WO2014012339A1 - 液晶显示器 - Google Patents

液晶显示器 Download PDF

Info

Publication number
WO2014012339A1
WO2014012339A1 PCT/CN2012/087210 CN2012087210W WO2014012339A1 WO 2014012339 A1 WO2014012339 A1 WO 2014012339A1 CN 2012087210 W CN2012087210 W CN 2012087210W WO 2014012339 A1 WO2014012339 A1 WO 2014012339A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
electrode layer
retardation film
transparent electrode
crystal display
Prior art date
Application number
PCT/CN2012/087210
Other languages
English (en)
French (fr)
Inventor
鹿岛美纪
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Publication of WO2014012339A1 publication Critical patent/WO2014012339A1/zh

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/137Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering
    • G02F1/13718Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering based on a change of the texture state of a cholesteric liquid crystal
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13363Birefringent elements, e.g. for optical compensation
    • G02F1/133638Waveplates, i.e. plates with a retardation value of lambda/n

Definitions

  • Embodiments of the invention relate to a liquid crystal display. Background technique
  • liquid crystal display In recent years, with the continuous advancement of science and technology, the technology of liquid crystal display (LCD) has been continuously improved. It has a very important position in the display field due to its advantages of low energy consumption, easy flatness and environmental protection. With the increasing demand for liquid crystal displays in various industries and diversified demands, liquid crystal displays are developing toward high transmittance, thinness, and simplification of processes.
  • the imaging of the liquid crystal display relies on polarized light, and the liquid crystal display is provided with two polarizers. If the polarizer is reduced, the liquid crystal display cannot be imaged.
  • the light transmittance of the polarizer affects the light transmittance of the liquid crystal display.
  • the polarizer also restricts the light and thin development of the liquid crystal display to some extent. It is necessary to provide two polarizers in the liquid crystal display, which also restricts the process of the liquid crystal display. Simplified development. Summary of the invention
  • Embodiments of the present invention provide a liquid crystal display having improved light transmittance.
  • a liquid crystal display includes: a color film substrate and an array substrate disposed opposite to each other; a cholesteric liquid crystal filled between the color filter substrate and the array substrate; and a phase retardation film disposed on the array a substrate; a polarizer attached to the phase retardation film; and a backlight that emits light outside the polarizer and toward the polarizer.
  • the bile phase liquid crystal may be a right-handed bile ⁇ ⁇ phase liquid crystal
  • the phase retardation film may be a quarter-wave retardation film or a negative three-quarter wavelength retardation film.
  • the cholesteric liquid crystal may be a left-turned bile-phase liquid crystal
  • the phase retardation film may be a three-quarter wavelength retardation film or a negative quarter-wave retardation film.
  • the liquid crystal display may further include: a first transparent electrode layer disposed on the array substrate and corresponding to the pixel electrode region; and a second transparent electrode layer disposed on the color filter substrate, wherein the bile phase liquid crystal is Between the first transparent electrode layer and the second transparent electrode layer.
  • the light emitted by the backlight may be converted into linearly polarized light after passing through the polarizer, and the linearly polarized light may be converted into circularly polarized light after passing through the phase retardation film; when the direction of rotation of the circularly polarized light is ambiguous ⁇ When the spiral direction of the ⁇ phase liquid crystal is the same and the first transparent electrode layer and the second transparent electrode layer do not generate a vertical electric field, the liquid crystal display is in a dark state; when the circularly polarized light has a rotation direction different from the spiral direction of the cholesteric liquid crystal And when the direction of rotation of the ⁇ phase liquid crystal is changed by the vertical electric field generated by the first transparent electrode layer and the second transparent electrode layer, the liquid crystal display is in a bright state and an image is displayed.
  • a liquid crystal display includes: a color film substrate and an array substrate disposed opposite to each other; a cholesteric liquid crystal filled between the color filter substrate and the array substrate; and a phase retardation film disposed on The outside of the array substrate; a polarizing backlight disposed on the phase retardation film. That is, the backlight and the polarizer in the previous embodiment can be replaced with a polarizing backlight.
  • the linearly polarized light emitted by the polarizing backlight may be converted into circularly polarized light after passing through the phase retardation film; when the direction of rotation of the circularly polarized light is the same as the spiral direction of the bile phase liquid crystal and first When the transparent electrode layer and the second transparent electrode layer do not generate a vertical electric field, the liquid crystal display is in a dark state; when the direction of rotation of the circularly polarized light is different from the spiral direction of the bile phase liquid crystal, and the direction of rotation of the bile phase liquid crystal is When the vertical electric field generated by the first transparent electrode layer and the second transparent electrode layer is changed, the liquid crystal display is in a bright state and an image is displayed.
  • the oppositely disposed color film substrate and the array substrate are filled with a bile phase liquid crystal, a phase retardation film is disposed on the outer side of the array substrate, and a polarizer is attached to the phase retardation film. , there is a backlight on the outside of the polarizer.
  • the light emitted by the backlight passes through the polarizer to become linearly polarized light, and the linearly polarized light passes through the phase retardation film to become circularly polarized light, and the direction of rotation of the circularly polarized light is the same as the direction of the cholesteric liquid crystal spiral and the first transparent electrode layer and Whether or not the vertical electric field is applied to the second transparent electrode layer determines whether the liquid crystal display is in a dark state or in a bright state and is imaged.
  • the liquid crystal display according to the embodiment only needs to provide one polarizer, which reduces the number of polarizers, can reduce the influence of the polarizer on light transmission, increase the light transmittance, and reduce the number of polarizers to make the liquid crystal display It is lighter and simplifies the manufacturing process.
  • a polarizing backlight may be disposed instead of the polarizer and the general backlight.
  • the liquid crystal display uses only the polarizing backlight, and does not need to provide a polarizer, thereby further reducing the influence of the polarizer on the light transmittance, increasing the light transmittance of the liquid crystal display, and not using the polarizer.
  • the LCD display is lighter and simplifies the manufacturing process.
  • FIG. 1 is a schematic structural diagram of a liquid crystal display according to an embodiment of the present invention.
  • FIG. 2 is a schematic structural diagram of a liquid crystal display according to another embodiment of the present invention
  • FIG. 3 is a schematic diagram of light transmission of a liquid crystal display according to an embodiment of the present invention when no voltage is applied;
  • FIG. 4 is a schematic diagram of light propagation of a liquid crystal display when a voltage is applied according to an embodiment of the present invention
  • FIG. 5 is a schematic structural diagram of a liquid crystal display according to another embodiment of the present invention
  • FIG. 6 is a schematic structural diagram of a liquid crystal display according to another embodiment of the present invention
  • FIG. 7 is a liquid crystal display according to another embodiment of the present invention. Schematic diagram of light propagation at voltage;
  • FIG. 8 is a schematic diagram of light transmission of a liquid crystal display according to another embodiment of the present invention when a voltage is applied. detailed description
  • the liquid crystal display 10 may include: a color film substrate 101 and an array substrate 102 disposed opposite to each other, wherein a color matrix substrate 101 may be provided with a black matrix (not shown in FIG. 1 ).
  • the black matrix has a plurality of open areas, and the array substrate 102 may be provided with a switching unit (not shown in FIG. 1), such as a thin film transistor;
  • the cholesteric liquid crystal 103 is filled between the color filter substrate 101 and the array substrate 102; the phase retardation film 104 is disposed outside the array substrate 102, that is, on the side of the array substrate 102 away from the bile phase liquid crystal 103, wherein the phase delay
  • the membrane 104 can make the transmission bias
  • the linearly polarized light of the light sheet 105 is converted into circularly polarized light;
  • the polarizer 105 is attached to the phase retardation film 104.
  • the polarizer 105 is a reflective polarizer.
  • the light transmittance of the reflective polarizer is high, and the light transmittance of the polarizer 105 to the liquid crystal display 10 can be reduced. Impact;
  • the backlight 106 is located outside the polarizer 105 and emits light toward the polarizer 105.
  • the phase retardation film 104 is ⁇ phase
  • phase difference film having a circularly polarized light characteristic in which linearly polarized light is converted into a single direction when linearly polarized light passes, that is, linearly polarized light from the polarizing plate 105 passes through a ⁇ 1 retardation film or
  • the retardation film is converted into a circularly polarized light in a clockwise direction.
  • the phase retardation film 104 is a retardation film or a -1 phase.
  • the liquid crystal display 10 may further include: a first transparent electrode layer 108 disposed on the array substrate 102 and corresponding to the pixel electrode region; and a second transparent electrode layer 107 disposed on the color film
  • the first transparent electrode layer 108 and the second transparent electrode layer 107 may be an indium tin oxide (ITO) layer.
  • the cholesteric liquid crystal 103 may be disposed between the first transparent electrode layer 108 and the second transparent electrode layer 107.
  • the first transparent electrode layer 108 and the second transparent electrode layer 107 may be generated by positive and negative electrodes
  • a vertical electric field is used to change the alignment direction of the cholesteric liquid crystal 103.
  • the liquid crystal display 10 is of a Twisted Nematic (TN) type.
  • TN Twisted Nematic
  • the circularly polarized light obtained by the phase retardation film 104 in the liquid crystal display 10 is rotated in the opposite direction to the spiral direction of the cholesteric liquid crystal 103, and the first transparent electrode layer 108 and the second transparent electrode layer 107 are The generated vertical electric field changes the arrangement direction of the cholesteric liquid crystal 103, and the circularly polarized light can pass through the bile phase liquid crystal 103, so that the liquid crystal display 10 is in a bright state and displays an image; if the liquid crystal display 10 passes through the phase retardation film 104, The direction of rotation of the circularly polarized light is the same as the direction of the spiral of the bile phase liquid crystal 103, and the first transparent electrode layer 108 and the second transparent electrode layer 107 do not generate a vertical electric field, and the bile phase liquid crystal 103 maintains the original alignment direction. The circularly polarized light cannot pass through the cholesteric liquid crystal 103, so that the liquid crystal display 10 is in a dark state.
  • the liquid crystal display 10 is a TN type
  • the phase retardation film 104 is a ⁇ /4 retardation film 110
  • the bile phase liquid crystal 103 is a right-handed bile ⁇ ⁇ phase liquid crystal as an example, but the embodiment of the present invention is described.
  • the phase retardation film 104 may be a retardation film of other wavelengths
  • the bile phase liquid crystal 103 may be a left-handed pitch bile-phase liquid crystal, which is all within the scope of the present invention.
  • the light emitted from the backlight 106 passes through the polarizer 105 and becomes a line.
  • Polarized light; the linearly polarized light passes through the ⁇ 1 retardation film 110
  • Circularly polarized light that rotates clockwise that is, right-handed polarized light
  • the right-handed polarized light passes through the array substrate 102 and the first transparent electrode layer 108
  • the cholesteric liquid crystal 103 is a right-handed pitch bile-phase liquid crystal Therefore, the right-handed polarized light is reflected when passing through the right-handed pitch of the bile phase liquid crystal, so that the right-handed polarized light cannot pass through the gallbladder phase liquid crystal 103, and thus the liquid crystal display 10 is in a dark state.
  • the light emitted from the backlight 106 passes through the polarizer 105 and becomes linearly polarized.
  • the linearly polarized light passes through the ⁇ 1 retardation film 110
  • the cholesteric liquid crystal 103 is a right-handed bile-phase liquid crystal
  • the right-handed cholesteric liquid crystal is arranged along the direction of the electric field under the action of a vertical electric field.
  • the right-handed polarized light can pass through the cholesteric liquid crystal 103, then pass through the second transparent electrode layer 107, and then pass through the color filter substrate 101, so that the liquid crystal display 10 is in a bright state, thereby displaying an image.
  • the oppositely disposed color film substrate 101 and the array substrate 102 are filled with a bile phase liquid crystal 103, and a phase retardation film 104 is disposed outside the array substrate 102, and the phase is delayed.
  • a polarizer 105 is attached to the film 104, and a backlight 106 is disposed outside the polarizer 105. Since the light emitted by the backlight 106 passes through the polarizer 105 to become linearly polarized light, the linearly polarized light passes through the phase retardation film 104 and becomes circularly polarized light, and the direction of rotation of the circularly polarized light is the same as the spiral direction of the bile phase liquid crystal 103.
  • the liquid crystal display 10 is in a dark state or in a bright state and displays an image. Therefore, the liquid crystal display 10 only needs to provide one polarizer 105, thereby reducing the number of polarizers, reducing the influence of the polarizer on light transmission, increasing the light transmittance, and reducing one polarizer to make the liquid crystal display 10 lighter. And simplify the manufacturing process.
  • a liquid crystal display 20 provided by another embodiment of the present invention may include:
  • the color film substrate 201 and the array substrate 202 are disposed opposite to each other, wherein the color film substrate 201 may be provided with a black matrix (not shown in FIG. 5), the black matrix has a plurality of opening regions, and the array substrate 202 may be provided with a switching unit ( Not shown in Figure 5), such as thin film transistors;
  • a cholesteric liquid crystal 203 is filled between the color filter substrate 201 and the array substrate 202; a phase retardation film 204 is disposed outside the array substrate 202;
  • a polarizing backlight 205 is disposed on the phase retardation film 204 and emits linearly polarized light toward the phase retardation film 204.
  • the phase retardation film 204 is a phase
  • phase difference film having a characteristic of converting circularly polarized light into a single direction of circularly polarized light when linearly polarized light passes therethrough, that is, linearly polarized light emitted from the polarizing backlight 205 is in a phase difference of ⁇ 1
  • the film or -2 retardation film is converted into a clockwise circular deviation
  • the phase retardation film 204 is a 2 retardation film or a -1 phase.
  • phase difference film which changes the linearly polarized light into a single direction circularly polarized light when the light passes therethrough, that is, the linearly polarized light emitted from the polarizing backlight 205 passes through the phase
  • the 4-position film or -1 1 retardation film is converted into a counter-clockwise circularly polarized light.
  • the liquid crystal display 20 may further include: a first transparent electrode layer 207 disposed on the array substrate 202 and corresponding to the pixel electrode region; and a second transparent electrode layer 206 disposed on the color film
  • the first transparent electrode layer 207 and the second transparent electrode layer 206 may be an indium tin oxide (ITO) layer.
  • the cholesteric liquid crystal 203 may be disposed between the first transparent electrode layer 207 and the second transparent electrode layer 206.
  • the first transparent electrode layer 207 and the second transparent electrode layer 206 may generate a vertical electric field through the positive and negative electrodes to change the arrangement direction of the cholesteric liquid crystal 203.
  • the liquid crystal display 20 is of the TN type.
  • the liquid crystal display 20 is a TN type
  • the phase retardation film 204 is a ⁇ /4 retardation film 209
  • the bile phase liquid crystal 203 is a right-handed bile ⁇ ⁇ phase liquid crystal as an example, but the embodiment of the present invention is described.
  • the liquid crystal display 20 may be an ADS (ADvanced Super Dimension Switch) type
  • the phase retardation film 204 may be a retardation film of other wavelengths
  • the bile phase liquid crystal 203 may be a left-handed pitch biliary. ⁇ phase liquid crystals, these are all within the scope of the present invention.
  • Advanced Super Dimension Switch The electric field generated by the edge of the slit electrode in the same plane and the electric field generated between the slit electrode layer and the plate electrode layer form a multi-dimensional electric field, so that all the aligned liquid crystal molecules between the slit electrodes in the liquid crystal cell and directly above the electrode Both can produce rotation, thereby improving the working efficiency of the liquid crystal and increasing the light transmission efficiency.
  • Advanced super-dimensional field conversion technology can improve the picture quality of TFT-LCD products, with high resolution, high transmittance, low power consumption, wide viewing angle, high aperture ratio, low chromatic aberration, no squeezing water wave (ush Mura), etc. advantage.
  • Rotating circularly polarized light that is, right-handed polarized light; after the right-handed polarized light passes through the array substrate 202 and the first transparent electrode layer 207, since the cholesteric liquid crystal 203 is a right-handed cholesteric liquid crystal, the right The rotatory polarized light is reflected when passing through the right-handed pitch cholesteric liquid crystal, so that the right-handed polarized light cannot pass through the cholesteric liquid crystal 203, and thus the liquid crystal display 20 is in a dark state.
  • the light emitted from the polarizing backlight 205 (indicated by an arrow in FIG. 8) is linearly polarized light;
  • the polarized light is turned clockwise by the ⁇ 1 retardation film 209
  • the circularly polarized light that is, the right-handed polarized light; after the right-handed polarized light passes through the array substrate 202 and the first transparent electrode layer 207, although the cholesteric liquid crystal 203 is a right-handed cholesteric liquid crystal, Under the action of the vertical electric field, the right-handed pitch bile phase liquid crystals are arranged along the direction of the electric field, so that the right-handed polarized light can pass through the cholesteric liquid crystal 203, and then passes through the second transparent electrode layer 206 and then passes through the color filter substrate 201.
  • the liquid crystal display 20 is in a bright state and displays an image.
  • the liquid crystal display 20 uses only the polarizing backlight 205 without setting a polarizer, thereby reducing the influence of the polarizer on the light transmittance, increasing the light transmittance of the liquid crystal display 20, and not using The polarizer can make the liquid crystal display 20 lighter and simplifies the manufacturing process.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Liquid Crystal (AREA)

Abstract

一种液晶显示器(10),该液晶显示器(10)具有改善的光透过率。液晶显示器(10)包括:相向设置的彩膜基板(101)和阵列基板(102);胆甾相液晶(103),填充于彩膜基板(101)与阵列基板(102)之间;相位延迟膜(104),设置于阵列基板(102)外侧;偏光片(105),贴附于相位延迟膜(104)上;背光源(106),在偏光片(105)外侧。

Description

液晶显示器 技术领域
本发明实施例涉及一种液晶显示器。 背景技术
近年来随着科学技术的不断进步, 液晶显示器(Liquid Crystal Display, LCD ) 的技术不断完善, 它以能耗低、 易于平板化、 环保等优势, 占据显示 领域非常重要的地位。随着各行业对液晶显示器的需求量增加,需求多样化, 液晶显示器向着高透光率、 轻薄化和工艺简单化发展。
但是现有技术中, 液晶显示器的成像依靠偏振光, 液晶显示器设置有两 个偏光片, 如果减少了偏光片, 液晶显示器便无法成像。 偏光片的透光性会 影响液晶显示器的光透过率, 设置偏光片也在一定程度上制约了液晶显示器 的轻薄化发展, 需要在液晶显示器中设置两个偏光片也制约了液晶显示器的 工艺简单化发展。 发明内容
本发明的实施例提供一种具有改善的光透过率的液晶显示器。
根据本发明实施例的一方面, 提供一种液晶显示器, 包括: 相向设置的 彩膜基板和阵列基板; 胆甾相液晶, 填充于彩膜基板与阵列基板之间; 相位 延迟膜, 设置于阵列基板外侧; 偏光片, 贴附于相位延迟膜上; 以及背光源, 在偏光片外侧并朝向偏光片发射光。
在实施例中, 胆<甾相液晶可以为右旋螺距的胆<甾相液晶, 相位延迟膜可 以为四分之一波长相位差膜或负四分之三波长相位差膜。
在实施例中, 胆<甾相液晶可以为左旋螺距的胆<甾相液晶, 相位延迟膜可 以为四分之三波长相位差膜或负四分之一波长相位差膜。
在实施例中, 液晶显示器还可以包括: 第一透明电极层, 设置于阵列基 板上, 且对应于像素电极区域; 第二透明电极层, 设置于彩膜基板上, 其中 胆 <甾相液晶在第一透明电极层与第二透明电极层之间。 在实施例中, 由背光源发射的光可以在经过偏光片后转变成线偏振光, 线偏振光可以在经过相位延迟膜后转变成圓偏振光; 当所述圓偏振光的旋转 方向与胆 <甾相液晶的螺旋方向相同并且第一透明电极层和第二透明电极层不 产生垂直电场时, 液晶显示器呈暗态; 当所述圓偏振光的旋转方向与胆甾相 液晶的螺旋方向不同并且胆 <甾相液晶的旋转方向被第一透明电极层和第二透 明电极层产生的垂直电场改变时, 液晶显示器呈亮态并显示图像。
根据本发明实施例的另一方面, 提供一种液晶显示器, 包括: 相向设置 的彩膜基板和阵列基板; 胆甾相液晶, 填充于彩膜基板与阵列基板之间; 相 位延迟膜, 设置于阵列基板外侧; 偏光性背光源, 设置于相位延迟膜上。 也 就是说, 可以用偏光性背光源来代替之前实施例中的背光源和偏光片。
在实施例中, 由偏光性背光源发射的线偏振光可以在经过相位延迟膜后 转变成圓偏振光; 当所述圓偏振光的旋转方向与胆 <甾相液晶的螺旋方向相同 并且第一透明电极层和第二透明电极层不产生垂直电场时, 液晶显示器呈暗 态; 当所述圓偏振光的旋转方向与胆 <甾相液晶的螺旋方向不同并且胆 <甾相液 晶的旋转方向被第一透明电极层和第二透明电极层产生的垂直电场改变时, 液晶显示器呈亮态并显示图像。
在本发明实施例提供的液晶显示器中, 相向设置的彩膜基板和阵列基板 之间填充有胆 <甾相液晶, 在阵列基板的外侧设置有相位延迟膜, 相位延迟膜 上贴附有偏光片, 偏光片外侧有背光源。 背光源发出的光线通过偏光片变成 线偏振光, 线偏振光通过相位延迟膜后变成圓偏振光, 圓偏振光的旋转方向 与胆甾相液晶螺旋方向是否相同以及第一透明电极层和第二透明电极层是否 施加垂直电场将决定液晶显示器呈暗态或呈亮态并成像。 因而, 根据本实施 例的液晶显示器仅需要设置一个偏光片, 减少了偏光片的数量, 可以降低偏 光片对光线透过的影响, 增加光透过率, 而且减少偏振片的数量可以使得液 晶显示器更加轻便, 并简化了制造工艺。
在本发明另一实施例提供的液晶显示器中, 可以设置偏光性背光源, 来 代替偏光片和一般背光源。 在此情形下, 液晶显示器仅利用偏光性背光源, 而不需要设置偏光片, 从而进一步降低偏光片对光透过率的影响, 增加液晶 显示器的光透过率, 而且不使用偏光片可以使得液晶显示器更加轻便, 并简 化了制造工艺。 附图说明
为了更清楚地说明本发明实施例的技术方案, 下面将对实施例的附图 作简单地介绍, 显而易见地, 下面描述中的附图仅仅涉及本发明的一些实 施例, 而非对本发明的限制。
图 1为本发明实施例提供的液晶显示器的结构示意图;
图 2为本发明另一实施例提供的液晶显示器的结构示意图; 图 3 为本发明实施例提供的液晶显示器在未施加电压时的光线传 播示意图;
图 4 为本发明实施例提供的液晶显示器在施加电压时的光线传播 示意图;
图 5为本发明另一实施例提供的液晶显示器的结构示意图; 图 6为本发明另一实施例提供的液晶显示器的结构示意图; 图 7 为本发明另一实施例提供的液晶显示器在未施加电压时的光 线传播示意图; 以及
图 8为本发明另一实施例提供的液晶显示器在施加电压时的光线传 播示意图。 具体实施方式
为使本发明实施例的目的、 技术方案和优点更加清楚, 下面将结合本 发明实施例的附图, 对本发明实施例的技术方案进行清楚、 完整地描述。 显然, 所描述的实施例是本发明的一部分实施例, 而不是全部的实施例。 基于所描述的本发明的实施例, 本领域普通技术人员在无需创造性劳动的 前提下所获得的所有其他实施例, 都属于本发明保护的范围。
如图 1所示, 本发明实施例提供的液晶显示器 10可以包括: 相向设置的彩膜基板 101和阵列基板 102 ,其中彩膜基板 101上 可以设置有黑矩阵 (图 1 中未示出) , 黑矩阵具有多个开口区域, 阵列基板 102上可以设置有开关单元 (图 1 中未示出) , 如薄膜晶 体管;
胆甾相液晶 103 , 填充于彩膜基板 101与阵列基板 102之间; 相位延迟膜 104 , 设置于阵列基板 102外侧, 即阵列基板 102上 远离胆 <甾相液晶 103 的一侧, 其中相位延迟膜 104可以使得透过偏 光片 105的线偏振光转变为圓偏振光;
偏光片 105 , 贴附于相位延迟膜 104上, 其中偏光片 105为反射 型偏光片, 反射型偏光片的光透过率较高, 能够降低偏光片 105 对 液晶显示器 10的光透过率的影响; 以及
背光源 106 , 位于偏光片 105外侧并朝向偏光片 105发射光。 示例性的, 如果填充于彩膜基板 101 与阵列基板 102之间的胆 甾相液晶 103为右旋螺距的胆<甾相液晶, 相位延迟膜 104为丄 相位
4 差膜或 相位差膜, 其中/ i为波长。 丄 相位差膜或 - /1相位差膜是
4 4 4 具有线偏振光经过时将线偏振光变成单一方向的圓偏振光特性的相 位差膜, 也就是说从偏光片 105 出来的线偏振光通过丄1相位差膜或
4
- 2 相位差膜后转变为顺时针方向的圓偏振光。
4
如果填充于彩膜基板 101与阵列基板 102之间的胆 <甾相液晶 103 为左旋螺距的胆甾相液晶,则相位延迟膜 104为 2 相位差膜或 - 1 相
4 4 位差膜, 其中 为波长。 2 相位差膜或 - 1 相位差膜是具有当线偏振
4 4
光从其经过时将线偏振光变成单一方向的圓偏振光的特性的相位差 膜,也就是,从偏光片 105出来的线偏振光通过 相位差膜或 - i ^相
4 4 位差膜后转变为逆时针方向的圓偏振光。
示例性的, 如图 2所示, 液晶显示器 10还可以包括: 第一透明 电极层 108 , 设置于阵列基板 102上, 且对应于像素电极区域; 和第 二透明电极层 107 , 设置于彩膜基板 101 上, 其中第一透明电极层 108和第二透明电极层 107可以为铟锡氧化物 (ITO ) 层。 胆 相液 晶 103可以设置在第一透明电极层 108和第二透明电极层 107之间。 第一透明电极层 108和第二透明电极层 107可以通过正负电极产生 垂直电场, 以改变胆 相液晶 103 的排列方向。 这种情况下, 液晶 显示器 10为扭曲向列 ( Twisted Nematic , TN ) 型。
需要说明的是, 如果液晶显示器 10中经过相位延迟膜 104得到 的圓偏振光的旋转方向与胆 <甾相液晶 103 的螺旋方向相反, 并且由 第一透明电极层 108和第二透明电极层 107产生的垂直电场改变胆 甾相液晶 103的排列方向, 则圓偏振光可以通过胆<甾相液晶 103 , 使 得液晶显示器 10呈亮态并显示图像; 如果液晶显示器 10 中经过相 位延迟膜 104得到的圓偏振光的旋转方向与胆 <甾相液晶 103 的螺旋 方向相同, 并且第一透明电极层 108和第二透明电极层 107 不产生 垂直电场, 则胆 <甾相液晶 103 保持原来的排列方向, 圓偏振光无法 通过胆 相液晶 103 , 使得液晶显示器 10呈暗态。
在下文将以液晶显示器 10为 TN型、 相位延迟膜 104为 λ/4相 位差膜 110、胆 <甾相液晶 103为右旋螺距的胆 <甾相液晶为例进行说明 , 但本发明实施例不限于此, 相位延迟膜 104 可以为其他波长的相位 差膜, 并且胆 <甾相液晶 103 可以为左旋螺距的胆 <甾相液晶, 这些都 在本发明的保护范围之内。
如图 3所示, 当第一透明电极层 108和第二透明电极层 107不 产生垂直电场时, 从背光源 106出射的光线 (由图 3中的箭头表示) 经过偏光片 105后变成线偏振光; 该线偏振光经过丄1相位差膜 110
4
变为顺时针旋转的圓偏振光, 即右旋偏振光; 在该右旋偏振光经过 阵列基板 102和第一透明电极层 108后, 由于胆 相液晶 103为右 旋螺距的胆 <甾相液晶, 所以右旋偏振光在通过右旋螺距的胆 <甾相液 晶时发生反射, 使得右旋偏振光无法穿过胆 <甾相液晶 103 , 因此液晶 显示器 10呈暗态。
如图 4所示, 当第一透明电极层 108和第二透明电极层 107产 生垂直电场时, 从背光源 106 出射的光线 (由图 4 中的箭头表示) 经过偏光片 105后变成线偏振光; 该线偏振光经过丄1相位差膜 110
4
变为顺时针旋转的圓偏振光, 即右旋偏振光; 在该右旋偏振光经过 阵列基板 102和第一透明电极层 108后, 尽管胆 相液晶 103为右 旋螺距的胆 <甾相液晶, 但在垂直电场的作用下, 右旋螺距的胆甾相 液晶沿着电场的方向排列, 使得右旋偏振光可以穿过胆 相液晶 103 , 然后经过第二透明电极层 107 , 再经过彩膜基板 101 , 因此液 晶显示器 10呈亮态, 从而显示图像。
在由本发明实施例提供的液晶显示器 10中, 相向设置的彩膜基 板 101 和阵列基板 102之间填充有胆 <甾相液晶 103 , 且在阵列基板 102的外侧设置有相位延迟膜 104 , 相位延迟膜 104上贴附有偏光片 105 , 偏光片 105外侧有背光源 106。 由于背光源 106发出的光线通 过偏光片 105 变成线偏振光, 该线偏振光通过相位延迟膜 104后变 成圓偏振光, 圓偏振光的旋转方向与胆 <甾相液晶 103 螺旋方向是否 相同决定了液晶显示器 10呈暗态或呈亮态并显示图像。 因而, 液晶 显示器 10仅需要设置一个偏光片 105 , 从而减少了偏光片的数量, 可以降低偏光片对光线透过的影响, 增加光透过率, 而且减少一个 偏振片可以使得液晶显示器 10更加轻便, 并简化了制造工艺。
如图 5所示, 由本发明另一实施例提供的液晶显示器 20可以包 括:
相向设置的彩膜基板 201和阵列基板 202 ,其中彩膜基板 201上 可以设置有黑矩阵 (图 5 中未示出) , 黑矩阵具有多个开口区域, 阵列基板 202上可以设置有开关单元 (图 5 中未示出) , 例如薄膜 晶体管;
胆甾相液晶 203 , 填充于彩膜基板 201与阵列基板 202之间; 相位延迟膜 204 , 设置于阵列基板 202外侧; 和
偏光性背光源 205 , 设置于相位延迟膜 204上, 并朝向相位延迟 膜 204发射线偏振光。
示例性的, 如果填充于彩膜基板 201 与阵列基板 202之间的胆 甾相液晶 203为右旋螺距的胆<甾相液晶, 相位延迟膜 204为丄 相位
4 差膜或 相位差膜, 其中 为波长。 丄 相位差膜或 - /1相位差膜是
4 4 4 具有当线偏振光从其经过时将线偏振光变成单一方向的圓偏振光的 特性的相位差膜, 也就是说, 从偏光性背光源 205 发射出来的线偏 振光在通过丄1相位差膜或 -2 相位差膜后转变为顺时针方向的圓偏
4 4 振光。
如果填充于彩膜基板 201与阵列基板 202之间的胆<甾相液晶 203 为左旋螺距的胆甾相液晶,则相位延迟膜 204为 2 相位差膜或 - 1 相
4 4 位差膜, 其中 为波长。 2 相位差膜或 -1 相位差膜是具有当线偏振
4 4
光从其经过时将线偏振光变成单一方向的圓偏振光的特性的相位差 膜,也就是说,从偏光性背光源 205发射出来的线偏振光在通过 相
4 位差膜或 -1 1相位差膜后转变为逆时针方向的圓偏振光。
4
示例性的, 如图 6所示, 液晶显示器 20还可以包括: 第一透明 电极层 207 , 设置于阵列基板 202上, 且对应于像素电极区域; 和第 二透明电极层 206 , 设置于彩膜基板 201 上, 其中第一透明电极层 207和第二透明电极层 206可以为铟锡氧化物 (ITO ) 层。 胆 相液 晶 203可以设置在第一透明电极层 207和第二透明电极层 206之间。 第一透明电极层 207和第二透明电极层 206可以通过正负电极产生 垂直电场, 以改变胆 相液晶 203 的排列方向。 在这种情况下, 液 晶显示器 20为 TN型。
在下文将以液晶显示器 20为 TN型、 相位延迟膜 204为 λ/4相 位差膜 209、胆 <甾相液晶 203为右旋螺距的胆 <甾相液晶为例进行说明, 但本发明实施例不限于此, 液晶显示器 20 可以为 ADS ( ADvanced Super Dimension Switch, 高级超维场转换技术) 型, 相位延迟膜 204可 以为其他波长的相位差膜, 胆<甾相液晶 203 可以为左旋螺距的胆甾 相液晶, 这些都在本发明的保护范围之内。
高级超维场转换技术( ADvanced Super Dimension Switch,简称 ADS ) , 通过同一平面内狭缝电极边缘所产生的电场以及狭缝电极层与板状电极层 之间产生的电场形成多维电场, 使液晶盒内狭缝电极之间、 电极正上方的 所有取向的液晶分子都能够产生旋转, 从而提高液晶的工作效率并增大了 透光效率。 高级超维场转换技术可以提高 TFT-LCD产品的画面品质,具有 高分辨率、 高透过率、 低功耗、 宽视角、 高开口率、 低色差、 无挤压水波 故 ( ush Mura )等优点。
如图 7所示, 当第一透明电极层 207和第二透明电极层 206不 产生垂直电场时, 从偏光性背光源 205 出射的光线 (由图 7 中的箭 头表示 ) 为线偏振光; 该线偏振光经过丄1相位差膜 209变为顺时针
4
旋转的圓偏振光, 即右旋偏振光; 在该右旋偏振光经过阵列基板 202 和第一透明电极层 207后, 由于胆 <甾相液晶 203为右旋螺距的胆甾 相液晶, 所以右旋偏振光在通过右旋螺距的胆 相液晶时发生反射, 使得右旋偏振光无法穿过胆 <甾相液晶 203 , 因此液晶显示器 20呈暗 态。
如图 8所示, 当第一透明电极层 207和第二透明电极层 206产 生垂直电场时, 从偏光性背光源 205 出射的光线 (由图 8 中的箭头 表示) 为线偏振光; 该线偏振光经过丄1相位差膜 209变为顺时针旋
4
转的圓偏振光, 即右旋偏振光; 在该右旋偏振光经过阵列基板 202 和第一透明电极层 207后, 尽管胆 <甾相液晶 203为右旋螺距的胆甾 相液晶, 但在垂直电场的作用下, 右旋螺距的胆 相液晶沿着电场 的方向排列, 使得右旋偏振光可以穿过胆 相液晶 203 , 然后经过第 二透明电极层 206 , 再经过彩膜基板 201 , 因此液晶显示器 20呈亮 态, 并显示图像。
因而, 根据本发明实施例的液晶显示器 20仅利用偏光性背光源 205 , 而不需要设置偏光片, 从而降低偏光片对光线透过率的影响, 增加液晶显示器 20光透过率, 而且不使用偏光片可以使得液晶显示 器 20更加轻便, 并简化了制造工艺。
以上所述仅是本发明的示范性实施方式, 而非用于限制本发明 的保护范围, 本发明的保护范围由所附的权利要求确定。

Claims

权利要求书
1、 一种液晶显示器, 包括:
相向设置的彩膜基板和阵列基板;
胆甾相液晶, 填充于所述彩膜基板与所述阵列基板之间;
相位延迟膜, 设置于所述阵列基板外侧;
偏光片, 贴附于所述相位延迟膜上; 以及
背光源, 在所述偏光片外侧并朝向所述偏光片发射光。
2、根据权利要求 1所述的液晶显示器,其中所述胆 <甾相液晶为右旋螺距 的胆 <甾相液晶, 所述相位延迟膜为四分之一波长相位差膜或负四分之三波长 相位差膜。
3、根据权利要求 1所述的液晶显示器,其中所述胆甾相液晶为左旋螺距 的胆 <甾相液晶, 所述相位延迟膜为四分之三波长相位差膜或负四分之一波长 相位差膜。
4、 根据权利要求 1-3中任一项所述的液晶显示器, 还包括:
第一透明电极层, 设置于所述阵列基板上, 且对应于像素电极区域; 第二透明电极层, 设置于所述彩膜基板上;
其中所述胆 <甾相液晶在所述第一透明电极层与所述第二透明电极层之 间。
5、 根据权利要求 4所述的液晶显示器, 其中:
由所述背光源发射的光经过所述偏光片后转变成线偏振光, 所述线偏振 光在经过所述相位延迟膜后转变成圓偏振光;
当所述圓偏振光的旋转方向与所述胆 <甾相液晶的螺旋方向相同并且所述 第一透明电极层和所述第二透明电极层不产生垂直电场时, 所述液晶显示器 呈暗态;
当所述圓偏振光的旋转方向与所述胆 <甾相液晶的螺旋方向不同并且所述 胆甾相液晶的旋转方向被所述第一透明电极层和所述第二透明电极层产生的 垂直电场改变时, 所述液晶显示器呈亮态并显示图像。
6、 一种液晶显示器, 包括:
相向设置的彩膜基板和阵列基板; 胆甾相液晶, 填充于所述彩膜基板与所述阵列基板之间; 相位延迟膜, 设置于所述阵列基板外侧;
偏光性背光源, 设置于所述相位延迟膜上。
7、根据权利要求 6所述的液晶显示器,其中所述胆 <甾相液晶为右旋螺距 的胆 <甾相液晶, 所述相位延迟膜为四分之一波长相位差膜或负四分之三波长 相位差膜。
8、根据权利要求 6所述的液晶显示器,其中所述胆甾相液晶为左旋螺距 的胆 <甾相液晶, 所述相位延迟膜为四分之三波长相位差膜或负四分之一波长 相位差膜。
9、 根据权利要求 6-8中任一项所述的液晶显示器, 还包括:
第一透明电极层, 设置于所述阵列基板上, 且对应于像素电极区域; 第二透明电极层, 设置于所述彩膜基板上;
其中所述胆 <甾相液晶在所述第一透明电极层与所述第二透明电极层之 间。
10、 根据权利要求 9所述的液晶显示器, 其中:
由所述偏光性背光源发射的线偏振光在经过所述相位延迟膜后转变成圓 偏振光;
当所述圓偏振光的旋转方向与所述胆 <甾相液晶的螺旋方向相同并且所述 第一透明电极层和所述第二透明电极层不产生垂直电场时, 所述液晶显示器 呈暗态;
当所述圓偏振光的旋转方向与所述胆 <甾相液晶的螺旋方向不同并且所述 胆甾相液晶的旋转方向被所述第一透明电极层和所述第二透明电极层产生的 垂直电场改变时, 所述液晶显示器呈亮态并显示图像。
PCT/CN2012/087210 2012-07-20 2012-12-21 液晶显示器 WO2014012339A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210254732.4A CN102789093B (zh) 2012-07-20 2012-07-20 一种液晶显示器
CN201210254732.4 2012-07-20

Publications (1)

Publication Number Publication Date
WO2014012339A1 true WO2014012339A1 (zh) 2014-01-23

Family

ID=47154535

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/087210 WO2014012339A1 (zh) 2012-07-20 2012-12-21 液晶显示器

Country Status (2)

Country Link
CN (1) CN102789093B (zh)
WO (1) WO2014012339A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102789093B (zh) * 2012-07-20 2015-08-19 京东方科技集团股份有限公司 一种液晶显示器
CN102981323B (zh) * 2012-12-03 2015-02-04 京东方科技集团股份有限公司 显示面板、其制造方法以及显示装置
CN103048829B (zh) * 2013-01-08 2015-09-09 深圳市华星光电技术有限公司 一种透明显示装置
US8994912B2 (en) 2013-01-08 2015-03-31 Shenzhen China Star Optoelectronics Technology Co., Ltd Transparent display device
CN104793395A (zh) * 2015-04-30 2015-07-22 武汉华星光电技术有限公司 用于液晶面板的偏光片及液晶面板
CN113589578A (zh) * 2021-07-23 2021-11-02 Tcl华星光电技术有限公司 液晶显示装置及其制备方法
CN115167047A (zh) * 2022-07-04 2022-10-11 河北工业大学 一种扭曲向列相液晶盒、显示装置及制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4398805A (en) * 1981-07-06 1983-08-16 General Electric Company Transflective liquid crystal display
CN1470906A (zh) * 2002-07-23 2004-01-28 奇景光电股份有限公司 双稳态表面稳定胆固醇型液晶显示器
CN1898584A (zh) * 2003-12-26 2007-01-17 旭硝子株式会社 偏振衍射元件和光学头装置
US20100097549A1 (en) * 2008-10-20 2010-04-22 Motorola, Inc. Reflective Morphable Display Device and method of Feature Activation
CN102789093A (zh) * 2012-07-20 2012-11-21 京东方科技集团股份有限公司 一种液晶显示器

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100961267B1 (ko) * 2003-06-26 2010-06-03 엘지디스플레이 주식회사 콜레스테릭 액정 컬러필터를 가지는 투과형 액정표시장치및 그 제조 방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4398805A (en) * 1981-07-06 1983-08-16 General Electric Company Transflective liquid crystal display
CN1470906A (zh) * 2002-07-23 2004-01-28 奇景光电股份有限公司 双稳态表面稳定胆固醇型液晶显示器
CN1898584A (zh) * 2003-12-26 2007-01-17 旭硝子株式会社 偏振衍射元件和光学头装置
US20100097549A1 (en) * 2008-10-20 2010-04-22 Motorola, Inc. Reflective Morphable Display Device and method of Feature Activation
CN102789093A (zh) * 2012-07-20 2012-11-21 京东方科技集团股份有限公司 一种液晶显示器

Also Published As

Publication number Publication date
CN102789093B (zh) 2015-08-19
CN102789093A (zh) 2012-11-21

Similar Documents

Publication Publication Date Title
WO2014012339A1 (zh) 液晶显示器
JP3793890B2 (ja) 反射型フリンジフィールド駆動モード液晶表示装置
KR101222421B1 (ko) 액정 표시 장치
US9291848B2 (en) Transflective liquid crystal panel based on ADS display mode and display device
JP2009244895A (ja) 半透過型液晶表示装置用の光学λ/4層を形成する方法
WO2014176886A1 (zh) 半透半反式液晶显示面板、显示装置及阵列基板
KR20040005041A (ko) 반사투과형 액정표시장치
US7630044B2 (en) In-plane switching mode LCD device having the interval between the common and pixel electrodes in the reflective part being greater than the interval between the common and pixel electrodes in transmitting part
JP4337854B2 (ja) 液晶表示装置
JP2008014965A (ja) 液晶表示装置
US20090002609A1 (en) Liquid crystal display device
US20070126963A1 (en) Transflective liquid crystal display device
WO2015003460A1 (zh) 显示面板及透明显示装置
US9977295B2 (en) Display substrate and manufacturing method thereof, display device
US8212977B2 (en) In-plane switching mode liquid crystal display with a retardation layer formed directly on a color filter substrate in a reflection region
TWI336014B (en) Transflective liquid crystal display
JP5397989B2 (ja) 液晶表示装置
JP2009003432A (ja) 液晶表示装置
JP2006301634A (ja) 表示パネル、その製造方法、及びこれを有する表示装置
JP4824443B2 (ja) 液晶表示装置
TWI772033B (zh) 膽固醇型液晶顯示器
JP2008076503A (ja) 液晶表示装置
JP2000292784A (ja) 反射型カラーフィルターを用いた液晶表示装置
JP5041436B2 (ja) 液晶表示装置
Jeong et al. P‐159: A Single Gap Transflective Fringe‐Field Switching Display

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12881461

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 11.06.2015)

122 Ep: pct application non-entry in european phase

Ref document number: 12881461

Country of ref document: EP

Kind code of ref document: A1