WO2014010628A1 - 造水方法および造水装置 - Google Patents

造水方法および造水装置 Download PDF

Info

Publication number
WO2014010628A1
WO2014010628A1 PCT/JP2013/068874 JP2013068874W WO2014010628A1 WO 2014010628 A1 WO2014010628 A1 WO 2014010628A1 JP 2013068874 W JP2013068874 W JP 2013068874W WO 2014010628 A1 WO2014010628 A1 WO 2014010628A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
solid content
line
branch line
content removal
Prior art date
Application number
PCT/JP2013/068874
Other languages
English (en)
French (fr)
Inventor
寛生 高畠
智勲 千
谷口 雅英
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to JP2013544906A priority Critical patent/JP6183213B2/ja
Publication of WO2014010628A1 publication Critical patent/WO2014010628A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F9/00Multistage treatment of water, waste water or sewage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/14Ultrafiltration; Microfiltration
    • B01D61/149Multistep processes comprising different kinds of membrane processes selected from ultrafiltration or microfiltration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/14Ultrafiltration; Microfiltration
    • B01D61/22Controlling or regulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/58Multistep processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2317/00Membrane module arrangements within a plant or an apparatus
    • B01D2317/02Elements in series
    • B01D2317/022Reject series
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • B01D61/025Reverse osmosis; Hyperfiltration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/14Ultrafiltration; Microfiltration
    • B01D61/145Ultrafiltration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/14Ultrafiltration; Microfiltration
    • B01D61/147Microfiltration
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/444Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by ultrafiltration or microfiltration
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/50Treatment of water, waste water, or sewage by addition or application of a germicide or by oligodynamic treatment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/70Treatment of water, waste water, or sewage by reduction
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • Y02A20/131Reverse-osmosis

Definitions

  • the present invention relates to a fresh water generation method and a fresh water generation apparatus, and more particularly, to improve the production efficiency of production water and to improve biofouling in a post-treatment means even if solid content removal water after water quality measurement is returned to a supply line.
  • the present invention relates to a fresh water generation method and a fresh water generation apparatus that can suppress generation.
  • Sea water, sewage, industrial wastewater, etc. are used as raw water, and a fresh water generation method and a fresh water generating apparatus for obtaining product water by treating the raw water in multiple stages have been researched and used in many industries and water treatment fields (for example, Patent Document 1).
  • the raw water is sent to the supply line p62 using a pump (not shown), and the turbidity is separated from the raw water by the solid content removing unit 604 using an ultrafiltration membrane or a microfiltration membrane.
  • solid content removal water having a solid content concentration lower than that of the raw water is obtained.
  • the solid content-removed water is further processed by post-processing means 606 using a reverse osmosis membrane or the like to obtain product water.
  • the solid content removal water collecting line p64 is connected to the liquid feed line p63 downstream of the solid content removal section 604, and the solid content removal water is connected.
  • Water quality such as pH, dissolved oxygen (DO), turbidity, chlorine concentration, etc. is measured with a measuring device 608.
  • a measuring device may be installed directly in the liquid feeding line p63, if the device is stopped for maintenance management (calibration, cleaning, replacement of consumables, etc.) of the measuring device, the operating rate is not preferable. Therefore, as described above, the solid content removal water collection line p64 is connected downstream of the solid content removal section 604, and the quality of the solid content removal water is measured. The solid content removal water used for this measurement is discharged out of the system and discarded.
  • the solid content removal water collection line p64 has a problem that microorganisms are more likely to grow than the liquid feed line p63. This is because the flow rate of the solid content removal water collection line p64 is smaller than the flow rate of the main supply line, so the line (pipe) contact ratio per unit flow rate is large, and the flow rate is slow at the line (pipe) contact part. This is because the pipes are easy to attach to microorganisms and are prone to multiply on the spot. Further, if the solid content removal water after the water quality measurement is returned to the liquid feeding line p63 in order to increase the production efficiency, the microorganisms grown in the solid content removal water collection line p64 are supplied to the post-processing means 606.
  • biofouling driving failure caused by microorganisms
  • the present invention provides a fresh water generation method and a fresh water generation device that can improve the production efficiency of production water and can suppress the occurrence of biofouling in the post-treatment means even if the solid content removal water after the water quality measurement is returned to the supply line. Is intended to provide.
  • the above object of the present invention is constituted by the following constitution. (1) a pretreatment step of removing solids from raw water sent through a supply line and obtaining solids-removed water having a solids concentration lower than that of the raw water; From the pretreatment step to the posttreatment step, a liquid feeding step for sending the solid content removed water via a liquid feeding line; A post-treatment step of obtaining product water by removing impurities that could not be removed in the pre-treatment step from the solid content removal water fed through the liquid feed line; A collection step of collecting a part of the solid content removal water through a branch line branched from the liquid feeding line; A monitoring step of monitoring the quality of the collected solid-removed water; A return step for returning the solids removed water after monitoring to the pretreatment step via the branch line; A method for producing fresh water.
  • the fresh water generation method as described in. (5) The fresh water generation method according to any one of the above (1) to (4), wherein at least one of the raw water and the solid content-removed water contains organic waste water or biologically treated water thereof.
  • the raw water in the pretreatment step, is treated with a porous membrane having an average pore diameter of 1 ⁇ m or less to remove the solid content from the raw water.
  • Fresh water generation method in the post-treatment step, any one of the above (1) to (6), wherein the solid content removal water is treated to remove a salt content of the solid content removal water or to concentrate the solid content removal water.
  • a supply line through which raw water is fed;
  • a pretreatment means provided in the supply line for removing solids from the raw water and obtaining solids-removed water having a solids concentration lower than that of the raw water;
  • a post-treatment means that is provided in a liquid feed line downstream of the pre-treatment means, and removes impurities that could not be removed by the pre-treatment means from the solid content removal water to obtain product water;
  • a branch line for collecting a part of the solid content removal water branched from the liquid feeding line between the pretreatment means and the posttreatment means, and connected to the supply line;
  • a fresh water generator provided with a monitoring means provided on the branch line for monitoring the quality of the collected solid content-removed water.
  • raw water is pre-treated in a pre-treatment step to obtain solids-removed water, a part of the raw water is collected through a branch line, and the water quality is monitored. Since the solid content removal water is returned to the pretreatment process, the solid content removal water after monitoring is not discarded, and the production efficiency of the production water is increased. In addition, since the solid content removal water after passing through the branch line is treated again in the pretreatment process to remove microorganisms, biofouling in the post-treatment means will not occur even if this is returned to the supply line. Can be suppressed.
  • FIG. 1 is a flowchart for explaining a first embodiment of a fresh water generation method and a fresh water generation apparatus according to the present invention.
  • FIG. 2 is a flowchart for explaining a second embodiment of the fresh water generation method and fresh water generator of the present invention.
  • FIG. 3 is a flowchart for explaining a third embodiment of the fresh water generation method and fresh water generator of the present invention.
  • FIG. 4 is a flowchart for explaining a fourth embodiment of the fresh water generation method and fresh water generator of the present invention.
  • FIG. 5 is a flow diagram for explaining a conventional fresh water generation method and fresh water generator.
  • FIG. 1 is a flowchart for explaining a first embodiment of a fresh water generation method and a fresh water generation apparatus according to the present invention.
  • the fresh water generator of the first embodiment is provided in a supply line p12 to which raw water is fed and a supply line p12, and removes solids from the raw water to obtain solids-removed water having a solids concentration lower than that of the raw water.
  • a pre-processing unit 104 a post-processing unit 106 that is provided in a liquid feed line p13 on the downstream side of the pre-processing unit 104; Branch line p14 branched from the liquid feed line p13 between the two and a supply line p12, and a monitoring unit 108 provided on the branch line p14 for monitoring the water quality of the solid content removal water.
  • Examples of the raw water include, but are not limited to, seawater, sewage, industrial wastewater, biologically treated water, brine, river water, lake water, and the like.
  • the raw water is first sent to the supply line p12 using a pump (not shown), then the solid content is removed by the pretreatment means 104 installed in the supply line p12, and the solid content removal water having a lower solid content concentration than the raw water. Is done.
  • the pretreatment means 104 only needs to be able to remove suspended substances (solid content) contained in the raw water.
  • sand filtration, activated carbon filtration, membrane filtration, aggregation, and precipitation can be adopted.
  • membrane filtration is preferably employed.
  • the filtration membrane include an ultrafiltration membrane (UF), a microfiltration membrane (MF), and a membrane bioreactor (MBR) that combines biological treatment with activated sludge and UF or MF.
  • UF or MF is not particularly limited, and examples thereof include a hollow fiber type, a sheet type (flat membrane), a tubular type, and a monolith type.
  • the form of membrane filtration is a pressurized type in which the UF membrane or MF membrane is housed in a cylindrical case and pressurized from the raw water side (primary side) to obtain filtered water (solid content removal water), or contains raw water.
  • Examples include an immersion type in which a UF membrane or an MF membrane is immersed in a tank to be filtered, and filtrate water is obtained by making the filtrate water side (secondary side) negative pressure or using the head of raw water.
  • Examples of materials for the MF film and UF film include polyethylene, polypropylene, polyvinylidene fluoride (PVDF), polytetrafluoroethylene (PTFE), polysulfone, polyethersulfone (PES), polyether-etherketone (PEEK), and polyphenylene sulfide.
  • PVDF polyvinylidene fluoride
  • PTFE polytetrafluoroethylene
  • PES polyethersulfone
  • PEEK polyether-etherketone
  • polyphenylene sulfide examples include organic substances such as sulfone (PPSS), polyphenylene sulfone (PPSO), polyvinyl alcohol, cellulose acetate, polyacrylonitrile, polyamide, and polyimide, and inorganic substances such as ceramic and metal.
  • PPSS sulfone
  • PPSO polyphenylene sulfone
  • PVDF polyvinylidene fluoride
  • PVDF polyvinyliden
  • the average pore diameter of the porous filtration membrane is preferably 1 ⁇ m or less, more preferably 0.45 ⁇ m or less, and even more preferably 0.1 ⁇ m or less from the viewpoint of certainty of removing microorganisms.
  • the microorganisms that propagate are bacteria, fungi, archaea, and the like, but most of the microorganisms can be removed by using a filtration membrane having an average pore size of 1 ⁇ m or less.
  • the average pore diameter of a filtration membrane is 1 nm or more, and it is more preferable that it is 5 nm or more. When the average pore diameter is 1 nm or more, the filtration rate can be increased, and good productivity is maintained.
  • the solid-content-removed water that has passed through the pretreatment means 104 is subsequently post-treated by the post-treatment means 106 provided in the liquid feed line p13 to obtain product water.
  • the post-treatment means 106 can be variously changed depending on the characteristics and quality of the required production water.
  • the post-treatment means 106 is for removing impurities that could not be removed by the pre-treatment means 104, and means for removing the salt content of the solid content removal water Examples include means capable of concentrating the solid content-removed water.
  • semi-permeable membranes such as reverse osmosis membrane (RO) and nanofiltration membrane (NF), forward osmosis membrane (FO), electrodialysis, membrane distillation, ion exchange and the like can be employed.
  • RO reverse osmosis membrane
  • NF nanofiltration membrane
  • FO forward osmosis membrane
  • electrodialysis membrane distillation
  • ion exchange ion exchange
  • the material of the semipermeable membrane examples include polymer materials such as cellulose acetate polymer, polyamide, polyester, polyimide, and vinyl polymer.
  • the membrane structure has a dense layer on at least one side of the membrane, and an asymmetric membrane having fine pores gradually increasing in size from the dense layer to the inside of the membrane or the other side, and a dense membrane on the asymmetric membrane.
  • membrane forms include hollow fibers and flat membranes.
  • a membrane separation element that normally contains a semipermeable membrane, structurally separates raw water (solid content removal water) and permeated water (product water), and collects the permeated water. Is used.
  • the form of the membrane separation element is not particularly limited.
  • a hollow fiber membrane a structure in which a plurality of hollow fibers are bundled and an end is bonded to a permeate collecting part. Examples include a spiral structure in which an envelope is formed, an end is bonded to a central pipe serving as a water collecting pipe, and a flat membrane is wound around and fixed.
  • permeated water and concentrated water can be obtained by accommodating one or more membrane separation elements in a pressure-resistant container and pressurizing from the raw water (solid content removal water) side.
  • a connection configuration of a plurality of pressure-resistant containers (such as a configuration in which permeate or concentrated water is connected to a different pressure-resistant container), recovery rate of permeate, concentration rate of concentrated water, solid content to the post-processing means 106
  • the processing conditions such as the flow rate of the removed water, the processing time, the processing temperature, and the like are appropriately changed depending on the type of the post-processing means 106, the scale of the apparatus, the production capacity, the required water quality, and the like.
  • a part of the solid content-removed water obtained by the pretreatment means 104 is collected and the water quality is monitored.
  • a branch line p14 branched from the liquid feed line p13 between the pretreatment means 104 and the posttreatment means 106 and connected to the supply line p12 on the upstream side of the pretreatment means 104 is provided, and the branch line p14 is used as the monitoring means 108.
  • a measuring instrument is detachably provided from the branch line p14.
  • a part of the solid content removal water is collected through the branch line p14, the quality of the solid content removal water is measured by the monitoring means 108, and the solid content removal water after the measurement can be returned to the supply line p12.
  • branch line p14 is provided with two or more open / close valves so as to sandwich the monitoring means 108, and when maintenance such as cleaning and calibration of the monitoring means 108 is performed, water supply is stopped by closing the open / close valve, and the fresh water generator Maintenance can be performed safely without stopping the entire system.
  • the water quality to be monitored varies depending on the type of raw water and management method. For example, pH, dissolved oxygen (DO), temperature, turbidity, redox potential (ORP), pre-organic carbon, chlorine concentration Biofouling measurement devices and the like may be mentioned, and the monitoring means 108 may be equipped with a water quality measurement related device for measuring these.
  • the inner diameter of the branch line p14 is preferably 3 to 30%, more preferably 5 to 20%, still more preferably 7 to 10% of the inner diameter of the liquid feeding line p13. If the inner diameter of the branch line P14 is less than 3% with respect to the inner diameter of the liquid supply line p13, the branch line p14 is likely to be blocked, and the amount of pipe contact per unit flow rate of the branch line p14 increases, so that microorganisms propagate. This is not preferable because there is an increased concern that the flow rate of the branch line p14 becomes insufficient and the reliability as a representative value of the measurement value by the monitoring unit 108 decreases. Further, if it exceeds 30%, a large amount of the solid content removal water treated by the pretreatment means 104 is returned to the supply line p12 as described above, and this solid content removal water is again treated in a large amount again. From the viewpoint of
  • the flow rate of the solid content removal water sent to the branch line p14 is preferably 0.1 to 10% of the flow rate of the solid content removal water sent to the liquid feed line p13. -8% is more preferable, and 0.5-5% is more preferable. If the flow rate of the solid content removal water sent to the branch line p14 is less than 0.1% of the flow rate of the solid content removal water sent to the liquid feed line p13, the amount of pipe contact per unit flow rate of the branch line p14 is This is not preferable because it increases the concern that microorganisms are likely to grow, the flow rate of the branch line p14 is insufficient, and the reliability as a representative value of the measurement value by the monitoring means 108 is reduced. On the other hand, if it exceeds 10%, a large amount of the solid content removal water treated by the pretreatment means 104 is treated again, which is not preferable from the viewpoint of productivity.
  • the flow rate can be adjusted by controlling a pump (not shown) installed in the branch line p14, setting the inner diameter of the branch line p14, and adjusting the opening of a valve installed in the branch line p14. . Further, the flow rate is variously changed depending on the type of the monitoring means 108, device characteristics, and the like.
  • the raw water sent through the supply line p12 is first subjected to the removal of suspended solids (solid content) in the pretreatment means 104 to obtain solid content removal water having a solid content concentration lower than that of the raw water (pretreatment step).
  • the solid-content-removed water sent from the pretreatment means 104 is sent to the post-treatment means 106 through the liquid-feed line p13 (liquid-feeding process), and the impurities that could not be removed in the pre-treatment process in the post-treatment means 106. Is removed to obtain product water (post-treatment step).
  • a part of the solid content-removed water obtained in the pretreatment step is collected through the branch line p14 (collection step), and a desired water quality measurement is performed by the monitoring means 108 (monitoring step).
  • the solid content removed water after monitoring is returned to the supply line p12 upstream of the pretreatment means 104 via the branch line p14 (returning step).
  • the solid removal water after monitoring is returned to the supply line p12 on the upstream side of the pretreatment means 104 via the branch line p14, and is treated again by the pretreatment means 104.
  • the solid removal water after monitoring is not discarded, and the production efficiency of production water is increased.
  • the performance of the post-processing means 106 may be remarkably deteriorated due to the adhesion / growth of microorganisms. In the present invention, however, the post-treatment means 106 has passed through the branch line p14 where microorganisms are likely to propagate as compared with the supply line p12 as described above.
  • the microorganisms are removed again by the pretreatment means 104, even if the microorganisms grow in the branch line p14, the supply of microorganisms to the posttreatment means 106 can be suppressed as much as possible. Performance can be improved.
  • the solid content removal water passing through the branch line p14 contains a large amount of organic matter, and microorganisms propagate in the branch line p14.
  • an oxidizing agent, a reducing agent, a pH adjuster, and a sterilizing agent are provided on the liquid feeding line p13 or the branch line p14 located upstream from the start point s1 of the branch line p14 branched downstream of the pretreatment means 104.
  • One or more drugs m selected from the group consisting of drugs can be injected.
  • the post-processing means 106 is injected by injecting the medicine m used for biofouling suppression of the liquid feeding line p13 and the post-processing means 106 into the liquid feeding line p13 located upstream from the starting point s1 of the branch line p14.
  • the chemical can be introduced into the solid content removing water flowing into the branch line p14.
  • the branch line p14 can be washed and the generation of microorganisms is further suppressed, Production costs can also be reduced.
  • the medicine m such as the bactericidal agent supplied to the branch line p14 as described above is also supplied to the pretreatment unit 104, it is effective for suppressing biofouling in the pretreatment unit 104 and the like. This also contributes to improving the performance of the means 104.
  • the effect of the medicine can be sufficiently exerted, and the production can be stabilized and the production cost can be reduced. .
  • FIG. 2 is a flowchart for explaining a second embodiment of the fresh water generation method and fresh water generator of the present invention.
  • the fresh water generation method and fresh water generator in the second embodiment have substantially the same configuration as that of the first embodiment, but a part of the production water is temporarily supplied into the branch line p14 via the line p16 and branched. The difference is that it further includes a flushing step for cleaning the inside of the line p14. Since the production water post-treated by the post-treatment means 106 has a good water quality from which impurities have been removed, the inside of the branch line p14 is washed with the production water, so that the microorganisms generated in the branch line p14 are removed.
  • the frequency of the flushing process and the flow rate of the production water to the branch line p14 may be appropriately determined according to the scale of the apparatus. Moreover, since the said production water is supplied to the supply line p12 without being discarded as it is, it contributes to the improvement of production efficiency.
  • FIG. 3 is a flowchart for explaining a third embodiment of the fresh water generation method and fresh water generator of the present invention.
  • the fresh water generation method and fresh water generation apparatus in the third embodiment have substantially the same configuration as that of the first embodiment, but a mixed liquid n different from the raw water is added to the solid content removal water to obtain the mixed solid content removal water, and mixed.
  • the difference is that a part of the solid content removal water is collected by the branch line p14 and the water quality is monitored by the measuring device 108, and the mixed solid content removal water is post-treated by the post-treatment means 106.
  • the seawater when seawater is used as the raw water and organic wastewater or biologically treated water thereof is used as the mixed solution, the seawater has a high salt pressure, so that the osmotic pressure is high and the post-processing means 106 consumes more energy.
  • the organic waste water having a salt concentration lower than that of seawater or the mixed liquid n which is biologically treated water is added to the solid content removal water, so that the osmotic pressure of the solid content removal water is lowered. And the energy consumption of the post-processing means 106 can be suppressed.
  • the mixed solid content removal water contains a large amount of organic matter, which increases the risk of microbial reproduction in the branch line p14.
  • microorganisms can be removed by the pretreatment means 104, the performance of the posttreatment means 106 is reduced as much as possible. Can be suppressed.
  • organic wastewater or biologically treated water include sewage, industrial wastewater, and activated sludge treated water.
  • the mixed liquid n is injected into the liquid supply line p13 upstream of the start point s1 of the branch line p14, but may be injected into the supply line p12 upstream of the pretreatment means 104.
  • the organic waste water or the mixed liquid n with the biologically treated water is separated in a separate apparatus by a solid content removal unit such as UF, MF, MBR as described above.
  • FIG. 4 is a flowchart for explaining a fourth embodiment of the fresh water generation method and fresh water generator of the present invention.
  • the pre-processing unit 104 and the post-processing unit 106 are installed one by one.
  • the present invention is not limited to this.
  • the preprocessing means may be composed of two means 1042 and 1044
  • the post-processing means may be composed of two means 1062 and 1064.
  • by providing a plurality of porous membranes having different pore diameters it is possible to efficiently and more reliably process.
  • each of the preprocessing means and the postprocessing means includes two means, but each may be configured by three or more means independently.
  • the solid-removed water after monitoring is returned by the branch line p14 at a point upstream of the pretreatment unit 1042, but may be between the pretreatment unit 1042 and the pretreatment unit 1044. . That is, the solid content removal water after monitoring may pass through at least one pretreatment means.
  • the distinction between the pretreatment means and the posttreatment means is arbitrary.
  • the pretreatment means is intended to remove microorganisms, and the purpose is to increase the purity of water from which microorganisms are substantially removed. It can also be a post-processing means.
  • each branch line p14 is provided with a desired water quality measurement related device, or one branch line p14 is branched in the middle.
  • Each may be equipped with water quality measurement related equipment.
  • Example 1 An experiment was conducted using a small-medium scale fresh water generator having a production water volume of 500 m 3 / day as shown in FIG. Seawater was used as the raw water, and the raw water was fed to the supply line p12 at a flow rate of 1250 liters / minute.
  • the inner diameters of the supply line p12 and the liquid feeding line p13 were 65 mm.
  • the pretreatment means 104 installed in the supply line p12 is an ultrafiltration membrane (UF) (average pore diameter 0.01 ⁇ m), and the posttreatment means 106 is a reverse osmosis membrane (RO) for seawater (manufactured by Toray Industries, Inc., model number). TM820C) was used.
  • UF ultrafiltration membrane
  • RO reverse osmosis membrane
  • three branch lines p14 are provided in the liquid feed line p13, each has an inner diameter of 6 mm, and a pH meter, an ORP meter, and a water temperature meter are provided as the monitoring means 108, respectively.
  • the flow rate of the solid content removal water in the branch line p14 was adjusted to 5 liters / minute using a valve (not shown).
  • 2,2-Dibromo-3-nitrilopropionamide (DBNPA) was injected into the liquid feeding line p13 at a frequency of 1 hour / day at an injection rate of 10 ppm as the drug m upstream from the starting point s1 of the branch line p14.
  • DBNPA 2,2-Dibromo-3-nitrilopropionamide
  • Control 1 In the apparatus shown in FIG. 1, an apparatus having the same structure as that of Example 1 was used except that the solid removal water after monitoring was not returned to the supply line p12 and was discarded. Although the production water quality was almost the same as in Example 1, the production water volume was 490 m 3 / day. Further, a gradual increase in transmembrane pressure difference was observed in UF, and chemical cleaning was required once every two months to recover the transmembrane pressure difference.
  • the present invention relates to a method and apparatus for producing industrial water, drinking water, etc. from seawater, sewage, industrial wastewater, etc., and can increase production efficiency and stabilize the apparatus.

Landscapes

  • Engineering & Computer Science (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Organic Chemistry (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

 本発明の造水方法は、原水から固形分を除去し、原水よりも固形分濃度が低い固形分除去水を得る前処理工程と、送液ラインを介して固形分除去水を送る送液工程と、送液ラインを通して送液された固形分除去水から不純物を除去することにより生産水を得る後処理工程と、送液ラインから分岐する分岐ラインを通して、固形分除去水の一部を採取する採取工程と、採取された固形分除去水の水質をモニタリングするモニタリング工程と、モニタリング後の固形分除去水を前処理工程に戻す返送工程とを有する。

Description

造水方法および造水装置
 本発明は、造水方法および造水装置に関し、詳しくは、生産水の生産効率を高め、かつ、水質測定後の固形分除去水を供給ラインに戻しても後処理手段でのバイオファウリングの発生を抑制できる造水方法および造水装置に関する。
 海水、下水、工業廃水等を原水とし、該原水を多段階に処理して生産水を得る造水方法および造水装置は、多くの産業や水処理分野で研究および利用されている(例えば、特許文献1参照)。具体的には図5に示すように、原水を、図示しないポンプを用いて供給ラインp62に送液し、限外ろ過膜や精密ろ過膜等を用いた固形分除去部604により原水から濁質などの固形分を除去し、前記原水よりも固形分濃度が低い固形分除去水を得る。続いて、固形分除去水を逆浸透膜等を用いた後処理手段606によりさらに処理して生産水を得ている。
 ここで、後処理手段606への適合性や生産性を確認するために、固形分除去部604の下流の送液ラインp63に固形分除去水採取用ラインp64を接続し、固形分除去水の水質、例えばpH、溶存酸素(DO)、濁度、塩素濃度等が測定器608で測定される。なお、送液ラインp63に直接測定器を設置してもよいが、測定器の維持管理(校正、清掃、消耗品交換等)のために装置を停止すると稼働率が低下し好ましくない。そこで上記のように固形分除去部604の下流に固形分除去水採取用ラインp64を接続し、固形分除去水の水質を測定している。この測定の用いられた固形分除去水は系外に排出され廃棄される。
日本国特開2006-272136号公報
 一般的に、固形分除去水採取用ラインp64への送液量は、数リットル/分程度であれば、各種水質の測定が可能となる。ここで、例えば生産水の生産量が1万m/日を超えるような大規模造水装置であれば、水質測定後の固形分除去水をそのまま廃棄してもとくに問題はないが、生産水の生産量が1万m/日以下の小中規模の造水装置の場合、水質測定後の固形分除去水をそのまま廃棄してしまうと、生産効率の低下が顕著となり、何らかの改善策が必要となる。
 また、固形分除去水採取用ラインp64は、送液ラインp63に比して微生物が増殖しやすい環境にあるという問題点がある。これは、固形分除去水採取用ラインp64の流量が本流の供給ラインの流量に比べて少ないため、単位流量あたりのライン(配管)接触割合が大きく、ライン(配管)接触部では流速が遅くなり、また微生物にとって配管は付着しやすく、その場で増殖しやすい環境にあるためである。また、生産効率を高めるために、水質測定後の固形分除去水を送液ラインp63に戻してしまうと、固形分除去水採取用ラインp64内で増殖した微生物が、後処理手段606に供給され、後処理手段606でのバイオファウリング(微生物によって起因する運転不具合)が発生することが予測される。特に、原水や固形分除去水が、有機性排水やその生物処理水を含む場合、上記問題点が顕著となる。
 そこで本発明は、生産水の生産効率を高め、かつ、水質測定後の固形分除去水を供給ラインに戻しても後処理手段でのバイオファウリングの発生を抑制できる造水方法および造水装置を提供することを目的とするものである。
 本発明の上記目的は、下記構成により構成される。
(1)供給ラインを通して送液された原水から固形分を除去し、前記原水よりも固形分濃度が低い固形分除去水を得る前処理工程と、
 前記前処理工程から後処理工程へ、送液ラインを介して前記固形分除去水を送る送液工程と、
 前記送液ラインを通して送液された前記固形分除去水から前記前処理工程で除去できなかった不純物を除去することにより生産水を得る後処理工程と、
 前記送液ラインから分岐する分岐ラインを通して、前記固形分除去水の一部を採取する採取工程と、
 採取された前記固形分除去水の水質をモニタリングするモニタリング工程と、
 前記分岐ラインを介して、モニタリング後の前記固形分除去水を前記前処理工程に戻す返送工程と、
を有する、造水方法。
(2)前記分岐ラインに送液される前記固形分除去水の流量が、前記送液ラインを通して送液される前記固形分除去水の流量の0.1~10%である、上記(1)に記載の造水方法。
(3)前記分岐ラインの始点よりも上流に位置する前記送液ラインに、もしくは、前記分岐ラインに、酸化剤、還元剤、pH調整剤および殺菌剤からなる群から選択される1種以上の薬剤を注入する、上記(1)または(2)に記載の造水方法。
(4)前記生産水の一部を、前記分岐ライン内に一時的に供給することで、前記分岐ライン内を洗浄するフラッシング工程をさらに有する、上記(1)~(3)のいずれか1項に記載の造水方法。
(5)前記原水および前記固形分除去水の少なくとも一方が、有機性排水もしくはその生物処理水を含む、上記(1)~(4)のいずれか1項に記載の造水方法。
(6)前記前処理工程において、平均孔径1μm以下の多孔質膜で前記原水を処理して、前記原水から前記固形分を除去する、上記(1)~(5)のいずれか1項に記載の造水方法。
(7)前記後処理工程において、前記固形分除去水を処理して、前記固形分除去水の塩分を除去もしくは前記固形分除去水を濃縮する、上記(1)~(6)のいずれか1項に記載の造水方法。
(8)原水が送液される供給ラインと、
 該供給ラインに設けられ、前記原水から固形分を除去し、前記原水よりも固形分濃度が低い固形分除去水を得る前処理手段と、
 該前処理手段の下流側の送液ラインに設けられ、前記固形分除去水から前記前処理手段で除去できなかった不純物を除去して生産水を得る後処理手段と、
 前記前処理手段と前記後処理手段との間の前記送液ラインから分岐し、前記供給ラインに接続された、前記固形分除去水の一部を採取するための分岐ラインと、
 該分岐ラインに設けられ、採取された前記固形分除去水の水質をモニタリングするモニタリング手段と
を備えた、造水装置。
(9)前記分岐ラインの内径が、前記送液ラインの内径の3~30%である、上記(8)に記載の造水装置。
 本発明の造水方法および造水装置によれば、原水を前処理工程にて前処理して固形分除去水を得、その一部を分岐ラインを通して採取してその水質をモニタリングし、モニタリング後の固形分除去水を前処理工程に戻すので、モニタリング後の固形分除去水が廃棄されず、生産水の生産効率が高まる。また、分岐ラインを通過した後の固形分除去水は、再度、前処理工程で処理されて微生物が除去されるため、これを供給ラインに戻しても後処理手段でのバイオファウリングの発生を抑制することができる。
図1は、本発明の造水方法および造水装置の第1実施形態を説明するためのフロー図である。 図2は、本発明の造水方法および造水装置の第2実施形態を説明するためのフロー図である。 図3は、本発明の造水方法および造水装置の第3実施形態を説明するためのフロー図である。 図4は、本発明の造水方法および造水装置の第4実施形態を説明するためのフロー図である。 図5は、従来の造水方法および造水装置を説明するためのフロー図である。
 以下、本発明の造水方法および造水装置について図面を参照して詳細に説明する。
(第1実施形態)
 図1は、本発明の造水方法および造水装置の第1実施形態を説明するためのフロー図である。
 第1実施形態の造水装置は、原水が送液される供給ラインp12と、供給ラインp12に設けられ、原水から固形分を除去して原水よりも固形分濃度が低い固形分除去水を得る前処理手段104と、前処理手段104の下流側の送液ラインp13に設けられ、固形分除去水を後処理して生産水を得る後処理手段106と、前処理手段104と後処理手段106との間の送液ラインp13から分岐し、供給ラインp12に接続された分岐ラインp14と、分岐ラインp14に設けられ、固形分除去水の水質をモニタリングするモニタリング手段108とを備えてなる。
 原水としては、特に限定されないが、海水、下水、工業廃水、生物処理水、かん水、河川水、湖沼水等が挙げられる。
 原水は、まず図示しないポンプを用いて供給ラインp12に送液され、続いて供給ラインp12に設置した前処理手段104により固形分が除去され、原水よりも固形分濃度が低い固形分除去水とされる。
 前処理手段104では、原水中に含まれる懸濁物質(固形分)が除去できればよく、例えば、砂ろ過、活性炭ろ過、膜ろ過、凝集、沈殿が採用できるが、原水中の生産性と微生物の良好な除去の両立の観点から、膜ろ過を採用することが好ましい。ろ過膜としては、例えば、限外ろ過膜(UF)、精密ろ過膜(MF)、活性汚泥などによる生物処理とUFもしくはMFとを組み合わせたメンブレンバイオリアクター(MBR)等が挙げられる。UFまたはMFの形状は、特に限定しないが、中空糸型、シート型(平膜)、チューブラー型、モノリス型などが例示される。また、膜ろ過の形態は、前記UF膜やMF膜が筒状ケース内に収納され、原水側(一次側)から加圧してろ過水(固形分除去水)を得る加圧型や、原水を収容する槽内にUF膜やMF膜を浸漬し、ろ過水側(二次側)を陰圧にしたり原水の水頭を利用したりしてろ過水を得る浸漬型などが例示される。MF膜やUF膜の材質としては、例えばポリエチレン、ポリプロピレン、ポリフッ化ビニリデン(PVDF)、ポリテトラフルオロエチレン(PTFE)、ポリスルホン、ポリエーテルスルホン(PES)、ポリエーテル-エーテルケトン(PEEK)、ポリフェニレンスルフィドスルホン(PPSS)、ポリフェニレンスルホン(PPSO)、ポリビニルアルコール、セルロースアセテート、ポリアクリロニトリル、ポリアミド、ポリイミドなどの有機物、セラミック、金属などの無機物等を挙げることができる。特に、耐薬品性に優れているポリフッ化ビニリデン(PVDF)膜が好ましい。
 多孔質のろ過膜の平均孔径は、微生物除去の確実性の観点から、1μm以下であるのが好ましく、0.45μm以下であることがより好ましく、0.1μm以下であることがさらに好ましい。繁殖する微生物は、細菌類、真菌類、古細菌等であるが、平均孔径1μm以下のろ過膜を使用すると大部分の微生物が除去可能となる。また、ろ過膜の平均孔径は、1nm以上であるのが好ましく、5nm以上であることがより好ましい。平均孔径が1nm以上であると、ろ過速度を速くすることができ、良好な生産性が保たれる。
 前処理手段104を通過した後の固形分除去水は、続いて送液ラインp13に設けられた後処理手段106により後処理され、生産水が得られる。
 後処理手段106は、求められる生産水の特性や品質により種々変更できるが、例えば、前処理手段104で除去できなかった不純物を除去するものであり、固形分除去水の塩分を除去する手段、固形分除去水を濃縮することのできる手段等が挙げられる。このような手段としては、例えば、逆浸透膜(RO)やナノろ過膜(NF)などの半透膜、正浸透膜(FO)、電気透析、膜蒸留、イオン交換等が採用できる。中でも生産性、耐久性、塩排除率の観点から半透膜を用いることが好ましい。
 半透膜の材質としては、例えば酢酸セルロース系ポリマー、ポリアミド、ポリエステル、ポリイミド、ビニルポリマー等の高分子材料が挙げられる。またその膜構造としては膜の少なくとも片面に緻密層を持ち、緻密層から膜内部あるいはもう片方の面に向けて徐々に大きな孔径の微細孔を有する非対称膜、非対称膜の緻密層の上に別の素材で形成された非常に薄い分離機能層を有する複合膜等が挙げられる。膜形態としては中空糸、平膜等が挙げられる。半透膜処理工程では、通常、半透膜を収容し、原水(固形分除去水)と透過水(生産水)とを構造的に分離し、透過水を集水する機能を有する膜分離素子が利用される。膜分離素子の形態は特に限定しないが、中空糸膜の場合は、複数の中空糸を束ねて端部を透過水集水部と接着させた構造、平膜の場合は、複数の平膜を封筒状にし、端部を集水管となる中心パイプと接着し、平膜を巻囲して固定したスパイラル型の構造が挙げられる。さらに1以上の膜分離素子を圧力耐久容器内に収容し、原水(固形分除去水)側から加圧することにより、透過水および濃縮水を得ることができる。その際、複数の圧力耐久容器の接続構成(透過水または濃縮水をさらに異なる圧力耐久容器に接続する構成など)、透過水の回収率や濃縮水の濃縮倍率、後処理手段106への固形分除去水の流量、処理時間、処理温度等の処理条件などは、後処理手段106の種類、装置の規模、生産能力、要求水質などによって種々適宜変更される。
 本発明において、前処理手段104により得られた固形分除去水は、その一部が採取され、水質がモニタリングされる。前処理手段104と後処理手段106の間の送液ラインp13から分岐し、前処理手段104の上流側の供給ラインp12に接続する分岐ラインp14を設け、この分岐ラインp14にモニタリング手段108としての測定器を、分岐ラインp14から脱着可能に備える。この分岐ラインp14を通して固形分除去水の一部を採取するとともに、モニタリング手段108で固形分除去水の水質を測定し、測定後の固形分除去水を供給ラインp12に戻すことができる。また、モニタリング手段108を挟み込むように分岐ラインp14に2以上の開閉バルブを備え、モニタリング手段108の洗浄、校正などのメンテナンスを行うときには、該開閉バルブを閉めることにより送水を停止し、造水装置全体を停止することなく安全にメンテナンスを行うことができる。
 モニタリングされる水質としては、原水の種類や管理方法などによって種々変更されるが、例えば、pH、溶存酸素(DO)、温度、濁度、酸化還元電位(ORP)、前有機体炭素、塩素濃度、バイオファウリング測定装置等が挙げられ、モニタリング手段108としてこれらを測定する水質計測関連機器を備えればよい。
 本発明において、分岐ラインp14の内径は、送液ラインp13の内径の3~30%であることが好ましく、5~20%がより好ましく、7~10%がさらに好ましい。分岐ラインP14の内径が送液ラインp13の内径に対して3%未満であると、分岐ラインp14が閉塞し易くなる、分岐ラインp14の単位流量あたりの配管接触量が大きくなるため微生物が繁殖しやすくなる、分岐ラインp14の流量が不足しモニタリング手段108による計測値の代表値としての信頼性が低下するなどの懸念が高まるため、好ましくない。また30%を超えると、前述のように前処理手段104で処理した固形分除去水が多量に供給ラインp12に戻され、この固形分除去水を再度多量に処理することになるため、生産性の観点から好ましくない。
 また、分岐ラインp14に送液される固形分除去水の流量としては、送液ラインp13に送液される固形分除去水の流量の0.1~10%であることが好ましく、0.3~8%がより好ましく、0.5~5%がさらに好ましい。分岐ラインp14に送液される固形分除去水の流量が送液ラインp13に送液される固形分除去水の流量の0.1%未満では、分岐ラインp14の単位流量あたりの配管接触量が大きくなるため微生物が繁殖しやすくなる、分岐ラインp14の流量が不足しモニタリング手段108による計測値の代表値としての信頼性が低下するなどの懸念が高まるため、好ましくない。また10%を超えると、前処理手段104で処理した固形分除去水を再度多量に処理することになるため、生産性の観点から好ましくない。
 なお、前記流量の調節は、分岐ラインp14に設置された図示しないポンプの制御や、前記の分岐ラインp14の内径の設定、分岐ラインp14内に設置したバルブの開度調整などにより行うことができる。また、前記流量は、モニタリング手段108の種類、機器特性などによって種々変更される。
 次に、本発明の第1実施形態の造水方法について説明する。
 供給ラインp12により送液された原水はまず、前処理手段104において懸濁物質(固形分)が除去され、原水よりも固形分濃度が低い固形分除去水とされる(前処理工程)。前処理手段104から送液された固形分除去水は、送液ラインp13により後処理手段106に送液され(送液工程)、後処理手段106において、前処理工程で除去しきれなかった不純物が除去されて生産水が得られる(後処理工程)。一方、前記前処理工程で得られた固形分除去水の一部が分岐ラインp14を通して採取され(採取工程)、モニタリング手段108で所望の水質測定が行われる(モニタリング工程)。モニタリング後の固形分除去水はそのまま、分岐ラインp14を介して前処理手段104の上流側の供給ラインp12に戻される(返送工程)。
 本発明の造水方法によれば、モニタリング後の固形分除去水は、分岐ラインp14を経て前処理手段104の上流側の供給ラインp12に戻され、再度前処理手段104で処理されるので、モニタリング後の固形分除去水が廃棄されず、生産水の生産効率が高まる。後処理手段106は、微生物の付着・増殖によって、その性能が著しく低下する場合があるが、本発明では、前述のように供給ラインp12に比して微生物が繁殖し易い分岐ラインp14を通過した水を再度前処理手段104にて微生物を除去するため、例え分岐ラインp14中で微生物が増殖しても、後処理手段106への微生物の供給を極力抑制することができるため、後処理手段106の性能を向上させることができる。特に、原水および固形分除去水の少なくとも一方が、有機性排水もしくはその生物処理水を含む場合、分岐ラインp14を通過する固形分除去水に有機物を多く含み、分岐ラインp14内で微生物が繁殖する可能性が高まるが、本発明の造水方法では、再度前処理手段104で処理されるため、後処理手段106の性能を向上させる効果が高い。
 なお、本発明において、前処理手段104の下流で分岐した分岐ラインp14の始点s1よりも上流に位置する送液ラインp13、もしくは、分岐ラインp14に、酸化剤、還元剤、pH調整剤および殺菌剤からなる群から選択される1種以上の薬剤mを注入することができる。
 造水工程において、バイオファウリング抑制やpH調整のために様々な薬剤が使用されることがある。例えば、送液ラインp13や後処理手段106のバイオファウリング抑制のために使用する薬剤mを分岐ラインp14の始点s1よりも上流に位置する送液ラインp13に注入することにより、後処理手段106へ流入する固形分除去水だけでなく、分岐ラインp14内へ流入する固形分除去水にも薬剤を投入することができる。また、例えば、分岐ラインp14のモニタリング手段108の上流側の地点s2で殺菌剤等の薬剤mを投入すると、分岐ラインp14の洗浄等を行うことができ、微生物の発生が一層抑制されるとともに、生産コストの低減も図れる。さらに、上記のように分岐ラインp14に供給された殺菌剤等の薬剤mは、前処理手段104にも供給されるため、前処理手段104におけるバイオファウリング抑制などにも効果があり、前処理手段104の性能向上にも寄与する。さらには、送液ラインp13や後処理手段106にも供給され、効果を発揮することになるため、薬剤の効果を十分に発揮させることが可能となり、生産の安定化および生産コストの低減を図れる。
(第2実施形態)
 図2は、本発明の造水方法および造水装置の第2の実施形態を説明するためのフロー図である。
 第2実施形態における造水方法および造水装置は、第1実施形態とほぼ同様の構成を有するが、生産水の一部が、ラインp16を経て分岐ラインp14内に一時的に供給され、分岐ラインp14内を洗浄するフラッシング工程をさらに有する点が異なっている。後処理手段106により後処理された生産水は、不純物が除去された良好な水質を有しているので、生産水によって分岐ラインp14内を洗浄することによって、分岐ラインp14内で発生した微生物の剥離および除去をより一層促進することができる。フラッシング工程の頻度および生産水の分岐ラインp14への流量は、装置の規模等に応じて適宜決定すればよい。また、当該生産水はそのまま廃棄されることなく、供給ラインp12に供給されるため、生産効率の向上に寄与する。
(第3実施形態)
 図3は、本発明の造水方法および造水装置の第3の実施形態を説明するためのフロー図である。
 第3実施形態における造水方法および造水装置は、第1実施形態とほぼ同様の構成を有するが、原水とは異なる混合液nを固形分除去水に加え、混合固形分除去水とし、混合固形分除去水の一部を分岐ラインp14により採取して測定器108により水質をモニタリングするとともに、混合固形分除去水を後処理手段106により後処理を行う点が異なっている。例えば、原水として海水を用い、混合液として有機性排水もしくはその生物処理水を用いた場合、海水は塩濃度が高いため、浸透圧が高く、後処理手段106で消費エネルギーが大きくなる。第3実施形態によれば、塩濃度が海水に比して低い有機性排水もしくはその生物処理水である混合液nを固形分除去水に加えているので、固形分除去水の浸透圧を下げることができ、後処理手段106の消費エネルギーを抑制することができる。同時に、混合固形分除去水は有機物を多く含むことになるため、分岐ラインp14における微生物繁殖リスクが高まることになるが、前処理手段104によって微生物除去できるため、後処理手段106の性能低下を極力抑制できる。なお、有機性排水もしくはその生物処理水としては、下水、工業廃水、活性汚泥処理水等が挙げられる。
 なお、図3では混合液nを分岐ラインp14の始点s1よりも上流の送液ラインp13に注入しているが、前処理手段104の上流側の供給ラインp12に注入してもよい。また、有機性排水もしくはその生物処理水との混合液nは、後処理手段106への悪影響を抑制するために、別装置において、前記のようなUF、MF、MBRのような固形分除去部や、ROのような後処理手段によって予め処理を施しておくのが好ましい。
(第4実施形態)
 図4は、本発明の造水方法および造水装置の第4の実施形態を説明するためのフロー図である。
 第1実施形態から第3実施形態では、前処理手段104および後処理手段106がそれぞれ一つずつ設置された形態について説明したが、本発明はこれに制限されない。例えば、図4に示したように、前処理手段が2つの手段1042,1044からなり、かつ、後処理手段が2つの手段1062,1064から構成されていてもよい。例えば、孔径の異なる多孔質膜を複数備えることで、効率的に、より確実に処理することができる。
 第4実施形態では、前処理手段および後処理手段がそれぞれ2つの手段を備えた例を示したが、それぞれ独立して3つ以上の手段から構成されていても構わない。また、図4ではモニタリング後の固形分除去水が、前処理手段1042の上流の地点で分岐ラインp14により戻されているが、前処理手段1042と前処理手段1044との間であってもよい。すなわち、モニタリング後の固形分除去水が少なくとも1つの前処理手段を通過すればよい。また、前処理手段と後処理手段との区別は任意であるが、例えば微生物の除去を目的とするものを前処理手段、微生物が概ね除去された水の純度を高めることを目的とするものを後処理手段とすることもできる。
 なお、第1実施形態から第4実施形態では、1つのモニタリング手段108を備えた造水装置の形態について説明したが、本発明はこれに制限されない。例えば、前処理手段104の下流側の送液ラインp13に複数の分岐ラインp14を設け、それぞれの分岐ラインp14に所望の水質計測関連機器を備えたり、1本の分岐ラインp14を途中で分岐させて、それぞれに水質計測関連機器を備えてもよい。
 以下、本発明を実施例および比較例によりさらに説明する。
(実施例1)
 図1に示すような、生産水の生産量が500m/日の小中規模の造水装置を用いて実験を行なった。
 原水としては海水を用い、1250リットル/分の流量で原水を供給ラインp12に送液した。供給ラインp12および送液ラインp13の内径は65mmとした。供給ラインp12に設置した前処理手段104としては限外ろ過膜(UF)(平均孔径0.01μm)を、後処理手段106としては海淡用逆浸透膜(RO)(東レ株式会社製、型式TM820C)を用いた。また、送液ラインp13に3本の分岐ラインp14を設け、それぞれの内径は6mmとし、モニタリング手段108として、それぞれ、pH計、ORP計、水温計を設けた。
 分岐ラインp14の固形分除去水の流量は図示しないバルブを用いて5リットル/分となるように調節した。送液ラインp13に、分岐ラインp14の始点s1より上流で、薬剤mとして、2,2-ジブロモ-3- ニトリロプロピオンアミド(DBNPA)を10ppmの注入率で1時間/日の頻度で注入した。
 上記の装置を用いて造水した結果、所定通り500m/日の生産水を得、UFにおける膜間差圧上昇もほとんど確認されず、安定運転を実現できた。
(対照例1)
 図1に示す装置において、モニタリング後の固形分除去水を供給ラインp12に戻さず、廃棄したこと以外は実施例1と同様な構造の装置を用いた。生産水質は、実施例1とほぼ同じであったものの、生産水量は490m/日であった。また、UFにおける緩やかな膜間差圧上昇が観察され、膜間差圧を回復させるための薬品洗浄を2ヶ月に1回の頻度で必要であった。
 本発明を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。本出願は、2012年7月10日出願の日本特許出願(特願2012-154735)に基づくものであり、その内容はここに参照として取り込まれる。
 本発明は、海水、下水、産業排水などから工業用水や飲料水などを造水する方法およびその装置に関するものであり、生産効率を高め、装置を安定化することができる。
 104,1042,1044,604  前処理手段
 106,1062,1064,606  後処理手段
 108,608  モニタリング手段(測定器)
 p12,p62  供給ライン
 p13,p63  送液ライン
 p14,p64  分岐ライン
 p16  ライン
 m    薬剤
 n    混合液
 s1   始点
 s2   地点

Claims (9)

  1.  供給ラインを通して送液された原水から固形分を除去し、前記原水よりも固形分濃度が低い固形分除去水を得る前処理工程と、
     前記前処理工程から後処理工程へ、送液ラインを介して前記固形分除去水を送る送液工程と、
     前記送液ラインを通して送液された前記固形分除去水から前記前処理工程で除去できなかった不純物を除去することにより生産水を得る後処理工程と、
     前記送液ラインから分岐する分岐ラインを通して、前記固形分除去水の一部を採取する採取工程と、
     採取された前記固形分除去水の水質をモニタリングするモニタリング工程と、
     前記分岐ラインを介して、モニタリング後の前記固形分除去水を前記前処理工程に戻す返送工程と、
    を有する、造水方法。
  2.  前記分岐ラインに送液される前記固形分除去水の流量が、前記送液ラインを通して送液される前記固形分除去水の流量の0.1~10%である、請求項1に記載の造水方法。
  3.  前記分岐ラインの始点よりも上流に位置する前記送液ラインに、もしくは、前記分岐ラインに、酸化剤、還元剤、pH調整剤および殺菌剤からなる群から選択される1種以上の薬剤を注入する、請求項1または請求項2に記載の造水方法。
  4.  前記生産水の一部を、前記分岐ライン内に一時的に供給することで、前記分岐ライン内を洗浄するフラッシング工程をさらに有する、請求項1~請求項3のいずれか1項に記載の造水方法。
  5.  前記原水および前記固形分除去水の少なくとも一方が、有機性排水もしくはその生物処理水を含む、請求項1~請求項4のいずれか1項に記載の造水方法。
  6.  前記前処理工程において、平均孔径1μm以下の多孔質膜で前記原水を処理して、前記原水から前記固形分を除去する、請求項1~請求項5のいずれか1項に記載の造水方法。
  7.  前記後処理工程において、前記固形分除去水を処理して、前記固形分除去水の塩分を除去もしくは前記固形分除去水を濃縮する、請求項1~請求項6のいずれか1項に記載の造水方法。
  8.  原水が送液される供給ラインと、
     該供給ラインに設けられ、前記原水から固形分を除去し、前記原水よりも固形分濃度が低い固形分除去水を得る前処理手段と、
     該前処理手段の下流側の送液ラインに設けられ、前記固形分除去水から前記前処理手段で除去できなかった不純物を除去して生産水を得る後処理手段と、
     前記前処理手段と前記後処理手段との間の前記送液ラインから分岐し、前記供給ラインに接続された、前記固形分除去水の一部を採取するための分岐ラインと、
     該分岐ラインに設けられ、採取された前記固形分除去水の水質をモニタリングするモニタリング手段と
    を備えた、造水装置。
  9.  前記分岐ラインの内径が、前記送液ラインの内径の3~30%である、請求項8に記載の造水装置。
PCT/JP2013/068874 2012-07-10 2013-07-10 造水方法および造水装置 WO2014010628A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013544906A JP6183213B2 (ja) 2012-07-10 2013-07-10 造水方法および造水装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012154735 2012-07-10
JP2012-154735 2012-07-10

Publications (1)

Publication Number Publication Date
WO2014010628A1 true WO2014010628A1 (ja) 2014-01-16

Family

ID=49916078

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/068874 WO2014010628A1 (ja) 2012-07-10 2013-07-10 造水方法および造水装置

Country Status (2)

Country Link
JP (1) JP6183213B2 (ja)
WO (1) WO2014010628A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019025456A (ja) * 2017-08-02 2019-02-21 野村マイクロ・サイエンス株式会社 注射用水の製造方法及び製造装置
KR20190069071A (ko) * 2017-12-11 2019-06-19 유원대 수처리 시스템
US10472253B2 (en) 2016-09-08 2019-11-12 Panasonic Intellectual Property Management Co., Ltd. Liquid treatment method and liquid treatment apparatus
JP2020044519A (ja) * 2018-09-20 2020-03-26 株式会社日立製作所 逆浸透処理装置及び逆浸透処理方法
WO2021123229A1 (en) 2019-12-20 2021-06-24 Genie Biotech Uk Ltd. Synthesis of lactone derivatives and their use in the modification of proteins

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0256293A (ja) * 1988-06-29 1990-02-26 Tadahiro Omi 超純水供給配管装置
JPH09206743A (ja) * 1996-02-01 1997-08-12 Japan Organo Co Ltd 超純水製造供給装置及びその洗浄方法
JP2005342566A (ja) * 2004-05-31 2005-12-15 Pentel Corp 電子制菌スクリーン装置
JP2006272136A (ja) * 2005-03-29 2006-10-12 Toray Ind Inc 膜分離方法および膜分離装置
JP2010234299A (ja) * 2009-03-31 2010-10-21 Kurita Water Ind Ltd 超純水製造設備及び超純水のモニタリング方法
WO2011021415A1 (ja) * 2009-08-21 2011-02-24 東レ株式会社 造水方法
JP2011177604A (ja) * 2010-02-26 2011-09-15 Hitachi Ltd 海水淡水化装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0256293A (ja) * 1988-06-29 1990-02-26 Tadahiro Omi 超純水供給配管装置
JPH09206743A (ja) * 1996-02-01 1997-08-12 Japan Organo Co Ltd 超純水製造供給装置及びその洗浄方法
JP2005342566A (ja) * 2004-05-31 2005-12-15 Pentel Corp 電子制菌スクリーン装置
JP2006272136A (ja) * 2005-03-29 2006-10-12 Toray Ind Inc 膜分離方法および膜分離装置
JP2010234299A (ja) * 2009-03-31 2010-10-21 Kurita Water Ind Ltd 超純水製造設備及び超純水のモニタリング方法
WO2011021415A1 (ja) * 2009-08-21 2011-02-24 東レ株式会社 造水方法
JP2011177604A (ja) * 2010-02-26 2011-09-15 Hitachi Ltd 海水淡水化装置

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10472253B2 (en) 2016-09-08 2019-11-12 Panasonic Intellectual Property Management Co., Ltd. Liquid treatment method and liquid treatment apparatus
JP2019025456A (ja) * 2017-08-02 2019-02-21 野村マイクロ・サイエンス株式会社 注射用水の製造方法及び製造装置
KR20190069071A (ko) * 2017-12-11 2019-06-19 유원대 수처리 시스템
KR102041286B1 (ko) * 2017-12-11 2019-11-06 유원대 수처리 시스템
JP2020044519A (ja) * 2018-09-20 2020-03-26 株式会社日立製作所 逆浸透処理装置及び逆浸透処理方法
WO2020059477A1 (ja) * 2018-09-20 2020-03-26 株式会社日立製作所 逆浸透処理装置及び逆浸透処理方法
WO2021123229A1 (en) 2019-12-20 2021-06-24 Genie Biotech Uk Ltd. Synthesis of lactone derivatives and their use in the modification of proteins

Also Published As

Publication number Publication date
JP6183213B2 (ja) 2017-08-23
JPWO2014010628A1 (ja) 2016-06-23

Similar Documents

Publication Publication Date Title
JP6020168B2 (ja) 膜ろ過方法および膜ろ過装置
JP5804228B1 (ja) 水処理方法
JP5549589B2 (ja) 造水システム
US9259686B2 (en) Water producing system and operation method therefor
EP2703066A1 (en) Method for cleaning membrane module
WO2012057188A1 (ja) 造水方法および造水装置
JP6183213B2 (ja) 造水方法および造水装置
WO2020179594A1 (ja) Zero Liquid Dischargeシステム
JP2015188786A (ja) 正浸透処理システム
WO2015124600A1 (en) Filtration apparatus with multiple hollow fibre membrane bundles for inside-out filtration
WO2016199725A1 (ja) 淡水製造装置および淡水製造装置の運転方法
WO2012098969A1 (ja) 膜モジュールの洗浄方法、造水方法および造水装置
JP6087667B2 (ja) 淡水化方法及び淡水化装置
WO2016027302A1 (ja) 逆浸透膜装置及びその運転方法
WO2016136957A1 (ja) 有機物含有水の処理方法および有機物含有水処理装置
JP2005254192A (ja) 膜分離装置および膜分離方法
JP2001239136A (ja) 処理システムおよびその運転方法
JP2001252662A (ja) 造水方法
JPH09276863A (ja) 逆浸透分離装置および逆浸透分離方法
JP2005040661A (ja) 淡水またはかん水の処理方法および処理装置
JP2001252661A (ja) 造水方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2013544906

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13816331

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13816331

Country of ref document: EP

Kind code of ref document: A1