WO2014010073A1 - X線位置決め装置、x線位置決め方法及び注目画像撮影方法 - Google Patents
X線位置決め装置、x線位置決め方法及び注目画像撮影方法 Download PDFInfo
- Publication number
- WO2014010073A1 WO2014010073A1 PCT/JP2012/067891 JP2012067891W WO2014010073A1 WO 2014010073 A1 WO2014010073 A1 WO 2014010073A1 JP 2012067891 W JP2012067891 W JP 2012067891W WO 2014010073 A1 WO2014010073 A1 WO 2014010073A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- ray
- period
- frame rate
- image data
- positioning
- Prior art date
Links
- 238000003384 imaging method Methods 0.000 title claims abstract description 89
- 238000000034 method Methods 0.000 title claims description 33
- 230000029058 respiratory gaseous exchange Effects 0.000 claims abstract description 55
- 230000000241 respiratory effect Effects 0.000 claims description 89
- 238000012937 correction Methods 0.000 claims description 11
- 238000000605 extraction Methods 0.000 claims description 10
- 230000005855 radiation Effects 0.000 claims description 8
- 239000000284 extract Substances 0.000 claims description 4
- 230000007274 generation of a signal involved in cell-cell signaling Effects 0.000 claims description 2
- 238000001959 radiotherapy Methods 0.000 abstract description 14
- 239000002245 particle Substances 0.000 description 59
- 230000001360 synchronised effect Effects 0.000 description 14
- 238000010586 diagram Methods 0.000 description 10
- 206010028980 Neoplasm Diseases 0.000 description 7
- 201000011510 cancer Diseases 0.000 description 7
- 238000007726 management method Methods 0.000 description 7
- 238000002560 therapeutic procedure Methods 0.000 description 6
- 210000000056 organ Anatomy 0.000 description 5
- 238000012545 processing Methods 0.000 description 5
- 238000007796 conventional method Methods 0.000 description 4
- 238000001514 detection method Methods 0.000 description 4
- 230000006870 function Effects 0.000 description 4
- 210000001015 abdomen Anatomy 0.000 description 3
- 230000005856 abnormality Effects 0.000 description 3
- 150000002500 ions Chemical class 0.000 description 3
- 210000004185 liver Anatomy 0.000 description 3
- 210000004072 lung Anatomy 0.000 description 3
- 230000005484 gravity Effects 0.000 description 2
- 238000009434 installation Methods 0.000 description 2
- 230000001678 irradiating effect Effects 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 230000002159 abnormal effect Effects 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000002594 fluoroscopy Methods 0.000 description 1
- 210000003128 head Anatomy 0.000 description 1
- 210000003928 nasal cavity Anatomy 0.000 description 1
- 238000002601 radiography Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N5/00—Radiation therapy
- A61N5/10—X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
- A61N5/1048—Monitoring, verifying, controlling systems and methods
- A61N5/1064—Monitoring, verifying, controlling systems and methods for adjusting radiation treatment in response to monitoring
- A61N5/1069—Target adjustment, e.g. moving the patient support
- A61N5/107—Target adjustment, e.g. moving the patient support in real time, i.e. during treatment
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N5/00—Radiation therapy
- A61N5/10—X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
- A61N5/1048—Monitoring, verifying, controlling systems and methods
- A61N5/1049—Monitoring, verifying, controlling systems and methods for verifying the position of the patient with respect to the radiation beam
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/08—Detecting, measuring or recording devices for evaluating the respiratory organs
- A61B5/087—Measuring breath flow
- A61B5/0873—Measuring breath flow using optical means
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/08—Detecting, measuring or recording devices for evaluating the respiratory organs
- A61B5/087—Measuring breath flow
- A61B5/0878—Measuring breath flow using temperature sensing means
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/103—Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
- A61B5/11—Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb
- A61B5/113—Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb occurring during breathing
- A61B5/1135—Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb occurring during breathing by monitoring thoracic expansion
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B6/00—Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
- A61B6/04—Positioning of patients; Tiltable beds or the like
- A61B6/0487—Motor-assisted positioning
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B6/00—Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
- A61B6/48—Diagnostic techniques
- A61B6/486—Diagnostic techniques involving generating temporal series of image data
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B6/00—Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
- A61B6/52—Devices using data or image processing specially adapted for radiation diagnosis
- A61B6/5211—Devices using data or image processing specially adapted for radiation diagnosis involving processing of medical diagnostic data
- A61B6/5229—Devices using data or image processing specially adapted for radiation diagnosis involving processing of medical diagnostic data combining image data of a patient, e.g. combining a functional image with an anatomical image
- A61B6/5235—Devices using data or image processing specially adapted for radiation diagnosis involving processing of medical diagnostic data combining image data of a patient, e.g. combining a functional image with an anatomical image combining images from the same or different ionising radiation imaging techniques, e.g. PET and CT
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B6/00—Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
- A61B6/54—Control of apparatus or devices for radiation diagnosis
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B6/00—Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
- A61B6/54—Control of apparatus or devices for radiation diagnosis
- A61B6/541—Control of apparatus or devices for radiation diagnosis involving acquisition triggered by a physiological signal
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N5/00—Radiation therapy
- A61N5/10—X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N5/00—Radiation therapy
- A61N5/10—X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
- A61N5/1048—Monitoring, verifying, controlling systems and methods
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N5/00—Radiation therapy
- A61N5/10—X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
- A61N5/1048—Monitoring, verifying, controlling systems and methods
- A61N5/1064—Monitoring, verifying, controlling systems and methods for adjusting radiation treatment in response to monitoring
- A61N5/1069—Target adjustment, e.g. moving the patient support
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B34/00—Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
- A61B34/20—Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
- A61B2034/2046—Tracking techniques
- A61B2034/2055—Optical tracking systems
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B90/00—Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
- A61B90/36—Image-producing devices or illumination devices not otherwise provided for
- A61B90/37—Surgical systems with images on a monitor during operation
- A61B2090/376—Surgical systems with images on a monitor during operation using X-rays, e.g. fluoroscopy
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N5/00—Radiation therapy
- A61N5/10—X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
- A61N5/1048—Monitoring, verifying, controlling systems and methods
- A61N5/1049—Monitoring, verifying, controlling systems and methods for verifying the position of the patient with respect to the radiation beam
- A61N2005/105—Monitoring, verifying, controlling systems and methods for verifying the position of the patient with respect to the radiation beam using a laser alignment system
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N5/00—Radiation therapy
- A61N5/10—X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
- A61N5/1048—Monitoring, verifying, controlling systems and methods
- A61N5/1049—Monitoring, verifying, controlling systems and methods for verifying the position of the patient with respect to the radiation beam
- A61N2005/1051—Monitoring, verifying, controlling systems and methods for verifying the position of the patient with respect to the radiation beam using an active marker
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N5/00—Radiation therapy
- A61N5/10—X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
- A61N5/1048—Monitoring, verifying, controlling systems and methods
- A61N5/1049—Monitoring, verifying, controlling systems and methods for verifying the position of the patient with respect to the radiation beam
- A61N2005/1056—Monitoring, verifying, controlling systems and methods for verifying the position of the patient with respect to the radiation beam by projecting a visible image of the treatment field
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N5/00—Radiation therapy
- A61N5/10—X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
- A61N5/1048—Monitoring, verifying, controlling systems and methods
- A61N5/1049—Monitoring, verifying, controlling systems and methods for verifying the position of the patient with respect to the radiation beam
- A61N2005/1059—Monitoring, verifying, controlling systems and methods for verifying the position of the patient with respect to the radiation beam using cameras imaging the patient
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N5/00—Radiation therapy
- A61N5/10—X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
- A61N5/1048—Monitoring, verifying, controlling systems and methods
- A61N5/1049—Monitoring, verifying, controlling systems and methods for verifying the position of the patient with respect to the radiation beam
- A61N2005/1061—Monitoring, verifying, controlling systems and methods for verifying the position of the patient with respect to the radiation beam using an x-ray imaging system having a separate imaging source
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N5/00—Radiation therapy
- A61N5/10—X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
- A61N5/1048—Monitoring, verifying, controlling systems and methods
- A61N5/1049—Monitoring, verifying, controlling systems and methods for verifying the position of the patient with respect to the radiation beam
- A61N2005/1061—Monitoring, verifying, controlling systems and methods for verifying the position of the patient with respect to the radiation beam using an x-ray imaging system having a separate imaging source
- A61N2005/1062—Monitoring, verifying, controlling systems and methods for verifying the position of the patient with respect to the radiation beam using an x-ray imaging system having a separate imaging source using virtual X-ray images, e.g. digitally reconstructed radiographs [DRR]
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N5/00—Radiation therapy
- A61N5/10—X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
- A61N2005/1085—X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy characterised by the type of particles applied to the patient
- A61N2005/1087—Ions; Protons
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N5/00—Radiation therapy
- A61N5/10—X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
- A61N5/1048—Monitoring, verifying, controlling systems and methods
- A61N5/1064—Monitoring, verifying, controlling systems and methods for adjusting radiation treatment in response to monitoring
- A61N5/1068—Gating the beam as a function of a physiological signal
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C2270/00—Control; Monitoring or safety arrangements
- F04C2270/04—Force
- F04C2270/041—Controlled or regulated
Definitions
- the present invention relates to a radiation therapy apparatus for performing cancer treatment by irradiating an affected area of a patient with radiation such as X-rays, gamma rays, and particle beams, and the patient is placed at a radiation irradiation position planned in a treatment plan using an X-ray image.
- the present invention relates to an X-ray positioning apparatus for positioning the head.
- particle beam treatment devices In recent years, development and construction of cancer treatment devices (particularly referred to as particle beam treatment devices) using particle beams such as protons and heavy ions have been promoted in radiotherapy devices intended for cancer treatment.
- particle beam therapy using particle beams can irradiate the cancer affected area more intensively than conventional radiotherapy such as X-rays and gamma rays, that is, pinpointing according to the shape of the affected area. Can be irradiated with a particle beam and can be treated without affecting normal cells.
- respiratory synchronization irradiation in which a charged particle beam is irradiated in synchronization with respiration has been performed using a respiration detection signal of a respiration detector.
- a respiratory gate signal that permits emission of a charged particle beam is generated from the position of the body surface detected by a respiratory detector, and a synchrotron and a beam transport device are controlled based on the respiratory gate signal.
- a particle beam irradiation apparatus is described.
- an external observation device (X-ray fluoroscopy device) that observes respiration signals that can be measured from outside the body, such as body deformation and respiratory volume, and a treatment target, a skeleton, a diaphragm position, and the body are embedded. It has two types of observation devices, an internal observation device that observes the respiratory phase based on the positional information of internal structures such as markers, and it is highly accurate by taking X-ray fluoroscopic images only at the respiratory phase necessary for respiratory synchronized irradiation. Describes a radiation therapy system that realizes simple respiratory synchronized irradiation with a small amount of X-ray exposure.
- the patient In particle beam therapy, it is important to irradiate the affected area such as cancer with high accuracy regardless of whether or not respiratory synchronized irradiation is performed. Therefore, the patient is fixed using a fixture or the like so that the position does not shift with respect to the treatment table (patient table) in the treatment room (irradiation room) during the particle beam treatment.
- the affected area such as cancer within the radiation irradiation range
- settings such as rough installation of the patient using a laser pointer are performed, and then the patient's affected area is accurately positioned using an X-ray image or the like. Is going.
- JP 2010-63725 A steps 0067 to 0072, FIG. 3
- JP 2010-154874 A stages 0012 to 0015, FIGS. 1 to 4
- a respiratory detector In the case of patient positioning for fixing the patient to the treatment table when performing respiratory synchronized irradiation, a respiratory detector can be used. In this case, it is easy to provide a function for additionally recording respiration information in the X-ray image, but the function for additionally recording respiration information in the X-ray image is a timing at which the position of the respiratory moving affected part is relatively stable. It is not a necessary function to find out. Therefore, only the function of additionally recording respiration information on the X-ray image cannot efficiently capture images according to the state of the respiration waveform.
- An object of the present invention is to obtain an X-ray positioning apparatus capable of efficiently capturing an image in accordance with the state of a respiratory waveform when positioning a patient for radiation therapy.
- An X-ray positioning apparatus acquires first X-ray image data output from an X-ray detector that detects X-rays emitted from an X-ray tube, and receives a respiratory signal related to patient breathing and the first X-ray image data.
- a positioning computer that calculates a body posture correction amount to match the posture of the patient and generates patient table control data for controlling the patient table, a frame rate control signal including imaging conditions for continuously captured images in the first X-ray image data, and
- An imaging trigger generation device that outputs an imaging trigger signal that emits X-rays corresponding to a plurality of frame rates to an X-ray tube based on the respiratory signal;
- the imaging trigger generation device generates an imaging trigger signal corresponding to the first frame rate and the second frame rate higher than the first frame rate, and the positioning computer calculates the first X-ray image data in the second X-ray image data.
- Patient table control data is generated on the basis of one X-ray image and a reference image selected from continuously captured images captured at a
- the X-ray positioning device Since the X-ray positioning device according to the present invention generates an imaging trigger signal that emits X-rays corresponding to a plurality of frame rates, based on a frame rate control signal and a breathing signal including imaging conditions for continuous imaging images.
- an imaging trigger signal that emits X-rays corresponding to a plurality of frame rates, based on a frame rate control signal and a breathing signal including imaging conditions for continuous imaging images.
- FIG. 1 is a schematic configuration diagram of a particle beam therapy system to which the present invention is applied. It is a figure which shows the structure of the particle beam irradiation apparatus of FIG.1 and FIG.2. It is a figure which shows the structure of the imaging
- FIG. 1 is a diagram showing a configuration of an X-ray positioning apparatus according to the present invention and a schematic configuration of a respiratory synchronization irradiation system.
- FIG. 2 is a schematic configuration diagram of a particle beam therapy system to which the present invention is applied, and
- FIG. 3 is a diagram illustrating a configuration of the particle beam irradiation apparatus of FIGS. 1 and 2.
- FIG. 4 is a diagram showing the configuration of the imaging trigger generation device of the present invention.
- the respiratory synchronization irradiation system includes an X-ray positioning device 20, a particle beam irradiation device 58, a patient table 12 on which a patient 45 is placed, a respiration sensor 8, a sense amplifier 9, an X-ray tube 6, and an X-ray detector 7.
- the X-ray positioning device 20 includes a positioning computer 1, an imaging trigger generation device 2, a monitor 4 a and an input device 5 a connected to the positioning computer 1, and an X-ray video device 3.
- the respiratory synchronization signal generator 10 includes a waveform generator 15, an IF converter 16, and a switch 13.
- the imaging trigger generation device 2 includes an input unit 21, a waveform determination unit 22, an attention period extraction unit 23, and an imaging trigger generation unit 24.
- the patient 45 When performing radiotherapy, the patient 45 is fixed by using a fixture or the like (not shown) so that the position of the patient 45 does not shift with respect to the patient table 12 in the irradiation chamber 19.
- a fixture or the like In order to accurately position the affected part 48 such as cancer in the radiation irradiation range, setting such as rough installation of the patient using a laser pointer or the like is performed.
- the affected part 48 of the patient 45 is precisely positioned using the X-ray positioning device 20.
- the X-ray positioning apparatus 20 obtains a respiratory signal sig1 from the respiratory information of the patient 45 detected by the respiratory sensor 8 via the sense amplifier 9, the respiratory synchronization signal generator 10, and the IF unit 11. To do.
- the respiration signal sig1 is a signal related to the respiration of the patient 45.
- the sense amplifier 9 amplifies the respiration information of the patient 45, and the respiration synchronization signal generator 10 generates the respiration signal sig1 of the digital signal from the respiration information of the analog signal.
- the IF unit 11 outputs the respiration signal sig1, the synchronization signal sig4 at the time of the respiration synchronization irradiation, and the interlock signal sig5 to the X-ray positioning device 20, the irradiation management device 38 described later, and the like.
- the respiratory sensor 8 can be the following.
- a flow sensor detects the flow of exhalation, measures temperature changes in the vicinity of the nasal cavity due to inspiration using image processing with a thermistor or infrared camera, or a laser light source attached to the abdomen of the movement of the abdomen of the patient 45
- a method of detecting with a position sensitive detector (position sensor) or converting the motion of the abdomen of the patient 45 with a laser displacement meter can be considered.
- the X-ray positioning device 20 detects the X-ray emitted from the X-ray tube 6 by the X-ray detector 7 and the position of the affected part 48 of the patient 45 in the X-ray image taken and CT image data for treatment planning Are compared with the position of the affected part 48 of the patient 45 in the reference image for positioning, the body position correction amount is calculated so as to match the posture of the treatment plan, and the patient table control data cdata1 as the body position correction amount is stored in the patient table 12. Output.
- the X-ray positioning apparatus 20 controls the patient table 12 based on the patient table control data cddata1 which is a body position correction amount, and performs alignment so that the affected part 48 at the time of treatment comes to the center of beam irradiation for radiation therapy. A positioning method using the respiratory signal sig1 will be described later.
- FIG. 2 is a schematic configuration diagram of a particle beam therapy system to which the present invention is applied
- FIG. 3 is a diagram illustrating a configuration of the particle beam irradiation apparatus of FIGS. 1 and 2.
- the particle beam therapy system 51 includes a beam generation device 52, a beam transport system 59, and particle beam irradiation devices 58a and 58b.
- the beam generator 52 includes an ion source (not shown), a pre-stage accelerator 53, and a charged particle accelerator 54.
- the particle beam irradiation device 58b is installed in a rotating gantry (not shown).
- the particle beam irradiation device 58a is installed in an irradiation chamber that does not have a rotating gantry.
- the role of the beam transport system 59 is in communication between the charged particle accelerator 54 and the particle beam irradiation devices 58a and 58b.
- a part of the beam transport system 59 is installed in a rotating gantry (not shown), and the part has a plurality of deflection electromagnets 55a, 55b, and 55c.
- the charged particle beam which is a particle beam such as a proton beam generated in the ion source, is accelerated by the pre-stage accelerator 53 and is incident on the charged particle accelerator 54 from the incident device 46.
- the charged particle accelerator 54 is, for example, a synchrotron.
- the charged particle beam is accelerated to a predetermined energy.
- the charged particle beam emitted from the emission device 47 of the charged particle accelerator 54 is transported to the particle beam irradiation devices 58a and 58b through the beam transport system 59.
- the particle beam irradiation devices 58 a and 58 b irradiate the affected part 48 of the patient 45 with a charged particle beam.
- the reference numeral 58 of the particle beam irradiation apparatus is used as a whole, and 58a and 58b are used in the case of distinction.
- the particle beam irradiation device 58 includes an X-direction scanning electromagnet 32 and a Y-direction scanning electromagnet 33 that scan the charged particle beam 31 in the X direction and the Y direction that are perpendicular to the charged particle beam 31, and a position monitor 34.
- the irradiation management device 38 includes an irradiation control computer 39 and an irradiation control device 40.
- the dose data converter 36 includes a trigger generation unit 42, a spot counter 43, and an inter-spot counter 44.
- the traveling direction of the charged particle beam 31 is the ⁇ Z direction.
- the X-direction scanning electromagnet 32 is a scanning electromagnet that scans the charged particle beam 31 in the X direction
- the Y-direction scanning electromagnet 33 is a scanning electromagnet that scans the charged particle beam 31 in the Y direction.
- the position monitor 34 detects beam information for calculating a passing position (center of gravity position) and a size of a beam through which the charged particle beam 31 scanned by the X direction scanning electromagnet 32 and the Y direction scanning electromagnet 33 passes.
- the beam data processing device 41 calculates the passing position (center of gravity position) and size of the charged particle beam 31 based on beam information made up of a plurality of analog signals (beam information) detected by the position monitor 34. Further, the beam data processing device 41 generates an abnormality detection signal indicating an abnormal position or size abnormality of the charged particle beam 31 and outputs this abnormality detection signal to the irradiation management device 38.
- the dose monitor 35 detects the dose of the charged particle beam 31.
- the irradiation management device 38 controls the irradiation position of the charged particle beam 31 in the affected area 48 of the patient 45 based on the treatment plan data created by the treatment planning device (not shown), is measured by the dose monitor 35, and is a dose data converter.
- the dose converted into digital data in 36 reaches the target dose, the charged particle beam 31 is stopped.
- the scanning electromagnet power source 37 sets the set currents of the X direction scanning electromagnet 32 and the Y direction scanning electromagnet 33 based on control inputs (commands) to the X direction scanning electromagnet 32 and the Y direction scanning electromagnet 33 output from the irradiation management device 38. Change.
- the scanning irradiation method of the particle beam irradiation apparatus 58 is a raster scanning irradiation method in which the charged particle beam 31 is not stopped when the irradiation position of the charged particle beam 31 is changed, and the beam irradiation position is the same as the spot scanning irradiation method.
- a method of moving between spot positions one after another is adopted.
- the spot counter 43 measures the irradiation dose while the beam irradiation position of the charged particle beam 31 is stopped.
- the spot-to-spot counter 44 measures the irradiation dose while the beam irradiation position of the charged particle beam 31 is moving.
- the trigger generation unit 42 generates a dose expiration signal when the dose of the charged particle beam 1 at the beam irradiation position reaches the target irradiation dose.
- FIG. 5 is a diagram for explaining an example of changing the frame rate according to the first embodiment of the present invention.
- the respiration waveform 26 of the respiration signal sig1 is shown for one cycle.
- the horizontal axis is time, and the vertical axis is amplitude.
- Black circles on the respiration waveform 26 are collected data 27 detected at a constant sampling period.
- the respiration waveform 26 is a curve obtained by complementing a plurality of collected data 27.
- the actual respiration waveform 26 is different from the sine wave as shown in FIG. 5, the sine wave will be described as an example.
- the time of one cycle of the respiration waveform 26 is from time t0 to time t4.
- a portion where the amplitude of the respiratory waveform 26 is high indicates a state where the patient 45 is inhaling
- a portion where the amplitude of the respiratory waveform 26 is low indicates a state where the patient 45 is exhaling.
- the X-ray video apparatus 3 of the X-ray positioning apparatus 20 acquires X-ray image data data1 in the imaging period Tp.
- the imaging period Tp is from time t1 to time t3.
- the X-ray image data data1 includes continuous captured images captured at a plurality of frame rates.
- FIG. 5 shows an example of changing between two frame rates.
- the X-ray image data data1 is composed of continuously photographed images 28 having a frame rate fr1 from time t1 to time t2, and is composed of continuously photographed images 29 having a frame rate fr2 higher than the frame rate fr1 from time t2 to time t3. .
- the first embodiment is an example in which positioning is performed using X-ray image data data1 in a flat period of the respiratory waveform 26 in a state where the patient 45 is exhaling.
- a period from time t2 to time t3 is an attention period Ts in which the frame rate is changed.
- the X-ray positioning apparatus 20 performs X-rays of the affected area 48 in accordance with the imaging conditions such as the imaging period Tp, the frame rates fr1, fr2, the frame rate change time t2, and the attention period Ts specified from the input device 5a such as a keyboard or a mouse.
- the positioning computer 1 outputs a frame rate control signal sig2 including imaging conditions such as the imaging period Tp, the frame rates fr1 and fr2, the frame rate change time t2, and the attention period Ts to the imaging trigger generation device 2.
- the shooting trigger generation device 2 executes a shooting trigger generation procedure.
- the imaging trigger generation device 2 outputs an imaging trigger signal sig3 to the X-ray tube 6 based on the respiratory signal sig1 and the frame rate control signal sig2 input from the IF unit 11.
- the imaging start time t1, the frame rate change time t2, and the imaging end time t3 are times based on one cycle of the respiratory waveform 26.
- the X-ray tube 6 emits X-rays every time an imaging trigger signal sig3 is input from the imaging trigger generation device 2.
- the X-ray detector 7 detects X-rays that have passed through the patient 45 and outputs X-ray image data data 1 to the X-ray video apparatus 3.
- the X-ray video apparatus 3 executes a positioning image data generation procedure.
- the X-ray video apparatus 3 acquires X-ray image data data1 from the X-ray detector 7, and based on the respiration signal sig1 input from the IF unit 11 and the imaging trigger signal sig3 input from the imaging trigger generation apparatus 2, X-ray image data data2 in which the time of the respiration waveform 26 and the imaging time of the X-ray image are associated is stored in a built-in memory or the like.
- the X-ray video apparatus 3 outputs the X-ray image data data2 to the positioning computer 1.
- the positioning computer 1 executes a patient table control data generation procedure.
- the positioning computer 1 acquires X-ray image data data2.
- the positioning computer 1 obtains one X-ray image closest to the state (position, size, etc.) of the affected part 48 of the patient 45 of the reference image for positioning from the CT image data for treatment planning, etc., as X-ray image data data2. Select from.
- the positioning computer 1 collates the position of the affected area 48 of the patient 45 in the selected X-ray image with the affected area 48 of the patient 45 in the reference image, calculates the body position correction amount so as to match the posture of the treatment plan, and
- the patient table control data cdata1 which is the posture correction amount, is output to the table 12.
- the patient table control data cddata1 is patient table control data including a total of six degrees of freedom, for example, three translational axes [ ⁇ X, ⁇ Y, ⁇ Z] and three rotational axes [ ⁇ A, ⁇ B, ⁇ C].
- the patient table 12 drives a translational three-axis motor or a rotation three-axis motor in accordance with the patient table control data cdata1.
- the X-ray positioning apparatus 20 can calculate the body position correction amount so as to meet the treatment plan, and can perform alignment so that the affected part 48 at the time of treatment comes to the beam irradiation center (isocenter) of the radiation treatment.
- the patient's 45 affected part 48 is subjected to respiratory synchronized irradiation with the charged particle beam 31 synchronized with the patient's respiratory state.
- the X-ray tube 6 and the X-ray detector 7 are moved from the imaging position so as not to interfere with radiation irradiation.
- the respiratory synchronization signal generator 10 can detect the respiratory information of the patient 45 detected by the respiratory sensor 8 and amplified by the sense amplifier 9 and the irradiation that can be regarded as the state of the affected part 48 when the alignment obtained from the positioning computer 1 is completed.
- a synchronization signal sig4 is generated based on the period information sig6.
- the interlock signal sig5 is generated by the IF converter 16 when the switch 13 is turned on / off. For example, when the switch 13 is in the on state, irradiation is permitted, that is, the interlock is released, and when the switch 13 is in the off state, irradiation is not permitted, that is, the interlock operation is performed.
- the respiratory signal sig1 is sent to the control computer 14, and the respiratory waveform 26, the waveform of the synchronous signal sig4, the interlock signal sig5, and the like are displayed from the control computer 14 to the monitor 4b.
- the monitor 4b and the input device 5b connected to the control computer 14 and the switch 13 are installed in an irradiation control room outside the management area.
- the X-ray positioning apparatus 20 of the first embodiment extracts a desired period (imaging period Tp) from the respiratory waveform 26 at the time of patient positioning, and continuous imaging in which the frame rate of continuous imaging of X-ray images is variable.
- An image (moving image) can be obtained.
- the period suitable for patient positioning is a substantially stationary period in which the affected part 48 of the patient 45 is in a stationary state or a substantially stationary state close to the stationary state.
- This substantially stationary period is a period during which respiratory synchronized irradiation can be performed, and a treatment plan is created for the state of the affected part 48 of the patient 45 in this substantially stationary period.
- the imaging trigger generation device 2 acquires the respiratory signal sig1 and the frame rate control signal sig2 at the input unit 21. For example, the imaging trigger generation device 2 bilinearly converts the collection data 27 forming the respiratory waveform 26 and determines whether the respiratory waveform 26 is in a predetermined state in the respiratory signal sig1. Specifically, the imaging trigger generation device 2 determines that the respiration waveform 26 is flat when the difference in amplitude between adjacent data is within a predetermined small range. The determination of the flat period in the respiration waveform 26 is performed by the waveform determination unit 22.
- Embodiment 1 since the substantially stationary period when the patient 45 exhales is extracted, the period in which the amplitude of the respiratory waveform 26 is close to the lower limit value and the respiratory waveform 26 is determined to be flat is selected. , Extracted as the attention period Ts. The extraction of the attention period Ts is performed by the attention period extraction unit 23 based on the determination result of the waveform determination unit 22 and the respiratory signal sig1 and the frame rate control signal sig2.
- the imaging trigger generation unit 24 Based on the extraction result of the attention period extraction unit 23, the imaging trigger generation unit 24 performs imaging corresponding to a low frame rate fr1 when the respiratory signal sig1 is the imaging period Tp and is a waveform signal other than the attention period Ts.
- the trigger signal sig3 is output.
- the imaging trigger generation unit 24 outputs the imaging trigger signal sig3 corresponding to the frame rate fr2 higher than the frame rate fr1 when the respiratory signal sig1 is the imaging period Tp and is a waveform signal of the attention period Ts.
- the X-ray positioning apparatus 20 can obtain continuous shot images (moving images) in which the frame rate of continuous shooting of X-ray images is variable during patient positioning.
- the X-ray video apparatus 3 is capable of taking a fine picture during the attention period Ts that the person wants to extract, and taking pictures at other frame rates in the picture taking period Tp at a frame rate of about the standard, as compared with the conventional method of photographing at a constant frame rate.
- the image processing amount and the memory amount in the positioning computer 1 can be reduced. Therefore, the X-ray positioning apparatus 20 according to the first embodiment can capture an X-ray image more efficiently than the conventional method of capturing at a constant frame rate.
- the X-ray positioning apparatus 20 of the first embodiment captures a fine X-ray image by increasing the frame rate during a period in which the respiration waveform 26 is flat, that is, the attention period Ts in FIG. Since the coincidence point with the reference image can be verified in detail for a large number of X-ray images, the alignment accuracy is improved.
- the X-ray positioning apparatus 20 efficiently captures an X-ray image in a necessary period of the respiratory waveform 26, for example, an imaging period Tp shorter than one cycle, thereby unnecessary X-rays to the patient 45. The amount of exposure can be reduced. Further, the X-ray positioning apparatus 20 according to the first embodiment differs from the conventional method in which the imaging start is started when the amplitude of the respiratory waveform 26 exceeds the threshold value, and the X-ray image has a low frame rate fr2 other than the attention period Ts. Therefore, it is not possible to take a picture for a long time which can occur in this conventional method. Furthermore, the X-ray positioning apparatus 20 according to the first embodiment eliminates the need for conventional operations such as position adjustment of the respiratory sensor and threshold adjustment performed to eliminate the absence of imaging for a long time. The alignment work time can be shortened and the work time can be improved.
- the first X-ray image data data1 output from the X-ray detector 7 that detects the X-rays emitted from the X-ray tube 6 is acquired, and the patient 45
- the positioning computer 1 that collates the affected part 48 in the reference image that is the reference, calculates the body position correction amount so as to match the posture of the treatment plan, and generates the patient table control data cdata1 for controlling the patient table 12; Based on the frame rate control signal sig2 and the respiration signal sig1 including the imaging conditions of the continuous imaging images 28 and 29 in the X-ray image data data1, a plurality of An imaging trigger generation device 2 that outputs to the X-ray tube 6 an imaging trigger signal sig3 that emit
- Patient table control data cdata1 is generated based on one X-ray image selected from the continuously captured image 29 and the reference image. Since the X-ray positioning apparatus 20 according to the first embodiment has the above-described characteristics, a plurality of frame rates fr1, fr2 are based on the frame rate control signal sig2 and the respiratory signal sig1 including the imaging conditions of the continuously captured images 28, 29.
- the radiographing trigger signal sig3 that emits X-rays can be generated in response to the above, and radiography can be performed efficiently according to the state of the respiratory waveform 26 at the time of patient positioning.
- the first X-ray image data data1 output from the X-ray detector 7 that detects the X-rays emitted from the X-ray tube 6 is acquired, and the patient 45 Positioning image data generation procedure for generating second X-ray image data data2 in which the respiration signal sig1 relating to respiration and the first X-ray image data data1 are associated, and the affected part 48 and the positioning reference in the second X-ray image data data2
- a patient table control data generation procedure for collating the affected part 48 in the reference image, calculating a body posture correction amount to match the posture of the treatment plan, and generating patient table control data cdata1 for controlling the patient table 12,
- an imaging trigger generation procedure for outputting an imaging trigger signal sig3 that emits X-rays corresponding to a plurality of frame rates fr1 and fr2
- the imaging trigger signal sig3 are generated corresponding to the first frame rate fr1 and the second frame rate fr2 higher than the first frame rate fr1, and the second X-ray image data data2 in the second X-ray image data data2 is generated in the patient table control data generation procedure.
- the patient table control data cddata1 is generated on the basis of one X-ray image selected from the continuously captured images 29 captured at the frame rate fr2 and the reference image. Since the X-ray positioning method according to the first embodiment has the above-described feature, a plurality of frame rates fr1 and fr2 are obtained based on the frame rate control signal sig2 and the respiratory signal sig1 including the imaging conditions of the continuously captured images 28 and 29.
- an imaging trigger signal sig3 for emitting X-rays can be generated, and imaging can be efficiently performed in accordance with the state of the respiratory waveform 26 at the time of patient positioning for radiotherapy.
- FIG. FIG. 6 is a diagram for explaining an example of changing the frame rate according to the second embodiment of the present invention.
- the second embodiment is an example in which positioning is performed using X-ray image data data1 in a flat period of the respiratory waveform 26 in a state where the patient 45 is breathing. That is, the X-ray positioning apparatus 20 according to the second embodiment sets the flat period of the respiratory waveform 26 in a state where the patient 45 is breathing as the attention period Ts.
- the respiration waveform 26 of the respiration signal sig1 is shown for one cycle (from time t0 to time t4).
- FIG. 6 shows an example of changing between two frame rates.
- the period from time t0 to time t3 is the imaging period Tp.
- the X-ray image data data1 is composed of continuously captured images 28 at the frame rate fr1 from the time t0 to the time t1 and from the time t2 to the time t3. From the time t1 to the time t2, the continuous imaging at the frame rate fr2 higher than the frame rate fr1. It consists of an image 29.
- the attention period Ts is a period from time t1 to time t2.
- the reference image for positioning is an image in a state where the patient 45 is inhaling.
- the X-ray positioning apparatus 20 according to the second embodiment can obtain the same effects as those of the first embodiment, and can efficiently capture images according to the state of the respiratory waveform 26 when positioning a patient for radiation therapy.
- the state in which the patient 45 is breathing may be substantially longer than the state in which the patient 45 is exhaling.
- the X-ray positioning apparatus 20 according to the second embodiment takes note of the period when the patient 45 according to the first embodiment is exhaling. Rather than setting Ts, the alignment accuracy can be improved.
- the substantially stationary state is long, the treatment time for performing respiratory synchronization irradiation can be shortened.
- FIG. 7 is a diagram for explaining an example of changing the frame rate according to the third embodiment of the present invention.
- the third embodiment is an example in which the attention period Ts is set where the change in the respiratory waveform 26 is steep.
- the respiration waveform 26 of the respiration signal sig1 is shown for one cycle (from time t0 to time t5).
- FIG. 7 shows an example of changing between two frame rates.
- the time t1 to the time t4 is the imaging period Tp.
- the X-ray image data data1 is composed of continuously captured images 28 at the frame rate fr1 from the time t1 to the time t2 and from the time t3 to the time t4. From the time t2 to the time t3, the continuous imaging at the frame rate fr2 higher than the frame rate fr1. It consists of an image 29.
- the attention period Ts is a period from time t2 to time t3.
- the affected part 48 accompanied by respiratory movement such as lung and liver has a higher moving speed when the change of the respiratory waveform 26 is steep.
- the attention period Ts is set at a place where the change of the respiration waveform 26 is steep, an image with small blurring with respect to the movement can be obtained, and the movement of the organ can be grasped in detail.
- the movement of the organ can be grasped in detail with a smaller amount of X-ray exposure than when photographing at a constant frame rate.
- a steep period in which the waveform sharply changes in the respiration signal sig1 is determined, and a capturing trigger is associated with the third frame rate fr2 higher than the first frame rate fr1.
- An imaging trigger signal generation procedure for generating the signal sig3 an attention period extraction procedure for determining whether or not the waveform of the respiratory signal sig1 is a steep period, and extracting the steep period as the attention period Ts, and an X-ray video
- the apparatus 3 acquires first X-ray image data data1, and generates target X-ray image data data2 in which the respiration signal sig1 and the first X-ray image data data1 are associated with each other. It is characterized by including.
- the attention image capturing method according to the third embodiment has the above-described characteristics. Therefore, when creating a treatment plan, avoid a healthy organ and appropriately set the irradiation direction of the affected area 48 and the irradiation period of performing respiratory synchronization irradiation. Can be set.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Medical Informatics (AREA)
- Pathology (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Radiology & Medical Imaging (AREA)
- Surgery (AREA)
- Biophysics (AREA)
- Heart & Thoracic Surgery (AREA)
- Physics & Mathematics (AREA)
- Molecular Biology (AREA)
- High Energy & Nuclear Physics (AREA)
- Optics & Photonics (AREA)
- Physiology (AREA)
- Pulmonology (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Dentistry (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Radiation-Therapy Devices (AREA)
- Apparatus For Radiation Diagnosis (AREA)
Abstract
Description
図1は、本発明のX線位置決め装置の構成及び呼吸同期照射システムの概略構成を示す図である。図2は本発明を適用する粒子線治療装置の概略構成図であり、図3は図1及び図2の粒子線照射装置の構成を示す図である。図4は、本発明の撮影トリガ生成装置の構成を示す図である。呼吸同期照射システムは、X線位置決め装置20と、粒子線照射装置58と、患者45を載せる患者台12と、呼吸センサ8と、センスアンプ9と、X線管6と、X線検出器7と、呼吸同期信号生成器10と、制御計算機14と、IF(インターフェース)ユニット11と、制御計算機14に接続されたモニタ4b及び入力器5bとを備える。X線位置決め装置20は、位置決め計算機1と、撮影トリガ生成装置2と、位置決め計算機1に接続されたモニタ4a及び入力器5aと、X線ビデオ装置3とを備える。呼吸同期信号生成器10は、波形生成器15と、IFコンバータ16と、スイッチ13とを備える。撮影トリガ生成装置2は、入力部21と、波形判定部22と、注目期間抽出部23、撮影トリガ生成部24とを備える。
図6は、本発明の実施の形態2によるフレームレート変更例を説明する図である。実施の形態2では、患者45が息を吸っている状態における呼吸波形26の平坦な期間のX線画像データdata1を用いて位置決めを行う例である。すなわち、実施の形態2のX線位置決め装置20は、患者45が息を吸っている状態における呼吸波形26の平坦な期間を注目期間Tsにする。図6では、呼吸信号sig1の呼吸波形26を、1周期分(時刻t0から時刻t4)だけ記載した。図6では、2つのフレームレートの間で変更する例を示した。図6において、時刻t0から時刻t3は、撮影期間Tpである。X線画像データdata1は、時刻t0から時刻t1及び時刻t2から時刻t3において、フレームレートfr1の連続撮影画像28からなり、時刻t1から時刻t2において、フレームレートfr1よりの高いフレームレートfr2の連続撮影画像29からなっている。注目期間Tsは、時刻t1から時刻t2までの期間である。実施の形態2では、位置決め用の基準画像は患者45が息を吸っている状態における画像である。
図7は、本発明の実施の形態3によるフレームレート変更例を説明する図である。実施の形態3では、注目期間Tsを呼吸波形26の変化が急峻なところに設定した例である。実施の形態3では、患者45の患部48に対する治療計画を作成する際等に、患部48の連続撮影画像を注目画像として撮影する。図7では、呼吸信号sig1の呼吸波形26を、1周期分(時刻t0から時刻t5)だけ記載した。図7では、2つのフレームレートの間で変更する例を示した。図7において、時刻t1から時刻t4は、撮影期間Tpである。X線画像データdata1は、時刻t1から時刻t2及び時刻t3から時刻t4において、フレームレートfr1の連続撮影画像28からなり、時刻t2から時刻t3において、フレームレートfr1よりの高いフレームレートfr2の連続撮影画像29からなっている。注目期間Tsは、時刻t2から時刻t3までの期間である。
Claims (6)
- X線画像を用いて患者台を制御し、患者の患部を治療計画で計画された放射線の照射位置に位置決めするX線位置決め装置であって、
X線管から放射されたX線を検出するX線検出器から出力された第1のX線画像データを取得し、前記患者の呼吸に関する呼吸信号と前記第1のX線画像データを関連付けた第2のX線画像データを生成するX線ビデオ装置と、
前記第2のX線画像データにおける患部と位置決めの基準である基準画像における患部とを照合し、前記治療計画の姿勢に合うように体位補正量を計算し、前記患者台を制御する患者台制御データを生成する位置決め計算機と、
前記第1のX線画像データにおける連続撮影画像の撮影条件を含むフレームレート制御信号と、前記呼吸信号とに基づいて、複数のフレームレートに対応してX線を放射する撮影トリガ信号を前記X線管に出力する撮影トリガ生成装置と、を備え、
前記撮影トリガ生成装置は、前記撮影トリガ信号を、第1のフレームレート及び前記第1のフレームレートよりも高い第2のフレームレートに対応して生成し、
前記位置決め計算機は、前記第2のX線画像データにおける前記第2のフレームレートで撮影された前記連続撮影画像から選択された1枚の前記X線画像と前記基準画像に基づいて、前記患者台制御データを生成することを特徴とするX線位置決め装置。 - 前記撮影トリガ生成装置は、
前記呼吸信号において波形が所定の状態であるかを判定する波形判定部と、
前記波形判定部で判定した判定結果に基づいて、前記第2のフレームレートにて前記連続撮影画像を撮影する期間である注目期間を抽出する注目期間抽出部と、
前記フレームレート制御信号における撮影期間と前記注目期間とに基づいて、前記撮影トリガ信号を出力する撮影トリガ生成部と、を備えたことを特徴とする請求項1記載のX線位置決め装置。 - 前記波形判定部は、前記呼吸信号において波形が所定の小範囲に収まる期間である平坦期間であるかを判定し、
前記注目期間抽出部は、前記波形判定部で判定した前記平坦期間であり、かつ、前記呼吸信号の振幅が下限値に近い期間を、前記注目期間として抽出することを特徴とする請求項2記載のX線位置決め装置。 - 前記波形判定部は、前記呼吸信号において波形が所定の小範囲に収まる期間である平坦期間であるかを判定し、
前記注目期間抽出部は、前記波形判定部で判定した前記平坦期間であり、かつ、前記呼吸信号の振幅が上限値に近い期間を、前記注目期間として抽出することを特徴とする請求項2記載のX線位置決め装置。 - X線画像を用いて患者台を制御し、患者の患部を治療計画で計画された放射線の照射位置に位置決めするX線位置決め方法であって、
X線管から放射されたX線を検出するX線検出器から出力された第1のX線画像データを取得し、前記患者の呼吸に関する呼吸信号と前記第1のX線画像データを関連付けた第2のX線画像データを生成する位置決め画像データ生成手順と、
前記第2のX線画像データにおける患部と位置決めの基準である基準画像における患部とを照合し、前記治療計画の姿勢に合うように体位補正量を計算し、前記患者台を制御する患者台制御データを生成する患者台制御データ生成手順と、
前記第1のX線画像データにおける連続撮影画像の撮影条件を含むフレームレート制御信号と、前記呼吸信号とに基づいて、複数のフレームレートに対応してX線を放射する撮影トリガ信号を前記X線管に出力する撮影トリガ生成手順と、を含み、
前記撮影トリガ生成手順において、前記撮影トリガ信号を、第1のフレームレート及び前記第1のフレームレートよりも高い第2のフレームレートに対応して生成し、
前記患者台制御データ生成手順において、前記第2のX線画像データにおける前記第2のフレームレートで撮影された前記連続撮影画像から選択された1枚の前記X線画像と前記基準画像に基づいて、前記患者台制御データを生成することを特徴とするX線位置決め方法。 - 請求項1乃至4のいずれか1項に記載のX線位置決め装置を用いて、前記患部の前記連続撮影画像を撮影する注目画像撮影方法であって、
前記呼吸信号において波形が急峻に変化する急峻期間を判定し、前記第1のフレームレートよりも高い第3のフレームレートに対応して前記撮影トリガ信号を生成する撮影トリガ信号生成手順と、
前記呼吸信号において波形が急峻に変化する急峻期間であるかを判定し、前記急峻期間を、前記注目期間として抽出する注目期間抽出手順と、
前記X線ビデオ装置にて、第1のX線画像データを取得し、前記呼吸信号と前記第1のX線画像データを関連付けた第2のX線画像データを生成する注目画像データ生成手順と、を含むことを特徴とする注目画像撮影方法。
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP12880734.4A EP2873438B1 (en) | 2012-07-13 | 2012-07-13 | X-ray positioning apparatus and x-ray positioning method |
US14/400,802 US9873003B2 (en) | 2012-07-13 | 2012-07-13 | X-ray positioning apparatus, X-ray positioning method, and attentional image photographing method |
JP2014524565A JP5916859B2 (ja) | 2012-07-13 | 2012-07-13 | X線位置決め装置及びx線位置決め方法 |
PCT/JP2012/067891 WO2014010073A1 (ja) | 2012-07-13 | 2012-07-13 | X線位置決め装置、x線位置決め方法及び注目画像撮影方法 |
CN201280074691.9A CN104470583B (zh) | 2012-07-13 | 2012-07-13 | X射线定位装置、x射线定位方法及关注图像拍摄方法 |
TW101142352A TWI471152B (zh) | 2012-07-13 | 2012-11-14 | X射線定位裝置、x射線定位方法,以及矚目畫像攝影方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2012/067891 WO2014010073A1 (ja) | 2012-07-13 | 2012-07-13 | X線位置決め装置、x線位置決め方法及び注目画像撮影方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014010073A1 true WO2014010073A1 (ja) | 2014-01-16 |
Family
ID=49915575
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2012/067891 WO2014010073A1 (ja) | 2012-07-13 | 2012-07-13 | X線位置決め装置、x線位置決め方法及び注目画像撮影方法 |
Country Status (6)
Country | Link |
---|---|
US (1) | US9873003B2 (ja) |
EP (1) | EP2873438B1 (ja) |
JP (1) | JP5916859B2 (ja) |
CN (1) | CN104470583B (ja) |
TW (1) | TWI471152B (ja) |
WO (1) | WO2014010073A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016106756A (ja) * | 2014-12-04 | 2016-06-20 | 株式会社日立製作所 | 放射線治療システム |
WO2017179091A1 (ja) * | 2016-04-11 | 2017-10-19 | 三菱電機株式会社 | 粒子線治療システム |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6692817B2 (ja) | 2014-12-17 | 2020-05-13 | コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. | 対象物体の変位を計算する方法及びシステム |
CN107847216B (zh) * | 2015-07-17 | 2024-01-23 | 皇家飞利浦有限公司 | 对肺癌辐射的指导 |
EP3375484B1 (en) * | 2015-11-13 | 2020-05-20 | Hitachi, Ltd. | Particle beam therapy system |
KR101993050B1 (ko) * | 2017-09-28 | 2019-06-25 | 고려대학교 세종산학협력단 | 빔 위치 모니터 신호처리 시스템 |
JP6896606B2 (ja) | 2017-12-27 | 2021-06-30 | 東芝エネルギーシステムズ株式会社 | フラットパネルディテクタの位置調整装置、フラットパネルディテクタの位置調整方法および放射線治療装置 |
JP7455059B2 (ja) | 2018-03-15 | 2024-03-25 | テルモ株式会社 | 医療システム |
FR3094889B1 (fr) * | 2019-04-12 | 2022-08-19 | Quantum Surgical | Dispositif et procédé de contrôle de la respiration d’un patient pour un robot médical |
DE102020205091A1 (de) * | 2020-04-22 | 2021-10-28 | Siemens Healthcare Gmbh | Verfahren zum Erzeugen eines Steuersignals |
US11633168B2 (en) * | 2021-04-02 | 2023-04-25 | AIX Scan, Inc. | Fast 3D radiography with multiple pulsed X-ray sources by deflecting tube electron beam using electro-magnetic field |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001161839A (ja) * | 1999-12-09 | 2001-06-19 | Mitsubishi Electric Corp | ビーム照射治療装置 |
JP2005111151A (ja) * | 2003-10-10 | 2005-04-28 | Shimadzu Corp | 放射線治療装置 |
JP2010063725A (ja) | 2008-09-12 | 2010-03-25 | Hitachi Ltd | 粒子線照射装置とその運転方法 |
JP2010154874A (ja) | 2008-12-26 | 2010-07-15 | Hitachi Ltd | 放射線治療システム |
JP2011500263A (ja) * | 2007-10-26 | 2011-01-06 | アキュレイ インコーポレイテッド | 内部目標物の自動相関モデリング |
JP2012501792A (ja) * | 2008-09-12 | 2012-01-26 | アキュレイ インコーポレイテッド | ターゲットの動きに基づくx線像形成の制御 |
Family Cites Families (65)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5901199A (en) * | 1996-07-11 | 1999-05-04 | The Board Of Trustees Of The Leland Stanford Junior University | High-speed inter-modality image registration via iterative feature matching |
US5820553A (en) * | 1996-08-16 | 1998-10-13 | Siemens Medical Systems, Inc. | Identification system and method for radiation therapy |
US6118848A (en) * | 1998-01-14 | 2000-09-12 | Reiffel; Leonard | System to stabilize an irradiated internal target |
JP3053389B1 (ja) * | 1998-12-03 | 2000-06-19 | 三菱電機株式会社 | 動体追跡照射装置 |
DE19953177A1 (de) * | 1999-11-04 | 2001-06-21 | Brainlab Ag | Exakte Patientenpositionierung durch Vergleich von rekonstruierten und Linac-Röntgenbildern |
WO2002069800A1 (fr) | 2001-03-01 | 2002-09-12 | Hitachi Medical Corporation | Appareil d'imagerie par resonance magnetique |
JP3972236B2 (ja) | 2001-03-01 | 2007-09-05 | 株式会社日立メディコ | 磁気共鳴撮像装置 |
WO2003018133A1 (fr) * | 2001-08-24 | 2003-03-06 | Mitsubishi Heavy Industries, Ltd. | Appareil de radiotherapie |
US6574500B2 (en) * | 2001-09-05 | 2003-06-03 | Medimag C.V.I. Ltd. | Imaging methods and apparatus particularly useful for two and three-dimensional angiography |
US6535574B1 (en) * | 2001-11-01 | 2003-03-18 | Siemens Medical Solutions Usa, Inc. | Patient positioning system employing surface photogrammetry and portal imaging |
US7221733B1 (en) * | 2002-01-02 | 2007-05-22 | Varian Medical Systems Technologies, Inc. | Method and apparatus for irradiating a target |
DE10210050A1 (de) * | 2002-03-07 | 2003-12-04 | Siemens Ag | Verfahren und Vorrichtung zur wiederholt gleichen Relativpositionierung eines Patienten |
US7227925B1 (en) * | 2002-10-02 | 2007-06-05 | Varian Medical Systems Technologies, Inc. | Gantry mounted stereoscopic imaging system |
US7505809B2 (en) * | 2003-01-13 | 2009-03-17 | Mediguide Ltd. | Method and system for registering a first image with a second image relative to the body of a patient |
US7171257B2 (en) * | 2003-06-11 | 2007-01-30 | Accuray Incorporated | Apparatus and method for radiosurgery |
US7204640B2 (en) * | 2003-08-29 | 2007-04-17 | Accuray, Inc. | Apparatus and method for registering 2D radiographic images with images reconstructed from 3D scan data |
US7853308B2 (en) * | 2004-02-17 | 2010-12-14 | Siemens Medical Solutions Usa, Inc. | System and method for patient positioning for radiotherapy in the presence of respiratory motion |
US7177386B2 (en) * | 2004-03-15 | 2007-02-13 | Varian Medical Systems Technologies, Inc. | Breathing synchronized computed tomography image acquisition |
US8989349B2 (en) * | 2004-09-30 | 2015-03-24 | Accuray, Inc. | Dynamic tracking of moving targets |
US8042209B2 (en) * | 2005-04-13 | 2011-10-25 | University Of Maryland | Techniques for compensating movement of a treatment target in a patient |
US8747382B2 (en) * | 2005-04-13 | 2014-06-10 | University Of Maryland, Baltimore | Techniques for compensating movement of a treatment target in a patient |
US7453976B1 (en) * | 2005-05-17 | 2008-11-18 | Fang-Fang Yin | Computerized tomography image reconstruction |
US7349522B2 (en) * | 2005-06-22 | 2008-03-25 | Board Of Trustees Of The University Of Arkansas | Dynamic radiation therapy simulation system |
US7713205B2 (en) * | 2005-06-29 | 2010-05-11 | Accuray Incorporated | Dynamic tracking of soft tissue targets with ultrasound images, without using fiducial markers |
US7453984B2 (en) * | 2006-01-19 | 2008-11-18 | Carestream Health, Inc. | Real-time target confirmation for radiation therapy |
JP4310319B2 (ja) * | 2006-03-10 | 2009-08-05 | 三菱重工業株式会社 | 放射線治療装置制御装置および放射線照射方法 |
JP4451411B2 (ja) * | 2006-03-31 | 2010-04-14 | 株式会社日立製作所 | 粒子線治療システム及びそのビームコース切替方法 |
US7711087B2 (en) * | 2006-04-07 | 2010-05-04 | Varian Medical Systems, Inc. | Patient setup using tomosynthesis techniques |
US7620144B2 (en) * | 2006-06-28 | 2009-11-17 | Accuray Incorporated | Parallel stereovision geometry in image-guided radiosurgery |
US7570738B2 (en) * | 2006-08-04 | 2009-08-04 | Siemens Medical Solutions Usa, Inc. | Four-dimensional (4D) image verification in respiratory gated radiation therapy |
WO2008043378A1 (en) * | 2006-10-11 | 2008-04-17 | Elekta Ab (Publ) | Radiographic apparatus |
US7894649B2 (en) * | 2006-11-02 | 2011-02-22 | Accuray Incorporated | Target tracking using direct target registration |
JP5121473B2 (ja) | 2007-02-01 | 2013-01-16 | キヤノン株式会社 | 放射線撮像装置、その制御方法及び放射線撮像システム |
WO2008115830A2 (en) * | 2007-03-16 | 2008-09-25 | Cyberheart, Inc. | Radiation treatment planning and delivery for moving targets in the heart |
JP5397861B2 (ja) * | 2007-12-07 | 2014-01-22 | 三菱重工業株式会社 | 放射線治療計画装置および放射線治療計画装置の作動方法 |
US7720196B2 (en) * | 2008-01-07 | 2010-05-18 | Accuray Incorporated | Target tracking using surface scanner and four-dimensional diagnostic imaging data |
US8086004B2 (en) * | 2008-01-15 | 2011-12-27 | Accuray Incorporated | Use of a single X-ray image for quality assurance of tracking |
US8295435B2 (en) * | 2008-01-16 | 2012-10-23 | Accuray Incorporated | Cardiac target tracking |
JP4444338B2 (ja) * | 2008-01-30 | 2010-03-31 | 三菱重工業株式会社 | 放射線治療装置制御装置および放射線照射方法 |
US7953205B2 (en) * | 2008-05-22 | 2011-05-31 | Vladimir Balakin | Synchronized X-ray / breathing method and apparatus used in conjunction with a charged particle cancer therapy system |
US8569717B2 (en) * | 2008-05-22 | 2013-10-29 | Vladimir Balakin | Intensity modulated three-dimensional radiation scanning method and apparatus |
US8598543B2 (en) * | 2008-05-22 | 2013-12-03 | Vladimir Balakin | Multi-axis/multi-field charged particle cancer therapy method and apparatus |
US7939809B2 (en) * | 2008-05-22 | 2011-05-10 | Vladimir Balakin | Charged particle beam extraction method and apparatus used in conjunction with a charged particle cancer therapy system |
US8519365B2 (en) * | 2008-05-22 | 2013-08-27 | Vladimir Balakin | Charged particle cancer therapy imaging method and apparatus |
US8624528B2 (en) * | 2008-05-22 | 2014-01-07 | Vladimir Balakin | Method and apparatus coordinating synchrotron acceleration periods with patient respiration periods |
US8487278B2 (en) * | 2008-05-22 | 2013-07-16 | Vladimir Yegorovich Balakin | X-ray method and apparatus used in conjunction with a charged particle cancer therapy system |
US8373143B2 (en) * | 2008-05-22 | 2013-02-12 | Vladimir Balakin | Patient immobilization and repositioning method and apparatus used in conjunction with charged particle cancer therapy |
US8399866B2 (en) * | 2008-05-22 | 2013-03-19 | Vladimir Balakin | Charged particle extraction apparatus and method of use thereof |
US8642978B2 (en) * | 2008-05-22 | 2014-02-04 | Vladimir Balakin | Charged particle cancer therapy dose distribution method and apparatus |
US8129699B2 (en) * | 2008-05-22 | 2012-03-06 | Vladimir Balakin | Multi-field charged particle cancer therapy method and apparatus coordinated with patient respiration |
EP2283713B1 (en) * | 2008-05-22 | 2018-03-28 | Vladimir Yegorovich Balakin | Multi-axis charged particle cancer therapy apparatus |
JP4531122B2 (ja) * | 2008-06-09 | 2010-08-25 | 三菱電機株式会社 | 粒子線治療装置及びこれに用いられる呼吸ナビゲーション装置 |
JP5317580B2 (ja) * | 2008-08-20 | 2013-10-16 | 株式会社東芝 | X線ct装置 |
US8170319B2 (en) * | 2008-09-05 | 2012-05-01 | Siemens Medical Solutions Usa, Inc. | Motion detection by direct imaging during radiotherapy |
WO2010059349A1 (en) * | 2008-11-21 | 2010-05-27 | Cyberheart, Inc. | Test object for the validation of tracking in the presence of motion |
US7934869B2 (en) * | 2009-06-30 | 2011-05-03 | Mitsubishi Electric Research Labs, Inc. | Positioning an object based on aligned images of the object |
US8784290B2 (en) * | 2009-07-17 | 2014-07-22 | Cyberheart, Inc. | Heart treatment kit, system, and method for radiosurgically alleviating arrhythmia |
CN102144927B (zh) * | 2010-02-10 | 2012-12-12 | 清华大学 | 基于运动补偿的ct设备和方法 |
EP2539020B1 (en) * | 2010-02-24 | 2017-03-22 | Accuray Incorporated | Gantry image guided radiotherapy system |
US9108048B2 (en) * | 2010-08-06 | 2015-08-18 | Accuray Incorporated | Systems and methods for real-time tumor tracking during radiation treatment using ultrasound imaging |
US8315356B2 (en) * | 2010-09-17 | 2012-11-20 | Accuray Incorporated | Image alignment |
US8824630B2 (en) * | 2010-10-29 | 2014-09-02 | Accuray Incorporated | Method and apparatus for treating a target's partial motion range |
US9271692B2 (en) * | 2011-04-01 | 2016-03-01 | Varian Medical Systems, Inc. | System and method for triggering an imaging process based on non-periodicity in breathing |
DE102011083854B4 (de) * | 2011-09-30 | 2019-01-10 | Siemens Healthcare Gmbh | Zeitaufgelöste Tomosynthesebildgebung |
US9370330B2 (en) * | 2013-02-08 | 2016-06-21 | Siemens Medical Solutions Usa, Inc. | Radiation field and dose control |
-
2012
- 2012-07-13 CN CN201280074691.9A patent/CN104470583B/zh active Active
- 2012-07-13 JP JP2014524565A patent/JP5916859B2/ja active Active
- 2012-07-13 WO PCT/JP2012/067891 patent/WO2014010073A1/ja active Application Filing
- 2012-07-13 EP EP12880734.4A patent/EP2873438B1/en active Active
- 2012-07-13 US US14/400,802 patent/US9873003B2/en active Active
- 2012-11-14 TW TW101142352A patent/TWI471152B/zh active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001161839A (ja) * | 1999-12-09 | 2001-06-19 | Mitsubishi Electric Corp | ビーム照射治療装置 |
JP2005111151A (ja) * | 2003-10-10 | 2005-04-28 | Shimadzu Corp | 放射線治療装置 |
JP2011500263A (ja) * | 2007-10-26 | 2011-01-06 | アキュレイ インコーポレイテッド | 内部目標物の自動相関モデリング |
JP2010063725A (ja) | 2008-09-12 | 2010-03-25 | Hitachi Ltd | 粒子線照射装置とその運転方法 |
JP2012501792A (ja) * | 2008-09-12 | 2012-01-26 | アキュレイ インコーポレイテッド | ターゲットの動きに基づくx線像形成の制御 |
JP2010154874A (ja) | 2008-12-26 | 2010-07-15 | Hitachi Ltd | 放射線治療システム |
Non-Patent Citations (1)
Title |
---|
See also references of EP2873438A4 |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016106756A (ja) * | 2014-12-04 | 2016-06-20 | 株式会社日立製作所 | 放射線治療システム |
WO2017179091A1 (ja) * | 2016-04-11 | 2017-10-19 | 三菱電機株式会社 | 粒子線治療システム |
JPWO2017179091A1 (ja) * | 2016-04-11 | 2018-09-27 | 三菱電機株式会社 | 粒子線治療システム |
Also Published As
Publication number | Publication date |
---|---|
EP2873438A1 (en) | 2015-05-20 |
EP2873438B1 (en) | 2018-10-10 |
TWI471152B (zh) | 2015-02-01 |
TW201402170A (zh) | 2014-01-16 |
CN104470583A (zh) | 2015-03-25 |
JP5916859B2 (ja) | 2016-05-11 |
JPWO2014010073A1 (ja) | 2016-06-20 |
US20150131780A1 (en) | 2015-05-14 |
EP2873438A4 (en) | 2016-03-23 |
CN104470583B (zh) | 2016-12-07 |
US9873003B2 (en) | 2018-01-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5916859B2 (ja) | X線位置決め装置及びx線位置決め方法 | |
US11273326B2 (en) | Radiotherapy system and treatment support apparatus | |
WO2014068784A1 (ja) | 三次元画像撮影システム及び粒子線治療装置 | |
JP5472757B2 (ja) | 放射線治療装置制御装置、特定部位位置計測方法、および、放射線治療装置制御装置の作動方法 | |
US9968321B2 (en) | Method and imaging system for determining a reference radiograph for a later use in radiation therapy | |
CN108883303B (zh) | 粒子束剂量评价系统、计划装置及粒子束照射系统 | |
JP6392125B2 (ja) | 標的体積に照射するための方法および照射設備 | |
US11446520B2 (en) | Radiation therapy apparatus configured to track a tracking object moving in an irradiation object | |
JP5329256B2 (ja) | ベッド位置決めシステム、放射線治療システム及びベッド位置決め方法 | |
TWI600449B (zh) | 三維畫像攝影系統及粒子線治療裝置 | |
JP5954734B2 (ja) | 動体追跡装置および放射線治療システム | |
JP2010154874A (ja) | 放射線治療システム | |
JP2016144573A (ja) | 画像処理装置および粒子線治療装置 | |
CN108883299B (zh) | 移动体跟踪装置以及放射线照射系统 | |
JP2001161839A (ja) | ビーム照射治療装置 | |
JP6465283B2 (ja) | 放射線治療システム | |
JP7362130B2 (ja) | 放射線治療装置 | |
US20220401758A1 (en) | Patient anatomical structure change detection method, patient anatomical structure change detection device, and computer program | |
WO2010098215A1 (ja) | ターゲット検出装置および放射線治療装置 | |
JP7264389B2 (ja) | 医用装置、医用装置の制御方法およびプログラム | |
JP6582128B2 (ja) | 粒子線治療システム | |
JP2019072324A (ja) | 放射線撮像装置および放射線治療装置 | |
JP2019013450A (ja) | 放射線撮影装置および放射線画像検出方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12880734 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2014524565 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14400802 Country of ref document: US |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2012880734 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |