WO2014012316A1 - 一种rgb数据的处理方法及系统 - Google Patents

一种rgb数据的处理方法及系统 Download PDF

Info

Publication number
WO2014012316A1
WO2014012316A1 PCT/CN2012/085466 CN2012085466W WO2014012316A1 WO 2014012316 A1 WO2014012316 A1 WO 2014012316A1 CN 2012085466 W CN2012085466 W CN 2012085466W WO 2014012316 A1 WO2014012316 A1 WO 2014012316A1
Authority
WO
WIPO (PCT)
Prior art keywords
value
values
input
brightness
lookup table
Prior art date
Application number
PCT/CN2012/085466
Other languages
English (en)
French (fr)
Inventor
赵星星
蒋文杰
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US14/128,671 priority Critical patent/US9570043B2/en
Publication of WO2014012316A1 publication Critical patent/WO2014012316A1/zh

Links

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G5/00Control arrangements or circuits for visual indicators common to cathode-ray tube indicators and other visual indicators
    • G09G5/02Control arrangements or circuits for visual indicators common to cathode-ray tube indicators and other visual indicators characterised by the way in which colour is displayed
    • G09G5/06Control arrangements or circuits for visual indicators common to cathode-ray tube indicators and other visual indicators characterised by the way in which colour is displayed using colour palettes, e.g. look-up tables
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/2003Display of colours
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/44Receiver circuitry for the reception of television signals according to analogue transmission standards
    • H04N5/57Control of contrast or brightness
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/64Circuits for processing colour signals
    • H04N9/67Circuits for processing colour signals for matrixing
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/04Structural and physical details of display devices
    • G09G2300/0439Pixel structures
    • G09G2300/0452Details of colour pixel setup, e.g. pixel composed of a red, a blue and two green components
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/0233Improving the luminance or brightness uniformity across the screen
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/0242Compensation of deficiencies in the appearance of colours
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/06Adjustment of display parameters
    • G09G2320/0666Adjustment of display parameters for control of colour parameters, e.g. colour temperature
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2340/00Aspects of display data processing
    • G09G2340/06Colour space transformation

Definitions

  • the present invention relates to the field of color space conversion technology, and in particular to a method and system for processing RGB data. Background technique
  • RGB red, green, blue
  • RGBW red, green, blue, and white
  • the technical problem to be solved by the present invention is: how to achieve improved display brightness while maintaining good color tone, color saturation, and natural color transition.
  • an embodiment of the present invention provides a method for processing RGB data, including the following steps:
  • step S3 The values of 11, 11, and V processed in step S2 are converted into values of 1, G, B, and W to display.
  • the magnitude of the function, a is a parameter that determines the half width of the Gaussian function, s is the saturation value, and B is the adjustment value when s is equal to 255.
  • step S3 the 1 GBW value to be interpolated corresponding to the 11 SV value processed in step S2 is searched by the three-dimensional lookup table, and the converted 1 GBW value is obtained by using the found RGBW value to be interpolated. .
  • step S3 is specifically: dividing the cube in which the input point X is located in the lookup table into eight small cubes by using three mutually perpendicular planes passing through the input point X in the direction of the xyz axis, and inputting the point X
  • the coordinates of the HSV obtained after the processing in step S2 are used to find the corresponding RGBW value to be interpolated according to the value of the HSV.
  • the volume of the small cube where each vertex pi is located in the cube is:
  • X v is the RGBW value obtained after the conversion, which is the RGBW value to be interpolated corresponding to the 8 vertices of the cube in the lookup table, and the coordinates of the 8 vertices of the cube are the HSV corresponding to the lookup table.
  • Value, i 0,l , ... , 7
  • step S1 is specifically: performing the conversion by using the following formula:
  • RGB data a processing system for RGB data, including:
  • a first conversion module configured to convert the input R, G, B three color values to the HSV color work 5;
  • the brightness adjustment module is configured to adjust the value of the brightness V while maintaining the hue H value and the saturation S value of the HSV color space;
  • the second conversion module is configured to convert the H, S, and V values processed by the brightness adjustment module from the HSV color space to the RGBW color space.
  • the second conversion module is specifically configured to search, by using a three-dimensional lookup table, the values of the values to be interpolated, 1, G, B, and W corresponding to the values of the 11, S, and V processed by the brightness adjustment module, and use the The values of R, G, B, and W to be interpolated are obtained by the converted values of 1, G, B, and W.
  • the second conversion module is specifically configured to divide the cube where the input point X is located in the lookup table by using three mutually perpendicular planes passing through the input point X in the x, y, and z axis directions, respectively.
  • the coordinates of the input point X are the values of H, S, V obtained after the processing of step S2
  • the lookup table is used to find the corresponding values to be interpolated R, G according to the values of H, S, and V.
  • B, W value the volume of the small cube where each vertex pi in the cube is located are: V 7 ( ⁇ ⁇ .. (m ⁇ 3 ⁇ 4.) * ⁇ n ⁇ c )
  • m , n , and 1 are the length, width, and height of the cube.
  • X v is the RGBW value obtained after the conversion, which is the RGBW value to be interpolated corresponding to the 8 vertices of the cube in the lookup table, and the coordinates of the 8 vertices of the cube are the HSV corresponding to the lookup table.
  • the value, i 0, l , ..., 7
  • the first conversion module is specifically used to perform the conversion to the rrmi by using the following formula
  • r is the color value of the input R
  • g is the color value of the input G
  • b is the color value of the input B
  • max is the maximum value in rgb
  • min is the minimum value in rgb
  • h is the hue
  • s Indicates saturation and V indicates brightness.
  • the above technical solution has the following advantages: By first converting the RGB color space to the HSV color space, and then increasing the brightness V while maintaining the HS in the HSV color space, and then converting the HSV color space to the RGBW color space, Keeping good tones, colors Color saturation and color transitions naturally increase display brightness. DRAWINGS
  • Figure 1 is a flow chart of the method of the present invention
  • Figure 2 is a Gaussian function used in luminance stretching
  • Figure 3 is a schematic diagram of a three-dimensional lookup table
  • Figure 4 is a schematic diagram of an interpolation algorithm
  • Figure 5 is the HSV diagram corresponding to ⁇ 3 ⁇ 4;
  • Figure 5b is the HSV diagram corresponding to RGBW;
  • Figure 5c is the HSV color rendering diagram corresponding to a;
  • FIG. 6a is a perspective view of the HS V color space corresponding to the RGB actually obtained by the method according to the present invention
  • FIG. 6b is a perspective view of the HSV color space corresponding to the RGBW;
  • Figure 8a shows the RGB input data
  • Figure 8b shows the RGBW output data
  • Figure 9a is a prior art algorithm a effect diagram
  • Figure 9b is a prior art algorithm b effect diagram
  • Figure 9c is a prior art algorithm c effect diagram
  • Figure 9d is an effect diagram of the method of the present invention.
  • the design idea of the first embodiment of the present invention is: first convert the RGB color space to the HSV (hue, saturation, brightness) color space, and then increase the brightness V while maintaining the HV in the HSV color space, and then Convert the HSV color space to the RGBW color space.
  • HSV hue, saturation, brightness
  • the method includes the following steps:
  • the Sl and LCD modules input the RGB data of each pixel through a signal line such as LVDS, and convert the input three colors of red R, green G, and blue B into the HSV color space: If ma min
  • r is the color value of the input R
  • g is the color value of the input G
  • b is the color value of the input B
  • max is the maximum value of r
  • g, b is the color value of the input B
  • min is the value of r, g, b
  • the minimum value, h represents the hue, s represents the saturation, and V represents the brightness.
  • the Gaussian function expression is
  • y A ⁇ e ⁇ a slAf + B
  • y the brightness adjustment factor
  • A the amplitude of the Gaussian function
  • e the natural logarithm
  • a the parameter determining the half-width of the Gaussian function
  • s the saturation value
  • B The adjustment value when s is equal to 255.
  • a is preferably 0.002
  • A is preferably 0.28
  • B is preferably 0.72.
  • the Gaussian function is a graph of the Gaussian function
  • the abscissa is a saturation value s
  • the corresponding ordinate value y is a value calculated according to the Gaussian function
  • the luminance value v' v* after the Gaussian function is adjusted.
  • V is the luminance value calculated in step S1.
  • the brightness value is adjusted by using the above Gaussian function, and the adjustment result is such that the relatively low saturation pixel corresponds
  • the luminance value increases, and the luminance value corresponding to the relatively high saturation pixel decreases.
  • the selection of the parameters a, A, and B in the above Gaussian function is based on the experimental results. Experiments show that the present invention is realized by a Gaussian function having such parameters, and the obtained effect is the best, and the color tone and color can be maintained. Saturation and color transitions naturally increase display brightness, as shown in Figure 9d.
  • the converted HS V data is the HS V color space data corresponding to the RGBW color space.
  • step S3 Convert the 11, S, and V values processed in step S2 to 1, G, B, and W values.
  • the three-dimensional lookup table is a compressed three-dimensional table.
  • the three-dimensional lookup table corresponding cube unit stores the RGBW data to be interpolated corresponding to each HSV data. For example, if you input the HSV value (0,0,255), the result is RGBW value (255, 255, 255, 255). You need to use the found value when converting this step. The specific conversion process will be explained below.
  • the actual 3D lookup contains all the input data, and the size of the lookup table is usually
  • the lookup table is first compressed, and only the data of the fixed step position in 0-255 is stored, and the unstored data is completed by interpolation.
  • the lookup table in Figure 3 only stores node data with a step size of 16, so that the data of the lookup table will be reduced to 16*16*16*32bit (132K), which is easier to implement in the chip.
  • 132K 16*16*16*32bit
  • the low-brightness spatial data in the HSV color space corresponding to RGBW is sparse, and the high-brightness space has a large blank mapping area, so the lookup table can be further compressed to 64K, thereby realizing cost reduction of the chip.
  • the cubes in which the input points are located in the lookup table are divided into 8 small cubes by using three mutually perpendicular planes passing through the input point X in the x, y, and z axis directions, respectively.
  • the volume of the small cube where each vertex pi in the cube is located is:
  • the length, width, and height of the cube are X U 7 —' , which are the 1, G, B, and
  • the W value, ⁇ is the value of the 8 vertices of the cube corresponding to the R, G, B, and W values to be interpolated in the lookup table.
  • the coordinates of the 8 vertices of the cube are the H, S, and the corresponding H in the lookup table.
  • Value of V respectively (H16, S16, V16), (H16+1, S16, V16), (H16, S16+1, V16), (H16+1, S16+1, V16), (H16, S16, V16+1) , ( H16+1, S16, V16+1 ), ( H16, S16+1, V16+1 ), ( H16+1, S16+1 , V16+1 ), ( H16+1, S16+1 , V16+l ).
  • the coordinates of the input point x are the H obtained after the processing of step S2.
  • FIG. 5a is a theoretical model of the HS V color space corresponding to RGB obtained in the conversion process of the embodiment of the present invention
  • 5b is a theoretical model of the HS V color space corresponding to RGB W
  • Fig. 5c is a theoretical model corresponding to a color space, saturation, and brightness change HSV color space corresponding to a.
  • the RGB W model loses some of the high saturation, high brightness color (such as the bright solid color) relative to the RGB model; but it adds some low saturation, high The color of the brightness.
  • the low-saturation white maximum brightness is 1.5 times that of the RGB space, which can greatly increase the brightness of the display device.
  • the brightness of the high-saturation color is reduced, the proportion of the high-saturation color in the natural scene is small. , so it does not affect the true display of most colors.
  • the method of the embodiment of the present invention (the effect diagram is as shown by d in FIG. 9) is superior to other prior art in brightness enhancement, hue, color saturation retention, and color transition effects.
  • the saturation brightness of the existing algorithm a is kept good, but the transition of the brightness in the color has a problem
  • the existing algorithm b pays too much attention to brightness, and the color is disordered
  • the existing algorithm c has better saturation and luminance data, but the color transition problem is obvious.
  • the method of the embodiment of the invention has good color tone, saturation, and brightness, and the color transition is also reasonable.
  • the evaluation values of each indicator are shown in Table 1.
  • the embodiment of the invention further provides a processing system for RGB data, including:
  • a first conversion module configured to convert the input R, G, B three color values to the HSV color space
  • the brightness adjustment module is configured to adjust the value of the brightness V while maintaining the hue H value and the saturation S value of the HSV color space;
  • the second conversion module is configured to convert the H, S, and V values processed by the brightness adjustment module from the HSV color space to the RGBW color space.
  • the brightness adjustment module is specifically configured to adjust the value of the brightness V by using a Gaussian function.
  • V(RGBW) V(RGB)*y, where y ⁇ A e + ⁇ , where y is the brightness adjustment coefficient, A is the amplitude of the Gaussian function, a is the parameter determining the half-width of the Gaussian function, s is the saturation Degree value, B is the adjustment value when s is equal to 255.
  • the second conversion module is specifically configured to search, by using a three-dimensional lookup table, the values of the values to be interpolated, G, B, and W corresponding to the H, S, and V values processed by the brightness adjustment module, and use the found values to be interpolated.
  • the G, B, and W values are converted to the 1, G, B, and W values.
  • the second conversion module is specifically configured to divide the cube where the input point X is located in the lookup table into 8 small cubes by using three mutually perpendicular planes passing through the input point X in the x , y, and z axis directions, respectively.
  • the coordinates of the point X are the values of H, S, and V obtained after the processing of the step S2, and the lookup table is used to find the corresponding value of the R, G, B, and W to be interpolated according to the values of H, S, and V.
  • Cube The volume of the small cube where each vertex pi is located in the body is:
  • V 7 ( ⁇ ⁇ .. (m ⁇ 3 ⁇ 4.) * ⁇ n ⁇ c )
  • mn 1 is the length, width and height of the cube.
  • X v is the RGBW value obtained after the conversion, which is the RGBW value to be interpolated corresponding to the 8 vertices of the cube in the lookup table, and the coordinates of the 8 vertices of the cube are the HSV corresponding to the lookup table.
  • r is the color value of the input R
  • g is the color value of the input G
  • b is the color value of the input B
  • max is the maximum value in rgb
  • min is the minimum value in rgb
  • h is the hue
  • s Indicates saturation and V indicates brightness.
  • the present invention first converts the RGB color space to the HSV color space, then enhances the brightness V while maintaining the HS in the HSV color space, and then converts the HSV color space to the RGBW color space. , can achieve improved brightness while maintaining good color tone, color saturation and natural color transition.
  • the above description is only a preferred embodiment of the present invention, and it should be noted that those skilled in the art can make several improvements and substitutions without departing from the technical principles of the present invention. It should also be considered as the scope of protection of the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Image Processing (AREA)
  • Color Image Communication Systems (AREA)
  • Facsimile Image Signal Circuits (AREA)

Abstract

本发明涉及颜色空间转化技术领域,公开了一种RGB数据的处理方法及系统,该方法包括以下步骤:S1、将输入的R、G、B三种颜色值转换到HSV颜色空间;S2、在保持HSV颜色空间色调H值和饱和度S值不变的情况下,调整亮度V的值;S3、将经步骤S2处理后的R、S、V值从HSV颜色空间转换到RGBW颜色空间进行显示。通过先将RGB颜色空间转换到HSV颜色空间,然后在保持HSV颜色空间中H、S不变的情况下提升亮度V,然后再将HSV颜色空间转换到RGBW颜色空间,能够实现在保持较好的色调、色彩饱和度以及色彩过渡自然的同时提升显示亮度。

Description

一种 RGB数据的处理方法及系统 技术领域
本发明涉及颜色空间转化技术领域,特别是涉及一种 RGB数据的处理方 法及系统。 背景技术
在 LCD、 OLED等显示设备中, 经常釆用 RGB (红色、 绿色、 蓝色)显 色技术进行显示, 这种技术的缺陷是显示亮度较低从而增加设备功耗, 而如 果釆用将 RGB颜色空间转换到 RGBW (红色、 绿色、 蓝色和白色)颜色空 间进行显示则可以提高显示亮度从而节省功耗,但是 RGBW显示又经常会出 现色彩饱和度降低、 色彩过渡不自然等问题, 而显示效果的好坏直接关系到 该技术是否能实现设备的量产。
因此, 如何实现在保持较好的色调、 色彩饱和度以及色彩过渡自然的同 时提升显示亮度, 是一个亟待解决的技术问题。 发明内容
(一)要解决的技术问题
本发明要解决的技术问题是: 如何实现在保持较好的色调、 色彩饱和度 以及色彩过渡自然的同时提升显示亮度。
(二)技术方案
为了解决上述技术问题, 本发明的实施例提供一种 RGB数据的处理方 法, 包括以下步骤:
Sl、 将输入的1 、 G、 B三种颜色值转换到 HSV颜色空间;
S2、 在保持 HSV颜色空间色调 H值和饱和度 S值不变的情况下, 调整 亮度 V的值;
S3、 将经步骤 S2处理后的 11、 S、 V值转换为 1 、 G、 B、 W值进行显 示。
在上述的方法中, 步骤 S2 中, 利用高斯函数调整亮度 V 的值, V(RGBW)=V(RGB)*y, 其中, y ~ A e + ΰ , 其中 y是亮度调整系数, A为高斯函数的幅值, a为决定高斯函数半宽高的参数, s为饱和度值, B为 s等于 255时的调整值。 在上述的方法中, 步骤 S3中, 通过三维查找表查找与经步骤 S2处理后 的11 S V值对应的待插值1 G B W值, 并利用所查找到的待插值 R G B W值得到转换后的1 G B W值。
在上述的方法中, 步骤 S3具体为: 利用在 x y z轴方向上分别经过输 入点 X的三个相互垂直的平面将输入点 X在查找表中所在的立方体分为 8个 小立方体, 输入点 X的坐标为经过步骤 S2处理后得到的 H S V的值, 所 述查找表用于根据 H S V的值查找到对应的待插值 R G B W值, 所 述立方体中每个顶点 pi所在的小立方体的体积分别为:
is - C» - ¾)
其中, g。分别为所述输入点 χ到 x、 y z轴的垂直距离, mn、 1为所述立方体的长、 宽、 高,
JC, -丄 y 9V
X v 即为转换后得到的 R G B W值, 为所述立方 体的 8个顶点在查找表中所对应的待插值 R G B W值, 所述立方体的 8 个顶点的坐标为查找表中所对应的 H S V的值, i=0,l , ... , 7
在上述的方法中, 步骤 S1具体为: 利用如下公式进行所述转换:
() 若 max ηύ:η
60c ? m i n 若 ¾¾r™ r mid g > b
k 《 』
> i ϋ +纖 c 若 nmx =■ r aiul g <
若 ™ §
60c + 240s 若 m. : -::::- h 0
Figure imgf000005_0001
其中, r表示输入的 R的颜色值, g表示输入的 G的颜色值, b表示输入 的 B的颜色值, max表示 r、 g、 b中的最大值, min表示 r、 g、 b中的最小值, h表示色调, s表示饱和度, V表示亮度。 本发明的实施例还提供了一种 RGB数据的处理系统, 包括:
第一转换模块, 用于将输入的 R、 G、 B三种颜色值转换到 HSV颜色工 5 间;
亮度调整模块, 用于在保持 HSV颜色空间色调 H值和饱和度 S值不变 的情况下, 调整亮度 V的值;
第二转换模块, 用于将经亮度调整模块处理后的 H、 S、 V值从 HSV颜 色空间转换到 RGBW颜色空间。
在上述的系统中, 所述亮度调整模块具体用于利用高斯函数调整亮度 V 的值, V(RGBW)=V(RGB)*y, 其中, y ~ A e + ΰ , 其中 y是亮度调整系数, A为高斯函数的幅值, a为决定高斯函数半宽高的参数, s为饱和度值, B为 s等于 255时的调整值。 在上述的系统中, 所述第二转换模块具体用于通过三维查找表查找与经 亮度调整模块处理后的 11、 S、 V值对应的待插值1 、 G、 B、 W值, 并利用 所查找到的待插值 R、 G、 B、 W值得到转换后的1 、 G、 B、 W值。
在上述的系统中, 所述第二转换模块具体用于利用在 x、 y、 z轴方向上 分别经过输入点 X的三个相互垂直的平面将输入点 X在查找表中所在的立方 体分为 8个小立方体, 输入点 X的坐标为经过步骤 S2处理后得到的 H、 S、 V的值, 所述查找表用于根据 H、 S、 V的值查找到对应的待插值 R、 G、 B、 W值, 所述立方体中每个顶点 pi所在的小立方体的体积分别为: V7 (ί 》·. (m― ¾.》 * {n― c)
其中, g。分别为所述输入点 x到 x、 y z轴的垂直距离, mn、 1为所述立方体的长、 宽、 高,
JC, -丄 y 9 V
X v 即为转换后得到的 R G B W值, 为所述立方 体的 8个顶点在查找表中所对应的待插值 R G B W值, 所述立方体的 8 个顶点的坐标为查找表中所对应的 H S V的值, i=0,l , ... , 7 在上述的系统中, 所述第一转换模块具体用于利用如下公式进行所述转 若 rrmi
十 0 若 ma r mid g > h
k ? Ί'η. + 3βθ: 若 max r and g <
Figure imgf000006_0001
+ w 若
60* x ―■ ^i— 4- 24I. , 若 max = b
Figure imgf000006_0002
I?
其中, r表示输入的 R的颜色值, g表示输入的 G的颜色值, b表示输入 的 B的颜色值, max表示 r g b中的最大值, min表示 r g b中的最小值, h表示色调, s表示饱和度, V表示亮度。
(三)有益效果
上述技术方案具有如下优点: 通过先将 RGB颜色空间转换到 HSV颜色 空间, 然后在保持 HSV颜色空间中 H S不变的情况下提升亮度 V, 然后再 将 HSV颜色空间转换到 RGBW颜色空间, 能够实现在保持较好的色调、 色 彩饱和度以及色彩过渡自然的同时提升显示亮度。 附图说明
图 1是本发明的方法流程图;
图 2是亮度拉伸时所使用的高斯函数;
图 3是三维查找表示意图;
图 4是插值算法示意图;
图 5 是^^¾所对应的 HSV图; 图 5b是 RGBW所对应的 HSV图; 图 5c是 a所对应的 HSV颜色效果图;
图 6a是依据本发明的方法实际仿真得到的 RGB所对应的 HS V色空间立 体图, 图 6b是 RGBW所对应的 HSV色空间立体图;
图 7a是图 6a对应的 S=0时的截面图; 图 7b是图 6b对应的 S=0时的截 面图;
图 8a为 RGB输入数据, 图 8b为 RGBW输出数据; 以及
图 9a是现有技术算法 a效果图; 图 9b是现有技术算法 b效果图; 图 9c 是现有技术算法 c效果图; 图 9d是本发明的方法效果图。 具体实施方式
下面结合附图和实施例, 对本发明的具体实施方式作进一步详细描述。 以下实施例用于说明本发明, 但不用来限制本发明的范围。 实施例一
本发明实施例一的设计思路是: 先将 RGB颜色空间转换到 HSV (色调、 饱和度、 亮度)颜色空间, 然后在保持 HSV颜色空间中 H、 S不变的情况下 提升亮度 V, 然后再将 HSV颜色空间转换到 RGBW颜色空间。
具体来说, 如图 1所示, 该方法包括以下步骤:
Sl、 LCD模组通过 LVDS等信号线输入每个像素的 RGB数据, 将输入 的红色 R、 绿色 G、 蓝色 B三种颜色值转换到 HSV颜色空间: 若 ma min
若 m ™ r & d g > b
h Q x ……. + 3§ : 若? ™ r smd g < h
― H - 若 m ™ §
60s x + 24Θ 若 = h
J I), 若 nmx = 0
^ I m '?Ϊ .―、、、、、 、、、、、 m:i: 甘
' m«3; ?
v = max
其中, r表示输入的 R的颜色值, g表示输入的 G的颜色值, b表示输入 的 B的颜色值, max表示 r、 g、 b中的最大值, min表示 r、 g、 b中的最小值, h表示色调, s表示饱和度, V表示亮度。
S2、 在保持 HSV颜色空间色调 H值和饱和度 S值不变的情况下, 利用 高斯函数调整亮度 V的值, V(RGBW)=V(RGB)*y; 高斯函数如图 2中线条所 示。
本实施例中, 高斯函数表达式为
y = A ^ e~a slAf + B 其中, y是亮度调整系数, A为高斯函数的幅值, e是自然对数, a为决 定高斯函数半宽高的参数, s为饱和度值, B为 s等于 255时的调整值。 在本 实施例中, a优选 0.002, A优选 0.28, B优选 0.72。
图 2为该高斯函数的曲线图, 横坐标为饱和度值 s, 对应的纵坐标的值 y 为根据该高斯函数计算出的值,则利用该高斯函数调整之后的亮度值 v'=v*y , 其中, V为步骤 S1计算得出的亮度值。 举例说明如下: 若饱和度 s为 0, 则 代入高斯函数可得值 1 (根据图 2也可以看出 ),则调整之后的亮度值 v,=v*l , 若饱和度 s为 255, 则代入高斯函数可得值 0.74, 则调整之后的亮度值 v'=v*0.74, 从图 2可以看出, 利用上述高斯函数实现了亮度值的调整, 调整 的结果为使得相对低饱和度像素对应的亮度值增大, 而相对高饱和度像素对 应的亮度值减小。 上述高斯函数中参数 a、 A、 B的选取是根据实验结果选取 的, 实验表明, 利用具有这样参数的高斯函数实现本发明, 所得到的效果最 好, 能够实现在保持较好的色调、 色彩饱和度以及色彩过渡自然的同时提升 显示亮度, 其效果可参见图 9d。 经过转换后的 HS V数据就是 RGBW颜色空间对应的 HS V颜色空间数 据。
S3、 将经步骤 S2处理后的11、 S、 V值转换为1 、 G、 B、 W值。
所述三维查找表是进行压缩过的三维表格。 三维查找表对应立方体单元 存储了每个 HSV数据所对应的待插值 RGBW数据。 例如, 输入 HSV值 (0,0,255), 则查找到的结果为 RGBW值为 (255,255,255,255), 本步骤进行转换 时需要用到所查找到的值, 具体的转换过程将在下面进行说明。
实际的三维查找包含所有的输入数据, 查找表的尺寸通常为
256*256*256*32bit ( 530Mb ), 如此大的查找表, 在硬件中是不可能实现的。 因此首先要压缩查找表, 只对 0-255中固定步长位置的数据进行存储, 而未 存储的数据则通过插值完成。例如图 3中的查找表只存储步长为 16的节点数 据, 这样查找表的数据将缩小为 16*16*16*32bit ( 132K ), 在芯片中较容易实 现。 另外在图 7b中可以看到, RGBW所对应的 HSV颜色空间中低亮度空间 数据稀疏, 而高亮度空间有较大空白映射区域, 因此查找表可以进一步被压 缩到 64K , 实现芯片低成本化。
作为一个示例, 如图 4所示, 利用在 x、 y、 z轴方向上分别经过输入点 X 的三个相互垂直的平面将输入点在查找表中所在的立方体分为 8个小立方 体, 所述立方体中每个顶点 pi所在的小立方体的体积分别为:
"" ~( » (?? ■ )
K
其中, r。、 b。、 ^。分别为所述输入点到 x、 y、 z轴的垂直距离, m、 n、 1为
JC, -丄 y 9V
所述立方体的长、 宽、 高, 则 X U 7—' , 为转换后得到的1 、 G、 B、
W值, ^为所述立方体的 8个顶点在查找表中所对应的待插值 R、 G、 B、 W 值, 所述立方体的 8个顶点的坐标为查找表中所对应的 H、 S、 V的值, 分别 为(H16,S16, V16 )、 (H16+1,S16,V16 )、 ( H16,S16+1,V16 )、 ( H16+1 , S16+1 , V16 )、 (H16,S16,V16+1 )、 ( H16+1,S16,V16+1 )、 ( H16,S16+1,V16+1 ), ( H16+1,S16+1 , V16+l )。 输入点 x的坐标为经过步骤 S2处理后得到的 H、
S、 V的值, i=0,l , ... , 7。 若 为 8个顶点所对应的 R值, 则所计算出的 ^即 为所求的 R值, 依次类推。 图 5a、 图 5b、 图 5c是依据本发明实施例的方法所得到的理论模型图, 其中图 5a是本发明实施例的转换过程中得到的 RGB所对应的 HS V颜色空间 的理论模型; 图 5b是 RGB W所对应的 HS V颜色空间的理论模型, 图 5c是 a 所对应的显示有色调、饱和度以及亮度变化 HSV颜色空间的理论模型。 从图 5a、 图 5b、 图 5c中可以看出, RGB W模型相对于 RGB模型, 损失了部分高 饱和度、 高亮度的颜色(如高亮的纯色); 但增加了部分低饱和度、 高亮度的 颜色。 而低饱和度的白色最大亮度达到了 RGB空间的 1.5倍, 这样可以大幅 提高显示设备的亮度, 虽然高饱和度色彩的亮度有所降低, 但由于自然景物 中高饱和度色彩所占的比例很少, 所以不影响完整地真实地显示绝大部分颜 色。
图 8、 图 9可以看出, 本发明实施例的方法(效果图如图 9中 d所示) 在亮度提升、 色调、 色彩饱和度保持, 以及颜色过渡效果均优于其他现有技 术。 具体来说, 如图 9a所示, 现有算法 a饱和度亮度保持较好, 但色彩中亮 度的过渡存在问题,如图 9b所示,现有算法 b过于注重亮度, 色彩发生混乱; 如图 9c所示, 现有算法 c饱和度、 亮度数据较好, 但颜色过渡问题明显; 本 发明实施例的方法色调、 饱和度、 亮度都很好, 色彩过渡也合理。 各个指标 的评价值如表 1所示。
ii S
RGB 123 132 算法 a 123 1 8 算法 b ιβ& 187 算法 c 1: 90 6 本发明 182 表 1 实施例二
本发明实施例还提供了一种 RGB数据的处理系统, 包括:
第一转换模块, 用于将输入的 R、 G、 B三种颜色值转换到 HSV颜色空 间;
亮度调整模块, 用于在保持 HSV颜色空间色调 H值和饱和度 S值不变 的情况下, 调整亮度 V的值;
第二转换模块, 用于将经亮度调整模块处理后的 H、 S、 V值从 HSV颜 色空间转换到 RGBW颜色空间。
所述亮度调整模块具体用于利用高斯函数调整亮度 V的值,
V(RGBW)=V(RGB)*y, 其中, y ~ A e + ΰ , 其中 y是亮度调整系数, A为高斯函数的幅值, a 为决定高斯函数半宽高的参数, s为饱和度值, B为 s等于 255时的调整值。 所述第二转换模块具体用于通过三维查找表查找与经亮度调整模块处理 后的 H、 S、 V值对应的待插值1 、 G、 B、 W值, 并利用所查找到的待插值 R、 G、 B、 W值得到转换后的1 、 G、 B、 W值。
所述第二转换模块具体用于利用在 x、 y、 z轴方向上分别经过输入点 X 的三个相互垂直的平面将输入点 X在查找表中所在的立方体分为 8个小立方 体, 输入点 X的坐标为经过步骤 S2处理后得到的 H、 S、 V的值, 所述查找 表用于根据 H、 S、 V的值查找到对应的待插值 R、 G、 B、 W值, 所述立方 体中每个顶点 pi所在的小立方体的体积分别为:
4 ij.
V7 (ί 》·. (m― ¾.》 * {n― c)
其中, g。分别为所述输入点 X到 x、 y z轴的垂直距离, m n 1 为所述立方体的长、 宽、 高,
JC, -丄 y 9 V
X v 即为转换后得到的 R G B W值, 为所述立方 体的 8个顶点在查找表中所对应的待插值 R G B W值, 所述立方体的 8 个顶点的坐标为查找表中所对应的 H S V的值, i=0,l , ... , 7 所述 一转换模块具体用于利用如下公式进行所述转换: g > h
g <
Figure imgf000012_0001
其中, r表示输入的 R的颜色值, g表示输入的 G的颜色值, b表示输入 的 B的颜色值, max表示 r g b中的最大值, min表示 r g b中的最小值, h表示色调, s表示饱和度, V表示亮度。
由以上实施例可以看出, 本发明通过先将 RGB颜色空间转换到 HSV颜 色空间, 然后在保持 HSV颜色空间中 H S不变的情况下提升亮度 V, 然后 再将 HSV颜色空间转换到 RGBW颜色空间, 能够实现在保持较好的色调、 色彩饱和度以及色彩过渡自然的同时提升显示亮度。 以上所述仅是本发明的优选实施方式, 应当指出, 对于本技术领域的普 通技术人员来说, 在不脱离本发明技术原理的前提下, 还可以做出若干改进 和替换, 这些改进和替换也应视为本发明的保护范围。

Claims

权 利 要 求 书
1、 一种 RGB数据的处理方法, 包括以下步骤:
Sl、 将输入的1 、 G、 B三种颜色值转换到 HSV颜色空间;
S2、 在保持 HSV颜色空间色调 H值和饱和度 S值不变的情况下, 调整 亮度 V的值;
S3、 将经步骤 S2处理后的 11、 S、 V值转换为 1 、 G、 B、 W值进行显 示。
2、 如权利要求 1所述的方法, 步骤 S2中, 利用高斯函数调整亮度 V的 值, V(RGBW)=V(RGB)*y, 其中, y ~ A e + ΰ , 其中 y是亮度调整系数, A为高斯函数的幅值, a为决定高斯函数半宽高的参数, s为饱和度值, B为 s等于 255时的调整值。
3、 如权利要求 1或 2所述的方法, 步骤 S3中, 通过三维查找表查找与 经步骤 S2处理后的11、 S、 V值对应的待插值1 、 G、 B、 W值, 并利用所查 找到的待插值 R、 G、 B、 W值得到转换后的1 、 G、 B、 W值。
4、 如权利要求 3所述的方法, 其中,
步骤 S3具体为: 利用在 x、 y、 z轴方向上分别经过输入点 X的三个相 互垂直的平面将输入点 X在查找表中所在的立方体分为 8个小立方体, 输入 点 X的坐标为经过步骤 S2处理后得到的 H、 S、 V的值, 所述查找表用于根 据11、 S、 V的值查找到对应的待插值 R、 G、 B、 W值, 所述立方体中每个 顶点 pi所在的小立方体的体积分别为:
"" ~( » (??、、■ )
K 其中, g。分别为所述输入点 X到 x、 y、 z轴的垂直距离, mn、 1为所述立方体的长、 宽、 高, 则 V '-o ― , 即为转换后得到的 R G B W值, 为所述立方 体的 8个顶点在查找表中所对应的待插值 R G B W值, 所述立方体的 8 个顶点的坐标为查找表中所对应的 H S V的值, i=0,l , ... , 7
:、 如权利要求 4所述的方法, 步骤 S1具体为: 利用如下公式进行所述 转换:
mm
- % 若 ™ r & d g > b
h X + 36θ: 若? ™ r smd g < h
6CF x 上 - !2Θ: 若 m ™ §
g
60* x + 24θ: 若 ma h 若 nmx
其它
Figure imgf000015_0001
v = max
其中, r表示输入的 R的颜色值, g表示输入的 G的颜色值, b表示输入 的 B的颜色值, max表示 r g b中的最大值, min表示 r g b中的最小值, h表示色调, s表示饱和度, V表示亮度。
6、 一种 RGB数据的处理系统, 包括:
第一转换模块, 用于将输入的 R G B三种颜色值转换到 HSV颜色空 间;
亮度调整模块, 用于在保持 HSV颜色空间色调 H值和饱和度 S值不变 的情况下, 调整亮度 V的值;
第二转换模块, 用于将经亮度调整模块处理后的 H S V值从 HSV颜 色空间转换到 RGBW颜色空间。
7、如权利要求 6所述的系统,所述亮度调整模块具体用于利用高斯函数 调整亮度 V的值, V(RGBW)=V(RGB)*y, 其中, y ~ A e + ΰ , 其中 y是亮度调整系数, A为高斯函数的幅值, a为决定高斯函数半宽高的参数, s为饱和度值, B为 s等于 255时的调整值。
8、如权利要求 6或 7所述的系统,所述第二转换模块具体用于通过三维 查找表查找与经亮度调整模块处理后的 H、 S、 V值对应的待插值1 、 G、 B、 W值, 并利用所查找到的待插值 R、 G、 B、 W值得到转换后的1 、 G、 B、
W值。
9、 根据权利要求 8所述的系统, 所述第二转换模块具体用于利用在 x、 y、 z轴方向上分别经过输入点 X的三个相互垂直的平面将输入点 X在查找表 中所在的立方体分为 8个小立方体, 输入点 X的坐标为经过步骤 S2处理后 得到的 H、 S、 V的值, 所述查找表用于根据 H、 S、 V的值查找到对应的待 插值 R、 G、 B、 W值, 所述立方体中每个顶点 pi所在的小立方体的体积分 别为:
其中, r0、 g。分别为所述输入点 X到 x、 y、 z轴的垂直距离, mn、 1为所述立方体的长、 宽、 高,
JC, -丄 y 9V
X v 7—' , 即为转换后得到的 R、 G、 B、 W值, 为所述立方 体的 8个顶点在查找表中所对应的待插值 R、 G、 B、 W值, 所述立方体的 8 个顶点的坐标为查找表中所对应的 H、 S、 V的值, i=0,l , ... , 7。
10、 根据权利要求 9所述的系统, 所述第一转换模块具体用于利用如下 公式进行所述转换:
若 m«r min
SIMI > δ
h ami g < h
Figure imgf000016_0001
― mm 其它
Figure imgf000017_0001
其中, r表示输入的 R的颜色值, g表示输入的 G的颜色值, b表示输入 的 B的颜色值, max表示 r、 g、 b中的最大值, min表示 r、 g、 b中的最小值, h表示色调, s表示饱和度, V表示亮度。
PCT/CN2012/085466 2012-07-18 2012-11-28 一种rgb数据的处理方法及系统 WO2014012316A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/128,671 US9570043B2 (en) 2012-07-18 2012-11-28 Method for processing RGB data and system for the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210250156.6 2012-07-18
CN2012102501566A CN102769758A (zh) 2012-07-18 2012-07-18 一种rgb数据的处理方法及系统

Publications (1)

Publication Number Publication Date
WO2014012316A1 true WO2014012316A1 (zh) 2014-01-23

Family

ID=47096993

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/085466 WO2014012316A1 (zh) 2012-07-18 2012-11-28 一种rgb数据的处理方法及系统

Country Status (3)

Country Link
US (1) US9570043B2 (zh)
CN (2) CN102769758A (zh)
WO (1) WO2014012316A1 (zh)

Families Citing this family (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102769758A (zh) * 2012-07-18 2012-11-07 京东方科技集团股份有限公司 一种rgb数据的处理方法及系统
CN103024354B (zh) * 2012-12-11 2015-11-25 华为技术有限公司 颜色匹配方法及装置
US9483975B2 (en) * 2013-05-28 2016-11-01 Apple Inc. Color space conversion methods for electronic device displays
KR101509568B1 (ko) * 2013-06-28 2015-04-08 (주)실리콘화일 알지비 데이터를 이용한 색보정 방법
CN103634580B (zh) * 2013-12-19 2016-05-25 敦泰科技有限公司 一种彩色图像的色域调整方法及装置
CN103780797B (zh) * 2014-01-23 2016-08-31 北京京东方光电科技有限公司 一种图像色彩增强的方法和装置
CN104103254B (zh) * 2014-08-12 2016-04-13 深圳市华星光电技术有限公司 提高wrgb色彩饱和度的方法
CN104505052B (zh) * 2014-09-18 2017-01-25 深圳市华星光电技术有限公司 图像数据处理方法及装置
CN105427816B (zh) * 2014-09-19 2018-12-18 联想(北京)有限公司 一种信息处理方法和电子设备
CN104299598B (zh) * 2014-11-04 2017-01-25 深圳市华星光电技术有限公司 一种三色数据到四色数据的转换系统及转换方法
CN104376833A (zh) * 2014-11-19 2015-02-25 深圳市华星光电技术有限公司 一种rgb数据到rgbw数据的转换系统及转换方法
US10134360B2 (en) * 2014-11-25 2018-11-20 Intel Corporation Compressing the size of color lookup tables
CN104505035A (zh) * 2014-12-18 2015-04-08 深圳市华星光电技术有限公司 一种rgb数据的转换方法及转换系统
US9659354B2 (en) * 2015-03-20 2017-05-23 Intel Corporation Color matching for imaging systems
CN104778929B (zh) * 2015-03-27 2017-11-03 深圳市华星光电技术有限公司 一种显示面板的驱动数据的转换方法及转换系统
CN105263009B (zh) * 2015-09-14 2017-12-15 深圳市华星光电技术有限公司 一种图像的自适应转换方法
CN105185351B (zh) * 2015-10-13 2017-07-28 深圳市华星光电技术有限公司 提升oled显示面板对比度的方法及系统
CN105225647B (zh) * 2015-10-15 2018-09-18 小米科技有限责任公司 亮度调整方法及装置
CN105657391B (zh) 2016-01-04 2017-07-28 京东方科技集团股份有限公司 一种图像处理的方法及装置
CN105704464A (zh) * 2016-01-18 2016-06-22 安徽工程大学 一种基于fpga的色域空间转换方法
CN105931605B (zh) * 2016-05-12 2018-09-18 深圳市华星光电技术有限公司 一种图像显示方法及显示装置
CN108604370B (zh) * 2016-09-30 2020-12-01 华为技术有限公司 一种矩形框边缘的显示方法及终端
CN106652939B (zh) * 2016-12-20 2018-11-23 武汉华星光电技术有限公司 一种显示面板的驱动方法及驱动装置
CN109147713B (zh) * 2017-06-16 2020-06-30 奇景光电股份有限公司 影像数据处理方法以及时序控制器
CN107257454B (zh) * 2017-06-29 2019-08-06 青岛海信电器股份有限公司 一种图像色彩偏移的方法、装置及显示设备
CN107146569B (zh) * 2017-07-14 2019-02-12 武汉华星光电技术有限公司 适用rgbw显示的分区背光显示方法及装置
TWI637382B (zh) * 2017-08-08 2018-10-01 奇景光電股份有限公司 影像資料處理方法以及時序控制器
CN107742507B (zh) * 2017-10-31 2019-11-22 武汉华星光电技术有限公司 提高显示器色域的方法及系统
US10468461B2 (en) * 2018-01-25 2019-11-05 Himax Technologies Limited Method and apparatus for performing display control of a display panel equipped with red, green, blue, and white sub-pixels
CN108280813A (zh) * 2018-01-30 2018-07-13 努比亚技术有限公司 一种图像处理方法、终端及计算机可读存储介质
CN108810507B (zh) * 2018-06-15 2019-10-29 京东方科技集团股份有限公司 一种色域转换方法及色域转换器、显示装置
CN109410295B (zh) * 2018-09-14 2023-09-15 广州视源电子科技股份有限公司 颜色设置方法、装置、设备及计算机可读存储介质
CN109166533A (zh) * 2018-09-29 2019-01-08 重庆石墨烯研究院有限公司 一种根据图像亮度值调整显示背光的方法
CN109658872B (zh) * 2018-12-11 2020-10-16 惠科股份有限公司 一种显示模组的驱动方法和驱动装置
CN109741279B (zh) * 2019-01-04 2021-09-07 Oppo广东移动通信有限公司 图像饱和度调整方法、装置、存储介质及终端
CN110264972B (zh) * 2019-06-26 2021-08-17 京东方科技集团股份有限公司 亮度补偿值的获取方法、计算机设备及计算机可读介质
CN110763682B (zh) * 2019-09-19 2022-06-03 湖北三江航天万峰科技发展有限公司 一种陶瓦表面缺釉检测方法及系统
CN110880306B (zh) * 2019-11-01 2021-03-30 南京图格医疗科技有限公司 一种医用显示器色彩还原校正方法
CN112911366B (zh) * 2019-12-03 2023-10-27 海信视像科技股份有限公司 饱和度调整方法、装置及显示设备
CN113111931B (zh) * 2021-04-02 2023-04-07 同济大学 一种基于光强变换和聚类的量筒读数方法
CN113393798A (zh) * 2021-06-30 2021-09-14 合肥维信诺科技有限公司 显示面板的驱动方法、驱动芯片及显示装置
CN113766695A (zh) * 2021-08-25 2021-12-07 北京奕斯伟计算技术有限公司 Led灯的亮度控制方法、芯片及系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101329859A (zh) * 2004-04-09 2008-12-24 三星电子株式会社 用于在色彩空间中转换图像数据的系统
CN101370148A (zh) * 2007-08-13 2009-02-18 三星电子株式会社 Rgb到rgbw的颜色分解方法和系统
CN101866642A (zh) * 2010-06-11 2010-10-20 华映视讯(吴江)有限公司 红绿蓝白光显示系统及其显示影像的方法
CN102576523A (zh) * 2009-10-21 2012-07-11 全球Oled科技有限责任公司 显示装置
CN102769758A (zh) * 2012-07-18 2012-11-07 京东方科技集团股份有限公司 一种rgb数据的处理方法及系统

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5943058A (en) * 1996-01-25 1999-08-24 Silicon Graphics, Inc. Texture mapping circuit for performing data interpolations
US7110046B2 (en) * 2003-11-04 2006-09-19 Cyberlink Corp. Method for dynamically adjusting video brightness
US20050185836A1 (en) * 2004-02-24 2005-08-25 Wei-Feng Huang Image data processing in color spaces

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101329859A (zh) * 2004-04-09 2008-12-24 三星电子株式会社 用于在色彩空间中转换图像数据的系统
CN101370148A (zh) * 2007-08-13 2009-02-18 三星电子株式会社 Rgb到rgbw的颜色分解方法和系统
CN102576523A (zh) * 2009-10-21 2012-07-11 全球Oled科技有限责任公司 显示装置
CN101866642A (zh) * 2010-06-11 2010-10-20 华映视讯(吴江)有限公司 红绿蓝白光显示系统及其显示影像的方法
CN102769758A (zh) * 2012-07-18 2012-11-07 京东方科技集团股份有限公司 一种rgb数据的处理方法及系统

Also Published As

Publication number Publication date
CN102769758A (zh) 2012-11-07
CN103400566A (zh) 2013-11-20
US9570043B2 (en) 2017-02-14
CN103400566B (zh) 2015-05-27
US20150138227A1 (en) 2015-05-21

Similar Documents

Publication Publication Date Title
WO2014012316A1 (zh) 一种rgb数据的处理方法及系统
CN104599636B (zh) Led显示屏亮色度校正方法及亮色度校正系数生成装置
KR100834762B1 (ko) 이 기종간 색역 사상 방법 및 장치
TWI510101B (zh) 飽和度調整方法與色彩調整系統
KR101990956B1 (ko) 색역 변환 장치 및 그 방법
KR101348369B1 (ko) 디스플레이 장치의 색 변환 방법 및 장치
US10347198B2 (en) Image displaying methods and display devices
JP2010511314A (ja) 色域適合
US9736336B2 (en) Image tone adjustment method, apparatus thereof and computer storage medium
US20110115811A1 (en) System and method for expanding color gamut
KR20140136375A (ko) 영상 표시 장치
JP6185176B2 (ja) 色域マッピングのシステムおよび方法
WO2020216085A1 (zh) 四面体插值计算方法及装置、色域转换方法及装置、介质
KR20200054299A (ko) 색 영역 매핑 방법 및 색 영역 매핑 장치
WO2019080243A1 (zh) 改善域外色重叠映射的方法
US9305519B2 (en) Image color adjusting method and electronic device using the same
JP2005501356A (ja) カラー画像にトーンマッピング関数を適用する装置
CN101616332A (zh) 一种色域扩展系统及方法
TW201515472A (zh) 基於人類視覺系統的光度補償系統
TWI531246B (zh) Color adjustment method and its system
CN100535984C (zh) 彩色影像加强装置与方法
CN108171648B (zh) 一种美颜肤色变换的方法和装置
US8284316B2 (en) Real-time image processing circuit capable of enhancing brightness contrast and color saturation
TW200913730A (en) Method and apparatus for processing image and electronic device using the same
TW201032578A (en) Method for enhancing image contrast

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 14128671

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12881262

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 10-06-2015)

122 Ep: pct application non-entry in european phase

Ref document number: 12881262

Country of ref document: EP

Kind code of ref document: A1