WO2014010518A1 - 受電機器及び電力伝送システム - Google Patents

受電機器及び電力伝送システム Download PDF

Info

Publication number
WO2014010518A1
WO2014010518A1 PCT/JP2013/068436 JP2013068436W WO2014010518A1 WO 2014010518 A1 WO2014010518 A1 WO 2014010518A1 JP 2013068436 W JP2013068436 W JP 2013068436W WO 2014010518 A1 WO2014010518 A1 WO 2014010518A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
voltage value
receiving device
power transmission
switching element
Prior art date
Application number
PCT/JP2013/068436
Other languages
English (en)
French (fr)
Inventor
中島 豊
古池 剛
田口 雄一
博樹 戸叶
啓介 松倉
琢磨 小野
Original Assignee
株式会社 豊田自動織機
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 豊田自動織機 filed Critical 株式会社 豊田自動織機
Priority to EP13816038.7A priority Critical patent/EP2874268A4/en
Priority to US14/413,263 priority patent/US9806535B2/en
Publication of WO2014010518A1 publication Critical patent/WO2014010518A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/12Inductive energy transfer
    • B60L53/122Circuits or methods for driving the primary coil, e.g. supplying electric power to the coil
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • H02J50/12Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling of the resonant type
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/00712Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/42Circuits or arrangements for compensating for or adjusting power factor in converters or inverters
    • H02M1/4208Arrangements for improving power factor of AC input
    • H02M1/4225Arrangements for improving power factor of AC input using a non-isolated boost converter
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/10DC to DC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/30AC to DC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/40DC to AC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/547Voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/549Current
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/12Electric charging stations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles

Definitions

  • the present invention relates to a power receiving device and a power transmission system.
  • the noncontact power transmission system of Patent Document 1 includes a power transmission device having a primary side resonance coil to which AC power is input from an AC power supply, and a secondary side capable of performing magnetic field resonance with the primary side resonance coil. And a power receiving device having a resonant coil. Then, alternating current power is transmitted from the power transmission device to the power reception device by performing magnetic field resonance between the resonance coil on the primary side and the resonance coil on the secondary side.
  • a power receiving device or a power transmission system capable of coping with both contact power transmission and non-contact power transmission can be considered.
  • An object of the present invention is to provide a power receiving device capable of suitably dealing with both contact power transmission and non-contact power transmission with a relatively simple configuration, and a power transmission system including the power receiving device. It is to provide.
  • a first aspect of the present invention provides a power receiving device.
  • the power receiving device includes a secondary coil capable of receiving the first AC power without contact from a power transmitting device having a primary coil to which the first AC power is input, and a cable used for transmitting the second AC power.
  • a voltage regulator which rectifies AC power and converts the rectified power into a predetermined specific voltage value for output.
  • a second aspect of the present invention provides a power transmission system comprising a power transmission device and the power reception device of the first aspect.
  • the power transmission device includes a power transmission device having a primary coil to which the first AC power is input.
  • the voltage adjusting unit provided on the common path rectifies any alternating current power, and thereby the specific voltage value Is converted to DC power and output.
  • stable DC power can be supplied to the load, and a voltage adjustment unit is provided on each power transmission path.
  • the configuration can be simplified. Therefore, both contact power transmission and non-contact power transmission can be suitably coped with a relatively simple configuration.
  • the block diagram of the power transmission system concerning the present invention The circuit diagram of a boost rectifier circuit.
  • the power transmission system 10 includes a ground device 11 provided on the ground and a vehicle device 21 mounted on a vehicle.
  • the ground device 11 corresponds to the power transmission device, that is, the primary device
  • the vehicle device 21 corresponds to the power reception device, that is, the secondary device.
  • the power transmission system 10 uses the noncontact first power transmission path EL1 for performing power transmission from the ground device 11 to the vehicle device 21 without using a cable, and the vehicle C from the system power source E using the cable C1. And a contact-type second power transmission path EL2 for transmitting power to the device 21.
  • the ground device 11 is provided on the first power transmission path EL1 and is capable of outputting high frequency power (AC power) of a predetermined frequency.
  • AC power supply high frequency power supply
  • the high frequency conversion power supply 12 is configured to be able to output high frequency power using alternating current power from the system power supply E.
  • the high frequency conversion power supply 12 is a switching power supply which has a switching element (for example, power MOSFET, IGBT (Insulated Gate Bipolor Transistor)) and obtains high frequency power of a predetermined frequency by switching the switching element. .
  • low frequency power 50 Hz or 60 Hz AC power output from the system power source E
  • high frequency power and low frequency power are collectively referred to as AC power.
  • the low frequency power from the system power supply E corresponds to the "second AC power”
  • the high frequency power from the high frequency conversion power supply 12 corresponds to the "first AC power”.
  • the high frequency power output from the high frequency conversion power supply 12 is transmitted to the vehicle device 21 via the first power transmission path EL1 and used to charge the vehicle battery 22 provided in the vehicle device 21.
  • the power transmission system 10 includes a power transmitter 13 (primary side resonant circuit) provided in the ground device 11 and a power receiver 23 (secondary side resonant circuit) provided in the vehicle device 21. ing.
  • the power transmitter 13 and the power receiver 23 have the same configuration, and both are configured to be capable of magnetic field resonance.
  • the power transmitter 13 is configured by a resonant circuit including a primary coil 13a and a primary capacitor 13b connected in parallel to each other.
  • the power receiver 23 is configured by a resonant circuit including a secondary coil 23a and a secondary capacitor 23b connected in parallel to each other.
  • the resonant frequencies of the power transmitter 13 and the power receiver 23 are set to be the same.
  • the power transmitter 13 when the high frequency power from the high frequency conversion power supply 12 is input to the power transmitter 13 (primary coil 13a), the power transmitter 13 (primary coil 13a) and the power receiver 23 (secondary coil) 23a) resonates with the magnetic field.
  • the power receiver 23 receives part of the energy of the power transmitter 13. That is, the power receiver 23 receives the high frequency power from the power transmitter 13 in a contactless manner.
  • the vehicle device 21 includes a boost rectifier circuit 24 (voltage regulator) and a DC / DC converter 25.
  • the boost rectifier circuit 24 rectifies the high frequency power received by the power receiver 23 and outputs DC power of a predetermined voltage value.
  • the DC / DC converter 25 is provided between the boost rectifier circuit 24 and the vehicle battery 22 and receives DC power output from the boost rectifier circuit 24. The DC power output from the DC / DC converter 25 is input to the vehicle battery 22.
  • a primary side matching device 14 and a secondary side matching device 26 that perform impedance conversion or impedance matching are provided on the first power transmission path EL1.
  • the primary side matching unit 14 is provided between the high frequency conversion power supply 12 and the power transmission unit 13 in the ground device 11, and the secondary side matching unit 26 includes the power receiving unit 23 and the boost rectification circuit 24. It is provided between.
  • the constant of each of the matching units 14 and 26 is predetermined.
  • a power detection unit 27 capable of detecting high-frequency power received by the power receiver 23 is provided on the first power transmission path EL1 between the power receiver 23 and the secondary side matching device 26. Thereby, based on the detection result of the power detection unit 27, it is possible to grasp whether or not the power receiver 23 receives high frequency power.
  • a battery sensor 28 is provided between the DC / DC converter 25 and the vehicle battery 22 for detecting the amount of charge of the vehicle battery 22. Thereby, based on the detection result of the battery sensor 28, the charge amount of the vehicle battery 22 can be grasped
  • the high frequency power output from the high frequency conversion power source 12 is transmitted via the power transmitter 13 and the power receiver 23 provided on the first power transmission path EL1, and is rectified by the step-up rectifier circuit 24 to obtain a vehicle
  • the battery 22 is input.
  • the first power transmission path EL1 is: system power supply E ⁇ high frequency conversion power supply 12 ⁇ primary side matching device 14 ⁇ power transmitter 13 ⁇ power receiver 23 ⁇ power detection unit 27 ⁇ secondary side matching device 26 ⁇ boost rectifier circuit ⁇ It is a path for transmitting power in the order of the DC / DC converter 25 ⁇ battery sensor 28 ⁇ vehicle battery 22.
  • the boost rectifier circuit 24 corresponds to the “voltage regulator”, and the DC / DC converter 25 is described separately from the “voltage regulator”.
  • the power transmission system 10 includes a cable C1 used for transmission of low frequency power, as a component of the second power transmission path EL2.
  • One end of the cable C1 is connected to the system power supply E.
  • a pluggable charging plug P is provided at the other end of the cable C1.
  • the vehicle device 21 is provided with a connector 29 as a connection portion into which the charging plug P can be inserted, corresponding to the charging plug P. By connecting the charging plug P and the connector 29 to each other, the system power supply E and the vehicle device 21 are electrically connected to each other.
  • the connector 29 is connected to the boost rectifier circuit 24.
  • the low frequency power transmitted through the connector 29 is rectified, and the rectified power is input to the vehicle battery 22.
  • the second power transmission path EL2 is a path for transmitting power in the following order: system power source E ⁇ cable C1 ⁇ connector 29 ⁇ step-up rectifier circuit 24 ⁇ DC / DC converter 25 ⁇ battery sensor 28 ⁇ vehicle battery 22.
  • the paths from the step-up rectifier circuit 24 to the vehicle battery 22 are common to each other. That is, the path from the boost rectification circuit 24 to the vehicle battery 22 is a common path EL3 which constitutes a part of the power transmission paths EL1 and EL2 and is provided in common to the power transmission paths EL1 and EL2.
  • the boost rectification circuit 24, the DC / DC converter 25 and the battery sensor 28 are provided on the common path EL3.
  • the ground device 11 is provided with a power supply controller 15 as a control unit that controls the high frequency conversion power supply 12.
  • the vehicle device 21 is provided with a vehicle controller 30 as a control unit capable of wirelessly communicating with the power supply controller 15.
  • the power transmission system 10 performs various control such as start or end of power transmission, that is, charging, through exchange of information between the controllers 15 and 30.
  • the connector 29 is provided with a plug detection unit 29a that detects whether or not it is connected to the cable C1, and more specifically, whether or not the charging plug P is inserted.
  • the plug detection unit 29 a and the power detection unit 27 transmit the detection result to the vehicle controller 30.
  • the vehicle controller 30 can grasp whether high frequency power is received or low frequency power is received based on the detection results of the plug detection unit 29a and the power detection unit 27. There is.
  • the battery sensor 28 transmits the detection result to the vehicle controller 30.
  • the vehicle controller 30 can grasp the charge amount of the vehicle battery 22 based on the detection result of the battery sensor 28.
  • the DC / DC converter 25 is provided with a switching element 25a which performs switching periodically.
  • the vehicle controller 30 controls the on / off duty ratio of the switching element 25 a of the DC / DC converter 25 to control so that a constant current flows to the vehicle battery 22.
  • the boost rectifier circuit 24 rectifies the input AC power and outputs DC power.
  • the boost rectifier circuit 24 includes a diode bridge 31 for performing full wave rectification and a smoothing capacitor 32 for removing a ripple current, as rectifying high frequency power and low frequency power.
  • the boost rectifier circuit 24 includes a choke coil 33 to which the pulsating current power full-wave rectified by the diode bridge 31 is input, and a switching element 34 connected in parallel to the choke coil 33.
  • the switching element 34 is configured of, for example, an n-type power MOSFET.
  • the switching element 34 has a gate connected to the vehicle controller 30, a drain connected to the choke coil 33, and a source connected to ground.
  • the boost rectifier circuit 24 includes a diode 35 for rectifying and suppressing backflow, and a smoothing capacitor 36 connected in parallel to the choke coil 33.
  • the diode 35 is connected in series to the choke coil 33.
  • the diode 35 has an anode connected to the choke coil 33 and the drain of the switching element 34, and a cathode connected to the DC / DC converter 25 via the output end of the step-up rectifier circuit 24.
  • the smoothing capacitor 36 has one end connected to the cathode of the diode 35 and the other end grounded.
  • the inductor current I corresponds to the on / off duty ratio of the switching element 34.
  • the pulsating current power is smoothed by the diode 35 and the smoothing capacitor 36 to become DC power, and the DC power is output from the step-up rectifier circuit 24.
  • the voltage value of the DC power output from the boost rectifier circuit 24 depends on the on / off duty ratio of the switching element 34.
  • the vehicle controller 30 controls the on / off duty ratio of the switching element 34 so that DC power of a voltage value that causes the DC / DC converter 25 to operate is output from the step-up rectifier circuit 24.
  • the voltage value of the DC power output from the step-up rectifier circuit 24 is within the withstand voltage range of the parts used for the DC / DC converter 25.
  • the on / off duty ratio of the switching element 34 is controlled so as to obtain a value (hereinafter, referred to as a specific voltage value) in consideration of the balance with the loss of. Specifically, the loss in the DC / DC converter 25 decreases as the voltage value of the input DC power increases.
  • the power factor improves as the phase of the envelope of the inductor current I and the phase of the envelope of the applied voltage V of the choke coil 33 approach each other. Therefore, in the present embodiment, in the vehicle controller 30, the voltage value of the DC power output from the step-up rectifier circuit 24 is a value in consideration of the balance between the power factor and the loss in the DC / DC converter 25. The on / off duty ratio of the switching element 34 is controlled.
  • the specific voltage value is higher than the voltage value of the vehicle battery 22. Further, the specific voltage value is set to, for example, a value such that the loss in the DC / DC converter 25 is reduced while the power factor approaches "1".
  • the loss in the DC / DC converter 25 includes, for example, the switching loss of the switching element 25 a of the DC / DC converter 25.
  • the specific voltage value corresponding to the high frequency power and the specific voltage value corresponding to the low frequency power may be different from each other.
  • a pulse signal having a cycle shorter than that of the AC power input to the step-up rectifier circuit 24 is input to the gate of the switching element 34.
  • the switching of the switching element 34 can follow the AC power input to the step-up rectifier circuit 24.
  • the boost rectifier circuit 24 includes a switch group 37 that switches AC power input to the diode bridge 31 to high frequency power or low frequency power.
  • the switch group 37 includes a first switch 37 a that switches connection / disconnection between the connector 29 and the diode bridge 31, and a connection between the power receiver 23 (specifically, the secondary side matcher 26) and the diode bridge 31. And a second switch 37b for switching the connection / disconnection.
  • the vehicle controller 30 switches the connection destination of the diode bridge 31 to the connector 29 or the power receiver 23 by performing on / off control of the switch group 37.
  • the plug detector 29a detects that the charging plug P is inserted, or the power detector 27 When it is detected that the high frequency power is received, the charging process for charging the vehicle battery 22 is executed. The said charge process is demonstrated using the flowchart of FIG.
  • step S101 the vehicle controller 30 determines whether contact charging or non-contact charging is to be performed. Specifically, based on the detection results of plug detection unit 29a and power detection unit 27, vehicle controller 30 determines whether charging plug P is inserted or that power receiver 23 receives high-frequency power. Do.
  • the vehicle controller 30 proceeds to step S102 and starts noncontact charging. Specifically, the vehicle controller 30 controls the switch group 37 to connect the power receiver 23 and the diode bridge 31 to each other. Then, the vehicle controller 30 performs various initial settings for starting non-contact charging.
  • the vehicle controller 30 sets the on / off duty ratio of the switching element 34. Specifically, the vehicle controller 30 speeds up the switching in accordance with the frequency of the high frequency power.
  • the vehicle controller 30 sets, for example, the switching frequency to 10 times the frequency of the high frequency power. In other words, the vehicle controller 30 sets the switching cycle to 1/10 of the cycle of the high frequency power.
  • the vehicle controller 30 executes charge control in step S104. Specifically, the vehicle controller 30 adjusts the on / off duty ratio of the switching element 34 so that the voltage value of the DC power output from the step-up rectifier circuit 24 becomes a specific voltage value.
  • the vehicle controller 30 adjusts the on / off duty ratio of the switching element 25 a included in the DC / DC converter 25 to make the current flowing through the vehicle battery 22 constant.
  • the vehicle controller 30 proceeds to step S105, and based on the detection result of the battery sensor 28, determines whether or not charging of the vehicle battery 22 is completed, that is, completed. Specifically, the vehicle controller 30 determines whether or not the charge amount of the vehicle battery 22 is equal to or greater than a predetermined charge completion amount.
  • the vehicle controller 30 determines that the charge is not completed, and returns to step S104. That is, the vehicle controller 30 repeatedly executes the process of step S104 until the charging is completed. On the other hand, when it is determined that the charging is completed, the vehicle controller 30 proceeds to step S106, executes the charging end processing, and ends the present charging processing. In the charge end process, the vehicle controller 30 transmits a charge end signal to the power supply controller 15 when non-contact type charging is performed.
  • the power supply controller 15 controls the high frequency conversion power supply 12 to stop the output of the high frequency power based on the reception of the power reception end signal.
  • the power supply controller 15 executes a process of stopping the power supply from the system power supply E.
  • the structure which provides a relay for example on 2nd electric power transmission path
  • step S101 when it is determined in step S101 that the charging plug P is inserted, the vehicle controller 30 proceeds to step S107 and starts contact charging. Specifically, the vehicle controller 30 controls the switch group 37 to connect the connector 29 and the diode bridge 31 to each other. Then, the vehicle controller 30 performs various initial settings for starting contact charging.
  • step S108 the vehicle controller 30 sets the on / off duty ratio of the switching element 34. Specifically, the vehicle controller 30 slows down switching in response to the frequency of low frequency power.
  • the vehicle controller 30 sets, for example, the switching frequency to 10 times the low frequency power frequency. In other words, the vehicle controller 30 sets the switching cycle to 1/10 of the cycle of the low frequency power.
  • the frequency set in the present process is lower than the frequency set in the process of step S103. That is, the switching frequency when high frequency power is input is lower than that when low frequency power is input.
  • the vehicle controller 30 executes the processing of step S104 to step S106, and ends the charging processing.
  • the step-up rectifier circuit 24 is provided on the common path EL3, the step-up rectifier circuit 24 is routed through whichever power transmission path EL1 or EL2 transmits power.
  • the switching element 34 of the step-up rectifier circuit 24 is switched, whereby the inductor current I has a continuous triangular current waveform.
  • the amplitude of the inductor current I is determined by the on / off duty ratio of the switching element 34, and the amplitude is set such that the voltage value output from the step-up rectifier circuit 24 becomes a specific voltage value. Therefore, the vehicle battery 22 is preferably charged regardless of whether the high frequency power or the low frequency power is input.
  • the on / off duty ratio of the switching element 34 is controlled such that the phase of the envelope of the inductor current I and the phase of the envelope of the applied voltage V of the choke coil 33 approach each other, the power factor is improved. ing.
  • the switching frequency when low frequency power is input to the boost rectifier circuit 24 is set lower than the switching frequency when high frequency power is input to the boost rectifier circuit 24. Thereby, in the case of rectifying low frequency power, the switching loss of the switching element 34 is reduced.
  • the non-contact type first power transfer path EL1 and the contact type second power transfer path EL2 are provided. Even if either high frequency power or low frequency power is input on the common path EL3 of the first and second power transmission paths EL1 and EL2, boosting is performed to output DC power of a predetermined specific voltage value A rectifier circuit 24 is provided. Thereby, in non-contact-type electric power transmission and contact-type electric power transmission, a structure can be made common and simplification of a structure can be achieved through it.
  • the voltage value of the DC power output from the step-up rectifier circuit 24 is set to such a value that the loss in the DC / DC converter 25 is reduced. As a result, the transmission efficiency can be improved, and the vehicle battery 22 can be suitably charged.
  • the switching frequency when low frequency power is input to the boost rectifier circuit 24 is set lower than the switching frequency when high frequency power is input to the boost rectifier circuit 24.
  • power loss due to mismatch between the switching frequency and the frequency of the input power to the boost rectifier circuit 24 can be reduced.
  • the switching frequency of the switching element 34 needs to be higher than the input AC power so that it can follow the frequency of the input AC power. For this reason, when high frequency power is input, it is necessary to perform switching at a frequency higher than the frequency of the high frequency power. On the other hand, when low frequency power is input, if switching is performed at a frequency higher than the frequency of the high frequency power, switching is performed more than necessary and switching loss becomes large.
  • the switching frequency of the switching element 34 when low frequency power is input, the switching frequency of the switching element 34 is set relatively low. Thereby, the switching loss can be reduced while following the low frequency power. Therefore, it is possible to avoid the above-mentioned inconvenience that may be caused by sharing the step-up rectifier circuit 24 with high frequency power and low frequency power.
  • the voltage is outputted from the boost rectification circuit 24 (voltage adjustment unit) so that the efficiency of the voltage converter becomes relatively high. It can be said that the voltage value of DC power is set.
  • the specific voltage value is set in consideration of the balance between the power factor and the loss in the DC / DC converter 25.
  • the specific voltage value may be set to a value at which the loss of the DC / DC converter 25 is minimized without considering the power factor.
  • the maximum voltage value that can be output by the step-up rectifier circuit 24 may be adopted within the withstand voltage range of the component used for the DC / DC converter 25.
  • a voltage value at which the power factor is “1” may be adopted as the specific voltage value.
  • the voltage value of the DC power output from the step-up rectifier circuit 24 may be determined.
  • the maximum voltage value of the step-up rectifier circuit 24 may be a specific voltage value within the range where the power factor is a predetermined threshold or more, or the specific voltage value is a predetermined threshold or more and a withstand voltage or less.
  • the power factor may be set to be high within the range.
  • the step-up rectifier circuit 24 is provided with a switch group 37.
  • the switch group 37 may be omitted.
  • the switch group 37 is preferably provided.
  • the specific configuration is arbitrary as long as the boost rectifier circuit 24 operates to rectify AC power and output DC power of a specific voltage value.
  • the voltage may be stepped down instead of the voltage boosting configuration.
  • the switching frequency of the switching element 34 is changed between when high frequency power is input and when low frequency power is input.
  • the present invention is not limited to this, and the switching frequency of the switching element 34 may not be changed.
  • the switching frequency may be set higher than the frequency of the high frequency power so that the high frequency power can be followed.
  • each matching device 14 and 26 was a fixed value in embodiment, it is not restricted to this and may be variable. Further, each of the matching units 14 and 26 may be omitted.
  • the vehicle controller 30 mainly controls the switching of the switching element 34.
  • the invention is not limited thereto.
  • a dedicated controller may be provided separately from the vehicle controller 30.
  • the configuration may be such that the power supply controller 15 controls.
  • High frequency power of different power values may be output from the high frequency conversion power supply 12. Even in this case, it is preferable to control the on / off duty ratio of the switching element 34 so that DC power of a specific voltage value is output. Further, in this case, it is possible to cope with the fluctuation of the impedance of the vehicle battery 22 accompanying the change of the power value of the output power from the high frequency conversion power supply 12. On the other hand, the on / off duty ratio of the switching element 25a provided in the DC / DC converter 25 may be adjusted so that the impedance from the input end of the DC / DC converter 25 to the vehicle battery 22 is constant.
  • the power supply controller 15 may be configured to transmit the charging method adopted this time to the vehicle controller 30 by wireless communication.
  • the DC / DC converter 25 is provided in the vehicle device 21. However, this may be omitted.
  • one-way power transmission from the system power source E to the vehicle battery 22 is performed.
  • the present invention is not limited to this, and by discharging the vehicle battery 22, power can be transmitted from the vehicle battery 22 to the ground device 11, the system power supply E, or another power storage device (for example, a home power storage device). It may be a bidirectional power transfer system.
  • a pulse waveform, a sine wave, etc. are arbitrary.
  • the high frequency conversion power supply 12 for outputting high frequency power is provided, but the present invention is not limited to this.
  • an AC conversion power supply that outputs AC power of a predetermined frequency for example, 10 kHz to 10 MHz
  • the frequency of the AC power to be output may be appropriately set in relation to the resonance frequency or the like.
  • the high frequency conversion power supply 12 may be omitted.
  • the capacitors 13 b and 23 b are provided, but these may be omitted. In this case, magnetic field resonance is performed using the parasitic capacitances of the coils 13a and 23a.
  • the resonant frequency of the power transmitter 13 and the resonant frequency of the power receiver 23 are set to be the same.
  • the present invention is not limited to this, and both may be different within the range in which power transmission is possible.
  • the configurations of the power transmitter 13 and the power receiver 23 are the same, but the configuration is not limited to this, and both may be different.
  • magnetic field resonance is used to realize non-contact power transmission.
  • the present invention is not limited to this, and electromagnetic induction may be used.
  • the power transmission device 13 may be separately provided with a primary side coupling coil coupled by electromagnetic induction to a resonant circuit including the primary side coil 13a and the primary side capacitor 13b.
  • the primary side coupling coil and the high frequency conversion power supply 12 are connected to each other, and the resonant circuit receives high frequency power from the primary side coupling coil by electromagnetic induction.
  • the power receiver 23 is provided with a secondary side coupling coil coupled by electromagnetic induction to a resonant circuit consisting of the secondary coil 23a and the secondary side capacitor 23b, and the resonance of the power receiver 23 is performed using the secondary side coupling coil. Power may be drawn from the circuit.
  • the high frequency conversion power supply 12 may be a voltage source or a current source.
  • the power transmission system 10 is applied to a vehicle, but is not limited to this, and may be applied to other devices.
  • the power transfer system 10 may be applied, for example, to charge a battery of a mobile phone.
  • the low frequency power of relatively low frequency is transmitted in a contact manner
  • the high frequency power of relatively high frequency is transmitted in a noncontact manner.
  • the invention is not limited to this, and high frequency power may be transmitted by contact and low frequency power may be transmitted by non-contact.
  • the DC power of the same voltage value is output by adjusting the on / off duty ratio of the switching element 34 It is also good.
  • the power factor is improved and the loss in the DC / DC converter 25 is reduced.
  • the power factor may not be improved when AC power is input in a contact type.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

受電機器は、第1交流電力が入力される1次側コイルを有する送電機器から非接触で第1交流電力を受電可能な2次側コイルを含む。受電機器は、第1電力伝送経路と、第2電力伝送経路と、第1及び第2電力伝送経路に共通して設けられた共通経路と、共通経路上に設けられた電圧調整部とを含む。電圧調整部は、2次側コイルにて受電した第1交流電力、又は接続部からの第2交流電力を整流し、且つ該整流された電力を予め定められた特定電圧値に変換して出力する。

Description

受電機器及び電力伝送システム
 本発明は、受電機器及び電力伝送システムに関する。
 従来から、電力伝送システムには、電源コードや送電ケーブルといった有線を用いて電力伝送を行う接触式のものと、電源コードや送電ケーブルを用いない非接触式のものがある。非接触式の電力伝送システムとしては、例えば磁場共鳴を用いたものが知られている。例えば特許文献1の非接触式の電力伝送システムは、交流電源から交流電力が入力される1次側の共振コイルを有する送電機器と、1次側の共振コイルと磁場共鳴可能な2次側の共振コイルを有する受電機器とを備えている。そして、1次側の共振コイルと2次側の共振コイルとが磁場共鳴することにより、送電機器から受電機器に交流電力が伝送される。
特開2009-106136号公報
 ここで、利便性の観点から、接触式での電力伝送と、非接触式での電力伝送との双方に対応することができる受電機器又は電力伝送システムが考えられる。この場合、両方に対応するために構成の複雑化が懸念される。
 本発明の目的は、比較的簡素な構成で、接触式の電力伝送と、非接触式の電力伝送との双方に好適に対応することができる受電機器及びその受電機器を備えた電力伝送システムを提供することにある。
 上記目的を達成するために、本発明の第1の態様は、受電機器を提供する。受電機器は、第1交流電力が入力される1次側コイルを有する送電機器から非接触で前記第1交流電力を受電可能な2次側コイルと、第2交流電力の伝送に用いられるケーブルが接続される接続部と、負荷と、前記2次側コイルと前記負荷とを互いに接続する第1電力伝送経路と、前記接続部と前記負荷とを互いに接続する第2電力伝送経路と、前記第1及び第2電力伝送経路に共通して設けられた共通経路と、前記共通経路上に設けられ、前記2次側コイルにて受電した前記第1交流電力、又は前記接続部からの前記第2交流電力を整流し、且つ該整流された電力を予め定められた特定電圧値に変換して出力する電圧調整部とを備える。
 本発明の第2の態様は、送電機器と、第1の態様の受電機器とを備える電力伝送システムを提供する。前記送電機器は、前記第1交流電力が入力される1次側コイルを有する送電機器を含む。
 上記構成によれば、受電機器が第1交流電力又は第2交流電力を受電した場合には、共通経路上に設けられた電圧調整部によって、いずれの交流電力も整流されることにより特定電圧値を有する直流電力に変換されて出力される。これにより、いずれの交流電力が入力された場合であっても、負荷に対して安定した直流電力を供給することができるとともに、各電力伝送経路上それぞれに電圧調整部を設ける構成と比較して、構成の簡素化を図ることができる。したがって、比較的簡素な構成で、接触式の電力伝送と、非接触式の電力伝送との双方に好適に対応することができる。
本発明に係る電力伝送システムのブロック図。 昇圧整流回路の回路図。 充電処理を示すフローチャート。
 以下、本発明に係る電力伝送システムについて図1~図3を用いて説明する。
 図1に示すように、電力伝送システム10は、地上に設けられた地上機器11と、車両に搭載された車両機器21とを備えている。地上機器11が送電機器、即ち1次側機器に対応し、車両機器21が受電機器、即ち2次側機器に対応する。
 ここで、電力伝送システム10は、ケーブルを用いることなく、地上機器11から車両機器21への電力伝送を行う非接触式の第1電力伝送経路EL1と、ケーブルC1を用いて系統電源Eから車両機器21への電力伝送を行う接触式の第2電力伝送経路EL2とを備えている。
 先ず、第1電力伝送経路EL1に係る構成について説明すると、地上機器11は、第1電力伝送経路EL1上に設けられ、所定の周波数の高周波電力(交流電力)を出力可能な高周波変換電源12(交流電源)を備えている。高周波変換電源12は、系統電源Eからの交流電力を用いて高周波電力を出力可能に構成されている。具体的には、高周波変換電源12は、スイッチング素子(例えばパワーMOSFET、IGBT(Insulated Gate Bipolor Transistor))を有しており、当該スイッチング素子のスイッチングによって所定の周波数の高周波電力を得るスイッチング電源である。
 なお、説明の便宜上、以降の説明においては、系統電源Eから出力される50Hz又は60Hzの交流電力を単に低周波電力と言い、高周波電力及び低周波電力の双方を総称して交流電力という。系統電源Eからの低周波電力が「第2交流電力」に対応し、高周波変換電源12からの高周波電力が「第1交流電力」に対応する。
 高周波変換電源12から出力される高周波電力は、第1電力伝送経路EL1を介して、車両機器21に伝送され、車両機器21に設けられた車両用バッテリ22の充電に用いられる。具体的には、電力伝送システム10は、地上機器11に設けられた送電器13(1次側共振回路)と、車両機器21に設けられた受電器23(2次側共振回路)とを備えている。
 送電器13及び受電器23は同一の構成を有しており、両者は磁場共鳴可能に構成されている。具体的には、送電器13は、互いに並列に接続された1次側コイル13a及び1次側コンデンサ13bからなる共振回路で構成されている。受電器23は、互いに並列に接続された2次側コイル23a及び2次側コンデンサ23bからなる共振回路で構成されている。送電器13及び受電器23の共振周波数は同一に設定されている。
 かかる構成によれば、高周波変換電源12からの高周波電力が送電器13(1次側コイル13a)に入力された場合、送電器13(1次側コイル13a)と受電器23(2次側コイル23a)とが磁場共鳴する。これにより、受電器23は送電器13のエネルギの一部を受け取る。すなわち、受電器23は、送電器13から高周波電力を非接触で受電する。
 車両機器21は、昇圧整流回路24(電圧調整部)とDC/DCコンバータ25とを備えている。昇圧整流回路24は、受電器23が受電した高周波電力を整流し、且つ所定の電圧値の直流電力を出力する。DC/DCコンバータ25は、昇圧整流回路24及び車両用バッテリ22の間に設けられ、昇圧整流回路24から出力された直流電力を入力する。DC/DCコンバータ25から出力された直流電力が車両用バッテリ22に入力される。
 第1電力伝送経路EL1上には、インピーダンス変換又はインピーダンス整合を行う1次側整合器14及び2次側整合器26が設けられている。詳細には、1次側整合器14は、地上機器11における高周波変換電源12と送電器13との間に設けられており、2次側整合器26は受電器23と昇圧整流回路24との間に設けられている。各整合器14,26の定数は予め定められている。
 第1電力伝送経路EL1上であって、受電器23と2次側整合器26との間には、受電器23にて受電した高周波電力を検知可能な電力検知部27が設けられている。これにより、電力検知部27の検知結果に基づき、受電器23が高周波電力を受電しているか否かを把握することが可能となっている。
 また、DC/DCコンバータ25と車両用バッテリ22との間には、車両用バッテリ22の充電量を検知するバッテリセンサ28が設けられている。これにより、バッテリセンサ28の検知結果に基づき、車両用バッテリ22の充電量を把握可能となっている。
 以上の通り、高周波変換電源12から出力された高周波電力は、第1電力伝送経路EL1上に設けられた送電器13及び受電器23を介して伝送され、昇圧整流回路24にて整流されて車両用バッテリ22に入力される。これにより、車両用バッテリ22の充電が行われる。すなわち、第1電力伝送経路EL1は、系統電源E→高周波変換電源12→1次側整合器14→送電器13→受電器23→電力検知部27→2次側整合器26→昇圧整流回路→DC/DCコンバータ25→バッテリセンサ28→車両用バッテリ22の順で電力を伝送する経路である。
 なお、念のため説明すると、本実施形態においては、昇圧整流回路24が「電圧調整部」に対応し、DC/DCコンバータ25は「電圧調整部」とは別体として説明する。
 次に、第2電力伝送経路EL2に係る構成について説明する。
 電力伝送システム10は、第2電力伝送経路EL2を構成するものとして、低周波電力の伝送に用いられるケーブルC1を備えている。ケーブルC1の一端は系統電源Eに接続されている。ケーブルC1の他端には、差し込み可能な充電プラグPが設けられている。
 充電プラグPに対応させて、車両機器21には、充電プラグPが挿入可能な接続部としてコネクタ29が設けられている。充電プラグPとコネクタ29とが互いに接続されることにより、系統電源Eと車両機器21とが互いに電気的に接続される。
 コネクタ29は、昇圧整流回路24に接続されている。これにより、コネクタ29を介して伝送された低周波電力は整流されて、整流された電力が車両用バッテリ22に入力されることとなる。これにより、車両用バッテリ22の充電が行われる。すなわち、第2電力伝送経路EL2は、系統電源E→ケーブルC1→コネクタ29→昇圧整流回路24→DC/DCコンバータ25→バッテリセンサ28→車両用バッテリ22の順で電力を伝送する経路である。
 ここで、電力伝送経路EL1,EL2において、系統電源Eから昇圧整流回路24までの経路は互いに異なる一方、昇圧整流回路24から車両用バッテリ22までの経路は互いに共通している。つまり、昇圧整流回路24から車両用バッテリ22までの経路は、電力伝送経路EL1,EL2の一部を構成し、電力伝送経路EL1,EL2に共通して設けられた共通経路EL3である。換言すれば、共通経路EL3上に、昇圧整流回路24、DC/DCコンバータ25及びバッテリセンサ28が設けられていると言える。
 地上機器11には、高周波変換電源12の制御を行う制御部としての電源コントローラ15が設けられている。また、車両機器21には、電源コントローラ15と無線通信可能な制御部としての車両コントローラ30が設けられている。電力伝送システム10は、コントローラ15,30間での情報のやり取りを通じて、電力伝送、即ち充電の開始又は終了等の各種制御を行う。
 ここで、コネクタ29は、ケーブルC1と接続されているか否か、詳細には充電プラグPが挿入されているか否かを検知するプラグ検知部29aを備えている。プラグ検知部29a及び電力検知部27は、その検知結果を車両コントローラ30に送信する。これにより、車両コントローラ30は、プラグ検知部29a及び電力検知部27の検知結果に基づき、高周波電力を受電しているのか、低周波電力を受電しているのかを把握することが可能となっている。
 さらに、バッテリセンサ28は、その検知結果を車両コントローラ30に送信する。これにより、車両コントローラ30は、バッテリセンサ28の検知結果に基づき、車両用バッテリ22の充電量を把握することが可能となっている。
 ちなみに、DC/DCコンバータ25は、周期的にスイッチングを行うスイッチング素子25aを備えている。車両コントローラ30は、DC/DCコンバータ25のスイッチング素子25aのオンオフのデューティ比を調整することにより、車両用バッテリ22に対して一定の電流が流れるように制御する。
 次に、昇圧整流回路24について図2を用いて説明する。
 既に説明したとおり、昇圧整流回路24は入力される交流電力を整流し、直流電力を出力するものである。詳細には、図2に示すように、昇圧整流回路24は、高周波電力及び低周波電力を整流するものとして、全波整流を行うダイオードブリッジ31及びリップル電流を除去する平滑コンデンサ32を備えている。また、昇圧整流回路24は、ダイオードブリッジ31によって全波整流された脈流電力が入力されるチョークコイル33と、当該チョークコイル33に対して並列に接続されたスイッチング素子34とを備えている。スイッチング素子34は、例えばn型のパワーMOSFETで構成されている。スイッチング素子34は、車両コントローラ30に接続されたゲートと、チョークコイル33に接続されたドレインと、接地されたソースとを有する。そして、車両コントローラ30からのパルス信号がスイッチング素子34のゲートに入力される。また、昇圧整流回路24は、整流しつつ逆流を抑制するためのダイオード35と、チョークコイル33に対して並列に接続された平滑コンデンサ36とを備えている。ダイオード35は、チョークコイル33に対して直列に接続されている。詳細には、ダイオード35は、チョークコイル33及びスイッチング素子34のドレインに接続されたアノードと、昇圧整流回路24の出力端を介してDC/DCコンバータ25に接続されたカソードとを有する。平滑コンデンサ36は、ダイオード35のカソードに接続された一端と、接地された他端とを有する。
 かかる構成によれば、車両コントローラ30からゲートに対して、所定の周期のパルス信号が入力された場合、当該所定の周期でスイッチング素子34のスイッチング(オンオフ)が行われる。この場合、チョークコイル33を流れる電流(以下インダクタ電流Iという)は、スイッチング素子34のオンオフのデューティ比に対応したものとなる。そして、上記脈流電力は、ダイオード35及び平滑コンデンサ36によって平滑化されて直流電力になり、当該直流電力が昇圧整流回路24から出力される。昇圧整流回路24から出力される直流電力の電圧値は、スイッチング素子34のオンオフのデューティ比に依存している。
 ここで、車両コントローラ30は、昇圧整流回路24からDC/DCコンバータ25が動作するような電圧値の直流電力が出力されるように、スイッチング素子34のオンオフのデューティ比を制御している。本実施形態では、車両コントローラ30は、昇圧整流回路24から出力される直流電力の電圧値が、DC/DCコンバータ25に使用される部品の耐圧範囲内で、力率とDC/DCコンバータ25での損失とのバランスを考慮した値(以下、特定電圧値という)となるように、スイッチング素子34のオンオフのデューティ比を制御している。具体的には、DC/DCコンバータ25での損失は、入力される直流電力の電圧値が高ければ高いほど少なくなる。一方、力率は、インダクタ電流Iの包絡線の位相と、チョークコイル33の印加電圧Vの包絡線の位相とが互いに近づけば近づくほど改善するものである。このため、本実施形態では、車両コントローラ30は、昇圧整流回路24から出力される直流電力の電圧値が、力率とDC/DCコンバータ25での損失とのバランスを考慮した値となるようにスイッチング素子34のオンオフのデューティ比を制御している。
 なお、特定電圧値は、車両用バッテリ22の電圧値よりも高い。また、特定電圧値は、例えば力率が「1」に近づきつつ、DC/DCコンバータ25での損失が低減されるような値に設定されている。DC/DCコンバータ25での損失としては、例えばDC/DCコンバータ25のスイッチング素子25aのスイッチング損失を含む。また、高周波電力の電圧値と、低周波電力の電圧値とが互いに異なる場合、高周波電力に対応した特定電圧値と、低周波電力に対応した特定電圧値とは互いに異なり得る。
 また、詳細な説明は後述するが、スイッチング素子34のゲートには、昇圧整流回路24に入力される交流電力の周期よりも短い周期のパルス信号が入力されるように構成されている。これにより、昇圧整流回路24に入力される交流電力に対してスイッチング素子34のスイッチングが追従することができるようになっている。
 また、昇圧整流回路24は、ダイオードブリッジ31に入力される交流電力を、高周波電力又は低周波電力に切り換えるスイッチ群37を備えている。スイッチ群37は、コネクタ29とダイオードブリッジ31との間の接続/非接続を切り換える第1スイッチ37aと、受電器23(詳細には2次側整合器26)とダイオードブリッジ31との間の接続/非接続を切り換える第2スイッチ37bとを備えている。車両コントローラ30は、スイッチ群37のオンオフ制御を行うことにより、ダイオードブリッジ31の接続先を、コネクタ29又は受電器23に切り換える。
 車両コントローラ30は、非接触式又は接触式のいずれかの電力供給を受けている場合、詳細にはプラグ検知部29aによって充電プラグPが挿入されたことが検知された場合、又は電力検知部27によって高周波電力を受電していることが検知された場合には、車両用バッテリ22を充電するための充電処理を実行する。当該充電処理について図3のフローチャートを用いて説明する。
 先ず、ステップS101にて、車両コントローラ30は、接触式の充電を行うのか、又は非接触式の充電を行うのかを判定する。具体的には、車両コントローラ30は、プラグ検知部29a及び電力検知部27の検知結果に基づいて、充電プラグPが挿入されているか、または受電器23が高周波電力を受電しているのかを判定する。
 受電器23が高周波電力を受電している場合には、車両コントローラ30は、ステップS102に進み、非接触式充電を開始する。具体的には、車両コントローラ30は、スイッチ群37を制御して、受電器23とダイオードブリッジ31とを互いに接続する。そして、車両コントローラ30は、非接触式充電を開始するための各種初期設定を行う。
 その後、ステップS103にて、車両コントローラ30は、スイッチング素子34のオンオフのデューティ比の設定を行う。具体的には、車両コントローラ30は、高周波電力の周波数に対応させて、スイッチングを高速化させる。車両コントローラ30は、例えば、スイッチング周波数を、高周波電力の周波数の10倍に設定する。換言すれば、車両コントローラ30は、スイッチング周期を、高周波電力の周期の1/10に設定する。
 その後、車両コントローラ30は、ステップS104にて充電制御を実行する。詳細には、車両コントローラ30は、昇圧整流回路24から出力される直流電力の電圧値が特定電圧値となるように、スイッチング素子34のオンオフのデューティ比を調整する。
 また、車両コントローラ30は、DC/DCコンバータ25に含まれるスイッチング素子25aのオンオフのデューティ比を調整することにより、車両用バッテリ22を流れる電流を一定にする。
 その後、車両コントローラ30は、ステップS105に進み、バッテリセンサ28の検知結果に基づいて、車両用バッテリ22の充電が完了、即ち終了しているか否かを判定する。詳細には、車両コントローラ30は、車両用バッテリ22の充電量が予め定められた充電完了量以上であるか否かを判定する。
 車両用バッテリ22の充電量が充電完了量未満である場合、車両コントローラ30は、充電が完了していないと判定し、ステップS104に戻る。すなわち、車両コントローラ30は、充電が完了するまで、繰り返しステップS104の処理を実行する。一方、充電が完了したと判定された場合には、車両コントローラ30は、ステップS106に進み、充電終了処理を実行して、本充電処理を終了する。車両コントローラ30は、充電終了処理では、非接触式の充電が行われている場合には、充電終了信号を電源コントローラ15に対して送信する。電源コントローラ15は、受電終了信号を受信したことに基づいて、高周波電力の出力が停止するよう高周波変換電源12を制御する。一方、接触式の充電が行われている場合には、電源コントローラ15は、系統電源Eからの電力供給を止める処理を実行する。なお、本処理の具体的な構成としては任意であるが、例えば第2電力伝送経路EL2上にリレーを設け、そのリレーの切換を行う構成が考えられる。
 一方、ステップS101にて、充電プラグPが挿入されていると判定された場合には、車両コントローラ30は、ステップS107に進み、接触式充電を開始する。具体的には、車両コントローラ30は、スイッチ群37を制御して、コネクタ29とダイオードブリッジ31とを互いに接続する。そして、車両コントローラ30は、接触式充電を開始するための各種初期設定を行う。
 その後、車両コントローラ30は、ステップS108にて、スイッチング素子34のオンオフのデューティ比の設定を行う。具体的には、車両コントローラ30は、低周波電力の周波数に対応させて、スイッチングを低速化させる。車両コントローラ30は、例えば、スイッチングの周波数を、低周波電力の周波数の10倍に設定する。換言すれば、車両コントローラ30は、スイッチングの周期を、低周波電力の周期の1/10に設定する。この場合、低周波電力の周波数は高周波電力の周波数よりも低いため、本処理にて設定された周波数は、ステップS103の処理にて設定される周波数よりも低い。すなわち、高周波電力が入力された場合のスイッチング周波数は、低周波電力が入力された場合のそれよりも低い。その後、車両コントローラ30は、ステップS104~ステップS106の処理を実行して、充電処理を終了する。
 次に、本実施形態の作用について説明する。
 既に説明したとおり、共通経路EL3上に昇圧整流回路24が設けられているため、いずれの電力伝送経路EL1,EL2で電力を伝送する場合であっても昇圧整流回路24が経由されている。
 ここで、昇圧整流回路24のスイッチング素子34のスイッチングが行われることによって、インダクタ電流Iは、連続した三角波状の電流波形となる。この場合、スイッチング素子34のオンオフのデューティ比によってインダクタ電流Iの振幅が決まっており、当該振幅は、昇圧整流回路24から出力される電圧値が特定電圧値となるように設定されている。このため、高周波電力及び低周波電力のいずれが入力された場合であっても、車両用バッテリ22の充電が好適に行われる。
 また、インダクタ電流Iの包絡線の位相と、チョークコイル33の印加電圧Vの包絡線の位相とが互いに近づくようにスイッチング素子34のオンオフのデューティ比を制御しているため、力率が改善されている。
 ここで、昇圧整流回路24に低周波電力が入力される場合のスイッチング周波数は、昇圧整流回路24に高周波電力が入力される場合のスイッチング周波数よりも低く設定されている。これにより、低周波電力を整流する場合において、スイッチング素子34のスイッチング損失が低減されている。
 以上詳述した本実施形態によれば以下の優れた効果を奏する。
 (1)非接触式の第1電力伝送経路EL1と接触式の第2電力伝送経路EL2とが設けられている。第1及び第2電力伝送経路EL1,EL2の共通経路EL3上に、高周波電力及び低周波電力のいずれが入力された場合であっても、予め定められた特定電圧値の直流電力を出力する昇圧整流回路24が設けられている。これにより、非接触式の電力伝送と接触式の電力伝送とにおいて、構成の共通化を図ることができ、それを通じて構成の簡素化を図ることができる。
 (2)昇圧整流回路24から出力される直流電力の電圧値が、DC/DCコンバータ25での損失が低減されるような値に設定されている。これにより、伝送効率を高めることができ、車両用バッテリ22の充電を好適に行うことができる。
 (3)昇圧整流回路24に低周波電力が入力されている場合のスイッチング周波数が、昇圧整流回路24に高周波電力が入力されている場合のスイッチング周波数よりも低く設定されている。これにより、スイッチング周波数と、昇圧整流回路24への入力電力の周波数とのミスマッチに起因する電力損失を低減することができる。
 詳細には、スイッチング素子34のスイッチング周波数は、入力される交流電力の周波数に追従できるように、入力される交流電力よりも高い必要がある。このため、高周波電力が入力される場合には、当該高周波電力の周波数よりも高い周波数でスイッチングを行う必要がある。一方、低周波電力が入力されている場合に、上記高周波電力の周波数よりも高い周波数でスイッチングを行うと、必要以上にスイッチングが行われ、スイッチング損失が大きくなる。
 これに対して、本実施形態では、低周波電力が入力される場合には、スイッチング素子34のスイッチング周波数が相対的に低く設定されている。これにより、低周波電力に追従しつつ、スイッチング損失を低減することができる。よって、高周波電力と低周波電力とで昇圧整流回路24を共通化することによって生じ得る上記不都合を回避することができる。
 (4)スイッチング素子34のオンオフのデューティ比を調整することにより、インダクタ電流Iの包絡線の位相とチョークコイル33の印加電圧Vの包絡線の位相とが互いに近づいている。これにより、力率が改善されているため、伝送効率の更なる向上を図ることができる。
 なお、昇圧整流回路24及びDC/DCコンバータ25を1つの電圧変換器として着目すれば、本電圧変換器の効率が相対的に高くなるように昇圧整流回路24(電圧調整部)から出力される直流電力の電圧値が設定されているとも言える。
 上記実施形態は以下のように変更してもよい。
 ○ 実施形態では、特定電圧値は、力率とDC/DCコンバータ25での損失とのバランスを考慮して設定されている。これに限られず、例えば力率を考慮せず、DC/DCコンバータ25の損失が最小となる値に特定電圧値を設定してもよい。具体的には、特定電圧値として、DC/DCコンバータ25に使用される部品の耐圧範囲内で、昇圧整流回路24が出力可能な最大電圧値を採用してもよい。
 ○ 一方、例えばDC/DCコンバータ25での損失を考慮せず、力率が「1」となる電圧値を特定電圧値として採用してもよい。但し、好適に電力伝送を行う点に着目すれば、力率が「1」に近づきつつ、DC/DCコンバータ25での損失が低減される電圧値を特定電圧値として設定するとよい。換言すれば、力率とDC/DCコンバータ25での損失とに基づいて、昇圧整流回路24から出力される直流電力の電圧値を決定すればよい。この場合、例えば力率が予め定められた閾値以上の範囲内での昇圧整流回路24の最大電圧値を特定電圧値としてもよいし、特定電圧値を、予め定められた閾値以上且つ耐圧以下の範囲内で力率が高くなるように設定してもよい。
 ○ 実施形態では、昇圧整流回路24にはスイッチ群37が設けられている。これに限られず、スイッチ群37を省略してもよい。但し、コネクタ29から低周波電力が供給された場合に、その低周波電力の一部が受電器23側に逆流することを鑑みれば、スイッチ群37を設けた方が好ましい。
 ○ 昇圧整流回路24は、交流電力を整流し、特定電圧値の直流電力が出力されるように動作するものであれば、具体的な構成は任意である。
 ○ また、車両用バッテリ22の電圧値が高周波電力及び低周波電力の電圧値よりも低い場合には、昇圧する構成に代えて、降圧する構成にするとよい。
 ○ 実施形態では、高周波電力が入力される場合と、低周波電力が入力される場合とで、スイッチング素子34のスイッチング周波数が変更される。これに限られず、スイッチング素子34のスイッチング周波数を変更しない構成としてもよい。この場合、高周波電力に追従することができるように、スイッチング周波数を、高周波電力の周波数よりも高く設定しておくとよい。
 ○ 実施形態では、各整合器14,26の定数は固定値であったが、これに限られず、可変であってもよい。また、各整合器14,26を省略してもよい。
 ○ 実施形態では、スイッチング素子34のスイッチングを制御する主体は車両コントローラ30であったが、これに限られず、例えば車両コントローラ30とは別に専用のコントローラを設けてもよい。また、電源コントローラ15が制御する構成としてもよい。
 ○ 高周波変換電源12から異なる電力値(電圧値)の高周波電力が出力されてもよい。この場合であっても、特定電圧値の直流電力が出力されるようにスイッチング素子34のオンオフのデューティ比を制御するとよい。また、この場合、高周波変換電源12からの出力電力の電力値の変更に伴う車両用バッテリ22のインピーダンスの変動に対応し得る。これに対して、DC/DCコンバータ25の入力端から車両用バッテリ22までのインピーダンスが一定となるように、DC/DCコンバータ25に設けられたスイッチング素子25aのオンオフのデューティ比を調整するとよい。
 ○ 実施形態では、プラグ検知部29a及び電力検知部27の検知結果に基づいて、高周波電力又は低周波電力を受電していることが把握される。これに限られず、把握するための具体的な構成は任意である。例えば、電源コントローラ15が今回採用する充電方式を無線通信で車両コントローラ30に対して送信する構成であってもよい。
 ○ 実施形態では、車両機器21にDC/DCコンバータ25が設けられているが、これを省略してもよい。
 ○ 実施形態では、系統電源Eから車両用バッテリ22への一方向の電力伝送である。これに限られず、車両用バッテリ22を放電させることにより、車両用バッテリ22から地上機器11、系統電源E又は他の蓄電装置(例えば家庭用蓄電装置)等への電力伝送を行うことが可能な双方向の電力伝送システムであってもよい。
 ○ 高周波変換電源12から出力される高周波電力の電圧の波形としては、パルス波形、正弦波等任意である。
 ○ 実施形態では、高周波電力を出力する高周波変換電源12を設けたが、これに限られない。要は、所定の周波数(例えば10kHz~10MHz)の交流電力を出力する交流変換電源であればよく、出力される交流電力の周波数は、共振周波数等の関係で適宜設定すればよい。また、高周波変換電源12を省略してもよい。
 ○ 実施形態では、各コンデンサ13b,23bを設けたが、これらを省略してもよい。この場合、各コイル13a,23aの寄生容量を用いて磁場共鳴させる。
 ○ 実施形態では、送電器13の共振周波数と受電器23の共振周波数とは同一に設定されていたが、これに限られず、電力伝送が可能な範囲内で両者を異ならせてもよい。
 ○ 実施形態では、送電器13及び受電器23の構成は同一であったが、これに限られず、両者が異なる構成であってもよい。
 ○ 実施形態では、非接触の電力伝送を実現させるために磁場共鳴を用いたが、これに限られず、電磁誘導を用いてもよい。
 ○ 送電器13に、1次側コイル13a及び1次側コンデンサ13bからなる共振回路と電磁誘導で結合する1次側結合コイルを別途設けてもよい。この場合、1次側結合コイルと高周波変換電源12とを互いに接続し、上記共振回路は、上記1次側結合コイルから電磁誘導によって高周波電力を受ける構成とする。同様に、受電器23に、2次側コイル23a及び2次側コンデンサ23bからなる共振回路と電磁誘導で結合する2次側結合コイルを設け、2次側結合コイルを用いて受電器23の共振回路から電力を取り出してもよい。
 ○ 高周波変換電源12は電圧源であってもよく、電流源であってもよい。
 ○ 実施形態では、電力伝送システム10は、車両に適用されているが、これに限られず、他の機器に適用されてもよい。電力伝送システム10は、例えば、携帯電話のバッテリを充電するのに適用されてもよい。
 ○ 実施形態では、比較的低周波数の低周波電力を接触式で伝送し、比較的高周波数の高周波電力を非接触式で伝送する。これに限られず、高周波電力を接触式で伝送し、低周波電力を非接触式で伝送してもよい。
 ○ 非接触式と接触式とで昇圧整流回路24に入力される交流電力の電圧値が異なる場合、スイッチング素子34のオンオフのデューティ比を調整することにより、同一電圧値の直流電力を出力してもよい。但し、例えば、昇圧整流回路24から出力される直流電力の電圧値を、非接触式で交流電力が入力された時に、力率を改善し、且つ、DC/DCコンバータ25での損失を低減する値に設定した場合、接触式で交流電力が入力された時に力率が改善できない場合がある。

Claims (8)

  1.  受電機器であって、
     第1交流電力が入力される1次側コイルを有する送電機器から非接触で前記第1交流電力を受電可能な2次側コイルと、
     第2交流電力の伝送に用いられるケーブルが接続される接続部と、
     負荷と、
     前記2次側コイルと前記負荷とを互いに接続する第1電力伝送経路と、
     前記接続部と前記負荷とを互いに接続する第2電力伝送経路と、
     前記第1及び第2電力伝送経路に共通して設けられた共通経路と、
     前記共通経路上に設けられ、前記2次側コイルにて受電した前記第1交流電力、又は前記接続部からの前記第2交流電力を整流し、且つ該整流された電力を予め定められた特定電圧値に変換して出力する電圧調整部とを備える受電機器。
  2.  前記電圧調整部は、周期的にスイッチングするスイッチング素子を含み、前記電圧調整部は、当該スイッチング素子のオンオフのデューティ比を調整することにより、前記第1交流電力の電圧値、又は前記第2交流電力の電圧値を前記特定電圧値に変換する、請求項1に記載の受電機器。
  3.  前記第2交流電力の周波数は、前記第1交流電力の周波数よりも低く、
     前記電圧調整部に前記第2交流電力が入力されている場合の前記スイッチング素子のスイッチング周波数は、前記電圧調整部に前記第1交流電力が入力されている場合の前記スイッチング素子のスイッチング周波数よりも低い、請求項2に記載の受電機器。
  4.  前記負荷はバッテリを含み、前記特定電圧値は、前記バッテリの電圧値より高い、請求項2又は請求項3に記載の受電機器。
  5.  前記特定電圧値は、力率が高くなるように設定されている、請求項2に記載の受電機器。
  6.  前記電圧調整部と前記負荷との間に設けられたDC/DCコンバータを更に備え、前記特定電圧値は、前記DC/DCコンバータでの損失が低減されるように設定されている、請求項2に記載の受電機器。
  7.  前記電圧調整部と前記負荷との間に設けられ、スイッチング素子を有するDC/DCコンバータを更に備え、
     前記DC/DCコンバータの前記スイッチング素子のオンオフのデューティ比を調整することにより、前記負荷に入力される電流値が調整される、請求項1~4のうちいずれか一項に記載の受電機器。
  8.  電力伝送システムであって、
     送電機器と、
     前記送電機器から非接触で第1交流電力を受電する受電機器とを備え、
     前記送電機器は、前記第1交流電力が入力される1次側コイルを有し、
     前記受電機器は、
     前記送電機器から非接触で前記第1交流電力を受電可能な2次側コイルと、
     第2交流電力の伝送に用いられるケーブルが接続される接続部と、
     負荷と、
     前記2次側コイルと前記負荷とを互いに接続する第1電力伝送経路と、
     前記接続部と前記負荷とを互いに接続する第2電力伝送経路と、
     前記第1及び第2電力伝送経路に共通して設けられた共通経路と、
     前記共通経路上に設けられ、前記2次側コイルにて受電した前記第1交流電力、又は前記接続部からの前記第2交流電力を整流し、且つ該整流された電力を予め定められた特定電圧値に変換して出力する電圧調整部とを備える、電力伝送システム。
PCT/JP2013/068436 2012-07-11 2013-07-04 受電機器及び電力伝送システム WO2014010518A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP13816038.7A EP2874268A4 (en) 2012-07-11 2013-07-04 ENERGY EFFICIENCY AND ENERGY TRANSMISSION SYSTEM
US14/413,263 US9806535B2 (en) 2012-07-11 2013-07-04 Power-receiving device and power transmission system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012155643A JP5853889B2 (ja) 2012-07-11 2012-07-11 受電機器及び電力伝送システム
JP2012-155643 2012-07-11

Publications (1)

Publication Number Publication Date
WO2014010518A1 true WO2014010518A1 (ja) 2014-01-16

Family

ID=49915975

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/068436 WO2014010518A1 (ja) 2012-07-11 2013-07-04 受電機器及び電力伝送システム

Country Status (4)

Country Link
US (1) US9806535B2 (ja)
EP (1) EP2874268A4 (ja)
JP (1) JP5853889B2 (ja)
WO (1) WO2014010518A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015159560A1 (ja) * 2014-04-16 2015-10-22 三菱電機株式会社 車両用充電装置
JP2021078189A (ja) * 2019-11-05 2021-05-20 日本たばこ産業株式会社 エアロゾル吸引器用の電源ユニット

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015192511A (ja) * 2014-03-27 2015-11-02 京セラ株式会社 電力制御装置及び電力制御方法
US10566843B2 (en) * 2014-07-15 2020-02-18 Qorvo Us, Inc. Wireless charging circuit
US10559970B2 (en) 2014-09-16 2020-02-11 Qorvo Us, Inc. Method for wireless charging power control
KR101628525B1 (ko) * 2014-11-13 2016-06-09 현대자동차주식회사 차량용 배터리 충전기
US11303156B2 (en) * 2015-12-18 2022-04-12 General Electric Company Contactless power transfer system and method for controlling the same
JP6710106B2 (ja) * 2016-06-07 2020-06-17 本田技研工業株式会社 電力供給システム及び電力供給方法
CN106451702B (zh) * 2016-10-26 2019-09-17 北京佰才邦技术有限公司 车载充电机
CN106936325A (zh) * 2016-12-21 2017-07-07 蔚来汽车有限公司 多功能车载功率变换器和包含其的电动汽车
US10427532B2 (en) 2017-04-05 2019-10-01 Ford Global Technologies, Llc On-board and wireless vehicle charging systems with shared components
JP7283864B2 (ja) * 2018-03-20 2023-05-30 株式会社ダイヘン 受電装置及び受電制御方法
CN111953082B (zh) 2019-05-14 2023-12-22 伏达半导体(合肥)股份有限公司 高效的无线充电系统和方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10136588A (ja) * 1996-10-28 1998-05-22 Sanyo Electric Co Ltd 電動車両の充電システム
JP2007336710A (ja) * 2006-06-15 2007-12-27 Matsushita Electric Ind Co Ltd 電池パック、電子機器及び非接触充電システム
JP2009106136A (ja) 2007-10-25 2009-05-14 Toyota Motor Corp 電動車両および車両用給電装置
JP2011015548A (ja) * 2009-07-02 2011-01-20 Toyota Motor Corp 電動車両

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003088110A (ja) * 2001-08-31 2003-03-20 Internatl Business Mach Corp <Ibm> コンピュータ装置、レギュレータ制御回路、レギュレータの制御方法、およびプログラム
JP4178367B2 (ja) * 2002-05-31 2008-11-12 株式会社富士通ゼネラル 電源装置
JP3750690B1 (ja) 2005-02-15 2006-03-01 株式会社村田製作所 電源装置
JP2009195095A (ja) * 2008-02-14 2009-08-27 Matsuda Micronics Corp 入力電圧アダプティブ方式電源装置
CN102421628B (zh) * 2009-05-14 2014-04-23 丰田自动车株式会社 车辆用充电装置
WO2012029024A1 (en) * 2010-08-31 2012-03-08 Brusa Elektronik Ag Electrical circuit for charging a battery
DE102011056516B4 (de) * 2010-12-16 2022-10-13 Denso Corporation Leistungsversorgungsvorrichtung für Fahrzeuge
DE102010055925A1 (de) 2010-12-23 2012-06-28 Daimler Ag Kraftfahrzeugvorrichtung

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10136588A (ja) * 1996-10-28 1998-05-22 Sanyo Electric Co Ltd 電動車両の充電システム
JP2007336710A (ja) * 2006-06-15 2007-12-27 Matsushita Electric Ind Co Ltd 電池パック、電子機器及び非接触充電システム
JP2009106136A (ja) 2007-10-25 2009-05-14 Toyota Motor Corp 電動車両および車両用給電装置
JP2011015548A (ja) * 2009-07-02 2011-01-20 Toyota Motor Corp 電動車両

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2874268A4

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015159560A1 (ja) * 2014-04-16 2015-10-22 三菱電機株式会社 車両用充電装置
JP5908179B2 (ja) * 2014-04-16 2016-04-26 三菱電機株式会社 車両用充電装置
CN106134029A (zh) * 2014-04-16 2016-11-16 三菱电机株式会社 车辆用充电装置
CN106134029B (zh) * 2014-04-16 2018-09-25 三菱电机株式会社 车辆用充电装置
US10286795B2 (en) 2014-04-16 2019-05-14 Mitsubishi Electric Corporation Charging device for electric vehicle
JP2021078189A (ja) * 2019-11-05 2021-05-20 日本たばこ産業株式会社 エアロゾル吸引器用の電源ユニット
US11129420B2 (en) 2019-11-05 2021-09-28 Japan Tobacco Inc. Power supply unit for aerosol inhaler

Also Published As

Publication number Publication date
JP2014018031A (ja) 2014-01-30
EP2874268A4 (en) 2016-03-30
EP2874268A1 (en) 2015-05-20
US20150200547A1 (en) 2015-07-16
US9806535B2 (en) 2017-10-31
JP5853889B2 (ja) 2016-02-09

Similar Documents

Publication Publication Date Title
WO2014010518A1 (ja) 受電機器及び電力伝送システム
US10819150B2 (en) Non-contact electric power feeding system, terminal device, non-contact electric power feeding device, and non-contact electric power feeding method
US10097012B2 (en) Power supplying device and wireless power-supplying system
JP6282743B2 (ja) 無線電力受信装置
JP5135204B2 (ja) 非接触電力伝送システム、および該非接触電力伝送システムにおける負荷装置
JP5846085B2 (ja) 受電機器及び非接触電力伝送装置
WO2015159560A1 (ja) 車両用充電装置
US10256675B2 (en) Power-supplying device and wireless power supply system
WO2014199691A1 (ja) 給電装置、および非接触給電システム
JP2013532461A (ja) 非接触型の誘導電力伝送システムの回路
KR101994740B1 (ko) 비접촉 방식 전원 송신 장치, 비접촉 방식 전원 송수신 장치, 접촉-비접촉 방식 전원 송신 장치 및 접촉-비접촉 방식 전원 송수신 장치
US10065510B2 (en) Power transmission system
JP2016063726A (ja) 受電機器及び非接触電力伝送装置
WO2014045873A1 (ja) 受電機器及び非接触電力伝送装置
EP2905873A1 (en) Power reception device, power transmission device, and noncontact power transfer apparatus
JP2016015808A (ja) 受電機器及び非接触電力伝送装置
JP2016092959A (ja) 送電機器及び非接触電力伝送装置
WO2015083578A1 (ja) 非接触電力伝送装置及び受電機器
JP5888201B2 (ja) 受電機器、及び非接触電力伝送装置
JP6015608B2 (ja) 受電機器及び非接触電力伝送装置
WO2020116033A1 (ja) 非接触給電装置
JP2015109725A (ja) 受電機器及び非接触電力伝送装置
WO2015098747A1 (ja) 送電機器及び非接触電力伝送装置
JP2016092960A (ja) 送電機器及び非接触電力伝送装置
JP2024060491A (ja) 非接触給電装置及び電力伝送方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13816038

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14413263

Country of ref document: US

Ref document number: 2013816038

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE