WO2014010073A1 - X線位置決め装置、x線位置決め方法及び注目画像撮影方法 - Google Patents

X線位置決め装置、x線位置決め方法及び注目画像撮影方法 Download PDF

Info

Publication number
WO2014010073A1
WO2014010073A1 PCT/JP2012/067891 JP2012067891W WO2014010073A1 WO 2014010073 A1 WO2014010073 A1 WO 2014010073A1 JP 2012067891 W JP2012067891 W JP 2012067891W WO 2014010073 A1 WO2014010073 A1 WO 2014010073A1
Authority
WO
WIPO (PCT)
Prior art keywords
ray
period
frame rate
image data
positioning
Prior art date
Application number
PCT/JP2012/067891
Other languages
English (en)
French (fr)
Inventor
卓紀 角尾
信彦 伊奈
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to EP12880734.4A priority Critical patent/EP2873438B1/en
Priority to US14/400,802 priority patent/US9873003B2/en
Priority to JP2014524565A priority patent/JP5916859B2/ja
Priority to PCT/JP2012/067891 priority patent/WO2014010073A1/ja
Priority to CN201280074691.9A priority patent/CN104470583B/zh
Priority to TW101142352A priority patent/TWI471152B/zh
Publication of WO2014010073A1 publication Critical patent/WO2014010073A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/1048Monitoring, verifying, controlling systems and methods
    • A61N5/1064Monitoring, verifying, controlling systems and methods for adjusting radiation treatment in response to monitoring
    • A61N5/1069Target adjustment, e.g. moving the patient support
    • A61N5/107Target adjustment, e.g. moving the patient support in real time, i.e. during treatment
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/1048Monitoring, verifying, controlling systems and methods
    • A61N5/1049Monitoring, verifying, controlling systems and methods for verifying the position of the patient with respect to the radiation beam
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/08Detecting, measuring or recording devices for evaluating the respiratory organs
    • A61B5/087Measuring breath flow
    • A61B5/0873Measuring breath flow using optical means
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/08Detecting, measuring or recording devices for evaluating the respiratory organs
    • A61B5/087Measuring breath flow
    • A61B5/0878Measuring breath flow using temperature sensing means
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/11Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb
    • A61B5/113Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb occurring during breathing
    • A61B5/1135Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb occurring during breathing by monitoring thoracic expansion
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/04Positioning of patients; Tiltable beds or the like
    • A61B6/0487Motor-assisted positioning
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/48Diagnostic techniques
    • A61B6/486Diagnostic techniques involving generating temporal series of image data
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/52Devices using data or image processing specially adapted for radiation diagnosis
    • A61B6/5211Devices using data or image processing specially adapted for radiation diagnosis involving processing of medical diagnostic data
    • A61B6/5229Devices using data or image processing specially adapted for radiation diagnosis involving processing of medical diagnostic data combining image data of a patient, e.g. combining a functional image with an anatomical image
    • A61B6/5235Devices using data or image processing specially adapted for radiation diagnosis involving processing of medical diagnostic data combining image data of a patient, e.g. combining a functional image with an anatomical image combining images from the same or different ionising radiation imaging techniques, e.g. PET and CT
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/54Control of apparatus or devices for radiation diagnosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/54Control of apparatus or devices for radiation diagnosis
    • A61B6/541Control of apparatus or devices for radiation diagnosis involving acquisition triggered by a physiological signal
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/1048Monitoring, verifying, controlling systems and methods
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/1048Monitoring, verifying, controlling systems and methods
    • A61N5/1064Monitoring, verifying, controlling systems and methods for adjusting radiation treatment in response to monitoring
    • A61N5/1069Target adjustment, e.g. moving the patient support
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/20Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
    • A61B2034/2046Tracking techniques
    • A61B2034/2055Optical tracking systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/36Image-producing devices or illumination devices not otherwise provided for
    • A61B90/37Surgical systems with images on a monitor during operation
    • A61B2090/376Surgical systems with images on a monitor during operation using X-rays, e.g. fluoroscopy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/1048Monitoring, verifying, controlling systems and methods
    • A61N5/1049Monitoring, verifying, controlling systems and methods for verifying the position of the patient with respect to the radiation beam
    • A61N2005/105Monitoring, verifying, controlling systems and methods for verifying the position of the patient with respect to the radiation beam using a laser alignment system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/1048Monitoring, verifying, controlling systems and methods
    • A61N5/1049Monitoring, verifying, controlling systems and methods for verifying the position of the patient with respect to the radiation beam
    • A61N2005/1051Monitoring, verifying, controlling systems and methods for verifying the position of the patient with respect to the radiation beam using an active marker
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/1048Monitoring, verifying, controlling systems and methods
    • A61N5/1049Monitoring, verifying, controlling systems and methods for verifying the position of the patient with respect to the radiation beam
    • A61N2005/1056Monitoring, verifying, controlling systems and methods for verifying the position of the patient with respect to the radiation beam by projecting a visible image of the treatment field
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/1048Monitoring, verifying, controlling systems and methods
    • A61N5/1049Monitoring, verifying, controlling systems and methods for verifying the position of the patient with respect to the radiation beam
    • A61N2005/1059Monitoring, verifying, controlling systems and methods for verifying the position of the patient with respect to the radiation beam using cameras imaging the patient
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/1048Monitoring, verifying, controlling systems and methods
    • A61N5/1049Monitoring, verifying, controlling systems and methods for verifying the position of the patient with respect to the radiation beam
    • A61N2005/1061Monitoring, verifying, controlling systems and methods for verifying the position of the patient with respect to the radiation beam using an x-ray imaging system having a separate imaging source
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/1048Monitoring, verifying, controlling systems and methods
    • A61N5/1049Monitoring, verifying, controlling systems and methods for verifying the position of the patient with respect to the radiation beam
    • A61N2005/1061Monitoring, verifying, controlling systems and methods for verifying the position of the patient with respect to the radiation beam using an x-ray imaging system having a separate imaging source
    • A61N2005/1062Monitoring, verifying, controlling systems and methods for verifying the position of the patient with respect to the radiation beam using an x-ray imaging system having a separate imaging source using virtual X-ray images, e.g. digitally reconstructed radiographs [DRR]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N2005/1085X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy characterised by the type of particles applied to the patient
    • A61N2005/1087Ions; Protons
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/1048Monitoring, verifying, controlling systems and methods
    • A61N5/1064Monitoring, verifying, controlling systems and methods for adjusting radiation treatment in response to monitoring
    • A61N5/1068Gating the beam as a function of a physiological signal
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2270/00Control; Monitoring or safety arrangements
    • F04C2270/04Force
    • F04C2270/041Controlled or regulated

Definitions

  • the present invention relates to a radiation therapy apparatus for performing cancer treatment by irradiating an affected area of a patient with radiation such as X-rays, gamma rays, and particle beams, and the patient is placed at a radiation irradiation position planned in a treatment plan using an X-ray image.
  • the present invention relates to an X-ray positioning apparatus for positioning the head.
  • particle beam treatment devices In recent years, development and construction of cancer treatment devices (particularly referred to as particle beam treatment devices) using particle beams such as protons and heavy ions have been promoted in radiotherapy devices intended for cancer treatment.
  • particle beam therapy using particle beams can irradiate the cancer affected area more intensively than conventional radiotherapy such as X-rays and gamma rays, that is, pinpointing according to the shape of the affected area. Can be irradiated with a particle beam and can be treated without affecting normal cells.
  • respiratory synchronization irradiation in which a charged particle beam is irradiated in synchronization with respiration has been performed using a respiration detection signal of a respiration detector.
  • a respiratory gate signal that permits emission of a charged particle beam is generated from the position of the body surface detected by a respiratory detector, and a synchrotron and a beam transport device are controlled based on the respiratory gate signal.
  • a particle beam irradiation apparatus is described.
  • an external observation device (X-ray fluoroscopy device) that observes respiration signals that can be measured from outside the body, such as body deformation and respiratory volume, and a treatment target, a skeleton, a diaphragm position, and the body are embedded. It has two types of observation devices, an internal observation device that observes the respiratory phase based on the positional information of internal structures such as markers, and it is highly accurate by taking X-ray fluoroscopic images only at the respiratory phase necessary for respiratory synchronized irradiation. Describes a radiation therapy system that realizes simple respiratory synchronized irradiation with a small amount of X-ray exposure.
  • the patient In particle beam therapy, it is important to irradiate the affected area such as cancer with high accuracy regardless of whether or not respiratory synchronized irradiation is performed. Therefore, the patient is fixed using a fixture or the like so that the position does not shift with respect to the treatment table (patient table) in the treatment room (irradiation room) during the particle beam treatment.
  • the affected area such as cancer within the radiation irradiation range
  • settings such as rough installation of the patient using a laser pointer are performed, and then the patient's affected area is accurately positioned using an X-ray image or the like. Is going.
  • JP 2010-63725 A steps 0067 to 0072, FIG. 3
  • JP 2010-154874 A stages 0012 to 0015, FIGS. 1 to 4
  • a respiratory detector In the case of patient positioning for fixing the patient to the treatment table when performing respiratory synchronized irradiation, a respiratory detector can be used. In this case, it is easy to provide a function for additionally recording respiration information in the X-ray image, but the function for additionally recording respiration information in the X-ray image is a timing at which the position of the respiratory moving affected part is relatively stable. It is not a necessary function to find out. Therefore, only the function of additionally recording respiration information on the X-ray image cannot efficiently capture images according to the state of the respiration waveform.
  • An object of the present invention is to obtain an X-ray positioning apparatus capable of efficiently capturing an image in accordance with the state of a respiratory waveform when positioning a patient for radiation therapy.
  • An X-ray positioning apparatus acquires first X-ray image data output from an X-ray detector that detects X-rays emitted from an X-ray tube, and receives a respiratory signal related to patient breathing and the first X-ray image data.
  • a positioning computer that calculates a body posture correction amount to match the posture of the patient and generates patient table control data for controlling the patient table, a frame rate control signal including imaging conditions for continuously captured images in the first X-ray image data, and
  • An imaging trigger generation device that outputs an imaging trigger signal that emits X-rays corresponding to a plurality of frame rates to an X-ray tube based on the respiratory signal;
  • the imaging trigger generation device generates an imaging trigger signal corresponding to the first frame rate and the second frame rate higher than the first frame rate, and the positioning computer calculates the first X-ray image data in the second X-ray image data.
  • Patient table control data is generated on the basis of one X-ray image and a reference image selected from continuously captured images captured at a
  • the X-ray positioning device Since the X-ray positioning device according to the present invention generates an imaging trigger signal that emits X-rays corresponding to a plurality of frame rates, based on a frame rate control signal and a breathing signal including imaging conditions for continuous imaging images.
  • an imaging trigger signal that emits X-rays corresponding to a plurality of frame rates, based on a frame rate control signal and a breathing signal including imaging conditions for continuous imaging images.
  • FIG. 1 is a schematic configuration diagram of a particle beam therapy system to which the present invention is applied. It is a figure which shows the structure of the particle beam irradiation apparatus of FIG.1 and FIG.2. It is a figure which shows the structure of the imaging
  • FIG. 1 is a diagram showing a configuration of an X-ray positioning apparatus according to the present invention and a schematic configuration of a respiratory synchronization irradiation system.
  • FIG. 2 is a schematic configuration diagram of a particle beam therapy system to which the present invention is applied, and
  • FIG. 3 is a diagram illustrating a configuration of the particle beam irradiation apparatus of FIGS. 1 and 2.
  • FIG. 4 is a diagram showing the configuration of the imaging trigger generation device of the present invention.
  • the respiratory synchronization irradiation system includes an X-ray positioning device 20, a particle beam irradiation device 58, a patient table 12 on which a patient 45 is placed, a respiration sensor 8, a sense amplifier 9, an X-ray tube 6, and an X-ray detector 7.
  • the X-ray positioning device 20 includes a positioning computer 1, an imaging trigger generation device 2, a monitor 4 a and an input device 5 a connected to the positioning computer 1, and an X-ray video device 3.
  • the respiratory synchronization signal generator 10 includes a waveform generator 15, an IF converter 16, and a switch 13.
  • the imaging trigger generation device 2 includes an input unit 21, a waveform determination unit 22, an attention period extraction unit 23, and an imaging trigger generation unit 24.
  • the patient 45 When performing radiotherapy, the patient 45 is fixed by using a fixture or the like (not shown) so that the position of the patient 45 does not shift with respect to the patient table 12 in the irradiation chamber 19.
  • a fixture or the like In order to accurately position the affected part 48 such as cancer in the radiation irradiation range, setting such as rough installation of the patient using a laser pointer or the like is performed.
  • the affected part 48 of the patient 45 is precisely positioned using the X-ray positioning device 20.
  • the X-ray positioning apparatus 20 obtains a respiratory signal sig1 from the respiratory information of the patient 45 detected by the respiratory sensor 8 via the sense amplifier 9, the respiratory synchronization signal generator 10, and the IF unit 11. To do.
  • the respiration signal sig1 is a signal related to the respiration of the patient 45.
  • the sense amplifier 9 amplifies the respiration information of the patient 45, and the respiration synchronization signal generator 10 generates the respiration signal sig1 of the digital signal from the respiration information of the analog signal.
  • the IF unit 11 outputs the respiration signal sig1, the synchronization signal sig4 at the time of the respiration synchronization irradiation, and the interlock signal sig5 to the X-ray positioning device 20, the irradiation management device 38 described later, and the like.
  • the respiratory sensor 8 can be the following.
  • a flow sensor detects the flow of exhalation, measures temperature changes in the vicinity of the nasal cavity due to inspiration using image processing with a thermistor or infrared camera, or a laser light source attached to the abdomen of the movement of the abdomen of the patient 45
  • a method of detecting with a position sensitive detector (position sensor) or converting the motion of the abdomen of the patient 45 with a laser displacement meter can be considered.
  • the X-ray positioning device 20 detects the X-ray emitted from the X-ray tube 6 by the X-ray detector 7 and the position of the affected part 48 of the patient 45 in the X-ray image taken and CT image data for treatment planning Are compared with the position of the affected part 48 of the patient 45 in the reference image for positioning, the body position correction amount is calculated so as to match the posture of the treatment plan, and the patient table control data cdata1 as the body position correction amount is stored in the patient table 12. Output.
  • the X-ray positioning apparatus 20 controls the patient table 12 based on the patient table control data cddata1 which is a body position correction amount, and performs alignment so that the affected part 48 at the time of treatment comes to the center of beam irradiation for radiation therapy. A positioning method using the respiratory signal sig1 will be described later.
  • FIG. 2 is a schematic configuration diagram of a particle beam therapy system to which the present invention is applied
  • FIG. 3 is a diagram illustrating a configuration of the particle beam irradiation apparatus of FIGS. 1 and 2.
  • the particle beam therapy system 51 includes a beam generation device 52, a beam transport system 59, and particle beam irradiation devices 58a and 58b.
  • the beam generator 52 includes an ion source (not shown), a pre-stage accelerator 53, and a charged particle accelerator 54.
  • the particle beam irradiation device 58b is installed in a rotating gantry (not shown).
  • the particle beam irradiation device 58a is installed in an irradiation chamber that does not have a rotating gantry.
  • the role of the beam transport system 59 is in communication between the charged particle accelerator 54 and the particle beam irradiation devices 58a and 58b.
  • a part of the beam transport system 59 is installed in a rotating gantry (not shown), and the part has a plurality of deflection electromagnets 55a, 55b, and 55c.
  • the charged particle beam which is a particle beam such as a proton beam generated in the ion source, is accelerated by the pre-stage accelerator 53 and is incident on the charged particle accelerator 54 from the incident device 46.
  • the charged particle accelerator 54 is, for example, a synchrotron.
  • the charged particle beam is accelerated to a predetermined energy.
  • the charged particle beam emitted from the emission device 47 of the charged particle accelerator 54 is transported to the particle beam irradiation devices 58a and 58b through the beam transport system 59.
  • the particle beam irradiation devices 58 a and 58 b irradiate the affected part 48 of the patient 45 with a charged particle beam.
  • the reference numeral 58 of the particle beam irradiation apparatus is used as a whole, and 58a and 58b are used in the case of distinction.
  • the particle beam irradiation device 58 includes an X-direction scanning electromagnet 32 and a Y-direction scanning electromagnet 33 that scan the charged particle beam 31 in the X direction and the Y direction that are perpendicular to the charged particle beam 31, and a position monitor 34.
  • the irradiation management device 38 includes an irradiation control computer 39 and an irradiation control device 40.
  • the dose data converter 36 includes a trigger generation unit 42, a spot counter 43, and an inter-spot counter 44.
  • the traveling direction of the charged particle beam 31 is the ⁇ Z direction.
  • the X-direction scanning electromagnet 32 is a scanning electromagnet that scans the charged particle beam 31 in the X direction
  • the Y-direction scanning electromagnet 33 is a scanning electromagnet that scans the charged particle beam 31 in the Y direction.
  • the position monitor 34 detects beam information for calculating a passing position (center of gravity position) and a size of a beam through which the charged particle beam 31 scanned by the X direction scanning electromagnet 32 and the Y direction scanning electromagnet 33 passes.
  • the beam data processing device 41 calculates the passing position (center of gravity position) and size of the charged particle beam 31 based on beam information made up of a plurality of analog signals (beam information) detected by the position monitor 34. Further, the beam data processing device 41 generates an abnormality detection signal indicating an abnormal position or size abnormality of the charged particle beam 31 and outputs this abnormality detection signal to the irradiation management device 38.
  • the dose monitor 35 detects the dose of the charged particle beam 31.
  • the irradiation management device 38 controls the irradiation position of the charged particle beam 31 in the affected area 48 of the patient 45 based on the treatment plan data created by the treatment planning device (not shown), is measured by the dose monitor 35, and is a dose data converter.
  • the dose converted into digital data in 36 reaches the target dose, the charged particle beam 31 is stopped.
  • the scanning electromagnet power source 37 sets the set currents of the X direction scanning electromagnet 32 and the Y direction scanning electromagnet 33 based on control inputs (commands) to the X direction scanning electromagnet 32 and the Y direction scanning electromagnet 33 output from the irradiation management device 38. Change.
  • the scanning irradiation method of the particle beam irradiation apparatus 58 is a raster scanning irradiation method in which the charged particle beam 31 is not stopped when the irradiation position of the charged particle beam 31 is changed, and the beam irradiation position is the same as the spot scanning irradiation method.
  • a method of moving between spot positions one after another is adopted.
  • the spot counter 43 measures the irradiation dose while the beam irradiation position of the charged particle beam 31 is stopped.
  • the spot-to-spot counter 44 measures the irradiation dose while the beam irradiation position of the charged particle beam 31 is moving.
  • the trigger generation unit 42 generates a dose expiration signal when the dose of the charged particle beam 1 at the beam irradiation position reaches the target irradiation dose.
  • FIG. 5 is a diagram for explaining an example of changing the frame rate according to the first embodiment of the present invention.
  • the respiration waveform 26 of the respiration signal sig1 is shown for one cycle.
  • the horizontal axis is time, and the vertical axis is amplitude.
  • Black circles on the respiration waveform 26 are collected data 27 detected at a constant sampling period.
  • the respiration waveform 26 is a curve obtained by complementing a plurality of collected data 27.
  • the actual respiration waveform 26 is different from the sine wave as shown in FIG. 5, the sine wave will be described as an example.
  • the time of one cycle of the respiration waveform 26 is from time t0 to time t4.
  • a portion where the amplitude of the respiratory waveform 26 is high indicates a state where the patient 45 is inhaling
  • a portion where the amplitude of the respiratory waveform 26 is low indicates a state where the patient 45 is exhaling.
  • the X-ray video apparatus 3 of the X-ray positioning apparatus 20 acquires X-ray image data data1 in the imaging period Tp.
  • the imaging period Tp is from time t1 to time t3.
  • the X-ray image data data1 includes continuous captured images captured at a plurality of frame rates.
  • FIG. 5 shows an example of changing between two frame rates.
  • the X-ray image data data1 is composed of continuously photographed images 28 having a frame rate fr1 from time t1 to time t2, and is composed of continuously photographed images 29 having a frame rate fr2 higher than the frame rate fr1 from time t2 to time t3. .
  • the first embodiment is an example in which positioning is performed using X-ray image data data1 in a flat period of the respiratory waveform 26 in a state where the patient 45 is exhaling.
  • a period from time t2 to time t3 is an attention period Ts in which the frame rate is changed.
  • the X-ray positioning apparatus 20 performs X-rays of the affected area 48 in accordance with the imaging conditions such as the imaging period Tp, the frame rates fr1, fr2, the frame rate change time t2, and the attention period Ts specified from the input device 5a such as a keyboard or a mouse.
  • the positioning computer 1 outputs a frame rate control signal sig2 including imaging conditions such as the imaging period Tp, the frame rates fr1 and fr2, the frame rate change time t2, and the attention period Ts to the imaging trigger generation device 2.
  • the shooting trigger generation device 2 executes a shooting trigger generation procedure.
  • the imaging trigger generation device 2 outputs an imaging trigger signal sig3 to the X-ray tube 6 based on the respiratory signal sig1 and the frame rate control signal sig2 input from the IF unit 11.
  • the imaging start time t1, the frame rate change time t2, and the imaging end time t3 are times based on one cycle of the respiratory waveform 26.
  • the X-ray tube 6 emits X-rays every time an imaging trigger signal sig3 is input from the imaging trigger generation device 2.
  • the X-ray detector 7 detects X-rays that have passed through the patient 45 and outputs X-ray image data data 1 to the X-ray video apparatus 3.
  • the X-ray video apparatus 3 executes a positioning image data generation procedure.
  • the X-ray video apparatus 3 acquires X-ray image data data1 from the X-ray detector 7, and based on the respiration signal sig1 input from the IF unit 11 and the imaging trigger signal sig3 input from the imaging trigger generation apparatus 2, X-ray image data data2 in which the time of the respiration waveform 26 and the imaging time of the X-ray image are associated is stored in a built-in memory or the like.
  • the X-ray video apparatus 3 outputs the X-ray image data data2 to the positioning computer 1.
  • the positioning computer 1 executes a patient table control data generation procedure.
  • the positioning computer 1 acquires X-ray image data data2.
  • the positioning computer 1 obtains one X-ray image closest to the state (position, size, etc.) of the affected part 48 of the patient 45 of the reference image for positioning from the CT image data for treatment planning, etc., as X-ray image data data2. Select from.
  • the positioning computer 1 collates the position of the affected area 48 of the patient 45 in the selected X-ray image with the affected area 48 of the patient 45 in the reference image, calculates the body position correction amount so as to match the posture of the treatment plan, and
  • the patient table control data cdata1 which is the posture correction amount, is output to the table 12.
  • the patient table control data cddata1 is patient table control data including a total of six degrees of freedom, for example, three translational axes [ ⁇ X, ⁇ Y, ⁇ Z] and three rotational axes [ ⁇ A, ⁇ B, ⁇ C].
  • the patient table 12 drives a translational three-axis motor or a rotation three-axis motor in accordance with the patient table control data cdata1.
  • the X-ray positioning apparatus 20 can calculate the body position correction amount so as to meet the treatment plan, and can perform alignment so that the affected part 48 at the time of treatment comes to the beam irradiation center (isocenter) of the radiation treatment.
  • the patient's 45 affected part 48 is subjected to respiratory synchronized irradiation with the charged particle beam 31 synchronized with the patient's respiratory state.
  • the X-ray tube 6 and the X-ray detector 7 are moved from the imaging position so as not to interfere with radiation irradiation.
  • the respiratory synchronization signal generator 10 can detect the respiratory information of the patient 45 detected by the respiratory sensor 8 and amplified by the sense amplifier 9 and the irradiation that can be regarded as the state of the affected part 48 when the alignment obtained from the positioning computer 1 is completed.
  • a synchronization signal sig4 is generated based on the period information sig6.
  • the interlock signal sig5 is generated by the IF converter 16 when the switch 13 is turned on / off. For example, when the switch 13 is in the on state, irradiation is permitted, that is, the interlock is released, and when the switch 13 is in the off state, irradiation is not permitted, that is, the interlock operation is performed.
  • the respiratory signal sig1 is sent to the control computer 14, and the respiratory waveform 26, the waveform of the synchronous signal sig4, the interlock signal sig5, and the like are displayed from the control computer 14 to the monitor 4b.
  • the monitor 4b and the input device 5b connected to the control computer 14 and the switch 13 are installed in an irradiation control room outside the management area.
  • the X-ray positioning apparatus 20 of the first embodiment extracts a desired period (imaging period Tp) from the respiratory waveform 26 at the time of patient positioning, and continuous imaging in which the frame rate of continuous imaging of X-ray images is variable.
  • An image (moving image) can be obtained.
  • the period suitable for patient positioning is a substantially stationary period in which the affected part 48 of the patient 45 is in a stationary state or a substantially stationary state close to the stationary state.
  • This substantially stationary period is a period during which respiratory synchronized irradiation can be performed, and a treatment plan is created for the state of the affected part 48 of the patient 45 in this substantially stationary period.
  • the imaging trigger generation device 2 acquires the respiratory signal sig1 and the frame rate control signal sig2 at the input unit 21. For example, the imaging trigger generation device 2 bilinearly converts the collection data 27 forming the respiratory waveform 26 and determines whether the respiratory waveform 26 is in a predetermined state in the respiratory signal sig1. Specifically, the imaging trigger generation device 2 determines that the respiration waveform 26 is flat when the difference in amplitude between adjacent data is within a predetermined small range. The determination of the flat period in the respiration waveform 26 is performed by the waveform determination unit 22.
  • Embodiment 1 since the substantially stationary period when the patient 45 exhales is extracted, the period in which the amplitude of the respiratory waveform 26 is close to the lower limit value and the respiratory waveform 26 is determined to be flat is selected. , Extracted as the attention period Ts. The extraction of the attention period Ts is performed by the attention period extraction unit 23 based on the determination result of the waveform determination unit 22 and the respiratory signal sig1 and the frame rate control signal sig2.
  • the imaging trigger generation unit 24 Based on the extraction result of the attention period extraction unit 23, the imaging trigger generation unit 24 performs imaging corresponding to a low frame rate fr1 when the respiratory signal sig1 is the imaging period Tp and is a waveform signal other than the attention period Ts.
  • the trigger signal sig3 is output.
  • the imaging trigger generation unit 24 outputs the imaging trigger signal sig3 corresponding to the frame rate fr2 higher than the frame rate fr1 when the respiratory signal sig1 is the imaging period Tp and is a waveform signal of the attention period Ts.
  • the X-ray positioning apparatus 20 can obtain continuous shot images (moving images) in which the frame rate of continuous shooting of X-ray images is variable during patient positioning.
  • the X-ray video apparatus 3 is capable of taking a fine picture during the attention period Ts that the person wants to extract, and taking pictures at other frame rates in the picture taking period Tp at a frame rate of about the standard, as compared with the conventional method of photographing at a constant frame rate.
  • the image processing amount and the memory amount in the positioning computer 1 can be reduced. Therefore, the X-ray positioning apparatus 20 according to the first embodiment can capture an X-ray image more efficiently than the conventional method of capturing at a constant frame rate.
  • the X-ray positioning apparatus 20 of the first embodiment captures a fine X-ray image by increasing the frame rate during a period in which the respiration waveform 26 is flat, that is, the attention period Ts in FIG. Since the coincidence point with the reference image can be verified in detail for a large number of X-ray images, the alignment accuracy is improved.
  • the X-ray positioning apparatus 20 efficiently captures an X-ray image in a necessary period of the respiratory waveform 26, for example, an imaging period Tp shorter than one cycle, thereby unnecessary X-rays to the patient 45. The amount of exposure can be reduced. Further, the X-ray positioning apparatus 20 according to the first embodiment differs from the conventional method in which the imaging start is started when the amplitude of the respiratory waveform 26 exceeds the threshold value, and the X-ray image has a low frame rate fr2 other than the attention period Ts. Therefore, it is not possible to take a picture for a long time which can occur in this conventional method. Furthermore, the X-ray positioning apparatus 20 according to the first embodiment eliminates the need for conventional operations such as position adjustment of the respiratory sensor and threshold adjustment performed to eliminate the absence of imaging for a long time. The alignment work time can be shortened and the work time can be improved.
  • the first X-ray image data data1 output from the X-ray detector 7 that detects the X-rays emitted from the X-ray tube 6 is acquired, and the patient 45
  • the positioning computer 1 that collates the affected part 48 in the reference image that is the reference, calculates the body position correction amount so as to match the posture of the treatment plan, and generates the patient table control data cdata1 for controlling the patient table 12; Based on the frame rate control signal sig2 and the respiration signal sig1 including the imaging conditions of the continuous imaging images 28 and 29 in the X-ray image data data1, a plurality of An imaging trigger generation device 2 that outputs to the X-ray tube 6 an imaging trigger signal sig3 that emit
  • Patient table control data cdata1 is generated based on one X-ray image selected from the continuously captured image 29 and the reference image. Since the X-ray positioning apparatus 20 according to the first embodiment has the above-described characteristics, a plurality of frame rates fr1, fr2 are based on the frame rate control signal sig2 and the respiratory signal sig1 including the imaging conditions of the continuously captured images 28, 29.
  • the radiographing trigger signal sig3 that emits X-rays can be generated in response to the above, and radiography can be performed efficiently according to the state of the respiratory waveform 26 at the time of patient positioning.
  • the first X-ray image data data1 output from the X-ray detector 7 that detects the X-rays emitted from the X-ray tube 6 is acquired, and the patient 45 Positioning image data generation procedure for generating second X-ray image data data2 in which the respiration signal sig1 relating to respiration and the first X-ray image data data1 are associated, and the affected part 48 and the positioning reference in the second X-ray image data data2
  • a patient table control data generation procedure for collating the affected part 48 in the reference image, calculating a body posture correction amount to match the posture of the treatment plan, and generating patient table control data cdata1 for controlling the patient table 12,
  • an imaging trigger generation procedure for outputting an imaging trigger signal sig3 that emits X-rays corresponding to a plurality of frame rates fr1 and fr2
  • the imaging trigger signal sig3 are generated corresponding to the first frame rate fr1 and the second frame rate fr2 higher than the first frame rate fr1, and the second X-ray image data data2 in the second X-ray image data data2 is generated in the patient table control data generation procedure.
  • the patient table control data cddata1 is generated on the basis of one X-ray image selected from the continuously captured images 29 captured at the frame rate fr2 and the reference image. Since the X-ray positioning method according to the first embodiment has the above-described feature, a plurality of frame rates fr1 and fr2 are obtained based on the frame rate control signal sig2 and the respiratory signal sig1 including the imaging conditions of the continuously captured images 28 and 29.
  • an imaging trigger signal sig3 for emitting X-rays can be generated, and imaging can be efficiently performed in accordance with the state of the respiratory waveform 26 at the time of patient positioning for radiotherapy.
  • FIG. FIG. 6 is a diagram for explaining an example of changing the frame rate according to the second embodiment of the present invention.
  • the second embodiment is an example in which positioning is performed using X-ray image data data1 in a flat period of the respiratory waveform 26 in a state where the patient 45 is breathing. That is, the X-ray positioning apparatus 20 according to the second embodiment sets the flat period of the respiratory waveform 26 in a state where the patient 45 is breathing as the attention period Ts.
  • the respiration waveform 26 of the respiration signal sig1 is shown for one cycle (from time t0 to time t4).
  • FIG. 6 shows an example of changing between two frame rates.
  • the period from time t0 to time t3 is the imaging period Tp.
  • the X-ray image data data1 is composed of continuously captured images 28 at the frame rate fr1 from the time t0 to the time t1 and from the time t2 to the time t3. From the time t1 to the time t2, the continuous imaging at the frame rate fr2 higher than the frame rate fr1. It consists of an image 29.
  • the attention period Ts is a period from time t1 to time t2.
  • the reference image for positioning is an image in a state where the patient 45 is inhaling.
  • the X-ray positioning apparatus 20 according to the second embodiment can obtain the same effects as those of the first embodiment, and can efficiently capture images according to the state of the respiratory waveform 26 when positioning a patient for radiation therapy.
  • the state in which the patient 45 is breathing may be substantially longer than the state in which the patient 45 is exhaling.
  • the X-ray positioning apparatus 20 according to the second embodiment takes note of the period when the patient 45 according to the first embodiment is exhaling. Rather than setting Ts, the alignment accuracy can be improved.
  • the substantially stationary state is long, the treatment time for performing respiratory synchronization irradiation can be shortened.
  • FIG. 7 is a diagram for explaining an example of changing the frame rate according to the third embodiment of the present invention.
  • the third embodiment is an example in which the attention period Ts is set where the change in the respiratory waveform 26 is steep.
  • the respiration waveform 26 of the respiration signal sig1 is shown for one cycle (from time t0 to time t5).
  • FIG. 7 shows an example of changing between two frame rates.
  • the time t1 to the time t4 is the imaging period Tp.
  • the X-ray image data data1 is composed of continuously captured images 28 at the frame rate fr1 from the time t1 to the time t2 and from the time t3 to the time t4. From the time t2 to the time t3, the continuous imaging at the frame rate fr2 higher than the frame rate fr1. It consists of an image 29.
  • the attention period Ts is a period from time t2 to time t3.
  • the affected part 48 accompanied by respiratory movement such as lung and liver has a higher moving speed when the change of the respiratory waveform 26 is steep.
  • the attention period Ts is set at a place where the change of the respiration waveform 26 is steep, an image with small blurring with respect to the movement can be obtained, and the movement of the organ can be grasped in detail.
  • the movement of the organ can be grasped in detail with a smaller amount of X-ray exposure than when photographing at a constant frame rate.
  • a steep period in which the waveform sharply changes in the respiration signal sig1 is determined, and a capturing trigger is associated with the third frame rate fr2 higher than the first frame rate fr1.
  • An imaging trigger signal generation procedure for generating the signal sig3 an attention period extraction procedure for determining whether or not the waveform of the respiratory signal sig1 is a steep period, and extracting the steep period as the attention period Ts, and an X-ray video
  • the apparatus 3 acquires first X-ray image data data1, and generates target X-ray image data data2 in which the respiration signal sig1 and the first X-ray image data data1 are associated with each other. It is characterized by including.
  • the attention image capturing method according to the third embodiment has the above-described characteristics. Therefore, when creating a treatment plan, avoid a healthy organ and appropriately set the irradiation direction of the affected area 48 and the irradiation period of performing respiratory synchronization irradiation. Can be set.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Medical Informatics (AREA)
  • Pathology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Surgery (AREA)
  • Biophysics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Optics & Photonics (AREA)
  • Physiology (AREA)
  • Pulmonology (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Dentistry (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Radiation-Therapy Devices (AREA)
  • Apparatus For Radiation Diagnosis (AREA)

Abstract

 放射線治療の患者位置決めの際に、呼吸波形の状態に合わせて効率よく撮影することができるX線位置決め装置を得ることを目的にする。 本発明のX線位置決め装置(20)よれば、患者(45)の呼吸信号(sig1)と第1のX線画像データ(data1)を関連付けた第2のX線画像データ(data2)を生成するX線ビデオ装置(3)と、患者台(12)を制御する患者台制御データ(cdata1)を生成する位置決め計算機(1)と、撮影トリガ信号(sig3)をX線管(6)に出力する撮影トリガ生成装置(2)と、を備え、撮影トリガ生成装置(2)は、撮影トリガ信号(sig3)を、第1のフレームレート(fr1)及びこれよりも高い第2のフレームレート(fr2)に対応して生成し、位置決め計算機(1)は、第2のフレームレート(fr2)で撮影された連続撮影画像(29)から選択された1枚のX線画像と基準画像に基づいて、患者台制御データ(cdata1)を生成することを特徴とする。

Description

X線位置決め装置、X線位置決め方法及び注目画像撮影方法
 本発明は、X線、ガンマ線、粒子線等の放射線を患者の患部に照射してがん治療を行う放射線治療装置において、X線画像を用いて治療計画で計画された放射線の照射位置に患者を位置決めするX線位置決め装置に関するものである。
 近年、がん治療を目的とした放射線治療装置では、陽子や重イオン等の粒子線を用いたがん治療装置(特に、粒子線治療装置と呼ばれる)の開発や建設が進められている。周知のとおり、粒子線を用いた粒子線治療はX線、ガンマ線等の従来の放射線治療に比べて、がん患部に集中的に照射することができ、すなわち、患部の形状に合わせてピンポイントで粒子線を照射することができ、正常細胞に影響を与えずに治療することが可能である。
 肺、肝臓などの呼吸性移動を伴う患部に照射する場合、呼吸検出器の呼吸検出信号を用いて、呼吸に同期して荷電粒子ビームを照射する呼吸同期照射が行われるようになってきた。例えば、特許文献1には、呼吸検出器で検出した体表の位置から荷電粒子ビームの出射を許可する呼吸ゲート信号を生成し、この呼吸ゲート信号に基づいて、シンクロトロンやビーム輸送装置を制御する粒子線照射装置が記載されている。また、特許文献2には、体の変形や呼吸気量など体外から計測可能な呼吸の信号を観測する外部観測装置(X線透視装置)と、治療標的や骨格や横隔膜位置や体内に埋め込んだマーカなど体内構造の位置情報を元に呼吸位相を観測する内部観測装置の2種類の観測装置を備え、呼吸同期照射に必要な呼吸位相でのみX線透視画像の撮影を行うことにより、高精度な呼吸同期照射を少ないX線被曝量で実現する放射線治療システムが記載されている。
 粒子線治療では、呼吸同期照射の実行の有無に関わらず、粒子線をがんなどの患部に高精度に照射することが重要である。その為、患者は粒子線治療時には治療室(照射室)の治療台(患者台)に対して位置がずれないように、固定具等を用いて固定される。がんなどの患部を放射線照射範囲に精度よく位置決めする為に、レーザポインタなどを利用した患者の粗据付けなどのセッティングを行い、次いで、X線画像等をもちいて患者の患部の精密な位置決めを行っている。
 しかし、肺、肝臓などの呼吸性移動を伴う患部に対して精度よく位置決めするには、X線撮像装置で出力される連続撮影画像と呼吸検出装置から出力される呼吸波形とに基づいて、呼吸性移動患部の位置が比較的安定するタイミング、例えば息を吐いているタイミングでX線画像を取得して、患者位置決めに利用する必要がある。
特開2010-63725号公報(0067~0072段、図3) 特開2010-154874号公報(0012~0015段、図1~図4)
 特許文献1の粒子線照射装置では、呼吸検出器で検出した体表の位置から生成した呼吸ゲート信号に基づいて、シンクロトロンやビーム輸送装置を制御しているものの、患者を治療台に固定する際に、精度よく位置決めされなければ高精度な放射線治療を行うことはできない。また、特許文献2の放射線治療システムでは、呼吸同期照射に必要な呼吸位相でのみX線透視画像の撮影を行うことにより、高精度な呼吸同期照射を少ないX線被曝量で実現しようとしているが、前述したように患者を治療台に固定する際に、精度よく位置決めされなければ高精度な放射線治療を行うことはできない。
 呼吸同期照射を行う場合における患者を治療台に固定する患者位置決めの際には、呼吸検出器を用いることも可能である。この場合、X線画像に呼吸情報を追記記録する機能を持たせることは容易に考えられるが、X線画像に呼吸情報を追記記録する機能は、呼吸性移動患部の位置が比較的安定するタイミングを見つけるために必要な機能ではない。したがって、X線画像に呼吸情報を追記記録する機能だけでは、呼吸波形の状態に合わせて効率よく撮影することができない。
 本発明は、放射線治療の患者位置決めの際に、呼吸波形の状態に合わせて効率よく撮影することができるX線位置決め装置を得ることを目的にする。
 本発明に係るX線位置決め装置は、X線管から放射されたX線を検出するX線検出器から出力された第1のX線画像データを取得し、患者の呼吸に関する呼吸信号と第1のX線画像データを関連付けた第2のX線画像データを生成するX線ビデオ装置と、第2のX線画像データにおける患部と位置決めの基準である基準画像における患部とを照合し、治療計画の姿勢に合うように体位補正量を計算し、患者台を制御する患者台制御データを生成する位置決め計算機と、第1のX線画像データにおける連続撮影画像の撮影条件を含むフレームレート制御信号及び呼吸信号に基づいて、複数のフレームレートに対応してX線を放射する撮影トリガ信号をX線管に出力する撮影トリガ生成装置と、を備える。撮影トリガ生成装置は、撮影トリガ信号を、第1のフレームレート及び第1のフレームレートよりも高い第2のフレームレートに対応して生成し、位置決め計算機は、第2のX線画像データにおける第2のフレームレートで撮影された連続撮影画像から選択された1枚のX線画像と基準画像に基づいて、患者台制御データを生成することを特徴とする。
 本発明に係るX線位置決め装置は、連続撮影画像の撮影条件を含むフレームレート制御信号及び呼吸信号に基づいて、複数のフレームレートに対応してX線を放射する撮影トリガ信号を生成するので、放射線治療の患者位置決めの際に、呼吸波形の状態に合わせて効率よく撮影することができる。
本発明のX線位置決め装置の構成及び呼吸同期照射システムの概略構成を示す図である。 本発明を適用する粒子線治療装置の概略構成図である。 図1及び図2の粒子線照射装置の構成を示す図である。 図1の撮影トリガ生成装置の構成を示す図である。 本発明の実施の形態1によるフレームレート変更例を説明する図である。 本発明の実施の形態2によるフレームレート変更例を説明する図である。 本発明の実施の形態3によるフレームレート変更例を説明する図である。
実施の形態1.
 図1は、本発明のX線位置決め装置の構成及び呼吸同期照射システムの概略構成を示す図である。図2は本発明を適用する粒子線治療装置の概略構成図であり、図3は図1及び図2の粒子線照射装置の構成を示す図である。図4は、本発明の撮影トリガ生成装置の構成を示す図である。呼吸同期照射システムは、X線位置決め装置20と、粒子線照射装置58と、患者45を載せる患者台12と、呼吸センサ8と、センスアンプ9と、X線管6と、X線検出器7と、呼吸同期信号生成器10と、制御計算機14と、IF(インターフェース)ユニット11と、制御計算機14に接続されたモニタ4b及び入力器5bとを備える。X線位置決め装置20は、位置決め計算機1と、撮影トリガ生成装置2と、位置決め計算機1に接続されたモニタ4a及び入力器5aと、X線ビデオ装置3とを備える。呼吸同期信号生成器10は、波形生成器15と、IFコンバータ16と、スイッチ13とを備える。撮影トリガ生成装置2は、入力部21と、波形判定部22と、注目期間抽出部23、撮影トリガ生成部24とを備える。
 放射線治療を行う際に、患者45は照射室19の患者台12に対して位置がずれないように、固定具等(図示せず)を用いて固定される。がんなどの患部48を放射線照射範囲に精度よく位置決めする為に、レーザポインタなどを利用した患者の粗据付けなどのセッティングを行う。次にX線位置決め装置20を用いて患者45の患部48の精密な位置決めを行う。
 精密な位置決めを行う際に、X線位置決め装置20は、呼吸センサ8で検出した患者45の呼吸情報をセンスアンプ9、呼吸同期信号生成器10及びIFユニット11を介して、呼吸信号sig1を取得する。呼吸信号sig1は、患者45の呼吸に関する信号である。センスアンプ9は患者45の呼吸情報を増幅し、呼吸同期信号生成器10はアナログ信号の呼吸情報をデジタル信号の呼吸信号sig1を生成する。IFユニット11は、呼吸信号sig1、呼吸同期照射の際の同期信号sig4及びインターロック信号sig5を、X線位置決め装置20や、後述する照射管理装置38等に出力する。
 呼吸センサ8は、次のものが考えられる。例えば、フローセンサによる呼気の流れを検出したり、吸気に伴う鼻腔付近の温度変化をサーミスタや赤外線カメラによる画像処理を用いて計測したり、患者45の腹部の動きを腹部に取り付けたレーザ光源をポジションセンシティブディテクタ(位置センサ)で検出したり、レーザ変位計により患者45の腹部の動きを信号化したりする方式が考えられる。
 X線位置決め装置20は、X線管6から放射されたX線をX線検出器7で検出して撮影されたX線画像における患者45の患部48の位置と、治療計画用のCT画像データ等から位置決め用の基準画像における患者45の患部48の位置とを照合し、治療計画の姿勢に合うように体位補正量を計算し、患者台12に体位補正量である患者台制御データcdata1を出力する。X線位置決め装置20は、患者台12に体位補正量である患者台制御データcdata1により患者台12を制御し、治療時の患部48が放射線治療のビーム照射中心にくるように位置合わせを行う。呼吸信号sig1を利用した位置決め方法は、後述する。
 図2は本発明を適用する粒子線治療装置の概略構成図であり、図3は図1及び図2の粒子線照射装置の構成を示す図である。図2において、粒子線治療装置51は、ビーム発生装置52と、ビーム輸送系59と、粒子線照射装置58a、58bとを備える。ビーム発生装置52は、イオン源(図示せず)と、前段加速器53と、荷電粒子加速器54とを有する。粒子線照射装置58bは回転ガントリ(図示せず)に設置される。粒子線照射装置58aは回転ガントリを有しない照射室に設置される。ビーム輸送系59の役割は荷電粒子加速器54と粒子線照射装置58a、58bの連絡にある。ビーム輸送系59の一部は回転ガントリ(図示せず)に設置され、その部分には複数の偏向電磁石55a、55b、55cを有する。
 イオン源で発生した陽子線等の粒子線である荷電粒子ビームは、前段加速器53で加速され、入射装置46から荷電粒子加速器54に入射される。荷電粒子加速器54は、例えばシンクロトロンである。荷電粒子ビームは、所定のエネルギーまで加速される。荷電粒子加速器54の出射装置47から出射された荷電粒子ビームは、ビーム輸送系59を経て粒子線照射装置58a、58bに輸送される。粒子線照射装置58a、58bは荷電粒子ビームを患者45の患部48に照射する。粒子線照射装置の符号は、総括的に58を用い、区別して説明する場合に58a、58bを用いる。
 ビーム発生装置52で発生され、所定のエネルギーまで加速された荷電粒子ビーム31は、ビーム輸送系59を経由し、粒子線照射装置58へと導かれる。図3において、粒子線照射装置58は、荷電粒子ビーム31に垂直な方向であるX方向及びY方向に荷電粒子ビーム31を走査するX方向走査電磁石32及びY方向走査電磁石33と、位置モニタ34と、線量モニタ35と、線量データ変換器36と、ビームデータ処理装置41と、走査電磁石電源37と、粒子線照射装置58を制御する照射管理装置38とを備える。照射管理装置38は、照射制御計算機39と照射制御装置40とを備える。線量データ変換器36は、トリガ生成部42と、スポットカウンタ43と、スポット間カウンタ44とを備える。なお、荷電粒子ビーム31の進行方向は-Z方向である。
 X方向走査電磁石32は荷電粒子ビーム31をX方向に走査する走査電磁石であり、Y方向走査電磁石33は荷電粒子ビーム31をY方向に走査する走査電磁石である。位置モニタ34は、X方向走査電磁石32及びY方向走査電磁石33で走査された荷電粒子ビーム31が通過するビームにおける通過位置(重心位置)やサイズを演算するためのビーム情報を検出する。ビームデータ処理装置41は、位置モニタ34が検出した複数のアナログ信号(ビーム情報)からなるビーム情報に基づいて荷電粒子ビーム31の通過位置(重心位置)やサイズを演算する。また、ビームデータ処理装置41は、荷電粒子ビーム31の位置異常やサイズ異常を示す異常検出信号を生成し、この異常検出信号を照射管理装置38に出力する。
 線量モニタ35は、荷電粒子ビーム31の線量を検出する。照射管理装置38は、図示しない治療計画装置で作成された治療計画データに基づいて、患者45の患部48における荷電粒子ビーム31の照射位置を制御し、線量モニタ35で測定され、線量データ変換器36でデジタルデータに変換された線量が目標線量に達すると荷電粒子ビーム31を停止する。走査電磁石電源37は、照射管理装置38から出力されたX方向走査電磁石32及びY方向走査電磁石33への制御入力(指令)に基づいてX方向走査電磁石32及びY方向走査電磁石33の設定電流を変化させる。
 ここでは、粒子線照射装置58のスキャニング照射方式を、荷電粒子ビーム31の照射位置を変えるときに荷電粒子ビーム31を停止させないラスタースキャニング照射方式であり、スポットスキャニング照射方式のようにビーム照射位置がスポット位置間を次々と移動していく方式とする。スポットカウンタ43は、荷電粒子ビーム31のビーム照射位置が停留している間の照射線量を計測するものである。スポット間カウンタ44は、荷電粒子ビーム31のビーム照射位置が移動している間の照射線量を計測するものである。トリガ生成部42は、ビーム照射位置における荷電粒子ビーム1の線量が目標照射線量に達した場合に、線量満了信号を生成するものである。
 呼吸信号sig1を利用した位置決め方法を説明する。図5は、本発明の実施の形態1によるフレームレート変更例を説明する図である。図5では、呼吸信号sig1の呼吸波形26を、1周期分だけ記載した。横軸は時間であり、縦軸は振幅である。呼吸波形26上の黒丸は、一定のサンプリング周期で検出された取集データ27である。呼吸波形26は、複数の取集データ27を補完した曲線である。なお、実際の呼吸波形26は図5のような正弦波とは異なるが、正弦波を例に説明する。呼吸波形26の1周期の時間は、時刻t0から時刻t4までである。呼吸波形26の振幅が高い部分は患者45が息を吸っている状態を示し、呼吸波形26の振幅が低い部分は患者45が息を吐いている状態を示している。
 X線位置決め装置20のX線ビデオ装置3は、撮影期間TpにおいてX線画像データdata1を取得する。図5において、撮影期間Tpは、時刻t1から時刻t3までである。X線画像データdata1は、複数のフレームレートで撮影された連続撮影画像を含んでいる。図5では、2つのフレームレートの間で変更する例を示した。X線画像データdata1は、時刻t1から時刻t2において、フレームレートfr1の連続撮影画像28からなり、時刻t2から時刻t3において、フレームレートfr1よりの高いフレームレートfr2の連続撮影画像29からなっている。実施の形態1では、患者45が息を吐いている状態における呼吸波形26の平坦な期間のX線画像データdata1を用いて位置決めを行う例である。時刻t2から時刻t3の期間は、フレームレートを変更する注目期間Tsである。
 X線位置決め装置20は、キーボードやマウス等の入力器5aから指定された撮影期間Tpとフレームレートfr1、fr2とフレームレート変更時刻t2や注目期間Ts等の撮影条件にしたがって、患部48のX線画像撮影を開始する。位置決め計算機1は、撮影トリガ生成装置2に、撮影期間Tpとフレームレートfr1、fr2とフレームレート変更時刻t2や注目期間Ts等の撮影条件を含むフレームレート制御信号sig2を出力する。撮影トリガ生成装置2は、撮影トリガ生成手順を実行する。撮影トリガ生成装置2は、IFユニット11から入力された呼吸信号sig1とフレームレート制御信号sig2に基づいて、撮影トリガ信号sig3をX線管6に出力する。撮影開始時刻t1、フレームレート変更時刻t2、撮影終了時刻t3は、呼吸波形26の1周期を基準にした時刻である。
 X線管6は、撮影トリガ生成装置2から撮影トリガ信号sig3が入力される度にX線を放射する。X線検出器7は、患者45を通過したX線を検出し、X線ビデオ装置3にX線画像データdata1を出力する。X線ビデオ装置3は、位置決め画像データ生成手順を実行する。X線ビデオ装置3は、X線検出器7からX線画像データdata1を取得し、IFユニット11から入力された呼吸信号sig1と撮影トリガ生成装置2から入力された撮影トリガ信号sig3に基づいて、呼吸波形26の時刻とX線画像の撮影時刻を関連つけされたX線画像データdata2を、内蔵するメモリ等に保存する。撮影期間TpのX線画像撮影が終了すると、X線ビデオ装置3は、X線画像データdata2を位置決め計算機1に出力する。
 位置決め計算機1は、患者台制御データ生成手順を実行する。位置決め計算機1は、X線画像データdata2を取得する。位置決め計算機1は、治療計画用のCT画像データ等から位置決め用の基準画像の患者45の患部48の状態(位置、大きさ等)に最も近い1枚のX線画像を、X線画像データdata2から選択する。位置決め計算機1は、選択されたX線画像における患者45の患部48の位置と、基準画像の患者45の患部48とを照合し、治療計画の姿勢に合うように体位補正量を計算し、患者台12に体位補正量である患者台制御データcdata1を出力する。患者台制御データcdata1は、例えば、並進3軸[ΔX、ΔY、ΔZ]、回転3軸[ΔA、ΔB、ΔC]の計6自由度を含む患者台制御データである。患者台12は、患者台制御データcdata1にしたがって、並進3軸のモータや、回転3軸のモータを駆動する。このように、X線位置決め装置20は、治療計画に合うように体位補正量を計算し、治療時の患部48が放射線治療のビーム照射中心(アイソセンタ)にくるように位置合わせすることができる。
 位置決めが終了した後に、患者45の患部48に対して、荷電粒子ビーム31を患者の呼吸状態に同期させて、呼吸同期照射を行う。呼吸同期照射の際に、X線管6及びX線検出器7は、放射線照射の邪魔にならないように撮影位置から移動される。呼吸同期信号生成器10は、呼吸センサ8で検出され、センスアンプ9で増幅された患者45の呼吸情報と、位置決め計算機1から取得した位置合わせが完了した際の患部48の状態とみなせる照射可能期間情報sig6に基づいて、同期信号sig4を生成する。
 インターロック信号sig5は、スイッチ13の入り切り(オンオフ)により、IFコンバータ16により生成される。例えば、スイッチ13がオン状態で、照射許可、すなわちインターロック解除となり、スイッチ13がオフ状態で、照射不許可、すなわちインターロック動作となる。呼吸同期照射の際に、呼吸信号sig1は制御計算機14に送られ、制御計算機14からモニタ4bに、呼吸波形26、同期信号sig4及びインターロック信号sig5の波形等が表示される。なお、制御計算機14に接続されたモニタ4b及び入力器5bと、スイッチ13は、管理区域外の照射制御室に設置される。
 実施の形態1のX線位置決め装置20は、患者位置決めの際に、呼吸波形26から所望の期間(撮影期間Tp)を抽出して、X線画像の連続撮影のフレームレートが可変である連続撮影画像(動画)を得ることができる。患者位置決めに適した期間は、患者45の患部48が静止状態または静止状態に近い略静止状態になっている略静止期間である。この略静止期間は、呼吸同期照射を行うことができる期間であり、この略静止期間における患者45の患部48の状態に対して治療計画が作成される。
 撮影トリガ生成装置2は、呼吸信号sig1とフレームレート制御信号sig2を入力部21にて取得する。撮影トリガ生成装置2は、例えば、呼吸波形26を形成する取集データ27を双一次変換して、呼吸信号sig1において呼吸波形26が所定の状態であるかを判定する。具体的には、撮影トリガ生成装置2は、隣接データ間の振幅の差分が所定の小範囲内の場合に、呼吸波形26が平坦であると判定する。この呼吸波形26における平坦期間の判定は、波形判定部22で行われる。実施の形態1では、患者45が息を吐いている場合の略静止期間を抽出するので、呼吸波形26の振幅が下限値に近い期間で、かつ呼吸波形26が平坦であると判定した期間を、注目期間Tsとして抽出する。この注目期間Tsの抽出は、波形判定部22の判定結果と呼吸信号sig1及びフレームレート制御信号sig2に基づいて、注目期間抽出部23で行われる。
 撮影トリガ生成部24は、注目期間抽出部23の抽出結果に基づいて、呼吸信号sig1が撮影期間Tpであり、かつ注目期間Ts以外の波形信号である場合に、低いフレームレートfr1に対応した撮影トリガ信号sig3を出力する。また、撮影トリガ生成部24は、呼吸信号sig1が撮影期間Tpであり、かつ注目期間Tsの波形信号である場合に、フレームレートfr1より高いフレームレートfr2に対応した撮影トリガ信号sig3を出力する。
 以上のように、実施の形態1のX線位置決め装置20は、患者位置決めの際に、X線画像の連続撮影のフレームレートが可変である連続撮影画像(動画)を得ることができるので、施術者が特に抽出したい注目期間Tsには細かく撮影し、撮影期間Tpにおける他の期間は目安程度のフレームレートで撮影することで、フレームレート一定で撮影する従来方法に比べて、X線ビデオ装置3や位置決め計算機1における画像処理量、メモリ量を削減できる。したがって、実施の形態1のX線位置決め装置20は、フレームレート一定で撮影する従来方法に比べて、X線画像を効率よく撮影することができる。
 また、実施の形態1のX線位置決め装置20は、呼吸波形26が平坦な期間、すなわち、図5の注目期間Tsにおいてフレームレートを上げて細かいX線画像を撮影することにより、位置合わせ用の基準画像との一致点を、多数のX線画像に対して詳細に検証できるため、位置合わせの精度が向上する。
 実施の形態1のX線位置決め装置20は、呼吸波形26の必要な期間、例えば1周期よりも短い撮影期間Tpにおいて、X線画像を効率よく撮影することにより、患者45への不要なX線曝写量を抑えることができる。また、実施の形態1のX線位置決め装置20は、呼吸波形26の振幅が閾値を越えた際に撮影開始を開始する従来方法と異なり、注目期間Ts以外にも低いフレームレートfr2でX線画像を確実に撮影するので、この従来方法で起こりえる長時間未撮影となることがない。さらに、実施の形態1のX線位置決め装置20は、長時間未撮影となることを解消するために行う呼吸センサの位置調整や閾値調整等の従来必要であった作業は、必要がなくなり、位置合わせ作業時間の短縮ができ、作業時間の効率化が図れる。
 実施の形態1によるX線位置決め装置20によれば、X線管6から放射されたX線を検出するX線検出器7から出力された第1のX線画像データdata1を取得し、患者45の呼吸に関する呼吸信号sig1と第1のX線画像データdata1を関連付けた第2のX線画像データdata2を生成するX線ビデオ装置3と、第2のX線画像データdata2における患部48と位置決めの基準である基準画像における患部48とを照合し、治療計画の姿勢に合うように体位補正量を計算し、患者台12を制御する患者台制御データcdata1を生成する位置決め計算機1と、第1のX線画像データdata1における連続撮影画像28、29の撮影条件を含むフレームレート制御信号sig2及び呼吸信号sig1に基づいて、複数のフレームレートfr1、fr2に対応してX線を放射する撮影トリガ信号sig3をX線管6に出力する撮影トリガ生成装置2と、を備え、撮影トリガ生成装置2は、撮影トリガ信号sig3を、第1のフレームレートfr1及び第1のフレームレートfr1よりも高い第2のフレームレートfr2に対応して生成し、位置決め計算機1は、第2のX線画像データdata2における第2のフレームレートfr2で撮影された連続撮影画像29から選択された1枚のX線画像と基準画像に基づいて、患者台制御データcdata1を生成することを特徴とする。実施の形態1によるX線位置決め装置20は、上記の特徴を有するので、連続撮影画像28、29の撮影条件を含むフレームレート制御信号sig2及び呼吸信号sig1に基づいて、複数のフレームレートfr1、fr2に対応してX線を放射する撮影トリガ信号sig3を生成することができ、放射線治療の患者位置決めの際に、呼吸波形26の状態に合わせて効率よく撮影することができる。
 実施の形態1によるX線位置決め方法によれば、X線管6から放射されたX線を検出するX線検出器7から出力された第1のX線画像データdata1を取得し、患者45の呼吸に関する呼吸信号sig1と第1のX線画像データdata1を関連付けた第2のX線画像データdata2を生成する位置決め画像データ生成手順と、第2のX線画像データdata2における患部48と位置決めの基準である基準画像における患部48とを照合し、治療計画の姿勢に合うように体位補正量を計算し、患者台12を制御する患者台制御データcdata1を生成する患者台制御データ生成手順と、第1のX線画像データdata1における連続撮影画像28、29の撮影条件を含むフレームレート制御信号sig2と、呼吸信号sig1とに基づいて、複数のフレームレートfr1、fr2に対応してX線を放射する撮影トリガ信号sig3をX線管6に出力する撮影トリガ生成手順と、を含み、撮影トリガ生成手順において、撮影トリガ信号sig3を、第1のフレームレートfr1及び第1のフレームレートfr1よりも高い第2のフレームレートfr2に対応して生成し、患者台制御データ生成手順において、第2のX線画像データdata2における第2のフレームレートfr2で撮影された連続撮影画像29から選択された1枚のX線画像と基準画像に基づいて、患者台制御データcdata1を生成することを特徴とする。実施の形態1によるX線位置決め方法は、上記の特徴を有するので、連続撮影画像28、29の撮影条件を含むフレームレート制御信号sig2及び呼吸信号sig1に基づいて、複数のフレームレートfr1、fr2に対応してX線を放射する撮影トリガ信号sig3を生成することができ、放射線治療の患者位置決めの際に、呼吸波形26の状態に合わせて効率よく撮影することができる。
実施の形態2.
 図6は、本発明の実施の形態2によるフレームレート変更例を説明する図である。実施の形態2では、患者45が息を吸っている状態における呼吸波形26の平坦な期間のX線画像データdata1を用いて位置決めを行う例である。すなわち、実施の形態2のX線位置決め装置20は、患者45が息を吸っている状態における呼吸波形26の平坦な期間を注目期間Tsにする。図6では、呼吸信号sig1の呼吸波形26を、1周期分(時刻t0から時刻t4)だけ記載した。図6では、2つのフレームレートの間で変更する例を示した。図6において、時刻t0から時刻t3は、撮影期間Tpである。X線画像データdata1は、時刻t0から時刻t1及び時刻t2から時刻t3において、フレームレートfr1の連続撮影画像28からなり、時刻t1から時刻t2において、フレームレートfr1よりの高いフレームレートfr2の連続撮影画像29からなっている。注目期間Tsは、時刻t1から時刻t2までの期間である。実施の形態2では、位置決め用の基準画像は患者45が息を吸っている状態における画像である。
 実施の形態2のX線位置決め装置20は、実施の形態1と同様の効果が得られ、放射線治療の患者位置決めの際に、呼吸波形26の状態に合わせて効率よく撮影することができる。患者45の患部48によっては、患者45が息を吐いている状態よりも、患者45が息を吸っている状態の方が、略静止状態が長い場合がある。患者45が息を吸っている状態の方が、略静止状態が長い場合に、実施の形態2のX線位置決め装置20は、実施の形態1の患者45が息を吐いている状態に注目期間Tsを設定するよりも、位置合わせの精度を向上さることができる。また、略静止状態が長いので、呼吸同期照射を行う治療時間を短くすることができる。
実施の形態3.
 図7は、本発明の実施の形態3によるフレームレート変更例を説明する図である。実施の形態3では、注目期間Tsを呼吸波形26の変化が急峻なところに設定した例である。実施の形態3では、患者45の患部48に対する治療計画を作成する際等に、患部48の連続撮影画像を注目画像として撮影する。図7では、呼吸信号sig1の呼吸波形26を、1周期分(時刻t0から時刻t5)だけ記載した。図7では、2つのフレームレートの間で変更する例を示した。図7において、時刻t1から時刻t4は、撮影期間Tpである。X線画像データdata1は、時刻t1から時刻t2及び時刻t3から時刻t4において、フレームレートfr1の連続撮影画像28からなり、時刻t2から時刻t3において、フレームレートfr1よりの高いフレームレートfr2の連続撮影画像29からなっている。注目期間Tsは、時刻t2から時刻t3までの期間である。
 一般的に、肺、肝臓などの呼吸性移動を伴う患部48は、呼吸波形26の変化が急峻なところで移動速度が速くなる。注目期間Tsを呼吸波形26の変化が急峻なところに設定すると、動きに対するブレの小さい画像を得ることができ、臓器の動きを詳細に把握することができる。フレームレート一定で撮影する場合よりも、少ないX線曝写量で臓器の動きを詳細に把握することができる。臓器の動きを詳細に把握することで、治療計画を作成する上で、健全な臓器を避けて、患部48に照射する方向や呼吸同期照射を行う照射期間を適切に設定することができる。なお、患者45の患部48に対する治療計画を作成する際以外においても、患部48の連続撮影画像を注目画像として撮影してもよい。
 実施の形態3による注目画像撮影方法によれば、呼吸信号sig1において波形が急峻に変化する急峻期間を判定し、第1のフレームレートfr1よりも高い第3のフレームレートfr2に対応して撮影トリガ信号sig3を生成する撮影トリガ信号生成手順と、呼吸信号sig1において波形が急峻に変化する急峻期間であるかを判定し、急峻期間を、注目期間Tsとして抽出する注目期間抽出手順と、X線ビデオ装置3にて、第1のX線画像データdata1を取得し、呼吸信号sig1と第1のX線画像データdata1を関連付けた第2のX線画像データdata2を生成する注目画像データ生成手順と、を含むことを特徴とする。実施の形態3による注目画像撮影方法は、上記の特徴を有するので、治療計画を作成する場合に、健全な臓器を避けて、患部48に照射する方向や呼吸同期照射を行う照射期間を適切に設定することができる。
 なお、本発明は、その発明の範囲内において、各実施の形態を組み合わせたり、各実施の形態を適宜、変形、省略することが可能である。
 1…位置決め計算機、2…撮影トリガ生成装置、3…X線ビデオ装置、6…X線管、7…X線検出器、12…患者台、20…X線位置決め装置、22…波形判定部、23…注目期間抽出部、24…撮影トリガ生成部、28、29…連続撮影画像、45…患者、48…患部、sig1…呼吸信号、sig2…フレームレート制御信号、sig3…撮影トリガ信号、fr1、fr2…フレームレート、data1、data2…X線画像データ、cdata1…患者台制御データ、Tp…撮影期間、Ts…注目期間。

Claims (6)

  1.  X線画像を用いて患者台を制御し、患者の患部を治療計画で計画された放射線の照射位置に位置決めするX線位置決め装置であって、
    X線管から放射されたX線を検出するX線検出器から出力された第1のX線画像データを取得し、前記患者の呼吸に関する呼吸信号と前記第1のX線画像データを関連付けた第2のX線画像データを生成するX線ビデオ装置と、
    前記第2のX線画像データにおける患部と位置決めの基準である基準画像における患部とを照合し、前記治療計画の姿勢に合うように体位補正量を計算し、前記患者台を制御する患者台制御データを生成する位置決め計算機と、
    前記第1のX線画像データにおける連続撮影画像の撮影条件を含むフレームレート制御信号と、前記呼吸信号とに基づいて、複数のフレームレートに対応してX線を放射する撮影トリガ信号を前記X線管に出力する撮影トリガ生成装置と、を備え、
    前記撮影トリガ生成装置は、前記撮影トリガ信号を、第1のフレームレート及び前記第1のフレームレートよりも高い第2のフレームレートに対応して生成し、
    前記位置決め計算機は、前記第2のX線画像データにおける前記第2のフレームレートで撮影された前記連続撮影画像から選択された1枚の前記X線画像と前記基準画像に基づいて、前記患者台制御データを生成することを特徴とするX線位置決め装置。
  2.  前記撮影トリガ生成装置は、
    前記呼吸信号において波形が所定の状態であるかを判定する波形判定部と、
    前記波形判定部で判定した判定結果に基づいて、前記第2のフレームレートにて前記連続撮影画像を撮影する期間である注目期間を抽出する注目期間抽出部と、
    前記フレームレート制御信号における撮影期間と前記注目期間とに基づいて、前記撮影トリガ信号を出力する撮影トリガ生成部と、を備えたことを特徴とする請求項1記載のX線位置決め装置。
  3.  前記波形判定部は、前記呼吸信号において波形が所定の小範囲に収まる期間である平坦期間であるかを判定し、
    前記注目期間抽出部は、前記波形判定部で判定した前記平坦期間であり、かつ、前記呼吸信号の振幅が下限値に近い期間を、前記注目期間として抽出することを特徴とする請求項2記載のX線位置決め装置。
  4.  前記波形判定部は、前記呼吸信号において波形が所定の小範囲に収まる期間である平坦期間であるかを判定し、
    前記注目期間抽出部は、前記波形判定部で判定した前記平坦期間であり、かつ、前記呼吸信号の振幅が上限値に近い期間を、前記注目期間として抽出することを特徴とする請求項2記載のX線位置決め装置。
  5.  X線画像を用いて患者台を制御し、患者の患部を治療計画で計画された放射線の照射位置に位置決めするX線位置決め方法であって、
    X線管から放射されたX線を検出するX線検出器から出力された第1のX線画像データを取得し、前記患者の呼吸に関する呼吸信号と前記第1のX線画像データを関連付けた第2のX線画像データを生成する位置決め画像データ生成手順と、
    前記第2のX線画像データにおける患部と位置決めの基準である基準画像における患部とを照合し、前記治療計画の姿勢に合うように体位補正量を計算し、前記患者台を制御する患者台制御データを生成する患者台制御データ生成手順と、
    前記第1のX線画像データにおける連続撮影画像の撮影条件を含むフレームレート制御信号と、前記呼吸信号とに基づいて、複数のフレームレートに対応してX線を放射する撮影トリガ信号を前記X線管に出力する撮影トリガ生成手順と、を含み、
    前記撮影トリガ生成手順において、前記撮影トリガ信号を、第1のフレームレート及び前記第1のフレームレートよりも高い第2のフレームレートに対応して生成し、
    前記患者台制御データ生成手順において、前記第2のX線画像データにおける前記第2のフレームレートで撮影された前記連続撮影画像から選択された1枚の前記X線画像と前記基準画像に基づいて、前記患者台制御データを生成することを特徴とするX線位置決め方法。
  6.  請求項1乃至4のいずれか1項に記載のX線位置決め装置を用いて、前記患部の前記連続撮影画像を撮影する注目画像撮影方法であって、
    前記呼吸信号において波形が急峻に変化する急峻期間を判定し、前記第1のフレームレートよりも高い第3のフレームレートに対応して前記撮影トリガ信号を生成する撮影トリガ信号生成手順と、
    前記呼吸信号において波形が急峻に変化する急峻期間であるかを判定し、前記急峻期間を、前記注目期間として抽出する注目期間抽出手順と、
    前記X線ビデオ装置にて、第1のX線画像データを取得し、前記呼吸信号と前記第1のX線画像データを関連付けた第2のX線画像データを生成する注目画像データ生成手順と、を含むことを特徴とする注目画像撮影方法。
PCT/JP2012/067891 2012-07-13 2012-07-13 X線位置決め装置、x線位置決め方法及び注目画像撮影方法 WO2014010073A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP12880734.4A EP2873438B1 (en) 2012-07-13 2012-07-13 X-ray positioning apparatus and x-ray positioning method
US14/400,802 US9873003B2 (en) 2012-07-13 2012-07-13 X-ray positioning apparatus, X-ray positioning method, and attentional image photographing method
JP2014524565A JP5916859B2 (ja) 2012-07-13 2012-07-13 X線位置決め装置及びx線位置決め方法
PCT/JP2012/067891 WO2014010073A1 (ja) 2012-07-13 2012-07-13 X線位置決め装置、x線位置決め方法及び注目画像撮影方法
CN201280074691.9A CN104470583B (zh) 2012-07-13 2012-07-13 X射线定位装置、x射线定位方法及关注图像拍摄方法
TW101142352A TWI471152B (zh) 2012-07-13 2012-11-14 X射線定位裝置、x射線定位方法,以及矚目畫像攝影方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/067891 WO2014010073A1 (ja) 2012-07-13 2012-07-13 X線位置決め装置、x線位置決め方法及び注目画像撮影方法

Publications (1)

Publication Number Publication Date
WO2014010073A1 true WO2014010073A1 (ja) 2014-01-16

Family

ID=49915575

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/067891 WO2014010073A1 (ja) 2012-07-13 2012-07-13 X線位置決め装置、x線位置決め方法及び注目画像撮影方法

Country Status (6)

Country Link
US (1) US9873003B2 (ja)
EP (1) EP2873438B1 (ja)
JP (1) JP5916859B2 (ja)
CN (1) CN104470583B (ja)
TW (1) TWI471152B (ja)
WO (1) WO2014010073A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016106756A (ja) * 2014-12-04 2016-06-20 株式会社日立製作所 放射線治療システム
WO2017179091A1 (ja) * 2016-04-11 2017-10-19 三菱電機株式会社 粒子線治療システム

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6692817B2 (ja) 2014-12-17 2020-05-13 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. 対象物体の変位を計算する方法及びシステム
CN107847216B (zh) * 2015-07-17 2024-01-23 皇家飞利浦有限公司 对肺癌辐射的指导
EP3375484B1 (en) * 2015-11-13 2020-05-20 Hitachi, Ltd. Particle beam therapy system
KR101993050B1 (ko) * 2017-09-28 2019-06-25 고려대학교 세종산학협력단 빔 위치 모니터 신호처리 시스템
JP6896606B2 (ja) 2017-12-27 2021-06-30 東芝エネルギーシステムズ株式会社 フラットパネルディテクタの位置調整装置、フラットパネルディテクタの位置調整方法および放射線治療装置
JP7455059B2 (ja) 2018-03-15 2024-03-25 テルモ株式会社 医療システム
FR3094889B1 (fr) * 2019-04-12 2022-08-19 Quantum Surgical Dispositif et procédé de contrôle de la respiration d’un patient pour un robot médical
DE102020205091A1 (de) * 2020-04-22 2021-10-28 Siemens Healthcare Gmbh Verfahren zum Erzeugen eines Steuersignals
US11633168B2 (en) * 2021-04-02 2023-04-25 AIX Scan, Inc. Fast 3D radiography with multiple pulsed X-ray sources by deflecting tube electron beam using electro-magnetic field

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001161839A (ja) * 1999-12-09 2001-06-19 Mitsubishi Electric Corp ビーム照射治療装置
JP2005111151A (ja) * 2003-10-10 2005-04-28 Shimadzu Corp 放射線治療装置
JP2010063725A (ja) 2008-09-12 2010-03-25 Hitachi Ltd 粒子線照射装置とその運転方法
JP2010154874A (ja) 2008-12-26 2010-07-15 Hitachi Ltd 放射線治療システム
JP2011500263A (ja) * 2007-10-26 2011-01-06 アキュレイ インコーポレイテッド 内部目標物の自動相関モデリング
JP2012501792A (ja) * 2008-09-12 2012-01-26 アキュレイ インコーポレイテッド ターゲットの動きに基づくx線像形成の制御

Family Cites Families (65)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5901199A (en) * 1996-07-11 1999-05-04 The Board Of Trustees Of The Leland Stanford Junior University High-speed inter-modality image registration via iterative feature matching
US5820553A (en) * 1996-08-16 1998-10-13 Siemens Medical Systems, Inc. Identification system and method for radiation therapy
US6118848A (en) * 1998-01-14 2000-09-12 Reiffel; Leonard System to stabilize an irradiated internal target
JP3053389B1 (ja) * 1998-12-03 2000-06-19 三菱電機株式会社 動体追跡照射装置
DE19953177A1 (de) * 1999-11-04 2001-06-21 Brainlab Ag Exakte Patientenpositionierung durch Vergleich von rekonstruierten und Linac-Röntgenbildern
WO2002069800A1 (fr) 2001-03-01 2002-09-12 Hitachi Medical Corporation Appareil d'imagerie par resonance magnetique
JP3972236B2 (ja) 2001-03-01 2007-09-05 株式会社日立メディコ 磁気共鳴撮像装置
WO2003018133A1 (fr) * 2001-08-24 2003-03-06 Mitsubishi Heavy Industries, Ltd. Appareil de radiotherapie
US6574500B2 (en) * 2001-09-05 2003-06-03 Medimag C.V.I. Ltd. Imaging methods and apparatus particularly useful for two and three-dimensional angiography
US6535574B1 (en) * 2001-11-01 2003-03-18 Siemens Medical Solutions Usa, Inc. Patient positioning system employing surface photogrammetry and portal imaging
US7221733B1 (en) * 2002-01-02 2007-05-22 Varian Medical Systems Technologies, Inc. Method and apparatus for irradiating a target
DE10210050A1 (de) * 2002-03-07 2003-12-04 Siemens Ag Verfahren und Vorrichtung zur wiederholt gleichen Relativpositionierung eines Patienten
US7227925B1 (en) * 2002-10-02 2007-06-05 Varian Medical Systems Technologies, Inc. Gantry mounted stereoscopic imaging system
US7505809B2 (en) * 2003-01-13 2009-03-17 Mediguide Ltd. Method and system for registering a first image with a second image relative to the body of a patient
US7171257B2 (en) * 2003-06-11 2007-01-30 Accuray Incorporated Apparatus and method for radiosurgery
US7204640B2 (en) * 2003-08-29 2007-04-17 Accuray, Inc. Apparatus and method for registering 2D radiographic images with images reconstructed from 3D scan data
US7853308B2 (en) * 2004-02-17 2010-12-14 Siemens Medical Solutions Usa, Inc. System and method for patient positioning for radiotherapy in the presence of respiratory motion
US7177386B2 (en) * 2004-03-15 2007-02-13 Varian Medical Systems Technologies, Inc. Breathing synchronized computed tomography image acquisition
US8989349B2 (en) * 2004-09-30 2015-03-24 Accuray, Inc. Dynamic tracking of moving targets
US8042209B2 (en) * 2005-04-13 2011-10-25 University Of Maryland Techniques for compensating movement of a treatment target in a patient
US8747382B2 (en) * 2005-04-13 2014-06-10 University Of Maryland, Baltimore Techniques for compensating movement of a treatment target in a patient
US7453976B1 (en) * 2005-05-17 2008-11-18 Fang-Fang Yin Computerized tomography image reconstruction
US7349522B2 (en) * 2005-06-22 2008-03-25 Board Of Trustees Of The University Of Arkansas Dynamic radiation therapy simulation system
US7713205B2 (en) * 2005-06-29 2010-05-11 Accuray Incorporated Dynamic tracking of soft tissue targets with ultrasound images, without using fiducial markers
US7453984B2 (en) * 2006-01-19 2008-11-18 Carestream Health, Inc. Real-time target confirmation for radiation therapy
JP4310319B2 (ja) * 2006-03-10 2009-08-05 三菱重工業株式会社 放射線治療装置制御装置および放射線照射方法
JP4451411B2 (ja) * 2006-03-31 2010-04-14 株式会社日立製作所 粒子線治療システム及びそのビームコース切替方法
US7711087B2 (en) * 2006-04-07 2010-05-04 Varian Medical Systems, Inc. Patient setup using tomosynthesis techniques
US7620144B2 (en) * 2006-06-28 2009-11-17 Accuray Incorporated Parallel stereovision geometry in image-guided radiosurgery
US7570738B2 (en) * 2006-08-04 2009-08-04 Siemens Medical Solutions Usa, Inc. Four-dimensional (4D) image verification in respiratory gated radiation therapy
WO2008043378A1 (en) * 2006-10-11 2008-04-17 Elekta Ab (Publ) Radiographic apparatus
US7894649B2 (en) * 2006-11-02 2011-02-22 Accuray Incorporated Target tracking using direct target registration
JP5121473B2 (ja) 2007-02-01 2013-01-16 キヤノン株式会社 放射線撮像装置、その制御方法及び放射線撮像システム
WO2008115830A2 (en) * 2007-03-16 2008-09-25 Cyberheart, Inc. Radiation treatment planning and delivery for moving targets in the heart
JP5397861B2 (ja) * 2007-12-07 2014-01-22 三菱重工業株式会社 放射線治療計画装置および放射線治療計画装置の作動方法
US7720196B2 (en) * 2008-01-07 2010-05-18 Accuray Incorporated Target tracking using surface scanner and four-dimensional diagnostic imaging data
US8086004B2 (en) * 2008-01-15 2011-12-27 Accuray Incorporated Use of a single X-ray image for quality assurance of tracking
US8295435B2 (en) * 2008-01-16 2012-10-23 Accuray Incorporated Cardiac target tracking
JP4444338B2 (ja) * 2008-01-30 2010-03-31 三菱重工業株式会社 放射線治療装置制御装置および放射線照射方法
US7953205B2 (en) * 2008-05-22 2011-05-31 Vladimir Balakin Synchronized X-ray / breathing method and apparatus used in conjunction with a charged particle cancer therapy system
US8569717B2 (en) * 2008-05-22 2013-10-29 Vladimir Balakin Intensity modulated three-dimensional radiation scanning method and apparatus
US8598543B2 (en) * 2008-05-22 2013-12-03 Vladimir Balakin Multi-axis/multi-field charged particle cancer therapy method and apparatus
US7939809B2 (en) * 2008-05-22 2011-05-10 Vladimir Balakin Charged particle beam extraction method and apparatus used in conjunction with a charged particle cancer therapy system
US8519365B2 (en) * 2008-05-22 2013-08-27 Vladimir Balakin Charged particle cancer therapy imaging method and apparatus
US8624528B2 (en) * 2008-05-22 2014-01-07 Vladimir Balakin Method and apparatus coordinating synchrotron acceleration periods with patient respiration periods
US8487278B2 (en) * 2008-05-22 2013-07-16 Vladimir Yegorovich Balakin X-ray method and apparatus used in conjunction with a charged particle cancer therapy system
US8373143B2 (en) * 2008-05-22 2013-02-12 Vladimir Balakin Patient immobilization and repositioning method and apparatus used in conjunction with charged particle cancer therapy
US8399866B2 (en) * 2008-05-22 2013-03-19 Vladimir Balakin Charged particle extraction apparatus and method of use thereof
US8642978B2 (en) * 2008-05-22 2014-02-04 Vladimir Balakin Charged particle cancer therapy dose distribution method and apparatus
US8129699B2 (en) * 2008-05-22 2012-03-06 Vladimir Balakin Multi-field charged particle cancer therapy method and apparatus coordinated with patient respiration
EP2283713B1 (en) * 2008-05-22 2018-03-28 Vladimir Yegorovich Balakin Multi-axis charged particle cancer therapy apparatus
JP4531122B2 (ja) * 2008-06-09 2010-08-25 三菱電機株式会社 粒子線治療装置及びこれに用いられる呼吸ナビゲーション装置
JP5317580B2 (ja) * 2008-08-20 2013-10-16 株式会社東芝 X線ct装置
US8170319B2 (en) * 2008-09-05 2012-05-01 Siemens Medical Solutions Usa, Inc. Motion detection by direct imaging during radiotherapy
WO2010059349A1 (en) * 2008-11-21 2010-05-27 Cyberheart, Inc. Test object for the validation of tracking in the presence of motion
US7934869B2 (en) * 2009-06-30 2011-05-03 Mitsubishi Electric Research Labs, Inc. Positioning an object based on aligned images of the object
US8784290B2 (en) * 2009-07-17 2014-07-22 Cyberheart, Inc. Heart treatment kit, system, and method for radiosurgically alleviating arrhythmia
CN102144927B (zh) * 2010-02-10 2012-12-12 清华大学 基于运动补偿的ct设备和方法
EP2539020B1 (en) * 2010-02-24 2017-03-22 Accuray Incorporated Gantry image guided radiotherapy system
US9108048B2 (en) * 2010-08-06 2015-08-18 Accuray Incorporated Systems and methods for real-time tumor tracking during radiation treatment using ultrasound imaging
US8315356B2 (en) * 2010-09-17 2012-11-20 Accuray Incorporated Image alignment
US8824630B2 (en) * 2010-10-29 2014-09-02 Accuray Incorporated Method and apparatus for treating a target's partial motion range
US9271692B2 (en) * 2011-04-01 2016-03-01 Varian Medical Systems, Inc. System and method for triggering an imaging process based on non-periodicity in breathing
DE102011083854B4 (de) * 2011-09-30 2019-01-10 Siemens Healthcare Gmbh Zeitaufgelöste Tomosynthesebildgebung
US9370330B2 (en) * 2013-02-08 2016-06-21 Siemens Medical Solutions Usa, Inc. Radiation field and dose control

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001161839A (ja) * 1999-12-09 2001-06-19 Mitsubishi Electric Corp ビーム照射治療装置
JP2005111151A (ja) * 2003-10-10 2005-04-28 Shimadzu Corp 放射線治療装置
JP2011500263A (ja) * 2007-10-26 2011-01-06 アキュレイ インコーポレイテッド 内部目標物の自動相関モデリング
JP2010063725A (ja) 2008-09-12 2010-03-25 Hitachi Ltd 粒子線照射装置とその運転方法
JP2012501792A (ja) * 2008-09-12 2012-01-26 アキュレイ インコーポレイテッド ターゲットの動きに基づくx線像形成の制御
JP2010154874A (ja) 2008-12-26 2010-07-15 Hitachi Ltd 放射線治療システム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2873438A4

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016106756A (ja) * 2014-12-04 2016-06-20 株式会社日立製作所 放射線治療システム
WO2017179091A1 (ja) * 2016-04-11 2017-10-19 三菱電機株式会社 粒子線治療システム
JPWO2017179091A1 (ja) * 2016-04-11 2018-09-27 三菱電機株式会社 粒子線治療システム

Also Published As

Publication number Publication date
EP2873438A1 (en) 2015-05-20
EP2873438B1 (en) 2018-10-10
TWI471152B (zh) 2015-02-01
TW201402170A (zh) 2014-01-16
CN104470583A (zh) 2015-03-25
JP5916859B2 (ja) 2016-05-11
JPWO2014010073A1 (ja) 2016-06-20
US20150131780A1 (en) 2015-05-14
EP2873438A4 (en) 2016-03-23
CN104470583B (zh) 2016-12-07
US9873003B2 (en) 2018-01-23

Similar Documents

Publication Publication Date Title
JP5916859B2 (ja) X線位置決め装置及びx線位置決め方法
US11273326B2 (en) Radiotherapy system and treatment support apparatus
WO2014068784A1 (ja) 三次元画像撮影システム及び粒子線治療装置
JP5472757B2 (ja) 放射線治療装置制御装置、特定部位位置計測方法、および、放射線治療装置制御装置の作動方法
US9968321B2 (en) Method and imaging system for determining a reference radiograph for a later use in radiation therapy
CN108883303B (zh) 粒子束剂量评价系统、计划装置及粒子束照射系统
JP6392125B2 (ja) 標的体積に照射するための方法および照射設備
US11446520B2 (en) Radiation therapy apparatus configured to track a tracking object moving in an irradiation object
JP5329256B2 (ja) ベッド位置決めシステム、放射線治療システム及びベッド位置決め方法
TWI600449B (zh) 三維畫像攝影系統及粒子線治療裝置
JP5954734B2 (ja) 動体追跡装置および放射線治療システム
JP2010154874A (ja) 放射線治療システム
JP2016144573A (ja) 画像処理装置および粒子線治療装置
CN108883299B (zh) 移动体跟踪装置以及放射线照射系统
JP2001161839A (ja) ビーム照射治療装置
JP6465283B2 (ja) 放射線治療システム
JP7362130B2 (ja) 放射線治療装置
US20220401758A1 (en) Patient anatomical structure change detection method, patient anatomical structure change detection device, and computer program
WO2010098215A1 (ja) ターゲット検出装置および放射線治療装置
JP7264389B2 (ja) 医用装置、医用装置の制御方法およびプログラム
JP6582128B2 (ja) 粒子線治療システム
JP2019072324A (ja) 放射線撮像装置および放射線治療装置
JP2019013450A (ja) 放射線撮影装置および放射線画像検出方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12880734

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014524565

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14400802

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2012880734

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE