JP2004129480A - Magnetic member for electromagnetic apparatus and simple bundling method thereof - Google Patents

Magnetic member for electromagnetic apparatus and simple bundling method thereof Download PDF

Info

Publication number
JP2004129480A
JP2004129480A JP2003058214A JP2003058214A JP2004129480A JP 2004129480 A JP2004129480 A JP 2004129480A JP 2003058214 A JP2003058214 A JP 2003058214A JP 2003058214 A JP2003058214 A JP 2003058214A JP 2004129480 A JP2004129480 A JP 2004129480A
Authority
JP
Japan
Prior art keywords
magnetic
magnetic material
binding
liquid
material pieces
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003058214A
Other languages
Japanese (ja)
Other versions
JP2004129480A5 (en
Inventor
Tsutomu Kaido
開道 力
Kazutaka Tone
東根 和隆
Osamu Tanaka
田中 収
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Nippon Steel Plant Designing Corp
Original Assignee
Nittetsu Plant Designing Corp
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nittetsu Plant Designing Corp, Nippon Steel Corp filed Critical Nittetsu Plant Designing Corp
Priority to JP2003058214A priority Critical patent/JP2004129480A/en
Publication of JP2004129480A publication Critical patent/JP2004129480A/en
Publication of JP2004129480A5 publication Critical patent/JP2004129480A5/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1204Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material inorganic material, e.g. non-oxide and non-metallic such as sulfides, nitrides based compounds
    • C23C18/122Inorganic polymers, e.g. silanes, polysilazanes, polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/125Process of deposition of the inorganic material
    • C23C18/1254Sol or sol-gel processing
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/125Process of deposition of the inorganic material
    • C23C18/1262Process of deposition of the inorganic material involving particles, e.g. carbon nanotubes [CNT], flakes
    • C23C18/127Preformed particles

Landscapes

  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Thermal Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Dispersion Chemistry (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)
  • Manufacture Of Motors, Generators (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide magnetic materials that suppress an electrical short circuit and fixed stress and strain, and whose surface quality is improved in the magnetic materials for an electromagnetic apparatus. <P>SOLUTION: These magnetic materials for the electromagnetic apparatus are structured by stacking two or more magnetic material pieces punched substantially in the same shape. The magnetic material pieces are integrated by a silicon polymer in such a way that strain and/or stress is not applied locally to each magnetic material piece. The simple bundling method of the magnetic materials for the electromagnetic apparatus is, when the magnetic materials used for the electromagnetic apparatus are made up of two or more magnetic material pieces, to arrange and assemble the two or more magnetic material pieces, to apply a liquid or to dip them into the liquid that has the ability of bundling the magnetic material pieces when dried with keeping the assembled state, and then to dry them and to bundle and assemble the two or more magnetic material pieces. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、電磁機器用磁性部材及びその簡易結束方法に関するものである。
【0002】
【従来の技術】
電磁機器として、電動機、アクチュエータ、発電機や変圧器、リアクトルなどがある。これらには、一般に磁気回路を形成するコアが使用され、電動機、アクチュエータ、発電機には永久磁石が使用されることがある。コアの多くは電磁鋼板を積層したものが使用され、積層コアの結束には、カシメ、溶接、ボルト締めなどが多用される。しかし、カシメ、溶接では積層間の電気的短絡が生じ、交流励磁では短絡電流が発生し、機器性能の低下を引き起こす。また、これらの結束では固定あるいは一体化に伴い電磁鋼板に局部的な応力・歪が付加され、この応力・歪による磁気特性劣化も無視できない。
【0003】
【発明が解決しようとする課題】
本発明は、このような点に鑑みなされたもので、電気的短絡、結束に伴う応力・歪を抑制し、かつ表面改質をした電磁機器用磁性部材とその簡易結束方法を提供することを目的とする。
【0004】
【課題を解決するための手段】
本発明の要旨とするところは、次の通りである。
(1) 実質的に同一形状に打ち抜かれた複数枚の磁性材料片を積層し、シリコンポリマーにより一体化してなる電磁機器用磁性部材において、各磁性材料片に対して歪みおよび/または応力が局部的に付加されることなく一体化されていることを特徴とする電磁機器用磁性部材。
(2) 電機子コアが複数の分割コアからなる上記(1)に記載の電磁機器用磁性部材。
(3) 複数個の磁性材料片から構成される電磁機器用磁性部材を結束する方法において、前記複数個の磁性材料片を配置組み立てた後、乾燥することにより磁性材料片同士を結束する能力を発揮する液を塗布するか或いは前記液に浸漬し、次いで乾燥して一体化することを特徴とする電磁機器用磁性部材の簡易結束方法。
(4) 実質的に同一形状に打ち抜かれた複数枚の磁性材料片を積層した後、乾燥することにより磁性材料片同士を結束する能力を発揮する液を塗布するか或いは前記液に浸漬し、次いで乾燥して一体化することを特徴とする電磁機器用磁性部材の簡易結束方法。
(5) 乾燥することにより磁性材料片同士を結束する能力を発揮する液として、純シリコンポリマー及び変性シリコンポリマーの1種以上を主成分とする液を用いることを特徴とする上記(3)または(4)に記載の電磁機器用磁性部材の簡易結束方法。
(6) 純シリコンポリマー成分としてR Si(OR4−n(但し、n=0〜3、R:炭素数1〜6の炭化水素基、R:炭素数1〜6のアルキル基、R、Rが複数の場合はそれぞれが異なるものでも良い。)で表される1種または2種以上の加水分解と部分脱水縮合反応によって生成された有機珪素化合物を用いることを特徴とする上記(3)ないし(5)のいずれかに記載の電磁機器用磁性部材の簡易結束方法。
(7) 変性シリコンポリマーとして、アクリル変性シリコンポリマー、アルキド変性シリコンポリマー、ポリエステルアクリル変性シリコンポリマー、エポキシ変性シリコンポリマー、アミノ変性シリコンポリマー、ビニル変性シリコンポリマー、フッ素変性シリコンポリマーの1種または2種以上を用いることを特徴とする上記(3)ないし(5)のいずれかに記載の電磁機器用磁性部材の簡易結束方法。
【0005】
【発明の実施の形態】
本発明の磁性部材の簡易結束方法が適用される電磁機器としては、電動機、アクチュエータ、発電機や変圧器、リアクトル、磁気シールドなどがあり、用途、機種を問わない。電動機、アクチュエータ、発電機は、誘導機タイプ、同期機タイプ、直流機タイプ、リラクタンスタイプ、これら2つ以上のタイプを組み合わせたものがあり、大型からマイクロモータまで含まれる。また、変圧器は巻変圧器や積変圧器等をはじめ、各種コアを用いたものがあり、リアクトルはインバータ、コンバータやチョッパ、電圧電流の位相を調整し力率改善に用いる機器、高調波等を除くフィルタ、イグニションなどに用いるもので、巻タイプや積みタイプ、空隙があるものやないもの、可飽和タイプや飽和させないで使用するもの、カットコアを用いるものなどがある。また、磁気シールドはパネル状のシールド部材から所定の形状に加工されたシールド部材、機器や装置として組み立てられたシールド装置や機器などであり、磁気的な効果が必要とされる電磁波シールドも含まれる。電磁機器には磁気回路が必要で、コア、ヨークや、永久磁石あるいは電磁石が使用されることが多く、本発明における磁性部材としてはこれらのものを示す。
【0006】
コアやヨークは、電磁鋼板、パーマロイ、鉄コバルト合金やアモルファス磁性材料コアなどの積層コア、ソフトフェライトコア、鋳造コア、粉末冶金コア、粉末のプラスティック成形コアなどがあり、コアやヨークの素材としては、電磁鋼板、厚板等の鉄あるいは鉄合金、ニッケルやパーマロイなどのニッケル合金、またコバルトやコバルト合金、更にソフトフェライト、アモルファス材、ナノクリスタル材などであり、用途としては電機子コア、界磁ヨーク、変圧器コア、リアクトルコア、電磁石コア、プリント基盤などである。特に、電磁鋼板を打ち抜きして積層したコアやヨークが多用される。コアも、回転機などのように一体打ちぬきして積層したコア、分割コアを組み合わせて用いたコア、アキシャルギャップ型の回転機に使用されることがある巻コア、或いはクローポールコアなどのように塑性変形させたものもあり、変圧器やリアクトルなどのように、巻コア、積コア、焼結コア、粉末成型コアやプラスティック成形コアなど、またカットコア、EIコアなどがあり、本発明はすべてに適用できる。
【0007】
永久磁石は種類や形状を問わなく、電動機、アクチュエータや発電機の界磁用に用いるだけでなく、フライバック変圧器、リアクトルに使用されるバイアス磁束(磁界)用に用いられる場合もある。電機子コア、界磁ヨークなどでも、電磁鋼板の積層のように、複数の磁性材料片から構成される場合が多い。
電磁機器には、磁束が外部に漏れないように、あるいは、外部の磁束が機器に進入し、外部や機器内部に悪い影響をしないように、磁気シールドや電磁波シールドする場合があり、本発明の磁性部材として、磁気シールド及び電磁波シールド用の磁性部材も含まれる。この場合、本発明が関係する電磁機器としては、磁束や電磁波を発生する機器、装置、設備であり、逆に、磁束や電磁波が影響する機器、装置、設備を含む。また、一般の磁気シールド材や電磁波シールド材にも適用できる。
【0008】
本発明では、乾燥することにより磁性部材間や磁性材料片間を結束する能力を有する液(以後、結束液と呼ぶ。)を塗布するか、或いは結束液に浸すことにより、磁性部材や磁性材料片の外側に結束液を付着させたり、磁性部材や磁性材料片の間の接触部に結束液を含ませる。その後、結束液を常温〜300℃で30秒以上乾燥させ、磁性部材間や磁性材料片間を結束する。乾燥条件は、本発明の場合、常温〜120℃程度の乾燥で十分であるが、短時間乾燥を必要とする場合は、300℃程度までの乾燥を行うことにより極めて迅速な鉄心端面処理が可能となる。
【0009】
本発明は、結束液を乾燥させて形成される膜が磁性部材、磁性材料片などの外面を覆い、この膜で相互に結束するものであり、あるいは、結束液が磁性部材や磁性材料片の層間に侵入し、乾燥させた層で、接着結束するものである。(以後、結束液の乾燥後にできる膜あるいは層を結束膜と記す。)従って、結束力は結束膜の種類と厚さで決まるので、必要に応じて結束液の種類、膜厚を決定すれば良い。また、磁性部材や磁性材料片の形状や表面や端面の状態により、結束力は変わるので、磁性部材や磁性材料片の形状や表面や端面の状態の考慮も必要である。
【0010】
結束液としては、液組成として、純シリコンポリマー及び変性シリコンポリマーの1種または2種以上を主成分とする液を用いる。純シリコンポリマーは、有機珪素化合R Si(OR4−n(但し、n=0〜3、R:炭素数1〜6の炭化水素基、R:炭素数1〜6のアルキル基、R、Rが複数の場合はそれぞれが異なるものでも良い。)で表される1種または2種以上の加水分解と部分脱水縮合反応によって生成された化合物である。これらは、公知のアルコキシランを無溶媒或いは有機溶媒中で加水分解し、重合して製造される。この際、用いるシランの種類を変えることにより、種々の性能を有する塗膜が得られる。変性シリコンポリマーは、純シリコンポリマーを有機樹脂により変性を行ったものであり、変性方法としては公知のコールドブレンドや縮合反応等によって変性が行われたものである。
【0011】
純シリコンポリマーとして、アルコキシシランの部分加水分解物を製造する場合に、テトラメトキシシラン、テトラエトキシシラン、テトライソプロポキシシラン、テトラプトキシシラン、モノメチルトリメトキシシラン、モノメチルトリエトキシシラン、モノメチルトリイソプロポキシシラン、モノメチルトリプトキシシラン、モノエチルトリメトキシシラン、モノエチルトリエトキシシラン、モノエチルトリプロポキシシラン、モノエチルトリプトキシシラン、ジメチルジメトキシシラン、ジメチルジエトキシシラン、ジエチルジメトキシシラン、ジエチルジエトキシシラン、フェニルトリメトキシシラン、ジフェニルジメトキシシラン、フェニルトリエトキシシラン、ジフェニルジエトキシシランの1種または2種以上を用いる。
【0012】
変性シリコンポリマーとして、アクリル変性シリコンポリマー、アルキド変性シリコンポリマー、ポリエステルアクリル変性シリコンポリマー、エポキシ変性シリコンポリマー、アミノ変性シリコンポリマー、ビニル変性シリコンポリマー、フッ素変性シリコンポリマーの1種または2種以上を用いる。
【0013】
また、結束膜に高い絶縁抵抗や耐電圧を得ようとする場合には、前記シリコンポリマーに、充填剤として、純シリコンポリマー或いは変性シリコンポリマーのSiO分100質量部当り、無機酸化物粉体粒子又はコロイド状溶液、有機樹脂粉体粒子又はこれらのエマルジョン溶液の1種または2種以上を固形分として0.1〜50質量部添加する。この充填剤を添加する複合効果として鉄心端面や鋼板表面への付着力が改善される。添加する無機粉体粒子或いはコロイド状物質として、一次粒子径7〜5000nmのSiO、Al、TiO、ZrO及び/又はこれらの複合物質の中から選ばれる1種または2種以上を0.1〜50質量部添加配合する。
【0014】
結束液を塗布する方法あるいは結束液に浸す方法は、一般的に行われている表面皮膜塗布や塗料塗布の方法などで良く、スプレー塗布、浸漬、刷毛塗りなどの方法を適用できる。塗布量などのムラ抑制も一般的に行なえる方法を用いれば良い。また、磁性部材や磁性材料片での接触部の接着力を高めるためには、接触部に一旦、空隙を持たせ、結束液を接触部に含ませた状態で、所定の接触状態にすれば、乾燥後の結束力も増大できる。
【0015】
乾燥後の結束膜厚の制御は、結束液の溶剤の種類、溶剤の濃度、粘度を変化させる方法を用いれば容易であり、塗布乾燥工程を複数回すればその回数だけ膜厚を厚く出来る。浸漬法においては、引き抜き速度、スプレー法の場合には、ノズル形状、噴射速度等を前記溶液条件と組み合わせて制御することにより所定の膜厚みに塗布する。また、圧縮空気などを吹き付けることにより、液溜りの抑制、膜厚の調整もできる。
【0016】
本発明で形成される結束膜は、耐錆膜、電気絶縁膜として兼ねあわせても良く、電磁鋼板の磁気変異点付近までの高温でも、ある程度の結束力、電気絶縁などの性能を示す。本発明で形成される結束膜は電磁鋼板の焼鈍にも耐えるので、歪取り焼鈍を行なうコアにも適用できる。更に、ある程度の結束力が得られる本発明における結束条件で処理すれば機械加工もできる。
【0017】
【実施例】
[実施例1]
本発明を用いて、4極モータのブラシレスDCモータを製作した。使用した結束液はモノメチルトリメトキシシランとジメチルジメトキシシランを1:1とした混合液で、乾燥させて結束膜を形成させるものである。ステータは、12個の分割コア(図1に示されるコア片1を積層したもの)1Aからなる電機子である。組み立てた円形コアの外径は120mmである。
分割コア1Aは電磁鋼板を打ちぬき加工し、積層したものを積層上下面の電磁鋼板中央部を図2のバー4a、4bで押さえ積層体を固定し、ロータとの空隙側に相当する歯部2の端面を除いた打ちぬき加工端面部のみに結束液を塗布し、その後、固定したまま室温で乾燥し、結束膜を形成させる。結束液を塗布する方法は、刷けで加工端部のみを十分に塗る方法を用いたが、この場合、図3に示すように積層コア1Aの加工端部における打ちぬき加工のダレで出来る隙間5′に、十分、結束液を含ませるように、刷毛に十分、結束液を含ませて塗った。
【0018】
その後、結束膜を有した分割コア1Bに、直に巻線6を図4のように巻き、結束液8に再度、図5のように、空隙側部を除いた部分を浸漬し乾燥した。これにより、巻線の固定、コアの結束強度や剛性を高めた。次に、分割コアを組み立て、コアのコアバック部の積層上下面に当て板9a、9bをあて、同時にケース10に圧入する。当て板を当てる場合、コアと接触する面に結束液を塗布し、コアに当て板をあてる。当て板を当てた分割コア組み立て品を図6のように、外周部に結束液を塗布しケースに圧入する。その後、完全に乾燥する。
【0019】
本発明の方法を用いると、電磁鋼板の積層間、分割コア間、コアとケースの間の結束を高め、巻線の固定も可能で、モータ全体の剛性が高くなり、騒音振動対策の一つに出来る。本発明による結束を用いると、カシメや溶接などで問題となる短絡電流を抑制でき、損失低減、制御性向上が図れる。また、導線及びコアからの発熱を本発明の結束膜を通しての抜熱性が高くでき、モータの高出力化、低銅損化(温度上昇による抵抗アップ抑制)に効果がある。
【0020】
従来のカシメでコアを作り、ケースに圧入したモータと性能を比較した。定格回転数、定格トルクで駆動したところ、コアの固有振動は約1.8倍になり、モータの騒音も約4dB下がった。鉄損も約30%低減でき、巻線温度上昇も6℃低下した。
【0021】
[実施例2]
実施例1で作った電機子コアと本発明を適用したIPMロータで4極のIPM(埋め込み磁石型)モータを製作した。このモータは低速でトルク制御される。使用した結束液は、テトラメトキシシランとモノメチルトリメトキシシランとジフェニルジエトキシシランを2:1:1とした混合液で、乾燥させて結束膜を形成させるものである。
【0022】
着磁したFeNdBの焼結磁石を結束液に浸漬し乾燥させ、図7に示されるように、その磁石12をIPMロータコア11に挿入した。磁石を挿入したロータコアも結束液に浸漬し、圧縮ガスを吹きつけ余分の結束液を取り除いた後、回転軸13に圧入した。これを乾燥し、部分縮合物の結束膜14を形成させた。IPMロータへの本発明の適用は、磁石の固定と共に、磁石の表面処理の役目を兼ねており、更に磁石とコアとの熱伝達性と絶縁性も向上し、磁石温度上昇の抑制、磁石、コア間の短絡電流の抑制もできる。ロータと回転軸の隙間を結束膜で充填することになり、ロータの温度上昇を抑制する役割も持っている。FeNdBの焼結磁石の温度上昇も抑制でき、磁石の減磁も抑えることができる。
【0023】
[実施例3]
本発明を用いて、2極誘導モータを製作した。使用した結束液はモノメチルトリメトキシシランであり、乾燥させて、結束膜を形成させるものである。ステータコアは外周から2mmのところに円周方向に等間隔に3個、仮固定用のカシメを入れ積層固定した一体打ちぬきコアで、このコアのスロットを絶縁紙で覆い、電機子巻線を施し、電機子全体を結束液に浸漬させた。その後、ロータとの空隙側から、100℃の熱風を吹き付け、歯先に余分に付着している液を吹き飛ばし、空隙面の膜厚を0.1mm以下になるようにした。その後、乾燥させ、結束膜を形成させた。100℃の熱風は乾燥を速める効果をももたせた。
本発明を用いると、積層コアの結束、短絡電流抑制、歯先振動の低減による低騒音化、高抜熱性による高出力化、低銅損化(温度上昇による抵抗アップ抑制)が期待できる。
【0024】
[実施例4]
巻線が施された巻トランスコアを結束液に浸漬し、乾燥させた。使用した結束液は変性シリコンポリマーとしてエポキシ変性ポリマーで、乾燥させて結束膜を形成させるものである。
本発明をトランスコアに適用することにより、コアの剛性が向上し、騒音が3dB低下した。
【0025】
[実施例5]
実施例1において、ステータを結束液に浸漬し乾燥させることによる積層結束を行なった後、750℃で焼鈍した。この焼鈍により、モータ鉄損が8%低減した。
【0026】
[実施例6]
本発明を適用し、空隙付きコアを製作し、昇圧チョッパ用リアクトルに使用した。図8に示すように、巻コア21を成形しその状態で結束液に浸漬し乾燥させ、成形形状を維持したままコア積層を結束した。その後、空隙部22を加工するため、空隙加工近傍を押さえ、切断し、空隙を設け、その空隙を維持するために、非磁性の絶縁物23を挿入し、巻線24を施した。その状態で、再度、結束液に入れ結束膜25を形成させ乾燥した。
このリアクトルはコア自体が高剛性であり、騒音振動の原因となる空隙も一体の構造物に成っているので、騒音を低減できた。
【0027】
[実施例7]
方向性電磁鋼板を打ちぬき、螺旋加工して、一枚の8極モータ用円形電機子コアをつくる。この螺旋コアを回し積み積層したものを結束液に浸漬し、乾燥固定して、電機子コアをつくる。この方向性電磁鋼板の螺旋コアは歯部が方向性電磁鋼板の圧延方向になり、歯部の磁気特性が極めて優れているので、モータ鉄損が低減できる。螺旋加工では、表面皮膜の剥離が生じるが、本発明の処理で、皮膜剥離部の表面皮膜も形成され、問題が回避できる。
【0028】
[実施例8]
レーザビームプリンタ用ポリゴンミラーモータを電磁鋼板を用いたプリント基盤上に製作した。プリント基盤は2枚の電磁鋼板積層体であり、この上に電機子コイルを固定するが、電機子コイルと基盤との固定と電磁鋼板間の結束を、本発明の結束法を活用した。2枚の電磁鋼板を重ねた上に、電機子コイルを固定して、結束液に浸漬し、熱風で乾燥し、固定した。結束液にはコイル温度が上昇しても結束力が保持され、アウトガスも問題のないものを使用したので、プリント基盤の2枚の電磁鋼板積層結束とプリント基盤上の電機子コイルの固定はモータ駆動で温度上昇しても、十分な結束固定がなされ、アウトガスの問題もないので、ミラーの曇りも問題とならない。
【0029】
[実施例9]
トランスの巻きコアをアモルファス磁性材料で製作し、結束液に浸漬後、形状を保ったまま乾燥させた。このコアを使用し、トランスを製作し、磁気シールドケースに収め、トランスを駆動させ使用した。磁気シールドケースには、ナノクリスタルの高透磁率材料を積層し、同じ結束液で浸漬乾燥し積層固定したパネルを組み立てたものを使用した。アモルファス材は極薄手であるためコアやシールド板の剛性が低いが、本発明の結束法で簡単に、一体化、高剛性化でき、コアやシールド板の固定が容易になり、アモルファスやナノクリスタルの破片も生じ難い。
【0030】
【発明の効果】
本発明による方法では、電動機、アクチュエータ、発電機の電機子コアに用いられる電磁鋼板の積層コアで、従来使用されている、カシメ、溶接を使用しないので、交流励磁での短絡電流の問題が発生しない。更に、本発明による結束は、室温レベルでの乾燥で行われているので、結束のために、応力歪が入り難い。このように、本発明の方法で、電磁鋼板の積層コアを結束されると、機器性能劣化が抑制できる。
【0031】
本発明は、結束液をスプレーするか、結束液に浸し乾燥させるものであり、磁性部材の外面全体をも覆うものである。従って、従来の打ちぬき積層し、加工端面が外面に出ている磁性部材と比べ、耐錆性が高くなる。また、磁性部材が他の部材と電気的にも絶縁されるので、電動機などでの磁性部材あるいは接する他の部材との電気的な問題がなくなる。例えば、コアに本発明を適用すれば、導線を巻いても、絶縁性は保たれるので適している。
【0032】
更に、磁性部材や磁性材料片間の接着、結束の面積が、結束液を乾燥させた後の膜により、従来の溶接やカシメ、ボルト締めに比較してより大きくなる。従って、熱伝達性が、従来の溶接やカシメ、ボルト締めによる結束の場合より優れている。また、磁性部材の剛性も高くなるので、電動機や変圧器などの騒音振動の問題や他の機械的な問題の回避につながる場合がある。
【0033】
分割コア、EIコアなどのように、複数のコアを組み合わせて磁気回路を組む場合や、空隙付きコアでは、空隙をスペーサで維持する場合、本発明を用い、空隙部のスペーサとコアを一体化したものは電磁振動などが抑制できるので、低騒音化や低振動化に効果的である。変圧器、モータや発電機などには、鉄損を低減させるため、薄手電磁鋼板やアモルファス材料、ナノクリスタル材料が使用されることがあるが、この場合、積層コアの剛性が低くなるので、固定や推力伝達に問題が生じるが、本発明の結束法で一体化すると、コアの機械剛性が高くできるので、固定が容易となり、モータ等での推力伝達などの問題も軽減できる。
磁性部材とコアから磁束が漏れる場合は磁気シールドなどが求められるが、本発明を用いると、シールド部材の組立やシールド部材の固定が容易になり、ボルト、鋲、釘やはめ込みなどの固定部からの磁束の漏れが抑制できる。
【0034】
結束液を乾燥させた後の膜が高硬度であれば、磁性部材の機械的な保護にも効果的である。電磁鋼板の打ちぬき積層コアでは、打ちぬきによるカエリが問題となるが、カエリを覆う厚さに膜厚を制御すれば、カエリによる諸問題も回避できる。例えば、コアに本発明を適用すれば、導線を巻いても、カエリによる巻線の絶縁皮膜を傷つけることがなくなり、コアに通常行われている絶縁処理は不要になる。本方法による結束は、磁性部材を全面あるいは部分的に覆い被せるものでもあり、シール性も保持できる。
【0035】
本発明で提唱している結束液は、通常のワニス処理でもちいる樹脂の様に有害成分を含まないので、環境上も問題がなく、また、高温度でも結束に問題ないので、通常の接着で生じる高温での問題点もなく、電磁鋼板の磁気変異点まで使用できる。
モータ磁石などの結束も、磁石ヨークなどとの接着部に、結束液を付けることが出来ればある程度の結束力が保たれる。最近では埋め込み磁石型の電動機や発電機が多用されるようになると、本発明の方法、例えば、界磁子(磁石埋め込み状態)を結束液に浸漬したり、磁石に結束液をスプレー塗布し、磁石を界磁子に挿入すれば、簡単に結束できる。アウトガスが問題となる場合に、本発明を適用すれば比較的問題が少ない。
【0036】
本発明の磁性部材などの結束方法は工程が、結束液の浸漬やスプレーの工程と乾燥工程で良く、しかも、乾燥は比較的短時間に行なえ、コスト的にも有利である。従来の結束方法には、接着剤を用いたり、接着皮膜付き電磁鋼板を用いる方法があるが、本方法を採用する事により工程が簡単になる場合が多い。
電動機などのコアは、加工歪などを除去する歪取り焼鈍や、素材自身の磁性向上を目的とする磁性焼鈍などにより磁気特性の向上が図られるが、本発明を適用したコアでは、焼鈍可能であり、焼鈍によるコア性能向上が実現できる。コアを曲げ成形状態で浸漬し乾燥すると、任意の形状のコアも製作可能である。
本発明の磁性部材結束方法は、結束液を必要とするが、装置としては塗布装置と乾燥装置があれば実機可能であり、乾燥も比較的短時間で行なえる。従って、低設備費で、所用時間も短くできる。
【図面の簡単な説明】
【図1】分割コア片を示す図。
【図2】積層分割コアを押さえて固定している状態図。
【図3】結束膜が形成されている積層分割コアの部分詳細図。
【図4】結束膜の上に巻き線を施した積層分割コアの斜視図。
【図5】巻線を施した積層分割コアを結束液に浸漬している状態図。
【図6】積層分割コアをケースに結束している状態図。
【図7】IPMロータの断面図(a)と平面図(b)。
【図8】結束膜を形成させたリアクトルの断面図。
【符号の説明】
1:分割コア片           1A:分割コア
1B:結束されたコア        2:歯部
3:継鉄部
4a、4b、7a、7b:押さえバー
5、5A、14、25:結束膜
5′:加工のダレで出来る隙間    6、24:巻線
8:結束液             9a、9b:当て板
10:モータケース         11:IPMロータ
12:永久磁石           13:回転軸
21:リアクトルコア        22:空隙
23:絶縁物
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a magnetic member for an electromagnetic device and a simple binding method thereof.
[0002]
[Prior art]
Electromagnetic devices include electric motors, actuators, generators, transformers, and reactors. In these, a core that forms a magnetic circuit is generally used, and a permanent magnet may be used for an electric motor, an actuator, and a generator. Many of the cores are formed by laminating electromagnetic steel sheets, and caulking, welding, bolting, and the like are frequently used to bind the laminated cores. However, caulking or welding causes an electrical short between the laminations, and AC excitation causes a short-circuit current, which lowers the equipment performance. In addition, in these bindings, local stress and strain are added to the magnetic steel sheet with fixing or integration, and deterioration of magnetic properties due to the stress and strain cannot be ignored.
[0003]
[Problems to be solved by the invention]
SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and provides an electric short circuit, a magnetic member for an electromagnetic device having a surface modified surface, which suppresses stress and strain caused by bundling, and a simple bundling method thereof. Aim.
[0004]
[Means for Solving the Problems]
The gist of the present invention is as follows.
(1) In a magnetic member for an electromagnetic device in which a plurality of magnetic material pieces punched into substantially the same shape are laminated and integrated with a silicon polymer, distortion and / or stress is locally applied to each magnetic material piece. A magnetic member for an electromagnetic device, wherein the magnetic member is integrated without being added.
(2) The magnetic member for an electromagnetic device according to the above (1), wherein the armature core includes a plurality of split cores.
(3) In the method of binding magnetic members for an electromagnetic device composed of a plurality of magnetic material pieces, the ability to bind the magnetic material pieces by drying after disposing and assembling the plurality of magnetic material pieces. A simple bundling method of a magnetic member for an electromagnetic device, which comprises applying a liquid to be exerted or dipping in a liquid, followed by drying and integrating.
(4) After laminating a plurality of magnetic material pieces punched into substantially the same shape, apply a liquid exhibiting the ability to bind the magnetic material pieces by drying, or immerse in the liquid, A simple bundling method for magnetic members for electromagnetic equipment, which is then dried and integrated.
(5) The above (3) or the above (3), wherein a liquid containing at least one of a pure silicon polymer and a modified silicon polymer as a main component is used as a liquid that exhibits the ability to bind magnetic material pieces by drying. The simple bundling method of the magnetic member for electromagnetic devices according to (4).
(6) R 1 n Si (OR 2 ) 4-n (where n = 0 to 3, R 1 : a hydrocarbon group having 1 to 6 carbon atoms, R 2 : a carbon group having 1 to 6 carbon atoms) as a pure silicon polymer component When there are a plurality of alkyl groups, R 1 , and R 2, each may be different.) One or more kinds of organosilicon compounds produced by hydrolysis and partial dehydration condensation reaction The simple bundling method of a magnetic member for an electromagnetic device according to any one of the above (3) to (5).
(7) As the modified silicone polymer, one or more of acrylic-modified silicone polymer, alkyd-modified silicone polymer, polyester-acryl-modified silicone polymer, epoxy-modified silicone polymer, amino-modified silicone polymer, vinyl-modified silicone polymer, and fluorine-modified silicone polymer A simple method for binding a magnetic member for an electromagnetic device according to any one of the above (3) to (5), wherein:
[0005]
BEST MODE FOR CARRYING OUT THE INVENTION
Electromagnetic devices to which the simple binding method of magnetic members according to the present invention is applied include electric motors, actuators, generators, transformers, reactors, magnetic shields, and the like, regardless of the use and model. The electric motor, actuator, and generator include an induction machine type, a synchronous machine type, a DC machine type, a reluctance type, and a combination of two or more of these types, and include a large motor to a micro motor. Also, there are transformers that use various cores, such as winding transformers and product transformers.Reactors are inverters, converters, choppers, equipment used to adjust the phase of voltage and current to improve the power factor, harmonics, etc. Used for filters, ignitions, etc., including wound and stacked types, those with and without voids, saturable types, those used without saturation, and those using cut cores. The magnetic shield is a shield member processed into a predetermined shape from a panel-shaped shield member, a shield device or device assembled as a device or device, and includes an electromagnetic wave shield that requires a magnetic effect. . A magnetic circuit is required for an electromagnetic device, and a core, a yoke, a permanent magnet or an electromagnet is often used, and these are shown as magnetic members in the present invention.
[0006]
Cores and yokes include laminated cores such as electromagnetic steel sheets, permalloy, iron-cobalt alloys and amorphous magnetic material cores, soft ferrite cores, cast cores, powder metallurgy cores, and plastic molded cores of powders. Iron or iron alloys such as electromagnetic steel sheets and thick plates, nickel alloys such as nickel and permalloy, and cobalt and cobalt alloys, as well as soft ferrites, amorphous materials and nanocrystal materials. These include yokes, transformer cores, reactor cores, electromagnet cores, and printed boards. In particular, a core or yoke obtained by stamping and laminating an electromagnetic steel sheet is often used. The core is also a core such as a rotating machine that is integrally punched and laminated, a core that uses a combination of split cores, a wound core that is sometimes used in an axial gap type rotating machine, or a claw pole core. There are also plastic deformed, such as transformers and reactors, such as wound cores, product cores, sintered cores, powder molded cores and plastic molded cores, and cut cores and EI cores. Applicable to all.
[0007]
Regardless of the type and shape of the permanent magnet, the permanent magnet is used not only for the field of electric motors, actuators and generators, but also for bias magnetic flux (magnetic field) used in flyback transformers and reactors. An armature core, a field yoke, and the like are often composed of a plurality of magnetic material pieces, such as a laminated electromagnetic steel sheet.
Electromagnetic devices may have magnetic or electromagnetic shielding to prevent magnetic flux from leaking to the outside, or to prevent external magnetic flux from entering the device and adversely affecting the outside or the inside of the device. The magnetic member includes a magnetic member for a magnetic shield and an electromagnetic wave shield. In this case, the electromagnetic devices to which the present invention relates include devices, devices, and facilities that generate magnetic fluxes and electromagnetic waves, and conversely, devices, devices, and facilities that are affected by magnetic fluxes and electromagnetic waves. Further, the present invention can be applied to general magnetic shielding materials and electromagnetic wave shielding materials.
[0008]
In the present invention, a liquid (hereinafter referred to as a binding liquid) having an ability to bind magnetic members and magnetic material pieces by drying is applied or immersed in the binding liquid to form a magnetic member or a magnetic material. The binding liquid is adhered to the outside of the piece, or the binding liquid is contained in the contact portion between the magnetic member and the magnetic material piece. After that, the binding liquid is dried at room temperature to 300 ° C. for 30 seconds or more to bind the magnetic members and the magnetic material pieces. In the case of the present invention, drying at room temperature to about 120 ° C. is sufficient, but when drying is required for a short time, drying to about 300 ° C. enables extremely quick core end face treatment. It becomes.
[0009]
According to the present invention, a film formed by drying the binding liquid covers the outer surface of the magnetic member, the magnetic material piece, or the like, and binds each other with this film. Alternatively, the binding liquid forms the magnetic member or the magnetic material piece. A layer that invades between layers and is dried, and is bonded and bound. (Hereinafter, a film or layer formed after drying the binding solution is referred to as a binding film.) Therefore, the binding force is determined by the type and thickness of the binding film. good. In addition, since the binding force changes depending on the shape of the magnetic member or the magnetic material piece and the state of the surface or end face, it is necessary to consider the shape of the magnetic member or the magnetic material piece or the state of the surface or end face.
[0010]
As the binding liquid, a liquid containing, as a liquid composition, one or more of a pure silicon polymer and a modified silicon polymer as a main component is used. The pure silicon polymer is an organic silicon compound R 1 n Si (OR 2 ) 4-n (where n = 0 to 3, R 1 is a hydrocarbon group having 1 to 6 carbon atoms, and R 2 is a hydrocarbon group having 1 to 6 carbon atoms). When there are a plurality of alkyl groups, R 1 , and R 2, each may be different.), And is a compound produced by one or more kinds of hydrolysis and partial dehydration condensation reactions. These are produced by hydrolyzing a known alkoxylan in a solvent-free or organic solvent and polymerizing it. At this time, by changing the type of silane used, a coating film having various performances can be obtained. The modified silicone polymer is obtained by modifying a pure silicone polymer with an organic resin, and is modified by a known cold blending or condensation reaction.
[0011]
When a partial hydrolyzate of alkoxysilane is produced as a pure silicon polymer, tetramethoxysilane, tetraethoxysilane, tetraisopropoxysilane, tetraptoxysilane, monomethyltrimethoxysilane, monomethyltriethoxysilane, monomethyltriisopropoxy Silane, monomethyltryptoxysilane, monoethyltrimethoxysilane, monoethyltriethoxysilane, monoethyltripropoxysilane, monoethyltryptoxysilane, dimethyldimethoxysilane, dimethyldiethoxysilane, diethyldimethoxysilane, diethyldiethoxysilane, phenyl One or more of trimethoxysilane, diphenyldimethoxysilane, phenyltriethoxysilane, and diphenyldiethoxysilane are used.
[0012]
As the modified silicone polymer, one or more of acrylic-modified silicone polymer, alkyd-modified silicone polymer, polyester-acryl-modified silicone polymer, epoxy-modified silicone polymer, amino-modified silicone polymer, vinyl-modified silicone polymer, and fluorine-modified silicone polymer are used.
[0013]
When a high insulation resistance or a high withstand voltage is to be obtained for the binding film, an inorganic oxide powder is added to the silicon polymer as a filler per 100 parts by mass of SiO 2 of pure silicon polymer or modified silicon polymer. One or more kinds of particles or colloidal solution, organic resin powder particles or emulsion solution thereof are added as a solid content in an amount of 0.1 to 50 parts by mass. As a combined effect of adding the filler, the adhesive force to the iron core end face and the steel sheet surface is improved. As inorganic powder particles or colloidal substances to be added, one or more selected from among SiO 2 , Al 2 O 3 , TiO 2 , ZrO 2, and / or composite substances thereof having a primary particle diameter of 7 to 5000 nm 0.1 to 50 parts by mass.
[0014]
The method of applying the binding solution or the method of dipping in the binding solution may be a commonly used method of applying a surface film or a paint, and a method such as spray coating, dipping, or brushing may be applied. What is necessary is just to use the method which can also perform the unevenness suppression of application amount etc. generally. Further, in order to increase the adhesive strength of the contact portion with the magnetic member or the magnetic material piece, once the contact portion is provided with a gap, and the binding liquid is contained in the contact portion, a predetermined contact state is established. Also, the binding force after drying can be increased.
[0015]
It is easy to control the thickness of the binding film after drying by using a method of changing the kind of the solvent of the binding solution, the concentration of the solvent, and the viscosity. If the coating and drying process is performed plural times, the film thickness can be increased by the number of times. In the immersion method, in the case of the drawing method, and in the case of the spray method, application is performed to a predetermined film thickness by controlling the shape of the nozzle, the spraying speed, and the like in combination with the solution conditions. In addition, by spraying compressed air or the like, liquid pool can be suppressed and the film thickness can be adjusted.
[0016]
The binding film formed in the present invention may serve as both a rust-resistant film and an electric insulating film, and exhibits a certain degree of binding force and electric insulation performance even at a high temperature near the magnetic transition point of the magnetic steel sheet. Since the binding film formed in the present invention withstands annealing of an electromagnetic steel sheet, it can be applied to a core that performs strain relief annealing. Furthermore, machining can be performed by processing under the binding conditions in the present invention that can obtain a certain binding force.
[0017]
【Example】
[Example 1]
Using the present invention, a four-pole brushless DC motor was manufactured. The binding solution used was a mixture of monomethyltrimethoxysilane and dimethyldimethoxysilane at a ratio of 1: 1 and was dried to form a binding film. The stator is an armature composed of 12 divided cores (laminated core pieces 1 shown in FIG. 1) 1A. The outer diameter of the assembled circular core is 120 mm.
The split core 1A is formed by punching out an electromagnetic steel sheet, and pressing the center of the electromagnetic steel sheet on the upper and lower surfaces with the bars 4a and 4b of FIG. 2 to fix the laminated body, and the tooth portion corresponding to the gap side with the rotor. The binding liquid is applied only to the end face of the punching process excluding the end face of No. 2 and then dried at room temperature while being fixed to form a binding film. As a method of applying the binding liquid, a method of sufficiently applying only the processing end portion by printing was used. In this case, as shown in FIG. 3, a gap formed by sagging of the punching process at the processing end portion of the laminated core 1A. The brush was sufficiently coated with the binding solution so that 5 'contained sufficient binding solution.
[0018]
Thereafter, the winding 6 was directly wound around the split core 1B having the binding film as shown in FIG. 4, and the portion excluding the void side portions was immersed again in the binding solution 8 as shown in FIG. Thereby, the fixing of the winding and the binding strength and rigidity of the core were increased. Next, the divided cores are assembled, and the contact plates 9a and 9b are applied to the upper and lower surfaces of the core back portion of the core, and are simultaneously pressed into the case 10. When applying a backing plate, a binding liquid is applied to a surface that comes into contact with the core, and the backing plate is applied to the core. As shown in FIG. 6, the split core assembly to which the backing plate has been applied is coated with a binding liquid on the outer peripheral portion and pressed into a case. Then, dry completely.
[0019]
By using the method of the present invention, it is possible to increase the binding between the laminated electromagnetic steel sheets, between the divided cores, between the core and the case, fix the windings, increase the rigidity of the entire motor, and reduce noise and vibration. Can be. When the binding according to the present invention is used, a short-circuit current, which is a problem in caulking or welding, can be suppressed, and loss can be reduced and controllability can be improved. Further, heat release from the conductive wire and the core can be improved through the binding film of the present invention, which is effective in increasing the output of the motor and reducing copper loss (suppression of resistance increase due to temperature rise).
[0020]
The core was made by conventional caulking and the performance was compared with the motor pressed into the case. When the core was driven at the rated rotation speed and the rated torque, the natural vibration of the core was increased by about 1.8 times, and the noise of the motor was also reduced by about 4 dB. Iron loss was reduced by about 30%, and the winding temperature rise was also reduced by 6 ° C.
[0021]
[Example 2]
A 4-pole IPM (embedded magnet type) motor was manufactured using the armature core made in Example 1 and the IPM rotor to which the present invention was applied. This motor is torque-controlled at low speed. The binding solution used is a mixture of tetramethoxysilane, monomethyltrimethoxysilane, and diphenyldiethoxysilane in a ratio of 2: 1: 1, and is dried to form a binding film.
[0022]
The magnetized FeNdB sintered magnet was immersed in the binding solution and dried, and the magnet 12 was inserted into the IPM rotor core 11 as shown in FIG. The rotor core in which the magnet was inserted was also immersed in the binding solution, and compressed gas was blown to remove excess binding solution. This was dried to form a binding film 14 of a partially condensed product. The application of the present invention to the IPM rotor serves not only for fixing the magnet but also for performing the surface treatment of the magnet, further improving the heat transferability and insulation between the magnet and the core, suppressing the increase in the magnet temperature, Short-circuit current between cores can also be suppressed. The gap between the rotor and the rotating shaft is filled with the binding film, which also has a role of suppressing a rise in the temperature of the rotor. The temperature rise of the sintered magnet of FeNdB can be suppressed, and the demagnetization of the magnet can also be suppressed.
[0023]
[Example 3]
A two-pole induction motor was fabricated using the present invention. The binding solution used was monomethyltrimethoxysilane, which was dried to form a binding film. The stator core is an integrally punched core that is temporarily fixed at 3 mm at 2 mm from the outer circumference and is temporarily fixed with caulking, and is laminated and fixed. The slot of this core is covered with insulating paper, and armature winding is applied. The whole armature was immersed in the binding solution. Thereafter, hot air at 100 ° C. was blown from the side of the gap with the rotor to blow off excess liquid adhering to the tooth tip, so that the thickness of the gap surface was 0.1 mm or less. After that, it was dried to form a binding film. Hot air at 100 ° C. had the effect of accelerating drying.
When the present invention is used, it is expected that the bundling of the laminated cores, the suppression of short-circuit current, the reduction of noise by reducing tooth tip vibration, the increase in output due to the high heat removal, and the reduction of copper loss (suppression of resistance increase due to temperature rise) can be expected.
[0024]
[Example 4]
The wound transformer core on which the winding was applied was immersed in a binding solution and dried. The binding solution used is an epoxy-modified polymer as a modified silicone polymer, and is dried to form a binding film.
By applying the present invention to a transformer core, the rigidity of the core was improved, and noise was reduced by 3 dB.
[0025]
[Example 5]
In Example 1, the stator was immersed in a binding liquid and dried to perform lamination and then annealed at 750 ° C. This annealing reduced motor iron loss by 8%.
[0026]
[Example 6]
By applying the present invention, a core having a gap was manufactured and used for a reactor for a boost chopper. As shown in FIG. 8, the wound core 21 was molded, immersed in a binding liquid in that state, and dried, and the core laminate was bound while maintaining the molded shape. Thereafter, in order to process the gap 22, the vicinity of the gap processing was pressed and cut, and a gap was provided. In order to maintain the gap, a non-magnetic insulator 23 was inserted, and the winding 24 was formed. In that state, it was again put into the binding solution to form the binding film 25 and dried.
In this reactor, the core itself was high in rigidity, and the air gap that caused noise and vibration was an integral structure, so that the noise could be reduced.
[0027]
[Example 7]
A grain-oriented electrical steel sheet is punched out and spiral-worked to make one circular armature core for an 8-pole motor. The spiral core is wound, stacked and immersed in a binding solution, dried and fixed to form an armature core. The spiral core of the grain-oriented electromagnetic steel sheet has teeth in the rolling direction of the grain-oriented electrical steel sheet, and the magnetic properties of the teeth are extremely excellent, so that motor iron loss can be reduced. In the spiral processing, peeling of the surface film occurs, but the treatment of the present invention also forms the surface film at the film peeling portion, and the problem can be avoided.
[0028]
Example 8
A polygon mirror motor for a laser beam printer was fabricated on a printed board using electromagnetic steel sheets. The printed board is a laminate of two electromagnetic steel sheets, on which the armature coil is fixed. The fixing between the armature coil and the board and the binding between the electromagnetic steel sheets were made using the binding method of the present invention. After stacking two electromagnetic steel sheets, the armature coil was fixed, immersed in a binding solution, dried with hot air, and fixed. As the binding liquid used was one that maintains the binding force even when the coil temperature rises and has no problem with outgassing, the lamination and binding of two electromagnetic steel sheets on the printed board and the armature coil on the printed board are fixed by the motor. Even if the temperature is increased by driving, sufficient binding and fixation is performed and there is no problem of outgassing, so that mirror fogging does not pose a problem.
[0029]
[Example 9]
The wound core of the transformer was made of an amorphous magnetic material, immersed in a binding solution, and dried while maintaining its shape. Using this core, a transformer was manufactured and housed in a magnetic shield case, and the transformer was driven and used. The magnetic shield case used was one in which a nanocrystal high-permeability material was laminated, immersed and dried in the same binding liquid, and then laminated and fixed to form a panel. Amorphous materials are very thin, so the rigidity of the core and shield plate is low, but the binding method of the present invention makes it easy to integrate and increase the rigidity, makes it easier to fix the core and shield plate, and makes amorphous and nanocrystalline Debris is also unlikely to occur.
[0030]
【The invention's effect】
The method according to the present invention does not use caulking or welding, which is conventionally used in a laminated core of electromagnetic steel sheets used for an armature core of an electric motor, an actuator, and a generator. do not do. Furthermore, since the binding according to the present invention is performed by drying at a room temperature level, stress and strain hardly occur due to the binding. As described above, when the laminated cores of the electromagnetic steel sheets are bound by the method of the present invention, deterioration of device performance can be suppressed.
[0031]
According to the present invention, the binding liquid is sprayed or immersed in the binding liquid and dried, and covers the entire outer surface of the magnetic member. Therefore, rust resistance is higher than that of a conventional magnetic member that is stamped and laminated and has a processed end surface on the outer surface. Further, since the magnetic member is also electrically insulated from other members, there is no electrical problem with the magnetic member or other members in contact with the electric motor. For example, if the present invention is applied to a core, even if a conductive wire is wound, insulation is maintained, which is suitable.
[0032]
Further, the area of adhesion and bundling between the magnetic members and the magnetic material pieces is larger than that of the conventional welding, caulking and bolting due to the film after the bundling liquid is dried. Therefore, the heat transferability is superior to the conventional case of binding by welding, caulking, or bolting. Also, the rigidity of the magnetic member is increased, which may lead to avoidance of noise and vibration problems of electric motors and transformers and other mechanical problems.
[0033]
In the case where a magnetic circuit is formed by combining a plurality of cores such as a split core and an EI core, or in the case of a core with a gap, when the gap is maintained by a spacer, the spacer of the gap and the core are integrated using the present invention. Such a method is effective in reducing noise and vibration because electromagnetic vibration and the like can be suppressed. Thin magnetic steel sheets, amorphous materials, and nanocrystal materials are sometimes used in transformers, motors, generators, etc. to reduce iron loss, but in this case, the rigidity of the laminated core decreases, so fixing However, when integrated by the bundling method of the present invention, the mechanical rigidity of the core can be increased, so that the core can be easily fixed and problems such as transmission of thrust by a motor or the like can be reduced.
When magnetic flux leaks from the magnetic member and the core, a magnetic shield or the like is required, but by using the present invention, the assembly of the shield member and the fixing of the shield member are facilitated, and bolts, studs, nails, fittings, etc. Magnetic flux leakage can be suppressed.
[0034]
If the film after drying the binding liquid has high hardness, it is also effective for mechanical protection of the magnetic member. In the punched laminated core of an electromagnetic steel sheet, burrs due to punching pose a problem, but if the film thickness is controlled to a thickness covering the burrs, various problems due to burrs can be avoided. For example, if the present invention is applied to a core, even if a conductive wire is wound, burrs will not damage the insulating film of the winding, and the insulating treatment normally performed on the core is unnecessary. The binding according to the present method covers the whole or part of the magnetic member, and can maintain the sealing property.
[0035]
Since the binding solution proposed in the present invention does not contain harmful components like the resin used in ordinary varnish treatment, there is no environmental problem, and since there is no problem in binding even at high temperatures, ordinary bonding It can be used up to the magnetic variation point of the magnetic steel sheet without any problems at high temperatures caused by the above.
For binding motor magnets and the like, a certain amount of binding force can be maintained as long as the binding liquid can be applied to the bonding portion with the magnet yoke and the like. Recently, when an embedded magnet type electric motor or generator is frequently used, the method of the present invention, for example, a field element (magnet embedded state) is dipped in a binding liquid, or a magnet is spray-coated with the binding liquid, If a magnet is inserted into the field element, it can be easily bound. When outgassing is a problem, the present invention has relatively few problems.
[0036]
The method of bundling a magnetic member or the like according to the present invention may be performed by a dipping or spraying step of a binding liquid and a drying step, and the drying can be performed in a relatively short time, which is advantageous in cost. Conventional bundling methods include a method using an adhesive and a method using an electromagnetic steel sheet with an adhesive film. However, adopting this method often simplifies the process.
Cores such as electric motors can be improved in magnetic properties by strain relief annealing that removes processing strain, etc., and magnetic annealing for the purpose of improving the magnetic properties of the material itself.However, in the core to which the present invention is applied, annealing is possible. Yes, core performance can be improved by annealing. When the core is immersed in a bent state and dried, a core having an arbitrary shape can be manufactured.
The method for binding magnetic members of the present invention requires a binding solution, but if a coating device and a drying device are used as the device, the device can be actually used, and drying can be performed in a relatively short time. Therefore, the required time can be shortened with low equipment cost.
[Brief description of the drawings]
FIG. 1 is a view showing a split core piece.
FIG. 2 is a diagram showing a state in which a laminated split core is pressed and fixed.
FIG. 3 is a partial detailed view of a laminated split core on which a binding film is formed.
FIG. 4 is a perspective view of a laminated split core in which a winding is formed on a binding film.
FIG. 5 is a view showing a state in which a laminated split core on which a winding is applied is immersed in a binding liquid.
FIG. 6 is a diagram showing a state in which the laminated split cores are bound to a case.
FIG. 7 is a sectional view (a) and a plan view (b) of the IPM rotor.
FIG. 8 is a cross-sectional view of a reactor on which a binding film is formed.
[Explanation of symbols]
1: Divided core piece 1A: Divided core 1B: Bound core 2: Teeth portion 3: Yoke portions 4a, 4b, 7a, 7b: Holding bars 5, 5A, 14, 25: Binding film 5 ': Processing sag 6, 24: Winding 8: Bundling liquid 9a, 9b: Backing plate 10: Motor case 11: IPM rotor 12: Permanent magnet 13: Rotating shaft 21: Reactor core 22: Air gap 23: Insulator

Claims (7)

実質的に同一形状に打ち抜かれた複数枚の磁性材料片を積層し、シリコンポリマーにより一体化してなる電磁機器用磁性部材において、各磁性材料片に対して歪みおよび/または応力が局部的に付加されることなく一体化されていることを特徴とする電磁機器用磁性部材。In a magnetic member for an electromagnetic device formed by laminating a plurality of magnetic material pieces punched into substantially the same shape and integrating them with a silicon polymer, strain and / or stress is locally applied to each magnetic material piece. A magnetic member for an electromagnetic device, wherein the magnetic member is integrated without being processed. 電機子コアが複数の分割コアからなる請求項1に記載の電磁機器用磁性部材。The magnetic member for an electromagnetic device according to claim 1, wherein the armature core comprises a plurality of split cores. 複数個の磁性材料片から構成される電磁機器用磁性部材を結束する方法において、前記複数個の磁性材料片を配置組み立てた後、乾燥することにより磁性材料片同士を結束する能力を発揮する液を塗布するか或いは前記液に浸漬し、次いで乾燥して一体化することを特徴とする電磁機器用磁性部材の簡易結束方法。In a method of binding magnetic members for electromagnetic equipment composed of a plurality of magnetic material pieces, a liquid exhibiting the ability to bind magnetic material pieces by drying after disposing and assembling the plurality of magnetic material pieces. Or dipping in said liquid, followed by drying to integrate them. 実質的に同一形状に打ち抜かれた複数枚の磁性材料片を積層した後、乾燥することにより磁性材料片同士を結束する能力を発揮する液を塗布するか或いは前記液に浸漬し、次いで乾燥して一体化することを特徴とする電磁機器用磁性部材の簡易結束方法。After laminating a plurality of magnetic material pieces punched into substantially the same shape, apply a liquid exhibiting the ability to bind the magnetic material pieces by drying, or immerse in the liquid, and then dry. A simple bundling method for magnetic members for electromagnetic devices, characterized by being integrated. 乾燥することにより磁性材料片同士を結束する能力を発揮する液として、純シリコンポリマー及び変性シリコンポリマーの1種以上を主成分とする液を用いることを特徴とする請求項3または4に記載の電磁機器用磁性部材の簡易結束方法。The liquid according to claim 3 or 4, wherein a liquid having at least one of a pure silicon polymer and a modified silicon polymer as a main component is used as the liquid exhibiting the ability to bind the magnetic material pieces by drying. Simple binding method for magnetic members for electromagnetic equipment. 純シリコンポリマー成分としてR Si(OR4−n(但し、n=0〜3、R:炭素数1〜6の炭化水素基、R:炭素数1〜6のアルキル基、R、Rが複数の場合はそれぞれが異なるものでも良い。)で表される1種または2種以上の加水分解と部分脱水縮合反応によって生成された有機珪素化合物を用いることを特徴とする請求項3ないし5のいずれかに記載の電磁機器用磁性部材の簡易結束方法。R 1 n Si (OR 2 ) 4-n (where n = 0 to 3, R 1 is a hydrocarbon group having 1 to 6 carbon atoms, R 2 is an alkyl group having 1 to 6 carbon atoms, as a pure silicon polymer component; When there are a plurality of R 1 and R 2, each may be different.) One or more kinds of organosilicon compounds generated by hydrolysis and partial dehydration condensation reaction are used. A simple bundling method for a magnetic member for an electromagnetic device according to claim 3. 変性シリコンポリマーとして、アクリル変性シリコンポリマー、アルキド変性シリコンポリマー、ポリエステルアクリル変性シリコンポリマー、エポキシ変性シリコンポリマー、アミノ変性シリコンポリマー、ビニル変性シリコンポリマー、フッ素変性シリコンポリマーの1種または2種以上を用いることを特徴とする請求項3ないし5のいずれかに記載の電磁機器用磁性部材の簡易結束方法。As the modified silicone polymer, use one or more of acrylic-modified silicone polymer, alkyd-modified silicone polymer, polyester acrylic-modified silicone polymer, epoxy-modified silicone polymer, amino-modified silicone polymer, vinyl-modified silicone polymer, and fluorine-modified silicone polymer The simple bundling method of a magnetic member for an electromagnetic device according to any one of claims 3 to 5, wherein:
JP2003058214A 2002-03-20 2003-03-05 Magnetic member for electromagnetic apparatus and simple bundling method thereof Pending JP2004129480A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003058214A JP2004129480A (en) 2002-03-20 2003-03-05 Magnetic member for electromagnetic apparatus and simple bundling method thereof

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2002077613 2002-03-20
JP2002222759 2002-07-31
JP2003058214A JP2004129480A (en) 2002-03-20 2003-03-05 Magnetic member for electromagnetic apparatus and simple bundling method thereof

Publications (2)

Publication Number Publication Date
JP2004129480A true JP2004129480A (en) 2004-04-22
JP2004129480A5 JP2004129480A5 (en) 2005-02-17

Family

ID=32303209

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003058214A Pending JP2004129480A (en) 2002-03-20 2003-03-05 Magnetic member for electromagnetic apparatus and simple bundling method thereof

Country Status (1)

Country Link
JP (1) JP2004129480A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007110771A (en) * 2005-10-11 2007-04-26 Mitsubishi Electric Corp Stator of rotary electric machine
JP2008011648A (en) * 2006-06-29 2008-01-17 Nippon Steel Corp Method for applying insulating coating on surface of laminated motor core
JP2009064990A (en) * 2007-09-07 2009-03-26 Sht Corp Ltd Coil unit
WO2014010484A1 (en) * 2012-07-09 2014-01-16 国立大学法人長崎大学 Electric motor
US8716914B2 (en) 2009-06-23 2014-05-06 Mitsubishi Electric Corporation Stator of vehicle AC generator and method for manufacturing the same
JP2015106622A (en) * 2013-11-29 2015-06-08 アルプス・グリーンデバイス株式会社 Inductance element

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007110771A (en) * 2005-10-11 2007-04-26 Mitsubishi Electric Corp Stator of rotary electric machine
JP2008011648A (en) * 2006-06-29 2008-01-17 Nippon Steel Corp Method for applying insulating coating on surface of laminated motor core
JP2009064990A (en) * 2007-09-07 2009-03-26 Sht Corp Ltd Coil unit
US8716914B2 (en) 2009-06-23 2014-05-06 Mitsubishi Electric Corporation Stator of vehicle AC generator and method for manufacturing the same
JP5687192B2 (en) * 2009-06-23 2015-03-18 三菱電機株式会社 Stator for vehicle alternator and manufacturing method thereof
WO2014010484A1 (en) * 2012-07-09 2014-01-16 国立大学法人長崎大学 Electric motor
JP2015106622A (en) * 2013-11-29 2015-06-08 アルプス・グリーンデバイス株式会社 Inductance element

Similar Documents

Publication Publication Date Title
AU2002335206B2 (en) Iron core exhibiting excellent insulating property at end face, and method for coating end face of iron core
US11996231B2 (en) Laminated core and electric motor
US11979063B2 (en) Rotating electric machine
US7144468B2 (en) Method of constructing a unitary amorphous metal component for an electric machine
US6803694B2 (en) Unitary amorphous metal component for an axial flux electric machine
CN100538930C (en) Have the iron core of excellent end face insulation and handle end face of iron core to obtain the method for insulating coating
JP2005268589A (en) Simple manufacturing method of magnetic member for energy converter
JP2010183692A (en) Magnet for motor, rotor for ipm motor, and ipm motor
JP2004129480A (en) Magnetic member for electromagnetic apparatus and simple bundling method thereof
KR100567041B1 (en) Iron core exhibiting excellent insulating property at end face, and method for coating end face of iron core
JP4482283B2 (en) Manufacturing method of high temperature operating electrical equipment
US11611257B2 (en) Method and stator for optimized slot base insulation
JP6024918B2 (en) Motor with low iron loss deterioration due to shrink fitting
JP2005303145A (en) Fastening method of member for energy converting appliance
JP2005312186A (en) Lamination binding magnetic member for energy converter
JP2003032931A (en) Motor
JP7176254B2 (en) Manufacturing method of rotating electric machine
JP5168501B2 (en) motor
JP2006054932A (en) High resistance magnet motor
JP2006073557A (en) Permanent magnet having high performance surface film and its manufacturing method
KR101206259B1 (en) Rotor of a pole change type synchronous motor and manufacturing method thereof
EA042110B1 (en) PLATED CORE AND ELECTRIC MOTOR
JPH02205307A (en) Permanent magnet
KR20090125300A (en) Rotor of a pole change type synchronous motor and manufacturing method thereof

Legal Events

Date Code Title Description
A521 Written amendment

Effective date: 20040315

Free format text: JAPANESE INTERMEDIATE CODE: A523

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050914

A977 Report on retrieval

Effective date: 20080416

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080422

A521 Written amendment

Effective date: 20080620

Free format text: JAPANESE INTERMEDIATE CODE: A523

A02 Decision of refusal

Effective date: 20081224

Free format text: JAPANESE INTERMEDIATE CODE: A02

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20090109

A521 Written amendment

Effective date: 20090120

Free format text: JAPANESE INTERMEDIATE CODE: A523

A521 Written amendment

Effective date: 20090223

Free format text: JAPANESE INTERMEDIATE CODE: A523

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Effective date: 20090226

Free format text: JAPANESE INTERMEDIATE CODE: A911

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20090424