WO2014012982A1 - Verfahren zum herstellen eines kunststoffverpackungsbehaelters und kunststoffverpackungsbehaelter - Google Patents

Verfahren zum herstellen eines kunststoffverpackungsbehaelters und kunststoffverpackungsbehaelter Download PDF

Info

Publication number
WO2014012982A1
WO2014012982A1 PCT/EP2013/065110 EP2013065110W WO2014012982A1 WO 2014012982 A1 WO2014012982 A1 WO 2014012982A1 EP 2013065110 W EP2013065110 W EP 2013065110W WO 2014012982 A1 WO2014012982 A1 WO 2014012982A1
Authority
WO
WIPO (PCT)
Prior art keywords
packaging container
sealing zone
sealing
plastic packaging
cavity
Prior art date
Application number
PCT/EP2013/065110
Other languages
English (en)
French (fr)
Inventor
Uwe STOEHR
Helmut Spaeter
Original Assignee
Cavonic GmbH
Plasma Electronic Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cavonic GmbH, Plasma Electronic Gmbh filed Critical Cavonic GmbH
Priority to US14/415,796 priority Critical patent/US20150217331A1/en
Priority to EP13744992.2A priority patent/EP2874797A1/de
Publication of WO2014012982A1 publication Critical patent/WO2014012982A1/de

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D5/00Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/26Moulds
    • B29C45/37Mould cavity walls, i.e. the inner surface forming the mould cavity, e.g. linings
    • B29C45/372Mould cavity walls, i.e. the inner surface forming the mould cavity, e.g. linings provided with means for marking or patterning, e.g. numbering articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/02Preparation of the material, in the area to be joined, prior to joining or welding
    • B29C66/028Non-mechanical surface pre-treatments, i.e. by flame treatment, electric discharge treatment, plasma treatment, wave energy or particle radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/10Particular design of joint configurations particular design of the joint cross-sections
    • B29C66/11Joint cross-sections comprising a single joint-segment, i.e. one of the parts to be joined comprising a single joint-segment in the joint cross-section
    • B29C66/112Single lapped joints
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/10Particular design of joint configurations particular design of the joint cross-sections
    • B29C66/11Joint cross-sections comprising a single joint-segment, i.e. one of the parts to be joined comprising a single joint-segment in the joint cross-section
    • B29C66/116Single bevelled joints, i.e. one of the parts to be joined being bevelled in the joint area
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/20Particular design of joint configurations particular design of the joint lines, e.g. of the weld lines
    • B29C66/24Particular design of joint configurations particular design of the joint lines, e.g. of the weld lines said joint lines being closed or non-straight
    • B29C66/242Particular design of joint configurations particular design of the joint lines, e.g. of the weld lines said joint lines being closed or non-straight said joint lines being closed, i.e. forming closed contours
    • B29C66/2422Particular design of joint configurations particular design of the joint lines, e.g. of the weld lines said joint lines being closed or non-straight said joint lines being closed, i.e. forming closed contours being circular, oval or elliptical
    • B29C66/24223Particular design of joint configurations particular design of the joint lines, e.g. of the weld lines said joint lines being closed or non-straight said joint lines being closed, i.e. forming closed contours being circular, oval or elliptical being oval
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/303Particular design of joint configurations the joint involving an anchoring effect
    • B29C66/3032Particular design of joint configurations the joint involving an anchoring effect making use of protrusions or cavities belonging to at least one of the parts to be joined
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/50General aspects of joining tubular articles; General aspects of joining long products, i.e. bars or profiled elements; General aspects of joining single elements to tubular articles, hollow articles or bars; General aspects of joining several hollow-preforms to form hollow or tubular articles
    • B29C66/51Joining tubular articles, profiled elements or bars; Joining single elements to tubular articles, hollow articles or bars; Joining several hollow-preforms to form hollow or tubular articles
    • B29C66/53Joining single elements to tubular articles, hollow articles or bars
    • B29C66/534Joining single elements to open ends of tubular or hollow articles or to the ends of bars
    • B29C66/5346Joining single elements to open ends of tubular or hollow articles or to the ends of bars said single elements being substantially flat
    • B29C66/53461Joining single elements to open ends of tubular or hollow articles or to the ends of bars said single elements being substantially flat joining substantially flat covers and/or substantially flat bottoms to open ends of container bodies
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/72General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the structure of the material of the parts to be joined
    • B29C66/723General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the structure of the material of the parts to be joined being multi-layered
    • B29C66/7234General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the structure of the material of the parts to be joined being multi-layered comprising a barrier layer
    • B29C66/72341General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the structure of the material of the parts to be joined being multi-layered comprising a barrier layer for gases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/73General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/731General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the intensive physical properties of the material of the parts to be joined
    • B29C66/7316Surface properties
    • B29C66/73161Roughness or rugosity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/73General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/731General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the intensive physical properties of the material of the parts to be joined
    • B29C66/7316Surface properties
    • B29C66/73161Roughness or rugosity
    • B29C66/73162Roughness or rugosity of different roughness or rugosity, i.e. the roughness or rugosity of the surface of one of the parts to be joined being different from the roughness or rugosity of the surface of the other part
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D25/00Details of other kinds or types of rigid or semi-rigid containers
    • B65D25/14Linings or internal coatings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D81/00Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents
    • B65D81/24Adaptations for preventing deterioration or decay of contents; Applications to the container or packaging material of food preservatives, fungicides, pesticides or animal repellants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D2201/00Polymeric substrate or laminate
    • B05D2201/02Polymeric substrate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/71General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the composition of the plastics material of the parts to be joined
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/73General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/739General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/7392General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of at least one of the parts being a thermoplastic
    • B29C66/73921General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of at least one of the parts being a thermoplastic characterised by the materials of both parts being thermoplastics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/80General aspects of machine operations or constructions and parts thereof
    • B29C66/83General aspects of machine operations or constructions and parts thereof characterised by the movement of the joining or pressing tools
    • B29C66/832Reciprocating joining or pressing tools
    • B29C66/8322Joining or pressing tools reciprocating along one axis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0037Other properties
    • B29K2995/0072Roughness, e.g. anti-slip
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/712Containers; Packaging elements or accessories, Packages
    • B29L2031/7162Boxes, cartons, cases

Definitions

  • the present invention relates to a method for producing a plastic packaging container according to the preamble of claim 1. Furthermore, the invention relates to a plastic packaging container according to the preambles of independent claims 12 and 18 and its use in a process for coating with a, in particular in a vacuum, preferably by a CVD or PVD process, produced, barrier layer and a method according to the preamble of claim 1.
  • the plastic packaging container has a barrier layer to increase the natural SharePointsperr Sign against moisture and / or gases.
  • barrier layers to be applied in a vacuum are described, for example, in EP 1 048 746 A1 or WO2009 / 030425 A1.
  • a disadvantage of the known barrier layers is that conventional sealing materials adhere poorly to them, which can lead to the unwanted detachment of sealing films or other closure means which are intended for sealing to the sealing zones, which is why such a coating may be subject to such a coating Disadvantages completely dispensed with.
  • the present invention seeks to provide a method for producing a plastic packaging container according to the preamble of claim 1, wherein the sealability between the sealing zone and a sealing material is increased and unwanted detachment of the closure means is prevented. Furthermore, the object of the present invention is to provide a plastic packaging container for such a method.
  • the object is solved for a method according to the preamble of claim 1 by a method having the features of claim 1, namely, that the plastic packaging container is prepared so that the surface, in particular the majority of the surface, the sealing zone has a higher average Roughness has as the inner surface, preferably as the majority of the inner surface, the cavity and / or as the outer surface of the plastic packaging container, preferably as the majority of the outer surface or the shell portion of the outer surface and that the sealing zone has an average surface roughness of at least 200 nm.
  • the object is achieved with a plastic packaging container having the features of claims 12 and 14.
  • the object is achieved by the use of such a plastic packaging container in a method for coating with the features of claim 18.
  • the term "majority” is to be understood in each case as an area fraction of more than 50% and surface roughness as the average roughness R a of the surface measured in accordance with DIN EN ISO 4288: 1998.
  • the roughness values refer, unless otherwise indicated, to the uncoated state of the plastic packaging container, ie to the state before coating or to the roughness of the surface of the plastic packaging container without a barrier layer.
  • any surface roughness is filtered in a customary manner, for example as described in DIN EN ISO 1562: 1998-09.
  • the sealing zone is the area of the plastic packaging container which is suitable and intended to be sealed by a sealing material, in particular a sealing film, by a sealing material, in particular a lacquer system or polyethylene or polypropylene, and which can only be removed from the closure means after sealing by the action of force or from which the closure means after sealing is removable only under the action of force.
  • the sealing zone can be provided in particular on the outer side, preferably on a circumferential sealing collar or sealing edge of the container body, or alternatively in the interior of the container body, in particular for fixing a closing or separating means, and preferably closes circumferentially closed an area, in particular an opening of the Cavity. It is also conceivable, in addition to the first sealing zone, to provide an additional sealing zone on the inside or outside of the plastic packaging container.
  • the sealing material may be applied to the closure means and / or applied separately to the sealing zone and / or the closure means before the sealing step.
  • the inner surface of the cavity is the area of the surface of the plastic packaging container, which (under usual storage conditions) can come into contact with the contents after being filled with filling material and sealed with the sealing agent.
  • the roughness comparison between the sealing zone and the inner surface to be coated is to be carried out.
  • the surface of the sealing zone is preferred for better sealability with a sealing material, preferably in an area fraction of at least 50%, with a higher average roughness than the mean surface roughness. preferably of at least 50% area fraction of the inner surface of the cavity.
  • the outer surface of the plastic container in which case preferably after coating with the barrier layer a protective lacquer layer, in particular a UV lacquer layer, is applied to the barrier layer becomes.
  • a protective lacquer layer in particular a UV lacquer layer
  • the surface of the sealing zone is preferably sealed with a sealant for better sealability.
  • material preferably in an area fraction of at least 50%, with a higher mean roughness than the average surface roughness, preferably of at least 50% of the area fraction, of the outer surface, in particular of the lateral surface.
  • a barrier layer in addition to the sealing zone exclusively on the outer surface of the claimed comparison of the roughness of the sealing zone with the outer surface to be coated is made.
  • a barrier layer in addition to the sealing zone exclusively on the inner surface of the claimed comparison of the roughness of the sealing zone is to be made with the inner surface to be coated.
  • the comparison with the outer surface and / or the inner surface can be made. It is essential that the roughness of the sealing zone is higher than the roughness of the other surface to be coated, in particular the inner surface and / or the outer surface.
  • the formation of the surface roughness according to the invention after coating the sealing zones ensures that the barrier layer in the region of the sealing zones during sealing of the sealing material by a common sealing process, in particular acting surface pressure perpendicular to the surface and / or acting on the barrier layer Temperature effect, at least partially broken, whereby the sealing material comes into direct contact with the plastic packaging container, so the barrier layer does not completely separate the sealing material from the plastic material of the plastic packaging container, which overall improves the sealability.
  • the break-up effect can be explained, inter alia, by applying the barrier layer so thinly that due to the roughness the resulting layer thickness is not homogeneous and / or the layer does not cover the complete surface of the sealing zone. At the points with a thinner layer, this can be broken up by the forces acting on the seal. The thin areas thus act as predetermined breaking points. Overall, the sealing material can come through the breaking into direct contact with the plastic packaging container.
  • the single- or multi-layer barrier layer is formed so that it forms a barrier device against gas and / or moisture and / or prevents interaction of the filling material with the Kunststoffma- material of the plastic container, for example by migration effects.
  • the plastic packaging container is preferably produced in such a way that the sealing zone encloses on the inner and / or outer side of the plastic packaging container, circumferentially closed, an area, in particular an opening of the cavity, preferably as an opening edge.
  • the cavity can be hermetically sealed from the environment by sealing with a sealing film.
  • the sealing zone is preferably prepared such that it has an average surface roughness R a according to DIN EN ISO 4288: 1998 of at least 200 nm before coating in at least 60%, particularly preferably at least 75%, more preferably at least 99.9% , preferably at least 400 nm, more preferably at least 600 nm, more preferably at least 800 nm, even more preferably at least 1000 nm, more preferably at least 1200 nm, more preferably at least 1400 nm, even more preferably at least 1600 nm, more preferably at least 1800, more preferably at least 2000 nm.
  • the surface roughness R a is preferably selected from a value range between 200 nm and 2500 nm, in particular between 400 nm and 2000 nm.
  • the inner surface of the cavity is advantageously produced in such a way that it has an average surface roughness of less than 200 nm, preferably less than 150 nm, preferably in at least 60%, particularly preferably at least 75%, more preferably at least 99.9%. preferably less than 100 nm, preferably less than 50 nm.
  • the outer surface of the plastic container in particular at least the lateral surface, i. the non-bottom surface of the plastic packaging container surrounding the cavity on the outside of the container is manufactured so that it preferably has an average surface roughness of less than 200 nm in at least 60%, more preferably at least 75%, more preferably at least 99.9% of its surface , preferably less than 150 nm, more preferably less than 100 nm, preferably less than 50 nm.
  • the surface of the sealing zone at least in sections, a slope of 1/6 or greater.
  • a slope of e.g. 1/6 means that over a measuring length of 6 mm the surface profile increases or decreases by 1 mm (ie by 1/6 of the length).
  • the connecting straight line between two adjacent measuring points has a gradient of 1/6 or greater.
  • the length along the measuring direction is the abscissa and the measured height is the ordinate.
  • the surface structure is preferably such that with a measurement having a constant measuring interval in the range from 0.1 ⁇ to 1 ⁇ (a measuring interval of, for example, 1 ⁇ means that every 1 ⁇ ) Measured value is recorded), between several adjacent measuring points, a slope of over 1/6 is present, preferably at least 6% of all adjacent measuring points. In other words, the summed distances of all adjacent measurement points with a slope greater than 1/6 should be at least 6% of the measurement length.
  • the surface height should be detected at equidistant intervals along a measuring direction, preferably at a minimum length of 4.8 mm.
  • the surface profile is preferably taken with a stylus device.
  • the radius of the probe tip is preferably less than or equal to 2.5 ⁇ .
  • the profile thus measured, or the measured values obtained from the measurement is filtered in accordance with the standard DIN EN ISO 1 1562: 1998. This gives the roughness profile of the surface.
  • the term "profile” refers to the filtered profile, ie the roughness profile.
  • the surface When meeting the aforementioned requirements for steepness, the surface has particularly good sealing properties.
  • injection molding, injection blow molding, blow molding and / or deep drawing are suitable as production methods for the plastic packaging container, the desired roughness of the surfaces, in particular the sealing zone, being achieved, for example, by appropriate design of the negative mold with unevenness and / or by a downstream abrading and / or abrading process can be.
  • a mechanical processing to realize the roughness takes place before a coating with the barrier layer - a subsequent mechanical see, preferably abrasive, machining under at least partial removal of the barrier layer in the sealing zone is also feasible.
  • spark erosion in particular wire erosion or die erosion
  • a surface is preferably obtained which is defined as class 15 or greater in the standard VDI 3400 ("Electroerosive Processing: Terms, Methods, Application", 1975). This corresponds to a roughness value R a of greater than or equal to 0.56 ⁇ .
  • the sealing zone and the inner surface of the cavity and / or the outer surface of the packaging container are coated with a barrier layer against the passage of at least one chemical compound and / or element, which is more preferably a functional coating resistant to the passage of moisture and / or gases and / or interactions between the product and the plastic material of the plastic packaging container.
  • the coating is preferably selected such that it reduces migration phenomena from the packaged product into the at least one plastic layer.
  • the barrier layer is additionally or alternatively designed such that with this the entry of chemical substances and / or elements of the at least one plastic layer is minimized in the packaged product.
  • Such properties are particularly advantageous in the case of the formation of the plastic packaging container as a food packaging container.
  • the barrier layer has a penetration barrier action against essential oils.
  • the barrier layer has a penetration barrier action against solvents.
  • Possible coating methods that can be used in a vacuum chamber are in particular CVD (Chemical Vapor Deposition) methods such as plasma-enhanced chemical vapor deposition (PECVD) or PVD (Physical Vapor Deposition) methods such as sputtering into consideration.
  • CVD Chemical Vapor Deposition
  • PECVD plasma-enhanced chemical vapor deposition
  • PVD Physical Vapor Deposition
  • Polyethylene PE
  • polypropylene PP
  • COC cycloolefin copolymers
  • COP cycloolefin polymer
  • PVC polyvinyl chloride
  • PET polyethylene terephthalate
  • PA Polyamide
  • PS polysyrene
  • the packaging moldings of compostable polymers in particular based on renewable raw materials polymers such as starch-based polymers (strong blends, PLA (polyazide), PAH polyester (polyhydroxyalkanoate), eg PHB (polyhydroxybutyrate), PHV (polyhydroxyvalerate), cellulosic materials made of chemically modified cellulose materials based on renewable raw materials polymers are in particular specific polymers, for example based on PDO (biopropanediol), specific polyamides, eg made of castor oil, and polyethylene (PE), polypropylene (PP), polyvinyl chloride (PVC) on Bio Ethanol, for example based on sugar cane, as well as specific synthetic polyesters produced from crude oil or natural gas, or laminates made from said materials.
  • renewable raw materials polymers such as starch-based polymers (strong blends, PLA (polyazide), PAH polyester (polyhydroxyalkanoate), eg PHB (polyhydroxybutyrate), PHV
  • the barrier layer in particular for injection molded parts, preferably comprises a vacuum coating with metal oxides, in particular aluminum oxides, and / or silicon oxides because of their good penetration barrier effects.
  • Preferred coating compositions are designed such that the barrier layer Layer (vacuum coating) is applied by means of a sputtering process as an oxide, nitridic or sulfidic layer.
  • a plasma CVD preferably a PECVD (plasma-enhanced chemical vapor deposition) method with a silicon precursor, for example with HMDSO (hexamethyldisiloxane) or with TMDSO (tetramethyldisiloxane), in particular with plasma pretreatment with oxygen, argon and / or nitrogen a ceramic layer are applied as a coating.
  • PECVD plasma-enhanced chemical vapor deposition
  • the coating compositions are formed so that they are a vacuum coating by sputtering or evaporation, in particular of metal oxides, in particular aluminum oxides, or silicon oxides, in particular SiO x , where x is preferably a number around 2, preferably 2.0, or by plasma polymerization of organosilanes, in particular hexamethyldisiloxane (HMDSO) and tetramethyldisiloxane (TMDSO) or by plasma polymerization of highly crosslinked hydrocarbon layers, in particular starting from ethyne, onto the packaging body.
  • the barrier layer usually has a thickness in the range of 50 nm to 200 nm.
  • the coating compositions may also be formed so that the coating is a carbon layer, in particular an amorphous carbon layer (English “Diamond-Like Carbon” or DLC).
  • a carbon layer in particular an amorphous carbon layer (English “Diamond-Like Carbon” or DLC).
  • amorphous carbon layers are suitable, which are subdivided according to the VDE 2840 guideline as follows:
  • Hydrogen-free amorphous carbon layers "aC” consist predominantly of sp 2 -hybridized bonds and are therefore also referred to as graphite-like carbon layers. Tetrahedral hydrogen-free amorphous carbon layers “ta-C” consist of sp 3 -hybridized bonds, which is why they are equivalent to the diamond layers.
  • Tetrahedral hydrogen-containing amorphous carbon layers "ta-C: H” (H content> 25%) with predominantly sp 3 -hybridized carbon atoms
  • Metal-containing hydrogen-containing amorphous carbon layers "a-C: H: Me.” By doping with metals, a composite of an “a-C: H” matrix and metal carbides forms. Layers of this material have high wear resistance, low coefficients of friction and better adhesion of the layers. By changing the metal content, the material properties can be strongly influenced.
  • aC Modified Hydrogenated Amorphous Carbon Layers, "aC: H: X”
  • elements such as Si, O, N, F and B
  • amorphous carbon layers can be highly modified depending on the desired properties, for example silicon increases the temperature resistance in an oxygenated environment Silicon and oxygen can greatly reduce the surface tension (up to values of the order of magnitude of PTFE). transparent and extremely scratch-resistant layers can be produced.
  • Coating with carbon layers can also combine the advantages of high biocompatibility with increased penetration barrier action against gases and / or moisture even when ingesting food.
  • Part of the method may also be the filling of the plastic packaging container with at least one filling material, wherein the closure means is sealed to the at least one sealing zone before or after at least one of the chamber has been filled with filling material.
  • the sealing can be done by a heat sealing process and / or by a cold sealing process.
  • sealing material all common sealing materials, for example based on polyethylene, polypropylene and / or polyurethane can be used.
  • plastic packaging container to be coated is produced inline - container bodies are then removed from a molding device, in particular an injection molding, deep drawing or blow molding device. and then placed on means of transport with which to be coated plastic packaging container is conveyed to coating agents and then coated there. Furthermore, a plastic packaging container according to claim 12 should be considered disclosed and claimed.
  • Kunststoffverpackungsbe- container in a process for coating with a, in particular in a vacuum, preferably by a CVD or PVD method, generated barrier layer and as well as for a method according to one of claims 1 to 1 1 and / or as disclosed and claimed above.
  • the majority of the surface of the coated sealing zone ie the surface of the barrier layer in the region of the sealing zone, has a higher average roughness (R a determined according to DIN EN ISO 4288: 1998) than the majority of (in the case of a coating with the barrier layer) coated inner surface of the cavity, so the surface of the barrier layer in the region of the inner surface of the cavity, and / or (in the case of a coating with the Barrier layer) as the surface of the barrier layer in the area of the outer surface.
  • the coated sealing zone has an average surface roughness R a of at least 200 nm, preferably at least 400 nm, more preferably at least 600 nm, more preferably at least 800 nm, even more preferably at least 1000 nm, more preferably at least 1200 nm, most preferably at least 1400 nm, even more preferably at least 1,600 nm, more preferably at least 1,800 nm, particularly preferably at least 2,000 nm.
  • the surface roughness R a is preferably selected from a value range between 200 nm and 2,500 nm.
  • the coated inner surface of the cavity has a surface roughness of less than 200 nm, preferably less than 150 nm, more preferably less than 100 nm, preferably less than 50 nm.
  • this formation of the surface roughness of the coated sealing zones ensures that the barrier layer in the region of the sealing zones during sealing of the sealing material by a common sealing process, in particular with acting perpendicular to the surface surface pressure and / or acting on the barrier layer temperature, at least partially broken or fused, whereby the sealing material comes into direct contact with the plastic packaging container, so the barrier layer does not completely separate the sealing material from the plastic material of the plastic packaging container, which improves the overall sealability.
  • Fig. 1 a is a sectional view of an embodiment of the after
  • Fig. 1 b is a plan view of the plastic packaging container of FIG.
  • Fig. 2a is a sectional view of the plastic packaging container
  • FIG. 1 a after the coating and before the sealing with a barrier layer
  • FIG. 2 b shows a top view of the plastic packaging container from FIG.
  • FIG. 3 shows the plastic packaging container from FIG. 1 after coating and before sealing with a sealing film
  • FIG. 4 a shows the plastic packaging container from FIG. 3 after coating and after sealing with the sealing film
  • FIG. 4 b shows a top view of the plastic packaging container from FIG.
  • FIG. 5 shows a representation of a measuring points obtained from a measurement of a profile of a surface profile.
  • like elements and elements having the same function are denoted by the same reference numerals.
  • FIG. 1 shows schematically an embodiment of a plastic packaging container according to claim 11.
  • Fig. 2 shows this embodiment in a plan view.
  • the plastic packaging container 10 encloses a cavity 12 with an inner surface 14 and an opening 1 6 (in FIG. 1) oriented upwards.
  • the opening 1 6 of the cavity 12 is surrounded by a circumferentially closed opening collar 18, on which a sealing zone 20 is arranged.
  • the surface 22 of the sealing zone 20 has an average surface roughness R a (determined according to DIN EN ISO 4288: 1998) of more than 200 nm. This roughness can be produced by using in injection molding a corresponding negative mold having unevenness, or alternatively by mechanical post-processing of the blank after injection molding, after or preferably before coating with the barrier layer.
  • the surface roughness of the inner surface 14 of the cavity 12 has an average surface roughness of less than 200 nm.
  • FIGS. 1 a and 1 b show the packaging container 10 of FIGS. 1 a and 1 b in each case in a side section and plan view.
  • a barrier layer 40 has been applied, wherein the barrier layer 40 is a functional coating which protects against the passage of moisture and / or gases.
  • the barrier layer includes a region 42 associated with the seal zone and a region 44 associated with the interior surface of the cavity.
  • Possible coating methods which can be used in a vacuum chamber are in particular CVD (Chemical Vapor Deposition) methods such as plasma-enhanced chemical vapor depositions (PECVD) or PVD (physical vapor deposition) methods such as sputtering.
  • CVD Chemical Vapor Deposition
  • PECVD plasma-enhanced chemical vapor depositions
  • PVD physical vapor deposition
  • a closure means 50 here in the form of a sealing film, shown, which has a sealing layer 52, which consists of a conventional sealing material.
  • FIGS. 4a and 4b respectively in a side sectional view and top view.
  • a significant difference between the states shown in FIGS. 3 and 4 a is that after sealing, the barrier layer 40 in region 42, which is assigned to the sealing zone, is at least partially broken and parts of the sealing layer are connected to the surface of the sealing zone of the container to have. The barrier layer 40 of the region 42 is completely covered by the sealing layer from above.
  • a barrier layer is provided on the inner surface 14 of the cavity 12. Additionally or preferably as an alternative to a barrier layer on the inner surface, it is possible to provide such a barrier layer on an outer surface 53 of the packaging container 10, in particular in particular on a jacket surface 54, wherein the lateral surface 54 is the outer surface 53 minus a bottom surface 55.
  • FIG. 5 illustrates an illustration of a profile of a surface profile determined from a measurement for calculating the slope.
  • the figure shows the measured points, each connected by connecting lines, giving a total of the measured profile.
  • the measuring points were recorded equidistantly at a distance ⁇ with a stylus instrument along the measuring direction and then filtered, preferably in accordance with DIN EN ISO 1562: 1998-09.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Food Science & Technology (AREA)
  • Packages (AREA)
  • Laminated Bodies (AREA)

Abstract

Kunststoffverpackungsbehälters (10) und Verfahren zum Herstellen eines Kunststoffverpackungsbehälters (10), bei dem ein Kunststoffverpackungsbehälter (10) durch Spritzguss, Tiefziehen und/oder Blasformen geformt wird, wobei der Kunststoffverpackungsbehälter (10) mit einer Barriereschicht (40) beschichtet und/oder beschichtbar, mit einer Kavität (12) zur Aufnahme eines Verpackungsinhaltes, insbesondere eines Lebensmittelproduktes, und mit einer Siegelzone (20) hergestellt wird. Ferner ist vorgesehen, dass die Oberfläche der Siegelzone (20) zur besseren Siegelbarkeit mit einem Siegelmaterial, vorzugsweise in einem Flächenanteil von mindestens 50% mit einer höheren mittleren Oberflächenrauheit Ra nach DIN EN ISO 4288:1998 als der mittleren Oberflächenrauheit Ra nach DIN EN ISO 4288:1998, vorzugsweise von mindestens 50% des Flächenanteils, der Innenoberfläche (14) der Kavität (12) und/oder, vorzugsweise von mindestens 50% des Flächenanteils, der Außenoberfläche, insbesondere der Mantelfläche, des Kunststoffverpackungsbehälters hergestellt wird, und dass die Siegelzone (20) mit einer mittleren Oberflächenrauheit Ra nach DIN EN ISO 4288:1998 von mindestens 200 nm hergestellt wird.

Description

Verfahren zum Herstellen eines Kunststoffverpackunqsbehälters und
Kunststoffverpackunqsbehälter
Die vorliegende Erfindung betrifft ein Verfahren zum Herstellen eines Kunststoffverpackungsbehälters gemäß dem Oberbegriff des Anspruchs 1 . Ferner betrifft die Erfindung einen Kunststoffverpackungsbehälter nach den Oberbegriffen der unabhängigen Ansprüche 12 und 18 und dessen Verwendung in einem Verfahren zur Beschichtung mit einer, insbesondere in einem Vakuum, bevorzugt durch ein CVD- oder PVD-Verfahren, erzeugten, Barriereschicht und einem Verfahren gemäß dem Oberbegriff des Anspruchs 1 .
Aus dem Stand der Technik sind Verfahren zur Herstellung von Kunst- Stoffverpackungsbehältern bekannt, bei denen Kunststoffverpackungsbehälter durch Spritzgießen, Tiefziehen und/oder Blasformen geformt werden. Auch ist es aus dem Stand der Technik bekannt, an den Kunststoffverpackungsbehältern Siegelzonen vorzusehen, an die Verschlussmittel, insbesondere in Form von Siegelfolien, mit einem Siegelmaterial gesiegelt werden.
Insbesondere dann, wenn in zumindest einer der Kammern ein feuchtig- keits- oder sauerstoffempfindliches Füllgut, insbesondere ein Lebensmittel, ist es wünschenswert, dass der Kunststoffverpackungsbehälter eine Barriereschicht zur Erhöhung der Durchtrittsperrwirkung gegen Feuchtigkeit und/oder Gase aufweist. Solche im Vakuum aufzubringenden Barriereschichten sind beispielsweise in der EP 1 048 746 A1 oder der WO2009/030425 A1 beschrieben. Nachteilig bei den bekannten Barriereschichten ist es, dass herkömmliche Siegelmaterialien schlecht an diesen haften, was zu einem ungewollten Ablösen von Siegelfolien oder sonstigen Verschlussmitteln, die zum Sie- geln an die Siegelzonen bestimmt sind, führen kann, weshalb unter Umständen auf eine solche Beschichtung wegen dieser Nachteile ganz verzichtet wird.
Ausgehend von dem vorgenannten Stand der Technik liegt der Erfindung die Aufgabe zugrunde, ein Verfahren zur Herstellung eines Kunststoffverpackungsbehälters nach dem Oberbegriff des Anspruchs 1 anzugeben, bei dem die Siegelbarkeit zwischen Siegelzone und einem Siegelmaterial erhöht wird und ein ungewolltes Ablösen des Verschlussmittels unterbunden wird. Ferner besteht die Aufgabe der vorliegenden Erfindung darin, einen Kunststoffverpackungsbehälter für ein solches Verfahren anzugeben.
Die Aufgabe wird für ein Verfahren gemäß dem Oberbegriff des Anspruchs 1 durch ein Verfahren mit den Merkmalen des Anspruchs 1 ge- löst, nämlich dadurch, dass der Kunststoffverpackungsbehälter so hergestellt wird, dass die Oberfläche, insbesondere der Großteil der Oberfläche, der Siegelzone eine höhere mittlere Rauheit aufweist als die Innenoberfläche, vorzugsweise als der Großteil der Innenoberfläche, der Kavität und/oder als die Außenoberfläche des Kunststoffverpackungsbehälters, vorzugsweise als der Großteil der Außenoberfläche oder der Mantelteil der Außenoberfläche und dass die Siegelzone eine mittlere Oberflächenrauheit von mindestens 200 nm aufweist. Vorrichtungsgemäß wird die Aufgabe mit einem Kunststoffverpackungsbehälter mit den Merkmalen der Ansprüche 12 und 14 gelöst. Weiter wird die Aufgabe durch die Verwen- dung eines solchen Kunststoffverpackungsbehälters in einem Verfahren zur Beschichtung mit den Merkmalen des Anspruchs 18 gelöst. Dabei ist unter "Großteil" jeweils ein Flächenanteil von mehr als 50% zu verstehen und als Oberflächenrauheit die mittlere Rauheit Ra der Oberfläche gemessen nach DIN EN ISO 4288:1998. Die Rauheitswerte beziehen sich, soweit nicht abweichend angegeben, auf den unbeschichteten Zustand des Kunststoffverpackungsbehälters, also auf den Zustand vor dem Beschichten bzw. auf die Rauheit der Oberfläche des Kunststoffverpackungsbehälters ohne Barriereschicht. Wie in der DIN EN ISO 4288:1998 beschrieben, wird zur Bestimmung der Rauheitswerte eine etwaige Wel- ligkeit der Oberfläche auf übliche Weise, beispielsweise wie in der DIN EN ISO 1 1562:1998-09 beschrieben, gefiltert.
Die Siegelzone ist der Bereich des Kunststoffverpackungsbehälters, der geeignet und bestimmt ist, mit einem Verschlussmittel, insbesondere einer Siegelfolie, durch ein Siegelmaterial, insbesondere ein Lacksystem oder Polyethylen oder Polypropylen, gesiegelt zu werden und der nach dem Siegeln nur unter Krafteinwirkung von den Verschlussmitteln ablösbar ist bzw. von dem das Verschlussmittel nach dem Siegeln nur unter Krafteinwirkung ablösbar ist. Die Siegelzone kann insbesondere auf der Außen- seite, vorzugsweise an einem umlaufenden Siegelkragen bzw. Siegelrand des Behälterkörpers, oder alternativ im Inneren des Behälterkörpers, insbesondere zur Festlegung eines Verschluss- oder Trennmittels, vorgesehen werden und schließt bevorzugt umfangsgeschlossen einen Bereich, insbesondere eine Öffnung der Kavität ein. Auch ist es denkbar zusätzlich zu der ersten Siegelzone eine weitere Siegelzone an der Innen- oder Außenseite des Kunststoffverpackungsbehälters vorzusehen.
Das Siegelmaterial kann an dem Verschlussmittel aufgebracht sein und/oder vor dem Versiegelungsschritt gesondert auf die Siegelzone und/oder das Verschlussmittel aufgebracht werden. Die Innenoberfläche der Kavität ist der Bereich der Oberfläche des Kunststoffverpackungsbehälters, der (unter üblichen Lagerbedingungen) nach einem Befüllen mit Füllgut und dem Siegeln mit dem Verschlussmittel in Kontakt mit dem Füllgut treten kann. Insbesondere für den Fall, dass neben der Siegelzone die Innenoberfläche mit der Barriereschicht beschichtet wird bzw. zur Beschichtung bestimmt ist, ist der Rauheitsvergleich zwischen der Siegelzone und der zu beschichtenden Innenoberfläche durchzuführen. Mit anderen Worten ist bevorzugt für den Fall der (späteren) Be- Schichtung der Innenoberfläche mit der Barriereschicht die Oberfläche der Siegelzone zur besseren Siegelbarkeit mit einem Siegelmaterial, vorzugsweise in einem Flächenanteil von mindestens 50%, mit einer höheren mittleren Rauheit als die mittlere Oberflächenrauheit, vorzugsweise von mindestens 50% Flächenanteils der Innenoberfläche der Kavität herzustel- len.
Zusätzlich oder alternativ zur Beschichtung der Innenoberfläche der Kavität mit der Barriereschicht ist es möglich, die Außenoberfläche des Kunststoffbehälters mit der Barriereschicht zu beschichten, wobei in diesem Fall bevorzugt nach dem Beschichten mit der Barriereschicht noch eine Schutzlackschicht, insbesondere eine UV-Lackschicht auf die Barriereschicht aufgebracht wird. Für den Fall, der (späteren) Beschichtung der Außenoberfläche mit der Barriereschicht ist es bevorzugt, den vorgenannten Vergleich der Rauheit der Siegelzone mit der Rauheit der zu beschich- tenden Außenoberfläche durchzuführen, bevorzugt nur mit der Mantelfläche der Außenoberfläche, d.h. nicht mit der Standfläche bzw. dem Bodenbereich. Unter der Mantelfläche wird dabei die seitlich von der Bodenfläche aufragende äußere Umfangswandfläche verstanden. Mit anderen Worten ist bevorzugt für den Fall der (späteren) Beschichtung der Außen- Oberfläche, insbesondere der Mantelfläche, mit der Barriereschicht die Oberfläche der Siegelzone zur besseren Siegelbarkeit mit einem Siegel- material, vorzugsweise in einem Flächenanteil von mindestens 50%, mit einer höheren mittleren Rauheit als die mittlere Oberflächenrauheit, vorzugsweise von mindestens 50% des Flächenanteils, der Außenoberfläche, insbesondere der Mantelfläche, herzustellen.
Für den Fall des Vorsehens einer Barriereschicht zusätzlich zu der Siegelzone ausschließlich an der Außenoberfläche ist der anspruchsgemäße Vergleich der Rauheit der Siegelzone mit der zu beschichtenden Außenoberfläche vorzunehmen. Für den Fall des Vorsehens einer Barriere- Schicht zusätzlich zu der Siegelzone ausschließlich an der Innenoberfläche ist der anspruchsgemäße Vergleich der Rauheit der Siegelzone mit der zu beschichtenden Innenoberfläche vorzunehmen. Für den Fall der Beschichtung der Außenoberfläche und der Innenoberfläche kann der Vergleich mit der Außenoberfläche und/oder der Innenoberfläche vorge- nommen werden. Wesentlich ist, dass die Rauheit der Siegelzone höher ist, als die Rauheit der sonstigen zu beschichtenden Fläche, insbesondere der Innenoberfläche und/oder der Außenoberfläche.
Grundsätzlich müssen nicht sowohl die Innenoberfläche als auch die Au- ßenoberfläche mit der Barriereschicht beschichtet werden - es reicht (und ist bevorzugt) nur eine alternative Beschichtung vorzunehmen, wobei ganz besonders bevorzugt ausschließlich die Innenoberfläche beschichtet wird.
Es hat sich herausgestellt, dass die erfindungsgemäße Ausbildung der Oberflächenrauheit nach dem Beschichten der Siegelzonen dafür sorgt, dass die Barriereschicht im Bereich der Siegelzonen beim Aufsiegeln des Siegelmaterials durch einen gängigen Siegelprozess, insbesondere mit senkrecht zur Oberfläche wirkenden Flächendruck und/oder einer auf die Barriereschicht wirkenden Temperatureinwirkung, zumindest teilweise aufgebrochen wird, wodurch das Siegelmaterial in unmittelbaren Kontakt mit dem Kunststoffverpackungsbehälter kommt, also die Barriereschicht nicht vollständig das Siegelmaterial von dem Kunststoffmaterial des Kunststoffverpackungsbehälters trennt, was insgesamt die Siegelbarkeit verbessert. Der Aufbrecheffekt kann nach dem Verständnis der Anmelderin u.a. dadurch erklärt werden, dass die Barriereschicht extra so dünn aufgebracht wird, dass aufgrund der Rauheit die entstehende Schichtdicke nicht homogen ist, und/oder die Schicht nicht die komplette Oberfläche der Siegelzone bedeckt. An den Stellen mit dünnerer Schicht kann diese durch die beim Siegeln wirkenden Kräfte aufgebrochen werden. Die dünnen Bereiche wirken demnach wie Sollbruchstellen. Insgesamt kann das Siegelmaterial durch das Aufbrechen in unmittelbaren Kontakt mit dem Kunststoffverpackungsbehälter kommen.
Durch die niedrigere Oberflächenrauheit der zu beschichtenden Innenoberfläche der Kavität und/oder der zu beschichtenden Außenoberfläche, insbesondere der Mantelfläche wird der - bei der Siegelzone gezielt gewünschte - Effekt des Brechens der Barriereschicht vermieden.
Auch wird einem ungewollten Durchdringen der Barriereschicht an der Innenoberfläche entgegengewirkt, wodurch die Barriereeigenschaft erhal- ten bleibt.
Bevorzugt wird die ein- oder mehrschichtige Barriereschicht so ausgebildet, dass diese eine Sperrvorrichtung gegen Gas und/oder Feuchtigkeit bildet und/oder eine Wechselwirkung des Füllgutes mit dem Kunststoffma- terial des Kunststoffbehälters, beispielsweise durch Migrationseffekte verhindert.
Vorteilhafte Weiterbildungen der Erfindung sind in den Unteransprüchen angegeben. In den Rahmen der Erfindung fallen sämtliche Kombinationen aus zumindest zwei von in der Beschreibung, den Ansprüchen und/oder den Figuren offenbarten Merkmalen. Zur Vermeidung von Wiederholungen sollen verfahrensgemäß offenbarte Merkmale, insbesondere des Kunststoffverpackungsbehälters, auch als vorrichtungsgemäß offenbart und beansprucht gelten sowie vorrichtungs- gemäß offenbarte Merkmale, insbesondere des Kunststoffverpackungsbehälters, auch als verfahrensgemäß offenbart und beansprucht gelten.
Bevorzugt ist der Kunststoffverpackungsbehälter so hergestellt, dass die Siegelzone an der Innen- und/oder Außenseite des Kunststoff verpa- ckungsbehälters, umfangsgeschlossen einen Bereich, insbesondere eine Öffnung der Kavität, bevorzugt als Öffnungsrand, einschließt.
Hierdurch kann zum Beispiel die Kavität durch Siegelung mit einer Siegelfolie hermetisch gegenüber der Umgebung versiegelt werden.
Bevorzugt ist die Siegelzone so hergestellt, dass sie vor dem Beschichten in mindestens 60%, besonders bevorzugt in mindestens 75%, weiter bevorzugt mindestens 99,9%, ihrer Oberfläche eine mittlere Oberflächenrauheit Ra nach DIN EN ISO 4288:1998 von mindestens 200 nm, bevorzugt mindestens 400 nm, weiter bevorzugt mindestens 600 nm, besonders bevorzugt mindestens 800 nm, noch weiter bevorzugt mindestens 1000 nm, weiter bevorzugt mindestens 1200 nm, besonders bevorzugt mindestens 1400 nm, noch weiter bevorzugt mindestens 1 600 nm, weiter bevorzugt mindestens 1800, besonders bevorzugt mindestens 2000 nm aufweist. Bevorzugt ist die Oberflächenrauheit Ra aus einem Wertebereich zwischen 200 nm und 2500 nm, insbesondere zwischen 400 nm und 2000 nm, gewählt.
Hierdurch wird ein großflächiges Durchbrechen der Barriereschicht beim Siegeln gewährleistet. Vorteilhaft ist die Innenoberfläche der Kavität so hergestellt dass sie, bevorzugt in mindestens 60%, besonders bevorzugt in mindestens 75%, weiter bevorzugt mindestens 99,9%, ihrer Oberfläche eine mittlere Oberflächenrauheit von weniger 200 nm, bevorzugt weniger als 150 nm, beson- ders bevorzugt weniger als 100 nm, bevorzugt weniger als 50 nm aufweist.
Vorteilhaft ist die Außenoberfläche des Kunststoffbehälters, insbesondere zumindest die Mantelfläche, d.h. die Nicht-Bodenfläche des Kunststoffver- packungsbehälters, die die Kavität auf der Behälteraußenseite umgibt so hergestellt, dass sie bevorzugt in mindestens 60%, besonders bevorzugt mindestens 75%, weiter bevorzugt mindestens 99,9% ihrer Oberfläche eine mittlere Oberflächenrauheit von weniger als 200 nm, bevorzugt weniger als 150 nm, besonders bevorzugt weniger als 100 nm, bevorzugt we- niger als 50 nm aufweist.
Weiter bevorzugt weist die Oberfläche der Siegelzone zumindest abschnittsweise eine Steigung von 1 /6 oder größer auf. Eine Steigung von z.B. 1 /6 bedeutet, dass auf einer Messlänge von 6 mm das Oberflächen- profil um 1 mm (also um 1/6 der Länge) ansteigt oder absinkt.
Anders ausgedrückt weist bei einer grafischen Darstellung der Messwerte die Verbindungsgerade zwischen zwei benachbarten Messpunkten eine Steigung von 1 /6 oder größer auf. Im (kartesischen) Koordinatensystem, das hier bevorzugt für die Erfassung der Steigung zugrunde gelegt wird, ist die Länge entlang der Messrichtung die Abszisse und die gemessene Höhe die Ordinate.
Bevorzugt ist die Oberflächenstruktur so beschaffen, dass bei einer Mes- sung, die ein konstantes Messintervall im Bereich von 0,1 μηπ bis 1 μηπ aufweist (ein Messintervall von z.B. 1 μηπ bedeutet, dass alle 1 μηπ ein Messwert aufgenommen wird), zwischen mehreren jeweils benachbarten Messpunkten eine Steigung von über 1 /6 vorliegt, bevorzugt bei mindestens 6% aller benachbarter Messpunkte. Anders ausgedrückt sollten die summierten Abstände aller benachbarter Messpunkte mit einer Steigung größer 1 /6 mindestens 6% der Messlänge ausmachen.
Bei einer solchen Messung sollte die Oberflächenhöhe in äquidistanten Abständen entlang einer Messrichtung erfasst werden, bevorzugt auf einer Mindestlänge von 4,8 mm.
Das Oberflächenprofil wird vorzugsweise mit einem Tastschnittgerät aufgenommen. Der Radius der Tastspitze ist dabei bevorzugt kleiner gleich 2,5 μηπ. Bevorzugt wird das so gemessene Profil, bzw. die aus der Messung erhaltenen Messwerte, entsprechend der Norm DIN EN ISO 1 1562:1998 gefiltert. Damit erhält man das Rauheitsprofil der Oberfläche. Im Folgenden bezieht sich der Ausdruck„Profil" auf das gefilterte Profil, also das Rauheitsprofil.
Bei Erfüllung der vorgenannten Anforderungen an die Steilheit, weist die Oberfläche besonders gute Siegeleigenschaften auf.
Als Herstellungsverfahren für den Kunststoffverpackungsbehälters eignen sich insbesondere Spritzgießen, Spritzblasen, Blasformen und/oder Tiefziehen, wobei die erwünschten Rauheiten der Oberflächen, insbesondere der Siegelzone, beispielsweise durch entsprechende Ausgestaltung der Negativform mit Unebenheiten und/oder durch einen nachgelagerten Abschleif- und/oder Abwetzprozess erreicht werden können. Bevorzugt erfolgt eine mechanische Bearbeitung zur Realisierung der Rauheit vor einer Beschichtung mit der Barriereschicht - eine nachträgliche mechani- sehe, bevorzugt abrasive, Bearbeitung unter zumindest teilweisem Abtragen der Barriereschicht in der Siegelzone ist ebenfalls realisierbar.
Als Verfahren zum Aufrauen, insbesondere der Oberfläche der Siegelzo- ne, hat sich eine Funkenerosion, insbesondere Drahterosion oder Senkerosion, als vorteilhaft herausgestellt. Hierdurch wird bevorzugt eine Oberfläche erhalten, die in der Norm VDI 3400 ("Elektroerosive Bearbeitung: Begriffe, Verfahren, Anwendung"; 1975) als Klasse 15 oder größer definiert ist. Dies entspricht einem Rauheitswert Ra von größer gleich 0,56 μηι.
Bevorzugt werden die Siegelzone und die Innenoberfläche der Kavität und/oder die Außenoberfläche des Verpackungsbehälters mit einer Barriereschicht gegen den Durchtritt mindestens einer chemischen Verbindung und/oder Elements beschichtet, bei der es sich weiter bevorzugt um eine funktionale Beschichtung handelt, die gegen den Durchtritt von Feuchtigkeit und/oder Gasen und/oder Wechselwirkungen zwischen Füllgut und dem Kunststoffmaterial des Kunststoffverpackungsbehälters schützt. Bevorzugt ist die Beschichtung derart gewählt, dass sie Migrationserschei- nungen von dem verpackten Produkt in die mindestens eine Kunststoffschicht reduziert. Ganz besonders bevorzugt ist die Barriereschicht zusätzlich oder alternativ derart ausgelegt, dass mit dieser der Eintritt von chemischen Substanzen und/oder Elementen aus der mindestens einen Kunststoffschicht in das verpackte Produkt minimiert wird.
Derartige Eigenschaften sind insbesondere äußerst vorteilhaft im Falle der Ausbildung des Kunststoffverpackungsbehälters als Lebensmittelverpackungsbehälter. Insbesondere für den Fall der Verpackung von Gewürzen ist es vorteilhaft, wenn die Barriereschicht eine Durchtrittssperrwirkung gegen ätherische Öle aufweist. Insbesondere dann, wenn in dem Kunststoffverpackungsbehälter technische Produkte verpackt werden sollen, ist es bevorzugt, wenn die Barriereschicht eine Durchtrittssperrwirkung gegenüber Lösemitteln aufweist. Als mögliche Beschichtungsverfahren, die in einer Vakuumkammer zur Anwendung kommen können, kommen insbesondere CVD (Chemical Vapor Deposition) Verfahren wie Plasma- Enhanced Chemical Vapor Deposition (PECVD) oder PVD (Physical Vapor Deposition) Verfahren wie Sputtern in Betracht.
Als Kunststoffmaterial zur Herstellung des Kunststoffverpackungsbehälters, beispielsweise durch Spritzgießen, Spritzblasen, Blasformen und/oder Tiefziehen, eignen sich insbesondere Polyethylen (PE), Polypropylen (PP), Cycloolefincopolymere (COC), Cycloolefinpolymer (COP), Polyvinylchlorid (PVC), Polyethylenterephthalat (PET), Polyamid (PA) oder Polysyrol (PS).
Auch ist es möglich, die Verpackungsformteile aus kompostierbaren Polymeren, insbesondere auf erneuerbaren Rohstoffen basierenden Polymeren, wie stärkebasierende Polymere (stark blends, PLA (Polyazid), Polyester des Typs PAH (Polyhydroxyalkanoat), z.B. PHB (Polyhydroxybutyrat), PHV (Polyhydroxyvalerat), Cellulosematerialien aus chemisch modifizierter Cellulose hergestellte Materialien, auf erneuerbaren Rohstoffen basierende Polymere sind insbesondere spezifische Polymere, z.B. auf PDO (Biopropandiol) basierend, spezifische Polyamide, z.B. aus Rizinusöl hergestellte, sowie Polyethylen (PE), Polypropylen (PP), Polyvinylchlorid (PVC) auf Bio-Ethanol aus z.B. Zuckerrohr basierend, sowie spezifische, aus Rohöl oder natürlichem Gas hergestellte synthetische Polyester, oder aus den genannten Werkstoffen hergestellten Laminaten geformt sind.
Die Barriereschicht, insbesondere für Spritzgussteile, umfasst bevorzugt eine Vakuumbeschichtung mit Metalloxiden, insbesondere Aluminiumoxi- den, und/oder Siliziumoxiden wegen ihrer guten Durchtrittssperrwirkun- gen. Bevorzugte Beschichtungsmittel sind so ausgebildet, dass die Barrie- reschicht (Vakuumbeschichtung) mittels eines Sputterverfahrens als oxidische, nitridische oder sulfidische Schicht aufgetragen wird. Auch kann mittels eines Plasma-CVD, bevorzugt einen PECVD (Plasma-Enhanced Chemical Vapor Deposition) Verfahrens mit einem Silizium Precursor, z.B. mit HMDSO (Hexamethyldisiloxan) oder mit TMDSO (Tetramethyldisilo- xan), insbesondere mit Plasma-Vorbehandlung mit Sauerstoff, Argon und/oder Stickstoff eine keramische Schicht als Beschichtung aufgetragen werden. Weiter bevorzugt sind die Beschichtungsmittel so ausgebildet, dass sie eine Vakuumbeschichtung durch Sputtern oder Verdampfen, ins- besondere von Metalloxiden, insbesondere Aluminiumoxiden, oder Siliziumoxiden, insbesondere SiOx, wobei x bevorzugt eine Zahl um 2, bevorzugt 2,0 ist, oder durch Plasmapolymerisation von Organosilanen, insbesondere von Hexamethyldisiloxan (HMDSO) und Tetramethyldisiloxan (TMDSO) oder durch Plasmapolymerisation von hochvernetzten Kohlen- wasserstoffschichten, insbesondere ausgehend von Ethin auf den Verpackungskörper aufbringen. Die Barriereschicht hat üblicherweise eine Dicke im Bereich von 50 nm bis 200 nm.
Vorteilhaft können die Beschichtungsmittel auch so ausgebildet sein, dass die Beschichtung eine Kohlenstoffschicht ist, insbesondere eine amorphe Kohlenstoffschicht (englisch„Diamond-Like Carbon" bzw. DLC).
Es bieten sich insbesondere folgende amorphe Kohlenstoffschichten an, die nach der Richtlinie VDE 2840 wie folgt unterteilt sind:
- Wasserstofffreie amorphe Kohlenstoffschichten „a-C" bestehen überwiegend aus sp2-hybridisierten Bindungen und werden deshalb auch als Graphitartige Kohlenstoffschichten bezeichnet. Tetraedrische wasserstofffreie amorphe Kohlenstoffschichten „ta-C" bestehen aus sp3-hybridisierten Bindungen, weshalb sie den Diamantschichten gleichzusetzen sind.
Metallhaltige wasserstofffreie amorphe Kohlenstoffschichten, „a-C:Me"
Wasserstoffhaltige amorphe Kohlenstoffschichten, „a-C:H" (H-Anteil > 35%)
Tetraedrische wasserstoffhaltige amorphe Kohlenstoffschichten, „ta-C:H" (H-Anteil >25%) mit überwiegend sp3- hybridisierten Kohlenstoffatomen
Metallhaltige wasserstoffhaltige amorphe Kohlenstoffschichten,„a-C:H:Me". Durch Dotieren mit Metallen bildet sich ein Verbund aus einer „a-C:H" Matrix und Metallkarbiden. Schichten aus diesem Material besitzen hohe Verschleißfestigkeiten, geringe Reibkoeffizienten sowie bessere Haftung der Schichten. Durch Veränderung des Metallgehaltes lassen sich die Materialeigenschaften stark beeinflussen.
Modifizierte wasserstoffhaltige amorphe Kohlenstoffschichten,„a-C:H:X". Durch Dotierung mit Elementen wie Si, O, N, F und B können amorphe Kohlenstoffschichten je nach gewünschten Eigenschaften stark modifiziert werden. Silizium beispielsweise erhöht die Temperaturbeständigkeit in sauerstoffhaltiger Umgebung. Eine Dotierung mit Silizium und Sauerstoff kann die Oberflächenspannung stark herabsetzen (bis hin zu Werten in der Größenordnung von PTFE). Außer- dem lassen sich transparente und äußerst kratzfeste Schichten herstellen.
Insbesondere für die Aufnahme von medizinischen und/oder biologischen Materialien, insbesondere Flüssigkeiten, bietet sich eine, bevorzugt fluoridierte, Kohlenstoffschicht an, da hierdurch unter anderem durch die gute Abbaubarkeit im Körper eine hohe biologische Verträglichkeit gegeben ist. Hier sei angemerkt, dass die Aufnahme auch lediglich kurzzeitig erfolgen kann, beispielsweise in einem Blutbeutel und/oder einer Durchflusskanüle.
Auch bei der Aufnahme von Lebensmitteln können durch die Beschich- tung mit Kohlenstoffschichten die Vorteile der hohen biologischen Verträglichkeit mit einer erhöhten Durchtrittssperrwirkung gegen Gase und/oder Feuchtigkeit vereint werden.
Teil des Verfahrens kann auch das Befüllen des Kunststoffverpackungsbehälters mit mindestens einem Füllgut sein, wobei die Verschlussmittel an die mindestens eine Siegelzone gesiegelt wird, bevor oder nachdem mindestens eine der Kammer mit Füllgut gefüllt wurde.
Das Siegeln kann durch einen Heißsiegelprozess und/oder durch einen Kaltsiegelprozess erfolgen.
Als Siegelmaterial können alle gängigen Siegelmaterialien, beispielsweise auf Basis von Polyethylen, Polypropylen und/oder Polyurethan zum Einsatz kommen.
Ganz besonders zweckmäßig hat es sich herausgestellt, wenn der zu beschichtende Kunststoffverpackungsbehälter inline hergestellt wird - es werden dann Behälterkörper aus einer Formeinrichtung, insbesondere einer Spritzguss-, Tiefzieheinrichtung oder Blasformeinrichtung entnom- men und dann auf Transportmittel aufgesetzt, mit denen der zu beschichtende Kunststoffverpackungsbehälters zu Beschichtungsmitteln gefördert und dort dann beschichtet wird. Weiterhin soll ein Kunststoffverpackungsbehälter gemäß Anspruch 12 als offenbart gelten und beanspruchbar sein.
Insbesondere sollen die Merkmale der Ansprüche 1 bis 1 1 (unabhängig voneinander sowie in Kombination), welche sich auf die Ausbildung des Kunststoffverpackungsbehälters beziehen, und die voranstehende Beschreibung auch für einen Kunststoffverpackungsbehälter mit den Merkmalen des Anspruchs 12 als offenbart und beansprucht gelten.
Weiterhin soll die Verwendung eines solchen Kunststoffverpackungsbe- hälters in einem Verfahren zur Beschichtung mit einer, insbesondere in einem Vakuum, bevorzugt durch ein CVD- oder PVD-Verfahren, erzeugten Barriereschicht und sowie für ein Verfahren nach einem der Ansprüche 1 bis 1 1 und/oder nach der voranstehenden Beschreibung als offenbart und beansprucht gelten.
Ebenfalls als eigenständige Erfindung offenbart und beansprucht soll zudem ein Kunststoffverpackungsbehälter nach dem Oberbegriff des unabhängigen Anspruchs 14 gelten. Bei einem solchen Kunststoffverpackungsbehälter weist der Großteil der Oberfläche der beschichteten Siegelzone, also die Oberfläche der Barriereschicht im Bereich der Siegelzone, eine höhere mittlere Rauheit (Ra ermittelt nach DIN EN ISO 4288:1998) auf als der Großteil der (für den Fall einer Beschichtung mit der Barriereschicht) beschichteten Innenoberfläche der Kavität, also der Oberfläche der Barriereschicht im Bereich der Innenoberfläche der Kavität, und/oder (für den Fall einer Beschichtung mit der Barriereschicht) als die Oberfläche der Barriereschicht im Bereich der Außenoberfläche. Weiterhin weist die beschichtete Siegelzone eine mittlere Oberflächenrauheit Ra von mindestens 200 nm, bevorzugt mindestens 400 nm, weiter bevorzugt mindestens 600 nm, besonders bevorzugt mindes- tens 800 nm, noch weiter bevorzugt mindestens 1000 nm, weiter bevorzugt mindestens 1200 nm, besonders bevorzugt mindestens 1400 nm, noch weiter bevorzugt mindestens 1 600 nm, weiter bevorzugt mindestens 1800 nm, besonders bevorzugt mindestens 2000 nm. Bevorzugt ist die Oberflächenrauheit Ra aus einem Wertebereich zwischen 200 nm und 2500 nm gewählt.
Vorteilhaft weist die beschichtete Innenoberfläche der Kavität eine Oberflächenrauheit von weniger als 200 nm, bevorzugt weniger als 150 nm, besonders bevorzugt weniger als 100 nm, bevorzugt weniger als 50 nm auf.
Es hat sich herausgestellt, dass diese Ausbildung der Oberflächenrauheit der beschichteten Siegelzonen dafür sorgt, dass die Barriereschicht im Bereich der Siegelzonen beim Aufsiegeln des Siegelmaterials durch einen gängigen Siegelprozess, insbesondere mit senkrecht zur Oberfläche wirkenden Flächendruck und/oder einer auf die Barriereschicht wirkenden Temperatureinwirkung, zumindest teilweise aufgebrochen bzw. aufgeschmolzen wird, wodurch das Siegelmaterial in unmittelbaren Kontakt mit dem Kunststoffverpackungsbehälter kommt, also die Barriereschicht nicht vollständig das Siegelmaterial von dem Kunststoffmaterial des Kunststoffverpackungsbehälters trennt, was insgesamt die Siegelbarkeit verbessert.
Weitere Vorteile, Merkmale und Einzelheiten der Erfindung ergeben sich aus der nachfolgenden Beschreibung bevorzugter Ausführungsbeispiele sowie anhand der Zeichnungen. Diese zeigen in:
Fig. 1 a eine Schnittansicht einer Ausführungsform eines nach dem
Konzept der Erfindung ausgebildeten Kunststoffverpa- ckungsbehälters vor dem Beschichten und vor dem Versiegeln,
Fig. 1 b eine Draufsicht des Kunststoffverpackungsbehälters aus Fig.
1 a,
Fig. 2a eine Schnittansicht des Kunststoffverpackungsbehälters aus
Fig. 1 a nach dem Beschichten und vor dem Versiegeln mit einer Barriereschicht, Fig. 2b eine Draufsicht des Kunststoffverpackungsbehälters aus Fig.
2a,
Fig. 3 der Kunststoffverpackungsbehälter aus Fig. 1 nach dem Beschichten und vor dem Versiegeln mit einer Siegelfolie,
Fig. 4a der Kunststoffverpackungsbehälter aus Fig. 3 nach dem Beschichten und nach dem Versiegeln mit der Siegelfolie, und in Fig. 4b eine Draufsicht des Kunststoffverpackungsbehälters aus Fig.
3, und in
Fig. 5 eine Darstellung eines aus einer Messung eines Verlaufs eines Oberflächenprofils erhaltener Messpunkte. In den Figuren sind gleiche Elemente und Elemente mit der gleichen Funktion mit den gleichen Bezugszeichen gekennzeichnet.
Fig. 1 zeigt schematisch eine Ausführungsform eines Kunststoffverpa- ckungsbehälters nach Anspruch 1 1 . Fig. 2 zeigt diese Ausführungsform in einer Draufsicht.
Der Kunststoffverpackungsbehälter 10 umschließt eine Kavität 12 mit einer Innenoberfläche 14 und einer (in der Figur 1 ) nach oben ausgerichte- ten Öffnung 1 6.
Die Öffnung 1 6 der Kavität 12 wird von einem umfangsgeschlossenen Öffnungskragen 18 umgeben, auf dem eine Siegelzone 20 angeordnet ist. Die Oberfläche 22 der Siegelzone 20 weist eine mittlere Oberflächenrauheit Ra (ermittelt nach DIN EN ISO 4288:1998) von über 200 nm auf. Diese Rauheit kann dadurch erzeugt werden, dass in einem Spritzguss eine entsprechende Negativform verwendet wird, die Unebenheiten aufweist, oder alternativ durch eine mechanische Nachbearbeitung des Rohlings nach dem Spritzgießen, nach oder bevorzugt vor dem Beschichten mit der Barriereschicht.
Die Oberflächenrauheit der Innenoberfläche 14 der Kavität 12 weist hingegen eine mittlere Oberflächenrauheit von unter 200 nm auf.
Fig. 2a und 2b zeigen den Verpackungsbehälter 10 aus den Fig. 1 a und 1 b jeweils in einer Seitenschnitt- bzw. Draufsicht.
Auf den Verpackungsbehälter 10 wurde eine Barriereschicht 40 aufgetra- gen, wobei die Barriereschicht 40 um eine funktionale Beschichtung handelt, die gegen den Durchtritt von Feuchtigkeit und/oder Gasen schützt. Die Barriereschicht umfasst einen Bereich 42, der der Siegelzone zugeordnet ist, und einen Bereich 44, der der Innenoberfläche der Kavität zugeordnet ist. Als mögliche Beschichtungsverfahren, die in einer Vakuumkammer zur Anwendung kommen können, kommen insbesondere CVD (Chemical Va- por Deposition) Verfahren wie Plasma-Enhanced Chemical Vapor Depositen (PECVD) oder PVD (Physical Vapor Deposition) Verfahren wie Sput- tern in Betracht.
In Fig. 3 ist zusätzlich zu dem in Fig. 2a gezeigten Verpackungsbehälter 10 ein Verschlussmittel 50, hier in Form einer Siegelfolie, dargestellt, welches eine Siegelschicht 52 aufweist, welche aus einem üblichen Siegelmaterial besteht.
Wird dieses Verschlussmittel 50 mit dem Verpackungsbehälter versiegelt, kommt es zu einer Anordnung, wie sie in den Figuren 4a und 4b jeweils in einer Seitenschnitt- bzw. Draufsicht dargestellt sind. Wesentlicher Unterschied zwischen dem in Fig. 3 und Fig. 4a dargestellten Zuständen ist, dass nach dem Siegeln die Barriereschicht 40 im Bereich 42, der der Siegelzone zugeordnet ist, zumindest teilweise durchbrochen ist und sich Teile der Siegelschicht mit der Oberfläche der Siegelzone des Behälters verbunden haben. Die Barriereschicht 40 des Bereichs 42 wird dabei von der Siegelschicht vollständig von oben bedeckt.
In sämtlichen beschriebenen Ausführungsbeispielen ist zusätzlich zu der Siegelzone eine Barriereschicht an der Innenoberfläche 14 der Kavität 12 vorgsehen. Zusätzlich oder bevorzugt alternativ zu einer Barriereschicht an der Innenoberfläche ist es möglich, eine solche Barriereschicht an einer Außenoberfläche 53 des Verpackungsbehälters 10 vorzusehen, ins- besondere an einer Mantelfäche 54, wobei die Mantelfläche 54 die Außenoberfläche 53 abzüglich einer Bodenfläche 55 ist.
Fig. 5 veranschaulicht eine Abbildung eines aus einer Messung ermittelten Verlaufs eines Oberflächenprofils zur Berechnung der Steilheit. Die Abbildung zeigt die gemessenen Punkte, die jeweils durch Verbindungslinien mit einander verbunden wurden, wodurch insgesamt das gemessene Profil wiedergegeben wird. Die Messpunkte wurden mit einem Tastschnittgerät entlang der Messrichtung äquidistant im Abstand Δ aufgenommen und anschließend, bevorzugt entsprechend der DIN EN ISO 1 1562:1998-09, gefiltert.
Die Steilheit berechnet sich aus der Höhenänderung δ des Profils zwi- sehen zwei Messpunkten zu σ = | δ / Δ |. Steilheit von 1/6 bedeutet, demnach, dass auf eine Länge von Δ = 6 mm das Oberflächenprofil um 5 = 1 mm ansteigt oder absinkt.

Claims

Patentansprüche
Verfahren zum Herstellen eines Kunststoffverpackungsbehälters (10), bei dem ein Kunststoffverpackungsbehälter (10) durch Spritz- guss, Tiefziehen und/oder Blasformen geformt wird, wobei der Kunststoffverpackungsbehälter (10) mit einer Barriereschicht (40) beschichtet und/oder beschichtbar, mit einer Kavität (12) zur Aufnahme eines Verpackungsinhaltes, insbesondere eines Lebensmittelproduktes, und mit einer Siegelzone (20) hergestellt wird, dadurch gekennzeichnet, dass die Oberfläche der Siegelzone (20) zur besseren Siegelbarkeit mit einem Siegelmaterial, vorzugsweise in einem Flächenanteil von mindestens 50% mit einer höheren mittleren Oberflächenrauheit Ra nach DIN EN ISO 4288:1998 als der mittleren Oberflächenrauheit Ra nach DIN EN ISO 4288:1998, vorzugsweise von mindestens 50% des Flächenanteils, der Innenoberfläche (14) der Kavität (12) und/oder, vorzugsweise von mindestens 50% des Flächenanteils, der Außenoberfläche, insbesondere der Mantelfläche, des Kunststoffverpackungsbehälters hergestellt wird, und dass die Siegelzone (20) mit einer mittleren Oberflächenrauheit
Ra nach DIN EN ISO 4288:1998 von mindestens 200 nm hergestellt wird. Verfahren nach Anspruch 1 ,
dadurch gekennzeichnet,
dass die, bevorzugt vollständige, Oberfläche (22) der Siegelzone (20) und die, bevorzugt vollständige, Innenoberfläche (14) der Kavi- tät (12) und/oder die Außenoberfläche, insbesondere die Mantelfläche der Außenoberfläche mit der, insbesondere in einem Vakuum, bevorzugt durch ein CVD- oder PVD-Verfahren, erzeugten, Barriereschicht zum Erhöhen der Durchtrittssperrwirkung gegen mindestens eine chemische Verbindung und/oder mindestens ein chemisches Element versehen wird.
Verfahren nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet,
dass die Siegelzone (20) mit einem Verschlussmittel (50), insbesondere einer Siegelfolie, mittels eines an dem Verschlussmittel angeordneten Siegelmaterials gesiegelt wird.
Verfahren nach Anspruch 3,
dadurch gekennzeichnet,
dass die Barriereschicht (40) im Bereich (42) der Siegelzone beim Siegeln zumindest abschnittsweise durchbrochen wird und das Siegelmaterial, insbesondere der Verschlussmittel (50) in Kontakt mit dem Kunststoffverpackungsbehälter (10), insbesondere der Oberfläche (22) der Siegelzone (20), tritt.
Verfahren nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet,
dass die Siegelzone (20) des Kunststoffverpackungsbehältermate- rials abschnittsweise über die Barriereschicht verläuft. Verfahren nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet,
der Kunststoffverpackungsbehälter (10) so hergestellt wird, dass die Siegelzone (20) an der Innen- und/oder Außenseite des Kunststoffverpackungsbehälters (10), umfangsgeschlossen einen Bereich, insbesondere eine Öffnung (1 6) der Kavität (12), bevorzugt als Öffnungsrand, einschließt.
Verfahren nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet,
dass die Innenoberfläche (14) der Kavität (12) oder die Außenoberfläche, insbesondere die Mantelfläche, so hergestellt wird, dass sie eine Oberflächenrauheit von weniger 200 nm, insbesondere weniger als 150 nm, bevorzugt weniger als 100 nm, besonders bevorzugt weniger als 50 nm, aufweist.
Verfahren nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet,
dass die Oberfläche der Siegelzone so hergestellt wird, dass bei einer Messung des Oberflächenprofils der Siegelzone gemäß DIN EN ISO 4288:1998 mit einem Messintervall zwischen 0,1 μηπ bis 1 μηπ entlang der Messrichtung mindestens 6 % der Verbindungslinien zwischen jeweils zwei aufeinander folgenden Messpunkten eine Steigung von mindestens 1 /6 aufweisen.
Verfahren nach Anspruch 8,
dadurch gekennzeichnet,
dass die Messung des Oberflächenprofils durch einen Tastschnittgerät mit einer Tastspitze mit einem Durchmesser kleiner oder gleich 2,5 μηπ erfolgt. Verfahren nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet,
dass die Oberfläche der Siegelzone zur Aufrauung durch eine Fun kenerosion, insbesondere Drahterosion oder Senkerosion, behan delt wird.
Verfahren nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet,
dass die Oberfläche der Siegelzone (20) so hergestellt wird, dass sie, vorzugsweise in einem Flächenanteil von mindestens 50%, den Kriterien der Referenznummer 15 oder höher, bevorzugt 24 oder höher, der Norm VDI 3400 ("Elektroerosive Bearbeitung; Begriffe, Verfahren, Anwendung"; 1975) entspricht.
Kunststoffverpackungsbehälter umfassend eine Kavität (12) zur Aufnahme eines Verpackungsinhaltes, insbesondere eines Lebensmittelproduktes, und eine Siegelzone (20), wobei der Kunststoffverpackungsbehälter (10) zumindest abschnittsweise mit einer Barriereschicht (40) beschichtet und/oder beschichtbar ausgebildet ist, dadurch gekennzeichnet, dass die Oberfläche (22) der Siegelzone (20) zur besseren Siegel- barkeit, insbesondere in einem Flächenanteil von mindestens 50%, eine höhere mittlere Oberflächenrauheit Ra nach DIN EN ISO 4288:1998 als die mittlere Oberflächenrauheit Ra nach DIN EN ISO 4288:1998 vorzugsweise von mindestens 50% des Flächenanteils, der Innenoberfläche (14) der Kavität (12) und/oder vorzugsweise von mindestens 50% des Flächenanteils, der Außenoberfläche des Kunststoffverpackungsbehälters, insbesondere der Mantelfläche, aufweist, und dass die Siegelzone (20) eine mittlere Oberflächenrauheit Ra nach DIN EN ISO 4288:1998 von mindestens 200 nm Ra aufweist.
Verpackungsbehälter nach Anspruch 12,
dadurch gekennzeichnet,
dass die Siegelzone (20) vor einem Beschichten in mindestens 25%, bevorzugt in mindestens 50%, besonders bevorzugt in mindestens 75% ihrer Oberfläche (22) eine Rauheit von mindestens 200 nm Ra aufweist.
Verpackungsbehälter, insbesondere nach Anspruch 12 oder 13, umfassend eine Kavität (12) zur Aufnahme eines Verpackungsinhaltes, insbesondere eines Lebensmittelproduktes, und eine Siegelzone (20), wobei die Oberfläche (22) der Siegelzone (20) und die Innenoberfläche (14) der Kavität (12) und/oder die Außenoberfläche, insbesondere die Mantelfläche des Kunststoffverpackungsbehälters mit einer, insbesondere in einem Vakuum, bevorzugt durch ein CVD- oder PVD-Verfahren, erzeugten, Barriereschicht (40) zum Erhöhen der Durchtrittssperrwirkung gegen mindestens eine chemische Verbindung und/oder mindestens ein chemisches Element beschichtet ist, dadurch gekennzeichnet, dass die Oberfläche der beschichteten Siegelzone (42) in einem Flächenanteil, insbesondere von mindestens 50%, insbesondere eine höhere mittlere Oberflächenrauheit nach DIN EN ISO 4288:1998 als die mittlere Oberflächenrauheit nach DIN EN ISO 4288:1998, vorzugsweise von mindestens 50% des Flächenanteils, der beschichteten Innenoberfläche (44) der Kavität (12) und/oder vorzugsweise von mindestens 50% des Flächenanteils, der beschichteten Außenoberfläche, insbesondere der Mantelfläche aufweist, und dass die beschichtete Siegelzone (42) eine mittlere Oberflächenrauheit Ra von mindestens 200 nm aufweist.
Verpackungsbehälter nach einem der Ansprüche 12 bis 14, dadurch gekennzeichnet,
dass die Oberfläche der Siegelzone so beschaffen ist, dass bei einer Messung des Oberflächenprofils der Siegelzone gemäß DIN EN ISO 4288:1998 mit einem Messintervall zwischen 0,1 μηπ bis 1 μηπ entlang der Messrichtung mindestens 6 % der Verbindungslinien zwischen jeweils zwei aufeinander folgenden Messpunkten eine Steigung von mindestens 1 /6 aufweisen.
Verpackungsbehälter nach einem der Ansprüche 12 bis 15, dadurch gekennzeichnet,
dass die Oberfläche der Siegelzone durch Aufrauung mittels einer Funkenerosion, insbesondere Drahterosion oder Senkerosion, erhalten wurde.
Verpackungsbehälter nach einem der Ansprüche 12 bis 1 6, dadurch gekennzeichnet,
dass die Oberfläche der Siegelzone (20), vorzugsweise in einem Flächenanteil von mindestens 50%, den Kriterien der Referenz- nummer 15 oder höher, bevorzugt 24 oder höher, der Norm VDI 3400 entspricht.
Verwendung eines Kunststoffverpackungsbehälters nach einem der Ansprüche 12 bis 17 in einem Verfahren zur Beschichtung mit einer, insbesondere in einem Vakuum, bevorzugt durch ein CVD- o- der PVD-Verfahren, erzeugten, Barriereschicht und bevorzugt in einem Verfahren nach einem der Ansprüche 1 bis 1 1 .
PCT/EP2013/065110 2012-07-17 2013-07-17 Verfahren zum herstellen eines kunststoffverpackungsbehaelters und kunststoffverpackungsbehaelter WO2014012982A1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US14/415,796 US20150217331A1 (en) 2012-07-17 2013-07-17 Method for producing a plastic packaging container, and plastic packaging container
EP13744992.2A EP2874797A1 (de) 2012-07-17 2013-07-17 Verfahren zum herstellen eines kunststoffverpackungsbehaelters und kunststoffverpackungsbehaelter

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE201210106439 DE102012106439B4 (de) 2012-07-17 2012-07-17 Verfahren zum Herstellen eines Kunststoffverpackungsbehälters und Kunststoffverpackungsbehälter
DE102012106439.3 2012-07-17

Publications (1)

Publication Number Publication Date
WO2014012982A1 true WO2014012982A1 (de) 2014-01-23

Family

ID=48915992

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2013/065110 WO2014012982A1 (de) 2012-07-17 2013-07-17 Verfahren zum herstellen eines kunststoffverpackungsbehaelters und kunststoffverpackungsbehaelter

Country Status (4)

Country Link
US (1) US20150217331A1 (de)
EP (1) EP2874797A1 (de)
DE (1) DE102012106439B4 (de)
WO (1) WO2014012982A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10076888B2 (en) 2015-04-28 2018-09-18 Sabic Global Technologies B.V. Multi-layer materials and articles made therefrom and methods of making

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102019107660A1 (de) * 2019-03-26 2020-10-01 Krones Ag Verfahren und Vorrichtung zum Beschichten von Behältnissen

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1048746A1 (de) 1999-04-28 2000-11-02 Alusuisse Technology & Management AG Verfahren und Vorrichtung zur Herstellung von Packungen
JP2003291273A (ja) * 2002-04-03 2003-10-14 Mitsuma:Kk 多層シート及びその製造方法並びに易開封性密閉容器
EP1481922A2 (de) * 2003-05-29 2004-12-01 Micro Chef, Inc. Verpackung für Mikrowellenöfen
WO2009030425A1 (de) 2007-09-03 2009-03-12 Alcan Technology & Management Ltd. Verpackungsteil und verfahren zu seiner herstellung
US20090212060A1 (en) * 2005-03-14 2009-08-27 Kabushiki Kaisha Yakult Honsha Packaging Container

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10352444A1 (de) * 2003-11-10 2005-06-09 Mitsubishi Polyester Film Gmbh Haftvermittelte, heißsiegelbare und peelfähige Polyesterfolie, Verfahren zu ihrer Herstellung und ihre Verwendung
EP2415420A1 (de) * 2010-07-29 2012-02-08 3M Innovative Properties Co. Verpackung für ein Dentalmaterial und Verfahren zur Herstellung der Verpackung

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1048746A1 (de) 1999-04-28 2000-11-02 Alusuisse Technology & Management AG Verfahren und Vorrichtung zur Herstellung von Packungen
JP2003291273A (ja) * 2002-04-03 2003-10-14 Mitsuma:Kk 多層シート及びその製造方法並びに易開封性密閉容器
EP1481922A2 (de) * 2003-05-29 2004-12-01 Micro Chef, Inc. Verpackung für Mikrowellenöfen
US20090212060A1 (en) * 2005-03-14 2009-08-27 Kabushiki Kaisha Yakult Honsha Packaging Container
WO2009030425A1 (de) 2007-09-03 2009-03-12 Alcan Technology & Management Ltd. Verpackungsteil und verfahren zu seiner herstellung

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10076888B2 (en) 2015-04-28 2018-09-18 Sabic Global Technologies B.V. Multi-layer materials and articles made therefrom and methods of making

Also Published As

Publication number Publication date
US20150217331A1 (en) 2015-08-06
EP2874797A1 (de) 2015-05-27
DE102012106439A1 (de) 2014-02-06
DE102012106439B4 (de) 2014-01-30

Similar Documents

Publication Publication Date Title
EP2551216B1 (de) Verpackungsbehälter, Herstellungsverfahren sowie Herstellungsvorrichtung
DE102004001603B4 (de) Behälter mit Innendekor
EP1675722B1 (de) Arzneimittelblisterverpackung
EP2190909B1 (de) Verpackungsteil und verfahren zu seiner herstellung
WO2015062806A1 (de) KUNSTSTOFFAUSGIEßER (SPOUT) FÜR STANDBEUTELVERPACKUNGEN, STANDBEUTELVERPACKUNG SOWIE HERSTELLUNGSVERFAHREN
EP1388594B1 (de) Verfahren zum Herstellen von glatten Barriereschichten und Verbundmaterial mit glatter Barriereschicht
DE102005045621A1 (de) Verpackungsbehälter mit hoher Gasdichtigkeit und Verfahren zu seiner Herstellung
WO2009138218A1 (de) Verpackungs-deckfolie, behältnis, verpackung und verpackungs-produkt-einheit
EP2349582B1 (de) Beschichtetes beschichtungsanlagenbauteil, insbesondere glockenteller, und entsprechendes herstellungsverfahren
WO2014012982A1 (de) Verfahren zum herstellen eines kunststoffverpackungsbehaelters und kunststoffverpackungsbehaelter
DE3346351A1 (de) Pharmazeutischer stopfen, kolben od. dgl. und verfahren zum herstellen von pharmazeutischen stopfen, kolben od. dgl.
EP1661693B1 (de) Dreheinschlagfolie sowie deren Verwendung als Verpackungsfolie
WO2015040048A1 (de) Spannungsfeste, elektrisch isolierende beschichtungen
DE102004043384B4 (de) Verfahren zur Herstellung eines beschichteten Hohlkörper-Substrates aus zumindest Polyethylenterephthalat
EP2361947A1 (de) Kunststoffformkörper aus EPP
WO2006051118A1 (de) Tubenförmige verpackung
DE102014105219A1 (de) Analysebehältnis sowie Analysesystem
WO2006111488A1 (de) Mehrschichtiger vorf0rmling sowie verfahren zu deren herstellung, un mehrschichtiger hohlkörper
DE10164015A1 (de) Verbundfolie mit Barriereeigenschaften
DE102011050015A1 (de) Vorrichtung zur Herstellung von beschichteten Spritzgussteilen
DE102009034210A1 (de) Transparente Spitztüte, vorzugsweise mit PLA
DE102004008109B4 (de) Künstlicher Korken
EP2949466B1 (de) Verpackungsfolie und verfahren zu deren herstellung
DE102023102876A1 (de) Mehrlagiges biologisch abbaubares Tubenlaminat mit Papierlage und darauf angeordneter Schutzschicht, Tubenkörper und Tube
WO2024165684A1 (de) Verpackungslagenmaterial mit papierlage und biologisch abbaubarem polymer

Legal Events

Date Code Title Description
DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13744992

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2013744992

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14415796

Country of ref document: US