WO2014010484A1 - Electric motor - Google Patents

Electric motor Download PDF

Info

Publication number
WO2014010484A1
WO2014010484A1 PCT/JP2013/068254 JP2013068254W WO2014010484A1 WO 2014010484 A1 WO2014010484 A1 WO 2014010484A1 JP 2013068254 W JP2013068254 W JP 2013068254W WO 2014010484 A1 WO2014010484 A1 WO 2014010484A1
Authority
WO
WIPO (PCT)
Prior art keywords
electric motor
stator
core
rotor
core portion
Prior art date
Application number
PCT/JP2013/068254
Other languages
French (fr)
Japanese (ja)
Inventor
樋口 剛
真樹 松本
勇是 松尾
Original Assignee
国立大学法人長崎大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人長崎大学 filed Critical 国立大学法人長崎大学
Publication of WO2014010484A1 publication Critical patent/WO2014010484A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/12Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/12Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets
    • H02K21/14Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets rotating within the armatures
    • H02K21/16Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets rotating within the armatures having annular armature cores with salient poles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/12Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets
    • H02K21/22Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets rotating around the armatures, e.g. flywheel magnetos
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2213/00Specific aspects, not otherwise provided for and not covered by codes H02K2201/00 - H02K2211/00
    • H02K2213/03Machines characterised by numerical values, ranges, mathematical expressions or similar information

Definitions

  • the present invention relates to a flat-type electric motor suitable for application to a switched reluctance motor, a permanent magnet synchronous motor, or the like having a stator having a radial dimension larger than an axial dimension.
  • electric motors are often used in electric vehicles such as hybrid cars and electric cars, urban transportation devices such as elevators and escalators, and home appliances such as washing machines and heat pump water heaters.
  • the electric motor has been demanded to have a flat structure having a larger radial dimension than an axial dimension in order to improve power performance while reducing the size of the product.
  • an electric motor generates a magnetic field by energizing a coil wound around a core portion of a stator, and transmits an electromagnetic force to the rotor to give a rotational torque.
  • the transmission of the electromagnetic force that contributes to the generation of this rotational torque acts in a plane orthogonal to the motor axis, so that the continuously wound coil straddles the axial end of the core portion of the stator.
  • the portion (hereinafter, this portion is referred to as a coil end) does not contribute to the generation of rotational torque.
  • Non-Patent Document 1 discloses an example of improving torque efficiency. According to this, for a switched reluctance motor having an aspect ratio of about 0.3, a permement (Fe—Co alloy), which is a highly permeable material, is used instead of a conventional silicon steel plate as a core material of a stator and a rotor. ) Is used. This is intended to increase the efficiency by making the entire core a highly permeable material, due to its high saturation magnetic flux density and low core loss.
  • a permement Fe—Co alloy
  • Patent Document 1 and Patent Document 2 disclose examples in which a high permeability material is used for a part of a core.
  • FIG. 81 of Patent Document 1 it is disclosed that the tip of teeth (teeth) which is a portion of the core portion of the stator facing the rotor is a permendur.
  • FIGS. 5 and 6 of Patent Document 2 disclose that a part of the tip of the teeth of the core portion of the stator is made of permalloy (Fe—Ni alloy) which is a highly permeable material. These are all formed by laminating the high magnetic permeability material in the axial direction, and improve the efficiency of generating rotational torque. Further, as described in paragraph [0397] of Patent Document 1, an increase in manufacturing cost is suppressed by partially using an expensive high magnetic permeability material.
  • JP 2011-177021 A Japanese Patent Laid-Open No. 11-168863 IEEJ Transactions D Vol.132 No.4 pp.458-463
  • the present invention has been made in view of such problems, and devise the structure of the front and back surfaces of the core portion of the stator so that leakage of magnetic flux in the axial direction at the coil end portion can be reduced.
  • a further object is to provide a flat-type electric motor capable of reducing the manufacturing cost while improving the efficiency.
  • an electric motor includes a rotor having a shaft and a radial dimension orthogonal to the axial direction with respect to the axial dimension parallel to the shaft of the rotor. Has a large core part.
  • the electric motor includes a stator that energizes a coil wound around the core portion to generate a magnetic field, and transmits electromagnetic force to the rotor to give a rotational torque.
  • the electric motor is provided with a shield member having a high magnetic permeability and a large saturation magnetic flux density in the vicinity of the coil end of the core portion of the stator, and at least in the core portion including immediately below the coil.
  • the permeability of the magnetic flux in the front and back surfaces of the core portion orthogonal to the axial direction directly below the stator coil can be improved, so that the magnetic flux in the axial direction at the coil end portion can be improved. Leakage can be reduced and the total magnetic flux can be increased.
  • the electric motor according to a second aspect is the electric motor according to the first aspect, wherein the shield member is provided on the entire surface of at least one of the front and back of the core portion of the stator orthogonal to the axial direction.
  • the core portion of the stator has a yoke portion, and the shield member is provided only in the yoke portion of the stator.
  • the electric motor according to claim 4 is the electric motor according to claim 2, wherein the shield member is provided only in the core portion around which the coil is wound.
  • a permendur is used for the shield member.
  • the electric motor according to claim 6 is the electric motor according to claims 1 to 4, wherein the electric motor is a switched reluctance motor.
  • a shield member having a high magnetic permeability and a high saturation magnetic flux density is provided in the vicinity of the coil end of the core portion of the stator, and at least in the core portion including immediately below the coil. It is
  • FIG. 1 is a partially crushed perspective view illustrating a configuration example of a flat electric motor 100 according to a first embodiment.
  • FIG. 3 is a partially broken perspective view illustrating a configuration example of a core portion of the stator 10.
  • FIG. 6 is a characteristic diagram illustrating an example of a torque waveform of the flat electric motor 100. It is a graph which shows the material characteristic example of a shield member. It is a perspective view of partial crushing which shows the example of composition of flat type electric motor 200 concerning a 2nd embodiment.
  • FIG. 6 is a characteristic diagram illustrating an example of a torque waveform of a flat electric motor 200. It is a perspective view of partial crushing which shows the example of composition of the flat type electric motor 300 concerning a 3rd embodiment. 4 is a graph showing an example of torque characteristics of a flat electric motor 300.
  • FIG. 3 is a partially broken perspective view illustrating a configuration example of a core portion of the stator 10.
  • FIG. 6 is a characteristic diagram illustrating an example of a torque wave
  • a flat electric motor 100 shown in FIG. 1 can be mounted on an electric vehicle such as a hybrid vehicle or an electric vehicle, an urban transportation device such as an elevator or an escalator, and a home appliance such as a washing machine or a heat pump water heater.
  • an electric vehicle such as a hybrid vehicle or an electric vehicle
  • an urban transportation device such as an elevator or an escalator
  • a home appliance such as a washing machine or a heat pump water heater.
  • the flat electric motor 100 includes a rotor 1 and a stator 10.
  • the rotor 1 has an inner rotor portion 1a, an outer rotor portion 1b, a connecting plate 1c, and a rotating shaft 4.
  • the rotating shaft 4 is made of a metal rod having a predetermined length, and a disk-shaped connecting plate 1 c is fixed to the rotating shaft 4.
  • the connecting plate 1c serves as a base in the rotor 1, and a hole for attaching the rotating shaft 4 is opened at the center of the connecting plate 1c before assembly.
  • An annular inner rotor portion 1a is fixed to a predetermined inner peripheral portion of the connecting plate 1c, and an annular outer rotor portion 1b is fixed to the outer peripheral portion.
  • the material of the inner rotor portion 1a, the outer rotor portion 1b, the connecting plate 1c, etc. is a non-magnetic material such as aluminum (Al) or an alloy thereof, for example.
  • the inner rotor portion 1a and the like are integrally formed by a casting method such as a die casting method in which molten Al is poured into a precise mold under pressure.
  • the inner diameter of the inner rotor portion 1a is Di
  • the outer diameter of the outer rotor portion 1b is Do.
  • Eight inner segment cores 2 are fixed to the outer diameter side of the inner rotor portion 1a.
  • the material of the inner segment core 2 is a magnetically permeable material, and for example, a plurality of silicon steel plates having a predetermined arc shape are laminated in the axial direction and bonded to each other to be manufactured in a block shape.
  • Eight outer segment cores 3 are also fixed to the inner diameter side of the outer rotor portion 1b.
  • the material of the outer segment core 3 is also a magnetically permeable material.
  • a plurality of silicon arc steel plates having a predetermined arc shape are laminated in the axial direction and fixed to each other to be manufactured in a block shape.
  • the one end portion 4a and the other end portion 4b of the rotating shaft 4 are rotatably supported (axially supported) corresponding to the respective bearing portions of the entire base portion (not shown).
  • a stator 10 is disposed between the outer diameter side of the inner rotor portion 1a and the inner diameter side of the outer rotor portion 1b.
  • the stator 10 has a core portion having a large radial dimension perpendicular to the axial direction with respect to the axial dimension parallel to the rotating shaft 4.
  • the aspect ratio is the ratio of the dimension in the radial direction perpendicular to the axial direction to the dimension in the axial direction of the core portion of the stator 10
  • the aspect ratio of the core portion is less than 1.
  • the core portion of the stator 10 includes a highly permeable core 10a and a permeable core 10b.
  • the magnetically permeable core 10b forms the main part of the core portion of the stator 10.
  • the planar shape of the core portion of the stator 10 includes an inner teeth portion 10c (Inside Teeth: IT) facing the inner segment core 2, an outer teeth portion 10d (Outside Teeth: OT) facing the outer segment core 3, and a circle. It consists of a yoke portion 10e that is connected in an annular shape.
  • the inner teeth portion 10c has a fan-shaped portion widened from the annular yoke portion 10e toward the outer diameter side of the inner rotor portion 1a. Twelve fan-shaped portions of the inner teeth portion 10c are provided at intervals of 30 °.
  • the outer tooth portion 10d has a fan-shaped portion widened from the yoke portion 10e toward the inner diameter side of the outer rotor portion 1b. Twelve fan-shaped portions of the outer tooth portion 10d are also provided every 30 °.
  • the portion 10c, the outer tooth portion 10d, and the yoke portion 10e are cut out in an annular shape so as to be punched. It is formed by laminating a predetermined number of the punched annular members.
  • T is the total thickness after lamination of the magnetically permeable core 10b.
  • the highly permeable core 10a is fixed to the front and back surfaces of the permeable core 10b in the axial direction.
  • the high magnetic permeability core 10a constitutes an example of a shield member.
  • the high magnetic permeability core 10a has a high magnetic permeability and a high saturation magnetic flux density.
  • the high magnetic permeability core 10a is in the vicinity of the coil end of the core portion of the stator 10, and is formed on the entire surface of the inner teeth portion 10c, the outer teeth portion 10d, and the yoke portion 10e that connects them in an annular shape.
  • a shield member is provided.
  • the high magnetic permeability core 10a is formed by laminating a predetermined number of shield member plates (for example, permendur plates) having a high permeability and a high saturation magnetic flux density in a predetermined shape.
  • a permendur plate is cut out to form one sheet, following a template having the same shape as the inner teeth portion 10c and the outer teeth portion 10d including the yoke portion 10e.
  • the thickness of one surface after laminating a plurality of permendur plates constituting the highly permeable core 10a is defined as t.
  • the thickness T ′ of the stator core is (T + 2t).
  • coils 11a, 11b, and 11c are wound around the yoke portion 10e of the stator 10 so as to surround the yoke portion 10e in the radial direction.
  • Four sets of the coils 11a are arranged in the core portion of the stator 10 with the coils 11b and 11c adjacent to each other in between, and they are connected to each other.
  • the coils 11b and 11c are similarly arranged and connected.
  • the winding method of the stator 10 is concentrated winding.
  • the total number of coils 11a, 11b, 11c, etc. is twelve.
  • the core portion of the stator 10 and the coils 11a, 11b, and 11c are integrated by a resin mold (not shown) and fixed to an entire base portion (not shown). Thus, a flat electric motor 100 is configured.
  • a 12/8 switched reluctance (hereinafter referred to as SR) motor having a 12-pole stator 10 having a three-phase connection and an 8-pole rotor 1 is configured.
  • the stator 10 shown in FIG. 1 generates a magnetic field by energizing the coils 11a, 11b, and 11c wound around the core portion, and transmits an electromagnetic force to the rotor 1 to rotate torque (reluctance torque).
  • the coils 11a, 11b, and 11c are connected to a control device (not shown).
  • the control device passes a current so as to apply a DC magnetic field to the coils 11a, 11b, and 11c.
  • a magnetic field that rotates along the annular shape of the stator 10 is generated by switching the DC magnetic field in the order of the coil 11a ⁇ the coil 11b ⁇ the coil 11c.
  • the rotor 1 rotates by the inner segment core 2 and the outer segment core 3 of the rotor 1 attracting to the rotating magnetic field. Torque generated by the rotation of the rotor 1 is output from the other end 4 b of the rotating shaft 4 to the outside of the flat electric motor 100. The load is driven by this torque.
  • the high magnetic permeability core 10a is provided on the entire surface of at least one of the front and back of the core portion of the stator 10 orthogonal to the axial direction.
  • the torque waveform shown in FIG. 1 In the example of the torque waveform shown in FIG.
  • the inner rotor portion 1a has an inner diameter Di of 140 mm
  • the outer rotor portion 1b has an outer diameter Do of 349.2 mm
  • the magnetically permeable core 10b of the stator 10 is a silicon steel plate
  • its thickness This is a torque characteristic of the flat electric motor 100 when T is 30 mm
  • the highly permeable core 10a is a permendur
  • the thickness t is 3 mm, that is, the thickness T ′ of the stator core is 36 mm. .
  • the vertical axis represents torque [Nm]
  • the horizontal axis represents the rotation angle [°] of the rotor 1.
  • the solid line in the figure is an example of torque characteristics of the electric motor 100 (hereinafter referred to as the method of the present invention), and the broken line is not provided with the highly permeable core 10a, and the core portion of the stator 10 has a thickness T of 30 mm.
  • This is an example of torque characteristics (hereinafter referred to as a conventional method) when only the magnetically permeable core 10b of a silicon steel plate is used.
  • the thickness T is 24 mm
  • the highly permeable core 10a is a permendur
  • the thickness t is 3 mm, that is, the thickness T ′ of the stator core is 30 mm.
  • the average torque is 24.4 Nm.
  • the average torque is improved by 6.6% compared to the conventional method in which the core portion of the stator 10 is made only of the permeable core 10b of a silicon steel plate having a thickness T of 30 mm.
  • FIG. 4 an example of BH characteristics between permendur and a silicon steel plate will be compared.
  • the horizontal axis represents the magnetic field strength H [A / m]
  • the vertical axis represents the magnetic flux density B [T].
  • the characteristic curve plotted with a white diamond on the solid line is permendur, and the characteristic curve plotted with a white rectangle on the solid line is a silicon steel plate (50H1300).
  • the magnetic flux density B is saturated and the gradient is constant when the magnetic field strength H is around 1000 A / m, but the saturation magnetic flux density is higher for the permendur.
  • the ramp up to that point is larger for permendur. That is, the permeability of permendur is higher than that of silicon steel plate.
  • the inner teeth portion 10c, the outer teeth portion 10d, and the annular teeth are connected in the vicinity of the coil end of the core portion of the stator 10.
  • a highly permeable core 10a is provided on the entire surface of the yoke portion 10e (in the plane orthogonal to the rotation axis).
  • the permeability of the magnetic flux in the front and back surfaces of the core portion orthogonal to the axial direction directly below the coil can be improved, so that leakage of magnetic flux in the axial direction at the coil end portion is reduced, and the total magnetic flux Will be able to increase.
  • the highly magnetic core 10 a ′ is provided only in the portion corresponding to the yoke portion 10 e in FIG. 2 in the core portion of the stator 10 ′.
  • the stator 10 ′ of the electric motor 200 includes a magnetically permeable core 10b and a highly permeable core 10a ′.
  • the permeable core 10b is the same as the permeable core 10b of the electric motor 100 shown in FIG.
  • the high magnetic permeability core 10a ′ has an annular shape corresponding to the yoke portion 10e of FIG.
  • the highly permeable core 10a ' is provided only in the yoke portion 10e of the core portion of the stator 10'.
  • the inner diameter Di of the inner rotor portion 1a is 140 mm
  • the outer diameter Do of the outer rotor portion 1b is 349.2 mm
  • the magnetically permeable core 10b of the stator 10 ′ is a silicon steel plate
  • the highly permeable core 10a ′ is a permendur
  • the thickness t is 3 mm.
  • the solid line in the figure is the torque characteristic of the electric motor 200 (the method of the present invention), and the broken line is an example of the torque characteristic when the core portion of the stator 10 ′ is only a permeable core 10 b of a silicon steel plate with a thickness T of 30 mm ( Conventional method).
  • the conventional method shown by the broken line there is a torque peak of 35 Nm near the rotation angle of 3 ° to 4 ° of the rotor 1, and then the torque decreases rapidly, and the torque is 30 N after the rotation angle of 6 °. Below -m.
  • the torque of 35 Nm is maintained from the vicinity of the rotation angle 3 ° of the rotor 1 to the vicinity of 8 °, and the torque is 30 N until the rotation angle 9 °. -M or more.
  • the average torque is 22.9 Nm for the conventional method and 25.6 Nm for the method of the present invention.
  • the method of the present invention is improved by 11.8%.
  • the annular high magnetic permeability core 10a ′ is used only in the vicinity of the coil end portion of the yoke portion 10e of the core portion of the stator 10 ′.
  • the permeability of the magnetic flux in the plane of the core portion orthogonal to the axial direction directly below the coil can be improved, so that leakage of magnetic flux in the axial direction at the coil end portion is reduced, and the total magnetic flux is increased. Will be able to.
  • the high magnetic permeability core 10a ′′ is provided only on the front and back surfaces of the core portion around which the coils 11a, 11b, and 11c are wound out of the yoke portion 10e of the stator 10 ′′. Provided.
  • the stator 10 ′′ of the electric motor 300 includes a magnetically permeable core 10b and a highly permeable core 10a ′′.
  • the permeable core 10b is the same as the permeable core 10b of the electric motor 100 shown in FIG.
  • the high magnetic permeability core 10a ′′ has an arc shape obtained by dividing the annular yoke portion 10e, and is fixed to the front and back surfaces of the magnetic permeability core 10b to form the core portion of the stator 10 ′′. Thereafter, the coils 10a, 11b, and 11c are wound around the yoke portion 10e of the stator 10 '' so as to surround the yoke portion 10e in the radial direction, and the electric motor 300 is manufactured.
  • the highly permeable core 10a ′′ is provided only in the core portion around which the coils 11a, 11b, and 11c are wound out of the yoke portion 10e of the core portion of the stator 10 ′′.
  • the inner rotor portion 1a has an inner diameter Di of 140 mm
  • the outer rotor portion 1b has an outer diameter Do of 349.2 mm
  • the magnetically permeable core 10b of the stator 10 ′′ is made of a silicon steel plate, This is a torque characteristic of the flat electric motor 300 when the thickness T is 30 mm
  • the highly permeable core 10a ′′ is a permendur
  • the thickness t is 3 mm.
  • the solid line shown in the figure is the torque characteristic of the electric motor 300, and the broken line is the torque characteristic when the core portion of the stator 10 "is made of only the permeable core 10b of a silicon steel plate having a thickness T of 30 mm.
  • the conventional method there is a torque peak of 35 Nm near the rotation angle of 3 ° to 4 °, and then the torque decreases rapidly. After the rotation angle of 6 °, the torque is below 30 Nm.
  • the torque of 35.0 Nm is maintained from the rotation angle of about 3 ° to about 8 °, and the torque becomes 30 Nm or more until the rotation angle of about 9 °. ing.
  • the average torque is 22.9 N-m for the conventional system and 25.1 N-m for the system of the present invention, which is an improvement of 9.6% in the system of the present invention compared to the conventional system.
  • the arc-shaped highly permeable core 10a ′′ is wound around the coils 11a, 11b, and 11c in the yoke portion 10e of the stator 10 ′′. Used only in the vicinity of the coil end of the portion that is marked.
  • the permeability of the magnetic flux in the plane of the core portion orthogonal to the axial direction directly below the coil can be improved, so that leakage of the magnetic flux in the axial direction at the coil end portion can be reduced.
  • the total magnetic flux can be increased.
  • the flat motors 100 to 300 are SR motors.
  • the present invention is not limited to these, and SR motors having other configurations including linear motors,
  • the motors 100 to 300 may be permanent magnet synchronous motors.
  • the present invention is extremely suitable when applied to a switched reluctance motor, a permanent magnet synchronous motor, or the like having a stator whose radial dimension is larger than the axial dimension.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)

Abstract

An electric motor that allows for a reduction in the leakage of magnetic flux in the axial direction at a coil end part and that allows for a reduction in manufacturing cost while improving efficiency has a rotor (1) having a rotating shaft, and a core section in which the dimension in the radial direction orthogonal to the axial direction is larger than the dimension in the axial direction parallel to the rotating shaft of the rotor (1). The electric motor is provided with a stator (10) that produces a magnetic field upon coils (11a, 11b, 11c) wound on the core section being energized, and provides rotational torque by transmitting electromagnetic force to the rotor. The electric motor is provided with a high-magnetic-permeability core (10a) in the vicinity of the coil end of the core section of the stator (10) and at least in the core section including directly below the coil.

Description

電動機Electric motor
 この発明は、軸方向の寸法に対して径方向の寸法が大きい固定子を有したスイッチトリラクタンスモーターや永久磁石同期電動機等に適用して好適な扁平型の電動機に関するものである。 The present invention relates to a flat-type electric motor suitable for application to a switched reluctance motor, a permanent magnet synchronous motor, or the like having a stator having a radial dimension larger than an axial dimension.
 近年、ハイブリッド自動車や電気自動車などの電動車両、エレベーターやエスカレーターなどの都市交通装置、洗濯機やヒートポンプ給湯器などの家庭電化製品において、電動機が使用される場合が多い。電動機は、製品の小型化を図りつつ動力性能を向上させるという要求から、軸方向寸法に対して径方向寸法が大きい扁平構造のものが求められるようになってきている。 In recent years, electric motors are often used in electric vehicles such as hybrid cars and electric cars, urban transportation devices such as elevators and escalators, and home appliances such as washing machines and heat pump water heaters. The electric motor has been demanded to have a flat structure having a larger radial dimension than an axial dimension in order to improve power performance while reducing the size of the product.
 一般に、電動機は、固定子のコア部分に巻装されたコイルに通電して磁界を発生させ、回転子に対して電磁力を伝達して回転トルクを与えるものである。この回転トルクの発生に寄与する電磁力の伝達は、電動機の軸に対して直交する面内で作用するため、連続的に巻装されたコイルが固定子のコア部分の軸方向端部をまたぐ部分(以下、この部分をコイルエンドと称す。)は、回転トルクの発生には寄与しない。 Generally, an electric motor generates a magnetic field by energizing a coil wound around a core portion of a stator, and transmits an electromagnetic force to the rotor to give a rotational torque. The transmission of the electromagnetic force that contributes to the generation of this rotational torque acts in a plane orthogonal to the motor axis, so that the continuously wound coil straddles the axial end of the core portion of the stator. The portion (hereinafter, this portion is referred to as a coil end) does not contribute to the generation of rotational torque.
 逆にコイルエンド部では、磁束が軸方向に漏れるため、投入電力の割に発生トルクが少ないという効率低下を招く要因となっている。通常のアスペクト比(軸方向寸法/径方向寸法)が1以上の電動機では、このコイルエンド部の影響は割合として小さいが、アスペクト比が1を下回る扁平構造の電動機では、無視できないものとなる。 On the contrary, since the magnetic flux leaks in the axial direction at the coil end portion, it is a factor that causes a reduction in efficiency that the generated torque is small for the input power. In an electric motor having a normal aspect ratio (axial dimension / radial dimension) of 1 or more, the influence of this coil end portion is small in proportion, but cannot be ignored in an electric motor having a flat structure with an aspect ratio of less than 1.
 非特許文献1にトルクの効率改善を図った例が開示されている。これによれば、アスペクト比が約0.3のスイッチトリラクタンスモーターについて、固定子および回転子のコア材料として、従来のケイ素鋼板に変え、高透磁材料であるパーメンジュール(Fe-Co合金)を用いている。これはコア全体を高透磁材料にすることによって、その高い飽和磁束密度と低い磁心損失により効率を上げることを意図したものである。 Non-Patent Document 1 discloses an example of improving torque efficiency. According to this, for a switched reluctance motor having an aspect ratio of about 0.3, a permement (Fe—Co alloy), which is a highly permeable material, is used instead of a conventional silicon steel plate as a core material of a stator and a rotor. ) Is used. This is intended to increase the efficiency by making the entire core a highly permeable material, due to its high saturation magnetic flux density and low core loss.
 一方、特許文献1および特許文献2には、コアの一部に高透磁材料を用いる例が開示されている。特許文献1の図81には、固定子のコア部分の回転子と対向する部分であるティース(歯)の先端をパーメンジュールにすることが開示されている。特許文献2の図5、図6には同じく固定子のコア部分のティースの先端の一部を高透磁材料であるパーマロイ(Fe-Ni合金)にすることが開示されている。これらはいずれも当該高透磁材料を軸方向に積層して成り、回転トルクの発生の効率を向上させるものである。また、特許文献1の段落[0397]に記述があるように、高価な高透磁材料を部分的に使用することで製造コスト増加の抑制を図るものである。 On the other hand, Patent Document 1 and Patent Document 2 disclose examples in which a high permeability material is used for a part of a core. In FIG. 81 of Patent Document 1, it is disclosed that the tip of teeth (teeth) which is a portion of the core portion of the stator facing the rotor is a permendur. Similarly, FIGS. 5 and 6 of Patent Document 2 disclose that a part of the tip of the teeth of the core portion of the stator is made of permalloy (Fe—Ni alloy) which is a highly permeable material. These are all formed by laminating the high magnetic permeability material in the axial direction, and improve the efficiency of generating rotational torque. Further, as described in paragraph [0397] of Patent Document 1, an increase in manufacturing cost is suppressed by partially using an expensive high magnetic permeability material.
特開2011-177021号公報JP 2011-177021 A 特開平11-168863号公報Japanese Patent Laid-Open No. 11-168863
 ところで、従来例に係る扁平構造の電動機によれば、非特許文献1に記載されるように固定子のコア部の全体を高透磁材料とすれば、効率の改善は図れるが、高透磁材料は高価であるため、当該電動機の製造コストが高くなるという問題がある。 By the way, according to the electric motor having a flat structure according to the conventional example, if the entire core portion of the stator is made of a highly permeable material as described in Non-Patent Document 1, the efficiency can be improved. Since the material is expensive, there is a problem that the manufacturing cost of the electric motor becomes high.
 特許文献1、2のように固定子のコア部分において、高透磁材料を部分的に使用すれば、製造コスト増加の抑制は図れるが、高透磁材料を軸方向に沿って積層して配置するものである。このため、扁平構造電動機におけるコイルエンド部での軸方向への磁束の漏れに対しては効を奏さないという問題が懸念される。 If the high permeability material is partially used in the core portion of the stator as in Patent Documents 1 and 2, the manufacturing cost can be suppressed, but the high permeability material is laminated in the axial direction. To do. For this reason, we are anxious about the problem of not having an effect with respect to the leakage of the magnetic flux to the axial direction in the coil end part in a flat structure electric motor.
 本発明は、このような課題に鑑みてなされたものであり、固定子のコア部分の表裏面の構造を工夫して、コイルエンド部での軸方向への磁束の漏れを低減できるようにすると共に、効率の向上を図りつつ製造コストを低減できるようにした扁平型の電動機を提供することを目的とする。 The present invention has been made in view of such problems, and devise the structure of the front and back surfaces of the core portion of the stator so that leakage of magnetic flux in the axial direction at the coil end portion can be reduced. A further object is to provide a flat-type electric motor capable of reducing the manufacturing cost while improving the efficiency.
 上記課題を解決するために、請求項1に記載の電動機は、軸を有した回転子と、前記回転子の軸に平行する軸方向の寸法に対して当該軸方向と直交する径方向の寸法が大きいコア部分を有している。電動機は前記コア部分に巻装されたコイルに通電して磁界を発生させ、前記回転子に対して電磁力を伝達して回転トルクを与える固定子とを備えている。電動機は前記固定子のコア部分のコイルエンド近傍であって、少なくとも、前記コイルの直下を含む当該コア部分に高透磁率で飽和磁束密度の大きな磁気特性を有するシールド部材が設けられるものである。 In order to solve the above-described problem, an electric motor according to claim 1 includes a rotor having a shaft and a radial dimension orthogonal to the axial direction with respect to the axial dimension parallel to the shaft of the rotor. Has a large core part. The electric motor includes a stator that energizes a coil wound around the core portion to generate a magnetic field, and transmits electromagnetic force to the rotor to give a rotational torque. The electric motor is provided with a shield member having a high magnetic permeability and a large saturation magnetic flux density in the vicinity of the coil end of the core portion of the stator, and at least in the core portion including immediately below the coil.
 請求項1に記載の電動機によれば、固定子のコイル直下の軸方向と直交するコア部分の表裏面内での磁束の透過性を向上できるので、コイルエンド部での軸方向への磁束の漏れを低減し、また、磁束の総和を増加することができるようになる。 According to the electric motor of the first aspect, the permeability of the magnetic flux in the front and back surfaces of the core portion orthogonal to the axial direction directly below the stator coil can be improved, so that the magnetic flux in the axial direction at the coil end portion can be improved. Leakage can be reduced and the total magnetic flux can be increased.
 請求項2に記載の電動機は、請求項1において、前記シールド部材が、前記軸方向と直交する前記固定子のコア部分の表裏の少なくともいずれか一方の全面に設けられるものである。 The electric motor according to a second aspect is the electric motor according to the first aspect, wherein the shield member is provided on the entire surface of at least one of the front and back of the core portion of the stator orthogonal to the axial direction.
 請求項3に記載の電動機は、請求項2において、前記固定子のコア部分はヨーク部を有し、前記シールド部材が、前記固定子のヨーク部のみに設けられるものである。 According to a third aspect of the present invention, in the electric motor according to the second aspect, the core portion of the stator has a yoke portion, and the shield member is provided only in the yoke portion of the stator.
 請求項4に記載の電動機は、請求項2において、前記シールド部材が、前記コイルを巻装した前記コア部分のみに設けられるものである。 The electric motor according to claim 4 is the electric motor according to claim 2, wherein the shield member is provided only in the core portion around which the coil is wound.
 請求項5に記載の電動機は、請求項から4において、前記シールド部材には、パーメンジュールが使用されるものである。 According to a fifth aspect of the present invention, in the electric motor according to the fourth to fourth aspects, a permendur is used for the shield member.
 請求項6に記載の電動機は、請求項1から4において、当該電動機が、スイッチトリラクタンスモーターであるものである。 The electric motor according to claim 6 is the electric motor according to claims 1 to 4, wherein the electric motor is a switched reluctance motor.
 本発明に係る電動機によれば、固定子のコア部分のコイルエンド近傍であって、少なくとも、コイルの直下を含む当該コア部分に高透磁率で飽和磁束密度の大きな磁気特性を有するシールド部材が設けられるものである。 According to the electric motor of the present invention, a shield member having a high magnetic permeability and a high saturation magnetic flux density is provided in the vicinity of the coil end of the core portion of the stator, and at least in the core portion including immediately below the coil. It is
 この構造によって、固定子のコイル直下の軸方向と直交するコア部分の表裏面内での磁束の透過性を向上できるので、コイルエンド部での軸方向への磁束の漏れを低減できるようになる。また、磁束の総和を増加することができるようになる。これにより、高効率で、かつ、製造コストの低い扁平型のスイッチトリラクタンスモーターや永久磁石同期電動機等を提供できるようになる。 With this structure, it is possible to improve the magnetic flux permeability in the front and back surfaces of the core portion orthogonal to the axial direction directly below the stator coil, so that the magnetic flux leakage in the axial direction at the coil end portion can be reduced. . In addition, the total magnetic flux can be increased. This makes it possible to provide a flat switched reluctance motor, a permanent magnet synchronous motor, and the like that are highly efficient and low in manufacturing cost.
第1の実施形態に係る扁平型の電動機100の構成例を示す一部破砕の斜視図である。1 is a partially crushed perspective view illustrating a configuration example of a flat electric motor 100 according to a first embodiment. 固定子10のコア部分の構成例を示す一部破砕の斜視図である。FIG. 3 is a partially broken perspective view illustrating a configuration example of a core portion of the stator 10. 扁平型の電動機100のトルク波形例を示す特性図である。FIG. 6 is a characteristic diagram illustrating an example of a torque waveform of the flat electric motor 100. シールド部材の材料特性例を示すグラフ図である。It is a graph which shows the material characteristic example of a shield member. 第2の実施形態に係る扁平型の電動機200の構成例を示す一部破砕の斜視図である。It is a perspective view of partial crushing which shows the example of composition of flat type electric motor 200 concerning a 2nd embodiment. 扁平型の電動機200のトルク波形例を示す特性図である。FIG. 6 is a characteristic diagram illustrating an example of a torque waveform of a flat electric motor 200. 第3の実施形態に係る扁平型の電動機300の構成例を示す一部破砕の斜視図である。It is a perspective view of partial crushing which shows the example of composition of the flat type electric motor 300 concerning a 3rd embodiment. 扁平型の電動機300のトルク特性例を示すグラフ図である。4 is a graph showing an example of torque characteristics of a flat electric motor 300. FIG.
 以下、本発明を実施するための最良の形態(以下実施形態と称する)について説明する。 Hereinafter, the best mode for carrying out the present invention (hereinafter referred to as an embodiment) will be described.
 <第1の実施の形態>
 図1~図4を参照して、第1の実施形態に係る扁平型の電動機100の構成例及びその動作例について説明をする。図1に示す扁平型の電動機100は、ハイブリッド自動車や電気自動車などの電動車両、エレベーターやエスカレーターなどの都市交通装置、洗濯機やヒートポンプ給湯器などの家庭電化製品に実装可能なものである。
<First Embodiment>
A configuration example and an operation example of the flat electric motor 100 according to the first embodiment will be described with reference to FIGS. A flat electric motor 100 shown in FIG. 1 can be mounted on an electric vehicle such as a hybrid vehicle or an electric vehicle, an urban transportation device such as an elevator or an escalator, and a home appliance such as a washing machine or a heat pump water heater.
 扁平型の電動機100は、回転子1及び固定子10を備えている。回転子1は、内側ローター部1a、外側ローター部1b、連結板1c及び回転軸4を有している。回転軸4は所定の長さを有した金属製の棒体から成り、回転軸4には円盤状の連結板1cが固着されている。連結板1cは回転子1においてベースとなり、その中心部には組立前には回転軸4を取り付ける孔部が開口されている。連結板1cの所定の内周部には環状の内側ローター部1aが固着され、その外周部には、環状の外側ローター部1bが固着されている。 The flat electric motor 100 includes a rotor 1 and a stator 10. The rotor 1 has an inner rotor portion 1a, an outer rotor portion 1b, a connecting plate 1c, and a rotating shaft 4. The rotating shaft 4 is made of a metal rod having a predetermined length, and a disk-shaped connecting plate 1 c is fixed to the rotating shaft 4. The connecting plate 1c serves as a base in the rotor 1, and a hole for attaching the rotating shaft 4 is opened at the center of the connecting plate 1c before assembly. An annular inner rotor portion 1a is fixed to a predetermined inner peripheral portion of the connecting plate 1c, and an annular outer rotor portion 1b is fixed to the outer peripheral portion.
 内側ローター部1aや、外側ローター部1b、連結板1c等の材質は、例えば、アルミニウム(Al)や、その合金のような非透磁性材料である。内側ローター部1a等は、溶融したAlを精密な金型に圧力を掛けて流し込むダイキャスト(Die Casting)製法のような鋳造方法で一体成形される。この例では内側ローター部1aの内径をDiとし、外側ローター部1bの外径をDoとする。 The material of the inner rotor portion 1a, the outer rotor portion 1b, the connecting plate 1c, etc. is a non-magnetic material such as aluminum (Al) or an alloy thereof, for example. The inner rotor portion 1a and the like are integrally formed by a casting method such as a die casting method in which molten Al is poured into a precise mold under pressure. In this example, the inner diameter of the inner rotor portion 1a is Di, and the outer diameter of the outer rotor portion 1b is Do.
 内側ローター部1aの外径側には、8個の内側セグメントコア2が固着されている。内側セグメントコア2の材質は透磁性材料であり、例えば、所定の円弧形状のケイ素鋼板を複数枚、軸方向に積層し、互いに固着してブロック状に製作したものが使用される。 Eight inner segment cores 2 are fixed to the outer diameter side of the inner rotor portion 1a. The material of the inner segment core 2 is a magnetically permeable material, and for example, a plurality of silicon steel plates having a predetermined arc shape are laminated in the axial direction and bonded to each other to be manufactured in a block shape.
 外側ローター部1bの内径側にも、8個の外側セグメントコア3が固着されている。外側セグメントコア3の材質も透磁性材料であり、例えば、所定の円弧形状のケイ素鋼板を複数枚、軸方向に積層し、互いに固着してブロック状に製作したものが使用される。上述の回転軸4の一端部4a及び他端部4bは、図示しない全体ベース部の各々の軸受け部に対応して回転自在に支承(軸支)されている。 Eight outer segment cores 3 are also fixed to the inner diameter side of the outer rotor portion 1b. The material of the outer segment core 3 is also a magnetically permeable material. For example, a plurality of silicon arc steel plates having a predetermined arc shape are laminated in the axial direction and fixed to each other to be manufactured in a block shape. The one end portion 4a and the other end portion 4b of the rotating shaft 4 are rotatably supported (axially supported) corresponding to the respective bearing portions of the entire base portion (not shown).
 内側ローター部1aの外径側と外側ローター部1bの内径側との間には、固定子10が配置されている。固定子10は、回転軸4に平行する軸方向の寸法に対して当該軸方向と直交する径方向の寸法が大きいコア部分を有している。この例で、固定子10のコア部分の軸方向の寸法に対する当該軸方向と直交する径方向の寸法の比をアスペクト比としたとき、コア部分のアスペクト比が1未満となっている。固定子10のコア部分は、図2に示すように高透磁性コア10a及び透磁性コア10bから構成されている。 A stator 10 is disposed between the outer diameter side of the inner rotor portion 1a and the inner diameter side of the outer rotor portion 1b. The stator 10 has a core portion having a large radial dimension perpendicular to the axial direction with respect to the axial dimension parallel to the rotating shaft 4. In this example, when the aspect ratio is the ratio of the dimension in the radial direction perpendicular to the axial direction to the dimension in the axial direction of the core portion of the stator 10, the aspect ratio of the core portion is less than 1. As shown in FIG. 2, the core portion of the stator 10 includes a highly permeable core 10a and a permeable core 10b.
 透磁性コア10bは、固定子10において、コア部分の主要部位を成している。固定子10のコア部分の平面形状は、内側セグメントコア2に対向する内側ティース部10c(Inside Teeth:IT)、外側セグメントコア3に対向する外側ティース部10d(Outside Teeth:OT)、それらを円環状に連結するヨーク部10eから成っている。 The magnetically permeable core 10b forms the main part of the core portion of the stator 10. The planar shape of the core portion of the stator 10 includes an inner teeth portion 10c (Inside Teeth: IT) facing the inner segment core 2, an outer teeth portion 10d (Outside Teeth: OT) facing the outer segment core 3, and a circle. It consists of a yoke portion 10e that is connected in an annular shape.
 内側ティース部10cは、環状のヨーク部10eから内側ローター部1aの外径側へ向けて拡幅した扇状部位を有している。内側ティース部10cの扇状部位は角度30°置きに12個設けられている。外側ティース部10dはヨーク部10eから外側ローター部1bの内径側に向けて拡幅した扇状部位を有している。外側ティース部10dの扇状部位も角度30°置きに12個設けられている。 The inner teeth portion 10c has a fan-shaped portion widened from the annular yoke portion 10e toward the outer diameter side of the inner rotor portion 1a. Twelve fan-shaped portions of the inner teeth portion 10c are provided at intervals of 30 °. The outer tooth portion 10d has a fan-shaped portion widened from the yoke portion 10e toward the inner diameter side of the outer rotor portion 1b. Twelve fan-shaped portions of the outer tooth portion 10d are also provided every 30 °.
 透磁性コア10bは、所定形状の透磁性材料の板(例えばケイ素鋼板:成分=4Si+Fe、比透磁率=7000、Hc=40A/m、 Is=1.97、Tc=690℃)から、内側ティース部10c、外側ティース部10d及びヨーク部10eを型抜きするように環状に切り出される。この型抜きされた環状部材を所定枚数、積層して形成される。この例では、透磁性コア10bの積層後の全体の厚さをTとする。 The magnetically permeable core 10b is formed from a plate of a magnetically permeable material having a predetermined shape (for example, a silicon steel plate: component = 4Si + Fe, relative magnetic permeability = 7000, Hc = 40 A / m, Is = 1.97, Tc = 690 ° C.). The portion 10c, the outer tooth portion 10d, and the yoke portion 10e are cut out in an annular shape so as to be punched. It is formed by laminating a predetermined number of the punched annular members. In this example, T is the total thickness after lamination of the magnetically permeable core 10b.
 透磁性コア10bの軸方向の表裏面には高透磁性コア10aが固着されている。高透磁性コア10aはシールド部材の一例を構成するものである。高透磁性コア10aは高透磁率で飽和磁束密度の大きな磁気特性を有している。この例で、高透磁性コア10aは、固定子10のコア部分のコイルエンド近傍であって、内側ティース部10c、外側ティース部10d及びそれらを円環状に連結するヨーク部10eの全面に上述のシールド部材が設けられる。 The highly permeable core 10a is fixed to the front and back surfaces of the permeable core 10b in the axial direction. The high magnetic permeability core 10a constitutes an example of a shield member. The high magnetic permeability core 10a has a high magnetic permeability and a high saturation magnetic flux density. In this example, the high magnetic permeability core 10a is in the vicinity of the coil end of the core portion of the stator 10, and is formed on the entire surface of the inner teeth portion 10c, the outer teeth portion 10d, and the yoke portion 10e that connects them in an annular shape. A shield member is provided.
 高透磁性コア10aには、パーメンジュール(成分=50Co+Fe、比透磁率=5000、Hc=160A/m Is=2.45、Tc=980℃)等が使用される。 Permendur (component = 50 Co + Fe, relative magnetic permeability = 5000, Hc = 160 A / m Is = 2.45, Tc = 980 ° C.) or the like is used for the high magnetic permeability core 10a.
 高透磁性コア10aは、所定形状の高透磁率で飽和磁束密度の大きなシールド部材の板(例えばパーメンジュール板)を所定枚数、積層して形成される。この例では、ヨーク部10eを含む内側ティース部10c及び外側ティース部10dと同じ形状のテンプレート等に倣って、パーメンジュール板を切り抜いてその1枚を形成する。この例では、高透磁性コア10aを構成する複数のパーメンジュール板を積層した後の一方の面の厚さをtとする。固定子コアの厚さT’は(T+2t)である。 The high magnetic permeability core 10a is formed by laminating a predetermined number of shield member plates (for example, permendur plates) having a high permeability and a high saturation magnetic flux density in a predetermined shape. In this example, a permendur plate is cut out to form one sheet, following a template having the same shape as the inner teeth portion 10c and the outer teeth portion 10d including the yoke portion 10e. In this example, the thickness of one surface after laminating a plurality of permendur plates constituting the highly permeable core 10a is defined as t. The thickness T ′ of the stator core is (T + 2t).
 図2に示す固定子10のヨーク部10eには、コイル11a,11b,11cが当該ヨーク部10eを径方向で囲むように巻装されている。コイル11aは、相互に隣接するコイル11b,11cを間に挟んで、固定子10のコア部分に4組み配置されており、それらは互いに結線されている。コイル11b,11cも同様に配置され結線されている。固定子10の巻線方式は集中巻きである。コイル11a,11b,11c等の合計個数は12個である。固定子10のコア部分とコイル11a,11b,11cとは、図示しない樹脂モールドによって一体化され、図示しない全体ベース部に固着されている。これらにより、扁平型の電動機100を構成する。 2, coils 11a, 11b, and 11c are wound around the yoke portion 10e of the stator 10 so as to surround the yoke portion 10e in the radial direction. Four sets of the coils 11a are arranged in the core portion of the stator 10 with the coils 11b and 11c adjacent to each other in between, and they are connected to each other. The coils 11b and 11c are similarly arranged and connected. The winding method of the stator 10 is concentrated winding. The total number of coils 11a, 11b, 11c, etc. is twelve. The core portion of the stator 10 and the coils 11a, 11b, and 11c are integrated by a resin mold (not shown) and fixed to an entire base portion (not shown). Thus, a flat electric motor 100 is configured.
 次に、扁平型の電動機100の動作例について説明をする。この実施形態による扁平型の電動機100によれば、3相結線の固定子10が12極、回転子1が8極の12/8スイッチトリラクタンス(Switched Reluctance:以下でSRという)モーターを構成している。図1に示した固定子10は、コア部分に巻装されたコイル11a,11b,11cに通電して磁界を発生させ、回転子1に対して電磁力を伝達して回転トルク(リラクタンストルク)を与える。 Next, an operation example of the flat motor 100 will be described. According to the flat electric motor 100 according to this embodiment, a 12/8 switched reluctance (hereinafter referred to as SR) motor having a 12-pole stator 10 having a three-phase connection and an 8-pole rotor 1 is configured. ing. The stator 10 shown in FIG. 1 generates a magnetic field by energizing the coils 11a, 11b, and 11c wound around the core portion, and transmits an electromagnetic force to the rotor 1 to rotate torque (reluctance torque). give.
 この例で、コイル11a,11b,11cは、図示しない制御装置に結線されている。制御装置は、コイル11a,11b,11cに直流磁界を与えるように電流を流す。例えば、コイル11a→コイル11b→コイル11cの順に、直流磁界を切り替えていくことによって、固定子10の円環形状に沿って回転する磁界を発生させる。 In this example, the coils 11a, 11b, and 11c are connected to a control device (not shown). The control device passes a current so as to apply a DC magnetic field to the coils 11a, 11b, and 11c. For example, a magnetic field that rotates along the annular shape of the stator 10 is generated by switching the DC magnetic field in the order of the coil 11a → the coil 11b → the coil 11c.
 この回転する磁界に対して、回転子1の内側セグメントコア2及び外側セグメントコア3が吸引することによって、回転子1が回転する。回転子1の回転により発生するトルクは、回転軸4の他端部4bから扁平型の電動機100の外部に出力される。このトルクによって負荷を駆動するようになる。 The rotor 1 rotates by the inner segment core 2 and the outer segment core 3 of the rotor 1 attracting to the rotating magnetic field. Torque generated by the rotation of the rotor 1 is output from the other end 4 b of the rotating shaft 4 to the outside of the flat electric motor 100. The load is driven by this torque.
 ここで、図3を参照して、扁平型の電動機100のトルク特性について説明をする。この実施形態では、高透磁性コア10aが、軸方向と直交する固定子10のコア部分の表裏の少なくともいずれか一方の全面に設けられている場合である。図3に示すトルク波形例は、内側ローター部1aの内径Diが140mmで、外側ローター部1bの外径Doが349.2mmで、固定子10の透磁性コア10bをケイ素鋼板とし、その厚さTを30mm、高透磁性コア10aをパーメンジュールとし、その厚さtを3mmとしたとき、すなわち固定子コアの厚さT’を36mmとしたときの扁平型の電動機100のトルク特性である。 Here, the torque characteristics of the flat electric motor 100 will be described with reference to FIG. In this embodiment, the high magnetic permeability core 10a is provided on the entire surface of at least one of the front and back of the core portion of the stator 10 orthogonal to the axial direction. In the example of the torque waveform shown in FIG. 3, the inner rotor portion 1a has an inner diameter Di of 140 mm, the outer rotor portion 1b has an outer diameter Do of 349.2 mm, the magnetically permeable core 10b of the stator 10 is a silicon steel plate, and its thickness This is a torque characteristic of the flat electric motor 100 when T is 30 mm, the highly permeable core 10a is a permendur, and the thickness t is 3 mm, that is, the thickness T ′ of the stator core is 36 mm. .
 図3において、縦軸はトルク[N-m]であり、横軸は回転子1の回転角度[°]である。図中の実線は、電動機100のトルク特性例(以下で、本発明方式という)であり、破線は、高透磁性コア10aを設けず、固定子10のコア部分を、厚さTが30mmのケイ素鋼板の透磁性コア10bだけにした場合のトルク特性例(以下で、従来方式という)である。 3, the vertical axis represents torque [Nm], and the horizontal axis represents the rotation angle [°] of the rotor 1. The solid line in the figure is an example of torque characteristics of the electric motor 100 (hereinafter referred to as the method of the present invention), and the broken line is not provided with the highly permeable core 10a, and the core portion of the stator 10 has a thickness T of 30 mm. This is an example of torque characteristics (hereinafter referred to as a conventional method) when only the magnetically permeable core 10b of a silicon steel plate is used.
 従来方式によれば、回転角度3°~4°付近に35N-mのトルクのピークがあり、その後、トルクが急速に減少し、回転角度6°以降ではトルクが30N-mを下回っている。それに対して、本発明方式によれば、回転角度3°付近に42N-mのトルクのピークがあり、回転角度9°付近までトルクが30N-m以上となっている。平均トルクは、従来方式の場合が22.9N-mで、本発明方式の場合は27.0N-mであり、従来方式に比べて本発明方式では18%の向上となっている。 According to the conventional method, there is a torque peak of 35 N-m near the rotation angle of 3 ° to 4 °, and then the torque decreases rapidly. After the rotation angle of 6 °, the torque is below 30 N-m. On the other hand, according to the method of the present invention, there is a torque peak of 42 Nm near the rotation angle of 3 °, and the torque is 30 Nm or more up to the rotation angle of 9 °. The average torque is 22.9 N-m for the conventional system and 27.0 N-m for the system of the present invention, which is an improvement of 18% in the system of the present invention compared to the conventional system.
 一方、透磁性コア10bをケイ素鋼板とし、その厚さTを24mm、高透磁性コア10aをパーメンジュールとし、その厚さtを3mmとしたとき、すなわち固定子コアの厚さT’を30mmとしたときの平均トルクは、24.4N-mとなる。平均トルクは固定子10のコア部分を、厚さTが30mmのケイ素鋼板の透磁性コア10bだけにした前記従来方式に比べて6.6%の向上となる。 On the other hand, when the permeable core 10b is a silicon steel plate, the thickness T is 24 mm, the highly permeable core 10a is a permendur, and the thickness t is 3 mm, that is, the thickness T ′ of the stator core is 30 mm. The average torque is 24.4 Nm. The average torque is improved by 6.6% compared to the conventional method in which the core portion of the stator 10 is made only of the permeable core 10b of a silicon steel plate having a thickness T of 30 mm.
 ここで、図4を参照して、パーメンジュールとケイ素鋼板とのBH特性例について比較する。図4において、横軸が磁界強度H[A/m]であり、縦軸が磁束密度B[T]である。実線に白塗り菱形でプロットした特性曲線がパーメンジュールであり、実線に白塗り四角形でプロットした特性曲線がケイ素鋼板(50H1300)である。 Here, referring to FIG. 4, an example of BH characteristics between permendur and a silicon steel plate will be compared. In FIG. 4, the horizontal axis represents the magnetic field strength H [A / m], and the vertical axis represents the magnetic flux density B [T]. The characteristic curve plotted with a white diamond on the solid line is permendur, and the characteristic curve plotted with a white rectangle on the solid line is a silicon steel plate (50H1300).
 両者とも磁界強度Hが1000A/m付近で磁束密度Bが飽和して、勾配が一定になっているが、飽和磁束密度はパーメンジュールの方が高い。また、それに至るまでの立ち上げ勾配がパーメンジュールの方が大きい。すなわち、ケイ素鋼板に比べてパーメンジュールの透磁率が高い。これにより、コイル直下のコア表面での電動機100の回転軸直交面内での磁束の透過性が向上して軸方向への磁束の漏れが低減すること、および磁束密度の総和が増加することによりトルク特性が改善されていることが分かる。 In both cases, the magnetic flux density B is saturated and the gradient is constant when the magnetic field strength H is around 1000 A / m, but the saturation magnetic flux density is higher for the permendur. In addition, the ramp up to that point is larger for permendur. That is, the permeability of permendur is higher than that of silicon steel plate. As a result, the permeability of the magnetic flux in the plane orthogonal to the rotation axis of the electric motor 100 on the core surface directly under the coil is improved, the leakage of magnetic flux in the axial direction is reduced, and the total magnetic flux density is increased. It can be seen that the torque characteristics are improved.
 このように、第1の実施形態に係る扁平型の電動機100によれば、固定子10のコア部分のコイルエンド近傍であって、内側ティース部10c、外側ティース部10d及びそれらを円環状に連結するヨーク部10eの全面(回転軸直交面内)に高透磁性コア10aが設けられる。 As described above, according to the flat electric motor 100 according to the first embodiment, the inner teeth portion 10c, the outer teeth portion 10d, and the annular teeth are connected in the vicinity of the coil end of the core portion of the stator 10. A highly permeable core 10a is provided on the entire surface of the yoke portion 10e (in the plane orthogonal to the rotation axis).
 この構造によって、コイル直下の軸方向と直交するコア部分の表裏面内での磁束の透過性を向上できるので、コイルエンド部での軸方向への磁束の漏れを低減し、また、磁束の総和を増加することができるようになる。これにより、製造コストの増加を抑制しつつ、固定子10のコア部分の全体をケイ素鋼板で構成する場合よりも、高効率な扁平型の12/8SRモーター等を提供できるようになった。 With this structure, the permeability of the magnetic flux in the front and back surfaces of the core portion orthogonal to the axial direction directly below the coil can be improved, so that leakage of magnetic flux in the axial direction at the coil end portion is reduced, and the total magnetic flux Will be able to increase. This makes it possible to provide a more efficient flat 12/8 SR motor or the like than when the entire core portion of the stator 10 is made of a silicon steel plate while suppressing an increase in manufacturing cost.
 <第2の実施の形態>
 続いて、図5及び図6を参照して、第2の実施形態に係る扁平型の電動機200について説明をする。図5に示す扁平型の電動機200によれば、固定子10’のコア部分において、図2のヨーク部10eに相当する部分のみに高透磁性コア10a’が設けられるものである。電動機200の固定子10’は、透磁性コア10bと高透磁性コア10a’から成る。透磁性コア10bは、図2に示した電動機100の透磁性コア10bと同一である。高透磁性コア10a’は、図2のヨーク部10eに相当する環状の形状であり、透磁性コア10bの表裏面に固着して固定子10’のコア部分を形成する。その後、電動機200の固定子10’のヨーク部10eには、コイル11a,11b,11cが当該ヨーク部10eを径方向で囲むように巻装されて、電動機200が製造される。
<Second Embodiment>
Next, a flat electric motor 200 according to the second embodiment will be described with reference to FIGS. 5 and 6. According to the flat type electric motor 200 shown in FIG. 5, the highly magnetic core 10 a ′ is provided only in the portion corresponding to the yoke portion 10 e in FIG. 2 in the core portion of the stator 10 ′. The stator 10 ′ of the electric motor 200 includes a magnetically permeable core 10b and a highly permeable core 10a ′. The permeable core 10b is the same as the permeable core 10b of the electric motor 100 shown in FIG. The high magnetic permeability core 10a ′ has an annular shape corresponding to the yoke portion 10e of FIG. 2, and is fixed to the front and back surfaces of the magnetic permeability core 10b to form the core portion of the stator 10 ′. Thereafter, the coils 10a, 11b, and 11c are wound around the yoke portion 10e of the stator 10 ′ of the electric motor 200 so as to surround the yoke portion 10e in the radial direction, whereby the electric motor 200 is manufactured.
 ここで、図6を参照して、扁平型の電動機200のトルク特性について説明をする。この実施形態では、高透磁性コア10a’が、固定子10’のコア部分のヨーク部10eのみに設けられる場合である。図6に示すトルク波形例は、内側ローター部1aの内径Diが140mmであり、外側ローター部1bの外径Doが349.2mmであり、固定子10’の透磁性コア10bをケイ素鋼板とし、その厚さTが30mm、高透磁性コア10a’をパーメンジュールとし、その厚さtを3mmとしたときの扁平型の電動機200のトルク特性である。 Here, the torque characteristics of the flat electric motor 200 will be described with reference to FIG. In this embodiment, the highly permeable core 10a 'is provided only in the yoke portion 10e of the core portion of the stator 10'. In the torque waveform example shown in FIG. 6, the inner diameter Di of the inner rotor portion 1a is 140 mm, the outer diameter Do of the outer rotor portion 1b is 349.2 mm, the magnetically permeable core 10b of the stator 10 ′ is a silicon steel plate, This is a torque characteristic of the flat electric motor 200 when the thickness T is 30 mm, the highly permeable core 10a ′ is a permendur, and the thickness t is 3 mm.
 図中の実線が電動機200のトルク特性(本発明方式)であり、破線は固定子10’のコア部分を厚さTが30mmのケイ素鋼板の透磁性コア10bだけにした場合のトルク特性例(従来方式)である。破線に示す従来方式によれば、回転子1の回転角度3°~4°付近に35N-mのトルクのピークがあり、その後、トルクが急速に減少し、回転角度6°以降ではトルクが30N-mを下回っている。 The solid line in the figure is the torque characteristic of the electric motor 200 (the method of the present invention), and the broken line is an example of the torque characteristic when the core portion of the stator 10 ′ is only a permeable core 10 b of a silicon steel plate with a thickness T of 30 mm ( Conventional method). According to the conventional method shown by the broken line, there is a torque peak of 35 Nm near the rotation angle of 3 ° to 4 ° of the rotor 1, and then the torque decreases rapidly, and the torque is 30 N after the rotation angle of 6 °. Below -m.
 これに対して、実線に示す本発明方式によれば、回転子1の回転角度3°付近から回転角度8°付近までに35N-mのトルクを維持し、回転角度9°付近までトルクが30N-m以上となっている。平均トルクは、従来方式の場合は22.9N-mであり、本発明方式の場合は25.6N-mである。従来方式に比べて本発明方式では11.8%の向上となっている。 On the other hand, according to the method of the present invention shown by the solid line, the torque of 35 Nm is maintained from the vicinity of the rotation angle 3 ° of the rotor 1 to the vicinity of 8 °, and the torque is 30 N until the rotation angle 9 °. -M or more. The average torque is 22.9 Nm for the conventional method and 25.6 Nm for the method of the present invention. Compared to the conventional method, the method of the present invention is improved by 11.8%.
 このように、第2の実施の形態に係る扁平型の電動機200によれば、環状の高透磁性コア10a’を固定子10’のコア部分のヨーク部10eのコイルエンド部の近傍のみに用いることで、コイル直下の軸方向と直交するコア部分の面内での磁束の透過性を向上できるので、コイルエンド部での軸方向への磁束の漏れを低減し、また、磁束の総和を増加することができるようになる。これにより、製造コストの増加を抑制しつつ、固定子10’全体をケイ素鋼板で構成する場合よりも高効率な扁平構造の12/8SRモーターを得ることができる。 As described above, according to the flat type electric motor 200 according to the second embodiment, the annular high magnetic permeability core 10a ′ is used only in the vicinity of the coil end portion of the yoke portion 10e of the core portion of the stator 10 ′. As a result, the permeability of the magnetic flux in the plane of the core portion orthogonal to the axial direction directly below the coil can be improved, so that leakage of magnetic flux in the axial direction at the coil end portion is reduced, and the total magnetic flux is increased. Will be able to. As a result, it is possible to obtain a 12/8 SR motor having a flat structure with higher efficiency than the case where the entire stator 10 ′ is made of a silicon steel plate while suppressing an increase in manufacturing cost.
 <第3の実施の形態>
 続いて、図7及び図8を参照して、第3の実施の形態に係る扁平型の電動機300の構成例及びその動作例について説明をする。図7に示す扁平型の電動機300によれば、固定子10”のヨーク部10eの内、コイル11a,11b,11cが巻装されているコア部分の表裏面のみに高透磁性コア10a”が設けられる。
<Third Embodiment>
Next, a configuration example and an operation example of the flat electric motor 300 according to the third embodiment will be described with reference to FIGS. According to the flat type electric motor 300 shown in FIG. 7, the high magnetic permeability core 10a ″ is provided only on the front and back surfaces of the core portion around which the coils 11a, 11b, and 11c are wound out of the yoke portion 10e of the stator 10 ″. Provided.
 電動機300の固定子10”は、透磁性コア10bと高透磁性コア10a”から成る。透磁性コア10bは、図2に示した電動機100の透磁性コア10bと同一である。高透磁性コア10a”は、環状のヨーク部10eを分断した円弧状の形状であり、透磁性コア10bの表裏面に固着して固定子10”のコア部分を形成する。その後、当該固定子10”のヨーク部10eには、コイル11a,11b,11cが当該ヨーク部10eを径方向で囲むように巻装されて、電動機300が製造される。 The stator 10 ″ of the electric motor 300 includes a magnetically permeable core 10b and a highly permeable core 10a ″. The permeable core 10b is the same as the permeable core 10b of the electric motor 100 shown in FIG. The high magnetic permeability core 10a ″ has an arc shape obtained by dividing the annular yoke portion 10e, and is fixed to the front and back surfaces of the magnetic permeability core 10b to form the core portion of the stator 10 ″. Thereafter, the coils 10a, 11b, and 11c are wound around the yoke portion 10e of the stator 10 '' so as to surround the yoke portion 10e in the radial direction, and the electric motor 300 is manufactured.
 ここで、図8を参照して、扁平型の電動機300のトルク特性について説明をする。この実施形態では、固定子10”のコア部分のヨーク部10eの内、コイル11a,11b,11cが巻装されているコア部分のみに高透磁性コア10a”が設けられる場合である。図8に示すトルク波形例は、内側ローター部1aの内径Diが140mmであり、外側ローター部1bの外径Doが349.2mmであり、固定子10”の透磁性コア10bをケイ素鋼板とし、その厚さTが30mm、高透磁性コア10a”をパーメンジュールとし、その厚さtを3mmとしたときの扁平型の電動機300のトルク特性である。 Here, the torque characteristics of the flat motor 300 will be described with reference to FIG. In this embodiment, the highly permeable core 10a ″ is provided only in the core portion around which the coils 11a, 11b, and 11c are wound out of the yoke portion 10e of the core portion of the stator 10 ″. In the torque waveform example shown in FIG. 8, the inner rotor portion 1a has an inner diameter Di of 140 mm, the outer rotor portion 1b has an outer diameter Do of 349.2 mm, the magnetically permeable core 10b of the stator 10 ″ is made of a silicon steel plate, This is a torque characteristic of the flat electric motor 300 when the thickness T is 30 mm, the highly permeable core 10a ″ is a permendur, and the thickness t is 3 mm.
 図中に示す実線が電動機300のトルク特性であり、破線は固定子10”のコア部分を厚さTが30mmのケイ素鋼板の透磁性コア10bだけにした場合のトルク特性である。破線に示す従来方式によれば、回転角度3°~4°付近に35N-mのトルクのピークがあり、その後、トルクが急速に減少し、回転角度6°以降ではトルクが30N-mを下回っている。 The solid line shown in the figure is the torque characteristic of the electric motor 300, and the broken line is the torque characteristic when the core portion of the stator 10 "is made of only the permeable core 10b of a silicon steel plate having a thickness T of 30 mm. According to the conventional method, there is a torque peak of 35 Nm near the rotation angle of 3 ° to 4 °, and then the torque decreases rapidly. After the rotation angle of 6 °, the torque is below 30 Nm.
 これに対して、実線に示す本発明方式によれば、回転角度3°付近から8°付近まで35.0N-mのトルクを維持し、回転角度9°付近までトルクが30N-m以上となっている。平均トルクは、従来方式の場合は22.9N-m、本発明方式の場合は25.1N-mであり、従来方式に比べて本発明方式では9.6%の向上となっている。 On the other hand, according to the method of the present invention indicated by the solid line, the torque of 35.0 Nm is maintained from the rotation angle of about 3 ° to about 8 °, and the torque becomes 30 Nm or more until the rotation angle of about 9 °. ing. The average torque is 22.9 N-m for the conventional system and 25.1 N-m for the system of the present invention, which is an improvement of 9.6% in the system of the present invention compared to the conventional system.
 このように、第3の実施形態に係る扁平型の電動機300によれば、円弧状の高透磁性コア10a”を固定子10”のヨーク部10eの内、コイル11a,11b,11cが巻装されている部分のコイルエンド近傍のみに用いる。このことで、コイル直下の軸方向と直交するコア部分の面内での磁束の透過性を向上できるので、コイルエンド部での軸方向への磁束の漏れを低減できるようになる。また、磁束の総和を増加することができるようになる。これにより、製造コストの増加を抑制しつつ、固定子10”全体をケイ素鋼板で構成する場合よりも高効率な扁平構造のSRモーターを提供できるようになる。 Thus, according to the flat electric motor 300 according to the third embodiment, the arc-shaped highly permeable core 10a ″ is wound around the coils 11a, 11b, and 11c in the yoke portion 10e of the stator 10 ″. Used only in the vicinity of the coil end of the portion that is marked. As a result, the permeability of the magnetic flux in the plane of the core portion orthogonal to the axial direction directly below the coil can be improved, so that leakage of the magnetic flux in the axial direction at the coil end portion can be reduced. In addition, the total magnetic flux can be increased. As a result, it is possible to provide an SR motor having a flat structure that is more efficient than the case where the entire stator 10 ″ is made of a silicon steel plate while suppressing an increase in manufacturing cost.
 以上述べた実施の形態によれば、扁平型の電動機100~300がSRモーターである場合について説明したが、本発明はこれらに限るものではなく、リニアモーターを含む他の構成のSRモーターや、電動機100~300が永久磁石同期電動機である場合であってもよい。 According to the embodiment described above, the case where the flat motors 100 to 300 are SR motors has been described. However, the present invention is not limited to these, and SR motors having other configurations including linear motors, The motors 100 to 300 may be permanent magnet synchronous motors.
 本発明は、軸方向の寸法に対して径方向の寸法が大きい固定子を有したスイッチトリラクタンスモーターや永久磁石同期電動機等に適用して極めて好適である。 The present invention is extremely suitable when applied to a switched reluctance motor, a permanent magnet synchronous motor, or the like having a stator whose radial dimension is larger than the axial dimension.
 1 回転子
 1a 内側ローター部
 1b 外側ローター部
 1c 連結板(ベース)
 2 内側セグメントコア
 3 外側セグメントコア
 4 回転軸
 4a 一端部
 4b 他端部
 10,10’,10” 固定子
 10a,10a’,10a” 高透磁性コア(シールド部材)
 10b 透磁性コア
 10c 内側ティース部
 10d 外側ティース部 
 10e ヨーク部
 11a,11b,11c コイル
 100,200,300 扁平型の電動機
1 Rotor 1a Inner rotor part 1b Outer rotor part 1c Connecting plate (base)
2 Inner segment core 3 Outer segment core 4 Rotating shaft 4a One end 4b Other end 10, 10 ', 10 " Stator 10a, 10a', 10a" High permeability core (shield member)
10b Magnetically permeable core 10c Inner teeth 10d Outer teeth
10e Yoke part 11a, 11b, 11c Coil 100, 200, 300 Flat type electric motor

Claims (6)

  1.  軸を有した回転子と、
     前記回転子の軸に平行する軸方向の寸法に対して当該軸方向と直交する径方向の寸法が大きいコア部分を有して、前記コア部分に巻装されたコイルに通電して磁界を発生させ、前記回転子に対して電磁力を伝達して回転トルクを与える固定子とを備え、
     前記固定子のコア部分のコイルエンド近傍であって、少なくとも、前記コイルの直下を含む当該コア部分に高透磁率で飽和磁束密度の大きな磁気特性を有するシールド部材が設けられる電動機。
    A rotor with a shaft;
    A core portion having a large radial dimension perpendicular to the axial direction relative to the axial dimension parallel to the rotor axis, and generating a magnetic field by energizing a coil wound around the core portion A stator that transmits electromagnetic force to the rotor to give a rotational torque,
    An electric motor provided with a shield member having high magnetic permeability and a large saturation magnetic flux density in the vicinity of a coil end of a core portion of the stator and at least in the core portion including immediately below the coil.
  2.  前記シールド部材が、前記軸方向と直交する前記固定子のコア部分の表裏の少なくともいずれか一方の全面に設けられる請求項1に記載の電動機。 2. The electric motor according to claim 1, wherein the shield member is provided on the entire surface of at least one of the front and back of the core portion of the stator orthogonal to the axial direction.
  3.  前記固定子のコア部分はヨーク部を有し、
     前記シールド部材が、前記固定子のヨーク部のみに設けられる請求項2に記載の電動機。
    The core portion of the stator has a yoke portion;
    The electric motor according to claim 2, wherein the shield member is provided only in a yoke portion of the stator.
  4.  前記シールド部材が、前記コイルを巻装した前記コア部分のみに設けられる請求項2に記載の電動機。 The electric motor according to claim 2, wherein the shield member is provided only in the core portion around which the coil is wound.
  5.  前記シールド部材には、パーメンジュールが使用される請求項1から4のいずれか1項に記載の電動機。 The electric motor according to any one of claims 1 to 4, wherein a permendur is used for the shield member.
  6.  前記電動機が、スイッチトリラクタンスモーターである請求項1から5のいずれか1項に記載の電動機。 The electric motor according to any one of claims 1 to 5, wherein the electric motor is a switched reluctance motor.
PCT/JP2013/068254 2012-07-09 2013-07-03 Electric motor WO2014010484A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-153912 2012-07-09
JP2012153912 2012-07-09

Publications (1)

Publication Number Publication Date
WO2014010484A1 true WO2014010484A1 (en) 2014-01-16

Family

ID=49915945

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/068254 WO2014010484A1 (en) 2012-07-09 2013-07-03 Electric motor

Country Status (1)

Country Link
WO (1) WO2014010484A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54110404A (en) * 1978-02-17 1979-08-29 Hitachi Ltd Stator core of electric rotary equipment
JPH04178129A (en) * 1990-11-13 1992-06-25 Toshiba Corp Magnetic core
JPH05256271A (en) * 1992-03-16 1993-10-05 Seiko Epson Corp Compressor for refrigerating cycle
JP2002175612A (en) * 2000-09-29 2002-06-21 Sony Corp Magnetic recording and reproducing device
JP2003079115A (en) * 2001-09-03 2003-03-14 Mitsubishi Electric Corp Thin-type flat polyphase induction-type rotating machine for vehicle
JP2003088088A (en) * 2001-09-13 2003-03-20 Jeol Ltd Linear motor, moving unit and charged particle beam device
JP2004129480A (en) * 2002-03-20 2004-04-22 Nippon Steel Corp Magnetic member for electromagnetic apparatus and simple bundling method thereof
JP2004201431A (en) * 2002-12-19 2004-07-15 Toshiba Corp Motor core and manufacturing method therefor

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54110404A (en) * 1978-02-17 1979-08-29 Hitachi Ltd Stator core of electric rotary equipment
JPH04178129A (en) * 1990-11-13 1992-06-25 Toshiba Corp Magnetic core
JPH05256271A (en) * 1992-03-16 1993-10-05 Seiko Epson Corp Compressor for refrigerating cycle
JP2002175612A (en) * 2000-09-29 2002-06-21 Sony Corp Magnetic recording and reproducing device
JP2003079115A (en) * 2001-09-03 2003-03-14 Mitsubishi Electric Corp Thin-type flat polyphase induction-type rotating machine for vehicle
JP2003088088A (en) * 2001-09-13 2003-03-20 Jeol Ltd Linear motor, moving unit and charged particle beam device
JP2004129480A (en) * 2002-03-20 2004-04-22 Nippon Steel Corp Magnetic member for electromagnetic apparatus and simple bundling method thereof
JP2004201431A (en) * 2002-12-19 2004-07-15 Toshiba Corp Motor core and manufacturing method therefor

Similar Documents

Publication Publication Date Title
JP4737193B2 (en) Rotor, electric motor, compressor, blower, air conditioner and in-vehicle air conditioner
WO2011122111A1 (en) Dynamo electric machine
JP5623498B2 (en) Stator core and stator, electric motor and compressor
JP2013219950A (en) Synchronous motor
JP2015119617A (en) Embedded type permanent magnet synchronous motor
JP2011120392A (en) Stator core, stator, motor, and compressor
JP2011244670A (en) Stator core
JP2008167615A (en) Single-phase claw pole permanent magnet motor
WO2018162073A1 (en) Permanent magnet axial-flux electric machine stator and rotor assemblies
JP2009055750A (en) Claw pole type pm motor and its manufacturing method
JP5428334B2 (en) Electric motor
JP2017108513A (en) Device
JP5011719B2 (en) Rotating electric machine and control method thereof, compressor, blower, and air conditioner
KR101247683B1 (en) Amorphous Stator, Electric Motor Using the Same, and Producing Method thereof
WO2013121786A1 (en) Stator core for motor
JP2011072148A (en) Rotating machine
WO2014010484A1 (en) Electric motor
JP2010045872A (en) Permanent magnet rotary machine
CN104485793A (en) Double stator disk motor without rotor yoke
JP2017108514A (en) Device
JP2010045870A (en) Rotating machine
JP5404230B2 (en) Axial gap type motor
Kano Recent technical trends in SRM and FSM
JP2007166798A (en) Dynamo-electric machine, compressor, blower, and air conditioner
JP2007068323A (en) Dc brushless motor device and its permanent magnet

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13816051

Country of ref document: EP

Kind code of ref document: A1

DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13816051

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP