JP2008011648A - Method for applying insulating coating on surface of laminated motor core - Google Patents
Method for applying insulating coating on surface of laminated motor core Download PDFInfo
- Publication number
- JP2008011648A JP2008011648A JP2006180076A JP2006180076A JP2008011648A JP 2008011648 A JP2008011648 A JP 2008011648A JP 2006180076 A JP2006180076 A JP 2006180076A JP 2006180076 A JP2006180076 A JP 2006180076A JP 2008011648 A JP2008011648 A JP 2008011648A
- Authority
- JP
- Japan
- Prior art keywords
- coating
- silicone
- motor core
- insulating film
- insulating
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Other Surface Treatments For Metallic Materials (AREA)
- Iron Core Of Rotating Electric Machines (AREA)
Abstract
Description
本発明は、積層モータコア表面に電気絶縁被膜を被覆する方法に関する。さらに詳しくは、本発明は、電磁鋼板製品を打ち抜き加工し、作製したモータコアの表面や打ち抜き加工面に、シリコーンを主成分とした樹脂との複合体と、フィラー剤からなる被覆組成物を簡便な方法により塗布・乾燥することにより、高耐電圧の絶縁被膜を形成することができる、積層モータコア表面の絶縁被膜被覆方法に関する。 The present invention relates to a method for coating an electric insulation coating on the surface of a laminated motor core. More specifically, the present invention provides a simple coating composition comprising a composite of a resin mainly composed of silicone and a filler agent on the surface or punched surface of a motor core produced by punching a magnetic steel sheet product. The present invention relates to a method for coating an insulating film on the surface of a laminated motor core, which can form an insulating film having a high withstand voltage by applying and drying by the method.
電気機器部品の小型モータ等に使用されるモータコアは、連続焼鈍ラインで最終焼鈍した電磁鋼板に、有機被膜成分、有機樹脂+無機皮膜成分、又は、無機皮膜成分を塗布し、乾燥して得た製品板を、コア加工工場にて打ち抜き、次いで、積層、カシメ等の工程を経て製造される。積層モータコアとしては、例えば、図1に示すような形状のコア(A)が挙げられる。 Motor cores used for small motors for electrical equipment parts were obtained by applying an organic coating component, organic resin + inorganic coating component, or inorganic coating component to an electrical steel sheet that was finally annealed in a continuous annealing line and drying it. The product plate is punched at a core processing factory, and then manufactured through processes such as lamination and caulking. An example of the laminated motor core is a core (A) having a shape as shown in FIG.
図1に示すコア(A)は、複数のティース(b)を有し、各ティースの先端部は、円弧状の部位となっており、各ティース(b)には、コーナー部(a)にて、巻線(c)が施されている。このようなコアは、モータの回転子として用いられるが、コア(A)のティース(b)と巻線(c)との間に絶縁がなされていない場合には、各巻線同士は、コア(A)を通じて短絡して、モータ自身が機能しなくなるので、コア(A)と巻線(c)との間は絶縁する必要がある。 The core (A) shown in FIG. 1 has a plurality of teeth (b), and the tip of each tooth is an arcuate portion, and each tooth (b) has a corner (a). Winding (c) is applied. Such a core is used as a rotor of a motor. When there is no insulation between the teeth (b) and the windings (c) of the core (A), the windings are Since the motor itself does not function due to a short circuit through A), it is necessary to insulate between the core (A) and the winding (c).
特に、巻線の強い接触を受けるティース(b)のコーナー部(a)や、打ち抜き加工面における絶縁は重要である。適用する機種によって必要な絶縁特性は異なるが、例えば、ハードディスク用モータコアの場合、300V以上の高耐電圧が要求されるので、通常、コア(A)のような積層鋼板の表面には、電磁鋼板の製造工程で、あらかじめ薄膜絶縁処理がなされ、さらに、コア加工工程で、厚膜の絶縁被膜処理が施されている。 In particular, insulation at the corner (a) of the tooth (b) that receives strong contact with the winding and the punched surface is important. The required insulation characteristics differ depending on the model to be applied. For example, in the case of a hard disk motor core, a high withstand voltage of 300 V or more is required. In this manufacturing process, a thin film insulation process is performed in advance, and a thick film insulation film process is performed in the core processing process.
このような絶縁処理としては、従来、電着塗料、溶剤スプレー、粉体塗料等により、モータコア表面に絶縁層を形成する方法が採用されている。しかしながら、上記塗料で絶縁層を形成する場合、打ち抜き加工されたモータコアのエッジ部においては、打ち抜き時のカエリによる形状問題に起因して、絶縁被膜層が、鋼板平坦部に比較して付着し難く、薄膜化し易い。その結果、絶縁特性が低下するという問題が生じていた。 As such an insulation treatment, conventionally, a method of forming an insulating layer on the surface of the motor core by using an electrodeposition paint, a solvent spray, a powder paint or the like has been employed. However, when the insulating layer is formed with the above-mentioned paint, the insulating coating layer is less likely to adhere to the edge portion of the punched motor core due to the shape problem due to burrs at the time of punching compared to the flat portion of the steel plate. , Easy to thin. As a result, there has been a problem that the insulation characteristics are deteriorated.
そのため、絶縁層の膜厚を厚くする必要があり、乾燥を挟む4〜6回もの多重塗りにより、厚膜化処理を行う必要があった。また、絶縁被膜剤の絶縁性の問題から、前記高耐電圧を得るために、100〜200μmのような厚膜を形成する被膜処理を余儀なくされる場合があり、作業性やコスト面においても問題があった。 Therefore, it is necessary to increase the film thickness of the insulating layer, and it is necessary to perform a thickening process by multiple coatings 4 to 6 times sandwiching drying. Moreover, in order to obtain the said high withstand voltage, the coating process which forms a thick film like 100-200 micrometers may be forced to obtain the said high withstand voltage from the problem of the insulation of an insulating film agent, and also in workability and a cost aspect. was there.
しかしながら、近年、モータの小型化、薄型化が要求され、さらには、薄膜で高耐電圧の絶縁被膜層を形成する技術が要求されている。 However, in recent years, miniaturization and thinning of motors are required, and further, a technique for forming a thin insulating film layer having a high withstand voltage is required.
絶縁層の薄膜化技術の一つとして、特許文献1には、モータコアの表面に、プライマーとしてエポキシ樹脂を塗装し、上塗りとしてセラミック塗料を塗装した2層の絶縁層を、絶縁層全体の膜厚で50〜80μm形成することにより、エッジ部の被覆性が良好で絶縁特性に優れた絶縁層を形成することが開示されている。また、特許文献1には、絶縁層は、多層になっておればよく、2層に限らず3層、4層のごとく層数を増加させてもよいことが開示されている。 As one of the techniques for thinning an insulating layer, Patent Document 1 discloses that two insulating layers are coated on the surface of a motor core with an epoxy resin as a primer and a ceramic paint as a top coat. It is disclosed that forming an insulating layer having a good edge covering property and an excellent insulating property by forming a thickness of 50 to 80 μm. Further, Patent Document 1 discloses that the insulating layer only needs to be multi-layered, and the number of layers is not limited to two but may be increased to three or four.
しかしながら、特許文献1に開示の技術においては、絶縁層を形成するにあたって、塗装工程が少なくとも2工程以上必要であり、作業性が劣るという欠点がある。 However, the technique disclosed in Patent Document 1 has a drawback in that at least two or more coating steps are required to form an insulating layer, and workability is inferior.
また、特許文献2には、積層モータコア表面に、電気絶縁特性に優れ、かつ、従来より薄膜の絶縁被覆を被覆する方法として、樹脂エマルジョン、酸、酸化剤、金属イオン及び水を含有する自己析出型水性被覆組成物を接触させて、モータコアの表面に、未硬化の樹脂被膜を析出形成させ、次いで、該未硬化の樹脂被膜を加熱乾燥することにより、モータコアの表面に、電気絶縁被膜を形成することを特徴とする積層モータコア表面に電気絶縁被膜を被覆する方法が提案されている。 Further, Patent Document 2 discloses a self-precipitation containing a resin emulsion, an acid, an oxidant, metal ions and water as a method for coating a laminated motor core surface with an excellent electrical insulating property and a conventional thin film insulation coating. The mold aqueous coating composition is contacted to form an uncured resin film on the surface of the motor core, and then the uncured resin film is heated and dried to form an electrically insulating film on the surface of the motor core. There has been proposed a method of coating an electric insulating film on the surface of a laminated motor core characterized by the above.
しかしながら、この技術には、被膜成分として、作業環境の点で問題となるフッ化水素酸、クロム酸化合物を用いる問題があり、鋼板の前処理、処理工程、設備等が複雑で、上記技術は、工業的には、好ましい技術とはいえない。 However, this technique has a problem of using hydrofluoric acid and chromic acid compounds, which are problematic in terms of working environment, as coating components, and the pretreatment, processing steps, equipment, etc. of the steel sheet are complicated. Industrially, it is not a preferable technique.
本発明の目的は、モータコア表面に電気絶縁層を形成するにあたり、絶縁処理工程を短縮するとともに、絶縁被膜成分を改良することにより、電気絶縁層の膜厚を従来よりも薄膜化し、かつ、簡便に、電気絶縁特性の優れた絶縁被膜、特に、巻線との接触で問題になるコアのティースのコーナー部において、電気絶縁特性の優れた絶縁被膜を形成することができる被覆方法を提供することにある。 The object of the present invention is to shorten the insulating treatment process and improve the insulating coating component in forming the electrical insulating layer on the motor core surface, thereby reducing the thickness of the electrical insulating layer compared to the conventional method and simplifying the process. Furthermore, the present invention provides a coating method capable of forming an insulating film with excellent electrical insulation characteristics, particularly an insulating film with excellent electrical insulation characteristics at the corners of the core teeth, which is a problem in contact with a winding. It is in.
本発明者らは、従来の抱える上記課題を解決すべく鋭意検討した結果、積層モータコアの表面に、絶縁被膜形成剤として、ポリエステル樹脂及び/又はエポキシ樹脂とシリコーンの複合体の1種又は2種以上と、シリコーンパウダー、アルミナ、シリカ、水酸化アルミニュームの1種又は2種以上と、残部溶剤からなる処理剤を塗布し、乾燥することにより、従来技術より簡便に、モータコア表面上に、高耐電圧の電気絶縁性被膜を形成することができることを見出した。 As a result of intensive investigations to solve the above-described problems that have been encountered in the past, the present inventors have found that one or two of a composite of polyester resin and / or epoxy resin and silicone is used as an insulating film forming agent on the surface of the laminated motor core. By applying a treatment agent composed of one or more of silicone powder, alumina, silica, and aluminum hydroxide, and the remaining solvent, followed by drying, the surface of the motor core is more easily applied than the conventional technology. It has been found that an electric insulating film having a withstand voltage can be formed.
本発明は、上記知見に基づいてなされたものであり、その要旨は、以下のとおりである。 This invention is made | formed based on the said knowledge, The summary is as follows.
(1)積層モータコア表面に、ポリエステル樹脂とシリコーン、エポキシ樹脂とシリコーンの複合体、ポリエステル樹脂、エポキシ樹脂とシリコーンの複合体の1種又は2種以上と、シリコーンパウダー、アルミナ、シリカ、水酸化アルミニュウムの1種又は2種以上と、残部溶剤からなる処理剤を塗布し、電気絶縁被膜を形成することを特徴とする積層モータコア表面の絶縁被膜被覆方法。 (1) One or more of polyester resin and silicone, epoxy resin and silicone composite, polyester resin, epoxy resin and silicone composite, silicone powder, alumina, silica, aluminum hydroxide on the surface of the laminated motor core A method of coating an insulating coating on the surface of a laminated motor core, comprising applying one or more of the above and a treatment agent comprising the remaining solvent to form an electrical insulating coating.
(2)前記ポリエステル樹脂とシリコーン、エポキシ樹脂とシリコーン、及び、ポリエステル樹脂、エポキシ樹脂とシリコーン複合体の1種又は2種以上からなるベース液におけるポリエステル、エポキシの有機樹脂成分の割合が20〜80質量%であることを特徴とする前記(1)に記載の積層モータコア表面の絶縁被膜被覆方法。 (2) The ratio of the polyester and epoxy organic resin components in the base liquid composed of one or more of polyester resin and silicone, epoxy resin and silicone, and polyester resin, epoxy resin and silicone composite is 20 to 80. The method for coating an insulating film on the surface of a laminated motor core according to the above (1), characterized in that it is mass%.
(3)前記ポリエステル樹脂とシリコーン、エポキシ樹脂とシリコーン、及び、ポリエステル樹脂、エポキシ樹脂とシリコーン複合体が、ブロック構造を有するシリコーンポリマーの1種又は2種以上であることを特徴とする前記(1)又は(2)に記載の積層モータコア表面の絶縁被膜被覆方法。
(4)前記ポリエステル樹脂とシリコーン、エポキシ樹脂とシリコーン、及び、ポリエステル樹脂、エポキシ樹脂とシリコーン複合体の1種又は2種以上100質量部に対し、フィラー剤として、シリコーンパウダー、アルミナ、シリカ、水酸化アルミニュウムの1種又は2種以上10〜400質量部と溶剤物質5〜400質量部からなる処理剤を塗布し、電気絶縁被膜を形成することを特徴とする前記(1)〜(3)のいずれかに記載の積層モータコア表面の絶縁被膜被覆方法。
(3) The polyester resin and silicone, the epoxy resin and silicone, and the polyester resin, epoxy resin and silicone composite are one or more of silicone polymers having a block structure (1) ) Or the method for coating an insulating film on the surface of the laminated motor core according to (2).
(4) Silicon powder, alumina, silica, water as a filler with respect to 100 parts by mass of one or more of polyester resin and silicone, epoxy resin and silicone, and polyester resin, epoxy resin and silicone composite. (1) to (3) above, wherein an electrical insulating coating is formed by applying a treatment agent comprising one or more aluminum oxides in the range of 10 to 400 parts by mass and a solvent substance of 5 to 400 parts by mass. The insulating film coating method on the surface of the laminated motor core according to any one of the above.
(5)前記フィラー剤として使用するシリコーンパウダー、アルミナ、シリカ、水酸化アルミニュウム粉末の粒子径が0.5〜20μmであることを特徴とする前記(1)〜(4)のいずれかに記載の積層モータコア表面の絶縁被膜被覆方法。 (5) The particle size of the silicone powder, alumina, silica, or aluminum hydroxide powder used as the filler is 0.5 to 20 μm, according to any one of (1) to (4), A method for coating an insulating coating on the surface of a laminated motor core.
(6)前記処理剤中に含有される溶剤の沸点が100℃以上であることを特徴とする前記(1)〜(5)のいずれかに記載の積層モータコア表面の絶縁被膜被覆方法。 (6) The method for coating an insulating film on the surface of a laminated motor core according to any one of (1) to (5), wherein the solvent contained in the treating agent has a boiling point of 100 ° C. or higher.
(7)前記絶縁被膜溶液の調整段階において、超音波処理装置を用いて、40〜100KHzで1〜10分間処理した後、処理剤を塗布し、電気絶縁被膜を形成することを特徴とする前記(1)〜(6)のいずれかに記載の積層モータコア表面の絶縁被膜被覆方法。 (7) In the adjustment step of the insulating coating solution, after treating for 1 to 10 minutes at 40 to 100 KHz using an ultrasonic treatment apparatus, a processing agent is applied to form an electrical insulating coating. (1) The insulating film coating method on the surface of the laminated motor core according to any one of (6).
(8)前記絶縁被膜を積層コアの表面に塗布する工程において、回転冶具を用いて、ディップ処理を行った後、乾燥し、又は、乾燥を挟む1回又は2回以上の塗布処理を行うことを特徴とする前記(1)〜(7)のいずれかに記載の積層モータコア表面の絶縁被膜被覆方法。 (8) In the step of applying the insulating coating to the surface of the laminated core, after performing a dip treatment using a rotary jig, drying, or performing one or more coating treatments sandwiching the drying. The method for coating an insulating film on the surface of a laminated motor core according to any one of the above (1) to (7).
(9)前記乾燥工程において、40〜80℃での予備乾燥を含む120〜250℃での乾燥を行うことを特徴とする前記(8)に記載の積層モータコア表面の絶縁被膜被覆方法。 (9) In the said drying process, drying at 120-250 degreeC including preliminary drying at 40-80 degreeC is performed, The insulation film coating method of the laminated motor core surface as described in said (8) characterized by the above-mentioned.
本発明では、特殊なシリコーンポリマー成分を用いて、ディップ法により、コア絶縁被膜処理を行う。これにより、前処理等の特別な処理を必要とせず、電着塗装等の従来技術に比較して簡便に、かつ、低コストで、均一で緻密な絶縁被膜を形成することができる。また、従来被膜では、コアコーナー部の絶縁対策として、超厚塗りの被膜を形成することが余儀なくされていたが、その問題を、被膜を非常に緻密な膜に改質することで、薄膜化して、解決することが可能となった。 In the present invention, the core insulating coating treatment is performed by a dip method using a special silicone polymer component. Thereby, a special treatment such as pretreatment is not required, and a uniform and dense insulating film can be formed easily and at a low cost as compared with conventional techniques such as electrodeposition coating. In addition, with conventional coatings, it has been unavoidable to form ultra-thick coatings as a countermeasure against insulation at the core corners, but this problem can be reduced by reforming the coating to a very dense film. It became possible to solve this problem.
以下、本発明の構成を詳細に説明する。 Hereinafter, the configuration of the present invention will be described in detail.
本発明で対象とするモータコアは、複数枚の電磁鋼板製品板を出発材として、打ち抜き加工、カシメ工程等を経て成型されたコアである。 The motor core that is the subject of the present invention is a core that is formed through a punching process, a caulking process, and the like using a plurality of electromagnetic steel sheet product plates as a starting material.
本発明で使用する絶縁被膜剤は、ポリエステル樹脂とシリコーン、エポキシ樹脂とシリコーンの複合体、ポリエステル樹脂、エポキシ樹脂とシリコーンの複合体の1種又は2種以上とシリコーンパウダー、アルミナ、シリカ、水酸化アルミニュウムの1種又は2種以上と、残部溶剤からなる処理剤である。 The insulating coating agent used in the present invention is a polyester resin and silicone, an epoxy resin and silicone composite, a polyester resin, one or more of an epoxy resin and silicone composite, silicone powder, alumina, silica, and hydroxylation. It is a processing agent comprising one or more types of aluminum and the remaining solvent.
この際のベース液におけるポリエステル及び/又はエポキシ樹脂成分とシリコーンの割合は、厚膜化、耐熱性、ティース部のコーナー部への付着性、皮膜の耐クラック発生に対して重要であり、ポリエステル、エポキシ樹脂成分の割合は、20〜80質量%であることが好ましい。 The ratio of the polyester and / or epoxy resin component and silicone in the base solution at this time is important for thickening, heat resistance, adhesion to the corner of the teeth, and cracking resistance of the film. It is preferable that the ratio of an epoxy resin component is 20-80 mass%.
また、本発明の組成液で重要な役割を持つのがフィラー剤である。ポリエステル樹脂とシリコーン、エポキシ樹脂とシリコーン、及び、ポリエステル樹脂、エポキシ樹脂とシリコーンの1種又は2種以上100質量部に対し、フィラー剤として、シリコーンパウダー、アルミナ、シリカ、水酸化アルミニュウムの1種又は2種以上10〜400質量部と溶剤物質5〜400質量部が添加される。 In addition, a filler agent has an important role in the composition liquid of the present invention. One or two or more types of polyester resin and silicone, epoxy resin and silicone, and polyester resin, epoxy resin and silicone, or 100 parts by mass of silicone powder, alumina, silica, aluminum hydroxide or Two or more kinds of 10 to 400 parts by mass and 5 to 400 parts by mass of a solvent substance are added.
このフィラー剤の粉末として、粒子径0.5〜20μmサイズのものを添加すると、処理剤の表面張力を低下させて、ティースのコーナー部への液の付着性を向上させるのみでなく、絶縁性、耐熱性、乾燥性等を向上して、薄膜化を実現するための大きい原動力となる。 When this filler powder having a particle size of 0.5 to 20 μm is added, not only the surface tension of the treatment agent is lowered and the adhesion of the liquid to the corner portion of the teeth is improved, but also the insulating property. It is a great driving force for improving the heat resistance, drying property, etc., and realizing a thin film.
本発明における処理剤の分散には溶剤が用いられる。この溶剤としては、作業環境に問題の少ないグリコール系、アルコール系が用いられるが、乾燥時の被膜の性能から、溶剤の沸点が100℃以上のものが、より好ましい。これにより、短時間乾燥で、突沸のない緻密な絶縁被膜を形成することができる。 A solvent is used for dispersing the treatment agent in the present invention. As the solvent, glycol type and alcohol type which are less problematic in the working environment are used, but those having a boiling point of 100 ° C. or higher are more preferable in view of the performance of the coating film during drying. As a result, a dense insulating film free from bumping can be formed by drying for a short time.
この絶縁被膜処理溶液の調整段階において、超音波処理装置を用いて、40〜100KHzで1〜10分間処理することにより、溶液中のフィラーの均一分散が得られ、均一な被膜処理を行うのに有利である。 In the adjustment stage of this insulating film treatment solution, by performing treatment at 40-100 KHz for 1-10 minutes using an ultrasonic treatment apparatus, uniform dispersion of the filler in the solution is obtained, and uniform film treatment is performed. It is advantageous.
絶縁被膜剤を積層コアの表面に塗布する工程において、図2の(a)及び(b)に示すような回転冶具を用いて、コアを回転しながらディップ処理した後、乾燥し、又は、乾燥を挟む1回又は2回以上の塗布処理を行うと、コア前面に渡って均一な膜厚を容易に得ることができ、特に、ティース部の膜厚を均一化することができる。 In the step of applying the insulating coating agent to the surface of the laminated core, using a rotating jig as shown in FIGS. 2 (a) and (b), the core is rotated and dipped, and then dried or dried. When the coating process is performed once or more than two times, a uniform film thickness can be easily obtained over the front surface of the core, and in particular, the film thickness of the tooth portion can be made uniform.
乾燥工程においては、40〜80℃の予備乾燥を含め120〜250℃での乾燥を行うことでアウトガスがなく、密着性が優れ、緻密で、高耐電圧の絶縁被膜を得ることができる。乾燥温度と時間は、被膜成分、溶剤種、膜厚によって適宜選択する。 In the drying step, by performing drying at 120 to 250 ° C. including preliminary drying at 40 to 80 ° C., there is no outgas, excellent adhesion, a dense, high withstand voltage insulating film can be obtained. The drying temperature and time are appropriately selected depending on the coating component, solvent type, and film thickness.
次に、本発明の限定理由について述べる。 Next, the reason for limitation of the present invention will be described.
まず、本発明におけるベース液は、ポリエステルシリコーン、エポキシシリコーン、又は、ポリエステル−エポキシ複合シリコーンをベース液主成分として使用すると、付着性、密着性が優れる特徴がある。また、乾燥工程や、コア使用時の耐熱性と熱変化による膨張・収縮に追随する性質があり、100μm以上の厚膜処理においても、被膜のクラック発生や密着性低下等の問題がなく、安定した厚膜の形成を可能とする。 First, the base liquid in the present invention is characterized by excellent adhesion and adhesion when polyester silicone, epoxy silicone, or polyester-epoxy composite silicone is used as the main component of the base liquid. In addition, it has the property of following expansion and contraction due to heat resistance and thermal changes during use of the drying process and core, and even in thick film processing of 100 μm or more, there are no problems such as generation of cracks in the coating or reduction in adhesion, and stable It is possible to form a thick film.
これらのベース液は、乾燥後に緻密なシリコーンポリマー膜を形成し、鋼板への密着能が極めて優れた被覆を形成するので、絶縁性が優れた絶縁被膜を形成することができる。 Since these base liquids form a dense silicone polymer film after drying and form a coating with extremely excellent adhesion to a steel sheet, it is possible to form an insulating film with excellent insulating properties.
ポリエステルシリコーン、エポキシシリコーン、及び/又は、ポリエステル−エポキシ複合シリコーンからなるベース液中の有機樹脂分の比率は、20〜80質量部がよい。20質量部未満では、乾燥硬化後の被膜の硬度が高く、熱フレキシブルな性質が低下するので、10μm以上のような厚膜処理時に、被膜に微細なクラックが生じる場合がある。特に、耐熱試験のような高温−低温の繰り返し(ヒートショック試験:−40℃〜+170℃、1000サイクル)で、膜にクラックが生じる場合がある。 The ratio of the organic resin component in the base liquid composed of polyester silicone, epoxy silicone, and / or polyester-epoxy composite silicone is preferably 20 to 80 parts by mass. If it is less than 20 parts by mass, the hardness of the coating after drying and curing is high, and the heat-flexible properties are deteriorated. Therefore, fine cracks may occur in the coating during the thick film treatment of 10 μm or more. In particular, cracks may occur in the film by high-temperature-low temperature repetition (heat shock test: −40 ° C. to + 170 ° C., 1000 cycles) as in the heat resistance test.
一方、80質量部超では、液の粘性のコントロールが難しく、また、ヒートショック試験における耐熱性が不足するので好ましくない。 On the other hand, if it exceeds 80 parts by mass, it is difficult to control the viscosity of the liquid, and the heat resistance in the heat shock test is insufficient.
本発明におけるもう一つの主成分であるフィラー剤としては、シリコーンパウダー、アルミナ、シリカ、水酸化アルミニュウム粉末が用いられる。これらの粉末成分は、溶液の表面張力低下に有効である。ベース液100質量部当たり10〜400質量部の添加で、従来の課題であったティースのコーナー部分における被覆能の向上に絶大な効果をもたらす。 As the filler agent which is another main component in the present invention, silicone powder, alumina, silica and aluminum hydroxide powder are used. These powder components are effective in reducing the surface tension of the solution. Addition of 10 to 400 parts by mass per 100 parts by mass of the base liquid brings about a great effect in improving the covering ability at the corner portion of the teeth, which has been a conventional problem.
フィラー粒子は、特に、粒子径2〜15μmの場合、塗布性が優れ、粗大粒子が、コアコーナー部への溶液の付着硬化を促進するので、厚膜確保効果が大きい。 Especially when the filler particle has a particle diameter of 2 to 15 μm, the coatability is excellent, and the coarse particle promotes adhesion and hardening of the solution to the core corner portion, so that the effect of securing a thick film is great.
また、これらのフィラー剤は、絶縁性(耐電圧)向上に極めて大きい効果を発揮する。フィラー粒子径が0.5μm未満では、溶液の分散条件によっては、パウダー粒子の凝集が生じ、液の増粘性が増加して、コア全体に平坦な絶縁膜を形成することが困難になる。粒子径が20μm超では、表面張力の低下効果は大きいが、溶液中のパウダーの安定性が低下するので、溶液の循環や撹拌等を行っても、均質の膜を塗布するのが困難になる。 Moreover, these filler agents exhibit an extremely large effect in improving insulation (voltage resistance). When the filler particle diameter is less than 0.5 μm, depending on the dispersion condition of the solution, the powder particles may be aggregated to increase the viscosity of the liquid, making it difficult to form a flat insulating film on the entire core. When the particle diameter exceeds 20 μm, the effect of reducing the surface tension is great, but the stability of the powder in the solution is lowered, so that it is difficult to apply a homogeneous film even if the solution is circulated or stirred. .
また、粗粒子フィラーの添加は、絶縁性の向上に効果的で、同一被膜量(平均厚み)において、無添加に比較し、絶縁性向上効果が極めて優れている。 Moreover, the addition of the coarse particle filler is effective in improving the insulation, and the insulation improvement effect is extremely excellent compared with the case of no addition in the same coating amount (average thickness).
フィラーの添加量は、ベース液100質量部に対し、10質量部未満では、溶液表面張力低下効果や絶縁性向上効果が充分に得られない。一方、400質量部以上では、ベース液によるバインダー効果が不足して、乾燥後、絶縁膜に微細なクラックが発生するので、好ましくない。乾燥条件にも依存するが、安定して良好な添加量は、75〜300質量部である。 If the amount of filler added is less than 10 parts by mass with respect to 100 parts by mass of the base solution, the effect of lowering the solution surface tension and the effect of improving insulation cannot be sufficiently obtained. On the other hand, when the amount is 400 parts by mass or more, the binder effect due to the base liquid is insufficient, and fine cracks are generated in the insulating film after drying. Although depending on the drying conditions, the amount of the stable and good addition is 75 to 300 parts by mass.
本発明の処理剤の分散は溶剤によって行う。溶剤の沸点は100℃以上が好ましい。アルコール系溶剤のように、低沸点溶剤を用いると、コアの板間に染み込んだ処理剤が急激に分解、放出されて、突沸現象を起こし、膜面を荒らすので、好ましくない。一方、100℃以上の沸点の溶剤を用いると、溶剤成分の分解が被膜硬化反応に追随して徐々に生じ、突沸等の問題が生じない。 The treatment agent of the present invention is dispersed by a solvent. The boiling point of the solvent is preferably 100 ° C. or higher. Use of a low-boiling solvent such as an alcohol solvent is not preferable because the treatment agent soaked between the core plates is rapidly decomposed and released, causing a bumping phenomenon and roughening the film surface. On the other hand, when a solvent having a boiling point of 100 ° C. or higher is used, decomposition of the solvent component gradually occurs following the film curing reaction, and problems such as bumping do not occur.
このような問題から、溶剤としては、例えば、プロピレングリコール、プロピレングリコールメチルエーテルアセテートのようなグリコール系溶剤が、環境問題等の点から有利であり、また、揮発性が小さいため、工業的に使用する際には、溶液の安定性が優れていることから、作業性に有利で、緻密な膜を形成することができる。 From such a problem, as a solvent, for example, glycol solvents such as propylene glycol and propylene glycol methyl ether acetate are advantageous from the viewpoint of environmental problems and the like, and since they have low volatility, they are used industrially. In doing so, since the stability of the solution is excellent, it is advantageous in workability and a dense film can be formed.
本発明のような溶剤を用いたシリコンポリマーによる絶縁被膜処理においては、鋼板打ち抜き時に付着する打ち抜き油等の汚れの影響がなく、前処理を行うことなく、絶縁被膜処理を行うことができる。コアに絶縁膜を塗布処理する際は、溶液を、予め、20〜100KHzで超音波処理すると、フィラー剤の均一分散ができて有利である。 In the insulating film treatment with a silicon polymer using a solvent as in the present invention, the insulating film treatment can be performed without performing pretreatment without being affected by dirt such as punching oil adhering to the steel plate. When the insulating film is applied to the core, it is advantageous to perform ultrasonic treatment of the solution in advance at 20 to 100 KHz because the filler agent can be uniformly dispersed.
超音波処理する時間は、1分未満では、パウダーの粒度分布によっては凝集が生じる。10分以上では、超音波による溶液の温度上昇があるため好ましくない。しかしながら、冷却装置を設置した超音波処理工程を、溶液を循環して行えば、これらの問題は解決される。 When the ultrasonic treatment time is less than 1 minute, aggregation occurs depending on the particle size distribution of the powder. If it is 10 minutes or longer, the temperature of the solution increases due to ultrasonic waves, which is not preferable. However, these problems can be solved if the ultrasonic treatment process in which the cooling device is installed is performed by circulating the solution.
コア塗布における塗布方法は、図2に示すような回転冶具を用いてディップすると、より均一な塗膜を得ることができるので有利である。この塗布方法によれば、液の濃度、粘度、及び、コアを固定した冶具の回転数によって、塗布膜の厚みを制御することができる。また、回転冶具よる塗布は、液のコア全面へのまわり付きがよく、コアの平坦部の膜厚みを不必要に厚くしないためにも効果的である。 When the coating method in the core coating is dipped using a rotary jig as shown in FIG. 2, a more uniform coating film can be advantageously obtained. According to this coating method, the thickness of the coating film can be controlled by the concentration of the liquid, the viscosity, and the number of rotations of the jig to which the core is fixed. Further, the application by the rotating jig is good in that the liquid can wrap around the entire surface of the core, and is effective in preventing the film thickness of the flat portion of the core from being unnecessarily increased.
乾燥工程は、まず、40〜80℃で予備乾燥して大部分の溶剤を乾燥して、絶縁被膜表面の安定化を行った後、120〜250℃で10〜120分程度の乾燥を行うのがよい。このように、乾燥初期を徐加熱して乾燥することにより、アウトガスがなく、緻密な膜を形成することができる。 In the drying process, first, the majority of the solvent is dried by pre-drying at 40 to 80 ° C. to stabilize the surface of the insulating coating, and then drying is performed at 120 to 250 ° C. for about 10 to 120 minutes. Is good. In this way, by drying by heating slowly in the initial stage of drying, there is no outgas and a dense film can be formed.
また、絶縁被膜を重ね塗りする際は、塗布間の乾燥条件は重要である。この塗布間の乾燥は、100℃〜140℃がよい。100℃未満では、繰り返し塗布の際の溶液によって、前段階の膜が影響を受ける場合がある。140℃超の場合には、後処理液の塗布性が悪くなる等の問題がある。 In addition, when the insulating coating is repeatedly applied, the drying conditions between the coatings are important. Drying during this application is preferably 100 ° C to 140 ° C. If it is less than 100 ° C., the film in the previous stage may be affected by the solution during repeated application. When the temperature exceeds 140 ° C., there are problems such as poor applicability of the post-treatment liquid.
(実施例1)
図1(a)に示すような形状に打ち抜いた後、積層とカシメを行って作製した電磁鋼板コアを出発材として用いた。このコアに、表1に示す組成の溶液を、回転冶具を用いて、15rpm×15秒間、ディップ塗布し、乾燥を挟む3回の塗布焼き付け処理を行った。この際の乾燥は、塗布間の乾燥を、50℃×15分の予備乾燥の後、120℃×30分行い、最終乾燥を、同様に、予備乾燥を含む150℃×1Hr行った。
Example 1
After punching into a shape as shown in FIG. 1A, a magnetic steel sheet core produced by laminating and caulking was used as a starting material. A solution having the composition shown in Table 1 was applied to the core by dip coating at 15 rpm × 15 seconds using a rotary jig, and subjected to three coating baking processes sandwiching drying. In this case, the drying between coatings was performed at 120 ° C. for 30 minutes after the preliminary drying at 50 ° C. for 15 minutes, and the final drying was similarly performed at 150 ° C. for 1 hour including the preliminary drying.
この後、コアエッジ部の膜厚と耐電圧を測定した。結果を表1に示す。なお、平坦部膜厚≦70μm、耐電圧≧300Vを判定基準とした。 Thereafter, the film thickness and withstand voltage of the core edge portion were measured. The results are shown in Table 1. Note that the flat part film thickness ≦ 70 μm and the withstand voltage ≧ 300 V were used as criteria.
この試験の結果、本発明A1〜A4のポリエステル複合シリコンポリマーを用いた絶縁被膜では、前処理ナシで、2回塗布により、コーナー部に12〜20μmの被膜を形成することができ、絶縁膜が緻密なため、比較例のように、前処理−セラミック被膜のような多重塗りにしなくても、良好な耐電圧が得られた。 As a result of this test, in the insulating coating using the polyester composite silicon polymer of the present invention A1 to A4, a coating of 12 to 20 μm can be formed at the corner portion by applying twice by pretreatment, and the insulating film Due to the denseness, good withstand voltage was obtained without using multiple coating like the pretreatment-ceramic coating as in the comparative example.
特に、フィラー剤の平均粒子径が5μm以上の場合には、優れた絶縁性が得られた。 In particular, when the average particle diameter of the filler agent was 5 μm or more, excellent insulating properties were obtained.
この際のコア絶縁被膜を断面観察したところ、コーナー部にフィラー剤がベース絶縁被膜剤に混合された状態で付着していることを確認することができた。フィラー剤は、溶液表面張力の低下のみならず、コーナー部の絶縁性向上に、少なからず寄与していることが確認された。 When the cross-section of the core insulating film at this time was observed, it was confirmed that the filler agent adhered to the corner portion in a mixed state with the base insulating film agent. It was confirmed that the filler agent contributes not only to the reduction of the solution surface tension but also to the improvement of the insulating properties of the corner portion.
また、本発明A5〜A6のベース樹脂を複合した場合においても、概観が優れ、薄膜にもかかわらず、緻密で耐電圧の優れる絶縁被膜を形成することが確認された。 Further, even when the base resins of the present invention A5 to A6 were combined, it was confirmed that an excellent appearance was formed and a dense insulating film having excellent withstand voltage was formed despite the thin film.
(実施例2)
実施例1と同様に、打ち抜きの後、積層とカシメを行って作製した電磁鋼板コアを出発材として用いた。このコアに、表2に示す組成の溶液を、回転冶具を用いて、10rpm×20秒間、ディップ塗布し、実施例1と同様に、予備乾燥と乾燥を挟む2回の塗布焼き付け処理を行った。この際の乾燥は、塗布間の乾燥を、120℃×30分行い、最終乾燥を、150℃×1Hr行った。
(Example 2)
In the same manner as in Example 1, a magnetic steel sheet core manufactured by stacking and caulking after punching was used as a starting material. On this core, a solution having the composition shown in Table 2 was dip-coated at 10 rpm × 20 seconds using a rotary jig, and, as in Example 1, two coating baking processes sandwiching preliminary drying and drying were performed. . In this case, drying between coatings was performed at 120 ° C. for 30 minutes, and final drying was performed at 150 ° C. for 1 hour.
この際に用いたポリエステル−シリコーン複合ポリマーは、ブロック構造状の化合物で、ポリエステル成分比率は、45質量%のものを用いた。また、エポキシ−シリコーン複合ポリマーは、エポキシ成分比率が55質量%のものを用いた。 The polyester-silicone composite polymer used at this time was a block-structured compound having a polyester component ratio of 45% by mass. The epoxy-silicone composite polymer used was an epoxy component ratio of 55% by mass.
この後、コアエッジ部の膜厚と耐電圧を測定した。結果を表2に示す。なお、平坦部膜厚≦70μm、耐電圧≧300Vを判定基準とした。 Thereafter, the film thickness and withstand voltage of the core edge portion were measured. The results are shown in Table 2. Note that the flat part film thickness ≦ 70 μm and the withstand voltage ≧ 300 V were used as criteria.
この試験の結果、濃度をアップし、フィラー粒子径と配合比率を下地塗布でアップし、上塗りでフィラー比率を低下した本発明の溶液を塗布した場合、2回処理の条件で、コーナー部の被膜厚みとして20μm程度を確保することができ、外観、絶縁性の両立した絶縁被膜が得られた。 As a result of this test, when the solution of the present invention in which the concentration was increased, the filler particle size and the blending ratio were increased by undercoating, and the filler ratio was decreased by overcoating was applied, the coating on the corner portion was performed under the conditions of two treatments A thickness of about 20 μm could be secured, and an insulating film having both an appearance and an insulating property was obtained.
一方、溶剤としてIPA(沸点82℃)を用いた本発明C5は、コア端面部に溶剤の突沸マークと思われる泡状のムラがやや発生し、やや外観が劣る結果となった。また、溶液調整段階で、超音波により分散処理を行った本発明C6では、塗布膜が非常に均一で綺麗で、被膜特性もよく、塗布時の溶液の安定性が極めて良好で、分散向上効果が顕著に見られた。 On the other hand, in the present invention C5 using IPA (boiling point 82 ° C.) as a solvent, a bubble-like unevenness that seems to be a bump mark of the solvent was slightly generated on the core end face portion, and the appearance was slightly inferior. In addition, in the present invention C6 in which the dispersion treatment is performed by ultrasonic waves in the solution adjustment stage, the coating film is very uniform and clean, the coating properties are good, the stability of the solution at the time of coating is extremely good, and the dispersion improvement effect Was noticeable.
また、塗布間の乾燥を150℃で行った本発明C7は、重ね塗り時に溶液の弾きによる塗布ムラが発生し、絶縁性においても、他の120℃乾燥品に比較して、かなり劣る結果となった。 In addition, the present invention C7 in which drying between coatings was performed at 150 ° C. resulted in coating unevenness due to repelling of the solution at the time of overcoating, and the insulation was considerably inferior compared to other 120 ° C. dried products. became.
比較例のエポキシ樹脂のみによる処理剤を用いた場合には、光沢はあるが、膜の膨れによる不均一な塗布膜となり、また、コーナー部の膜厚が、平坦部に比較して薄くなる傾向があり、絶縁特性が不良であった。 When the treatment agent using only the epoxy resin of the comparative example is used, it is glossy, but it becomes a non-uniform coating film due to the swelling of the film, and the thickness of the corner portion tends to be thinner than that of the flat portion. The insulation characteristics were poor.
本発明によれば、前述したように、簡便に、かつ、低コストで、均一で緻密な絶縁被膜を形成することができ、さらに、コアコーナー部の被膜を薄膜化することができる。したがって、本発明は、電磁鋼板の絶縁被膜被覆技術として利用可能性が高いものである。 According to the present invention, as described above, a uniform and dense insulating coating can be formed easily and at low cost, and the core corner portion coating can be thinned. Therefore, the present invention has high applicability as a technique for covering an insulating steel sheet with an insulating film.
A コア
a コーナー部
b ティース
c 巻線
A Core a Corner part b Teeth c Winding
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006180076A JP5135532B2 (en) | 2006-06-29 | 2006-06-29 | Method for coating an insulating coating on the surface of a laminated motor core |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006180076A JP5135532B2 (en) | 2006-06-29 | 2006-06-29 | Method for coating an insulating coating on the surface of a laminated motor core |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2008011648A true JP2008011648A (en) | 2008-01-17 |
JP5135532B2 JP5135532B2 (en) | 2013-02-06 |
Family
ID=39069316
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006180076A Active JP5135532B2 (en) | 2006-06-29 | 2006-06-29 | Method for coating an insulating coating on the surface of a laminated motor core |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5135532B2 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012105420A (en) * | 2010-11-09 | 2012-05-31 | Mitsubishi Electric Corp | Insulating structure for motor and method for manufacturing the same |
CN103795194A (en) * | 2012-10-26 | 2014-05-14 | 三菱电机株式会社 | Method of manufacturing stator of electric rotating machine |
EP3079235A1 (en) * | 2015-04-10 | 2016-10-12 | Siemens Aktiengesellschaft | Electrically insulating coated pole iron in the rotor of an electrically rotating machine |
EP3389169B1 (en) * | 2015-12-07 | 2021-06-23 | Yoshikawa Kogyo Co., Ltd. | Laminated core manufacturing method, inner core, and outer core |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61127722A (en) * | 1984-11-26 | 1986-06-16 | Toshiba Chem Corp | Epoxy resin composition |
JPH05320285A (en) * | 1992-05-18 | 1993-12-03 | Toshiba Chem Corp | Resin composition and electrical equipment |
JPH07292078A (en) * | 1994-03-16 | 1995-11-07 | Ciba Geigy Ag | 1-component epoxy resin system for brook impregnation and heat immersion rolling |
JPH11167813A (en) * | 1997-12-02 | 1999-06-22 | Toshiba Chem Corp | Water-soluble insulating paste |
JP2002155192A (en) * | 2000-11-20 | 2002-05-28 | Hitachi Chem Co Ltd | Flame-retardant epoxy resin composition and electrical component prepared by using the same |
JP2003141933A (en) * | 2001-08-16 | 2003-05-16 | Arakawa Chem Ind Co Ltd | Resin composition for electric insulation, insulation material for electronic material, and their manufacturing method |
JP2003193263A (en) * | 2001-10-05 | 2003-07-09 | Nippon Steel Corp | Iron core having excellent insulation property of edge face and insulation film treatment method for edge face of iron core |
JP2004071649A (en) * | 2002-08-01 | 2004-03-04 | Sumitomo Special Metals Co Ltd | Method of improving adhesion of additional polyimide resin film |
JP2004129480A (en) * | 2002-03-20 | 2004-04-22 | Nippon Steel Corp | Magnetic member for electromagnetic apparatus and simple bundling method thereof |
-
2006
- 2006-06-29 JP JP2006180076A patent/JP5135532B2/en active Active
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61127722A (en) * | 1984-11-26 | 1986-06-16 | Toshiba Chem Corp | Epoxy resin composition |
JPH05320285A (en) * | 1992-05-18 | 1993-12-03 | Toshiba Chem Corp | Resin composition and electrical equipment |
JPH07292078A (en) * | 1994-03-16 | 1995-11-07 | Ciba Geigy Ag | 1-component epoxy resin system for brook impregnation and heat immersion rolling |
JPH11167813A (en) * | 1997-12-02 | 1999-06-22 | Toshiba Chem Corp | Water-soluble insulating paste |
JP2002155192A (en) * | 2000-11-20 | 2002-05-28 | Hitachi Chem Co Ltd | Flame-retardant epoxy resin composition and electrical component prepared by using the same |
JP2003141933A (en) * | 2001-08-16 | 2003-05-16 | Arakawa Chem Ind Co Ltd | Resin composition for electric insulation, insulation material for electronic material, and their manufacturing method |
JP2003193263A (en) * | 2001-10-05 | 2003-07-09 | Nippon Steel Corp | Iron core having excellent insulation property of edge face and insulation film treatment method for edge face of iron core |
JP2004285481A (en) * | 2001-10-05 | 2004-10-14 | Nippon Steel Corp | Iron core having excellent insulation property of edge face and insulation film treatment method for edge face of iron core |
JP2004129480A (en) * | 2002-03-20 | 2004-04-22 | Nippon Steel Corp | Magnetic member for electromagnetic apparatus and simple bundling method thereof |
JP2004071649A (en) * | 2002-08-01 | 2004-03-04 | Sumitomo Special Metals Co Ltd | Method of improving adhesion of additional polyimide resin film |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012105420A (en) * | 2010-11-09 | 2012-05-31 | Mitsubishi Electric Corp | Insulating structure for motor and method for manufacturing the same |
CN103795194A (en) * | 2012-10-26 | 2014-05-14 | 三菱电机株式会社 | Method of manufacturing stator of electric rotating machine |
EP3079235A1 (en) * | 2015-04-10 | 2016-10-12 | Siemens Aktiengesellschaft | Electrically insulating coated pole iron in the rotor of an electrically rotating machine |
WO2016162135A1 (en) * | 2015-04-10 | 2016-10-13 | Siemens Aktiengesellschaft | Iron pole parts which are coated in an electrically insulating manner in the rotor of an electric rotating machine |
EP3389169B1 (en) * | 2015-12-07 | 2021-06-23 | Yoshikawa Kogyo Co., Ltd. | Laminated core manufacturing method, inner core, and outer core |
Also Published As
Publication number | Publication date |
---|---|
JP5135532B2 (en) | 2013-02-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA3131693C (en) | Adhesively-laminated core, manufacturing method thereof, and electric motor | |
TW202027984A (en) | Laminated core, method of producing same, and rotating electric machine | |
US10790731B2 (en) | Methods of depositing coatings on electrical machine components | |
EP1589633A2 (en) | Insulated motor core and method for producing same | |
JP5135532B2 (en) | Method for coating an insulating coating on the surface of a laminated motor core | |
JP4568029B2 (en) | Iron core having excellent end face insulation and method for treating insulating coating on end face of iron core | |
WO2013008646A1 (en) | Self-repairing laminated structure and self-bonding insulated wire | |
JP6589783B2 (en) | Enameled wire, method for producing the enameled wire, coil using the enameled wire, and electrical component using the coil | |
CN102122855B (en) | Electrically-insulative coating, coating system and method | |
CN107240995B (en) | Rust prevention method for stator and rotor iron cores | |
JP2894942B2 (en) | Coating method | |
JP2007143386A (en) | Motor component having insulating coated film structure of one layer or two layers and its manufacturing method | |
JP2936194B2 (en) | Core insulation method for rotating electrical machines | |
TWI313305B (en) | ||
JP2008085077A (en) | Ring-shaped insulating coil board and its manufacturing method | |
JPS5946172A (en) | Method of impregnating or coating electric or electronic member | |
JP2021036600A5 (en) | ||
JP5102547B2 (en) | Insulated wire and manufacturing method thereof | |
JP2003264951A (en) | Motor core | |
JP4159308B2 (en) | Rotating electric machine for vehicle and manufacturing method thereof | |
JP2016195089A (en) | Enamel wire, coil using enamel wire, and electrical component using coil | |
JP4733841B2 (en) | Laminated iron core for electrical equipment with excellent magnetic properties | |
JP3570045B2 (en) | Method of forming insulating coating on electrical steel sheet | |
JP2012138289A (en) | Insulated conductor, method for producing the same and coil produced using the insulated conductor | |
JP2024070960A (en) | Method for manufacturing coil wire |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20080805 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20110202 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110222 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110421 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20111025 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20111222 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20121002 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20121015 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 5135532 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20151122 Year of fee payment: 3 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |