WO2014010196A1 - Air conditioning management device and air conditioning management system - Google Patents

Air conditioning management device and air conditioning management system Download PDF

Info

Publication number
WO2014010196A1
WO2014010196A1 PCT/JP2013/004083 JP2013004083W WO2014010196A1 WO 2014010196 A1 WO2014010196 A1 WO 2014010196A1 JP 2013004083 W JP2013004083 W JP 2013004083W WO 2014010196 A1 WO2014010196 A1 WO 2014010196A1
Authority
WO
WIPO (PCT)
Prior art keywords
information
temperature
history
environmental
air conditioning
Prior art date
Application number
PCT/JP2013/004083
Other languages
French (fr)
Japanese (ja)
Inventor
門田 淳
徳永 吉彦
小川 剛
農士 三瀬
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Publication of WO2014010196A1 publication Critical patent/WO2014010196A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/46Improving electric energy efficiency or saving
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/50Control or safety arrangements characterised by user interfaces or communication
    • F24F11/56Remote control
    • F24F11/58Remote control using Internet communication
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/64Electronic processing using pre-stored data

Definitions

  • the present invention relates to an air conditioning management device and an air conditioning management system.
  • air conditioning devices such as cooling and heating are not necessarily operated appropriately from the viewpoint of comfort and energy saving.
  • indoor air conditioning management for example, temperature management
  • a customary target temperature is set for ease of management.
  • the indoor air conditioning environment is affected by the outdoor environment (outside temperature, etc.).
  • the outdoor environment outside temperature, etc.
  • the indoor space may not always be kept in a comfortable state for the user.
  • the comfortable air-conditioning environment varies from user to user.
  • This invention is made
  • the objective is to provide the air-conditioning management system which can implement
  • An air conditioning management device is an air conditioning management device that manages an air conditioning device that varies the temperature of a space, and acquires an operation history that is a history of operation information including a target temperature of the air conditioning device.
  • a driving history acquisition unit an environmental information acquisition unit that acquires an environmental history that is a history of environmental information indicating an environmental state in the space or outside the space, and the driving history and the environmental history.
  • the storage unit stores a combination of the driving information and the environmental information that are associated with each other on the basis of the time.
  • An algorithm generation unit that generates an operation algorithm that indicates the target temperature of the air conditioner according to a state.
  • the algorithm generation unit sets the target temperature for the operation information associated with the environmental information in which the environmental state is a predetermined state. An average is determined and the operation algorithm is generated using the average of the target temperatures.
  • the air conditioning management device is configured to manage a plurality of the air conditioning devices that respectively change the temperatures of the plurality of spaces. Is done.
  • the operation history acquisition unit is configured to acquire the operation history of the corresponding air conditioner for each space.
  • the environment information acquisition unit is configured to acquire the corresponding environment history for each space.
  • the storage unit is configured to store, for each space, a combination of the driving information and the environment information associated with each other on the basis of time.
  • the algorithm generation unit obtains an average of the target temperature for the operation information associated with the environmental information in which the environmental state is a predetermined state for each space, and calculates an average of the target temperature and a predetermined threshold value.
  • the plurality of spaces are classified into a plurality of groups based on the comparison, and the operation algorithm is generated for each group.
  • the algorithm generation unit associates the environmental state with the environmental information in which the environmental state is a predetermined state with respect to the operation history of each of the plurality of spaces.
  • the selected operation information is selected, and the predetermined threshold is determined based on the target temperature indicated by the selected operation information.
  • the algorithm generation unit is associated with the environmental information in which the environmental state is a predetermined state for each group. An average of the target temperature is obtained for the operation information, and the operation algorithm using the average of the target temperature is generated.
  • An air conditioning management system includes an air conditioner that varies the temperature of a space, an air conditioning management device that manages the air conditioner, and environmental information that indicates the state of the environment inside or outside the space. And an environment detection unit for detecting.
  • the air conditioning management device is defined by any one of first to fifth embodiments.
  • the environment information acquisition unit is configured to acquire the environment information from the environment detection unit.
  • FIG. 10 is a flowchart illustrating a process for creating a control algorithm of the air conditioning management system according to the third embodiment. It is a figure which shows the control algorithm of the air-conditioning management system of Embodiment 3.
  • FIG. 2 shows the overall configuration of the air conditioning management system of this embodiment.
  • the air conditioning management system includes an air conditioner 1, a controller 2, a home gateway 3, a center server 4, and an information server 5.
  • the controller 2 and the center server 4 constitute an air conditioning management device that manages the air conditioning device 1 that varies the temperature of the space H.
  • the air conditioner 1 is installed in a space H (for example, a floor in a building, each room, or a wide public area) where the air conditioning environment is managed by this system.
  • the air conditioner 1 and the controller 2 are connected to the home network NT1.
  • the home network NT1 is connected to the Internet NT2 via the home gateway 3, and the center server 4 and the information server 5 are on the Internet NT2.
  • the home network NT1 may use any of power line carrier communication, communication using a LAN cable, communication using a dedicated cable, and wireless communication.
  • Fig. 1 shows the block configuration of the air conditioning management system.
  • the home gateway 3 is omitted.
  • the air conditioner 1 has a function of an air conditioner that changes the temperature (thermal environment) of the space H. That is, the air conditioner 1 is configured to vary the temperature of the space H.
  • the air conditioner 1 includes an operation unit 1a, and an operation state (operation / stop), a target temperature, and the like are set by a user operating the operation unit 1a. Further, the air conditioner 1 is also set to run / stop, target temperature, etc. by remote control by the controller 2.
  • the air conditioner 1 also has a function of transmitting information on actual operation history (history of operation / stop, target temperature, etc.) to the controller 2. That is, the air conditioner 1 is configured to transmit information (operation information) indicating its own operation state (operation / stop, target temperature, etc.) to the controller 2. Therefore, the air conditioner 1 transmits an operation history that is a history of operation information of the air conditioner 1 to the controller 2.
  • the controller 2 includes a device controller 2a, a receiver 2b, and a transmitter 2c.
  • the device control unit 2a is connected to the home network NT1 and remotely controls the air conditioner 1 by operating / stopping the air conditioner 1 and setting a target temperature.
  • the receiving unit 2b is connected to the home network NT1 and receives information from the air conditioner 1.
  • This receiving part 2b comprises the driving history acquisition part. That is, the receiving unit 2b functions as an operation history acquisition unit that acquires an operation history that is a history of operation information of the air conditioner 1.
  • the transmission unit 2 c is connected to the home network NT 1 and transmits information to the center server 4 via the home gateway 3.
  • the center server 4 includes a reception unit 4a, a storage timing control unit 4b, a storage unit 4c, an algorithm generation unit 4d, and a device control unit 4e.
  • the receiving unit 4a receives information from the controller 2 and the information server 5 via the Internet NT2.
  • the storage timing control unit 4b sets the timing for storing various information in the storage unit 4c.
  • the storage unit 4c stores various information.
  • the algorithm generation unit 4d creates a control algorithm for setting the operation / stop timing of the air conditioner 1 and the target temperature, and the device control unit 4e transmits the control algorithm (operation algorithm) to the controller 2.
  • the air conditioner 1 transmits past operation history information (each history of operation / stop, target temperature, etc.) to the controller 2.
  • the driving history information is information indicating the driving history. That is, the air conditioner 1 transmits an operation history that is a history of operation information to the controller 2.
  • the transmission timing of this operation history information (operation information) is, for example, when the settings (operation / stop, target temperature) of the air conditioner 1 are manually set by operating the operation unit 1a at regular intervals.
  • information on the installation location of the air conditioner 1 living room, kitchen, etc.
  • the operation information includes an installation location of the air conditioner 1, an operation state (operation / stop), and a target temperature.
  • the receiving unit 2 b acquires the operation history information from the air conditioner 1, and the transmission unit 2 c transmits the operation history information to the center server 4.
  • the receiving unit 4 a acquires operation history information from the controller 2.
  • the information server 5 stores environmental information (external temperature, humidity, etc.) related to the weather including the location of the space H as needed, and the receiving unit 4a of the center server 4 acquires environmental information from the information server 5. In this way, the receiving unit 4a acquires an environmental history that is a history of environmental information.
  • the environmental information indicates an environmental state that is the state of the environment (inside the space H or outside the space H).
  • the environmental state is a value indicating the state of the environment, and is, for example, a temperature inside the space H, a temperature outside the space H (outside air temperature), a humidity inside the space H, and a humidity outside the space H.
  • the information server 5 constitutes an environment detection unit that detects environment information indicating the state of the environment inside or outside the space H
  • the reception unit 4a of the center server 4 is configured to detect the environment inside or outside the space H.
  • An environment information acquisition unit is configured to acquire an environment history that is an environment information history indicating the environment state.
  • the operation history information is added with a time stamp indicating the time for each event such as operation / stop of the air conditioner 1, operation such as changing the target temperature, or operation state change. That is, the driving information indicates the driving state at a certain time. Therefore, the driving history is time-series data of driving states.
  • the environment information has a time stamp indicating the measurement time such as outside temperature and humidity. That is, the environmental information indicates the environmental state at a certain time. Therefore, the environmental history is time-series data of environmental conditions.
  • the storage timing control unit 4b of the center server 4 determines at which time each information is stored in the storage unit 4c based on each time stamp of the operation history information and the environment information. That is, the storage timing control unit 4b associates the driving information with the environmental information based on the time based on the driving history and the environmental history. For example, the storage timing control unit 4b acquires driving information indicating the driving state at the time closest to the predetermined time from the driving history, and acquires environmental information indicating the environmental state at the time closest to the predetermined time from the environmental history. The acquired driving information (driving state) and environmental information (environmental state) are associated with each other.
  • storage timing control part 4b memorize
  • This time includes, for example, a predetermined time every day, a time when the air conditioner 1 is operated by the user (operation / stop operation time, target temperature changing operation time), and the presence / absence of a person in the space H. There is a time when the absence state changes (using a human detection means timing (not shown)).
  • the storage timing control unit 4b sequentially stores the operation history information and environment information at each time (or in the vicinity of each time) determined as described above in association with each other in the storage unit 4c. Accordingly, the storage unit 4c stores a combination of driving information and environmental information associated with each other based on the time based on the driving history and the environmental history. That is, in the storage unit 4c, operation history information and environment information at each time determined by the storage timing control unit 4b are stored in association with each other in a time series as shown in FIG. FIG.
  • operation history 3 is a table format in which time, operation history (operation information), and environment information correspond to each other, and the operation history includes the installation location of the air conditioner 1, the on / off state of the air conditioner 1 (operation / stop state), Each item of the target temperature of the air conditioner 1 is included.
  • the algorithm generation unit 4d of the center server 4 periodically determines the optimal control algorithm of the air conditioner 1 based on each information stored in the storage unit 4c, and updates the control algorithm.
  • the algorithm generation unit 4d generates an operation algorithm that defines an environmental state condition (change condition) for changing the operation state of the air conditioner 1.
  • the operation algorithm includes a first algorithm (operation change algorithm) that defines an environmental state condition (operation change condition) for changing the operation state of the air conditioner 1, and an environmental state for setting the target temperature of the air conditioner 1. And a second algorithm (temperature setting algorithm) for defining the above condition (temperature setting condition).
  • operation change algorithm an environmental state condition
  • temperature setting algorithm a second algorithm for defining the above condition (temperature setting condition).
  • the operation change algorithm defines an operation of changing the operation state of the air conditioner 1 when the current state of the environment satisfies the operation change condition.
  • the operation change condition includes a condition (operation condition) for switching the air conditioner 1 from stop to operation and a condition (stop condition) for switching the air conditioner 1 from operation to stop.
  • the operation change algorithm defines an operation of changing the operation state of the air conditioner 1 from stop to operation when the current state of the environment satisfies the operation condition.
  • the operating condition is that the current state of the environment is the first environmental state.
  • the environmental state is the outside air temperature
  • the operating condition is that the current outside air temperature is equal to or higher than the ON temperature.
  • the first environmental state (on temperature) is determined by the environmental state (outside temperature) when the operation state of the air conditioner 1 is changed from the stop to the operation.
  • the algorithm generation unit 4d obtains an average of the environmental state with respect to the environmental information associated with the time when the operation state of the air conditioner 1 is changed from the stop to the operation based on the operation history and the environment history. Is selected as the first environmental state.
  • the average of the environmental state (outside air temperature) when the operation state of the air conditioner 1 is changed from the stop to the operation is adopted as the ON temperature.
  • the operation change algorithm defines an operation of changing the operation state of the air conditioner 1 from operation to stop when the current state of the environment satisfies the stop condition.
  • the stop condition is that the current state of the environment becomes the second environment state.
  • the stop condition is that the current outside air temperature is less than the off temperature.
  • the second environmental state (off temperature) is determined by the environmental state (outside temperature) when the operation state of the air conditioner 1 is changed from operation to stop.
  • the algorithm generation unit 4d obtains the average of the environmental state for the environmental information associated with the time when the operating state of the air conditioner 1 is changed from driving to stop based on the driving history and the environmental history, and the environmental state Is selected as the second environmental state.
  • the average of the environmental state (outside temperature) when the operating state of the air conditioner 1 changes from operation to stop is adopted as the off temperature.
  • the temperature setting condition is a condition for setting the target temperature of the air conditioner 1 to a target temperature (set temperature) according to the current state of the environment.
  • the temperature setting algorithm defines an operation of setting the target temperature of the air conditioner 1 to a set temperature corresponding to the temperature setting condition when the current state of the environment satisfies the temperature setting condition.
  • the temperature setting condition is that the current state of the environment becomes a predetermined state.
  • the temperature setting condition is that the current outside air temperature is included in a predetermined range.
  • the set temperature is determined by the operation state (target temperature) of the operation information associated with the environment information whose environmental state is the predetermined state.
  • the algorithm generation unit 4d obtains an average of the target temperatures for the operation information associated with the environmental information whose environmental state is a predetermined state, and selects the average of the target temperatures as the set temperature. In short, the average of the target temperatures in the operation information associated with the environmental information whose environmental state is the predetermined state is adopted as the set temperature.
  • FIG. 4 is a flowchart showing control algorithm creation processing by the algorithm generation unit 4d.
  • outside air temperature is used as environmental information (environmental state).
  • the air conditioner 1 performs a cooling operation in summer.
  • the algorithm generation unit 4d reads data in a predetermined period from the storage unit 4c to the current time (S1).
  • the algorithm generation unit 4d classifies the data read from the storage unit 4c for each installation location of the air conditioner 1 (S2), and starts an estimation process for each installation location (S3).
  • generation part 4d is the outside air temperature (on temperature) Ton when the air conditioner 1 starts an operation based on the history of the outside air temperature when the operation / stop state of the air conditioner 1 is switched from the stop to the operation. Is statistically estimated (S4). That is, the algorithm generation unit 4d uses the operation information and the environment information as the operation information that satisfies the predetermined (first) operation condition (the operation / stop state of the air conditioner 1 has been switched from stop to operation). Extract the corresponding environmental information (outside temperature). And the algorithm production
  • the algorithm generation unit 4d determines the outside air temperature (off temperature) Toff when the air conditioner 1 is stopped based on the history of the outside air temperature when the operation / stop state of the air conditioner 1 is switched from operation to stop. Statistical estimation is performed (S5). That is, the algorithm generation unit 4d satisfies the predetermined (second) operation condition (the operation / stop state of the air conditioner 1 has been switched from operation to stop) based on the extracted operation information and environment information. Extract environmental information (outside temperature) corresponding to driving information. And the algorithm production
  • the algorithm generation unit 4d statistically sets a target temperature (set temperature) Tm to be set when the air conditioner 1 is in operation, corresponding to the outside temperature based on the history of the target temperature and the outside temperature.
  • Estimate (S6) That is, the algorithm generation unit 4d extracts driving information (target temperature) corresponding to environmental information whose environmental state (outside air temperature) is a predetermined state (predetermined value) based on the driving information and the environmental information. And the algorithm production
  • the average value of the target temperature when the outside air temperature is the predetermined value Td2 is set as the target temperature Tm (Tmb) corresponding to the outside air temperature Td2, and the average value of the target temperature when the outside air temperature is the predetermined value Td3.
  • Tmb target temperature
  • Tdc target temperature
  • the algorithm generation unit 4d averages one or more target temperatures having the same environmental state (outside temperature) based on the operation history (target temperature) and the environment information (outside temperature), and this averaging An operation algorithm using the target temperature is generated.
  • the algorithm generation unit 4d obtains an average of the target temperature for the operation information associated with the environmental information whose environmental state (outside temperature) is a predetermined state (predetermined value), and operates using the average of the target temperature.
  • predetermined value predetermined state
  • the algorithm generation unit 4d determines whether or not the processing of steps S3 to S6 has been completed for all installation locations (S7). If the processes in steps S3 to S6 have not been completed for all the installation locations, the process returns to step S3, the installation locations are changed, and the above-described processing is repeated. When the processes of steps S3 to S6 are completed for all the installation locations, the process of this flowchart is terminated.
  • generation part 4d is the outside temperature (on temperature) Ton when the air conditioner 1 starts operation, the outside temperature (off temperature) Toff when the air conditioner 1 stops, the target temperature for each outside temperature (setting) Based on each estimation result of (temperature) Tm, an optimal control algorithm (operation algorithm) of the air conditioner 1 is determined.
  • FIG. 5 is an example of a control algorithm determined by the algorithm generation unit 4d.
  • the outside air temperature (on temperature) Ton when the air conditioner 1 starts operation and the outside temperature (off temperature) Toff when the air conditioner 1 stops are both the outside air temperature T1. That is, if the current outside air temperature (the current state of the environment) is less than the outside air temperature T1, the air conditioner 1 stops, and if the current outside air temperature is equal to or higher than the outside air temperature T1, the air conditioner 1 operates. Note that the current outside air temperature is obtained from the information server 5.
  • T1 ⁇ outside air temperature (current outside air temperature) ⁇ T2 the target temperature of the air conditioner 1 is set to the target temperature Tm12.
  • T2 outside air temperature
  • the target temperature of the air conditioner 1 is set. Is set to the target temperature Tm11 ( ⁇ Tm12).
  • the target temperature Tm12 is a target temperature Tm obtained for an outside air temperature of T1 or more and less than T2
  • the target temperature Tm11 is a target temperature Tm obtained for an outside air temperature of T2 or more.
  • the device control unit 4e transmits this control algorithm to the controller 2.
  • the device control unit 2a of the controller 2 performs remote control of the air conditioner 1 by operating / stopping the air conditioner 1, setting a target temperature, and the like based on this control algorithm.
  • controller 2 may present the control algorithm to the user with an image or the like, and prompt the manual operation of the air conditioner 1 according to the control algorithm.
  • outside air temperature in addition to the outside air temperature, indoor and outdoor humidity or the like may be used, and the outside air temperature and humidity may be used in combination.
  • air conditioning control corresponding to the usage for each user can be performed in correspondence with the external environment. Therefore, in this system, the comfort of the air-conditioning environment suitable for the user can be realized in consideration of the outdoor environment.
  • the average value calculation was used for deriving the outside air temperature Ton, the outside air temperature Toff, and the target temperature Tm, it may be derived using the least square method. That is, the average of the target temperatures may be obtained by an arithmetic mean or may be obtained by using a least square method.
  • the algorithm generation unit 4d may statistically estimate the boundary value of the outside air temperature at which the target temperature is switched based on the target temperature and the history of the outside air temperature.
  • the air conditioning management device of the present embodiment has the following first feature.
  • the air conditioning management device (the controller 2 and the center server 4) is an air conditioning management device that manages the operation of the air conditioning device 1 that fluctuates the temperature of the space H to be air-conditioned.
  • the operation history acquisition unit (reception unit 2b) is configured to acquire an operation history that is a history of the target temperature of the air conditioner 1.
  • the environment information acquisition unit (reception unit 4a) is configured to acquire environment information regarding the environment inside or outside the space H.
  • the storage unit 4c is configured to store driving history and environment information in association with each other in a time series.
  • the algorithm generation unit 4d is configured to generate an operation algorithm that indicates the target temperature of the air conditioner 1 according to the environmental state based on the operation history and the environmental information with reference to the storage unit 4c.
  • the air conditioning management device (the controller 2 and the center server 4) is an air conditioning management device that manages an air conditioning device that fluctuates the temperature of the space H, and includes an operation history acquisition unit (reception unit 2b) and environmental information acquisition. Unit (reception unit 4a), a storage unit 4c, and an algorithm generation unit 4d.
  • the operation history acquisition unit (reception unit 2b) is configured to acquire an operation history that is a history of operation information including the target temperature of the air conditioner 1.
  • the environment information acquisition unit (reception unit 4a) is configured to acquire an environment history that is a history of environment information indicating an environment state that is an environment state inside or outside the space H.
  • the storage unit 4c is configured to store a combination of driving information and environmental information associated with each other on the basis of time based on the driving history and the environmental history.
  • the algorithm generation unit 4d is configured to generate an operation algorithm that indicates the target temperature of the air conditioner 1 according to the environmental state based on the operation information and the environment information with reference to the storage unit 4c.
  • the air conditioning management device of the present embodiment has the following second feature.
  • the algorithm generation unit 4d averages one or more target temperatures having the same environmental state based on the driving history and the environmental information, and an operation algorithm using the averaged target temperatures. Is generated.
  • the algorithm generation unit 4d is configured to calculate an average of the target temperature for the operation information associated with the environmental information whose environmental state is the predetermined state, and generate an operation algorithm using the average of the target temperature.
  • the second feature is an arbitrary feature.
  • the air conditioning management system of the present embodiment includes an air conditioner 1 that varies the temperature of the space H to be air-conditioned, an air conditioning management device (controller 2 and center server 4) that manages the operation of the air conditioner 1, and a space. And an environment detection unit (information server 5) for detecting environment information related to the environment inside or outside the space H.
  • the air conditioning management device includes an operation history acquisition unit (reception unit 2b), an environment information acquisition unit (reception unit 4a), a storage unit 4c, and an algorithm generation unit 4d.
  • the operation history acquisition unit (reception unit 2b) is configured to acquire an operation history that is a history of the target temperature of the air conditioner 1.
  • the environment information acquisition unit (reception unit 4a) is configured to acquire environment information.
  • the storage unit 4c is configured to store driving history and environment information in association with each other in a time series.
  • the algorithm generation unit 4d is configured to generate an operation algorithm that indicates the target temperature of the air conditioner 1 according to the environmental state based on the operation history and the environmental information with reference to the storage unit 4c.
  • the air conditioning management system of the present embodiment includes an air conditioner 1 that varies the temperature of the space H, an air conditioning management device that manages the air conditioner 1, and an environment that indicates the state of the environment inside or outside the space H.
  • An environment detection unit (information server 5) for detecting information.
  • the air conditioning management device (the controller 2 and the center server 4) has the first feature and additionally has a second feature.
  • the environment information acquisition unit (reception unit 4a) is configured to acquire environment information from the environment detection unit (information server 5).
  • the air conditioning management device and the air conditioning management system of this embodiment it is possible to perform air conditioning control according to the usage for each user, corresponding to the external environment. Therefore, there is an effect that the comfort of the air-conditioning environment suitable for the user can be realized in consideration of the outdoor environment.
  • FIG. 6 shows the overall configuration of the air conditioning management system of the present embodiment.
  • the air conditioning management system includes an air conditioner 1, a controller 2, and an environment detection unit 6.
  • the environment detection unit 6 is provided in the space H in which the air-conditioning environment is managed by the present system, and the controller 2 receives from the environment detection unit 6 environmental information regarding the weather at the location of the space H (outside temperature, humidity). Etc.).
  • Each process of data storage and algorithm generation is executed by the controller 2 instead of the external center server. That is, the controller 2 constitutes an air conditioning management device.
  • FIG. 7 shows a block configuration of the controller 2.
  • the controller 2 includes a device control unit 2a and a reception unit 2b as in the first embodiment. Furthermore, the controller 2 also includes a storage timing control unit 4b, a storage unit 4c, and an algorithm generation unit 4d provided in the center server 4 of the first embodiment.
  • the device control unit 2a and the reception unit 2b, the storage timing control unit 4b, the storage unit 4c, and the algorithm generation unit 4d are configured to exchange information with each other in the controller 2.
  • the receiving unit 2 b of the controller 2 constitutes an environment information acquisition unit that acquires environment information from the environment detection unit 6.
  • each part of the controller 2 operates in the same manner as in the first embodiment, so that it is possible to perform air conditioning control corresponding to the usage for each user corresponding to the external environment. Therefore, in this system, the comfort of the air-conditioning environment suitable for the user can be realized in consideration of the outdoor environment.
  • FIG. 8 shows the overall configuration of the air conditioning management system of this embodiment.
  • the air conditioning management system provides a plurality of spaces (for example, a plurality of homes) H (H1 to H3) as targets of air conditioning management by the center server 4. That is, the air conditioning management device of the present embodiment is configured to manage a plurality of air conditioning devices 1 that vary the temperatures of the plurality of spaces H (H1 to H3), respectively.
  • Each of the spaces H1 to H3 includes an air conditioner 1, a controller 2, and a home gateway 3.
  • symbol is attached
  • the controller 2 and the center server 4 constitute an air conditioning management device.
  • the receiving unit 4a of the center server 4 acquires the operation history information of the air conditioners 1 in the spaces H1 to H3.
  • the receiving unit 4a acquires the environment information of the spaces H1 to H3 from the information server 5. .
  • the receiving unit 4a configures an operation history acquisition unit that acquires the operation history of the corresponding air conditioner 1 for each space H (H1 to H3).
  • the receiving unit 4a constitutes an environment information acquiring unit that acquires a corresponding environment history for each space H (H1 to H3).
  • the storage unit 4c of the center server 4 stores driving history information and environment information at each time determined by the storage timing control unit 4b in association with each other in time series for each of the spaces H1 to H3. That is, the storage unit 4c is configured to store, for each space H, a combination of driving information and environmental information associated with each other with respect to time.
  • outside temperature is used as environmental information.
  • the algorithm generation unit 4d obtains an average of the target temperatures for the operation information associated with the environmental information whose environmental state is the predetermined state for each space H. Next, the algorithm generation unit 4d classifies the plurality of spaces H (H1 to H3) into a plurality of groups based on a comparison between the target temperature average and a predetermined threshold value. Next, the algorithm generation unit 4d generates an operation algorithm for each group.
  • FIG. 9 is a flowchart showing a control algorithm creation process by the algorithm generation unit 4d of the center server 4.
  • each of the spaces H1 to H3 (home, etc.) is “a high setting group that tends to set the target temperature higher”, “a standard setting group that tends to set the target temperature as standard”, “ It is determined which of the “low setting group that tends to set the target temperature low” belongs. Note that the air conditioner 1 performs a cooling operation in summer.
  • the algorithm generation unit 4d reads all data in the spaces H1 to H3 in a predetermined period from the storage unit 4c to the current time (S11).
  • the algorithm generation unit 4d determines target temperatures for grouping from one or more target temperatures when the outside air temperature is the same. A threshold value is determined (S12).
  • the algorithm generating unit 4d selects the driving information associated with the environmental information in which the environmental state is the predetermined state with respect to the driving history of each of the plurality of spaces H1 to H3, and based on the target temperature indicated by the selected driving information. To determine a predetermined threshold.
  • the algorithm generation unit 4d averages one or a plurality of target temperatures when the outside air temperature is the same for each of the spaces H1 to H3 based on the operation history information and the environment information read in step S11. . Then, the algorithm generator 4d compares the target temperature Tmx averaged for each outside air temperature with the threshold values K1 and K2 for each of the spaces H1 to H3, and groups each of the spaces H1 to H3 for each outside air temperature. (S13). As described above, the algorithm generation unit 4d converts the plurality of spaces H (H1 to H3) into a plurality of groups (high setting group, standard setting group, low setting group) based on the comparison between the average of the target temperatures and the predetermined threshold values K1 and K2. Classification).
  • the space H where the target temperature Tmx> K1 at the outside air temperature Tf1 belongs to the high setting group at the outside air temperature Tf1.
  • the space H where K2 ⁇ target temperature Tmx ⁇ K1 belongs to the standard setting group at the outside air temperature Tf1.
  • the space H where the target temperature Tmx ⁇ K2 belongs to the low setting group at the outside air temperature Tf1.
  • the history of the target temperature at the outside air temperature Tf1 is 18 ° C., 19 ° C., 20 ° C., and 21 ° C.
  • the history of the target temperature at the outside air temperature Tf1 is 22 ° C., 23 ° C., 24 ° C., and 25 ° C.
  • the history of the target temperature at the outside air temperature Tf1 is 26 ° C., 27 ° C., 28 ° C., and 29 ° C.
  • the target temperature history at the outside air temperature Tf1 is 18 ° C., 19 ° C., 20 ° C., 21 ° C., 22 ° C., 23 ° C., 24 ° C., 25 ° C., 26 ° C., 27 ° C., 28 ° C. 29 ° C.
  • the target temperature Tmx in the space H3 averaged at the outside air temperature Tf1 is 27.5 ° C. Become. Therefore, the space H3 becomes the target temperature Tmx (27.5 ° C.)> K1 (25.3 ° C.), and becomes a high setting group at the outside air temperature Tf1.
  • the algorithm generation unit 4d averages one or more target temperatures when the outside air temperature is the same based on the operation history information and the environment information read in step S11. That is, the algorithm generation unit 4d derives a target temperature (set temperature) Tm (Tmy) for each outside air temperature in each group (S14). That is, the algorithm generation unit 4d obtains an average of the target temperatures (that is, the set temperature Tm) for the operation information associated with the environmental information whose environmental state is the predetermined state for each group.
  • the algorithm generation unit 4d classifies each space H into one of the high setting group, the standard setting group, and the low setting group for each outside air temperature, and the target temperature (set temperature) for each outside air temperature in each group. Tmy is set.
  • the algorithm generation unit 4d statistically calculates the outside air temperature Ton when the air conditioner 1 starts operation and the outside air temperature Toff when the air conditioner 1 stops for each of the high setting group, the standard setting group, and the low setting group. (S15).
  • the process of estimating the outside air temperature Ton when the air conditioner 1 starts operation and the outside air temperature Toff when the air conditioner 1 stops are also performed by an averaging process for each group.
  • the algorithm generation unit 4d instructs the operation of the air conditioner 1 using the target temperature Tmy for each outside air temperature in each group estimated as described above, the outside air temperature Ton at the start of operation, and the outside air temperature Toff at the time of stop.
  • a motion algorithm is generated for each group.
  • FIG. 10 is an example of a control algorithm (operation algorithm) determined by the algorithm generation unit 4d.
  • Y1 is a control algorithm for the high setting group
  • Y2 is a control algorithm for the low setting group.
  • the outside air temperature (on temperature) Ton when the air conditioner 1 starts operation and the outside temperature (off temperature) Toff when the air conditioner 1 stops are both the outside air temperature T11. . That is, if the current outside air temperature is less than the outside air temperature T11, the air conditioner 1 stops, and if the current outside air temperature is equal to or higher than the outside air temperature T11, the air conditioner 1 starts operation.
  • T11 ⁇ outside air temperature (current outside air temperature) ⁇ T12 the target temperature of the air conditioner 1 is set to the target temperature Tm22.
  • T12 ⁇ outside air temperature the target temperature of the air conditioner 1 is set to the target temperature Tm21 ( ⁇ Tm22).
  • the target temperature Tm22 is a target temperature (set temperature) Tm obtained for an outside air temperature of T11 or more and less than T12
  • the target temperature Tm21 is a target temperature (set temperature) obtained for an outside air temperature of T12 or more. Tm.
  • the outside air temperature (on temperature) Ton when the air conditioner 1 starts operation and the outside temperature (off temperature) Toff when the air conditioner 1 stops are both the outside temperature T21. . That is, if the current outside air temperature is lower than the outside air temperature T21, the air conditioner 1 stops, and if the current outside air temperature is equal to or higher than the outside air temperature T21, the air conditioner 1 starts operation.
  • T21 ⁇ outside air temperature (current outside air temperature) ⁇ T22 the target temperature Tm32 of the air conditioner 1 is set.
  • T22 ⁇ outside air temperature (current outside air temperature)
  • the target temperature Tm32 is a target temperature (set temperature) Tm obtained for an outside air temperature of T21 or more and less than T22
  • the target temperature Tm31 is a target temperature (set temperature) obtained for an outside air temperature of T22 or more. Tm.
  • target temperature Tm21> target temperature Tm31, target temperature Tm22> target temperature Tm32, T11> T21, and T12> T22 are set.
  • the apparatus control part 4e transmits the control algorithm according to the group to which the said space H belongs to the controller 2 based on the outside temperature acquired as environmental information for every space H.
  • the device control unit 2a of the controller 2 performs remote control of the air conditioner 1 by operating / stopping the air conditioner 1, setting a target temperature, and the like based on this control algorithm.
  • controller 2 may present the control algorithm to the user with an image or the like, and prompt the manual operation of the air conditioner 1 according to the control algorithm.
  • control algorithm operation algorithm
  • the control algorithm is created using the history of the other spaces H exhibiting the same tendency, so that air conditioning control with higher versatility is performed. be able to.
  • the air conditioning management device (the controller 2 and the center server 4) of this embodiment manages each operation of the air conditioning device 1 that varies the temperatures of the plurality of spaces H.
  • the operation history acquisition unit (reception unit 4a) acquires the operation history for each air conditioner 1.
  • the environment information acquisition unit (reception unit 4a) acquires environment information for each space H.
  • the storage unit 4c stores driving history and environmental information in association with each other in time series.
  • the algorithm generation unit 4d determines a target temperature threshold value for grouping from one or more target temperatures having the same environmental state based on the operation history and the environment information in all the spaces H.
  • the algorithm generation unit 4d For each space H, the algorithm generation unit 4d averages one or more target temperatures having the same environmental state based on the driving history and the environmental information, and compares the averaged target temperature with a threshold value. Thus, each of the plurality of spaces H is grouped for each state of the environment. For each group, the algorithm generation unit 4d averages one or more target temperatures having the same environmental state based on the operation history and the environmental information. The algorithm generation unit 4d generates an operation algorithm using the averaged target temperature for each group.
  • the air conditioning management device of the present embodiment has the following third feature.
  • the air conditioning management device (the controller 2 and the center server 4) is configured to manage the plurality of air conditioning devices 1 that respectively change the temperatures of the plurality of spaces H (H1 to H3).
  • the operation history acquisition unit (reception unit 4a) is configured to acquire the operation history of the corresponding air conditioner 1 for each space H (H1 to H3).
  • the environment information acquisition unit (reception unit 4a) is configured to acquire a corresponding environment history for each space H (H1 to H3).
  • the storage unit 4c is configured to store, for each space H (H1 to H3), a combination of driving information and environmental information associated with each other with reference to time.
  • the algorithm generation unit 4d obtains an average of the target temperature for the operation information associated with the environmental information in which the environmental state is the predetermined state for each space H, and based on the comparison between the average of the target temperature and a predetermined threshold
  • the space is classified into a plurality of groups, and an operation algorithm is generated for each group.
  • the air conditioning management device of the present embodiment has the following fourth feature.
  • the algorithm generation unit 4d selects driving information associated with environmental information in which the environmental state is a predetermined state with respect to the driving history of each of the plurality of spaces H1 to H3, and the selected driving information indicates A predetermined threshold is determined based on the target temperature.
  • the fourth feature is an arbitrary feature.
  • the air-conditioning management apparatus of the present embodiment includes the following fifth feature in addition to the third or fourth feature.
  • the algorithm generation unit 4d obtains an average of the target temperature for the operation information associated with the environmental information whose environmental state is the predetermined state for each group, and calculates an operation algorithm using the average of the target temperature. Configured to generate.
  • the fifth feature is an arbitrary feature.
  • the air conditioning management system of the present embodiment includes an air conditioner 1 that changes the temperature of the space H, an air conditioning management device that manages the air conditioner 1, and environmental information that indicates the state of the environment inside or outside the space H.
  • An environment detection unit (information server 5) for detection.
  • the air conditioning management device (the controller 2 and the center server 4) has the first feature and additionally has second to fifth features.
  • the environment information acquisition unit (reception unit 4a) is configured to acquire environment information from the environment detection unit (information server 5).

Abstract

This air conditioning management device, which manages an air conditioning device that changes the temperature of a space, is provided with: an operation history acquisition unit that acquires an operation history, which is a history of operation information including the target temperature for the air conditioning device; an environment information acquisition unit that acquires an environment history, which is a history of environment information indicating the environmental state, which is the state of the environment inside the space or outside the space; a recording unit that, on the basis of the operation history and the environment history, records a combination of operation information and environment information associated with each other with time as the baseline; and an algorithm generation unit that consults the recording unit, and on the basis of the operation information and the environment information, generates an operational algorithm designating the target temperature for the air conditioning device in accordance with the environmental state.

Description

空調管理装置、空調管理システムAir conditioning management device, air conditioning management system
 本発明は、空調管理装置、空調管理システムに関するものである。 The present invention relates to an air conditioning management device and an air conditioning management system.
 近年、省エネルギーの社会的要求が高まっている。 In recent years, social demands for energy conservation are increasing.
 しかし、空調管理の実態として、必ずしも快適性および省エネルギーの観点から冷房、暖房等の空調装置を適切に運用しているわけではない。特に、省エネルギーと快適性とが複雑に関係する屋内の空調管理(例えば、温度管理)に関しては、管理の容易さから慣習的な目標温度を設定している。 However, as an actual condition of air conditioning management, air conditioning devices such as cooling and heating are not necessarily operated appropriately from the viewpoint of comfort and energy saving. In particular, for indoor air conditioning management (for example, temperature management) in which energy saving and comfort are intricately related, a customary target temperature is set for ease of management.
 一方、例えばオフィス、店舗、工場等にいる利用者は、管理者の管理する空調環境下におり、自己の空調環境をコントロールできないことに対して不満がある利用者もいる。 On the other hand, for example, users in offices, stores, factories, etc. are in an air conditioning environment managed by an administrator, and some users are unhappy with the fact that their air conditioning environment cannot be controlled.
 そこで、利用者の空調環境に対する要望を各個人が操作する入力端末から収集し、収集された各要望に基づいて空調管理を行う方法が提案されている(例えば、文献1[日本国公開特許公報第2007-255835号]参照)。 In view of this, a method has been proposed in which user requests for the air-conditioning environment are collected from input terminals operated by each individual, and air-conditioning management is performed based on the collected requests (for example, Reference 1 [Japanese Published Patent Publication]. No. 2007-255835]).
 一般に、屋内の空調管理を行う場合、屋内の空調環境は、屋外環境(外気温等)の影響を受ける。しかしながら、外気温等の屋外環境を十分に考慮しないで空調管理を行うため、屋内空間は必ずしも利用者の快適な状態に保たれない場合がある。さらに、快適な空調環境も、利用者毎に異なる。 Generally, when performing indoor air conditioning management, the indoor air conditioning environment is affected by the outdoor environment (outside temperature, etc.). However, since air-conditioning management is performed without sufficiently considering the outdoor environment such as the outside air temperature, the indoor space may not always be kept in a comfortable state for the user. Furthermore, the comfortable air-conditioning environment varies from user to user.
 本発明は、上記事由に鑑みてなされたものであり、その目的は、屋外環境を考慮して、利用者に合った空調環境の快適性を実現することができる空調管理システムを提供することにある。 This invention is made | formed in view of the said reason, The objective is to provide the air-conditioning management system which can implement | achieve the comfort of the air-conditioning environment suitable for the user in consideration of the outdoor environment. is there.
 本発明に係る第1の形態の空調管理装置は、空間の温度を変動させる空調装置を管理する空調管理装置であって、前記空調装置の目標温度を含む運転情報の履歴である運転履歴を取得する運転履歴取得部と、前記空間内または前記空間外の環境の状態である環境状態を示す環境情報の履歴である環境履歴を取得する環境情報取得部と、前記運転履歴と前記環境履歴とに基づいて、時刻を基準にして互いに対応付けられた前記運転情報と前記環境情報との組み合わせを記憶する記憶部と、前記記憶部を参照し、前記運転情報および前記環境情報に基づいて、前記環境状態に応じた前記空調装置の前記目標温度を指示する動作アルゴリズムを生成するアルゴリズム生成部と、を備える。 An air conditioning management device according to a first aspect of the present invention is an air conditioning management device that manages an air conditioning device that varies the temperature of a space, and acquires an operation history that is a history of operation information including a target temperature of the air conditioning device. A driving history acquisition unit, an environmental information acquisition unit that acquires an environmental history that is a history of environmental information indicating an environmental state in the space or outside the space, and the driving history and the environmental history. Based on the driving information and the environmental information, the storage unit stores a combination of the driving information and the environmental information that are associated with each other on the basis of the time. An algorithm generation unit that generates an operation algorithm that indicates the target temperature of the air conditioner according to a state.
 本発明に係る第2の形態の空調管理装置では、第1の形態において、前記アルゴリズム生成部は、前記環境状態が所定状態である前記環境情報に対応付けられた前記運転情報について前記目標温度の平均を求め、前記目標温度の平均を用いた前記動作アルゴリズムを生成するように構成される。 In the air conditioning management device according to the second aspect of the present invention, in the first aspect, the algorithm generation unit sets the target temperature for the operation information associated with the environmental information in which the environmental state is a predetermined state. An average is determined and the operation algorithm is generated using the average of the target temperatures.
 本発明に係る第3の形態の空調管理装置では、第1または第2の形態において、前記空調管理装置は、複数の前記空間の温度を各々変動させる複数の前記空調装置を管理するように構成される。前記運転履歴取得部は、前記空間毎に、対応する前記空調装置の前記運転履歴を取得するように構成される。前記環境情報取得部は、前記空間毎に、対応する前記環境履歴を取得するように構成される。前記記憶部は、前記空間毎に、時刻を基準にして互いに対応付けられた前記運転情報と前記環境情報との組み合わせを記憶するように構成される。前記アルゴリズム生成部は、前記空間毎に、前記環境状態が所定状態である前記環境情報に対応付けられた前記運転情報について前記目標温度の平均を求め、前記目標温度の平均と所定の閾値との比較に基づいて前記複数の空間を複数のグループに分類し、前記グループ毎に、前記動作アルゴリズムを生成するように構成される。 In the air conditioning management device according to the third aspect of the present invention, in the first or second aspect, the air conditioning management device is configured to manage a plurality of the air conditioning devices that respectively change the temperatures of the plurality of spaces. Is done. The operation history acquisition unit is configured to acquire the operation history of the corresponding air conditioner for each space. The environment information acquisition unit is configured to acquire the corresponding environment history for each space. The storage unit is configured to store, for each space, a combination of the driving information and the environment information associated with each other on the basis of time. The algorithm generation unit obtains an average of the target temperature for the operation information associated with the environmental information in which the environmental state is a predetermined state for each space, and calculates an average of the target temperature and a predetermined threshold value. The plurality of spaces are classified into a plurality of groups based on the comparison, and the operation algorithm is generated for each group.
 本発明に係る第4の形態の空調管理装置では、第3の形態において、前記アルゴリズム生成部は、前記複数の空間それぞれの前記運転履歴に関して前記環境状態が所定状態である前記環境情報に対応付けられた前記運転情報を選択し、選択された前記運転情報が示す前記目標温度に基づいて前記所定の閾値を決定するように構成される。 In the air conditioning management device according to a fourth aspect of the present invention, in the third aspect, the algorithm generation unit associates the environmental state with the environmental information in which the environmental state is a predetermined state with respect to the operation history of each of the plurality of spaces. The selected operation information is selected, and the predetermined threshold is determined based on the target temperature indicated by the selected operation information.
 本発明に係る第5の形態の空調管理装置では、第3または第4の形態において、前記アルゴリズム生成部は、前記グループ毎に、前記環境状態が所定状態である前記環境情報に対応付けられた前記運転情報について前記目標温度の平均を求め、前記目標温度の平均を用いた前記動作アルゴリズムを生成するように構成される。 In the air conditioning management device according to the fifth aspect of the present invention, in the third or fourth aspect, the algorithm generation unit is associated with the environmental information in which the environmental state is a predetermined state for each group. An average of the target temperature is obtained for the operation information, and the operation algorithm using the average of the target temperature is generated.
 本発明に係る第6の形態の空調管理システムは、空間の温度を変動させる空調装置と、前記空調装置を管理する空調管理装置と、前記空間内または前記空間外の環境の状態を示す環境情報を検出する環境検出部と、を備える。前記空調管理装置は、第1~第5の形態のいずれか1つにより定義される。前記環境情報取得部は、前記環境検出部から前記環境情報を取得するように構成される。 An air conditioning management system according to a sixth aspect of the present invention includes an air conditioner that varies the temperature of a space, an air conditioning management device that manages the air conditioner, and environmental information that indicates the state of the environment inside or outside the space. And an environment detection unit for detecting. The air conditioning management device is defined by any one of first to fifth embodiments. The environment information acquisition unit is configured to acquire the environment information from the environment detection unit.
実施形態1の空調管理システムの構成を示すブロック図である。It is a block diagram which shows the structure of the air-conditioning management system of Embodiment 1. 実施形態1の空調管理システムの全体構成を示す図である。It is a figure which shows the whole structure of the air-conditioning management system of Embodiment 1. 実施形態1の空調管理システムの記憶部のデータを示すテーブルである。It is a table which shows the data of the memory | storage part of the air-conditioning management system of Embodiment 1. 実施形態1の空調管理システムの制御アルゴリズムの作成処理を示すフローチャートである。It is a flowchart which shows the preparation process of the control algorithm of the air-conditioning management system of Embodiment 1. 実施形態1の空調管理システムの制御アルゴリズムを示す図である。It is a figure which shows the control algorithm of the air-conditioning management system of Embodiment 1. 実施形態2の空調管理システムの全体構成を示す図である。It is a figure which shows the whole structure of the air-conditioning management system of Embodiment 2. 実施形態2の空調管理システムの構成を示すブロック図である。It is a block diagram which shows the structure of the air-conditioning management system of Embodiment 2. 実施形態3の空調管理システムの全体構成を示す図である。It is a figure which shows the whole structure of the air-conditioning management system of Embodiment 3. 実施形態3の空調管理システムのの制御アルゴリズムの作成処理を示すフローチャートである。10 is a flowchart illustrating a process for creating a control algorithm of the air conditioning management system according to the third embodiment. 実施形態3の空調管理システムのの制御アルゴリズムを示す図である。It is a figure which shows the control algorithm of the air-conditioning management system of Embodiment 3.
  (実施形態1)
 図2は、本実施形態の空調管理システムの全体構成を示す。空調管理システムは、空調装置1と、コントローラ2と、ホームゲートウェイ3と、センターサーバ4と、情報サーバ5と、で構成される。なお、コントローラ2とセンターサーバ4とが、空間Hの温度を変動させる空調装置1を管理する空調管理装置を構成する。
(Embodiment 1)
FIG. 2 shows the overall configuration of the air conditioning management system of this embodiment. The air conditioning management system includes an air conditioner 1, a controller 2, a home gateway 3, a center server 4, and an information server 5. The controller 2 and the center server 4 constitute an air conditioning management device that manages the air conditioning device 1 that varies the temperature of the space H.
 そして、空調装置1は、本システムによって空調環境を管理される空間(例えば建物内のフロア、各部屋、或いは広域な公共エリア)Hに設置されている。また、空調装置1と、コントローラ2とは、宅内ネットワークNT1に接続し、宅内ネットワークNT1は、ホームゲートウェイ3を介してインターネットNT2に接続しており、センターサーバ4および情報サーバ5がインターネットNT2上に存在する。なお、宅内ネットワークNT1は、電力線搬送通信と、LANケーブルを用いた通信と、専用ケーブルを用いた通信と、無線通信とのいずれを用いてもよい。 The air conditioner 1 is installed in a space H (for example, a floor in a building, each room, or a wide public area) where the air conditioning environment is managed by this system. The air conditioner 1 and the controller 2 are connected to the home network NT1. The home network NT1 is connected to the Internet NT2 via the home gateway 3, and the center server 4 and the information server 5 are on the Internet NT2. Exists. The home network NT1 may use any of power line carrier communication, communication using a LAN cable, communication using a dedicated cable, and wireless communication.
 図1は、空調管理システムのブロック構成を示す。なお、図1において、ホームゲートウェイ3は省略している。 Fig. 1 shows the block configuration of the air conditioning management system. In FIG. 1, the home gateway 3 is omitted.
 空調装置1は、空間Hの温度(温熱環境)を変動させるエアーコンディショナの機能を有する。つまり、空調装置1は、空間Hの温度を変動させるように構成される。空調装置1は、操作部1aを具備しており、利用者が操作部1aを操作することによって、動作状態(運転・停止)、目標温度等が設定される。さらに、空調装置1は、コントローラ2による遠隔制御によっても、運転・停止、目標温度等が設定される。また、空調装置1は、実際の運転履歴の情報(運転・停止、目標温度等の各履歴)を、コントローラ2へ送信する機能も有する。つまり、空調装置1は、自身の運転状態(運転・停止、目標温度等)を示す情報(運転情報)をコントローラ2に送信するように構成される。したがって、空調装置1は、空調装置1の運転情報の履歴である運転履歴をコントローラ2に送信する。 The air conditioner 1 has a function of an air conditioner that changes the temperature (thermal environment) of the space H. That is, the air conditioner 1 is configured to vary the temperature of the space H. The air conditioner 1 includes an operation unit 1a, and an operation state (operation / stop), a target temperature, and the like are set by a user operating the operation unit 1a. Further, the air conditioner 1 is also set to run / stop, target temperature, etc. by remote control by the controller 2. The air conditioner 1 also has a function of transmitting information on actual operation history (history of operation / stop, target temperature, etc.) to the controller 2. That is, the air conditioner 1 is configured to transmit information (operation information) indicating its own operation state (operation / stop, target temperature, etc.) to the controller 2. Therefore, the air conditioner 1 transmits an operation history that is a history of operation information of the air conditioner 1 to the controller 2.
 コントローラ2は、機器制御部2aと、受信部2bと、送信部2cとを備える。 The controller 2 includes a device controller 2a, a receiver 2b, and a transmitter 2c.
 機器制御部2aは、宅内ネットワークNT1に接続しており、空調装置1の運転・停止、目標温度の設定等を行って、空調装置1を遠隔制御する。 The device control unit 2a is connected to the home network NT1 and remotely controls the air conditioner 1 by operating / stopping the air conditioner 1 and setting a target temperature.
 受信部2bは、宅内ネットワークNT1に接続しており、空調装置1から情報を受信する。この受信部2bが、運転履歴取得部を構成している。つまり、受信部2bは、空調装置1の運転情報の履歴である運転履歴を取得する運転履歴取得部として機能する。 The receiving unit 2b is connected to the home network NT1 and receives information from the air conditioner 1. This receiving part 2b comprises the driving history acquisition part. That is, the receiving unit 2b functions as an operation history acquisition unit that acquires an operation history that is a history of operation information of the air conditioner 1.
 送信部2cは、宅内ネットワークNT1に接続しており、センターサーバ4へホームゲートウェイ3経由で情報を送信する。 The transmission unit 2 c is connected to the home network NT 1 and transmits information to the center server 4 via the home gateway 3.
 センターサーバ4は、受信部4aと、記憶タイミング制御部4bと、記憶部4cと、アルゴリズム生成部4dと、機器制御部4eとを備える。 The center server 4 includes a reception unit 4a, a storage timing control unit 4b, a storage unit 4c, an algorithm generation unit 4d, and a device control unit 4e.
 受信部4aは、インターネットNT2経由で、コントローラ2および情報サーバ5から情報を受信する。 The receiving unit 4a receives information from the controller 2 and the information server 5 via the Internet NT2.
 記憶タイミング制御部4bは、記憶部4cに各種情報を記憶させるタイミングを設定する。 The storage timing control unit 4b sets the timing for storing various information in the storage unit 4c.
 記憶部4cは、各種情報を記憶する。 The storage unit 4c stores various information.
 アルゴリズム生成部4dは、空調装置1の運転・停止タイミングや、目標温度を設定する制御アルゴリズムを作成し、機器制御部4eは、この制御アルゴリズム(動作アルゴリズム)をコントローラ2へ送信する。 The algorithm generation unit 4d creates a control algorithm for setting the operation / stop timing of the air conditioner 1 and the target temperature, and the device control unit 4e transmits the control algorithm (operation algorithm) to the controller 2.
 次に、本空調管理システムの動作について説明する。 Next, the operation of this air conditioning management system will be described.
 まず、空調装置1は、過去の運転履歴情報(運転・停止、目標温度等の各履歴)を、コントローラ2へ送信する。運転履歴情報は、運転履歴を示す情報である。つまり、空調装置1は、運転情報の履歴である運転履歴をコントローラ2へ送信する。この運転履歴情報(運転情報)の送信タイミングは、一定時間毎、空調装置1の設定(運転・停止、目標温度)が操作部1aの操作によって手動設定されたとき等である。また、運転履歴情報には、空調装置1の設置場所の情報(居間、台所等)が付加されている。例えば、運転情報は、空調装置1の設置場所と、動作状態(運転・停止)と、目標温度と、を含む。 First, the air conditioner 1 transmits past operation history information (each history of operation / stop, target temperature, etc.) to the controller 2. The driving history information is information indicating the driving history. That is, the air conditioner 1 transmits an operation history that is a history of operation information to the controller 2. The transmission timing of this operation history information (operation information) is, for example, when the settings (operation / stop, target temperature) of the air conditioner 1 are manually set by operating the operation unit 1a at regular intervals. In addition, information on the installation location of the air conditioner 1 (living room, kitchen, etc.) is added to the operation history information. For example, the operation information includes an installation location of the air conditioner 1, an operation state (operation / stop), and a target temperature.
 コントローラ2では、受信部2bが空調装置1から運転履歴情報を取得し、送信部2cが、運転履歴情報をセンターサーバ4へ送信する。センターサーバ4では、受信部4aがコントローラ2から運転履歴情報を取得する。 In the controller 2, the receiving unit 2 b acquires the operation history information from the air conditioner 1, and the transmission unit 2 c transmits the operation history information to the center server 4. In the center server 4, the receiving unit 4 a acquires operation history information from the controller 2.
 情報サーバ5は、空間Hの所在地を含む地域の気象に関する環境情報(外気温、湿度等)を随時格納しており、センターサーバ4の受信部4aは、情報サーバ5から環境情報を取得する。このようにして、受信部4aは、環境情報の履歴である環境履歴を取得する。環境情報は、環境(空間H内または空間H外の環境)の状態である環境状態を示す。環境状態は、環境の状態を示す値であり、例えば、空間H内の温度、空間H外の温度(外気温)、空間H内の湿度、空間H外の湿度である。すなわち、情報サーバ5が、空間H内または空間H外の環境の状態を示す環境情報を検出する環境検出部を構成し、センターサーバ4の受信部4aが、空間H内または空間H外の環境の状態である環境状態を示す環境情報の履歴である環境履歴を取得する環境情報取得部を構成している。 The information server 5 stores environmental information (external temperature, humidity, etc.) related to the weather including the location of the space H as needed, and the receiving unit 4a of the center server 4 acquires environmental information from the information server 5. In this way, the receiving unit 4a acquires an environmental history that is a history of environmental information. The environmental information indicates an environmental state that is the state of the environment (inside the space H or outside the space H). The environmental state is a value indicating the state of the environment, and is, for example, a temperature inside the space H, a temperature outside the space H (outside air temperature), a humidity inside the space H, and a humidity outside the space H. That is, the information server 5 constitutes an environment detection unit that detects environment information indicating the state of the environment inside or outside the space H, and the reception unit 4a of the center server 4 is configured to detect the environment inside or outside the space H. An environment information acquisition unit is configured to acquire an environment history that is an environment information history indicating the environment state.
 運転履歴情報は、空調装置1の運転・停止、目標温度の変更等の操作時や運転状態変化時などのイベント毎の時刻を示すタイムスタンプが付加されている。つまり、運転情報は、ある時刻における運転状態を示す。したがって、運転履歴は、運転状態の時系列データである。 The operation history information is added with a time stamp indicating the time for each event such as operation / stop of the air conditioner 1, operation such as changing the target temperature, or operation state change. That is, the driving information indicates the driving state at a certain time. Therefore, the driving history is time-series data of driving states.
 環境情報は、外気温、湿度等の測定時刻を示すタイムスタンプが付加されている。つまり、環境情報は、ある時刻における環境状態を示す。したがって、環境履歴は、環境状態の時系列データである。 The environment information has a time stamp indicating the measurement time such as outside temperature and humidity. That is, the environmental information indicates the environmental state at a certain time. Therefore, the environmental history is time-series data of environmental conditions.
 そして、センターサーバ4の記憶タイミング制御部4bは、運転履歴情報、環境情報の各タイムスタンプに基づいて、どの時刻における各情報を記憶部4cに格納するかを決定する。つまり、記憶タイミング制御部4bは、運転履歴と環境履歴とに基づいて、時刻を基準にして運転情報と環境情報とを互いに対応付ける。例えば、記憶タイミング制御部4bは、所定の時刻に最も近い時刻における運転状態を示す運転情報を運転履歴から取得し、所定の時刻に最も近い時刻における環境状態を示す環境情報を環境履歴から取得し、取得された運転情報(運転状態)と環境情報(環境状態)とを互いに対応付ける。そして、記憶タイミング制御部4bは、時刻を基準にして互いに対応付けられた運転情報と環境情報との組み合わせを記憶部4cに記憶させる。この時刻には、例えば、毎日において予め決められた所定時刻、空調装置1が利用者によって操作された時刻(運転・停止操作時刻、目標温度の変更操作時刻)、空間H内の人の在・不在状態が変化した時刻(図示しない人検出手段タイミングを用いる)などがある。 Then, the storage timing control unit 4b of the center server 4 determines at which time each information is stored in the storage unit 4c based on each time stamp of the operation history information and the environment information. That is, the storage timing control unit 4b associates the driving information with the environmental information based on the time based on the driving history and the environmental history. For example, the storage timing control unit 4b acquires driving information indicating the driving state at the time closest to the predetermined time from the driving history, and acquires environmental information indicating the environmental state at the time closest to the predetermined time from the environmental history. The acquired driving information (driving state) and environmental information (environmental state) are associated with each other. And the memory | storage timing control part 4b memorize | stores the combination of the driving | operation information and environmental information mutually matched on the basis of time in the memory | storage part 4c. This time includes, for example, a predetermined time every day, a time when the air conditioner 1 is operated by the user (operation / stop operation time, target temperature changing operation time), and the presence / absence of a person in the space H. There is a time when the absence state changes (using a human detection means timing (not shown)).
 記憶タイミング制御部4bは、上述のように決定した各時刻(または各時刻の近傍)における運転履歴情報、環境情報を互いに対応付けて、記憶部4cに順次格納していく。これによって、記憶部4cは、運転履歴と環境履歴とに基づいて、時刻を基準にして互いに対応付けられた運転情報と環境情報との組み合わせを記憶する。すなわち、記憶部4cには、記憶タイミング制御部4bが決めた各時刻における運転履歴情報、環境情報が、時系列に沿って互いに対応付けて、図3のように格納されている。図3は、時刻、運転履歴(運転情報)、環境情報が互いに対応したテーブル形式であり、運転履歴は、空調装置1の設置場所、空調装置1のオン・オフ状態(運転・停止状態)、空調装置1の目標温度の各項目を有する。 The storage timing control unit 4b sequentially stores the operation history information and environment information at each time (or in the vicinity of each time) determined as described above in association with each other in the storage unit 4c. Accordingly, the storage unit 4c stores a combination of driving information and environmental information associated with each other based on the time based on the driving history and the environmental history. That is, in the storage unit 4c, operation history information and environment information at each time determined by the storage timing control unit 4b are stored in association with each other in a time series as shown in FIG. FIG. 3 is a table format in which time, operation history (operation information), and environment information correspond to each other, and the operation history includes the installation location of the air conditioner 1, the on / off state of the air conditioner 1 (operation / stop state), Each item of the target temperature of the air conditioner 1 is included.
 そして、センターサーバ4のアルゴリズム生成部4dは、記憶部4cに蓄積された各情報に基づいて、空調装置1の最適な制御アルゴリズムを定期的に決定し、制御アルゴリズムを更新していく。 Then, the algorithm generation unit 4d of the center server 4 periodically determines the optimal control algorithm of the air conditioner 1 based on each information stored in the storage unit 4c, and updates the control algorithm.
 本実施形態では、アルゴリズム生成部4dは、空調装置1の運転状態を変更するための環境状態の条件(変更条件)を定義する動作アルゴリズムを生成する。 In the present embodiment, the algorithm generation unit 4d generates an operation algorithm that defines an environmental state condition (change condition) for changing the operation state of the air conditioner 1.
 動作アルゴリズムは、空調装置1の動作状態を変更するための環境状態の条件(動作変更条件)を定義する第1アルゴリズム(動作変更アルゴリズム)と、空調装置1の目標温度を設定するための環境状態の条件(温度設定条件)を定義する第2アルゴリズム(温度設定アルゴリズム)と、を含む。 The operation algorithm includes a first algorithm (operation change algorithm) that defines an environmental state condition (operation change condition) for changing the operation state of the air conditioner 1, and an environmental state for setting the target temperature of the air conditioner 1. And a second algorithm (temperature setting algorithm) for defining the above condition (temperature setting condition).
 動作変更アルゴリズムは、環境の現在の状態が動作変更条件を満たしたときに空調装置1の動作状態を変更するという動作を規定する。ここで、動作変更条件は、空調装置1を停止から運転に切り替えるための条件(運転条件)と、空調装置1を運転から停止に切り替えるための条件(停止条件)と、を含む。 The operation change algorithm defines an operation of changing the operation state of the air conditioner 1 when the current state of the environment satisfies the operation change condition. Here, the operation change condition includes a condition (operation condition) for switching the air conditioner 1 from stop to operation and a condition (stop condition) for switching the air conditioner 1 from operation to stop.
 つまり、動作変更アルゴリズムは、環境の現在の状態が運転条件を満たしたときに空調装置1の動作状態を停止から運転に変更するという動作を規定する。運転条件は、環境の現在の状態が第1の環境状態になったことである。環境状態が外気温である場合、運転条件は、現在の外気温がオン温度以上になったことである。 That is, the operation change algorithm defines an operation of changing the operation state of the air conditioner 1 from stop to operation when the current state of the environment satisfies the operation condition. The operating condition is that the current state of the environment is the first environmental state. When the environmental state is the outside air temperature, the operating condition is that the current outside air temperature is equal to or higher than the ON temperature.
 第1の環境状態(オン温度)は、空調装置1の動作状態が停止から運転に変わったときの環境状態(外気温)により決定される。例えば、アルゴリズム生成部4dは、運転履歴と環境履歴とに基づいて、空調装置1の動作状態が停止から運転に変更された時刻に対応付けられた環境情報について環境状態の平均を求め、環境状態の平均を第1の環境状態として選択する。要するに、空調装置1の動作状態が停止から運転に変わったときの環境状態(外気温)の平均が、オン温度として採用される。 The first environmental state (on temperature) is determined by the environmental state (outside temperature) when the operation state of the air conditioner 1 is changed from the stop to the operation. For example, the algorithm generation unit 4d obtains an average of the environmental state with respect to the environmental information associated with the time when the operation state of the air conditioner 1 is changed from the stop to the operation based on the operation history and the environment history. Is selected as the first environmental state. In short, the average of the environmental state (outside air temperature) when the operation state of the air conditioner 1 is changed from the stop to the operation is adopted as the ON temperature.
 また、動作変更アルゴリズムは、環境の現在の状態が停止条件を満たしたときに空調装置1の動作状態を運転から停止に変更するという動作を規定する。停止条件は、環境の現在の状態が第2の環境状態になったことである。環境状態が外気温である場合、停止条件は、現在の外気温がオフ温度未満になったことである。 Also, the operation change algorithm defines an operation of changing the operation state of the air conditioner 1 from operation to stop when the current state of the environment satisfies the stop condition. The stop condition is that the current state of the environment becomes the second environment state. When the environmental state is the outside air temperature, the stop condition is that the current outside air temperature is less than the off temperature.
 第2の環境状態(オフ温度)は、空調装置1の動作状態が運転から停止に変わったときの環境状態(外気温)により決定される。例えば、アルゴリズム生成部4dは、運転履歴と環境履歴とに基づいて、空調装置1の動作状態が運転から停止に変更された時刻に対応付けられた環境情報について環境状態の平均を求め、環境状態の平均を第2の環境状態として選択する。要するに、空調装置1の動作状態が運転から停止に変わったときの環境状態(外気温)の平均が、オフ温度として採用される。 The second environmental state (off temperature) is determined by the environmental state (outside temperature) when the operation state of the air conditioner 1 is changed from operation to stop. For example, the algorithm generation unit 4d obtains the average of the environmental state for the environmental information associated with the time when the operating state of the air conditioner 1 is changed from driving to stop based on the driving history and the environmental history, and the environmental state Is selected as the second environmental state. In short, the average of the environmental state (outside temperature) when the operating state of the air conditioner 1 changes from operation to stop is adopted as the off temperature.
 温度設定条件は、空調装置1の目標温度を環境の現在の状態に応じた目標温度(設定温度)に設定する条件である。 The temperature setting condition is a condition for setting the target temperature of the air conditioner 1 to a target temperature (set temperature) according to the current state of the environment.
 つまり、温度設定アルゴリズムは、環境の現在の状態が温度設定条件を満たしたときに空調装置1の目標温度を温度設定条件に対応する設定温度に設定する動作を規定する。温度設定条件は、環境の現在の状態が所定の状態になることである。環境状態が外気温である場合、温度設定条件は、現在の外気温が所定の範囲に含まれることである。 That is, the temperature setting algorithm defines an operation of setting the target temperature of the air conditioner 1 to a set temperature corresponding to the temperature setting condition when the current state of the environment satisfies the temperature setting condition. The temperature setting condition is that the current state of the environment becomes a predetermined state. When the environmental state is an outside air temperature, the temperature setting condition is that the current outside air temperature is included in a predetermined range.
 設定温度は、環境状態が所定状態である環境情報に対応付けられた運転情報の運転状態(目標温度)により決定される。例えば、アルゴリズム生成部4dは、環境状態が所定状態である環境情報に対応付けられた運転情報について目標温度の平均を求め、目標温度の平均を設定温度として選択する。要するに、環境状態が所定状態である環境情報に対応付けられた運転情報おける目標温度の平均が、設定温度として採用される。 The set temperature is determined by the operation state (target temperature) of the operation information associated with the environment information whose environmental state is the predetermined state. For example, the algorithm generation unit 4d obtains an average of the target temperatures for the operation information associated with the environmental information whose environmental state is a predetermined state, and selects the average of the target temperatures as the set temperature. In short, the average of the target temperatures in the operation information associated with the environmental information whose environmental state is the predetermined state is adopted as the set temperature.
 図4は、アルゴリズム生成部4dによる制御アルゴリズムの作成処理を示すフローチャートである。ここでは、環境情報(環境状態)として、外気温を用いる。さらに、空調装置1は、夏季の冷房運転を行うものとする。 FIG. 4 is a flowchart showing control algorithm creation processing by the algorithm generation unit 4d. Here, outside air temperature is used as environmental information (environmental state). Further, the air conditioner 1 performs a cooling operation in summer.
 まず、アルゴリズム生成部4dは、記憶部4cから、現在時刻に至るまでの所定期間におけるデータを読み込む(S1)。 First, the algorithm generation unit 4d reads data in a predetermined period from the storage unit 4c to the current time (S1).
 次に、アルゴリズム生成部4dは、記憶部4cから読み込んだデータを空調装置1の設置場所毎に分類し(S2)、設置場所毎の推定処理を開始する(S3)。 Next, the algorithm generation unit 4d classifies the data read from the storage unit 4c for each installation location of the air conditioner 1 (S2), and starts an estimation process for each installation location (S3).
 そして、アルゴリズム生成部4dは、空調装置1の運転・停止状態が停止から運転に切り替わったときの外気温の履歴に基づいて、空調装置1が運転を開始するときの外気温(オン温度)Tonを統計的に推定する(S4)。つまり、アルゴリズム生成部4dは、運転情報および環境情報に基づいて、運転状態が所定の(第1)運転条件(空調装置1の運転・停止状態が停止から運転に切り替わった)を満たす運転情報に対応する環境情報(外気温)を抽出する。そして、アルゴリズム生成部4dは、抽出された環境状態(外気温)に基づいて、動作アルゴリズムで使用されるパラメータ(外気温Ton)を決定する。 And the algorithm production | generation part 4d is the outside air temperature (on temperature) Ton when the air conditioner 1 starts an operation based on the history of the outside air temperature when the operation / stop state of the air conditioner 1 is switched from the stop to the operation. Is statistically estimated (S4). That is, the algorithm generation unit 4d uses the operation information and the environment information as the operation information that satisfies the predetermined (first) operation condition (the operation / stop state of the air conditioner 1 has been switched from stop to operation). Extract the corresponding environmental information (outside temperature). And the algorithm production | generation part 4d determines the parameter (outside temperature Ton) used by an operation | movement algorithm based on the extracted environmental state (outside temperature).
 例えば、空調装置1の運転・停止状態が停止から運転に切り替わったときの外気温の履歴が、Ta1,Ta2,...,Tanである場合、Ton=(Ta1+Ta2+...+Tan)/Nとする。すなわち、空調装置1の運転・停止状態が停止から運転に切り替わったときの外気温の平均値が、外気温Tonとなる。 For example, the history of the outside air temperature when the operation / stop state of the air conditioner 1 is switched from the stop to the operation is Ta1, Ta2,. . . , Tan, Ton = (Ta1 + Ta2 + ... + Tan) / N. That is, the average value of the outside air temperature when the operation / stop state of the air conditioner 1 is switched from the stop to the operation is the outside air temperature Ton.
 次に、アルゴリズム生成部4dは、空調装置1の運転・停止状態が運転から停止に切り替わったときの外気温の履歴に基づいて、空調装置1が停止するときの外気温(オフ温度)Toffを統計的に推定する(S5)。つまり、アルゴリズム生成部4dは、抽出された運転情報および環境情報に基づいて、運転状態が所定の(第2)運転条件(空調装置1の運転・停止状態が運転から停止に切り替わった)を満たす運転情報に対応する環境情報(外気温)を抽出する。そして、アルゴリズム生成部4dは、抽出された環境状態(外気温)に基づいて、動作アルゴリズムで使用されるパラメータ(外気温Toff)を決定する。 Next, the algorithm generation unit 4d determines the outside air temperature (off temperature) Toff when the air conditioner 1 is stopped based on the history of the outside air temperature when the operation / stop state of the air conditioner 1 is switched from operation to stop. Statistical estimation is performed (S5). That is, the algorithm generation unit 4d satisfies the predetermined (second) operation condition (the operation / stop state of the air conditioner 1 has been switched from operation to stop) based on the extracted operation information and environment information. Extract environmental information (outside temperature) corresponding to driving information. And the algorithm production | generation part 4d determines the parameter (outside temperature Toff) used by an operation | movement algorithm based on the extracted environmental state (outside temperature).
 例えば、空調装置1の運転・停止状態が運転から停止に切り替わったときの外気温の履歴が、Tb1,Tb2,...,Tbnである場合、Toff=(Tb1+Tb2+...+Tbn)/Nとする。すなわち、空調装置1の運転・停止状態が運転から停止に切り替わったときの外気温の平均値が、外気温Toffとなる。 For example, the history of the outside air temperature when the operation / stop state of the air conditioner 1 is switched from operation to stop is Tb1, Tb2,. . . , Tbn, Toff = (Tb1 + Tb2 + ... + Tbn) / N. That is, the average value of the outside air temperature when the operation / stop state of the air conditioner 1 is switched from the operation to the stop is the outside air temperature Toff.
 次に、アルゴリズム生成部4dは、空調装置1が運転しているときに設定する目標温度(設定温度)Tmを、目標温度および外気温の履歴に基づいて、外気温に対応させて統計的に推定する(S6)。つまり、アルゴリズム生成部4dは、運転情報および環境情報に基づいて、環境状態(外気温)が所定状態(所定値)である環境情報に対応する運転情報(目標温度)を抽出する。そして、アルゴリズム生成部4dは、運転情報(目標温度)に基づいて、動作アルゴリズムで使用されるパラメータ(目標温度Tm)を決定する。 Next, the algorithm generation unit 4d statistically sets a target temperature (set temperature) Tm to be set when the air conditioner 1 is in operation, corresponding to the outside temperature based on the history of the target temperature and the outside temperature. Estimate (S6). That is, the algorithm generation unit 4d extracts driving information (target temperature) corresponding to environmental information whose environmental state (outside air temperature) is a predetermined state (predetermined value) based on the driving information and the environmental information. And the algorithm production | generation part 4d determines the parameter (target temperature Tm) used with an operation | movement algorithm based on driving | operation information (target temperature).
 例えば、外気温が所定値Td1であるときの空調装置1の目標温度の履歴が、Te1,Te2,...,Tenである場合、Tma=(Te1+Te2+...+Ten)/Nとする。すなわち、外気温がTd1であるときの目標温度の平均値が、外気温Td1に対応する目標温度Tm(Tma)となる。 For example, the history of the target temperature of the air conditioner 1 when the outside air temperature is the predetermined value Td1 is Te1, Te2,. . . , Ten, Tma = (Te1 + Te2 + ... + Ten) / N. That is, the average value of the target temperatures when the outside air temperature is Td1 is the target temperature Tm (Tma) corresponding to the outside air temperature Td1.
 同様に、外気温が所定値Td2であるときの目標温度の平均値を、外気温Td2に対応する目標温度Tm(Tmb)とし、外気温が所定値Td3であるときの目標温度の平均値を、外気温Td3に対応する目標温度Tm(Tmc)として、外気温毎に目標温度Tmを求める。 Similarly, the average value of the target temperature when the outside air temperature is the predetermined value Td2 is set as the target temperature Tm (Tmb) corresponding to the outside air temperature Td2, and the average value of the target temperature when the outside air temperature is the predetermined value Td3. As the target temperature Tm (Tmc) corresponding to the outside air temperature Td3, the target temperature Tm is obtained for each outside air temperature.
 つまり、アルゴリズム生成部4dは、運転履歴(目標温度)と環境情報(外気温)とに基づいて、環境の状態(外気温)が同一である1乃至複数の目標温度を平均化し、この平均化した目標温度を用いた動作アルゴリズムを生成する。換言すれば、アルゴリズム生成部4dは、環境状態(外気温)が所定状態(所定値)である環境情報に対応付けられた運転情報について目標温度の平均を求め、目標温度の平均を用いた動作アルゴリズムを生成する。 That is, the algorithm generation unit 4d averages one or more target temperatures having the same environmental state (outside temperature) based on the operation history (target temperature) and the environment information (outside temperature), and this averaging An operation algorithm using the target temperature is generated. In other words, the algorithm generation unit 4d obtains an average of the target temperature for the operation information associated with the environmental information whose environmental state (outside temperature) is a predetermined state (predetermined value), and operates using the average of the target temperature. Generate an algorithm.
 そして、アルゴリズム生成部4dは、全ての設置場所について、ステップS3~S6の処理を完了したか否かを判定する(S7)。全ての設置場所について、ステップS3~S6の処理を完了していない場合、ステップS3に戻り、設置場所を変更して上述の処理を繰り返す。全ての設置場所について、ステップS3~S6の処理を完了した場合、本フローチャートの処理を終了する。 Then, the algorithm generation unit 4d determines whether or not the processing of steps S3 to S6 has been completed for all installation locations (S7). If the processes in steps S3 to S6 have not been completed for all the installation locations, the process returns to step S3, the installation locations are changed, and the above-described processing is repeated. When the processes of steps S3 to S6 are completed for all the installation locations, the process of this flowchart is terminated.
 そして、アルゴリズム生成部4dは、空調装置1が運転を開始するときの外気温(オン温度)Ton、空調装置1が停止するときの外気温(オフ温度)Toff、外気温毎の目標温度(設定温度)Tmの各推定結果に基づいて、空調装置1の最適な制御アルゴリズム(動作アルゴリズム)を決定する。 And the algorithm production | generation part 4d is the outside temperature (on temperature) Ton when the air conditioner 1 starts operation, the outside temperature (off temperature) Toff when the air conditioner 1 stops, the target temperature for each outside temperature (setting) Based on each estimation result of (temperature) Tm, an optimal control algorithm (operation algorithm) of the air conditioner 1 is determined.
 例えば、図5は、アルゴリズム生成部4dが決定した制御アルゴリズムの一例である。 For example, FIG. 5 is an example of a control algorithm determined by the algorithm generation unit 4d.
 空調装置1が運転を開始するときの外気温(オン温度)Ton、空調装置1が停止するときの外気温(オフ温度)Toffは、ともに外気温T1である。すなわち、現在の外気温(環境の現在の状態)が外気温T1未満であれば、空調装置1は停止し、現在の外気温が外気温T1以上であれば、空調装置1は運転する。なお、現在の外気温は、情報サーバ5から得られる。また、T1≦外気温(現在の外気温)<T2の場合、空調装置1の目標温度が目標温度Tm12に設定され、T2≦外気温(現在の外気温)の場合、空調装置1の目標温度が目標温度Tm11(<Tm12)に設定される。なお、目標温度Tm12はT1以上T2未満の外気温に対して求められた目標温度Tmであり、目標温度Tm11はT2以上の外気温に対して求められた目標温度Tmである。 The outside air temperature (on temperature) Ton when the air conditioner 1 starts operation and the outside temperature (off temperature) Toff when the air conditioner 1 stops are both the outside air temperature T1. That is, if the current outside air temperature (the current state of the environment) is less than the outside air temperature T1, the air conditioner 1 stops, and if the current outside air temperature is equal to or higher than the outside air temperature T1, the air conditioner 1 operates. Note that the current outside air temperature is obtained from the information server 5. When T1 ≦ outside air temperature (current outside air temperature) <T2, the target temperature of the air conditioner 1 is set to the target temperature Tm12. When T2 ≦ outside air temperature (current outside air temperature), the target temperature of the air conditioner 1 is set. Is set to the target temperature Tm11 (<Tm12). The target temperature Tm12 is a target temperature Tm obtained for an outside air temperature of T1 or more and less than T2, and the target temperature Tm11 is a target temperature Tm obtained for an outside air temperature of T2 or more.
 そして、機器制御部4eは、この制御アルゴリズムをコントローラ2へ送信する。コントローラ2の機器制御部2aは、この制御アルゴリズムに基づいて、空調装置1の運転・停止、目標温度の設定等を行って、空調装置1を遠隔制御する。 The device control unit 4e transmits this control algorithm to the controller 2. The device control unit 2a of the controller 2 performs remote control of the air conditioner 1 by operating / stopping the air conditioner 1, setting a target temperature, and the like based on this control algorithm.
 また、コントローラ2は、この制御アルゴリズムを、利用者に画像等で提示して、この制御アルゴリズムに沿った空調装置1の手動操作を促してもよい。 Further, the controller 2 may present the control algorithm to the user with an image or the like, and prompt the manual operation of the air conditioner 1 according to the control algorithm.
 また、環境情報としては、外気温以外に、室内外の湿度等を用いてもよく、外気温と湿度とを併用してもよい。 Moreover, as environmental information, in addition to the outside air temperature, indoor and outdoor humidity or the like may be used, and the outside air temperature and humidity may be used in combination.
 そして、この制御アルゴリズムの更新は定期的に行われており、利用者の使い方を反映した最適な制御アルゴリズムを常に用いることができる。 And this control algorithm is regularly updated, and the optimal control algorithm reflecting the usage of the user can always be used.
 このように、本実施形態では、外部環境に対応して、利用者毎の使い方に応じた空調制御を行うことができる。したがって、本システムでは、屋外環境を考慮して、利用者に合った空調環境の快適性を実現することができる。 As described above, in the present embodiment, air conditioning control corresponding to the usage for each user can be performed in correspondence with the external environment. Therefore, in this system, the comfort of the air-conditioning environment suitable for the user can be realized in consideration of the outdoor environment.
 なお、外気温Ton、外気温Toff、目標温度Tmの導出には平均値演算を用いたが、最小二乗法を用いて導出してもよい。つまり、目標温度の平均は、相加平均により求めても良いし、最小二乗法を用いて求めても良い。 In addition, although the average value calculation was used for deriving the outside air temperature Ton, the outside air temperature Toff, and the target temperature Tm, it may be derived using the least square method. That is, the average of the target temperatures may be obtained by an arithmetic mean or may be obtained by using a least square method.
 また、アルゴリズム生成部4dは、目標温度を切り替える外気温の境界値も、目標温度および外気温の履歴に基づいて、統計的に推定してもよい。 Further, the algorithm generation unit 4d may statistically estimate the boundary value of the outside air temperature at which the target temperature is switched based on the target temperature and the history of the outside air temperature.
 以上述べたように、本実施形態の空調管理装置は、以下の第1の特徴を備える。第1の特徴では、空調管理装置(コントローラ2およびセンターサーバ4)は、空調対象となる空間Hの温度を変動させる空調装置1の動作を管理する空調管理装置であって、運転履歴取得部(受信部2b)と、環境情報取得部(受信部4a)と、記憶部4cと、アルゴリズム生成部4dと、を備える。運転履歴取得部(受信部2b)は、空調装置1の目標温度の履歴である運転履歴を取得するように構成される。環境情報取得部(受信部4a)は、空間H内または空間H外の環境に関する環境情報を取得するように構成される。記憶部4cは、運転履歴、環境情報を時系列に沿って互いに対応付けて記憶するように構成される。アルゴリズム生成部4dは、記憶部4cを参照し、運転履歴および環境情報に基づいて、環境の状態に応じた空調装置1の目標温度を指示する動作アルゴリズムを生成するように構成される。 As described above, the air conditioning management device of the present embodiment has the following first feature. In the first feature, the air conditioning management device (the controller 2 and the center server 4) is an air conditioning management device that manages the operation of the air conditioning device 1 that fluctuates the temperature of the space H to be air-conditioned. A reception unit 2b), an environment information acquisition unit (reception unit 4a), a storage unit 4c, and an algorithm generation unit 4d. The operation history acquisition unit (reception unit 2b) is configured to acquire an operation history that is a history of the target temperature of the air conditioner 1. The environment information acquisition unit (reception unit 4a) is configured to acquire environment information regarding the environment inside or outside the space H. The storage unit 4c is configured to store driving history and environment information in association with each other in a time series. The algorithm generation unit 4d is configured to generate an operation algorithm that indicates the target temperature of the air conditioner 1 according to the environmental state based on the operation history and the environmental information with reference to the storage unit 4c.
 換言すれば、空調管理装置(コントローラ2およびセンターサーバ4)は、空間Hの温度を変動させる空調装置を管理する空調管理装置であって、運転履歴取得部(受信部2b)と、環境情報取得部(受信部4a)と、記憶部4cと、アルゴリズム生成部4dと、を備える。運転履歴取得部(受信部2b)は、空調装置1の目標温度を含む運転情報の履歴である運転履歴を取得するように構成される。環境情報取得部(受信部4a)は、空間H内または空間H外の環境の状態である環境状態を示す環境情報の履歴である環境履歴を取得するように構成される。記憶部4cは、運転履歴と環境履歴とに基づいて、時刻を基準にして互いに対応付けられた運転情報と環境情報との組み合わせを記憶するように構成される。アルゴリズム生成部4dは、記憶部4cを参照し、運転情報および環境情報に基づいて、環境状態に応じた空調装置1の目標温度を指示する動作アルゴリズムを生成するように構成される。 In other words, the air conditioning management device (the controller 2 and the center server 4) is an air conditioning management device that manages an air conditioning device that fluctuates the temperature of the space H, and includes an operation history acquisition unit (reception unit 2b) and environmental information acquisition. Unit (reception unit 4a), a storage unit 4c, and an algorithm generation unit 4d. The operation history acquisition unit (reception unit 2b) is configured to acquire an operation history that is a history of operation information including the target temperature of the air conditioner 1. The environment information acquisition unit (reception unit 4a) is configured to acquire an environment history that is a history of environment information indicating an environment state that is an environment state inside or outside the space H. The storage unit 4c is configured to store a combination of driving information and environmental information associated with each other on the basis of time based on the driving history and the environmental history. The algorithm generation unit 4d is configured to generate an operation algorithm that indicates the target temperature of the air conditioner 1 according to the environmental state based on the operation information and the environment information with reference to the storage unit 4c.
 また、本実施形態の空調管理装置は、第1の特徴に加えて、以下の第2の特徴を備える。第2の特徴では、アルゴリズム生成部4dは、運転履歴と環境情報とに基づいて、環境の状態が同一である1乃至複数の目標温度を平均化し、この平均化した目標温度を用いた動作アルゴリズムを生成する。換言すれば、アルゴリズム生成部4dは、環境状態が所定状態である環境情報に対応付けられた運転情報について目標温度の平均を求め、目標温度の平均を用いた動作アルゴリズムを生成するように構成される。なお、第2の特徴は任意の特徴である。 In addition to the first feature, the air conditioning management device of the present embodiment has the following second feature. In the second feature, the algorithm generation unit 4d averages one or more target temperatures having the same environmental state based on the driving history and the environmental information, and an operation algorithm using the averaged target temperatures. Is generated. In other words, the algorithm generation unit 4d is configured to calculate an average of the target temperature for the operation information associated with the environmental information whose environmental state is the predetermined state, and generate an operation algorithm using the average of the target temperature. The The second feature is an arbitrary feature.
 ここで、本実施形態の空調管理システムは、空調対象となる空間Hの温度を変動させる空調装置1と、空調装置1の動作を管理する空調管理装置(コントローラ2およびセンターサーバ4)と、空間H内または空間H外の環境に関する環境情報を検出する環境検出部(情報サーバ5)とを備える。空調管理装置(コントローラ2およびセンターサーバ4)は、運転履歴取得部(受信部2b)と、環境情報取得部(受信部4a)と、記憶部4cと、アルゴリズム生成部4dと、を備える。運転履歴取得部(受信部2b)は、空調装置1の目標温度の履歴である運転履歴を取得するように構成される。環境情報取得部(受信部4a)は、環境情報を取得するように構成される。記憶部4cは、運転履歴、環境情報を時系列に沿って互いに対応付けて記憶するように構成される。アルゴリズム生成部4dは、記憶部4cを参照し、運転履歴および環境情報に基づいて、環境の状態に応じた空調装置1の目標温度を指示する動作アルゴリズムを生成するように構成される。 Here, the air conditioning management system of the present embodiment includes an air conditioner 1 that varies the temperature of the space H to be air-conditioned, an air conditioning management device (controller 2 and center server 4) that manages the operation of the air conditioner 1, and a space. And an environment detection unit (information server 5) for detecting environment information related to the environment inside or outside the space H. The air conditioning management device (controller 2 and center server 4) includes an operation history acquisition unit (reception unit 2b), an environment information acquisition unit (reception unit 4a), a storage unit 4c, and an algorithm generation unit 4d. The operation history acquisition unit (reception unit 2b) is configured to acquire an operation history that is a history of the target temperature of the air conditioner 1. The environment information acquisition unit (reception unit 4a) is configured to acquire environment information. The storage unit 4c is configured to store driving history and environment information in association with each other in a time series. The algorithm generation unit 4d is configured to generate an operation algorithm that indicates the target temperature of the air conditioner 1 according to the environmental state based on the operation history and the environmental information with reference to the storage unit 4c.
 換言すれば、本実施形態の空調管理システムは、空間Hの温度を変動させる空調装置1と、空調装置1を管理する空調管理装置と、空間H内または空間H外の環境の状態を示す環境情報を検出する環境検出部(情報サーバ5)と、を備える。空調管理装置(コントローラ2およびセンターサーバ4)は、上記第1の特徴を有すると共に、付加的に第2の特徴を備える。環境情報取得部(受信部4a)は、環境検出部(情報サーバ5)から環境情報を取得するように構成される。 In other words, the air conditioning management system of the present embodiment includes an air conditioner 1 that varies the temperature of the space H, an air conditioning management device that manages the air conditioner 1, and an environment that indicates the state of the environment inside or outside the space H. An environment detection unit (information server 5) for detecting information. The air conditioning management device (the controller 2 and the center server 4) has the first feature and additionally has a second feature. The environment information acquisition unit (reception unit 4a) is configured to acquire environment information from the environment detection unit (information server 5).
 以上説明したように、本実施形態の空調管理装置および空調管理システムでは、外部環境に対応して、利用者毎の使い方に応じた空調制御を行うことができる。したがって、屋外環境を考慮して、利用者に合った空調環境の快適性を実現することができるという効果がある。 As described above, in the air conditioning management device and the air conditioning management system of this embodiment, it is possible to perform air conditioning control according to the usage for each user, corresponding to the external environment. Therefore, there is an effect that the comfort of the air-conditioning environment suitable for the user can be realized in consideration of the outdoor environment.
  (実施形態2)
 図6は、本実施形態の空調管理システムの全体構成を示す。空調管理システムは、空調装置1、コントローラ2、環境検出部6とで構成される。
(Embodiment 2)
FIG. 6 shows the overall configuration of the air conditioning management system of the present embodiment. The air conditioning management system includes an air conditioner 1, a controller 2, and an environment detection unit 6.
 本実施形態では、本システムによって空調環境を管理される空間Hに環境検出部6を設けて、コントローラ2は、この環境検出部6から、空間Hの所在地における気象に関する環境情報(外気温、湿度等)を取得する。また、データ記憶やアルゴリズム生成の各処理は、外部のセンターサーバではなく、コントローラ2で実行される。すなわち、コントローラ2が、空調管理装置を構成する。 In the present embodiment, the environment detection unit 6 is provided in the space H in which the air-conditioning environment is managed by the present system, and the controller 2 receives from the environment detection unit 6 environmental information regarding the weather at the location of the space H (outside temperature, humidity). Etc.). Each process of data storage and algorithm generation is executed by the controller 2 instead of the external center server. That is, the controller 2 constitutes an air conditioning management device.
 図7は、コントローラ2のブロック構成を示す。 FIG. 7 shows a block configuration of the controller 2.
 コントローラ2は、機器制御部2a、受信部2bを、実施形態1と同様に備える。さらに、コントローラ2は、実施形態1のセンターサーバ4が備えていた記憶タイミング制御部4b、記憶部4c、アルゴリズム生成部4dも備える。 The controller 2 includes a device control unit 2a and a reception unit 2b as in the first embodiment. Furthermore, the controller 2 also includes a storage timing control unit 4b, a storage unit 4c, and an algorithm generation unit 4d provided in the center server 4 of the first embodiment.
 そして、機器制御部2aおよび受信部2bと、記憶タイミング制御部4b、記憶部4c、およびアルゴリズム生成部4dとは、コントローラ2内で互いに情報授受が可能に構成されている。また、コントローラ2の受信部2bは、環境検出部6から環境情報を取得する環境情報取得部を構成している。 The device control unit 2a and the reception unit 2b, the storage timing control unit 4b, the storage unit 4c, and the algorithm generation unit 4d are configured to exchange information with each other in the controller 2. The receiving unit 2 b of the controller 2 constitutes an environment information acquisition unit that acquires environment information from the environment detection unit 6.
 そして、コントローラ2の各部が、実施形態1と同様に動作することによって、外部環境に対応して、利用者毎の使い方に応じた空調制御を行うことができる。したがって、本システムでは、屋外環境を考慮して、利用者に合った空調環境の快適性を実現することができる。 And each part of the controller 2 operates in the same manner as in the first embodiment, so that it is possible to perform air conditioning control corresponding to the usage for each user corresponding to the external environment. Therefore, in this system, the comfort of the air-conditioning environment suitable for the user can be realized in consideration of the outdoor environment.
  (実施形態3)
 図8は、本実施形態の空調管理システムの全体構成を示す。空調管理システムは、センターサーバ4による空調管理の対象として、複数の空間(例えば、複数の家庭)H(H1~H3)を設けている。つまり、本実施形態の空調管理装置は、複数の空間H(H1~H3)の温度を各々変動させる複数の空調装置1を管理するように構成される。
(Embodiment 3)
FIG. 8 shows the overall configuration of the air conditioning management system of this embodiment. The air conditioning management system provides a plurality of spaces (for example, a plurality of homes) H (H1 to H3) as targets of air conditioning management by the center server 4. That is, the air conditioning management device of the present embodiment is configured to manage a plurality of air conditioning devices 1 that vary the temperatures of the plurality of spaces H (H1 to H3), respectively.
 空間H1~H3の各々は、空調装置1、コントローラ2、ホームゲートウェイ3を備える。なお、実施形態1と同様の構成には同一の符号を付して説明は省略する。なお、コントローラ2とセンターサーバ4とが、空調管理装置を構成する。 Each of the spaces H1 to H3 includes an air conditioner 1, a controller 2, and a home gateway 3. In addition, the same code | symbol is attached | subjected to the structure similar to Embodiment 1, and description is abbreviate | omitted. The controller 2 and the center server 4 constitute an air conditioning management device.
 そして、センターサーバ4の受信部4aは、空間H1~H3の各空調装置1の運転履歴情報を取得するまた、受信部4aは、情報サーバ5から、空間H1~H3の各環境情報を取得する。 The receiving unit 4a of the center server 4 acquires the operation history information of the air conditioners 1 in the spaces H1 to H3. The receiving unit 4a acquires the environment information of the spaces H1 to H3 from the information server 5. .
 すなわち、本実施形態では、受信部4aは、空間H(H1~H3)毎に、対応する空調装置1の運転履歴を取得する運転履歴取得部を構成する。また、受信部4aは、空間H(H1~H3)毎に、対応する環境履歴を取得する環境情報取得部を構成する。 That is, in the present embodiment, the receiving unit 4a configures an operation history acquisition unit that acquires the operation history of the corresponding air conditioner 1 for each space H (H1 to H3). The receiving unit 4a constitutes an environment information acquiring unit that acquires a corresponding environment history for each space H (H1 to H3).
 センターサーバ4の記憶部4cは、空間H1~H3毎に、記憶タイミング制御部4bが決めた各時刻における運転履歴情報、環境情報が、時系列に沿って互いに対応付けて格納されている。つまり、記憶部4cは、空間H毎に、時刻を基準にして互いに対応付けられた運転情報と環境情報との組み合わせを記憶するように構成される。ここでは、環境情報として、外気温を用いる。 The storage unit 4c of the center server 4 stores driving history information and environment information at each time determined by the storage timing control unit 4b in association with each other in time series for each of the spaces H1 to H3. That is, the storage unit 4c is configured to store, for each space H, a combination of driving information and environmental information associated with each other with respect to time. Here, outside temperature is used as environmental information.
 アルゴリズム生成部4dは、空間H毎に、環境状態が所定状態である環境情報に対応付けられた運転情報について目標温度の平均を求める。次に、アルゴリズム生成部4dは、目標温度の平均と所定の閾値との比較に基づいて複数の空間H(H1~H3)を複数のグループに分類する。次に、アルゴリズム生成部4dは、グループ毎に、動作アルゴリズムを生成する。 The algorithm generation unit 4d obtains an average of the target temperatures for the operation information associated with the environmental information whose environmental state is the predetermined state for each space H. Next, the algorithm generation unit 4d classifies the plurality of spaces H (H1 to H3) into a plurality of groups based on a comparison between the target temperature average and a predetermined threshold value. Next, the algorithm generation unit 4d generates an operation algorithm for each group.
 図9は、センターサーバ4のアルゴリズム生成部4dによる制御アルゴリズムの作成処理を示すフローチャートである。 FIG. 9 is a flowchart showing a control algorithm creation process by the algorithm generation unit 4d of the center server 4.
 本フローチャートでは、空間H1~H3(家庭等)の各々が、「目標温度を高めに設定する傾向のある高設定グループ」、「目標温度を標準的に設定する傾向のある標準設定グループ」、「目標温度を低めに設定する傾向のある低設定グループ」のいずれのグループに属するのか判定する。なお、空調装置1は、夏季の冷房運転を行うものとする。 In this flowchart, each of the spaces H1 to H3 (home, etc.) is “a high setting group that tends to set the target temperature higher”, “a standard setting group that tends to set the target temperature as standard”, “ It is determined which of the “low setting group that tends to set the target temperature low” belongs. Note that the air conditioner 1 performs a cooling operation in summer.
 まず、アルゴリズム生成部4dは、記憶部4cから、現在時刻に至るまでの所定期間における空間H1~H3の全データを読み込む(S11)。 First, the algorithm generation unit 4d reads all data in the spaces H1 to H3 in a predetermined period from the storage unit 4c to the current time (S11).
 次に、アルゴリズム生成部4dは、ステップS11で読み込んだ運転履歴情報と環境情報とに基づいて、外気温が同一であるときの1乃至複数の目標温度から、グループ化を行うための目標温度の閾値を決定する(S12)。 Next, based on the operation history information and the environment information read in step S11, the algorithm generation unit 4d determines target temperatures for grouping from one or more target temperatures when the outside air temperature is the same. A threshold value is determined (S12).
 つまり、アルゴリズム生成部4dは、複数の空間H1~H3それぞれの運転履歴に関して環境状態が所定状態である環境情報に対応付けられた運転情報を選択し、選択された運転情報が示す目標温度に基づいて所定の閾値を決定する。 That is, the algorithm generating unit 4d selects the driving information associated with the environmental information in which the environmental state is the predetermined state with respect to the driving history of each of the plurality of spaces H1 to H3, and based on the target temperature indicated by the selected driving information. To determine a predetermined threshold.
 例えば、空間H1~H3において、外気温Tf1における目標温度の履歴が、Tg1、Tg2、...、Tgn(但し、Tg1<Tg2<...<Tgn)であるとする。このとき、外気温Tf1において、高設定グループと標準設定グループとを区別する閾値K1は、K1=(Tg1+2Tgn)/3となる。また、外気温Tf1において、標準設定グループと低設定グループとを区別する閾値K2は、K2=(2Tg1+Tgn)/3となる。 For example, in the spaces H1 to H3, the history of the target temperature at the outside air temperature Tf1 is Tg1, Tg2,. . . , Tgn (where Tg1 <Tg2 <... <Tgn). At this time, the threshold value K1 for distinguishing the high setting group from the standard setting group at the outside air temperature Tf1 is K1 = (Tg1 + 2Tgn) / 3. In the outside air temperature Tf1, the threshold value K2 for distinguishing between the standard setting group and the low setting group is K2 = (2Tg1 + Tgn) / 3.
 次に、アルゴリズム生成部4dは、空間H1~H3毎に、ステップS11で読み込んだ運転履歴情報と環境情報とに基づいて、外気温が同一であるときの1乃至複数の目標温度を平均化する。そして、アルゴリズム生成部4dは、空間H1~H3毎に、この外気温毎に平均化した目標温度Tmxと閾値K1,K2とを比較して、外気温毎に空間H1~H3の各々をグループ化する(S13)。このように、アルゴリズム生成部4dは、目標温度の平均と所定の閾値K1,K2との比較に基づいて複数の空間H(H1~H3)を複数のグループ(高設定グループ、標準設定グループ、低設定グループ)に分類する。 Next, the algorithm generation unit 4d averages one or a plurality of target temperatures when the outside air temperature is the same for each of the spaces H1 to H3 based on the operation history information and the environment information read in step S11. . Then, the algorithm generator 4d compares the target temperature Tmx averaged for each outside air temperature with the threshold values K1 and K2 for each of the spaces H1 to H3, and groups each of the spaces H1 to H3 for each outside air temperature. (S13). As described above, the algorithm generation unit 4d converts the plurality of spaces H (H1 to H3) into a plurality of groups (high setting group, standard setting group, low setting group) based on the comparison between the average of the target temperatures and the predetermined threshold values K1 and K2. Classification).
 すなわち、外気温Tf1において、目標温度Tmx>K1となる空間Hは、外気温Tf1において高設定グループに属する。また、外気温Tf1において、K2<目標温度Tmx≦K1となる空間Hは、外気温Tf1において標準設定グループに属する。また、外気温Tf1において、目標温度Tmx≦K2となる空間Hは、外気温Tf1において低設定グループに属する。 That is, the space H where the target temperature Tmx> K1 at the outside air temperature Tf1 belongs to the high setting group at the outside air temperature Tf1. In addition, at the outside air temperature Tf1, the space H where K2 <target temperature Tmx ≦ K1 belongs to the standard setting group at the outside air temperature Tf1. Further, at the outside air temperature Tf1, the space H where the target temperature Tmx ≦ K2 belongs to the low setting group at the outside air temperature Tf1.
 具体的に、空間H1において、外気温Tf1における目標温度の履歴が、18℃、19℃、20℃、21℃とする。また、空間H2において、外気温Tf1における目標温度の履歴が、22℃、23℃、24℃、25℃とする。また、空間H3において、外気温Tf1における目標温度の履歴が、26℃、27℃、28℃、29℃とする。すなわち、空間H1~H3において、外気温Tf1における目標温度の履歴は、18℃、19℃、20℃、21℃、22℃、23℃、24℃、25℃、26℃、27℃、28℃、29℃となる。 Specifically, in the space H1, the history of the target temperature at the outside air temperature Tf1 is 18 ° C., 19 ° C., 20 ° C., and 21 ° C. In the space H2, the history of the target temperature at the outside air temperature Tf1 is 22 ° C., 23 ° C., 24 ° C., and 25 ° C. In the space H3, the history of the target temperature at the outside air temperature Tf1 is 26 ° C., 27 ° C., 28 ° C., and 29 ° C. That is, in the spaces H1 to H3, the target temperature history at the outside air temperature Tf1 is 18 ° C., 19 ° C., 20 ° C., 21 ° C., 22 ° C., 23 ° C., 24 ° C., 25 ° C., 26 ° C., 27 ° C., 28 ° C. 29 ° C.
 このとき、高設定グループと標準設定グループとを区別する閾値K1は、K1=(18+2×29)/3=25.3℃となる。また、標準設定グループと低設定グループとを区別する閾値K2は、K2=(2×18+29)/3=21.7℃となる。 At this time, the threshold value K1 for distinguishing the high setting group from the standard setting group is K1 = (18 + 2 × 29) /3=25.3° C. The threshold value K2 for distinguishing between the standard setting group and the low setting group is K2 = (2 × 18 + 29) /3=21.7° C.
 そして、空間H1の外気温Tf1における目標温度の履歴が、18℃、19℃、20℃、21℃であることから、外気温Tf1時において平均化した空間H1の目標温度Tmx=19.5℃となる。したがって、空間H1は、目標温度Tmx(19.5℃)<K2(21.7℃)となり、外気温Tf1において低設定グループとなる。 Since the history of the target temperature at the outside air temperature Tf1 in the space H1 is 18 ° C., 19 ° C., 20 ° C., and 21 ° C., the target temperature Tmx in the space H1 averaged at the outside air temperature Tf1 = 19.5 ° C. It becomes. Therefore, the space H1 becomes the target temperature Tmx (19.5 ° C.) <K2 (21.7 ° C.), and becomes a low setting group at the outside air temperature Tf1.
 また、空間H2の外気温Tf1における目標温度の履歴が、22℃、23℃、24℃、25℃であることから、外気温Tf1時において平均化した空間H2の目標温度Tmx=23.5℃となる。したがって、空間H2は、K2(21.7℃)<目標温度Tmx(27.5℃)<K1(25.3℃)となり、外気温Tf1において標準設定グループとなる。 Further, since the history of the target temperature at the outside air temperature Tf1 in the space H2 is 22 ° C., 23 ° C., 24 ° C., and 25 ° C., the target temperature Tmx of the space H2 averaged at the outside air temperature Tf1 = 23.5 ° C. It becomes. Therefore, the space H2 becomes K2 (21.7 ° C.) <Target temperature Tmx (27.5 ° C.) <K1 (25.3 ° C.), and becomes a standard setting group at the outside air temperature Tf1.
 また、空間H3の外気温Tf1における目標温度の履歴が、26℃、27℃、28℃、29℃であることから、外気温Tf1において平均化した空間H3の目標温度Tmx=27.5℃となる。したがって、空間H3は、目標温度Tmx(27.5℃)>K1(25.3℃)となり、外気温Tf1において高設定グループとなる。 Further, since the history of the target temperature at the outside air temperature Tf1 in the space H3 is 26 ° C., 27 ° C., 28 ° C., and 29 ° C., the target temperature Tmx in the space H3 averaged at the outside air temperature Tf1 is 27.5 ° C. Become. Therefore, the space H3 becomes the target temperature Tmx (27.5 ° C.)> K1 (25.3 ° C.), and becomes a high setting group at the outside air temperature Tf1.
 次に、アルゴリズム生成部4dは、グループ毎に、ステップS11で読み込んだ運転履歴情報と環境情報とに基づいて、外気温が同一であるときの1乃至複数の目標温度を平均化する。すなわち、アルゴリズム生成部4dは、各グループにおいて外気温毎の目標温度(設定温度)Tm(Tmy)を導出する(S14)。つまり、アルゴリズム生成部4dは、グループ毎に、環境状態が所定状態である環境情報に対応付けられた運転情報について目標温度の平均(つまり、設定温度Tm)を求める。 Next, for each group, the algorithm generation unit 4d averages one or more target temperatures when the outside air temperature is the same based on the operation history information and the environment information read in step S11. That is, the algorithm generation unit 4d derives a target temperature (set temperature) Tm (Tmy) for each outside air temperature in each group (S14). That is, the algorithm generation unit 4d obtains an average of the target temperatures (that is, the set temperature Tm) for the operation information associated with the environmental information whose environmental state is the predetermined state for each group.
 このように、アルゴリズム生成部4dは、各空間Hを、高設定グループ、標準設定グループ、低設定グループのいずれかに外気温毎に分類し、各グループにおける外気温毎の目標温度(設定温度)Tmyを設定している。 As described above, the algorithm generation unit 4d classifies each space H into one of the high setting group, the standard setting group, and the low setting group for each outside air temperature, and the target temperature (set temperature) for each outside air temperature in each group. Tmy is set.
 また、アルゴリズム生成部4dは、空調装置1が運転を開始するときの外気温Ton、空調装置1が停止するときの外気温Toffも、高設定グループ、標準設定グループ、低設定グループ毎に統計的に推定する(S15)。この空調装置1が運転を開始するときの外気温Ton、空調装置1が停止するときの外気温Toffの推定処理も、グループ毎の平均化処理等によって行われる。 Further, the algorithm generation unit 4d statistically calculates the outside air temperature Ton when the air conditioner 1 starts operation and the outside air temperature Toff when the air conditioner 1 stops for each of the high setting group, the standard setting group, and the low setting group. (S15). The process of estimating the outside air temperature Ton when the air conditioner 1 starts operation and the outside air temperature Toff when the air conditioner 1 stops are also performed by an averaging process for each group.
 そしてアルゴリズム生成部4dは、上述のように推定した各グループにおける外気温毎の目標温度Tmy、運転開始時の外気温Ton、停止時の外気温Toffを用いて、空調装置1の動作を指示する動作アルゴリズムをグループ毎に生成する。 Then, the algorithm generation unit 4d instructs the operation of the air conditioner 1 using the target temperature Tmy for each outside air temperature in each group estimated as described above, the outside air temperature Ton at the start of operation, and the outside air temperature Toff at the time of stop. A motion algorithm is generated for each group.
 例えば、図10は、アルゴリズム生成部4dが決定した制御アルゴリズム(動作アルゴリズム)の一例である。図10において、Y1は、高設定グループの制御アルゴリズムであり、Y2は、低設定グループの制御アルゴリズムである。 For example, FIG. 10 is an example of a control algorithm (operation algorithm) determined by the algorithm generation unit 4d. In FIG. 10, Y1 is a control algorithm for the high setting group, and Y2 is a control algorithm for the low setting group.
 高設定グループの制御アルゴリズムY1は、空調装置1が運転を開始するときの外気温(オン温度)Ton、空調装置1が停止するときの外気温(オフ温度)Toffは、ともに外気温T11である。すなわち、現在の外気温が外気温T11未満であれば、空調装置1は停止し、現在の外気温が外気温T11以上であれば、空調装置1は運転を開始する。また、T11≦外気温(現在の外気温)<T12の場合、空調装置1の目標温度が目標温度Tm22に設定され、T12≦外気温の場合、空調装置1の目標温度が目標温度Tm21(<Tm22)に設定される。なお、目標温度Tm22はT11以上T12未満の外気温に対して求められた目標温度(設定温度)Tmであり、目標温度Tm21はT12以上の外気温に対して求められた目標温度(設定温度)Tmである。 In the control algorithm Y1 of the high setting group, the outside air temperature (on temperature) Ton when the air conditioner 1 starts operation and the outside temperature (off temperature) Toff when the air conditioner 1 stops are both the outside air temperature T11. . That is, if the current outside air temperature is less than the outside air temperature T11, the air conditioner 1 stops, and if the current outside air temperature is equal to or higher than the outside air temperature T11, the air conditioner 1 starts operation. When T11 ≦ outside air temperature (current outside air temperature) <T12, the target temperature of the air conditioner 1 is set to the target temperature Tm22. When T12 ≦ outside air temperature, the target temperature of the air conditioner 1 is set to the target temperature Tm21 (< Tm22). The target temperature Tm22 is a target temperature (set temperature) Tm obtained for an outside air temperature of T11 or more and less than T12, and the target temperature Tm21 is a target temperature (set temperature) obtained for an outside air temperature of T12 or more. Tm.
 低設定グループの制御アルゴリズムY2は、空調装置1が運転を開始するときの外気温(オン温度)Ton、空調装置1が停止するときの外気温(オフ温度)Toffは、ともに外気温T21である。すなわち、現在の外気温が外気温T21未満であれば、空調装置1は停止し、現在の外気温が外気温T21以上であれば、空調装置1は運転を開始する。また、T21≦外気温(現在の外気温)<T22の場合、空調装置1の目標温度Tm32に設定され、T22≦外気温(現在の外気温)の場合、空調装置1の目標温度Tm31(<Tm32)に設定される。なお、目標温度Tm32はT21以上T22未満の外気温に対して求められた目標温度(設定温度)Tmであり、目標温度Tm31はT22以上の外気温に対して求められた目標温度(設定温度)Tmである。 In the control algorithm Y2 for the low setting group, the outside air temperature (on temperature) Ton when the air conditioner 1 starts operation and the outside temperature (off temperature) Toff when the air conditioner 1 stops are both the outside temperature T21. . That is, if the current outside air temperature is lower than the outside air temperature T21, the air conditioner 1 stops, and if the current outside air temperature is equal to or higher than the outside air temperature T21, the air conditioner 1 starts operation. When T21 ≦ outside air temperature (current outside air temperature) <T22, the target temperature Tm32 of the air conditioner 1 is set. When T22 ≦ outside air temperature (current outside air temperature), the target temperature Tm31 (< Tm32). The target temperature Tm32 is a target temperature (set temperature) Tm obtained for an outside air temperature of T21 or more and less than T22, and the target temperature Tm31 is a target temperature (set temperature) obtained for an outside air temperature of T22 or more. Tm.
 ここで、目標温度Tm21>目標温度Tm31、目標温度Tm22>目標温度Tm32、T11>T21、T12>T22に設定されている。 Here, target temperature Tm21> target temperature Tm31, target temperature Tm22> target temperature Tm32, T11> T21, and T12> T22 are set.
 そして、機器制御部4eは、空間H毎に、環境情報として取得した外気温に基づいて、当該空間Hが属するグループに応じた制御アルゴリズムをコントローラ2へ送信する。コントローラ2の機器制御部2aは、この制御アルゴリズムに基づいて、空調装置1の運転・停止、目標温度の設定等を行って、空調装置1を遠隔制御する。 And the apparatus control part 4e transmits the control algorithm according to the group to which the said space H belongs to the controller 2 based on the outside temperature acquired as environmental information for every space H. The device control unit 2a of the controller 2 performs remote control of the air conditioner 1 by operating / stopping the air conditioner 1, setting a target temperature, and the like based on this control algorithm.
 また、コントローラ2は、この制御アルゴリズムを、利用者に画像等で提示して、この制御アルゴリズムに沿った空調装置1の手動操作を促してもよい。 Further, the controller 2 may present the control algorithm to the user with an image or the like, and prompt the manual operation of the air conditioner 1 according to the control algorithm.
 このように、本実施形態では、複数の空間Hがある場合、同じ傾向を示す他の空間Hの履歴も用いて制御アルゴリズム(動作アルゴリズム)を作成するので、より汎用性の高い空調制御を行うことができる。 As described above, in the present embodiment, when there are a plurality of spaces H, the control algorithm (operation algorithm) is created using the history of the other spaces H exhibiting the same tendency, so that air conditioning control with higher versatility is performed. be able to.
 以上述べたように、本実施形態の空調管理装置(コントローラ2およびセンターサーバ4)は、複数の空間Hの温度を各々変動させる空調装置1の各動作を管理する。運転履歴取得部(受信部4a)は、運転履歴を空調装置1毎に取得する。環境情報取得部(受信部4a)は、環境情報を空間H毎に取得する。記憶部4cは、空間H毎に、運転履歴、環境情報を時系列に沿って互いに対応付けて記憶する。アルゴリズム生成部4dは、全ての空間Hにおける運転履歴と環境情報とに基づいて、環境の状態が同一である1乃至複数の目標温度から、グループ化を行うための目標温度の閾値を決定する。アルゴリズム生成部4dは、空間H毎に、運転履歴と環境情報とに基づいて、環境の状態が同一である1乃至複数の目標温度を平均化し、この平均化した目標温度と閾値とを比較して、複数の空間Hの各々を環境の状態毎にグループ化する。アルゴリズム生成部4dは、グループ毎に、運転履歴と環境情報とに基づいて、環境の状態が同一である1乃至複数の目標温度を平均化する。アルゴリズム生成部4dは、この平均化した目標温度を用いた動作アルゴリズムをグループ毎に生成する。 As described above, the air conditioning management device (the controller 2 and the center server 4) of this embodiment manages each operation of the air conditioning device 1 that varies the temperatures of the plurality of spaces H. The operation history acquisition unit (reception unit 4a) acquires the operation history for each air conditioner 1. The environment information acquisition unit (reception unit 4a) acquires environment information for each space H. For each space H, the storage unit 4c stores driving history and environmental information in association with each other in time series. The algorithm generation unit 4d determines a target temperature threshold value for grouping from one or more target temperatures having the same environmental state based on the operation history and the environment information in all the spaces H. For each space H, the algorithm generation unit 4d averages one or more target temperatures having the same environmental state based on the driving history and the environmental information, and compares the averaged target temperature with a threshold value. Thus, each of the plurality of spaces H is grouped for each state of the environment. For each group, the algorithm generation unit 4d averages one or more target temperatures having the same environmental state based on the operation history and the environmental information. The algorithm generation unit 4d generates an operation algorithm using the averaged target temperature for each group.
 つまり、本実施形態の空調管理装置は、第1の特徴に加えて、以下の第3の特徴を備える。第3の特徴では、空調管理装置(コントローラ2およびセンターサーバ4)は、複数の空間H(H1~H3)の温度を各々変動させる複数の空調装置1を管理するように構成される。運転履歴取得部(受信部4a)は、空間H(H1~H3)毎に、対応する空調装置1の運転履歴を取得するように構成される。環境情報取得部(受信部4a)は、空間H(H1~H3)毎に、対応する環境履歴を取得するように構成される。記憶部4cは、空間H(H1~H3)毎に、時刻を基準にして互いに対応付けられた運転情報と環境情報との組み合わせを記憶するように構成される。アルゴリズム生成部4dは、空間H毎に環境状態が所定状態である環境情報に対応付けられた運転情報について目標温度の平均を求め、目標温度の平均と所定の閾値との比較に基づいて複数の空間を複数のグループに分類し、グループ毎に動作アルゴリズムを生成するように構成される。 That is, in addition to the first feature, the air conditioning management device of the present embodiment has the following third feature. In the third feature, the air conditioning management device (the controller 2 and the center server 4) is configured to manage the plurality of air conditioning devices 1 that respectively change the temperatures of the plurality of spaces H (H1 to H3). The operation history acquisition unit (reception unit 4a) is configured to acquire the operation history of the corresponding air conditioner 1 for each space H (H1 to H3). The environment information acquisition unit (reception unit 4a) is configured to acquire a corresponding environment history for each space H (H1 to H3). The storage unit 4c is configured to store, for each space H (H1 to H3), a combination of driving information and environmental information associated with each other with reference to time. The algorithm generation unit 4d obtains an average of the target temperature for the operation information associated with the environmental information in which the environmental state is the predetermined state for each space H, and based on the comparison between the average of the target temperature and a predetermined threshold The space is classified into a plurality of groups, and an operation algorithm is generated for each group.
 さらに、本実施形態の空調管理装置は、第3の特徴に加えて、以下の第4の特徴を備える。第4の特徴では、アルゴリズム生成部4dは、複数の空間H1~H3それぞれの運転履歴に関して環境状態が所定状態である環境情報に対応付けられた運転情報を選択し、選択された運転情報が示す目標温度に基づいて所定の閾値を決定するように構成される。なお、第4の特徴は任意の特徴である。 Furthermore, in addition to the third feature, the air conditioning management device of the present embodiment has the following fourth feature. In the fourth feature, the algorithm generation unit 4d selects driving information associated with environmental information in which the environmental state is a predetermined state with respect to the driving history of each of the plurality of spaces H1 to H3, and the selected driving information indicates A predetermined threshold is determined based on the target temperature. The fourth feature is an arbitrary feature.
 さらに、本実施形態の空調管理装置は、第3または第4の特徴に加えて、以下の第5の特徴を備える。第5の特徴では、アルゴリズム生成部4dは、グループ毎に、環境状態が所定状態である環境情報に対応付けられた運転情報について目標温度の平均を求め、目標温度の平均を用いた動作アルゴリズムを生成するように構成される。なお、第5の特徴は任意の特徴である。 Furthermore, the air-conditioning management apparatus of the present embodiment includes the following fifth feature in addition to the third or fourth feature. In the fifth feature, the algorithm generation unit 4d obtains an average of the target temperature for the operation information associated with the environmental information whose environmental state is the predetermined state for each group, and calculates an operation algorithm using the average of the target temperature. Configured to generate. The fifth feature is an arbitrary feature.
 なお、本実施形態の空調管理システムは、空間Hの温度を変動させる空調装置1と、空調装置1を管理する空調管理装置と、空間H内または空間H外の環境の状態を示す環境情報を検出する環境検出部(情報サーバ5)と、を備える。空調管理装置(コントローラ2およびセンターサーバ4)は、上記第1の特徴を有すると共に、付加的に第2~第5の特徴を備える。環境情報取得部(受信部4a)は、環境検出部(情報サーバ5)から環境情報を取得するように構成される。 The air conditioning management system of the present embodiment includes an air conditioner 1 that changes the temperature of the space H, an air conditioning management device that manages the air conditioner 1, and environmental information that indicates the state of the environment inside or outside the space H. An environment detection unit (information server 5) for detection. The air conditioning management device (the controller 2 and the center server 4) has the first feature and additionally has second to fifth features. The environment information acquisition unit (reception unit 4a) is configured to acquire environment information from the environment detection unit (information server 5).

Claims (6)

  1.  空間の温度を変動させる空調装置を管理する空調管理装置であって、
     前記空調装置の目標温度を含む運転情報の履歴である運転履歴を取得する運転履歴取得部と、
     前記空間内または前記空間外の環境の状態である環境状態を示す環境情報の履歴である環境履歴を取得する環境情報取得部と、
     前記運転履歴と前記環境履歴とに基づいて、時刻を基準にして互いに対応付けられた前記運転情報と前記環境情報との組み合わせを記憶する記憶部と、
     前記記憶部を参照し、前記運転情報および前記環境情報に基づいて、前記環境状態に応じた前記空調装置の前記目標温度を指示する動作アルゴリズムを生成するアルゴリズム生成部と、
     を備える
     ことを特徴とする空調管理装置。
    An air conditioning management device that manages an air conditioning device that fluctuates the temperature of the space,
    An operation history acquisition unit that acquires an operation history that is a history of operation information including a target temperature of the air conditioner;
    An environmental information acquisition unit that acquires an environmental history that is a history of environmental information indicating an environmental state that is an environmental state in or outside the space;
    Based on the driving history and the environmental history, a storage unit that stores a combination of the driving information and the environmental information associated with each other on the basis of time,
    An algorithm generation unit that refers to the storage unit and generates an operation algorithm that indicates the target temperature of the air conditioner according to the environmental state based on the operation information and the environment information;
    An air conditioning management device characterized by comprising:
  2.  前記アルゴリズム生成部は、前記環境状態が所定状態である前記環境情報に対応付けられた前記運転情報について前記目標温度の平均を求め、前記目標温度の平均を用いた前記動作アルゴリズムを生成するように構成される
     ことを特徴とする請求項1に記載の空調管理装置。
    The algorithm generation unit calculates an average of the target temperature for the operation information associated with the environmental information in which the environmental state is a predetermined state, and generates the operation algorithm using the average of the target temperature. It is comprised. The air-conditioning management apparatus of Claim 1 characterized by the above-mentioned.
  3.  前記空調管理装置は、複数の前記空間の温度を各々変動させる複数の前記空調装置を管理するように構成され、
     前記運転履歴取得部は、前記空間毎に、対応する前記空調装置の前記運転履歴を取得するように構成され、
     前記環境情報取得部は、前記空間毎に、対応する前記環境履歴を取得するように構成され、
     前記記憶部は、前記空間毎に、時刻を基準にして互いに対応付けられた前記運転情報と前記環境情報との組み合わせを記憶するように構成され、
     前記アルゴリズム生成部は、
      前記空間毎に、前記環境状態が所定状態である前記環境情報に対応付けられた前記運転情報について前記目標温度の平均を求め、
      前記目標温度の平均と所定の閾値との比較に基づいて前記複数の空間を複数のグループに分類し、
      前記グループ毎に、前記動作アルゴリズムを生成する
     ように構成される
     ことを特徴とする請求項1に記載の空調管理装置。
    The air conditioning management device is configured to manage a plurality of the air conditioning devices that respectively change the temperatures of the plurality of spaces.
    The operation history acquisition unit is configured to acquire the operation history of the corresponding air conditioner for each space,
    The environment information acquisition unit is configured to acquire the corresponding environment history for each space,
    The storage unit is configured to store, for each space, a combination of the driving information and the environment information associated with each other on the basis of time.
    The algorithm generator is
    For each of the spaces, obtain an average of the target temperature for the operation information associated with the environmental information in which the environmental state is a predetermined state,
    Classifying the plurality of spaces into a plurality of groups based on a comparison between an average of the target temperatures and a predetermined threshold;
    The air conditioning management device according to claim 1, wherein the operation algorithm is generated for each group.
  4.  前記アルゴリズム生成部は、前記複数の空間それぞれの前記運転履歴に関して前記環境状態が所定状態である前記環境情報に対応付けられた前記運転情報を選択し、選択された前記運転情報が示す前記目標温度に基づいて前記所定の閾値を決定するように構成される
     ことを特徴とする請求項3に記載の空調管理装置。
    The algorithm generation unit selects the driving information associated with the environmental information in which the environmental state is a predetermined state with respect to the driving history of each of the plurality of spaces, and the target temperature indicated by the selected driving information The air conditioning management device according to claim 3, wherein the predetermined threshold value is determined on the basis of the air conditioner.
  5.  前記アルゴリズム生成部は、前記グループ毎に、前記環境状態が所定状態である前記環境情報に対応付けられた前記運転情報について前記目標温度の平均を求め、前記目標温度の平均を用いた前記動作アルゴリズムを生成するように構成される
     ことを特徴とする請求項3に記載の空調管理装置。
    The algorithm generation unit obtains an average of the target temperature for the operation information associated with the environmental information in which the environmental state is a predetermined state for each group, and the operation algorithm using the average of the target temperature The air conditioning management device according to claim 3, wherein the air conditioning management device is configured to generate
  6.  空間の温度を変動させる空調装置と、
     前記空調装置を管理する空調管理装置と、
     前記空間内または前記空間外の環境の状態を示す環境情報を検出する環境検出部と、
     を備え、
     前記空調管理装置は、請求項1により定義され、
     前記環境情報取得部は、前記環境検出部から前記環境情報を取得するように構成される
     ことを特徴とする空調管理システム。
    An air conditioner that fluctuates the temperature of the space;
    An air conditioning management device for managing the air conditioning device;
    An environment detection unit for detecting environment information indicating the state of the environment inside or outside the space;
    With
    The air conditioning management device is defined by claim 1,
    The environment information acquisition unit is configured to acquire the environment information from the environment detection unit.
PCT/JP2013/004083 2012-07-09 2013-07-02 Air conditioning management device and air conditioning management system WO2014010196A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-153720 2012-07-09
JP2012153720A JP6057248B2 (en) 2012-07-09 2012-07-09 Air conditioning management device, air conditioning management system

Publications (1)

Publication Number Publication Date
WO2014010196A1 true WO2014010196A1 (en) 2014-01-16

Family

ID=49915680

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/004083 WO2014010196A1 (en) 2012-07-09 2013-07-02 Air conditioning management device and air conditioning management system

Country Status (2)

Country Link
JP (1) JP6057248B2 (en)
WO (1) WO2014010196A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018070101A1 (en) * 2016-10-11 2018-04-19 Mitsubishi Electric Corporation Controller for operating air-conditioning system and controlling method of air-conditioning system
CN110805995A (en) * 2019-11-27 2020-02-18 广东美的制冷设备有限公司 Control method, device, controller and storage medium for air conditioning equipment
US10845086B2 (en) 2016-05-24 2020-11-24 Mitsubishi Electric Corporation Air-conditioning control device, air-conditioning apparatus, and air-conditioning system

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3023605B1 (en) * 2014-07-09 2016-08-05 Nathanael Munier THERMOSTAT CONNECTED REAL TIME WITH FLOATING
CN106196415B (en) * 2014-08-15 2019-08-27 台达电子工业股份有限公司 Intelligent air conditioner control system and its intelligent control method
JP6480801B2 (en) * 2015-05-01 2019-03-13 株式会社ハネロン Environmental management system
JP2018071950A (en) * 2016-11-04 2018-05-10 シャープ株式会社 Air conditioner, network system, server and information processing method
CN109059180B (en) * 2018-07-27 2021-01-26 广东美的制冷设备有限公司 Control method and device of air conditioner, air conditioner and computer readable storage medium

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001141289A (en) * 1999-11-12 2001-05-25 Matsushita Refrig Co Ltd Air-conditioning monitoring control system
JP2006057908A (en) * 2004-08-20 2006-03-02 Fujitsu General Ltd Air conditioner
JP2009058176A (en) * 2007-08-31 2009-03-19 Hironori Takahashi Operation method for air conditioner
JP2012032105A (en) * 2010-08-02 2012-02-16 Daikin Industries Ltd Air conditioning management system
JP2012052706A (en) * 2010-08-31 2012-03-15 Daikin Industries Ltd Equipment controller

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6004709B2 (en) * 2012-04-06 2016-10-12 三菱電機株式会社 Energy saving support system, server device, energy saving support method and program

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001141289A (en) * 1999-11-12 2001-05-25 Matsushita Refrig Co Ltd Air-conditioning monitoring control system
JP2006057908A (en) * 2004-08-20 2006-03-02 Fujitsu General Ltd Air conditioner
JP2009058176A (en) * 2007-08-31 2009-03-19 Hironori Takahashi Operation method for air conditioner
JP2012032105A (en) * 2010-08-02 2012-02-16 Daikin Industries Ltd Air conditioning management system
JP2012052706A (en) * 2010-08-31 2012-03-15 Daikin Industries Ltd Equipment controller

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10845086B2 (en) 2016-05-24 2020-11-24 Mitsubishi Electric Corporation Air-conditioning control device, air-conditioning apparatus, and air-conditioning system
WO2018070101A1 (en) * 2016-10-11 2018-04-19 Mitsubishi Electric Corporation Controller for operating air-conditioning system and controlling method of air-conditioning system
CN109804206A (en) * 2016-10-11 2019-05-24 三菱电机株式会社 For the controller of operating air conditioning system and the control method of air-conditioning system
CN110805995A (en) * 2019-11-27 2020-02-18 广东美的制冷设备有限公司 Control method, device, controller and storage medium for air conditioning equipment

Also Published As

Publication number Publication date
JP2014016093A (en) 2014-01-30
JP6057248B2 (en) 2017-01-11

Similar Documents

Publication Publication Date Title
WO2014010196A1 (en) Air conditioning management device and air conditioning management system
WO2014010194A1 (en) Air conditioning management device and air conditioning management system
WO2014010195A1 (en) Air conditioning management device and air conditioning management system
US11428429B2 (en) Systems and methods for adjusting communication condition of an air conditioner
EP1717524B1 (en) Air conditioning system and method for controlling the same
KR101904428B1 (en) Ict-based indoor environment control method and system
JPWO2014203311A1 (en) Air conditioning system control apparatus and air conditioning system control method
DE102011052467A1 (en) USER CONDITION AND BEHAVIOR BASED CONTROL SYSTEM AND METHOD FOR BUILDING TECHNICAL SYSTEMS AND COMPONENTS
WO2015174176A1 (en) Ventilation controller and method for controlling ventilation
AU2019357534B2 (en) Air conditioner, data transmission method, and air conditioning system
US7532950B2 (en) Integrated management system and method for controlling multi-type air conditioners
KR102481809B1 (en) Apparatus and method for controling plural air conditioner indoor devices
JP5389618B2 (en) Air conditioner control system
WO2012007805A1 (en) Equipment control device, equipment control system, and equipment control method
Medina et al. Retrofit of air conditioning systems through an Wireless Sensor and Actuator Network: An IoT-based application for smart buildings
US20170254546A1 (en) Apparatus for monitoring at least one thermal control device, and associated control unit and control system
US10371399B1 (en) Smart vents and systems and methods for operating an air conditioning system including such vents
US10330330B2 (en) System and method for climate control in a building
US10503190B2 (en) Residential-area-energy-management apparatus and method using social network
JP2013218550A (en) Building facility management system
CN113039396B (en) Server device, adapter, and air conditioning system
JP2017530638A (en) Connected climate system
JP2021071262A (en) Air conditioner
JP5531824B2 (en) Air conditioning information provision device
JP7188106B2 (en) air conditioner

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13816325

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13816325

Country of ref document: EP

Kind code of ref document: A1