WO2014013924A1 - 騒音識別装置及び騒音識別方法 - Google Patents

騒音識別装置及び騒音識別方法 Download PDF

Info

Publication number
WO2014013924A1
WO2014013924A1 PCT/JP2013/068929 JP2013068929W WO2014013924A1 WO 2014013924 A1 WO2014013924 A1 WO 2014013924A1 JP 2013068929 W JP2013068929 W JP 2013068929W WO 2014013924 A1 WO2014013924 A1 WO 2014013924A1
Authority
WO
WIPO (PCT)
Prior art keywords
noise
sound
sound source
target
variation degree
Prior art date
Application number
PCT/JP2013/068929
Other languages
English (en)
French (fr)
Inventor
大山 宏
泰一 東岡
和博 高島
大橋 心耳
好生 忠平
Original Assignee
日東紡音響エンジニアリング株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日東紡音響エンジニアリング株式会社 filed Critical 日東紡音響エンジニアリング株式会社
Priority to CN201380037771.1A priority Critical patent/CN104471359B/zh
Priority to KR1020157000783A priority patent/KR102046204B1/ko
Priority to GB1502433.4A priority patent/GB2519267B/en
Priority to US14/415,473 priority patent/US9392388B2/en
Publication of WO2014013924A1 publication Critical patent/WO2014013924A1/ja
Priority to HK15106127.6A priority patent/HK1205556A1/xx

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R29/00Monitoring arrangements; Testing arrangements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01HMEASUREMENT OF MECHANICAL VIBRATIONS OR ULTRASONIC, SONIC OR INFRASONIC WAVES
    • G01H3/00Measuring characteristics of vibrations by using a detector in a fluid
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R29/00Monitoring arrangements; Testing arrangements
    • H04R29/004Monitoring arrangements; Testing arrangements for microphones
    • H04R29/005Microphone arrays
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04SSTEREOPHONIC SYSTEMS 
    • H04S7/00Indicating arrangements; Control arrangements, e.g. balance control
    • H04S7/30Control circuits for electronic adaptation of the sound field
    • H04S7/302Electronic adaptation of stereophonic sound system to listener position or orientation
    • H04S7/303Tracking of listener position or orientation
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L21/00Speech or voice signal processing techniques to produce another audible or non-audible signal, e.g. visual or tactile, in order to modify its quality or its intelligibility
    • G10L21/02Speech enhancement, e.g. noise reduction or echo cancellation
    • G10L21/0272Voice signal separating
    • G10L21/028Voice signal separating using properties of sound source
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04SSTEREOPHONIC SYSTEMS 
    • H04S2400/00Details of stereophonic systems covered by H04S but not provided for in its groups
    • H04S2400/11Positioning of individual sound objects, e.g. moving airplane, within a sound field

Definitions

  • the present invention relates to a noise identification device and a noise identification method for identifying noise coming from a noise source to be measured.
  • target noise when measuring noise coming from a noise source to be measured (hereinafter referred to as target noise), It is described so as to exclude noise that hinders (hereinafter referred to as non-target noise).
  • target noise since the “Environmental Standards for Aircraft Noise” was partially revised (Ministry of the Environment Notification No. 114 on December 17, 2007), aircraft noise is equivalent to the equivalent noise level after April 1, 2013. It is evaluated by the time zone corrected equivalent noise level (Lden) which is an evaluation scale based on the above. In order to accurately measure the equivalent noise level of this aircraft, it is necessary to ensure that noise other than the aircraft that is the noise source to be measured does not affect the measurement value.
  • Lden time zone corrected equivalent noise level
  • the target noise is 10 dB or more superior to the non-target noise at the noise measurement site, the target noise can be easily measured because it is not affected by the non-target noise.
  • incoming sounds from various noise sources are usually mixed. For example, if noise other than aircraft noise, which is the target noise, occurs during measurement of equivalent noise level and affects the measured value, that is, the noise level of the noise other than the target aircraft noise is the noise level of the aircraft. If it is larger than the level by 10 dB or less (S / N ratio of 10 dB or less), it is necessary to delete it.
  • noise identification work to identify what is being done is indispensable, and the effort is enormous.
  • uncertainty is generated because noise identification is evaluated by the noise discriminator's subjectivity.
  • the present applicant observes and specifies the directions of arrival of sound from a plurality of sound sources by a sound source exploration device equipped with a spherical baffle microphone, and associates the measured noise with a plurality of sound sources by a sound source analysis device.
  • the noise identification technique which grasps
  • the object of the present invention has been made in view of such a point, and the object of the present invention is to automatically identify whether or not the measured noise is affected by non-target noise by a simple system.
  • the noise identification device includes sound detection means including a plurality of microphones and / or particle velocity sensors, and sound source direction specification that specifies the instantaneous direction of the sound source per unit time based on the detection result by the sound detection means.
  • sound detection means including a plurality of microphones and / or particle velocity sensors
  • sound source direction specification that specifies the instantaneous direction of the sound source per unit time based on the detection result by the sound detection means.
  • Means a variation degree calculating means for calculating a plurality of variations in the instantaneous direction specified by the sound source direction specifying means in a predetermined period set longer than the unit time, and the variation degree calculating means.
  • a non-target noise determining means for determining the presence or absence of non-target noise that affects the measurement of target noise coming from a noise source to be measured based on the degree of variation.
  • the variation degree calculation unit calculates the variation degree.
  • the calculated predetermined period may be output as the non-target noise detection period.
  • the sound source direction specifying means specifies sound pressure information together with the instantaneous direction
  • the variation degree calculating means uses a weighted standard deviation taking the sound pressure information as the variation degree. You may make it calculate.
  • the variation degree calculation means generates the instantaneous distribution map and calculates a correlation coefficient with a preset reference distribution map as the variation degree. good.
  • the noise identification method of the present invention is based on a sound detection step of detecting sound by a sound detection means having a plurality of microphones and / or particle velocity sensors, and a detection result of the sound detection step by an information processing device. Then, the instantaneous direction of the sound source is specified every unit time, and the variation degree of the plurality of instantaneous directions specified by the sound source direction specifying means is calculated and calculated in a predetermined period set longer than the unit time. And a determination step of determining the presence or absence of non-target noise that affects measurement of target noise coming from a noise source to be measured based on the degree of variation.
  • the presence / absence of non-target noise that affects the measurement of target noise can be determined without performing sound source identification by trial listening of a sound source identifier or sound source identification between a sound source of another target noise and a sound source of non-target noise. Since the determination can be made, it is possible to automatically identify whether or not the measured noise is affected by the non-target noise by a simple system.
  • FIG. 1 It is a block diagram which shows the structure of embodiment of the noise identification device which concerns on this invention. It is a flowchart for demonstrating the noise identification operation
  • FIG. 1 It is a figure which shows the example of a verification experiment which verifies the property which the variation degree calculated by the variation degree calculation part shown in FIG. 1 has. It is a graph which shows the variation in the instantaneous direction in the verification experiment shown in FIG. It is a graph which shows the variation in the instantaneous direction in the verification experiment shown in FIG. It is a graph which shows the relationship between the variation degree (weighted standard deviation) calculated in the verification experiment shown in FIG. 3, and S / N ratio.
  • the noise identification device 10 is used together with a noise measurement device 20 that measures noise, and is a target in which there is non-target noise, that is, a target noise that comes from a noise source other than the measurement target and interferes with measurement.
  • the external noise detection period is notified to the noise measurement device 20.
  • the noise identification device 10 includes a sound detection unit 11, a sound source direction identification unit 12, a variation degree calculation unit 13, and a non-target noise determination unit 14.
  • the sound detection unit 11 includes a plurality of microphones and / or particle velocity sensors, and a sound pressure detection unit that AD-converts detection signals output from the microphones and / or particle velocity sensors to high speed (48 kHz, etc.) and outputs them.
  • the sound pressure detected by the microphone and the particle velocity detected by the particle velocity sensor are output.
  • a PP type or CC type sound intensity probe in which two microphones are arranged close to each other can be used. This type of sound intensity probe can calculate the sound intensity in one direction with a single probe. When calculating the sound intensity in the three-dimensional direction, the center (the line segment connecting two microphones) can be used.
  • a three-axis acoustic intensity probe in which three acoustic intensity probes are arranged in the xyz direction with the same middle point is used.
  • an acoustic intensity probe in which microphones are respectively arranged at a plurality of points that are not on the same plane for example, an acoustic intensity probe in which microphones are respectively arranged at vertices of a regular tetrahedron, It is also possible to use an acoustic intensity probe in which microphones are arranged at four points (0, x, y, z) adjacent to each other.
  • an acoustic probe (such as a PU acoustic intensity probe in which the microphone and the particle velocity sensor are placed at substantially the same position) that is a combination of a microphone and a particle velocity sensor can be used.
  • the sound source direction specifying unit 12, the variation degree calculating unit 13, and the non-target noise determining unit 14 are configured by an information processing apparatus such as a computer that operates by program control.
  • the sound source direction identification unit 12 identifies vector information including the instantaneous direction of the sound source and sound pressure information for each unit time based on the output from the sound detection unit 11.
  • the instantaneous direction of the sound source is the direction of the sound source as viewed from the sound detection unit 11 in unit time.
  • the sound pressure or particle velocity detected by the sound detection unit 11 comes from one sound source. And only one direction is identified as the instantaneous direction of the sound source.
  • the sound pressure information is a scalar amount such as a sound pressure (p) representing a loudness, a sound pressure level (L P ), and a noise level which is a sound pressure level of A characteristic. Therefore, in the case of the sound detection unit 11 provided with the sound intensity probe, the sound intensity is specified in the sound source direction specifying unit 12 and the sound detection unit 11 provided with the microphones respectively arranged at a plurality of points. In the sound source direction specifying unit 12, the instantaneous direction of the sound source is specified from the time difference between the sounds reaching the plurality of microphones using the proximity four-point method or the regular tetrahedral vertex method.
  • the sound source direction identification unit 12 samples the output signal from the sound detection unit 11 at a predetermined cycle, and identifies the instantaneous direction and sound pressure information of the sound source based on the sampled data. Accordingly, the unit time for specifying the instantaneous direction of the sound source and the sound pressure information is set to an integer multiple of the sampling period. For example, when the unit time and the sampling period are 0.01 (s), the instantaneous direction and sound pressure information of 100 sets of sound sources are specified per second.
  • the variation degree calculation unit 13 accumulates a predetermined number of sets of the instantaneous direction and sound pressure information of the sound source specified by the sound source direction specifying unit 12, and based on the accumulated instantaneous direction and sound pressure information of a plurality of sets of sound sources, Calculate the degree of variation in the sound source direction.
  • the degree of variation in the direction of the sound source is a numerical value indicating the degree of variation in the instantaneous direction of the sound source detected and specified every unit time in a set predetermined period.
  • the weighted standard deviation is calculated in consideration of the sound pressure information as the degree of variation, but without performing weighting, for example, the standard deviation based only on the instantaneous direction of the sound source is calculated. It may be calculated. It is also possible to generate a distribution map of the instantaneous direction of the sound source and calculate a correlation coefficient with a preset reference distribution map as the degree of variation.
  • the non-target noise determination unit 14 determines whether or not the variation degree calculated by the variation degree calculation unit 13 is larger than a set threshold value, and calculates the variation degree when the variation degree is larger than the threshold value.
  • the predetermined time period is notified to the noise measuring device 20 as the non-target noise detection period in which the non-target noise exists.
  • the noise measurement device 20 Based on the sound pressure detected by the omnidirectional microphone 21, the noise measurement device 20 has sound pressure information (sound pressure (p), sound pressure level (L P ), A characteristic sound indicating the volume of sound. It is a sound level meter that calculates an instantaneous value of a noise level that is a pressure level, etc., and also has a function as an integral type sound level meter that calculates an integral amount such as an equivalent noise level (LAeq). Further, the noise measuring device 20 is configured to calculate an integrated amount such as an equivalent noise level (LAeq), excluding the non-target noise detection period notified from the noise identifying device 10.
  • sound pressure information sound pressure (p), sound pressure level (L P ), A characteristic sound indicating the volume of sound. It is a sound level meter that calculates an instantaneous value of a noise level that is a pressure level, etc., and also has a function as an integral type sound level meter that calculates an integral amount such as an equivalent noise level (LAeq). Further, the noise measuring device
  • the variation degree calculation unit 13 first sets “0” to a variable n (step A ⁇ b> 1) and waits for data input from the sound source direction identification unit 12.
  • the sound source direction specifying unit 12 samples an output signal from the sound detection unit 11 that is an analog signal at a predetermined cycle, and specifies the instantaneous direction and sound pressure information of the sound source based on the sampled data of a predetermined frequency band. (Step A2) and output to the variation degree calculation unit 13.
  • the variation degree calculation unit 13 accumulates the instantaneous direction and sound pressure information of the sound source input as data (step A3), increments the variable n (step A4), and sets a predetermined set in which the variable n is set. It is determined whether or not the number N has been reached (step A5).
  • step A5 If it is determined in step A5 that the variable n has not reached the set number N, the variation degree calculation unit 13 again waits for data input from the sound source direction identification unit 12, and returns to step A2. Since the sound source direction specifying unit 12 specifies the instantaneous direction and sound pressure information of the sound source every unit time, the sound source direction specifying unit 12 specifies the instantaneous direction and sound pressure information of a predetermined number N of sound sources, and the degree of variation Steps A2 to A5 are repeated until the calculation unit 13 accumulates them.
  • step A5 when the predetermined number of sets N in which the variable n is set is reached, the variation degree calculation unit 13 determines the variation in the sound source direction based on the instantaneous direction and sound pressure information of the predetermined number N of sound sources. The degree is calculated (step A6).
  • the sound detection unit 11 of the noise identification device 10 the target sound source 30 that outputs target noise (pink noise), and the non-target sound source 40 that outputs non-target noise (pink noise) are arranged in an anechoic room, and are in a 500 Hz band.
  • step A2 the instantaneous direction and sound pressure information were identified in step A2, and the instantaneous direction and sound pressure information in step A3 were stored.
  • 3A shows the horizontal arrangement of the target sound source 30 and the non-target sound source 40 with respect to the sound detection unit 11
  • FIG. 3B shows the target sound source 30 and the non-target sound source 40 with respect to the sound detection unit 11. Each of the vertical arrangements is shown.
  • the target sound source 30 and the non-target sound source 40 are arranged at a position with an elevation angle of 90 ° horizontal to the sound detection unit 11. Further, in the horizontal direction, the target sound source 30 is fixed at the position of the azimuth angle 90 ° at the point A, and the non-target sound source 40 is set at 30 ° from the azimuth angle 120 ° at the point B to the azimuth angle 270 ° at the point G. At each position, measurement was performed for 10 seconds with a unit time of 0.01 (s), and 1000 instantaneous directions and sound pressure information were specified and accumulated, respectively.
  • FIG. 4 (a) is a measurement example when only the target sound source 30 is arranged at an azimuth angle of 90 ° at the point A in the horizontal direction. According to this measurement example, it can be seen that when only the target sound source 30 is arranged, the instantaneous direction of the target sound source 30 can be specified almost accurately.
  • the target sound source 30 is fixed at an azimuth angle 90 ° at point A in the horizontal direction, and the azimuth angle 120 ° to point G at point B is fixed. It is each measurement example when the non-target sound source 40 is arranged at each position of 30 ° up to the position of the azimuth angle of 270 °. In addition, the output of the target sound source 30 and the non-target noise was measured at the same level (the S / N ratio between the target noise and the non-target noise is 0).
  • the instantaneous direction is not limited to the direction of the target sound source 30 or the non-target sound source 40, and may take various positions between the target sound source 30 and the non-target sound source 40. I understand.
  • the direction of the target sound source 30 or the non-target sound source 40 is often specified as the instantaneous direction, but the variation is also large.
  • the instantaneous ratio and the sound pressure information are specified by changing the output ratio (S / N ratio) between the target sound source 30 and the non-target sound source 40 and the frequency band, respectively.
  • S / N ratio the output ratio
  • the weighted standard deviation in the instantaneous direction was calculated in consideration of the sound pressure information as the degree of variation in step A6.
  • FIGS According to these calculation examples, when the S / N ratio is small, the weighted standard deviation increases as the angle (azimuth angle difference) between the target sound source 30 and the non-target sound source 40 increases, and the S / N ratio increases.
  • the non-target noise whose S / N ratio that affects the target noise is less than 10 regardless of the angle of the non-target sound source 40 with respect to the target sound source 30 is necessarily obtained. You can see that it exists.
  • the calculated weighted standard deviation is less than the threshold value, the S / N ratio that affects the target noise only when the non-target sound source 40 is present at an angle within 45 ° with respect to the target sound source 30. There is a possibility that non-target noise with a value of less than 10 exists.
  • the non-target sound source 40 does not exist at an angle within 45 ° with respect to the target sound source 30, if the calculated weighted standard deviation is less than the threshold value, the S / N that affects the target noise is affected. It can be seen that there is no non-target noise whose ratio is less than 10. Therefore, when measuring actual target noise, it is possible to reliably identify the presence of non-target noise by selecting a measurement position where the expected direction of arrival of non-target noise exceeds 45 ° with respect to the direction of target noise arrival. Can do. Needless to say, even if the assumed direction of arrival of the non-target noise is 45 ° or less with respect to the direction of arrival of the target noise, the presence of the non-target noise can be identified with a certain probability.
  • 9 and 10 show an example in which the standard deviation in the instantaneous direction is calculated as the degree of variation in step A6 without taking into account the sound pressure information.
  • the frequency band is 2000 Hz or more
  • the same tendency as the weighted standard deviation in the instantaneous direction in consideration of the sound pressure information is shown. That is, if the S / N ratio is small, the standard deviation becomes larger as the angle (difference in azimuth angle) between the target sound source 30 and the non-target sound source 40 increases, and if the S / N ratio is large, the target sound source 30 and Even if the angle with the non-target sound source 40 (azimuth angle difference) increases, the standard deviation tends to reach a peak.
  • the non-target noise determination unit 14 determines whether or not the variation degree calculated in Step A6 is equal to or more than the set threshold value (Step A7). If the variation degree is less than a preset threshold value in step A7, the non-target noise determination unit 14 determines that there is no non-target noise in the predetermined period during which the variation degree is calculated. Returning to A1, the determination operation for the next predetermined period is performed. It is preferable that the threshold value to be compared with the degree of variation in step A7 can be changed.
  • the threshold value can be changed according to the situation such as the degree of ground reflection.
  • step A7 when the degree of variation is equal to or greater than a preset threshold value, the non-target noise determination unit 14 determines that non-target noise exists in the predetermined period in which the degree of variation is calculated, and the degree of variation.
  • the noise measurement device 20 is notified of the predetermined period in which the noise is calculated as the non-target noise detection period in which the target noise exists (step A8), and the process returns to step A1 to perform the determination operation for the next predetermined period.
  • the noise measurement device 20 can recognize the non-target noise detection period in which there is non-target noise that affects the measurement of the target noise. For example, the equivalent noise is excluded except for the notified non-target noise detection period.
  • An integration amount such as a level (LAeq) can be calculated.
  • the sound detection unit 11 including a plurality of microphones and / or particle velocity sensors, and the instantaneous direction of the sound source every unit time based on the detection result by the sound detection unit 11
  • a sound source direction specifying unit 12 for specifying a difference
  • a variation degree calculating unit 13 for calculating a degree of variation in a plurality of instantaneous directions specified by the sound source direction specifying unit 12 in a predetermined period set longer than a unit time
  • a degree of variation A non-target noise determination unit 14 that determines the presence or absence of non-target noise that affects measurement of target noise coming from a noise source to be measured based on the degree of variation calculated by the calculation unit 13 is provided.
  • the presence or absence of non-target noise that influences the measurement of target noise is determined without performing sound source identification based on a trial sound of a sound source discriminator or sound source identification between a sound source of another target noise and a sound source of non-target noise. Therefore, it is possible to automatically identify whether or not the measured noise is affected by non-target noise by a simple system.
  • the variation degree calculation unit 13 calculates the variation degree.
  • the predetermined period is output as the non-target noise detection period.
  • the noise measurement apparatus 20 can recognize the non-target noise detection period in which there is a non-target noise that affects the measurement of the target noise.
  • the noise measurement apparatus 20 is equivalent except for the notified non-target noise detection period.
  • An integration amount such as a noise level (LAeq) can be calculated.
  • the sound source direction specifying unit 12 specifies the sound pressure information together with the instantaneous direction
  • the variation degree calculating unit 13 calculates the weighted standard deviation considering the sound pressure information as the variation degree. It is configured. Further, the variation degree calculation unit 13 may generate a distribution map in an instantaneous direction and calculate a correlation coefficient with a preset reference distribution chart as the variation degree. With this configuration, the variation degree can be obtained by simple calculation.
  • the present invention is not limited to the above-described embodiments, and it is obvious that each embodiment can be appropriately changed within the scope of the technical idea of the present invention.
  • the number, position, shape, and the like of the constituent members are not limited to the above-described embodiment, and can be set to a number, position, shape, and the like that are suitable for implementing the present invention. In each figure, the same numerals are given to the same component.
  • the noise identification device 10 is used for automatic measurement of sound pressure information by the noise measurement device 20 in an object or place that emits any sound such as an electronic device, a household appliance, various vehicles, a factory, a facility, and the like. Applicable.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Signal Processing (AREA)
  • Health & Medical Sciences (AREA)
  • Otolaryngology (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Computational Linguistics (AREA)
  • Multimedia (AREA)
  • Human Computer Interaction (AREA)
  • Audiology, Speech & Language Pathology (AREA)
  • Quality & Reliability (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)
  • Obtaining Desirable Characteristics In Audible-Bandwidth Transducers (AREA)
  • Circuit For Audible Band Transducer (AREA)

Abstract

 測定した騒音が対象外騒音の影響を受けているか否かを簡便なシステムによって自動識別することができる騒音識別装置及び騒音識別方法を提供する。 マイクロホン及び/又は粒子速度センサを複数個備えた音検出部11と、音検出部11による検出結果に基づいて、単位時間毎に音源の瞬時方向を特定する音源方向特定部12と、単位時間よりも長く設定された所定期間において、音源方向特定部12によって特定された複数の瞬時方向のバラツキ度を計算するバラツキ度計算部13と、バラツキ度計算部13によって計算されたバラツキ度に基づいて、測定対象とする騒音源から到来する対象騒音の測定に影響を与える対象外騒音の有無を判定する対象外騒音判定部14とを備えている。

Description

騒音識別装置及び騒音識別方法
 本発明は、測定対象とする騒音源から到来する騒音を識別する騒音識別装置及び騒音識別方法に関する。
 環境省が示す騒音に係る環境基準の評価マニュアルでは、測定対象とする騒音源から到来する騒音(以下、対象騒音と称す)を測定する際に、測定対象以外の騒音源から到来し、測定の妨げとなる騒音(以下、対象外騒音と称す)は、除外するように記載されている。例えば、「航空機騒音に係る環境基準」が一部改正(平成19年12月17日環境省告示第114号)されたことより、平成25年4月1日以降は、航空機騒音は等価騒音レベルを基本とする評価尺度である時間帯補正等価騒音レベル(Lden)によって評価されることとなる。この航空機の等価騒音レベルを正確に測定するには、測定対象とする騒音源である航空機以外の騒音が測定値に影響しないことを担保する必要がある。
 騒音測定現場において、対象騒音が対象外騒音と比較して10dB以上卓越していれば、対象騒音の測定は、対象外騒音の影響を受けないため、容易に行うことができる。しかし実際の騒音測定現場では、多種多様な騒音源からの到来音が混在しているのが常である。例えば、等価騒音レベルの計測中に対象騒音である航空機騒音以外の対象外騒音が発生して測定値に影響を及ぼす場合、すなわち対象とする航空機騒音以外の対象外騒音の騒音レベルが航空機の騒音レベルより10dB以下より大きい場合(S/N比10dB以下)にはそれを削除する必要がある。このため、一般に騒音の測定・評価を行う際には、実際の騒音を測定係員がその場でモニターする、あるいは録音された騒音を試聴することで、測定値に影響を及ぼす対象外騒音が混在していることを識別する騒音識別作業が必要不可欠でその手間は膨大なものとなる。また、騒音の識別が騒音識別者の主観による評価となるため不確かさが生じてしまう。
 そこで本出願人は、球バッフルマイクロホンを備えた音源探査装置により、複数の音源からの音の到来方向をそれぞれ観測・特定すると共に、音源解析装置により、測定された騒音と複数の音源との関連付けを行い、測定された騒音に含まれる音源毎の到来騒音を把握する騒音識別技術を提案している(例えば、特許文献1参照)。
特開2004-269256号公報
 従来の騒音識別技術によると、音源毎の到来騒音を把握できるため、対象騒音と対象外騒音との識別を自動で行うことができるが、システムが複雑で高価であり、その保守作業も専門性が要求されるという問題点がある。
 本発明の目的は、かかる点に鑑みてなされたものであり、その目的とするところは、測定した騒音が対象外騒音の影響を受けているか否かを簡便なシステムによって自動識別することができる騒音識別装置及び騒音識別方法を提供することにある。
 本発明の騒音識別装置は、マイクロホン及び/又は粒子速度センサを複数個備えた音検出手段と、該音検出手段による検出結果に基づいて、単位時間毎に音源の瞬時方向を特定する音源方向特定手段と、前記単位時間よりも長く設定された所定期間において、前記音源方向特定手段によって特定された複数の前記瞬時方向のバラツキ度を計算するバラツキ度計算手段と、該バラツキ度計算手段によって計算された前記バラツキ度に基づいて、測定対象とする騒音源から到来する対象騒音の測定に影響を与える対象外騒音の有無を判定する対象外騒音判定手段とを具備することを特微とする。
 さらに、本発明の騒音識別装置において、前記対象外騒音判定手段は、前記対象騒音の測定に影響を与える前記対象外騒音があると判定した場合には、前記バラツキ度計算手段によって前記バラツキ度が計算された前記所定期間を対象外騒音検出期間として出力するようにしても良い。
 さらに、本発明の騒音識別装置において、前記音源方向特定手段は、前記瞬時方向と共に音圧情報を特定し、前記バラツキ度計算手段は、前記音圧情報を加味した加重標準偏差を前記バラツキ度として計算するようにしても良い。
 さらに、本発明の騒音識別装置において、前記バラツキ度計算手段は、前記瞬時方向の分布図を生成し、予め設定された基準分布図との相関係数を前記バラツキ度として計算するようにしても良い。
 また、本発明の騒音識別方法は、マイクロホン及び/又は粒子速度センサを複数個備えた音検出手段によって、音を検出する音検出工程と、情報処理装置によって、前記音検出工程による検出結果に基づいて、単位時間毎に音源の瞬時方向を特定し、前記単位時間よりも長く設定された所定期間において、前記音源方向特定手段によって特定された複数の前記瞬時方向のバラツキ度を計算し、計算した前記バラツキ度に基づいて、測定対象とする騒音源から到来する対象騒音の測定に影響を与える対象外騒音の有無を判定する判定工程とを備えたことを特微とする。
 本発明によれば、音源識別者の試聴による音源識や、別対象騒音の音源と対象外騒音の音源との音源識別を行うことなく、対象騒音の測定に影響を与える対象外騒音の有無を判定することができるため、測定した騒音が対象外騒音の影響を受けているか否かを簡便なシステムによって自動識別することができるという効果を奏する。
本発明に係る騒音識別装置の実施の形態の構成を示すブロック図である。 本発明に係る騒音識別装置の実施の形態の騒音識別動作を説明するためのフローチャートである。 図1に示すバラツキ度計算部によって計算されるバラツキ度の持つ性質を検証する検証実験例を示す図である。 図3に示す検証実験における瞬時方向のバラツキを示すグラフである。 図3に示す検証実験における瞬時方向のバラツキを示すグラフである。 図3に示す検証実験において計算されたバラツキ度(加重標準偏差)とS/N比との関係を示すグラフである。 図3に示す検証実験において計算されたバラツキ度(加重標準偏差)とS/N比との関係を示すグラフである。 図1に示す対象外騒音判定部によってバラツキ度と比較する閾値例を示すグラフである。 図3に示す検証実験において計算されたバラツキ度(標準偏差)とS/N比との関係を示すグラフである。 図3に示す検証実験において計算されたバラツキ度(標準偏差)とS/N比との関係を示すグラフである。
 次に、本発明の実施の形態を、図面を参照して具体的に説明する。
 本実施の形態の騒音識別装置10は、騒音を測定する騒音測定装置20と共に用いられ、対象外騒音、すなわち測定対象以外の騒音源から到来し、測定の妨げとなる対象外騒音が存在する対象外騒音検出期間を騒音測定装置20に通知する。図1を参照すると、騒音識別装置10は、音検出部11と、音源方向特定部12と、バラツキ度計算部13と、対象外騒音判定部14とを備えている。
 音検出部11は、マイクロホン及び/又は粒子速度センサを複数個備え、マイクロホン及び/又は粒子速度センサからそれぞれ出力される検出信号を高速(48kHz等)にAD変換してそれぞれ出力する音圧検出手段であり、マイクロホンによって検出された音圧や、粒子速度センサによって検出された粒子速度が出力される。音検出部11としては、例えば、2個のマイクロホンを近接して並べたP-PタイプやC-Cタイプの音響インテンシティプローブを用いることができる。このタイプの音響インテンシティプローブは、1個で1方向の音響インテンシティを計算することができ、3次元方向の音響インテンシティを計算する場合には、中心(2個のマイクロホンを結ぶ線分の中点)を同一にしてxyz方向に3個の音響インテンシティプローブを配置した3軸音響インテンシティプローブが用いられる。また、音検出部11として、同一平面上に無い複数点にマイクロホンがそれぞれ配置された音響インテンシティプローブ、例えば、正四面体の各頂点にマイクロホンをそれぞれ配置した音響インテンシティプローブや、直交座標軸上の近接する4点(0、x,y,z)にマイクロホンを配置した音響インテンシティプローブを用いることもできる。さらに、音検出部11として、マイクロホンと粒子速度センサとを組み合わせた音響プローブ(マイクロホンと粒子速度センサをほぼ同一位置に置いたP-U音響インテンシティプローブ等)を用いることもできる。
 音源方向特定部12、バラツキ度計算部13及び対象外騒音判定部14は、プログラム制御によって動作するコンピュータ等の情報処理装置で構成されている。音源方向特定部12は、音検出部11からの出力に基づいて、単位時間毎に音源の瞬時方向と音圧情報とからなるベクトル情報を特定する。音源の瞬時方向とは、単位時間における音検出部11からみた音源の方向であり、音源方向特定部12では、音検出部11によって検出された音圧や粒子速度が1つの音源から到来したものであるとみなして、1方向のみが音源の瞬時方向として特定される。また、音圧情報とは、音の大きさを表す音圧(p)、音圧レベル(L)、A特性の音圧レベルである騒音レベル等のスカラー量である。従って、音響インテンシティプローブを備えた音検出部11の場合には、音源方向特定部12において、音響インテンシティが特定され、複数点にそれぞれ配置されたマイクロホンを備えた音検出部11の場合には、音源方向特定部12において、近接四点法や正四面体頂点法を用いて、複数のマイクロホンに到達する音の時間差から音源の瞬時方向が特定されることなる。
 なお、音源方向特定部12は、音検出部11からの出力信号を所定の周期でサンプリングし、サンプリングしたデータに基づいて音源の瞬時方向と音圧情報とを特定する。従って、音源の瞬時方向と音圧情報とを特定する単位時間は、サンプリング周期の整数倍に設定される。例えば、単位時間及びサンプリング周期が0.01(s)である場合には、1秒間に100組の音源の瞬時方向と音圧情報とが特定されることになる。
 バラツキ度計算部13は、音源方向特定部12によって特定された音源の瞬時方向と音圧情報とを所定組数蓄積し、蓄積した複数組の音源の瞬時方向と音圧情報とに基づいて、音源方向のバラツキ度を計算する。音源方向のバラツキ度は、設定された所定期間において、単位時間毎に検出・特定された音源の瞬時方向がどの程度のバラツキを持っているかを示す数値である。本実施の形態では、後述するように、バラツキ度として音圧情報も加味した加重標準偏差を算出するように構成したが、重み付けを行うことなく、例えば、音源の瞬時方向のみに基づく標準偏差を算出するようにしても良い。また、音源の瞬時方向の分布図を生成し、予め設定された基準分布図との相関係数をバラツキ度として算出することもできる。
 対象外騒音判定部14は、バラツキ度計算部13によって計算されたバラツキ度が、設定された閾値よりも大きいか否かを判定し、バラツキ度が閾値よりも大きい場合に、そのバラツキ度を計算した所定期間を対象外騒音が存在する対象外騒音検出期間として騒音測定装置20に通知する。
 騒音測定装置20は、無指向性のマイクロホン21によって検出された音圧に基づいて、音の大きさを表す音圧情報(音圧(p)、音圧レベル(L)、A特性の音圧レベルである騒音レベル等)の瞬時値を算出する騒音計であると共に、等価騒音レベル(LAeq)等の積分量を算出する積分型騒音計としての機能を有している。また、騒音測定装置20は、騒音識別装置10から通知された対象外騒音検出期間を除いて、等価騒音レベル(LAeq)等の積分量を算出するように構成されている。
 次に、本実施の形態の騒音識別装置10における判定動作ついて図2乃至図8を参照して詳細に説明する。
 図2を参照すると、バラツキ度計算部13は、まず、変数nに「0」をセットし(ステップA1)、音源方向特定部12からのデータ入力を待機する。音源方向特定部12は、アナログ信号である音検出部11からの出力信号を所定の周期でサンプリングし、サンプリングした所定の周波数帯域のデータに基づいて、音源の瞬時方向と音圧情報とを特定し(ステップA2)、バラツキ度計算部13に出力する。
 次に、バラツキ度計算部13は、データ入力された音源の瞬時方向と音圧情報とを蓄積すると共に(ステップA3)、変数nをインクリメントし(ステップA4)、変数nが設定された所定組数Nに到達したか否かを判定する(ステップA5)。
 ステップA5で、変数nが設定された所定組数Nに到達していない場合には、バラツキ度計算部13は、再び音源方向特定部12からのデータ入力を待機し、ステップA2に戻る。音源方向特定部12では、単位時間毎に音源の瞬時方向と音圧情報と特定されるため、音源方向特定部12で所定組数Nの音源の瞬時方向と音圧情報が特定され、バラツキ度計算部13に蓄積されるまでステップA2からA5が繰り返されることになる。
 ステップA5で、変数nが設定された所定組数Nに到達した場合には、バラツキ度計算部13は、所定組数Nの音源の瞬時方向と音圧情報とに基づいて、音源方向のバラツキ度を計算する(ステップA6)。
 ここで、バラツキ度計算部13で算出されるバラツキ度の持つ性質について検証する。
 騒音識別装置10の音検出部11と、対象騒音(ピンクノイズ)を出力する対象音源30と、対象外騒音(ピンクノイズ)を出力する対象外音源40とを無響室に配置し、500Hz帯域において、ステップA2の瞬時方向と音圧情報との特定と、ステップA3の瞬時方向と音圧情報との蓄積とを行った。なお、図3(a)は、音検出部11に対する対象音源30及び対象外音源40の水平方向の配置を、図3(b)は、音検出部11に対する対象音源30及び対象外音源40の垂直方向の配置をそれぞれ示している。垂直方向においては、図3(b)に示すように、対象音源30及び対象外音源40を音検出部11と水平な仰角90°の位置に配置した。また、水平方向においては、対象音源30をA地点の方位角90°の位置に固定し、対象外音源40をB地点の方位角120°~G地点の方位角270°の位置までの30°毎のそれぞれの位置で、単位時間を0.01(s)として、10秒間測定を行い、1000個の瞬時方向と音圧情報とをそれぞれ特定・蓄積した。
 図4(a)は、水平方向においてA地点の方位角90°に対象音源30のみを配置した場合の測定例である。この測定例によると、対象音源30のみを配置した場合には、ほぼ正確に対象音源30の瞬時方向を特定できることが分かる。
 図4(b)~(c)、図5(a)~(d)は、水平方向においてA地点の方位角90°に対象音源30を固定し、B地点の方位角120°~G地点の方位角270°の位置までの30°毎のそれぞれの位置に対象外音源40を配置した場合のそれぞれの測定例である。なお、対象音源30と対象外騒音との出力を同一レベル(対象騒音と対象外騒音とのS/N比が0)として測定した。これらの騒音源が複数存在する測定例によると、瞬時方向は、対象音源30又は対象外音源40の方向に限らず、対象音源30と対象外音源40との間の様々な位置をとることが分かる。なお、図5(d)においては、対象音源30又は対象外音源40の方向が瞬時方向として特定される割合が多いが、バラツキも大きい。
 次に、図3に示すそれぞれの配置において、対象音源30と対象外音源40との出力比(S/N比)と、周波数帯域とを変更して、それぞれ瞬時方向と音圧情報とを特定・蓄積し、ステップA6でバラツキ度として音圧情報を加味した瞬時方向の加重標準偏差をそれぞれ計算した。その結果を図6及び図7に示す。これらの計算例によると、S/N比が小さいと、対象音源30と対象外音源40との角度(方位角の差)が大きくなるほど、加重標準偏差も大きな値となり、S/N比が大きいと、対象音源30と対象外音源40との角度(方位角の差)が大きくなっても、加重標準偏差が頭打ちになる傾向がある。また、周波数帯域が高いほど、小さいS/N比で加重標準偏差が頭打ちになる。従って、適切な周波数帯域を選択し、計算された加重標準偏差と適切な閾値とを比較することで、対象騒音に影響を与えるS/N比が10未満となる対象外騒音が存在するか否かを判定することができる。例えば、図6(d)に示す500Hzの周波数帯域において、図8に示すように、閾値を15として、計算された加重標準偏差と比較する。この場合、計算された加重標準偏差が閾値以上であると、対象音源30に対する対象外音源40の角度に関わりなく、対象騒音に影響を与えるS/N比が10未満となる対象外騒音が必ず存在することが分かる。一方、計算された加重標準偏差が閾値未満であると、対象音源30に対して対象外音源40が45°以内の角度に存在している場合にのみ、対象騒音に影響を与えるS/N比が10未満となる対象外騒音が存在する可能性がある。換言すると、対象音源30に対して対象外音源40が45°以内の角度に存在していない場合には、計算された加重標準偏差が閾値未満であると、対象騒音に影響を与えるS/N比が10未満となる対象外騒音が存在しないことが分かる。従って、実際の対象騒音の測定に際し、想定される対象外騒音の到来方向が対象騒音の到来方向に対して45°を超える測定位置を選ぶことで、対象外騒音の存在を確実に識別することができる。なお、想定される対象外騒音の到来方向が対象騒音の到来方向に対して45°以下であっても、ある程度の確率で対象外騒音の存在を識別することができることは言うまでもない。
 図9及び図10には、音圧情報を加味することなく、ステップA6でバラツキ度として瞬時方向の標準偏差を計算した例が示されている。これらの計算例によると、周波数帯域が2000Hz以上であれば、音圧情報を加味した瞬時方向の加重標準偏差と同様な傾向示している。すなわち、S/N比が小さいと、対象音源30と対象外音源40との角度(方位角の差)が大きくなるほど、標準偏差も大きな値となり、S/N比が大きいと、対象音源30と対象外音源40との角度(方位角の差)が大きくなっても、標準偏差が頭打ちになる傾向がある。従って、音圧情報を加味することなく計算された標準偏差であっても、2000Hz以上の適切な周波数帯域を選択し、計算された標準偏差と適切な閾値とを比較することで、対象騒音に影響を与えるS/N比が10未満となる対象外騒音が存在するか否かを判定することができる。
 図2に戻ると、対象外騒音判定部14は、ステップA6で計算されたバラツキ度と、設定された閾値以上か否かを判定する(ステップA7)。ステップA7で、バラツキ度が予め設定された閾値未満である場合には、対象外騒音判定部14は、そのバラツキ度を計算した所定期間には、対象外騒音が存在しないと判定して、ステップA1に戻って、次の所定期間の判定動作を行う。なお、ステップA7においてバラツキ度と比較する閾値を変更可能に構成すると好適である。例えば、実際の測定では地面反射が存在するため、ステップA6で計算されるバラツキ度が上昇することが想定されたり、ステップA2において音源の瞬時方向と音圧情報とを特定する際の動特性(時定数)や、ステップA6でバラツキ度を計算する際のデータ数や時間によってもバラツキ度が変化したりする。従って、地面反射の程度等の状況に応じて閾値を変更できると好適である。
 ステップA7で、バラツキ度が予め設定された閾値以上である場合には、対象外騒音判定部14は、そのバラツキ度を計算した所定期間に、対象外騒音が存在した判定して、そのバラツキ度を計算した所定期間を対象外騒音が存在する対象外騒音検出期間として騒音測定装置20に通知し(ステップA8)、ステップA1に戻って、次の所定期間の判定動作を行う。
 これにより、騒音測定装置20では、対象騒音の測定の影響を与える対象外騒音が存在する対象外騒音検出期間を認識することができ、例えば、通知された対象外騒音検出期間を除いて等価騒音レベル(LAeq)等の積分量を算出することができる。
 以上説明したように本実施の形態によれば、マイクロホン及び/又は粒子速度センサを複数個備えた音検出部11と、音検出部11による検出結果に基づいて、単位時間毎に音源の瞬時方向を特定する音源方向特定部12と、単位時間よりも長く設定された所定期間において、音源方向特定部12によって特定された複数の瞬時方向のバラツキ度を計算するバラツキ度計算部13と、バラツキ度計算部13によって計算されたバラツキ度に基づいて、測定対象とする騒音源から到来する対象騒音の測定に影響を与える対象外騒音の有無を判定する対象外騒音判定部14とを備えている。この構成により、音源識別者の試聴による音源識や、別対象騒音の音源と対象外騒音の音源との音源識別を行うことなく、対象騒音の測定に影響を与える対象外騒音の有無を判定することができるため、測定した騒音が対象外騒音の影響を受けているか否かを簡便なシステムによって自動識別することができる。
 さらに、本実施の形態によれば、対象外騒音判定部14は、対象騒音の測定に影響を与える対象外騒音があると判定した場合には、バラツキ度計算部13によってバラツキ度が計算された所定期間を対象外騒音検出期間として出力するように構成されている。この構成により、騒音測定装置20では、対象騒音の測定の影響を与える対象外騒音が存在する対象外騒音検出期間を認識することができ、例えば、通知された対象外騒音検出期間を除いて等価騒音レベル(LAeq)等の積分量を算出することができる。
 さらに、本実施の形態によれば、音源方向特定部12は、瞬時方向と共に音圧情報を特定し、バラツキ度計算部13は、音圧情報を加味した加重標準偏差をバラツキ度として計算するように構成されている。また、バラツキ度計算部13は、瞬時方向の分布図を生成し、予め設定された基準分布図との相関係数をバラツキ度として計算するようにしても良い。この構成により、バラツキ度を簡単な計算で求めることができる。
 なお、本発明が上記各実施の形態に限定されず、本発明の技術思想の範囲内において、各実施の形態は適宜変更され得ることは明らかである。また、上記構成部材の数、位置、形状等は上記実施の形態に限定されず、本発明を実施する上で好適な数、位置、形状等にすることができる。なお、各図において、同一構成要素には同一符号を付している。
 本か発明に係る騒音識別装置10は、電子機器、家電製品、各種乗り物、工場、施設等のように、あらゆる音を発する物や場所等において、騒音測定装置20による音圧情報の自動測定に適用可能である。
 10 騒音識別装置
 11 音検出部
 12 音源方向特定部
 13 バラツキ度計算部
 14 対象外騒音判定部
 20 騒音測定装置
 30 対象音源
 40 対象外音源

Claims (5)

  1.  マイクロホン及び/又は粒子速度センサを複数個備えた音検出手段と、
     該音検出手段による検出結果に基づいて、単位時間毎に音源の瞬時方向を特定する音源方向特定手段と、
     前記単位時間よりも長く設定された所定期間において、前記音源方向特定手段によって特定された複数の前記瞬時方向のバラツキ度を計算するバラツキ度計算手段と、
     該バラツキ度計算手段によって計算された前記バラツキ度に基づいて、測定対象とする騒音源から到来する対象騒音の測定に影響を与える対象外騒音の有無を判定する対象外騒音判定手段とを具備することを特微とする騒音識別装置。
  2.  前記対象外騒音判定手段は、前記対象騒音の測定に影響を与える前記対象外騒音があると判定した場合には、前記バラツキ度計算手段によって前記バラツキ度が計算された前記所定期間を対象外騒音検出期間として出力することを特徴とする請求項1記載の騒音識別装置。
  3.  前記音源方向特定手段は、前記瞬時方向と共に音圧情報を特定し、
     前記バラツキ度計算手段は、前記音圧情報を加味した加重標準偏差を前記バラツキ度として計算することを特徴とする請求項1又は2記載の騒音識別装置。
  4.  前記バラツキ度計算手段は、前記瞬時方向の分布図を生成し、予め設定された基準分布図との相関係数を前記バラツキ度として計算することを特徴とする請求項1又は2記載の騒音識別装置。
  5.  マイクロホン及び/又は粒子速度センサを複数個備えた音検出手段によって、音を検出する音検出工程と、
     情報処理装置によって、前記音検出工程による検出結果に基づいて、単位時間毎に音源の瞬時方向を特定し、
     前記単位時間よりも長く設定された所定期間において、前記音源方向特定手段によって特定された複数の前記瞬時方向のバラツキ度を計算し、
     計算した前記バラツキ度に基づいて、測定対象とする騒音源から到来する対象騒音の測定に影響を与える対象外騒音の有無を判定する判定工程とを備えたことを特微とする騒音識別方法。
PCT/JP2013/068929 2012-07-19 2013-07-11 騒音識別装置及び騒音識別方法 WO2014013924A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201380037771.1A CN104471359B (zh) 2012-07-19 2013-07-11 噪声识别装置及噪声识别方法
KR1020157000783A KR102046204B1 (ko) 2012-07-19 2013-07-11 소음 식별장치 및 소음 식별방법
GB1502433.4A GB2519267B (en) 2012-07-19 2013-07-11 Noise identifying apparatus and noise identifying method using the same
US14/415,473 US9392388B2 (en) 2012-07-19 2013-07-11 Noise identifying apparatus and noise identifying method using the same
HK15106127.6A HK1205556A1 (en) 2012-07-19 2015-06-26 Noise identification device and noise identification method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012160433A JP5367134B1 (ja) 2012-07-19 2012-07-19 騒音識別装置及び騒音識別方法
JP2012-160433 2012-07-19

Publications (1)

Publication Number Publication Date
WO2014013924A1 true WO2014013924A1 (ja) 2014-01-23

Family

ID=49850411

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/068929 WO2014013924A1 (ja) 2012-07-19 2013-07-11 騒音識別装置及び騒音識別方法

Country Status (7)

Country Link
US (1) US9392388B2 (ja)
JP (1) JP5367134B1 (ja)
KR (1) KR102046204B1 (ja)
CN (1) CN104471359B (ja)
GB (1) GB2519267B (ja)
HK (1) HK1205556A1 (ja)
WO (1) WO2014013924A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015173391A (ja) * 2014-03-12 2015-10-01 パイオニア株式会社 演算装置及び演算方法、並びにコンピュータプログラム及び記録媒体
JP2019023662A (ja) * 2018-11-13 2019-02-14 パイオニア株式会社 演算装置
JP2020183963A (ja) * 2020-07-07 2020-11-12 パイオニア株式会社 演算装置
CN112199866A (zh) * 2020-11-17 2021-01-08 中国舰船研究设计中心 一种识别叶片泵或风机噪声源的方法
JP2022033205A (ja) * 2020-07-07 2022-02-28 パイオニア株式会社 演算装置

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6305254B2 (ja) * 2014-07-14 2018-04-04 東洋建設株式会社 騒音及び/又は振動の監視方法と監視システム
WO2017052550A1 (en) * 2015-09-24 2017-03-30 Intel Corporation Platform noise identification using platform integrated microphone
KR20170130041A (ko) * 2016-05-18 2017-11-28 (주)에스엠인스트루먼트 소음원 가시화 데이터 누적 표시방법 및 음향 카메라 시스템
CN106323460B (zh) * 2016-11-21 2019-04-05 东方智测(北京)科技有限公司 用于获取指定方向声压信号的方法及装置
JP2021135276A (ja) * 2020-02-28 2021-09-13 日本電産株式会社 音源可視化装置および音源可視化プログラム
CN112254978B (zh) * 2020-09-09 2022-05-17 交通运输部公路科学研究所 车辆通过噪声源强及指向性的测量评估方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09218254A (ja) * 1996-02-13 1997-08-19 Nec Corp 音響信号分離方法及び音響信号分離方式
JP2001166025A (ja) * 1999-12-14 2001-06-22 Matsushita Electric Ind Co Ltd 音源の方向推定方法および収音方法およびその装置
JP2006038772A (ja) * 2004-07-29 2006-02-09 Nittobo Acoustic Engineering Co Ltd 音圧測定方法
JP2010011433A (ja) * 2008-05-30 2010-01-14 Nittobo Acoustic Engineering Co Ltd 音源分離及び表示方法並びにシステム

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4235124B2 (ja) 2003-02-20 2009-03-11 株式会社リコー シート材供給装置、画像読取装置、画像形成装置
EP2233897A1 (en) * 2008-01-18 2010-09-29 Nittobo Acoustic Engineering Co., Ltd. Sound source identifying and measuring apparatus, system and method
EP2387032B1 (en) * 2009-01-06 2017-03-01 Mitsubishi Electric Corporation Noise cancellation device and noise cancellation program
JP5253268B2 (ja) * 2009-03-30 2013-07-31 中部電力株式会社 音源・振動源探査システム
WO2011055410A1 (ja) * 2009-11-06 2011-05-12 株式会社 東芝 音声認識装置
KR101172354B1 (ko) * 2011-02-07 2012-08-08 한국과학기술연구원 회전형 마이크로폰 어레이를 이용한 음원 방향 검지 장치 및 방법

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09218254A (ja) * 1996-02-13 1997-08-19 Nec Corp 音響信号分離方法及び音響信号分離方式
JP2001166025A (ja) * 1999-12-14 2001-06-22 Matsushita Electric Ind Co Ltd 音源の方向推定方法および収音方法およびその装置
JP2006038772A (ja) * 2004-07-29 2006-02-09 Nittobo Acoustic Engineering Co Ltd 音圧測定方法
JP2010011433A (ja) * 2008-05-30 2010-01-14 Nittobo Acoustic Engineering Co Ltd 音源分離及び表示方法並びにシステム

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015173391A (ja) * 2014-03-12 2015-10-01 パイオニア株式会社 演算装置及び演算方法、並びにコンピュータプログラム及び記録媒体
JP2019023662A (ja) * 2018-11-13 2019-02-14 パイオニア株式会社 演算装置
JP2020183963A (ja) * 2020-07-07 2020-11-12 パイオニア株式会社 演算装置
JP2022033205A (ja) * 2020-07-07 2022-02-28 パイオニア株式会社 演算装置
CN112199866A (zh) * 2020-11-17 2021-01-08 中国舰船研究设计中心 一种识别叶片泵或风机噪声源的方法
CN112199866B (zh) * 2020-11-17 2022-07-15 中国舰船研究设计中心 一种识别叶片泵或风机噪声源的方法

Also Published As

Publication number Publication date
GB201502433D0 (en) 2015-04-01
US9392388B2 (en) 2016-07-12
JP5367134B1 (ja) 2013-12-11
HK1205556A1 (en) 2015-12-18
GB2519267A (en) 2015-04-15
US20150208185A1 (en) 2015-07-23
JP2014020944A (ja) 2014-02-03
KR20150034720A (ko) 2015-04-03
CN104471359B (zh) 2017-03-22
CN104471359A (zh) 2015-03-25
KR102046204B1 (ko) 2019-11-18
GB2519267B (en) 2020-02-12

Similar Documents

Publication Publication Date Title
JP5367134B1 (ja) 騒音識別装置及び騒音識別方法
Kotus et al. Detection and localization of selected acoustic events in acoustic field for smart surveillance applications
US20150195666A1 (en) Device, Method and Software for Measuring Distance To A Sound Generator By Using An Audible Impulse Signal.
US10891970B2 (en) Sound source detecting method and detecting device
US20170016797A1 (en) Apparatus and method of monitoring gas based on variation in sound field spectrum
US20210306782A1 (en) Method and system of audio device performance testing
US20170276763A1 (en) System and methods for detecting a position using differential attenuation
CN107231597B (zh) 扬声器谐波失真值的测试方法及系统
CN104634442A (zh) 一种间接测量变压器噪声的方法
Alloza et al. Noise source localization in industrial facilities
CN111902704A (zh) 包括换能器阵列的检测器设备的灵敏度估计
KR102197812B1 (ko) 위치 지정을 통한 소음 모니터링 시스템 및 그 방법
KR101543383B1 (ko) 센서를 이용하여 레이더의 베어링 이상을 검출하기 위한 방법
US20200107144A1 (en) Acoustical performance evaluation method
Dokhanchi et al. Acoustic travel-time tomography: optimal positioning of transceiver and maximal sound-ray coverage of the room
KR101543382B1 (ko) 레이더의 베어링 이상 검출 장치
JP4876287B2 (ja) 音響インピーダンス及び吸音率の測定方法
Jackett Implementation of a diffuse-field microphone calibration system
Bogusławski et al. Determination of sound power level by using a microphone array and conventional methods
JA et al. Validation for smartphone applications for measuring noise
CN114518165B (zh) 噪音检测系统与噪音检测方法
JP2020085515A (ja) 振動特性検出装置、および振動特性検出方法
Mohamady et al. Statistical uncertainty analysis of an acoustic system
US20170123086A1 (en) System and Method for Discriminating Between Origins of Vibrations in an Object and Determination of Contact Between Blunt Bodies Traveling in a Medium
JP2013083515A (ja) 逆二乗特性解析装置及び逆二乗特性評価方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13820694

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20157000783

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14415473

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: IDP00201500295

Country of ref document: ID

ENP Entry into the national phase

Ref document number: 1502433

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20130711

WWE Wipo information: entry into national phase

Ref document number: 1502433.4

Country of ref document: GB

122 Ep: pct application non-entry in european phase

Ref document number: 13820694

Country of ref document: EP

Kind code of ref document: A1