was dissolved in 90:10 DMF / H 2 O (v / v) solvent prepared in advance and weighed ⁇ Pd [P (tert-C 4 H 9 3 ) 2 ⁇ (1.0 mg, 2 ⁇ mol), added to CsF (3.0 mg, 20 ⁇ mol).
  • the obtained mixed solution is replaced with helium gas and added to the dried labeling reaction vessel and attached to the automatic reaction device.
  • [ 11 C] carbon dioxide supplied from cyclotron is converted to [ 11 C] methyl iodide using 0.1 M lithium aluminum hydride and hydroiodic acid, and the resulting [ 11 C] methyl iodide is labeled. Blow into container and leave at 80 ° C for 5 minutes.
  • 11 C can be produced, for example, by a nuclear reaction of 14 N (p, ⁇ ) 11 C using CYPRIS HM-12S Cyclotron manufactured by Sumitomo Heavy Industries, Ltd. Then, using an 11 C methyl iodide automatic synthesizer, 11 CO 2 gas can be converted into 11 CO 2 ⁇ 11 CH 3 OH ⁇ 11 CH 3 I in this order using 11 CO 2 gas as a starting material. Further, the target methylated product labeled with 11 C can be concentrated in an evaporator and then used as a prescribed clinical administration solution.
  • FIG. 1 shows a 1 H-NMR chart of the boronic acid ester compound (b).
  • 1 is a 1 H-NMR chart of a boronic ester compound (b).
  • the methylation method of sp 3 carbon of the present invention enables labeling with 11 C methyl group to allylic carbon or benzylic carbon, which has been difficult in the past.
  • Many physiologically active substances have allylic carbon or benzylic carbon, and the present invention provides an extremely effective means for molecular imaging research of whole living organisms including humans, such as pharmaceutical development. It is.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

【課題】[11C]メチル化に適用できるような低濃度[11C]CHI条件下でのsp3炭素への迅速なメチル化を行なうことができる方法を提供することを解決すべき課題とする。 【解決手段】本発明のsp3炭素のメチル化法は、DMF等の非プロトン性極性溶媒中において、アリル位又はベンジル位の炭素がボロン酸エステル化されたボロン酸エステル化合物とヨウ化メチルとを、一般式がPd[PR]で示されるパラジウム錯体(ただし、R、R、Rの三置換基のうち、少なくとも一つはアルキル基)及び塩基が存在する条件下でクロスカップリングさせることを特徴とする。非プロトン性極性溶媒には水が含まれていることが好ましい。Pd[PR]としては、例えばPd[P(tert-C]等が挙げられる。

Description

sp3炭素のメチル化法
 本発明は、sp3炭素であるアリル位炭素やベンジル位炭素のメチル化法に関する。本発明は、陽電子放射断層画像撮影(以下「PET」という)に使用するトレーサーの製造方法として好適に用いることができる。
 PET法は、ポジトロンを放出する短寿命放射性核種で標識された標識化合物を生体内に投与し、この標識化合物(以下「トレーサー」という)によって生じるガンマ線をPETカメラ(ガンマ線シンチレーターと光電子増倍管からなる検出器)によって計測して、その体内分布をコンピュータにより画像化する方法である。このPET法は、核医学検査法として癌細胞などの腫瘍部位の特定、アルツハイマー病や脳梗塞などの診断、さらには鬱病などの精神疾患の診断や治療の評価や薬物の動態および薬効評価に用いられている。
 PET法では、短寿命放射性核種である11C、18Fなどで標識されたトレーサーが用いられる。これらの中でも11Cは有機化合物中に存在している炭素原子を利用しているため適用範囲が極めて広く、理想的な放射性核種といえる。しかしながら、11Cは半減期が20分と短く、合成からPET法での測定までを極めて短時間で行なわなければならないため、合成に与えられる時間はごくわずかとなってしまう。
 さらには、サイクロトロンで製造できる11C核種は超微量(数十から数百nmolレベル;12Cの混入を考慮した値)であり、超希薄な11C核種の化合物と化学反応させるために、大過剰の被標識基質の存在下という特殊な条件下で行われる。このため、いかに短時間で効率良く生物活性有機化合物や創薬候補化合物をPET分子プローブ化できるかということが最重要課題となっている。
 こうした状況下、本発明者の鈴木・土居らは、[11C]CHIを用いた炭素母核上への[11C]メチル化について開発を行ってきた。すなわち、有機スズ化合物を中間原料として、これにStille型カップリング反応を適用することにより、芳香環上への高速C-[11C]メチル化のみならず、オレフィンやアルキンやヘテロ芳香環上への高速C-[11C]メチル化も可能としてきた(特許文献1、2及び非特許文献1~3)。そしてさらには、従来の有機スズ化合物への高速C-[11C]メチル化と相補的に、新たに有機ホウ素化合物を用いた高速C-[11C]メチル化反応も開発している(特許文献3、非特許文献4)。また、Fuらはsp3炭素-sp3炭素間におけるSuzuki-Miyauraクロスカップリング反応を試みてはいるが、収率が極めて低く、進行し難いことを見出している(非特許文献5)。
WO/2007/046258 WO/2010/074272 WO2008/023780
Suzuki, M., et al., Chem. Eur. J., 3, 2039-2042 (1997). Hosoya, T., et al., Org. Biomol. Chem., 4, 410-415 (2006). Hosoya, T., et al., Org. Biomol. Chem., 2, 24-27 (2004). H. Doi., et al., Chem. Eur. J., 15,4165-4171(2009). M. R. Netherton, C. Dai, K. Neuschutz, G. C. Fu, J. Am. Chem. Soc.2001, 123, 10099-10100.
 医薬品やその候補化合物のsp3炭素母核への標識化を可能にし、創薬プロセスを刷新する革新的技術を確立するためには、CHIによるsp3炭素への迅速なメチル化反応技術の確立が求められる。しかし、上記従来の[11C]CHIを用いた炭素母核上への[11C]メチル化では、[11C]メチル化に適用できるような低濃度[11C]CHI条件下でのsp3炭素への迅速なメチル化は見出されていなかった。非特許文献5にはsp3炭素へのメチル化に関する報告例があるが、本発明者らがこの方法を用いてシンナミル誘導体のアリル位炭素への低濃度CHI条件下でのメチル化を行ったところ、極めて収率が悪く、 [11C]CHIによる標識化は困難であることが分かった。
 本発明は、上記の実情に鑑みてされたものであり、[11C]メチル化に適用できるような低濃度[11C]CHI条件下において、sp3炭素であるアリル位炭素又はベンジル位炭素への迅速なメチル化を行なうことができる方法を提供することを解決すべき課題とする。
 本発明者らは、上記課題を解決すべく鋭意研究を行った。その結果、従来においては安定性に欠けるとして、ほとんど用いられていなかったPd[PR]で示されるパラジウム錯体(ただし、R、R、Rの三置換基のうち、少なくとも一つはアルキル基)を用いるとともに、非プロトン性極性溶媒中でクロスカップリング反応を行えば、sp3炭素であるアリル位炭素又はベンジル位炭素に対して、希薄なCHI条件下においても迅速なメチル化を高収率で行なうことができるということを見出し、本発明を完成するに至った。
 すなわち、本発明のsp3炭素のメチル化法は、非プロトン性極性溶媒中において、アリル位又はベンジル位の炭素がボロン酸エステル化されたボロン酸エステル化合物とヨウ化メチルとを、一般式がPd[PR]で示されるパラジウム錯体(ただし、R、R、Rの三置換基のうち、少なくとも一つはアルキル基)及び塩基が存在する条件下でクロスカップリングさせることを特徴とする。
 ここで、Pd[PR]で示されるパラジウム錯体を形成する代表的なPR、R、Rとしては、例えばトリメチルホスフィン、トリエチルホスフィン、トリ(nープロピル)ホスフィン、トリ(イソプロピル)ホスフィン、トリ(nーブチル)ホスフィン、トリ(tert-ブチル)ホスフィン、トリ(シクロヘキシル)ホスフィン、2-(ジーtert-ブチルホスフィノ)ビフェニル、2-(ジーtert-ブチルホスフィノ)-2'-メチルビフェニル、 2-(ジーtert-ブチルホスフィノ)-1,1'-ビナフチル、2-(ジーtert-ブチルホスフィノ)-2′,4′,6′- トリイソプロピル-3,6-ジメトキシ-1,1′-ビフェニル、1,2-ビス((ジーtert-ブチルホスフィノ)メチル)ベンゼン等が挙げられる。
 ここで、ボロン酸エステル化合物とはボロン酸のピナコールエステル基も含む概念である。また、塩基としては特に限定はされないが、炭酸カリウム、炭酸ナトリウム、炭酸セシウム、炭酸リチウム、炭酸カルシウム等のアルカリ炭酸塩や、フッ化ナトリウム、フッ化カリウム、フッ化セシウム等のアルカリ金属のフッ化物を用いることができる。これらの中でも反応の迅速化及び高収率化の観点から、アルカリ金属のフッ化物が好ましく、フッ化セシウムが特に好ましい。セシウムイオンはイオン半径が大きいため、フッ素イオンの溶解性及び求核性が高くなるからであると考えられる。
この反応は、次のような機構で進行するものと推定される。 パラジウムに対して立体的に嵩高いホスフイン配位子が不飽和的に配位しているPd[PR]が活性な反応場を創出する(Pdは本来4つの配位子が配位可能であるが、Rが嵩高いために2つの配位子しか配位できなくなっている)。そして、このPd[PR]とヨウ化メチルとが反応して、CHPdIにホスフイン配位子が配位した2価のパラジウム錯体が形成される。 一方、ボロン酸エステル化合物のホウ素には塩基が配位し、ホウ素一炭素間の極性が高まったホウ素アート錯体が形成される。そして、上記のホスフイン配位子が配位した2価のパラジウム錯体と、ホウ素アート錯体とが金属交換反応を起こし、さらにはIがアニオン脱離して、より安定なホウ素アート錯体が形成される。 最後に、還元的脱離反応が起こって、メチル基がアリル位又はベンジル位の炭素に結合した化合物が得られる。 上記反応はDMF等の非プロトン性極性溶媒中で行われるため、反応途上で生じるパラジウム錯体のパラジウム原子の空位の軌道に非プロトン性極性溶媒が配位し、それらの不安定さを軽減し、分解等の副反応を最小限とすることができる。 
したがって、本発明のsp3炭素のメチル化法によれば、[11C]メチル化に適用できるような低濃度[11C]CHI条件下において、sp3炭素であるアリル位又はベンジル位の炭素への迅速なメチル化を行なうことができる。 
 前記非プロトン性極性溶媒としては、N,N-ジメチルホルムアミド、N,N-ジエチルホルムアミドなどのホルムアミド系溶媒、N,N-ジメチルアセトアミド、N,N-ジエチルアセトアミドなどのアセトアミド系溶媒、N-メチル-2-ピロリドン、N-ビニル-2-ピロリドンなどのピロリドン系溶媒、ジメチルスルホキシド、ジエチルスルホキシドなどのスルホキシド系溶媒、ヘキサメチルホスホルアミド、γ-ブチロラクトン等を用いることができる。これらの中でも、ホルムアミド系溶媒、アセトアミド系溶媒、ピロリドン系極性溶媒が好ましい。
 前記反応溶媒には水が含まれていることも好ましい。本発明の迅速なメチル化では、非プロトン性極性溶媒に水が存在する場合、収率がより高くなる。添加する水の量は0.1重量%以上50重量%以下が好ましい。水が50重量%を超えると反応基質が溶解し難くなる。また水が0.1重量%未満では収率を高める効果が小さくなる。さらに好ましいのは1重量%以上20重量%以下である。
 前記パラジウム錯体はPd[P(tert-C]とすることができる。本発明者らは、パラジウム錯体としてPd[P(tert-C]を用いることにより、確実にアリル位又はベンジル位の炭素への迅速なメチル化を行なうことができることを確認している。ただし、Pd[P(tert-C]と同様に嵩高いリガンドを有するトリ-o-トリルホスフィンを用いることはできない。このことは、リガンドの嵩高さのみが本発明の効果を奏する要因ではないことを意味している。
 前記ボロン酸エステル化合物はベンジルボロン酸エステル及びその誘導体、並びに、シンナミルボロン酸エステル及びその誘導体、のいずれかであることが好ましい。ここで、ベンジルボロン酸エステルの誘導体とは、ベンジルボロン酸エステルのベンゼン環に置換基が結合した化合物をいう。また、シンナミルボロン酸エステルの誘導体とはシンナミルボロン酸エステルのベンゼン環に置換基が結合した化合物をいう。
 ボロン酸エステル化合物のモル数はヨウ化メチルのモル数の40倍以上とすることができる。[11C]CHIを用いたPETプローブ化においては、[11C]CHIの濃度が希薄とならざるを得ない。ボロン酸エステル化合物のモル数がヨウ化メチルのモル数の40倍以上であれば、このような希薄な[11C]CHI条件下でも、対応可能となる。
 以下、本発明を具体化した実施例を詳細に述べる。
(実施例1~12)
 実施例1~12では、下記に示すベンジルピナコールボロン酸エステル(1)を大過剰に用いたヨウ化メチルによる高速メチルを行い、エチルベンゼン(2)を合成した。ベンジルピナコールボロン酸エステル(1)を大過剰としたのは、実際のPET用のトレーサーを合成する場合に、シンクロトロンで合成された僅かな量の[11C]CHIをベンジルピナコールボロン酸エステル(1)と反応させることを念頭において設定したものである。
Figure JPOXMLDOC01-appb-C000001
 すなわち、乾燥した10 mLのシュレンク型反応管を反応容器として用い、アルゴン雰囲気下、{Pd[P(tert-C4H9)3]2}を所定量はかりとる。アルゴン雰囲気下、1.5 mLミクロチューブに所定量のベンジルボロン酸エステル1と所定量の塩基とをはかりとり、DMF(又は90:10 DMF/H2O (v/v))を溶媒として加え、得られた混合溶液を、{Pd[P(tert-C4H9)3]2}を含むシュレンク反応管中にステンレス製カニュラを用いて添加した。続いて、CH3I(DMF溶液,12.5 μL, 10 μmol)を加え、80℃で5分間かくはんした。反応後、素早く氷浴にて冷却して反応を停止させた。この混合溶液をシリカゲル(0.5 g)でろ過し、ジエチルエーテル(約2 mL)を用いて溶出した。この溶出液に、内部標準物質としてn-ノナン(0.1 M DMF溶液,50 μL, 5 μmol)を加え、ガスクロマトグラフィー分析により生成物のメチル化体の定量を行った。
 実施例1~12における塩基の種類、溶媒の組成、各種薬剤の量及びヨウ化メチルに対する当量、反応温度、その他の反応条件及び収率について表1に示す。
 比較例1~7
 比較例1~7ではパラジウム錯体として用いた。比較例1~7における塩基の種類、溶媒の組成、各種薬剤の量及びヨウ化メチルに対する当量、反応温度、その他の反応条件及び収率について表1に示す。
Figure JPOXMLDOC01-appb-T000002
<結 果>
 表1の結果から、以下のことが分かった。
 パラジウム錯体として{Pd[P(tert-C4H9)3]2}を用いた実施例1~12では、パラジウム錯体として[Pd2(dba)3]/P(o-CH3C6H4)3を用いた比較例1~7と比較して、同じ塩基及び同じ溶媒を用いた場合にいずれも収率が高かった。{Pd[P(tert-C4H9)3]2}は、従来においては安定性に欠けるとして、あまり用いられていなかったPd[PR]で示されるパラジウム錯体の一種であり、パラジウムに対して立体的に嵩高いホスフイン配位子が不飽和的に配位している。そのため、{Pd[P(tert-C4H9)3]2}は活性な反応場を創出し、ヨウ化メチルの濃度がベンジルピナコールボロン酸エステル(1)に対してモル比で1/40(さらに表1中のfの条件では1/200)と極めて低いにもかかわらず、よい収率を示したものと推測される。
 また、実施例1、2、4、5はアミド系極性溶媒であるDMF中で反応が行われており、こうした非アミド系極性溶媒中で反応が円滑に進行することが分かった。
 一方、実施例3、6、7、9、11及び12はDMF/HO=9:1(容量%)の混合溶媒で行われており、DMF100%の場合と比べて収率が高くなった。
 さらに、塩基については、アルカリ金属の炭酸塩やアルカリ金属のフッ化物で収率が高かった。また、塩基以外の条件が同じである場合、塩基の中でもアルカリ金属のフッ化物であるCsFが最もよい収率となることが分かった。
 また、反応温度については最適な温度が70℃~110℃の範囲にあり、それより高すぎても低すぎても収率が低下する傾向にあった。さらに好ましい反応温度は80℃~100℃であった。
(実施例13~26及び参考例1)
 実施例13~24では、基質として様々なベンジルピナコールボロン酸エステルを用いたヨウ化メチルによるメチル化反応を行った。
 また、実施例25ではシンナミルボロン酸エステル、実施例26ではo-メトキシシンナミルボロン酸エステルを基質として用いた。
 さらに、参考例1では、基質としてトリメチルボロキシンを用いた。
 実施例13~26及び参考例1における基質、塩基の種類、溶媒の組成、各種薬剤の量及びヨウ化メチルに対する当量、反応温度、その他の反応条件及び収率について表2及び表3に示すに示す。
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
<結 果>
 表2及び表3における実施例13~実施例24の結果から、ベンゼン環に様々な置換基が結合したベンジルピナコールボロン酸エステルを基質として、ベンジル位の炭素にメチル基が導入されることが分かった。また、実施例25、26における結果に示されるように、シンナミルピナコールボロン酸エステルを基質としたり(実施例25)、ベンゼン環に置換基であるメトキシ基が結合したシンナミルピナコールボロン酸エステルを基質としたりすれば(実施例26)、アリル位の炭素にメチル基が導入されることが分かった。また、基質としてトリメチルボロキシンを用いた参考例1の場合、極めて良い収率でエタンが得られることが分かった。
(比較例8)
 Fuらは非特許文献5においてsp3炭素へのメチル化を行っている。この反応が、PETに適用できるような迅速なメチル化が可能であるか否かを確かめるため、β-ベンジル-9-BBNを基質とし、非特許文献5と同様、THF中、[Pd(OAc)2]、P(C6H11)3、K3PO4・H2Oの条件でSuzuki-Miyauraクロスカップリング反応を試みた。各薬剤の仕込み比はCH3I/B-ベンジル-9-BBN/[Pd(OAc)2]/P(C6H11)3/K3PO4
(モル比1:40:1:4:2)とし、5分間の加熱還流を行った。その結果、目的とするエチルベンゼンの収率はわずか10%となり、PETトレーサーとしての利用は困難であることが分かった。
9-BBN = B-アルキル-9-ボラビシクロ[3.3.1]ノナン
THF = テトラヒドロフラン
[Pd(OAc)2] = 酢酸パラジウム(II)
P(C6H11)3
=トリシクロヘキシルホスフィン
K3PO4・H2O = リン酸カリウム水和物
 これに対し、同様にエチルベンゼンを合成した前述の実施例17、18では、表2に示すように、70℃においてそれぞれ56%及び75%という高い収率となり、PETトレーサーとしての利用が可能であることが分かった。
<PETトレーサーへの適用>
 本発明のsp3炭素のメチル化法によれば、アリル位炭素又はベンジル位炭素に[11C]CH3を導入してこれをPETトレーサーとして用いることができる。その具体的方法について、p-メトキシ-[11C]エチルベンゼンを例に挙げて詳述する。
 p-メトキシベンジルピナコールボロン酸エステル(2.5 mg, 10 μmol)をあらかじめ調製した90:10 DMF/H2O (v/v)溶媒に溶解し、秤量した{Pd[P(tert-C4H9)3]2}(1.0 mg, 2 μmol)、CsF(3.0 mg, 20 μmol)に加える。得られた混合液をヘリウムガスで置換、乾燥した標識反応容器に加え自動反応装置に取り付ける。サイクロトロンより供給された[11C]二酸化炭素を0.1 M 水素化リチウムアルミニウム、ヨウ化水素酸を用いて[11C]ヨウ化メチルに変換し、得られた[11C]ヨウ化メチルを標識反応容器に吹込み、80 ℃で5分間静置する。反応後、反応液をHPLC(水:アセトニトリル=45:55、流速5 mL/min、カラム; cosmosil MS-II,10 x 250 mm)により精製し、目的のp-メトキシ-[11C]エチルベンゼンを得ることができる。
 なお、11Cは、例えば、住友重機械工業社製CYPRIS HM-12S Cyclotronを使用し、14N(p,α)11Cの核反応により製造することができる。そして、11Cヨウ化メチル自動合成装置を用いて、11COガスを出発物質として、11CO11CHOH→11CHIの順に変換することができる。 また、11Cで標識化された目的のメチル化体はエバポレーターで濃縮した後、規定の臨床用投与溶液とすることができる。
<各種医薬品への応用>
 従来から開発されている医薬品には、エチルフェニル基や1-ブテニルフェニル基を有する化合物が数多くある。本発明のsp3炭素のメチル化法を利用することにより、これらの化合物に11Cを導入することができる。それらの例を以下に挙げる。
Figure JPOXMLDOC01-appb-C000005
 例えば、下記合成ルートによってタモキシン前駆体となるボロン酸エステル化合物(a)を合成し、さらに本発明のメチル化法によってsp3炭素に[11C]メチル基を導入すれば、上記の[11C]標識タモキシフェンを合成することができる。
Figure JPOXMLDOC01-appb-C000006
 本発明者らはこの合成ルートと同様の下記合成ルートを用い、タモキシフェン類縁体の前駆体となる下記ボロン酸エステル化合物(b)を合成している。ボロン酸エステル化合物(b)の1H-NMRのチャートを図1に示す。このボロン酸エステル化合物(b)に本発明のメチル化法を適用すれば、[11C]標識タモキシフェン類縁体を合成することができる。
Figure JPOXMLDOC01-appb-C000007
以上、実施例に基づき本発明を説明したが、本発明は、上記実施例そのものに何ら限定されるものではなく、本発明の趣旨を逸脱しない範囲内で種々の改良変形が可能である。発明の技術的範囲には、これらの改良変形も含まれる。
ボロン酸エステル化合物(b)の1H-NMRのチャートである。
 本発明のsp3炭素のメチル化法は、従来困難であったアリル位炭素又はベンジル位炭素への11Cメチル基によるラベル化を可能にするものである。生理活性物質にはアリル位炭素又はベンジル位炭素をもつものも多く、製薬の開発等、ヒトまで含めた生体丸ごとの分子イメ-ジング研究に対して、本発明は極めて有効な手段を提供するものである。

Claims (7)

  1.  非プロトン性極性溶媒中において、アリル位又はベンジル位の炭素がボロン酸エステル化されたボロン酸エステル化合物とヨウ化メチルとを、一般式がPd[PR]で示されるパラジウム錯体(ただし、R、R、Rの三置換基のうち少なくとも一つはアルキル基)及び塩基が存在する条件下でクロスカップリングさせることを特徴とするsp3炭素のメチル化法。
  2.  前記非プロトン性極性溶媒はアミド系極性溶媒である請求項1に記載のsp3炭素のメチル化法。
  3.  前記反応溶媒には水が含まれていることを特徴とする請求項1又は2に記載のsp3炭素のメチル化法。
  4.  前記塩基はアルカリ金属の炭酸塩及び/又はアルカリ金属のフッ化物である請求項1乃至3のいずれか1項に記載のsp3炭素のメチル化法。
  5.  前記パラジウム錯体はPd[P(tert-C]であることを特徴とする請求項1乃至4のいずれか1項に記載のsp3炭素のメチル化法。
  6.  前記ボロン酸エステル化合物はベンジルボロン酸エステル及びその誘導体、並びに、シンナミルボロン酸エステル及びその誘導体、のいずれかであることを特徴とする請求項1乃至5のいずれか1項に記載のsp3炭素のメチル化法。
  7.  ボロン酸エステル化合物のモル数はヨウ化メチルのモル数の40倍以上とされていることを特徴とする請求項1乃至7のいずれか1項に記載のsp3炭素のメチル化法。
PCT/JP2013/069548 2012-07-18 2013-07-18 sp3炭素のメチル化法 WO2014014067A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-159725 2012-07-18
JP2012159725A JP2015178456A (ja) 2012-07-18 2012-07-18 高速メチル化法

Publications (1)

Publication Number Publication Date
WO2014014067A1 true WO2014014067A1 (ja) 2014-01-23

Family

ID=49948889

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/069548 WO2014014067A1 (ja) 2012-07-18 2013-07-18 sp3炭素のメチル化法

Country Status (2)

Country Link
JP (1) JP2015178456A (ja)
WO (1) WO2014014067A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9845295B2 (en) * 2015-11-24 2017-12-19 Purdue Research Foundation Triphenylethylene compounds and uses thereof
CN114249625A (zh) * 2021-12-08 2022-03-29 江苏省中国科学院植物研究所 一种过渡金属催化(杂)芳基甲酸与三甲基环三氧硼烷脱羰偶联制备甲基(杂)芳烃的方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7553547B2 (ja) 2020-03-31 2024-09-18 エヌ・イーケムキャット株式会社 芳香族化合物の製造方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007046258A1 (ja) * 2005-10-21 2007-04-26 Gifu University アルケン類の高速メチル化法及びそれを利用したpetトレーサー調製用キット
WO2008023780A1 (fr) * 2006-08-25 2008-02-28 Gifu University Procédé de méthylation rapide, coffret pour préparer un traceur pet et procédé de fabrication d'un traceur pet

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007046258A1 (ja) * 2005-10-21 2007-04-26 Gifu University アルケン類の高速メチル化法及びそれを利用したpetトレーサー調製用キット
WO2008023780A1 (fr) * 2006-08-25 2008-02-28 Gifu University Procédé de méthylation rapide, coffret pour préparer un traceur pet et procédé de fabrication d'un traceur pet

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9845295B2 (en) * 2015-11-24 2017-12-19 Purdue Research Foundation Triphenylethylene compounds and uses thereof
CN114249625A (zh) * 2021-12-08 2022-03-29 江苏省中国科学院植物研究所 一种过渡金属催化(杂)芳基甲酸与三甲基环三氧硼烷脱羰偶联制备甲基(杂)芳烃的方法

Also Published As

Publication number Publication date
JP2015178456A (ja) 2015-10-08

Similar Documents

Publication Publication Date Title
EP2070897B1 (en) Method of rapid methylation, kit for preparing pet tracer and method of producing pet tracer
Tay et al. 19F-and 18F-arene deoxyfluorination via organic photoredox-catalysed polarity-reversed nucleophilic aromatic substitution
RU2640805C2 (ru) Получение 18F-флуцикловина
EP2508505B1 (en) Method for high-speed fluoromethylation and process for preparation of pet tracer using same
WO2014014067A1 (ja) sp3炭素のメチル化法
US11779665B2 (en) Electrochemical flash fluorination and radiofluorination
US8067631B2 (en) Method of rapid methylation of alkene compound and kit for PET tracer preparation using the same
He et al. Nucleophilic radiosynthesis of boron neutron capture therapy-oriented PET probe [18 F] FBPA using aryldiboron precursors
JP6037330B2 (ja) 11c−標識チアミン及びその誘導体、11c−標識フルスルチアミン、チアミン前駆体、並びにpet用プローブ及びそれらを用いたイメージング方法
US20070059230A1 (en) Process
JP2020033341A (ja) 放射性フッ素標識化合物の製造方法及び放射性医薬組成物の製造方法
Venkatachalam et al. Synthesis of 18F‐radiolabeled diphenyl gallium dithiosemicarbazone using a novel halogen exchange method and in vivo biodistribution
US8232424B2 (en) Method for the use of [11C]carbon monoxide in labeling synthesis of 11C-labelled acids by photo-induced free radical carbonylation under mild conditions using sulfoxides
US8273861B2 (en) Method for the use of [11C] carbon monoxide in labeling synthesis of 11C-labelled ketones by photo-induced free radical carbonylation
Neves Advanced Microwave Technology in Radiopharmaceutical Synthesis
KR101863998B1 (ko) 촉매로서 나프탈렌계 유기 염기를 이용한 방사성 의약품의 제조방법
McSweeney Radiolabelling of aryl boronic esters with 18F and 123I: method development and application
EP1896380B1 (en) Method for the use of [11c]carbon monoxide in labeling synthesis of 11c-labelled esters by sensitized photo-induced free radical carbonylation
JP2013231008A (ja) プラバスタチン類縁体、その前駆体、pet用分子プローブ及びトランスポーター機能評価用プローブ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13819887

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13819887

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP