WO2014013145A1 - Systeme de sous-refroidissement d'un systeme de refrigeration a compression - Google Patents

Systeme de sous-refroidissement d'un systeme de refrigeration a compression Download PDF

Info

Publication number
WO2014013145A1
WO2014013145A1 PCT/FR2013/000188 FR2013000188W WO2014013145A1 WO 2014013145 A1 WO2014013145 A1 WO 2014013145A1 FR 2013000188 W FR2013000188 W FR 2013000188W WO 2014013145 A1 WO2014013145 A1 WO 2014013145A1
Authority
WO
WIPO (PCT)
Prior art keywords
evaporator
refrigeration
thermochemical
installation
cooling system
Prior art date
Application number
PCT/FR2013/000188
Other languages
English (en)
Inventor
Laurent Rigaud
Francis Kindbeiter
Original Assignee
Coldway
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Coldway filed Critical Coldway
Priority to IN3003KON2014 priority Critical patent/IN2014KN03003A/en
Priority to CN201380037690.1A priority patent/CN104471330B/zh
Priority to CA2878646A priority patent/CA2878646A1/fr
Priority to US14/415,427 priority patent/US9476619B2/en
Priority to BR112015001109A priority patent/BR112015001109A2/pt
Priority to EP13756539.6A priority patent/EP2875291A1/fr
Priority to JP2015522137A priority patent/JP2015525867A/ja
Publication of WO2014013145A1 publication Critical patent/WO2014013145A1/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B29/00Combined heating and refrigeration systems, e.g. operating alternately or simultaneously
    • F25B29/003Combined heating and refrigeration systems, e.g. operating alternately or simultaneously of the compression type system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B17/00Sorption machines, plants or systems, operating intermittently, e.g. absorption or adsorption type
    • F25B17/08Sorption machines, plants or systems, operating intermittently, e.g. absorption or adsorption type the absorbent or adsorbent being a solid, e.g. salt
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B25/00Machines, plants or systems, using a combination of modes of operation covered by two or more of the groups F25B1/00 - F25B23/00
    • F25B25/02Compression-sorption machines, plants, or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B27/00Machines, plants or systems, using particular sources of energy
    • F25B27/02Machines, plants or systems, using particular sources of energy using waste heat, e.g. from internal-combustion engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B40/00Subcoolers, desuperheaters or superheaters
    • F25B40/02Subcoolers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2327/00Refrigeration system using an engine for driving a compressor
    • F25B2327/001Refrigeration system using an engine for driving a compressor of the internal combustion type
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • Y02A30/274Relating to heating, ventilation or air conditioning [HVAC] technologies using waste energy, e.g. from internal combustion engine
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the present invention relates to an installation for refrigeration and low-temperature holding of an enclosure, in particular consisting of an isothermal container, of the type in particular arranged on a vehicle for the transport of goods requiring throughout it a maintenance at cold.
  • the workload that is imposed on the refrigeration unit consists in a first step, the so-called heating step, of cooling the isothermal container so as to lower its temperature from the ambient temperature to the set temperature and, secondly, secondly, in a second step, the so-called holding step, to keep the latter constant throughout the transport.
  • the duration of heating is a handicap element for the user insofar as it forces the user to a prolonged and unprofitable immobilization of his equipment.
  • thermochemical cold production systems which are essentially composed of two elements, namely, an evaporator / condenser containing a gas in liquid phase and a reactor containing a reactive salt.
  • a thermochemical system operates in two distinct phases, namely a cold production phase and a regeneration phase.
  • the gas stored in the evaporator / condenser evaporates, which generates the desired cold production, and this gas in the gaseous phase reacts during a reaction. exothermic, on the reactive salt contained in the reactor.
  • the reactor contains a reaction product resulting from the combination of the gas with the reactive salt.
  • the regeneration operation therefore consists of releasing this gas by heating the reaction product contained in the reactor and, once released, it is condensed in the evaporator / condenser. As a result, the thermochemical system is again available for a new cold production cycle.
  • Patent EP 1 391 238 also discloses a water-zeolite adsorption system in which the condenser of the cooling circuit of an air-conditioning system of a vehicle is cooled, which makes it possible to increase the cooling capacity of the latter. . It is known that such an adsorption system does not make it possible to ensure evaporation below a temperature of 5 ° C., which has the effect of significantly limiting the power of the system, and renders it unsuitable for use. application present, in which one must be able to have a power of the order of 4 kW.
  • the object of the present invention is to propose a cold production and maintenance plant which makes it possible to avoid the various aforementioned drawbacks of the prior art and which is able to deliver the aforementioned power.
  • the present invention thus relates to an installation for refrigeration and temperature maintenance of an isothermal enclosure comprising:
  • a refrigeration unit comprising a compressor driven by a heat engine, a refrigerant circulation circuit, a pressure reducer, a condenser and an evaporator and,
  • thermochemical cooling system comprising a tank containing a liquefied gas capable, after evaporation, of combining with a reactive product, consisting of a mixture of a reactive salt and expanded natural graphite, contained in a reactor, this a combination being carried out according to an exothermic thermochemical reaction, the reaction product obtained being able to be regenerated by heating means by releasing said gas following a reverse thermochemical reaction, said cooling system comprising an evaporator and a condenser, characterized in that:
  • the evaporator of said cooling system is in thermal contact with the refrigerant circuit of the refrigerating unit upstream of the evaporator thereof,
  • the reactor of the cooling system is in thermal contact with heating means using the heat energy dissipated by the heat engine during its operation
  • the apparent density of the graphite used is between 100 and 120 kg / m 3 .
  • the proportion by weight of the salt in the reactive product is between 50% and 75%
  • This thermal contact can advantageously be obtained by means of an exchanger, in particular a heat exchanger of the type liquid / liquid and this exchanger will preferably be constituted by an evaporator of the thermochemical system.
  • the reactor may be traversed by a pipe connected to the exhaust of the engine.
  • the heating means may also be constituted by the cooling circuit of water or oil of the heat engine.
  • the subject of the present invention is also a method of refrigerating and maintaining a temperature of an isothermal chamber essentially comprising two steps, namely a cooling step up to a determined set temperature of this chamber, and a step of maintaining the latter at said setpoint temperature, implementing an installation, comprising:
  • a refrigeration unit comprising a compressor driven by a heat engine, a refrigerant circulation circuit, a pressure reducer, a condenser and an evaporator and,
  • thermochemical cooling system comprising a tank containing a liquefied gas capable, after evaporation, of combining with a reactive product contained in a reactor, and which consists of a mixture of a reactive salt and expanded natural graphite , the bulk density of the latter being between 100 and 120 kg / m 3 and the proportion by mass of the salt in the reactive product being between 50% and 75%, this combination being carried out according to an exothermic thermochemical reaction, the product obtained reaction being able to be regenerated by heating by releasing said gas following a reverse thermochemical reaction, wherein:
  • the refrigerant of the refrigeration unit is cooled before it enters in its evaporator by means of the thermochemical refrigeration system,
  • the reaction product is heated by means of the heat released by the heat engine
  • FIG. 1 is an overall schematic view of the trailer of a semitrailer vehicle equipped with a cooling and temperature maintenance installation according to the invention
  • FIG. 2 is a schematic view of an installation according to the invention
  • FIG. 3 is a diagram showing the refrigeration cycle respectively of a refrigeration unit according to the prior art and of a refrigeration unit according to the invention
  • FIG. 1 a trailer 1 of a semi-trailer whose internal volume is a refrigerated container 3, in particular for the transport of perishable goods.
  • This trailer 1 is provided with a conventional refrigeration compressor unit 5, shown schematically in detail in FIG.
  • This refrigeration unit thus comprises a compressor 7 driven by a diesel engine 8 and which is connected to a refrigerant circuit passing through a condenser 9, an expander 11 and an evaporator 13 which is arranged in the refrigerated container 3.
  • the refrigeration plant according to the invention also comprises cooling means which consist of a thermochemical system 15 which, in known manner, comprises a circuit formed successively of a reactor 17, which is arranged outside the container. 3 a solenoid valve 19, a condenser 21, a tank 23 containing a gas in gaseous phase, and an evaporator 25 which are arranged in the container 3.
  • cooling means consist of a thermochemical system 15 which, in known manner, comprises a circuit formed successively of a reactor 17, which is arranged outside the container. 3 a solenoid valve 19, a condenser 21, a tank 23 containing a gas in gaseous phase, and an evaporator 25 which are arranged in the container 3.
  • the evaporator 25 is in the form of an exchanger which is traversed by a coil 26 whose inlet E1 is connected to the outlet S1 of the condenser 9 of the refrigerating unit 5 and the outlet S2 is connected to the input E2 of the regulator 11 of the latter disposed upstream of the evaporator 13.
  • the reactor 17 contains a reactive product which is formed of a mixture of a salt constituted, in the present embodiment of the invention, with manganese chloride, with a matrix binder constituted in the present case. expanded natural graphite.
  • the apparent density of the natural graphite used should be between 100 kg / m 3 and 120 kg / m 3 and the proportion by mass of the salt. in the reactive product had to be between 50% and 75%.
  • thermochemical reaction This optimizes the heat transfer and the diffusion of the gas in the reactive product.
  • the present parameters allow the reactor, on the one hand, to extract more easily the heat of reaction released during the thermochemical reaction and, on the other hand, to absorb and desorb the gas more rapidly, which results in higher evaporated gas flow rates and therefore a greater power of the thermochemical system.
  • apparent density is meant the density in which the volume of the expanded natural graphite is that occupied by the graphite itself, to which should be added the volume of the interstices between the different grains of graphite.
  • This reactive product is able, during the cold production phase, referred to as the absorption phase, to react with the gas under gas phase coming from the tank 23, in particular ammonia, to generate during a thermochemical reaction. exothermic a reaction product, and measured during a so-called regeneration phase, to restore by heating the reaction product, during a reverse thermochemical reaction, the gas previously absorbed.
  • the liquid gas leaving the reservoir 23 generates cold during its expansion in the evaporator 25 and that the gas absorbed by the reactive product generates heat due to the exothermic thermochemical reaction in the reactor 17.
  • the cold produced in the evaporator 25 which, according to the invention, is used for rapidly cooling the refrigerant refrigerant upstream of its evaporator 13.
  • thermochemical system 15 Before commissioning the isothermal container 3, the temperature of the latter is brought to the nominal value by means of the thermochemical system 15.
  • thermochemical system which has the advantage of generating almost instantaneously cold in the exchanger 25 lowers the temperature of the refrigerant refrigerating unit 5 which passes through the coil 26 disposed therein.
  • the operating conditions of the refrigerating unit 5 are modified with respect to its usual operation since the temperature of the refrigerant which enters the evaporator 13 and which is usually of the order of 40.degree. is now lowered to a value between -20 ° C and 20 ° C and is preferably of the order of 0 ° C.
  • FIG. 3 shows, for comparison, on the one hand, an operating cycle of a refrigeration unit according to the prior state of the art (in dotted lines) in which the refrigerant enters the evaporator 13 at a temperature of 35 ° C, and secondly the same operating cycle of a modified refrigeration unit according to the invention (in solid lines) in which the refrigerant enters the evaporator at a temperature of 0 ° C. . It can be seen from this figure that the lowering of the temperature of the refrigerant liquid upstream of the evaporator 13 has the effect of increasing the evaporation enthalpy ⁇ and, consequently, the cooling power of the installation refrigeration.
  • the management system of the refrigeration system stops the operation of the thermochemical system and implements the regeneration step thereof.
  • Such a regeneration step consists in heating the reaction product formed in the reactor 17 during the absorption phase, so as to activate the inverse thermochemical reaction during which the gas is released.
  • This heating can be provided by various means and in particular by means of an electric heating sleeve surrounding the reactor.
  • the exhaust 30 of the heat engine 8 is connected to the reactor 8 with the interposition of a solenoid valve 31 and passes right through the reactor 17.
  • the microprocessor keeps the solenoid valve 31 in the closed position and tilts it into the open position during the regeneration phase, which then allows the exhaust gases from the engine 8 to heat up the reaction product contained in the engine. reactor 17 and release the gas entrapped in said product.
  • Such a mode of implementation is interesting in that it is particularly simple structure and also allows to achieve a substantial energy saving on the energy spent for the regeneration of the thermochemical system.
  • the present invention is thus particularly interesting in various respects.
  • thermochemical system It allows firstly, for the same required cold power required, to require a refrigeration unit of a power much lower than that used according to the prior art, to the extent that the power required for the step of temperature is provided by the thermochemical system.
  • the power saving achieved is all the more important as the regeneration stage of the thermochemical system is provided "free" by the heat generated by the heat engine of the refrigeration unit during its operation.
  • thermochemical system makes it possible to reduce the duration of the temperature-conditioning step of the refrigerated container since the cold provided by the thermochemical system is immediately available and thus saves the user a lot of time during the step warming up.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Sorption Type Refrigeration Machines (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

La présente invention concerne une installation de réfrigération et un procédé de maintien en température d'une enceinte isotherme (3) comprenant : - un groupe frigorifique (5) comportant un compresseur ( 7 ) entraîné par un moteur thermique ( 8 ) et un évaporateur (13), - un système de refroidissement de type thermochimique (15) comprenant un réservoir (23) contenant un gaz liquéfié apte, après évaporation, à se combiner avec un produit réactif, constitué d'un mélange d'un sel réactif et de graphite naturel expansé, contenu dans un réacteur (17), le produit de réaction obtenu étant apte à être régénéré par des moyens de chauffage, ce système de refroidissement comprenant un évaporateur (25) et un condenseur (21). L'installation est caractérisée en ce que : - 1 ' évaporateur (25) dudit système de refroidissement est en contact thermique avec le circuit frigorigène du groupe frigorifique (5) en amont de 1 ' évaporateur (13) de celui-ci, - le réacteur du système de refroidissement est en contact thermique avec des moyens de chauffage utilisant l'énergie calorifique dissipée par le moteur thermique lors de son fonctionnement, - la masse volumique apparente du graphite naturel expansé utilisé est comprise entre 100 et 120 kg/m3, - la proportion en masse du sel dans le produit réactif est comprise entre 50% et 75%.

Description

SYSTEME DE SOUS-REFROIDISSEMENT D'UN SYSTEME DE
REFRIGERATION A COMPRESSION
La présente invention concerne une installation de réfrigération et de maintien à basse température d'une enceinte, notamment constituée d'un conteneur isotherme, du type notamment disposé sur un véhicule destiné au transport de marchandises nécessitant tout au long de celui-ci un maintien au froid.
On sait que les véhicules, tels que les camions et les semi-remorques, qui assurent le transport de telles marchandises sont équipés d'un dispositif de réfrigération, dit groupe frigorifique, mettant en œuvre un compresseur qui est entraîné par un moteur, notamment un moteur thermique de type diesel, la plupart du temps différent de celui du véhicule. De façon connue, dans ce groupe frigorifique le froid est produit par évaporation d'un liquide frigorigène dans un évaporateur disposé dans l'enceinte à refroidir, le gaz étant ensuite comprimé dans le compresseur pour se condenser dans un condenseur disposé à l'extérieur de ladite enceinte.
On sait que la charge de travail qui est imposée au groupe frigorifique consiste dans une première étape, dite étape de mise en température, à refroidir le conteneur isotherme de façon à descendre sa température de la température ambiante à la température de consigne et, de seconde part, dans une seconde étape, dite étape de maintien, à maintenir constante cette dernière tout au long du transport.
Or, on constate à l'expérience, que l'énergie qui est demandée au compresseur lors de l'étape de mise en température constitue une part importante de la puissance totale délivrée par le moteur qui l'entraîne puisqu'elle est de l'ordre de 30% de celle-ci pour les camions et 15% pour les semi-remorques. Un groupe frigorifique est ainsi en mesure de consommer, en fonction bien entendu des conditions spécifiques de fonctionnement, entre trois à cinq litres de carburant par heure, sachant que la phase de mise en température est habituellement très longue, c'est- à-dire de l'ordre de trois à cinq heures. Il en résulte ainsi divers inconvénients.
De première part, le temps important de mise en température de l'enceinte et la puissance demandée au moteur thermique engendrent une consommation importante de carburant ce qui se traduit par un coût de fonctionnement élevé ainsi que par une pollution tant sur le plan environnemental que sur le plan sonore.
De seconde part, la durée de mise en température constitue un élément de handicap pour l'utilisateur dans la mesure où il contraint ce dernier à une immobilisation prolongée et non rentable de son matériel.
De troisième part, en raison de la puissance frigorifique nécessaire lors de la phase de mise en température, on est contraint de surdimensionner à la fois le compresseur et le moteur d'entraînement de celui-ci, ce qui est pénalisant au niveau à la fois du poids, du coût du matériel, de la consommation et de la pollution.
On connaît par ailleurs, notamment par les brevets FR
10.04120 et FR 11.03209 au nom de la demanderesse, des systèmes thermochimiques de production de froid qui sont essentiellement composés de deux éléments, à savoir, un évaporateur/condenseur contenant un gaz sous phase liquide et un réacteur contenant un sel réactif. Un tel système thermochimique fonctionne en deux phases distinctes, à savoir une phase de production de froid et une phase de régénération. Lors de la phase de production de froid, ou phase basse pression, le gaz emmagasiné dans 1 ' évaporateur/condenseur s'évapore ce qui génère la production de froid souhaitée, et ce gaz sous phase gazeuse vient réagir, au cours d'une réaction exothermique, sur le sel réactif contenu dans le réacteur.
On comprend que dans un tel système, une fois la réserve de gaz liquide épuisée, la phase de production de froid est terminée et le système doit alors être régénéré au cours de la phase dite de régénération.
Au départ de cette dernière, ou phase haute pression, le réacteur contient un produit de réaction résultant de la combinaison du gaz avec le sel réactif. L'opération de régénération consiste donc à libérer ce gaz par chauffage du produit de réaction contenu dans le réacteur et, une fois libéré, celui-ci vient se condenser dans 1 ' évaporateur/condenseur. Dès lors, le système thermochimique se trouve de nouveau disponible pour un nouveau cycle de production de froid.
On connaît également par le brevet EP 1 391 238 un système à adsorption eau-zéolithe dans lequel on refroidit le condenseur du circuit frigorifique d'un système de climatisation d'un véhicule, ce qui permet d'augmenter la puissance frigorifique de celui-ci. On sait qu'un tel système à adsorption ne permet pas d'assurer une évaporation au-dessous d'une température de 5°C, ce qui a pour effet de limiter de façon conséquente la puissance du système, et le rend impropre à l'application présente, dans laquelle on doit être en mesure de disposer d'une puissance de l'ordre de 4 kW.
La présente invention a pour but de proposer une installation de production et de maintien de froid qui permet d'éviter les divers inconvénients précités de la technique antérieure et qui est en mesure de délivrer la puissance susmentionnée.
La présente invention a ainsi pour objet une installation de réfrigération et de maintien en température d'une enceinte isotherme comprenant :
un groupe frigorifique comportant un compresseur entraîné par un moteur thermique, un circuit de circulation d'un fluide frigorigène, un détendeur, un condenseur et un évaporateur et,
- un système de refroidissement de type thermochimique comprenant un réservoir contenant un gaz liquéfié apte, après évaporation, à se combiner avec un produit réactif, constitué d'un mélange d'un sel réactif et de graphite naturel expansé, contenu dans un réacteur, cette combinaison se faisant suivant une réaction thermochimique exothermique, le produit de réaction obtenu étant apte à être régénéré par des moyens de chauffage en libérant ledit gaz suivant une réaction thermochimique inverse, ce système de refroidissement comprenant un évaporateur et un condenseur, caractérisé en ce que :
- 1 ' évaporateur dudit système de refroidissement est en contact thermique avec le circuit frigorigène du groupe frigorifique en amont de 1 'évaporateur de celui-ci,
-le réacteur du système de refroidissement est en contact thermique avec des moyens de chauffage utilisant l'énergie calorifique dissipée par le moteur thermique lors de son fonctionnement,
- la masse volumique apparente du graphite utilisé est comprise entre 100 et 120 kg/m3,
- la proportion en masse du sel dans le- produit réactif est comprise entre 50% et 75%
Ce contact thermique pourra avantageusement être obtenu au moyen d'un échangeur, notamment un échangeur de type liquide/liquide et cet échangeur sera préférentiellement constitué par 1 ' évaporateur du système thermochimique.
Le réacteur pourra être traversé par une conduite reliée à l'échappement du moteur thermique.
Les moyens de chauffage pourront être également constitués par le circuit de refroidissement d'eau ou d'huile du moteur thermique.
La présente invention a également pour objet un procédé de réfrigération et de maintien en température d'une enceinte isotherme comprenant essentiellement deux étapes, à savoir une étape de refroidissement jusqu'à une température de consigne déterminée de cette enceinte, et une étape de maintien de cette dernière à ladite température de consigne, mettant en œuvre une installation, comprenant :
un groupe frigorifique comprenant un compresseur entraîné par un moteur thermique, un circuit de circulation d'un fluide frigorigène, un détendeur, un condenseur et un évaporateur et,
- un système de refroidissement de type thermochimique comprenant un réservoir contenant un gaz liquéfié apte, après évaporâtion, à se combiner avec un produit réactif contenu dans un réacteur, et qui est constitué d'un mélange d'un sel réactif et de graphite naturel expansé, la masse volumique apparente de ce dernier étant comprise entre 100 et 120 kg/m3 et la proportion en masse du sel dans le produit réactif étant comprise entre 50 % et 75 %, cette combinaison se faisant suivant une réaction thermochimique exothermique, le produit de réaction obtenu étant apte à être régénéré par chauffage en libérant ledit gaz suivant une réaction thermochimique inverse, dans lequel :
- lors de l'étape de refroidissement, on refroidit le fluide frigorigène du groupe frigorifique avant son entrée dans son évaporateur au moyen du système de réfrigération thermochimique ,
- on réalise le chauffage du produit de réaction à l'aide de la chaleur libérée par le moteur thermique
On décrira ci-après, à titre d'exemple non limitatif, une forme d'exécution de la présente invention, en référence au dessin annexé sur lequel :
- la figure 1 est une vue schématique globale de la remorque d'un véhicule semi-remorque équipé d'une installation de refroidissement et de maintien en température suivant l'invention,
la figure 2 est une vue schématique d'une installation suivant l'invention,
la figure 3 est un schéma représentant le cycle frigorifique respectivement d'un groupe frigorifique suivant l'état antérieur de la technique et d'un groupe frigorifique suivant l'invention,
On a représente sur la figure 1 une remorque 1 d'un semi-remorque dont le volume interne constitue un conteneur réfrigéré 3, notamment destiné au transport de denrées périssables. Cette remorque 1 est pourvue d'un groupe frigorifique 5 à compresseur de type classique, représenté schématiquement en détails sur la figure 2.
Ce groupe frigorifique comprend ainsi un compresseur 7 entraîné par un moteur diesel 8 et qui est relié à un circuit de fluide frigorigène traversant un condenseur 9, un détendeur 11 et un évaporateur 13 qui est disposé dans le conteneur réfrigéré 3.
L'installation de réfrigération suivant l'invention comporte également des moyens de refroidissement qui sont constitués d'un système thermochimique 15 qui, de façon connue, comprend un circuit formé successivement d'un réacteur 17, qui est disposé à l'extérieur du conteneur 3, d'une électrovanne 19, d'un condenseur 21, d'un réservoir 23 contenant un gaz sous phase gazeuse, et d'un évaporateur 25 qui sont disposés dans le conteneur 3.
Suivant l'invention 1 ' évaporateur 25 est réalisé sous la forme d'un échangeur qui est traversé par un serpentin 26 dont l'entrée El est réunie à la sortie S_l du condenseur 9 du groupe frigorifique 5 et la sortie S2 est réunie à l'entrée E2 du détendeur 11 de ce dernier disposé en amont de 1 'évaporateur 13.
De façon connue le réacteur 17 renferme un produit réactif qui est formé d'un mélange d'un sel constitué, dans le présent mode de mise en œuvre de l'invention, de chlorure de manganèse, avec un liant matriciel constitué en l'espèce de graphite naturel expansé. Suivant l'invention on a constaté que pour libérer une énergie suffisante suffisamment rapidement pour la présente application, la masse volumique apparente du graphite naturel utilisé devait être comprise entre 100 kg/m3 et 120 kg/m3 et la proportion en masse du sel dans le produit réactif devait être comprise entre 50 % et 75 %.
On optimise ainsi les transferts thermiques et la diffusion du gaz dans le produit réactif. Les présents paramètres permettent au réacteur d'une part d'extraire plus facilement la chaleur de réaction dégagée lors de la réaction thermochimique et d'autre part d'absorber et désorber plus rapidement le gaz ce qui entraîne des débits de gaz évaporé plus élevés et donc une puissance plus grande du système thermochimique.
On entendra par masse volumique apparente la masse volumique dans laquelle le volume du graphite naturel expansé est celui occupé par le graphite lui-même auquel il convient d'ajouter le volume des interstices compris entre les différents grains de graphite. Ce produit réactif est en mesure, lors de la phase de production de froid, dite phase d'absorption, de réagir avec le gaz sous phase gazeuse provenant du réservoir 23, notamment de l'ammoniac, pour générer au cours d'une réaction thermochimique exothermique un produit de réaction, et en mesure lors d'une phase dite de régénération, de restituer par chauffage du produit de réaction, au cours d'une réaction thermochimique inverse, le gaz précédemment absorbé.
On pourrait également faire appel en tant que produit réactif à d'autres sels tels que notamment du chlorure de nickel ou du chlorure de fer.
On comprend que le gaz liquide en sortie du réservoir 23 génère du froid lors de sa détente dans 1 ' évaporateur 25 et que le gaz absorbé par le produit réactif génère de la chaleur due à la réaction thermochimique exothermique dans le réacteur 17. C'est le froid produit dans 1 ' évaporateur 25 qui, suivant l'invention, est utilisé pour refroidir rapidement le fluide frigorigène du groupe frigorifique en amont de son évaporateur 13.
La mise en oeuvre et la gestion du fonctionnement de 1 ' installation suivant 1 ' invention sont assurés par exemple au moyen d'un microcontrôleur non représenté sur les dessins .
Avant toute mise en service du conteneur isotherme 3 on amène la température de celui-ci à la valeur de consigne au moyen du système thermochimique 15.
A cet effet, pendant une période de temps déterminée, qui est de l'ordre de une heure, et qui dépend notamment du volume du conteneur 3, de la température de consigne et de la puissance de l'installation de refroidissement, les moyens de gestion de celle-ci activent le fonctionnement du système thermochimique et du groupe frigorifique 5. On comprend que, dans ces conditions, le système thermochimique qui présente 1 ' avantage de générer du froid de façon quasi instantanée dans l'échangeur 25 abaisse la température du fluide frigorigène du groupe frigorifique 5 qui traverse le serpentin 26 disposé dans celui-ci.
Ainsi, suivant l'invention, les conditions de fonctionnement du groupe frigorifique 5 se trouvent modifiées par rapport à son fonctionnement habituel puisque la température du fluide frigorigène qui entre dans 1 ' évaporateur 13 et qui est habituellement de l'ordre de 40° C se trouve désormais abaissée à une valeur comprise entre -20° C et 20° C et est préférentiellement de l'ordre de 0°C.
On comprend que, dans ces conditions, le cycle de fonctionnement du groupe frigorifique se trouve profondément modifié. On a représenté sur la figure 3, à titre de comparaison, d'une part un cycle de fonctionnement d'un groupe frigorifique suivant l'état antérieur de la technique (en traits pointillés) dans lequel le liquide frigorigène entre dans l' évaporateur 13 à une température de 35° C, et d'autre part un même cycle de fonctionnement d'un groupe frigorifique modifié suivant l'invention (en traits pleins) dans lequel le liquide frigorigène entre dans 1 ' évaporateur à une température de 0°C. On constate sur cette figure que l'abaissement de la température du liquide frigorigène en amont de 1 ' évaporateur 13 a pour effet d'augmenter l'enthalpie d ' évaporation ΔΗ et, en conséquence, la puissance de production de froid de l'installation frigorifique.
Une fois l'étape de mise en température terminée, c'est-à-dire lorsque la température du conteneur réfrigéré 3 atteint la température de consigne déterminée, le système de gestion de l'installation frigorifique arrête le fonctionnement du système thermochimique et met en oeuvre l'étape de régénération de celui-ci.
On sait qu'une telle étape de régénération consiste à chauffer le produit de réaction formé dans le réacteur 17 lors de la phase d'absorption, de façon à activer la réaction thermochimique inverse au cours de laquelle le gaz est libéré.
Ce chauffage peut être assuré par différents moyens et notamment au moyen d'un manchon chauffant électrique entourant le réacteur.
Dans un mode de mise en œuvre particulièrement intéressant de l'invention et ainsi que représenté sur la figure 2, on utilise pour assurer un tel chauffage la chaleur générée par le moteur thermique 8 lorsqu'il entraîne le compresseur 7 du groupe frigorifique.
A cet effet et, ainsi que représenté sur la figure 2, l'échappement 30 du moteur thermique 8 est relié au réacteur 8 avec interposition d'une électrovanne 31 et traverse de part en part le réacteur 17. Ainsi, pendant la phase de production de froid du système thermochimique le microprocesseur maintient 1 'électrovanne 31 en position fermée et la bascule en position ouverte pendant la phase de régénération, ce qui permet alors aux gaz d'échappement en provenance du moteur 8 de réchauffer le produit de réaction contenu dans le réacteur 17 et de libérer le gaz piégé dans ledit produit.
Un tel mode de mise en œuvre est intéressant en ce qu'il est de structure particulièrement simple et permet par ailleurs de réaliser une économie d'énergie substantielle sur l'énergie dépensée pour la régénération du système thermochimique.
On pourrait également par exemple faire appel aux fluides du moteur qui sont portés à haute température lors du fonctionnement de celui-ci pour assurer la régénération du produit réactif.
La présente invention est ainsi particulièrement intéressante à divers égards.
Elle permet de première part, pour une même puissance de froid requise déterminée, de nécessiter un groupe frigorifique d'une puissance très inférieure à celle utilisée suivant l'état antérieur de la technique, dans la mesure où la puissance nécessaire à l'étape de mise en température, est assurée par le système thermochimique.
L'économie de puissance réalisée est d'autant plus importante que 1 ' étape de régénération du système thermochimique est assurée de façon « gratuite » par la chaleur générée par le moteur thermique du groupe frigorifique au cours de son fonctionnement.
Il est donc ainsi possible, à puissance souhaitée égale de l'installation, de réduire la puissance du groupe frigorifique et donc le dimensionnement , le coût de celui- ci ainsi que le coût lié à sa consommation en carburant.
Elle permet de seconde part de diminuer la durée de l'étape de mise en température du conteneur réfrigéré puisque le froid fourni par le système thermochimique est immédiatement disponible et, ainsi, de faire gagner un temps précieux à l'utilisateur lors de l'étape de mise en température.
Elle permet enfin, en diminuant la puissance du groupe frigorifique de réaliser un gain important au niveau du poids, et de l'encombrement de celui-ci.
Elle permet de troisième part de diminuer la pollution émise par le moteur thermique entraînant le compresseur d'une part en raison de la puissance plus faible de celui- ci et d'autre part en raison de son temps de fonctionnement réduit lors de la phase de mise en température.

Claims

REVENDICATIONS
1.- Installation de réfrigération et de maintien en température d'une enceinte isotherme (3) comprenant :
- un groupe frigorifique (5) comportant un compresseur ( 7 ) entraîné par un moteur thermique ( 8 ) , un circuit de circulation d'un fluide frigorigène, un détendeur (11), un condenseur (19) et un évaporateur (13) et,
- un système de refroidissement de type thermochimique (15) comprenant un réservoir (23) contenant un gaz liquéfié apte, après évaporation, à se combiner avec un produit réactif, constitué d'un mélange d'un sel réactif et de graphite naturel expansé, contenu dans un réacteur (17), cette combinaison se faisant suivant une réaction thermochimique exothermique, le produit de réaction obtenu étant apte à être régénéré par des moyens de chauffage en libérant ledit gaz suivant une réaction thermochimique inverse, ce système de refroidissement comprenant un évaporateur (25) et un condenseur (21), caractérisé en ce que :
- 1 ' évaporateur (25) dudit système de refroidissement est en contact thermique avec le circuit frigorigène du groupe frigorifique (5) en amont de l 'évaporateur (13) de celui-ci,
- le réacteur du système de refroidissement est en contact thermique avec des moyens de chauffage utilisant l'énergie calorifique dissipée par le moteur thermique lors de son fonctionnement,
la masse volumique apparente du graphite naturel expansé utilisé est comprise entre 100 et 120 kg/m3, - la proportion en masse du sel dans le produit réactif est comprise entre 50% et 75%.
2. - Installation de réfrigération et de maintien en température d'une enceinte isotherme (3) suivant la revendication 1 caractérisée en ce que le contact thermique est obtenu au moyen d'un échangeur.
3. - Installation de réfrigération et de maintien en température d'une enceinte isotherme (3) suivant la revendication 2 caractérisé en ce que l' échangeur est du type liquide/liquide.
4. - Installation de réfrigération et de maintien en température d'une enceinte isotherme (3) suivant l'une des revendications 2 ou 3 caractérisée en ce que l' échangeur est constitué par 1 'évaporateur (25) du système thermochimique .
5. - Installation de réfrigération et de maintien en température d'une enceinte isotherme (3) suivant l'une des revendications précédentes caractérisée en ce que les moyens de chauffage sont constitués par les gaz d ' échappement du moteur thermique ( 8 ) .
6. - Installation de réfrigération et de maintien en température d'une enceinte isotherme (3) suivant la revendication 5 caractérisé en ce que le réacteur (17) est traversé par une conduite reliée à l'échappement (30) du moteur thermique ( 8 ) .
7. - Installation de réfrigération et de maintien en température d'une enceinte isotherme (3) suivant l'une des revendications l à 4 caractérisé en ce que les moyens de chauffage sont constitués par le circuit d'eau ou d'huile du moteur thermique.
8. - Procédé de réfrigération et de maintien en température d'une enceinte isotherme (3) comprenant essentiellement deux étapes, à savoir une étape de refroidissement jusqu'à une température de consigne déterminée de cette enceinte (3), et une étape de maintien de cette dernière à ladite température de consigne, mettant en œuvre une installation, comprenant :
- un groupe frigorifique (5) comprenant un compresseur (7) entraîné par un moteur thermique (8), un circuit de circulation d'un fluide frigorigène, un détendeur (11), un condenseur (9) et un évaporateur (13) et,
un système de refroidissement (15) de type thermochimique comprenant un réservoir (23) contenant un gaz liquéfié apte, après évaporation, à se combiner avec un produit réactif contenu dans un réacteur (17) et qui est constitué d'un mélange d'un sel réactif et de graphite naturel expansé, la masse volumique apparente de ce dernier étant comprise entre 100 et 120 kg/m3 et la proportion en masse du sel dans le produit réactif étant comprise entre 50 % et 75 %, cette combinaison se faisant suivant une réaction thermochimique exothermique, le produit de réaction obtenu étant apte à être régénéré par chauffage en libérant ledit gaz suivant une réaction thermochimique inverse, dans lequel :
- lors de l'étape de refroidissement, on refroidit le fluide frigorigène du groupe frigorifique (5) avant son entrée dans son évaporateur (13) au moyen du système de réfrigération thermochimique,
- on réalise le chauffage du produit de réaction à l'aide de la chaleur libérée par le moteur thermique.
PCT/FR2013/000188 2012-07-17 2013-07-16 Systeme de sous-refroidissement d'un systeme de refrigeration a compression WO2014013145A1 (fr)

Priority Applications (7)

Application Number Priority Date Filing Date Title
IN3003KON2014 IN2014KN03003A (fr) 2012-07-17 2013-07-16
CN201380037690.1A CN104471330B (zh) 2012-07-17 2013-07-16 压缩制冷系统的过冷系统
CA2878646A CA2878646A1 (fr) 2012-07-17 2013-07-16 Systeme de sous-refroidissement d'un systeme de refrigeration a compression
US14/415,427 US9476619B2 (en) 2012-07-17 2013-07-16 Sub-cooling system of a compression-refrigeration system
BR112015001109A BR112015001109A2 (pt) 2012-07-17 2013-07-16 sistema de sub-resfriamento de sistema de refrigeração por compressão
EP13756539.6A EP2875291A1 (fr) 2012-07-17 2013-07-16 Systeme de sous-refroidissement d'un systeme de refrigeration a compression
JP2015522137A JP2015525867A (ja) 2012-07-17 2013-07-16 圧縮冷却システムのサブ冷却システム

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1202025A FR2993640B1 (fr) 2012-07-17 2012-07-17 Systeme de sous-refroidissement d'un systeme de refrigeration a compression
FR1202025 2012-07-17

Publications (1)

Publication Number Publication Date
WO2014013145A1 true WO2014013145A1 (fr) 2014-01-23

Family

ID=47291058

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2013/000188 WO2014013145A1 (fr) 2012-07-17 2013-07-16 Systeme de sous-refroidissement d'un systeme de refrigeration a compression

Country Status (9)

Country Link
US (1) US9476619B2 (fr)
EP (1) EP2875291A1 (fr)
JP (1) JP2015525867A (fr)
CN (1) CN104471330B (fr)
BR (1) BR112015001109A2 (fr)
CA (1) CA2878646A1 (fr)
FR (1) FR2993640B1 (fr)
IN (1) IN2014KN03003A (fr)
WO (1) WO2014013145A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022084311A1 (fr) * 2020-10-22 2022-04-28 Sofrigam Reactif pour machine thermique
FR3131548A1 (fr) * 2022-01-04 2023-07-07 Sofrigam Réactif pour machine thermique utilisant un sel sorbant.

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102214987B1 (ko) * 2017-03-24 2021-02-10 한온시스템 주식회사 차량용 전장품 냉각 시스템
CN111735250A (zh) * 2020-06-11 2020-10-02 宁波工程学院 一种电商冷链物流保鲜箱及其使用方法
CN111854234B (zh) * 2020-07-07 2022-05-13 开尔文热能技术有限公司 一种热能产生与储存一体化室内温控冷热供应系统
CA3177348A1 (fr) * 2022-09-29 2024-03-29 Simon Fraser University Transformateur de chaleur et stockage thermique
CN117128713A (zh) * 2023-10-25 2023-11-28 华清安泰能源股份有限公司 一种可移动集装箱式应急冷热源装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0307296A1 (fr) * 1987-09-07 1989-03-15 Societe Nationale Elf Aquitaine Procédé de conduite d'une réaction d'absorption ou de désorption entre un gaz et un solide
EP1391238A2 (fr) * 2002-08-15 2004-02-25 Mitsubishi Chemical Corporation Adsorbant pour système d'utilisation de la chaleur, adsorbant pour système à régénération, système à régénération comportant l'adsorbant, phosphate d'aluminium et de fer et procédé pour sa production

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2068333A (en) * 1935-11-26 1937-01-19 Karl W Krummell Refrigerating apparatus
US2884768A (en) * 1955-02-23 1959-05-05 Gen Motors Corp Automobile refrigerating apparatus
JPS54108955A (en) * 1978-02-14 1979-08-27 Agency Of Ind Science & Technol Heat pump constituting process in application of absorptive heat and desorptive heat
DE3229646A1 (de) * 1982-08-09 1984-02-09 Bosch-Siemens Hausgeräte GmbH, 7000 Stuttgart Kontinuierlich arbeitende adsorptions-kaelteanlage, insbesondere zum betrieb durch abwaerme von verbrennungsmotoren oder dgl.
JPS60135580U (ja) * 1984-02-17 1985-09-09 日産ディーゼル工業株式会社 車輌用室内冷暖房装置
DE3521484A1 (de) * 1985-06-14 1986-12-18 Fritz Dipl.-Ing. Kaubek Adsorptionskuehler
US5107686A (en) * 1991-01-28 1992-04-28 Thermo King Corporation Compartmentalized transport refrigeration system
US5056324A (en) * 1991-02-21 1991-10-15 Thermo King Corporation Transport refrigeration system having means for enhancing the capacity of a heating cycle
FR2715082B1 (fr) * 1994-01-19 1996-02-23 Elf Aquitaine Procédé de réalisation d'un composite actif et composite actif réalisé à partir de ce procédé.
FR2723438B1 (fr) * 1994-08-02 1996-09-20 Lorraine Carbone Reacteur de pompe a chaleur chimique a puissance amelioree
FR2732337B1 (fr) * 1995-03-28 1997-05-16 Lorraine Carbone Procede de fabrication de composites actifs a base de graphite expanse
JP3918239B2 (ja) * 1997-07-17 2007-05-23 株式会社デンソー 吸着式冷凍装置
FR2774460B1 (fr) * 1998-02-03 2000-03-24 Elf Aquitaine Procede de gestion d'une reaction thermochimique ou d'une adsorption solide-gaz
JP4158235B2 (ja) * 1998-07-29 2008-10-01 株式会社デンソー 車両用空調装置
JP2004132690A (ja) * 2002-08-15 2004-04-30 Denso Corp 蓄熱システム用吸着材、これを用いた蓄熱システム、鉄アルミノフォスフェート及びその製造方法
CN1311209C (zh) * 2003-04-17 2007-04-18 丰田自动车株式会社 能量回收系统
JP2005121311A (ja) * 2003-10-17 2005-05-12 Toyota Motor Corp 車両用空調装置
CA2619680C (fr) * 2005-08-31 2013-12-03 Coldway Reacteur thermochimique pour appareil de refrigeration et/ou de chauffage
US7156055B1 (en) * 2005-10-11 2007-01-02 Craig Stephen H Coolant regulating system for tractor trailers
CN101249420A (zh) * 2007-11-29 2008-08-27 上海交通大学 膨胀石墨-氯化物复合吸附剂的制备方法
JP5231076B2 (ja) * 2008-04-18 2013-07-10 株式会社豊田中央研究所 化学蓄熱システム
FR2985003A1 (fr) * 2011-12-27 2013-06-28 Coldway Dispositif de chauffage et de refrigeration simultane de deux volumes

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0307296A1 (fr) * 1987-09-07 1989-03-15 Societe Nationale Elf Aquitaine Procédé de conduite d'une réaction d'absorption ou de désorption entre un gaz et un solide
EP1391238A2 (fr) * 2002-08-15 2004-02-25 Mitsubishi Chemical Corporation Adsorbant pour système d'utilisation de la chaleur, adsorbant pour système à régénération, système à régénération comportant l'adsorbant, phosphate d'aluminium et de fer et procédé pour sa production

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022084311A1 (fr) * 2020-10-22 2022-04-28 Sofrigam Reactif pour machine thermique
WO2022084529A1 (fr) * 2020-10-22 2022-04-28 Sofrigam Réactif amélioré pour machine thermique
FR3115473A1 (fr) * 2020-10-22 2022-04-29 Coldway Technologies Réactif pour machine thermique
FR3131548A1 (fr) * 2022-01-04 2023-07-07 Sofrigam Réactif pour machine thermique utilisant un sel sorbant.
WO2023131628A1 (fr) * 2022-01-04 2023-07-13 Sofrigam Réactif pour machine thermique utilisant un sel sorbant

Also Published As

Publication number Publication date
IN2014KN03003A (fr) 2015-05-08
EP2875291A1 (fr) 2015-05-27
CN104471330A (zh) 2015-03-25
US20150176875A1 (en) 2015-06-25
JP2015525867A (ja) 2015-09-07
FR2993640A1 (fr) 2014-01-24
FR2993640B1 (fr) 2018-11-30
US9476619B2 (en) 2016-10-25
CN104471330B (zh) 2018-01-09
CA2878646A1 (fr) 2014-01-23
BR112015001109A2 (pt) 2017-06-27

Similar Documents

Publication Publication Date Title
WO2014013145A1 (fr) Systeme de sous-refroidissement d'un systeme de refrigeration a compression
EP2444614B1 (fr) Système destiné à réduire la quantité de nox dans les gaz d'échappement d'un véhicule à moteur
FR2779215A1 (fr) Circuit de climatisation utilisant un fluide refrigerant a l'etat supercritique, notamment pour vehicule
EP2360355B1 (fr) Dispositif de contrôle d'un fluide de travail à bas point de congélation circulant dans un circuit fermé fonctionnant selon un cycle de Rankine et procédé utilisant un tel dispositif
FR2619203A1 (fr) Procede et installation de refroidissement cryogenique utilisant du dioxyde de carbone liquide en tant qu'agent frigorigene
FR2946419A1 (fr) Dispositif d'echange thermique et systeme de gestion thermique
FR2981982A1 (fr) Procede de controle d'un circuit ferme fonctionnant selon un cycle rankine et circuit utilisant un tel procede
EP2463491A1 (fr) Procédé et dispositif de contrôle de la température des gaz d'échappement d'un moteur à combustion interne traversant un moyen de traitement des polluants contenus gans ces gaz
FR2928443A1 (fr) Procede de refroidissement par absorption et installation frigorifique fonctionnant par absorption
FR2928867A1 (fr) Dispositif et procede de chauffage d'un habitacle de vehicule automobile, en particulier un vehicule electrique.
EP1504175B1 (fr) Dispositif de refroidissement et de depollution d'un vehicule a moteur
WO2013079856A1 (fr) Procédé et appareil de réchauffage de l'azote destiné à régénérer une unité d'adsorption d'une unité de séparation d'air
WO2012101342A1 (fr) Installation de chauffage/climatisation à échangeur de chaleur et sous-refroidisseur externes pour augmenter les puissances de chauffage et de réfrigération
WO2014013146A1 (fr) Enceinte réfrigérée par un système de réfrigération hybride a compression/absorption
FR3079919A1 (fr) Dispositif de climatisation reversible pour vehicule automobile et vehicule automobile comportant un tel dispositif.
FR3082608A1 (fr) Systeme comprenant une machine a absorption pour la production de froid a partir de la chaleur fatale de gaz d'echappement d'un vehicule comprenant un module de stockage de l'energie thermique
FR2469679A1 (fr) Appareil de climatisation, en particulier pompe a chaleur
JP2011093338A (ja) 自動車用暖機装置及び自動車用暖機方法
EP3584517B1 (fr) Système comprenant une machine à absorption pour la production de froid à partir de la chaleur fatale de gaz d'échappement d'un véhicule comprenant un module de stockage de l'énergie thermique, un procédé d'utilisation du système et une utilisation du système
EP1529185B1 (fr) Installation et procede pour la production de froid par un systeme a sorption renversable.
FR2819344A1 (fr) Vehicule comportant une batterie d'accumulateurs refroidie par un dispositif de climatisation
WO2005039903A1 (fr) Dispositif d’accumulation de froid pour evaporateur
FR2819345A1 (fr) Procede de commande du dispositif de refroidissement d'une batterie d'accumulateurs et vehicule pour sa mise en oeuvre
CA2961859A1 (fr) Procede de mise en temperature et de maintien en temperature de l'interieur d'une enceinte thermiquement isolee sans apport d'energie continu- dispositif associe
FR3078024A1 (fr) Dispositif de climatisation pour vehicule automobile et vehicule automobile comportant un tel dispositif

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13756539

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2013756539

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2878646

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 14415427

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2015522137

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112015001109

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112015001109

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20150116