WO2014012381A1 - 铜互连微柱力学性能原位压缩试样及其制备方法 - Google Patents

铜互连微柱力学性能原位压缩试样及其制备方法 Download PDF

Info

Publication number
WO2014012381A1
WO2014012381A1 PCT/CN2013/073133 CN2013073133W WO2014012381A1 WO 2014012381 A1 WO2014012381 A1 WO 2014012381A1 CN 2013073133 W CN2013073133 W CN 2013073133W WO 2014012381 A1 WO2014012381 A1 WO 2014012381A1
Authority
WO
WIPO (PCT)
Prior art keywords
sample
copper
microns
pdms
layer
Prior art date
Application number
PCT/CN2013/073133
Other languages
English (en)
French (fr)
Inventor
汪红
王昭瑜
程萍
丁桂甫
顾挺
王慧颖
张丛春
赵小林
Original Assignee
上海交通大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201210247658.3A external-priority patent/CN102768148B/zh
Priority claimed from CN201310039874.3A external-priority patent/CN103175718B/zh
Application filed by 上海交通大学 filed Critical 上海交通大学
Priority to US14/345,392 priority Critical patent/US20140242407A1/en
Publication of WO2014012381A1 publication Critical patent/WO2014012381A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/08Investigating strength properties of solid materials by application of mechanical stress by applying steady tensile or compressive forces
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/02Details not specific for a particular testing method
    • G01N2203/026Specifications of the specimen
    • G01N2203/0298Manufacturing or preparing specimens

Definitions

  • the invention relates to a compression test sample of micro-test technology and a preparation method thereof, in particular to an in-situ compression sample for simulating the mechanical property test of a TSV copper interconnect material and a preparation method thereof.
  • TSV Thine Silicon Vias laminated interconnect technology not only improves 3D integration, but also the advantages of short-distance interconnects can reduce interconnect delay, which is an important direction for the development of microelectronics. Due to the copper interconnect material in TSV, the preparation process and structure size are different from the macro bulk copper material, so the basic mechanical properties such as yield strength, fracture strength and Young's modulus of the material are obvious compared with macroscopic materials. difference.
  • PDMS is a common thermoplastic elastomer with good pattern replication. It is a very soft material with a small Young's modulus and is easily deformed by pressure.
  • the PDMS film has good elasticity, high strength, easy molding, and low surface energy, so it is easy to remove from the mold during film formation without causing damage to the mold. Therefore, PDMS has been widely used in the field of MEMS.
  • Chinese patent CN201010263850.2 proposes a MEMS wide-band piezoelectric energy harvester based on PDMS film structure, that is, PDMS is used as a structural film to sense external vibration to generate an excitation output voltage.
  • the present invention utilizes the high strength and good elasticity of the PDMS film, and uses PDMS as a mold for preparing a metal column.
  • the nanoindentation is a method for obtaining the mechanical parameters of the sample by loading the _ unloading curve during the nano hardness test. It is a well-known method, but the parameters such as the breaking strength of the material cannot be obtained.
  • Film uniaxial stretching method The preparation process of the sample is relatively simple, and the test data is easy to obtain.
  • a single-axis micro-tensile test piece (publication number 101149317A) for testing the mechanical properties of the film is proposed in Chinese Patent ZL2007 1 0047682.1.
  • the invention introduces a uniaxial micro-tensile test piece for testing the mechanical properties of a film by a mechanical property testing technique, but the film uniaxial stretching method has a stretching direction perpendicular to the growth direction of the plating layer. The in-situ mechanical properties of the TSV copper material could not be obtained.
  • In-situ tensile specimen preparation process and test method are more difficult, such as the invention patent of 201210050952.5, which proposes an in-situ tensile specimen for testing the mechanical properties of TSV copper interconnect material, but Since the in-situ tensile test specimen requires two upper and lower fixed end portions, and they are perpendicular to the in-situ tensile specimen portion, it is difficult to prepare. And because the size of the sample portion is small, it is not easy to clamp the two fixed ends at the same time during the test, which increases the difficulty of the test.
  • Chinese Patent Application Publication No. 102768148A which provides an in-situ compressed sample for testing the mechanical properties of a TSV copper interconnect material, the sample including a sample portion and a fixed end for fixing the sample
  • the sample portion is a circular metal column formed in the through silicon via; the sample portion is at an upper end portion of the fixed end.
  • the patented sample is prepared by a conventional technique, and a circular metal column formed in a through-silicon via hole is not easy to realize, and the damage to the micro-column is caused when the silicon is etched, thereby causing a problem of mechanical property test accuracy. Summary of the invention
  • the object of the present invention is to provide a copper interconnected microcolumn mechanical property in-situ compressed sample and a preparation method thereof, which requires only one fixed end, and is easier to implement in terms of process, and It is only necessary to fix one end when testing, so it is easier to accurately test the mechanical properties of the sample.
  • a method for preparing a copper interconnected microcolumn mechanical property in situ compressed sample is provided.
  • PDMS is used as a template base for the plating column. That is, after the patterned PDMS, the metal is plated in the PDMS hole, and after the curing process, the PDMS is directly peeled off, and the metal column is released.
  • the preparation method includes the following steps:
  • a layer of PDMS is spin-coated on the metal column prepared in step e and its metal layer substrate to be cured;
  • step h electroplating copper on the copper seed layer described in step h to form a high aspect ratio copper interconnect microcolumn structure; (j) stripping the PDMS from the copper pillar and releasing the copper pillar.
  • the metal layer is a structure in which copper and nickel are alternately plated and the last layer is a nickel layer, or all of them are formed by electroplating nickel.
  • a copper interconnect microcolumn mechanical property in situ compressed sample prepared by the above method, the in situ compressed sample comprising a sample portion and a fixed end for fixing the sample And the sample portion is a circular metal column formed in the PDMS hole; one end of the sample portion is fixed on the fixed end portion, and the fixed end portion is fixed by a clamp, and the test is performed Pressure is applied to the other end of the sample portion, and the direction of the force of the sample portion is consistent with the growth direction of the circular metal column to achieve the compression test of the sample.
  • the sample portion is on the order of micrometers, and the thickness of the fixed end portion is on the order of micrometers to millimeters.
  • the sample portion is a circular metal column formed in the PDMS hole, and the material is an electrically deposited copper material instead of preparing a copper microcolumn having a simulated TSV structure in the through silicon via.
  • the fixed end portion is a circular or square flat plate structure, and the material is copper or nickel.
  • the fixed end portion has a side length of 500 to 5000 ⁇ m and a thickness of 300 to 600 ⁇ m.
  • the in-situ compressed sample of the present invention is a high aspect ratio metal microcolumn structure prepared by using PDMS as a mold. After the released metal microcolumn array is separated into individual copper pillars, the above in situ compressed sample is obtained. Fixing one end of the sample portion on the fixed end portion, fixing the fixed end portion by a clamp, and applying pressure to the other end of the sample portion, and the force direction of the sample and the growth of the circular metal column The direction is the same and the compression test of the sample is achieved.
  • the stress-strain curve of the sample can be obtained, and the basic mechanical parameters such as yield strength, fracture strength and Young's modulus can be obtained.
  • the above method of the present invention prepares a copper interconnect microcolumn structure having a high aspect ratio by using PDMS as a mold, instead of preparing a microcolumn in a through silicon via, thereby avoiding damage to the microcolumn when etching silicon;
  • An in-situ compression specimen for simulating the mechanical properties test of TSV copper interconnect materials which brings the obtained mechanical parameters closer to practical applications, and overcomes the existing imperfections in the mechanical properties of TSV copper interconnect materials. At the office.
  • the present invention has the following beneficial effects:
  • the copper interconnect micro-column of the simulated TSV is designed to compress the sample structure in situ, and the main body size is micron-scale, which is mutually related to the actual production of TSV copper.
  • the main body size is basically the same, the direction of the force of the sample is consistent with the growth direction of the copper pillar, and is closer to the molding process and structure of the TSV copper interconnect in practical applications.
  • the preparation process is feasible.
  • PDMS is a template substrate for electroplating metal copper pillars.
  • FIG. 1 is a flow chart showing the structure of an in-situ compressed sample prepared by a copper interconnect microcolumn according to the present invention
  • FIG. 2 is a schematic view showing the structure of an in-situ compressed sample of a copper interconnected microcolumn of an analog TSV designed in an embodiment of the present invention
  • 1 is a metal column, 2 is a fixed end portion;
  • FIG. 3 is a schematic view showing the compression and fixation of an in-situ compressed sample structure of a copper interconnected microcolumn of an analog TSV designed in an embodiment of the present invention
  • Figure 1 shows the specific preparation process. Sputtering a layer of titanium seed having a thickness of about 0.2 ⁇ m on the glass sheet; plating a layer of copper and nickel having a total thickness of 200 ⁇ m on the seed layer, wherein copper and nickel are alternately plated, and the last layer is a nickel layer; Spinning a negative thickness of 50 microns on the nickel layer; patterning the negative gel by RIE etching to form a hole with a diameter of 5 microns and a depth of 50 microns; electroplating nickel into the etched holes; removing lithography
  • the glue and seed layers release a nickel-based nickel column; spin-coat a layer of PDMS on the nickel column; directly remove the PDMS from the nickel column after curing; sputter a layer of 0.2 on the stripped PDMS.
  • a micron titanium seed layer and a 0.5 micron copper seed layer electroplated copper to form a high aspect ratio copper interconnect microcolumn structure; finally, the PDMS is peeled off from the copper post to release the copper pillar; Sample. That is, a copper interconnected microcolumn in-situ compressed sample structure simulating TSV is provided, including a sample portion and a fixed end portion for fixing the sample.
  • the sample portion described in this embodiment is a metal pillar formed in the PDMS pore, i.e., the sample portion 1, and the material is an electrodeposited copper material.
  • the PDMS is used as a mold to prepare a copper interconnect microcolumn structure with high aspect ratio, instead of preparing a microcolumn in the through silicon via, thereby avoiding damage to the microcolumn when etching silicon.
  • the sample portion 1, the fixed end portion 2 has a thickness, and their dimensions are on the order of micrometers.
  • the sample portion 1 is in the shape of a circular metal column having a diameter of 5 micrometers and a height of 50 micrometers.
  • the sample portion 1 is made of metallic copper.
  • the fixed end portion 2 has a square plate structure with a side length of 500 micrometers and a thickness of 500 micrometers.
  • the fixed end portion 2 is made of copper.
  • Figure 1 shows the specific preparation process. Sputtering a layer of titanium seed having a thickness of about 0.4 ⁇ m on the glass sheet; plating a nickel layer having a total thickness of 250 ⁇ m on the seed layer; and spin coating a negative thickness of 150 ⁇ m on the nickel layer;
  • the etching method is a negative gel patterning, forming a hole having a diameter of 25 ⁇ m and a depth of 150 ⁇ m; electroplating nickel in the etched hole; removing the photoresist and the seed layer, releasing a nickel-based nickel column;
  • a layer of PDMS is spin-coated on the column; the PDMS is directly peeled off from the nickel column after curing; a 0.15 micron titanium seed layer and a 0.6 micron copper seed layer are sputtered on the peeled PDMS; A high aspect ratio copper interconnect microcolumn structure is formed; finally, the PDMS is peeled off from the copper pillar, and the copper pillar is released; a sample as
  • the sample portion described in this embodiment is a metal pillar formed in the PDMS pore, i.e., the sample portion 1, and the material is an electrodeposited copper material.
  • the PDMS is used as a mold to prepare a copper interconnect microcolumn structure with high aspect ratio, instead of preparing a microcolumn in the through silicon via, thereby avoiding damage to the microcolumn when etching silicon.
  • the sample portion 1, the fixed end portion 2 has a thickness, and their dimensions are on the order of micrometers.
  • the sample portion 1 is in the shape of a circular metal column having a diameter of 25 ⁇ m and a height of 150 ⁇ m.
  • the sample portion 1 is made of metallic copper.
  • the fixed end portion 2 has a rectangular flat plate structure with a side length of 3000 micrometers and a thickness of 450 micrometers.
  • the sample fixing end portion 2 is made of a copper material.
  • Figure 1 shows the specific preparation process. Sputtering a layer of titanium seed having a thickness of about 0.5 ⁇ m on the glass sheet; plating a layer of copper and nickel having a total thickness of 250 ⁇ m on the seed layer, wherein copper and nickel are alternately plated, and the last layer is a nickel layer; Spin coating a negative thickness of 200 microns on the nickel layer; using RIE etching as a negative glue Graphically formed into a hole having a diameter of 50 ⁇ m and a depth of 200 ⁇ m; electroplating nickel in the etched hole; removing the photoresist and the seed layer, releasing a nickel-based nickel column; and spin coating on the nickel column a layer of PDMS; directly peeling off the PDMS from the nickel column after curing; sputtering a 0.25 micron titanium seed layer and a 0.8 micron copper seed layer on the peeled PDMS; electroplating copper to form a high aspect ratio The copper interconnected microcolumn structure; finally, the PDMS
  • the sample portion described in this embodiment is a metal pillar formed in the PDMS pore, i.e., the sample portion 1, and the material is an electrodeposited copper material.
  • the PDMS is used as a mold to prepare a copper interconnect microcolumn structure with high aspect ratio, instead of preparing a microcolumn in the through silicon via, thereby avoiding damage to the microcolumn when etching silicon.
  • the sample portion 1, the fixed end portion 2 has a thickness, and their dimensions are on the order of micrometers.
  • the sample portion 1 is in the shape of a circular metal column having a diameter of 50 ⁇ m and a height of 200 ⁇ m.
  • the sample portion 1 is made of metallic copper.
  • the fixed end portion 2 has a rectangular flat plate structure with a side length of 5000 micrometers and a thickness of 600 micrometers.
  • the sample fixing end portion 2 is made of a copper material.
  • one end of the sample portion is fixed by the fixed end portion 2, and a horizontal pressure is applied to one end of the sample, so that the compression test of the sample can be realized.
  • the stress-strain curve of the sample can be obtained, and the basic mechanical parameters such as compressive strength and Young's modulus can be obtained.
  • the main body size of the sample is micron-scale compared with the conventional film sample, which is substantially the same as the size of the TSV copper interconnect body in actual production, and the force direction of the sample and the copper column The growth direction is consistent.
  • the mechanical parameters obtained by the compression test can truly reflect the mechanical properties of the TSV copper interconnect material, which will effectively improve the authenticity of the mechanical properties of the TSV copper interconnect material in the 3D package design and simulation. Development, application, life prediction and reliability improvements will play an important role.
  • the copper interconnect microcolumn compression sample of the invention prepares a copper interconnect microcolumn structure having a high aspect ratio by using PDMS as a mold, instead of preparing a microcolumn in a through silicon via, thereby avoiding micro-etching when etching silicon
  • the column has a damage effect.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Micromachines (AREA)
  • Measuring Leads Or Probes (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

一种铜互连微柱力学性能原位压缩试样及其制备方法,所述试样是在PDMS孔中形成的圆形金属柱,包括试样部分(1)和用于固定试样的固定端部分(2);所述的固定端部分(2)为圆形或方形平板结构,所述试样部分(1)在所述固定端部分的上端部分。所述试样的主体尺寸是微米级,试样受力方向与金属柱的生长方向一致,以PDMS为模板电镀形成铜柱的工艺,克服了TSV在刻蚀硅的过程中对金属铜柱有所腐蚀进而影响对其力学性能准确测试的问题,解决了薄膜层力学性能测试数据不能真实反应TSV孔内铜互连材料力学性能的问题,提高了3D封装设计与仿真模拟中TSV铜互连材料力学特性参数的真实性。

Description

铜互连微柱力学性能原位压縮试样及其制备方法 技术领域
本发明涉及的是一种微测试技术的压縮试样及其制备方法, 具体说, 涉及一 种用于模拟 TSV铜互连材料力学性能测试的原位压縮试样及其制备方法。 背景技术
TSV (Through Silicon Vias, 硅通孔) 叠层互连技术, 不仅可以提高三维集 成度, 而且其短距离互连的优势可以降低互连延迟, 是微电子技术发展的一个重 要方向。 由于 TSV中的铜互连材料, 其制备工艺与结构尺寸与宏观的块体铜材 料不同, 所以材料的屈服强度、 断裂强度, 杨氏模量等基本力学特性和宏观材料 相比, 存在明显的差异。
PDMS是一种常见的热塑性弹性体, 具有很好的图形复制性。是一种很柔软 的材料, 其杨氏模量比较小, 容易受压变形。 PDMS薄膜弹性好, 强度高, 易于 成型,且表面能低,所以成膜时容易从模具上取下,不对模具造成破坏。故 PDMS 已广泛应用于 MEMS领域, 如中国专利 CN201010263850.2中提出了一种基于 PDMS薄膜结构的 MEMS宽频压电能量采集器, 即将 PDMS作为结构薄膜, 感 受外界振动从而产生激励输出电压的。 本发明是利用了 PDMS薄膜的高强度和 良好的弹性, 将 PDMS作为制备金属柱的模具。
现有的薄膜力学性能测试大多基于纳米压痕方法和薄膜单轴拉伸方法,而没 有用微压縮的方法来测试材料的力学特性。纳米压痕是通过纳米硬度测试过程中 加载 _卸曲线得出试样力学参数的方法, 是一种公知的方法, 但无法获得材料的 断裂强度等参数。
薄膜单轴拉伸方法试样制备工艺相对简单,测试数据易于获取, 如中国专利 ZL2007 1 0047682.1中提出了一种用于薄膜力学性能测试的单轴微拉伸试件 (公 开号为 101149317A), 该发明介绍了一种力学性能测试技术的用于薄膜力学性能 测试的单轴微拉伸试件,但薄膜单轴拉伸方法其拉伸方向与电镀层生长方向垂直, 无法获得 TSV铜材料原位的力学特性参数。 在没有详细的微尺度、 原位的铜材 料力学特性参数背景下, 进行铜 TSV结构设计和模拟仿真, 必然引用宏观块体 铜材料的力学参数, 使得 TSV铜互连结构设计存在一定的可靠性问题, 有碍产 业化的进程。
而原位拉伸试样制备工艺和测试方法比较困难,如申请号为 201210050952.5 的发明专利, 该专利申请中提出一种用于 TSV铜互连材料力学性能测试的原位 拉伸试样,但由于原位拉伸试样需要上下两个固定端部分, 且它们与原位拉伸试 样部分在垂直方向上, 因此不易制备。 并且由于试样部分的尺寸很小, 在测试过 程中不易将两个固定端同时夹持, 加大了测试的难度。
公开号为 102768148A的中国专利申请, 该专利提供了一种用于 TSV铜互 连材料力学性能测试的原位压縮试样,所述试样包括试样部分和用于固定试样的 固定端,所述的试样部分是在硅通孔中形成的圆形金属柱; 所述试样部分在所述 固定端的上端部分。但是该专利试样是采用常规技术制备, 在硅通孔中形成的圆 形金属柱, 不容易实现, 且刻蚀硅时会对微柱产生损伤影响, 从而导致力学性能 测试准确性问题。 发明内容
针对上述现有技术的不足,本发明的目的是提供一种铜互连微柱力学性能原 位压縮试样及其制备方法, 该试样只需一个固定端, 工艺方面更易于实现, 且测 试时只需将一端固定, 因此更易于试样力学性能的准确测试。
根据本发明的一方面,提供一种铜互连微柱力学性能原位压縮试样的制备方 法, 为了完整提取互连孔金属柱作为试样部分, 用 PDMS作为电镀柱的模板基 底。即图形化 PDMS之后, 电镀金属于 PDMS孔中,固化处理之后直接将 PDMS 剥下, 释放金属柱。 具体地, 所述制备方法包括如下步骤:
(a) 在玻璃片上溅射一层厚度为 0.2-0.5微米的钛种子层。
(b) 在种子层上电镀一层总厚度为 200-300微米的(镍或者铜或者镍铜交 替) 金属层;
(c) 旋涂一层厚度为 50-200微米的负胶;
(d) RIE刻蚀负胶之后,电镀镍于刻蚀出的直径 5-50微米,深度为 50-200 微米的孔中;
(e) 去掉光刻胶、种子层,释放出以步骤 b制得的金属层为基底的金属柱, 该金属柱即步骤 d电镀得到的镍柱;
(0 在步骤 e制备得到的金属柱及其金属层基底上面旋涂一层 PDMS,进 行固化处理;
(g) 直接将 PDMS从镍柱上剥离下来;
(h) 在 PDMS上先溅射一层厚度为 0.15-0.25微米的钛种子层, 再溅射一 层厚度为 0.5-0.8微米的铜种子层;
(i) 在步骤 h所述的铜种子层上电镀铜,形成高深宽比的铜互连微柱结构; (j ) 将 PDMS从铜柱上剥离下来, 释放铜柱。
优选地, 所述步骤 (b)中, 所述金属层是铜和镍交替电镀并保证最后一层为 镍层的结构, 或者全部由电镀镍形成。
根据本发明的另一方面,提供一种上述方法制备的铜互连微柱力学性能原位 压縮试样,所述原位压縮试样包括试样部分和用于固定试样的固定端部分, 所述 的试样部分是在 PDMS孔中形成的圆形金属柱; 所述试样部分的一端固定在所 述固定端部分之上,用夹具将固定端部分固定, 并对所述试样部分的另一端施加 压力, 试样部分受力方向与圆形金属柱的生长方向一致, 实现试样的压縮测试。
优选地, 所述试样部分为微米级, 所述固定端部分厚度为微米级到毫米级。 优选地, 所述的试样部分是在 PDMS孔中形成的圆形金属柱, 材料为电沉 积铜材, 而不是在硅通孔中制备模拟 TSV结构的铜微柱。
优选地, 所述的固定端部分为圆形或方形平板结构, 材料为铜材或镍材。 优选地, 所述固定端部分, 边长为 500-5000微米, 厚度为 300-600微米。 本发明所述原位压縮试样是利用 PDMS作为模具制备的高深宽比金属微柱 结构。 释放出的金属微柱阵列分离成单个铜柱之后, 即得到上述原位压縮试样。 将上述试样部分的一端固定在所述固定端部分之上,通过夹具将固定端部分固定, 并对所述试样部分的另一端施加压力,试样受力方向与圆形金属柱的生长方向一 致, 实现试样的压縮测试。通过对实验过程中载荷和位移变化的记录, 可以得出 试样的应力应变曲线, 从而能得出屈服强度、断裂强度和杨氏模量等基本力学参 数。 本发明上述方法通过使用 PDMS 作为模具制备出具有高深宽比的铜互连微 柱结构,而不是在硅通孔中制备微柱,进而避免了刻蚀硅时对微柱产生损伤影响; 提供了一种用于模拟 TSV铜互连材料力学性能测试的原位压縮试样, 使得到的 力学参数更接近于实际应用, 克服了现有的对 TSV铜互连材料力学性能表征的 不完善之处。
与现有技术相比, 本发明具有如下的有益效果:
与现有的国内外的微拉伸试样相比, 首先, 本发明设计的模拟 TSV的铜互 连微柱原位压縮试样结构, 主体尺寸是微米级, 与实际生产中 TSV铜互连主体 尺寸基本相同,试样受力方向与铜柱的生长方向一致, 并且更贴近于实际应用中 TSV 铜互连的成型工艺与结构。 其次, 制备工艺可行, 相比以硅为基底电镀铜 柱, PDMS为模板基底电镀金属铜柱的工艺克服了在 TSV刻蚀硅的过程中, 对 金属铜柱有所腐蚀,进而影响对其力学性能准确测试的问题, 縮短了实验的工艺 周期, 重现性好, 成品率高; 最后, 本发明是采用无框架结构, 单轴压縮, 只需 一个固定端即可, 工艺更加简单, 得到的铜微柱结构更加完整, 且更易于进行测 试, 并可以更直接的测试出 TSV铜互连材料的力学性能。 附图说明
通过阅读参照以下附图对非限制性实施例所作的详细描述, 本发明的其 它特征、 目的和优点将会变得更明显:
图 1为本发明中制备铜互连微柱原位压縮试样结构流程图;
图 2为本发明实施例中所设计的模拟 TSV的铜互连微柱原位压縮试样结构 示意图;
图 2中: 1为金属柱, 2为固定端部分;
图 3为本发明实施例中所设计的模拟 TSV的铜互连微柱原位压縮试样结构 的压縮固定示意图;
图 3中: 3为固定端夹具, 4为施力端。 具体实施方式
下面结合具体实施例对本发明进行详细说明。以下实施例将有助于本领域的 技术人员进一步理解本发明, 但不以任何形式限制本发明。应当指出的是, 对本 领域的普通技术人员来说,在不脱离本发明构思的前提下, 还可以做出若干变形 和改进。 这些都属于本发明的保护范围。 实施例 1
如图 1为具体制备过程。在玻璃片上溅射一层厚度约为 0.2微米的钛种子层; 在种子层上电镀一层总厚度为 200微米的铜镍层,其中铜和镍交替电镀, 并保证 最后一层为镍层; 在镍层上旋涂厚度为 50微米的负胶; 用 RIE刻蚀法为负胶图 形化, 形成直径 5微米, 深度为 50微米的孔; 电镀镍于刻蚀出的孔中; 去掉光 刻胶、 种子层, 释放出以铜镍为基底的镍柱; 在镍柱上面旋涂一层 PDMS; 固化 处理后直接将 PDMS从镍柱上剥离下来; 在剥离下来的 PDMS上溅射一层 0.2 微米的钛种子层以及一层 0.5微米的铜种子层; 电镀铜, 形成高深宽比的铜互连 微柱结构; 最后将 PDMS从铜柱上剥离下来, 释放铜柱; 得到如图 2所示的试 样。 即提供出这样一种模拟 TSV的铜互连微柱原位压縮试样结构, 包括试样部 分和用于固定试样的固定端部分。
本实施例所述的试样部分是在 PDMS孔中形成的金属柱即试样部分 1,材料 为电沉积铜材。 使用 PDMS作为模具制备出具有高深宽比的铜互连微柱结构, 而不是在硅通孔中制备微柱, 进而避免了刻蚀硅时对微柱产生损伤影响
所述试样部分 1, 所述固定端部分 2厚度, 它们的尺寸均为微米级。
具体的, 本实施例中, 所述试样部分 1, 其形状为圆形金属柱, 直径为 5微 米, 高度为 50微米。
本实施例中, 所述试样部分 1, 材料为金属铜。
本实施例中, 所述固定端部分 2, 其形状为正方形平板结构, 边长为 500微 米, 厚度为 500微米。
本实施例中, 所述固定端部分 2, 材料为铜材。
如图 3所示,本实施例用于测量时,试样部分的一端通过固定端部分 2固定, 对试样部分另一端施加水平方向的压力,就可以实现试样的压縮测试。通过对实 验过程中载荷和位移变化的记录, 可以得出试样的应力应变曲线, 从而能得出抗 压强度和杨氏模量等基本力学参数。 实施例 2
如图 1为具体制备过程。在玻璃片上溅射一层厚度约为 0.4微米的钛种子层; 在种子层上电镀一层总厚度为 250微米的镍层;在镍层上旋涂厚度为 150微米的 负胶; 用 RIE刻蚀法为负胶图形化, 形成直径 25微米, 深度为 150微米的孔; 电镀镍于刻蚀出的孔中; 去掉光刻胶、 种子层, 释放出以镍为基底的镍柱; 在镍 柱上面旋涂一层 PDMS; 固化处理后直接将 PDMS从镍柱上剥离下来; 在剥离 下来的 PDMS上溅射一层 0.15微米的钛种子层以及一层 0.6微米的铜种子层; 电镀铜, 形成高深宽比的铜互连微柱结构; 最后将 PDMS从铜柱上剥离下来, 释放铜柱; 得到如图 2所示的试样。 即提供出这样一种模拟 TSV的铜互连微柱 原位压縮试样结构, 包括试样部分和用于固定试样的固定端部分。
本实施例所述的试样部分是在 PDMS孔中形成的金属柱即试样部分 1,材料 为电沉积铜材。 使用 PDMS作为模具制备出具有高深宽比的铜互连微柱结构, 而不是在硅通孔中制备微柱, 进而避免了刻蚀硅时对微柱产生损伤影响
所述试样部分 1, 所述固定端部分 2厚度, 它们的尺寸均为微米级。
具体的, 本实施例中, 所述试样部分 1, 其形状为圆形金属柱, 直径为 25 微米, 高度为 150微米。
本实施例中, 所述试样部分 1, 材料为金属铜。
本实施例中, 所述固定端部分 2, 其形状为长方形平板结构, 边长为 3000 微米, 厚度为 450微米。
本实施例中, 所述试样固定端部分 2, 材料为铜材。
如图 3所示,本实施例用于测量时,试样部分的一端通过固定端部分 2固定, 对试样一端施加水平方向的压力,就可以实现试样的压縮测试。通过对实验过程 中载荷和位移变化的记录, 可以得出试样的应力应变曲线, 从而能得出抗压强度 和杨氏模量等基本力学参数。 实施例 3
如图 1为具体制备过程。在玻璃片上溅射一层厚度约为 0.5微米的钛种子层; 在种子层上电镀一层总厚度为 250微米的铜镍层,其中铜和镍交替电镀, 并保证 最后一层为镍层; 在镍层上旋涂厚度为 200微米的负胶; 用 RIE刻蚀法为负胶 图形化, 形成直径 50微米, 深度为 200微米的孔; 电镀镍于刻蚀出的孔中; 去 掉光刻胶、 种子层, 释放出以铜镍为基底的镍柱; 在镍柱上面旋涂一层 PDMS; 固化处理后直接将 PDMS从镍柱上剥离下来; 在剥离下来的 PDMS上溅射一层 0.25微米的钛种子层以及一层 0.8微米的铜种子层; 电镀铜, 形成高深宽比的铜 互连微柱结构; 最后将 PDMS从铜柱上剥离下来, 释放铜柱; 得到如图 2所示 的试样。 即提供出这样一种模拟 TSV的铜互连微柱原位压縮试样结构, 包括试 样部分和用于固定试样的固定端部分。
本实施例所述的试样部分是在 PDMS孔中形成的金属柱即试样部分 1,材料 为电沉积铜材。 使用 PDMS作为模具制备出具有高深宽比的铜互连微柱结构, 而不是在硅通孔中制备微柱, 进而避免了刻蚀硅时对微柱产生损伤影响
所述试样部分 1, 所述固定端部分 2厚度, 它们的尺寸均为微米级。
具体的, 本实施例中, 所述试样部分 1, 其形状为圆形金属柱, 直径为 50 微米, 高度 200微米。
本实施例中, 所述试样部分 1, 材料为金属铜。
本实施例中, 所述固定端部分 2, 其形状为长方形平板结构, 边长为 5000 微米, 厚度为 600微米。
本实施例中, 所述试样固定端部分 2, 材料为铜材。
如图 3所示,本实施例用于测量时,试样部分的一端通过固定端部分 2固定, 对试样一端施加水平方向的压力,就可以实现试样的压縮测试。通过对实验过程 中载荷和位移变化的记录, 可以得出试样的应力应变曲线, 从而能得出抗压强度 和杨氏模量等基本力学参数。
以上所述的具体实施例, 与通常的薄膜试样相比, 该试样的主体尺寸是微米 级, 与实际生产中 TSV铜互连主体尺寸基本相同, 且试样受力方向与铜柱的生 长方向一致, 通过压縮试验所得到的力学参数能够真实反映 TSV铜互连材料的 力学特性, 将有效提高 3D封装设计与仿真模拟中 TSV铜互连材料力学特性参 数的真实性, 对于相关产品的开发、应用、 寿命预测与可靠性提高将发挥重要作 用。 本发明铜互连微柱压縮试样通过使用 PDMS作为模具制备出具有高深宽比 的铜互连微柱结构, 而不是在硅通孔中制备微柱, 进而避免了刻蚀硅时对微柱产 生损伤影响。 通过对实施例具体描述,进一步阐述了本发明的目的、技术方案和有益效果。 本发明适用于模拟 TSV中铜互连材料的力学性能测试表征, 同时也对其它微观 金属材料测试有着相应的效果。
以上对本发明的具体实施例进行了描述。需要理解的是, 本发明并不局限于 上述特定实施方式,本领域技术人员可以在权利要求的范围内做出各种变形或修 改, 这并不影响本发明的实质内容。

Claims

权 利 要 求 书
1、 一种铜互连微柱力学性能原位压縮试样的制备方法, 其特征在于: 所述 制备方法包括如下步骤:
(a) 在玻璃片上溅射一层厚度为 0.2-0.5微米的钛种子层;
(b) 在种子层上电镀一层总厚度为 200-300微米的金属层;
(c) 旋涂一层厚度为 50-200微米的负胶;
(d) RIE刻蚀负胶之后,电镀镍于刻蚀出的直径 5-50微米,深度为 50-200 微米的孔中;
(e) 去掉光刻胶、种子层,释放出以步骤 b制得的金属层为基底的金属柱, 该金属柱即步骤 d电镀得到的镍柱;
(0 在步骤 e制备得到的金属柱及其金属层基底上面旋涂一层 PDMS,进 行固化处理;
(g) 直接将 PDMS从镍柱上剥离下来;
(h) 在 PDMS上先溅射一层厚度为 0.15-0.25微米的钛种子层, 再溅射一 层厚度为 0.5-0.8微米的铜种子层;
(i) 在步骤 h所述的铜种子层上电镀铜,形成高深宽比的铜互连微柱结构; (j ) 将 PDMS从铜柱上剥离下来, 释放铜柱。
2、 根据权利要求 1所述的铜互连微柱力学性能原位压縮试样的制备方法, 其特征在于: 步骤 (b)中, 所述金属层是铜和镍交替电镀并保证最后一层为镍层 的结构, 或者全部由电镀镍形成。
3、 一种根据权利要求 1或 2所述方法制备的原位压縮试样, 其特征在于: 所述原位压縮试样包括试样部分和用于固定试样的固定端部分,所述试样部分是 在 PDMS 孔中形成的圆形金属柱; 所述试样部分的一端固定在所述固定端部分 之上, 用夹具将固定端部分固定, 并对所述试样部分的另一端施加压力, 试样部 分受力方向与圆形金属柱的生长方向一致, 实现试样的压縮测试。
4、 根据权利要求 3所述的原位压縮试样, 其特征在于, 所述试样部分为微 米级, 所述固定端部分厚度为微米级到毫米级。
5、 根据权利要求 4所述的原位压縮试样, 其特征在于, 所述试样部分的形 状为圆形金属柱, 直径为 5-50微米, 高度为 50-200微米。
6、 根据权利要求 3-5任一项所述的原位压縮试样, 其特征在于, 所述试样 部分, 材料为电沉积金属铜。
7、 根据权利要求 3-5任一项所述的原位压縮试样, 其特征在于, 所述固定 端部分的形状为圆形或方形平板结构。
8、 根据权利要求 7所述的原位压縮试样, 其特征在于, 所述固定端部分, 材料为铜材或镍材。
9、 根据权利要求 7所述的原位压縮试样, 其特征在于, 所述固定端部分, 边长 为 500-5000微米, 厚度为 300-600微米。
PCT/CN2013/073133 2012-07-17 2013-03-25 铜互连微柱力学性能原位压缩试样及其制备方法 WO2014012381A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/345,392 US20140242407A1 (en) 2012-07-17 2013-03-25 In-situ Compressed Specimen for Evaluating Mechanical Property of Copper Interconnection Micro Column and Preparation Method thereof

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201210247658.3A CN102768148B (zh) 2012-07-17 2012-07-17 用于tsv铜互连材料力学性能测试的原位压缩试样
CN201210247658.3 2012-07-17
CN201310039874.3 2013-02-01
CN201310039874.3A CN103175718B (zh) 2013-02-01 2013-02-01 铜互连微柱力学性能原位压缩试样的制备方法

Publications (1)

Publication Number Publication Date
WO2014012381A1 true WO2014012381A1 (zh) 2014-01-23

Family

ID=49948230

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/073133 WO2014012381A1 (zh) 2012-07-17 2013-03-25 铜互连微柱力学性能原位压缩试样及其制备方法

Country Status (1)

Country Link
WO (1) WO2014012381A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105352786A (zh) * 2015-11-13 2016-02-24 西安建筑科技大学 一种破碎岩石试样制作及其加载方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1700680A1 (en) * 2005-03-09 2006-09-13 EPFL Ecole Polytechnique Fédérale de Lausanne Easy release fluoropolymer molds for micro- and nano-pattern replication
US20060216921A1 (en) * 2005-03-25 2006-09-28 Osamu Kato Through conductor and its manufacturing method
CN101121500A (zh) * 2007-09-06 2008-02-13 复旦大学 一种三维神经微电极阵列的制作方法
US20100206737A1 (en) * 2009-02-17 2010-08-19 Preisser Robert F Process for electrodeposition of copper chip to chip, chip to wafer and wafer to wafer interconnects in through-silicon vias (tsv)
CN102148192A (zh) * 2010-12-30 2011-08-10 上海交通大学 在硅通孔表面生长阻挡层与种子层的方法
CN102519762A (zh) * 2011-11-28 2012-06-27 上海交通大学 带网状支撑框架的低应力微拉伸试样的制备方法
CN102607938A (zh) * 2012-02-29 2012-07-25 上海交通大学 用于tsv铜互连材料力学性能测试的原位拉伸试样
CN102768148A (zh) * 2012-07-17 2012-11-07 上海交通大学 用于tsv铜互连材料力学性能测试的原位压缩试样

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1700680A1 (en) * 2005-03-09 2006-09-13 EPFL Ecole Polytechnique Fédérale de Lausanne Easy release fluoropolymer molds for micro- and nano-pattern replication
US20060216921A1 (en) * 2005-03-25 2006-09-28 Osamu Kato Through conductor and its manufacturing method
CN101121500A (zh) * 2007-09-06 2008-02-13 复旦大学 一种三维神经微电极阵列的制作方法
US20100206737A1 (en) * 2009-02-17 2010-08-19 Preisser Robert F Process for electrodeposition of copper chip to chip, chip to wafer and wafer to wafer interconnects in through-silicon vias (tsv)
CN102148192A (zh) * 2010-12-30 2011-08-10 上海交通大学 在硅通孔表面生长阻挡层与种子层的方法
CN102519762A (zh) * 2011-11-28 2012-06-27 上海交通大学 带网状支撑框架的低应力微拉伸试样的制备方法
CN102607938A (zh) * 2012-02-29 2012-07-25 上海交通大学 用于tsv铜互连材料力学性能测试的原位拉伸试样
CN102768148A (zh) * 2012-07-17 2012-11-07 上海交通大学 用于tsv铜互连材料力学性能测试的原位压缩试样

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
LI, JUNYI ET AL.: "Investigation of Mechanical Properties of Cu-TSV by Uniaxial Micro-tensile Test", JOURNAL OF FUDAN UNIVERSITY (NATURAL SCIENCE), vol. 51, no. 2, April 2012 (2012-04-01), pages 184 - 189 *
TANG, JUN ET AL.: "A directly strain measuring method for electroplated nickel micro-tensile test", MICROSYST TECHNOL, vol. 16, 2010, pages 1839 - 1844 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105352786A (zh) * 2015-11-13 2016-02-24 西安建筑科技大学 一种破碎岩石试样制作及其加载方法

Similar Documents

Publication Publication Date Title
CN110367978B (zh) 一种三维屈曲结构柔性神经电极及其制备工艺
US20100136281A1 (en) Dry adhesives and methods for making dry adhesives
Krahn et al. Controllable biomimetic adhesion using embedded phase change material
CN102607938B (zh) 用于tsv铜互连材料力学性能测试的原位拉伸试样
TW200538743A (en) Sheet-like probe, method of producing the probe, and application of the probe
JP6951249B2 (ja) 複合柱状体構造物
US9679856B2 (en) System and method for a microfabricated fracture test structure
WO2021068273A1 (zh) 以砂纸表面微结构为模板的电容式应变传感器制作方法
Son et al. Tensile properties and fatigue crack growth in LIGA nickel MEMS structures
CN102768148B (zh) 用于tsv铜互连材料力学性能测试的原位压缩试样
WO2014012381A1 (zh) 铜互连微柱力学性能原位压缩试样及其制备方法
CN103175718B (zh) 铜互连微柱力学性能原位压缩试样的制备方法
CN104198272B (zh) 一种3d-tsv原位拉伸试样及其制备方法
KR101819969B1 (ko) 압저항 센서의 신뢰성이 향상된 pdms 폴리머 외팔보 구조체
US11119064B2 (en) Cell-on-chip stretchable platform for mammalian cells with integrated impedance spectroscpy technique
CN102374948A (zh) 用于微电子机械系统的非硅薄膜力学特性复合测量方法
Johari et al. PDMS young's modulus calibration for micropillar force sensor application
KR101647054B1 (ko) 심장근육 세포의 수축력 측정을 위한 그래핀/pdms 복합체 센서가 집적화된 폴리머 캔틸레버 구조체 및 그 제조방법
US10804103B2 (en) Microassembly of heterogeneous materials
KR101647053B1 (ko) 심장근육 세포의 수축력 측정을 위한 센서가 집적화된 폴리머 캔틸레버 구조체 및 그 제조방법
CN1294074C (zh) 金属薄膜微桥的制造方法及其力学特性测试方法
CN102419283B (zh) 微型拉伸测量组件及其制作方法
CN109246575A (zh) 一种高频渐进声阻抗匹配层的制备方法
TW201239362A (en) A method of making a micro probe by using 3D lithography and a structure of the micro probe made by the method
Park et al. Novel test procedure of tensile test for MEMS materials

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13819232

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14345392

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 09/06/2015)

122 Ep: pct application non-entry in european phase

Ref document number: 13819232

Country of ref document: EP

Kind code of ref document: A1