WO2014008818A1 - 时分双工系统中的上行数据发送及接收方法和设备 - Google Patents

时分双工系统中的上行数据发送及接收方法和设备 Download PDF

Info

Publication number
WO2014008818A1
WO2014008818A1 PCT/CN2013/078431 CN2013078431W WO2014008818A1 WO 2014008818 A1 WO2014008818 A1 WO 2014008818A1 CN 2013078431 W CN2013078431 W CN 2013078431W WO 2014008818 A1 WO2014008818 A1 WO 2014008818A1
Authority
WO
WIPO (PCT)
Prior art keywords
uplink
subframe
uplink subframes
terminal
base station
Prior art date
Application number
PCT/CN2013/078431
Other languages
English (en)
French (fr)
Inventor
徐婧
拉盖施
潘学明
Original Assignee
电信科学技术研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 电信科学技术研究院 filed Critical 电信科学技术研究院
Publication of WO2014008818A1 publication Critical patent/WO2014008818A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1812Hybrid protocols; Hybrid automatic repeat request [HARQ]
    • H04L1/1819Hybrid protocols; Hybrid automatic repeat request [HARQ] with retransmission of additional or different redundancy
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/1887Scheduling and prioritising arrangements

Definitions

  • the present invention relates to the field of wireless communications, and in particular, to an uplink data transmission and reception method and apparatus in a time division duplex system.
  • LTE Long Term Evolution
  • UE User Equipment
  • TTI Transmission Time Interval
  • the LTE system uses the bundling technology and expects at least the performance of High Speed Uplink Packet Access (HSUPA).
  • HSUPA High Speed Uplink Packet Access
  • the so-called TTI bundling technology that is, the UE transmits a plurality of redundancy versions (RVs) of the same data transmission block (TB) in the channel coding in a plurality of subframes according to a scheduling indication of the base station, such that , can improve the transmission gain of the uplink data, thereby enhancing the coverage effect of the uplink signal.
  • RVs redundancy versions
  • TB data transmission block
  • the multiple uplink subframes are referred to as a bundle of bundled subframes.
  • TTI bundling technology is introduced for three uplink and downlink configurations, and a unified bundling size is used, that is, an uplink sub-inclusion included in a bundle. The number of frames. Other uplink and downlink configurations do not support TTI bundling technology.
  • the number of consecutive uplink subframes is smaller than the bundle size, so multiple redundancy versions (RVs) of the data packets are transmitted in non-contiguous uplink subframes.
  • RVs redundancy versions
  • the number of uplink HARQ processes is 7 in non-bundling and 3 in the uplink TQ bundling.
  • the number of uplink HARQ processes is 4 when non-bundling, and 2 when the TTI bundling is configured.
  • the number of uplink HARQ processes is 6 in non-bundling and 3 in the uplink TAR bundling.
  • uplink and downlink configurations ie, uplink and downlink configurations 0, 1, and 6
  • uplink and downlink configurations ie, uplink and downlink configurations 0, 1, and 6
  • TTI bundling ie, uplink and downlink configurations 0, 1, and 6
  • other uplink and downlink configurations cannot support TTI bundling, resulting in limited uplink coverage.
  • the three uplink and downlink configurations that support the TTI bundling use the unified bundling size, and the number of uplink subframes for each uplink and downlink configuration is not optimized, so that the uplink subframe utilization is less than 100%, resulting in uplink coverage. Impaired; As shown in Figure 1, in the uplink and downlink configuration 0, even if the maximum number of processes (3) is configured, there are still two uplink subframes that are idle and cannot be used for TTI bundling transmission.
  • Semi-persistent scheduling is a periodic scheduling triggered by higher layers, which can reduce the overhead of uplink scheduling signaling, especially for small packet scenarios (such as VoIP). business).
  • the scheduling period consists of a series of values ⁇ sflO, s£20, sfi2, sf40, sf64, sffi0, sfl28, sfl60, sfi20, sf640 ⁇ in units of sub-frames (sf). Which value is actually used by the higher layer signaling. But no matter which value you choose, it cannot be used in conjunction with the TTI bundling of the current TDD system.
  • the scheduling period is 20ms, and the uplink and downlink configuration is used.
  • SPS SPS
  • the first VoIP packet is scheduled for transmission on the third subframe (subframe 2) of radio frame N
  • the second VoIP packet is in the third subframe of subframe N+2 (subframe 2) ) Scheduled transfers.
  • the third subframe (subframe 2) of subframe N+2 is used for retransmission of the first VoIP packet.
  • the first VoIP packet retransmitted and the second VoIP packet will collide. Therefore, in order to avoid conflicts, the current TDD system TTI bundling does not support SPS.
  • the same problem exists in the uplink and downlink configurations 0 and 6.
  • the Bundling subframe is a continuous uplink subframe, and the time diversity gain is limited.
  • the embodiments of the present invention provide an uplink data transmission and reception method and device in a time division duplex system, which are used to improve the utilization of uplink subframes to enhance uplink coverage.
  • An uplink data transmission method in a time division duplex TDD system comprising:
  • the terminal selects the N uplink subframes to be bound, where N is the number of uplink subframes included in one radio frame; and the terminal sends multiple redundancy versions of the first data transport block TB on the N uplink subframes.
  • An uplink data receiving method in a time division duplex TDD system comprising:
  • the base station selects the N uplink subframes to be bound, where N is the number of uplink subframes included in one radio frame; and the base station receives multiple redundancy versions of the first data transmission block TB on the N uplink subframes.
  • a terminal comprising:
  • a subframe selection unit configured to select the N uplink subframes to be bound, where N is the number of uplink subframes included in one radio frame;
  • an uplink transmission unit configured to send, in the N uplink subframes, multiple redundancy versions of the first data transmission block TB.
  • a base station the base station comprising:
  • a subframe selection unit configured to select the N uplink subframes to be bound, where N is the number of uplink subframes included in one radio frame;
  • FIG. 1 is a schematic diagram of a HARQ process of TDD uplink and downlink configuration 0 in the prior art;
  • FIG. 2 is a schematic diagram of a HARQ process of TDD uplink and downlink configuration 1 in the prior art
  • FIG. 3 is a schematic diagram of a HARQ process of the TDD uplink and downlink configuration 6 in the prior art
  • FIG. 4 is a schematic flowchart of a method according to an embodiment of the present invention.
  • FIG. 5 is a schematic flowchart of another method according to an embodiment of the present disclosure.
  • FIG. 6A is a schematic diagram of a HARQ process according to Embodiment 1 of the present invention.
  • FIG. 6B is a schematic diagram of a HARQ process according to Embodiment 2 of the present invention.
  • 6C is a schematic diagram of a HARQ process according to Embodiment 3 of the present invention.
  • 6D is a schematic diagram of a HARQ process according to Embodiment 4 of the present invention.
  • 6E is a schematic diagram of a HARQ process according to Embodiment 5 of the present invention.
  • 6F is a schematic diagram of a HARQ process according to Embodiment 6 of the present invention.
  • 6G is a schematic diagram of a HARQ process according to Embodiment 7 of the present invention.
  • FIG. 7 is a schematic structural diagram of a device according to an embodiment of the present disclosure.
  • FIG. 8 is a schematic structural diagram of another device according to an embodiment of the present invention.
  • the embodiments of the present invention provide an uplink data transmission and reception method in a TDD system, in order to improve uplink device utilization and enhance uplink coverage.
  • the terminal sends multiple redundancy versions of the TB in the bundled N uplink subframes, where N is the number of uplink subframes included in one radio frame; and the base station receives the terminal in the N uplink subframes. Each redundant version of the transmitted TB.
  • the uplink data sending method in the TDD system of the embodiment of the present invention includes the following steps: Step 40: The terminal selects the N uplink subframes to be bound, where N is the number of uplink subframes included in one radio frame; The value of N ensures that the uplink resource utilization reaches 100%.
  • Step 41 The terminal sends multiple redundancy versions (RVs) of the first TB on the selected N uplink subframes.
  • RVs redundancy versions
  • N may be determined in the uplink subframe and bound in advance.
  • the terminal may select the N uplink subframes to be transmitted, and the base station is receiving.
  • the terminal sends multiple redundancy versions of the first TB, the N uplink subframes of the binding are also selected for reception.
  • the N uplink subframes selected in step 40 are N consecutive uplink subframes or N non-contiguous uplink subframes.
  • the N consecutive uplink subframes indicate that there are no other uplink subframes between any two adjacent uplink subframes of the N uplink subframes, and the N discontinuous uplink subframes refer to the N subframes.
  • the time diversity gain can be further obtained.
  • the N uplink subframes are N non-contiguous uplink subframes
  • the N non-contiguous uplink subframes are necessarily located in at least two radio frames, and are adjacent in the same radio frame.
  • the uplink subframes ie, the uplink subframes belonging to the N uplink subframes
  • Subframes can be bound in radio frame n+1.
  • the terminal after the terminal sends multiple redundancy versions of the first TB on the N uplink subframes, the terminal only receives the acknowledgement/negative acknowledgement (ACK/NACK) indication sent by the network side on the downlink subframe i. Determining whether to retransmit multiple redundancy versions of the first TB according to the ACK/NACK indication, re-selecting the N uplink subframes to be re-selected, and re-selecting the N uplink sub-frames when determining that retransmission is required. Retransmitting multiple redundant versions of the first TB on the frame; or
  • the terminal receives the ACK/NACK indication sent by the network side on the downlink subframe i, and receives the uplink grant grant (UL grant) signaling sent by the network side in the downlink subframe n, and then reselects the N uplink subframes to be bound. And retransmitting or transmitting multiple redundancy versions of the second TB on the reselected N uplink subframes according to the received ACK/NACK indication and the UL grant signaling.
  • UL grant uplink grant
  • the ACK/NACK indication is an ACK indication
  • the UL grant signaling indicates that the new uplink data is transmitted
  • multiple redundancy versions of the second TB are transmitted on the reselected N uplink subframes
  • the indication is a NACK indication
  • the UL grant signaling does not indicate that the new uplink data is transmitted
  • the multiple redundancy versions of the first TB are retransmitted on the reselected N uplink subframes.
  • the ACK/NACK indication may be automatically requested by a physical hybrid retransmission indication channel (PHICH) transmission, and the UL grant signaling may be transmitted through downlink control information (DCI) of a physical downlink control channel (PDCCH).
  • PHICH physical hybrid retransmission indication channel
  • DCI downlink control information
  • the timing relationship between the downlink subframe i and the last one of the N uplink subframes selected in step 40 complies with the transmission feedback in the uplink hybrid automatic repeat request (HARQ ) specified in the LTE system protocol.
  • HARQ uplink hybrid automatic repeat request
  • the first subframe of the N uplink subframes selected in step 40 is the a subframe in the radio frame 1
  • the first one of the reselected N uplink subframes The frame is the a-th subframe in the radio frame 1+3.
  • the timing relationship between the downlink subframe n and the first subframe of the reselected N uplink subframes complies with the scheduling transmission timing relationship in the uplink HARQ specified in the LTE system protocol.
  • the terminal receives the UL grant signaling sent by the network side on the downlink subframe X; the timing between the downlink subframe X and the first subframe of the N uplink subframes selected in step 40.
  • the relationship also complies with the scheduling transmission timing relationship in the uplink HARQ specified in the LTE system protocol.
  • the number of the first uplink subframe in the reselected N uplink subframes is n+k, where k is an integer greater than 0, and the value of k can be seen in Table 2 below;
  • MSB Most Significant Bit
  • the number of the first uplink subframe in the reselected N uplink subframes is n+k;
  • LSB least significant bit
  • the value of 1 may be determined according to the following Table 3.
  • the value of 1 may be determined according to Table 4 below determines.
  • the redundancy version of the first TB is cyclically transmitted in the order of version number 0, 2, 3, and 1.
  • the uplink data receiving method in the TDD system includes the following steps: Step 50: The base station selects N uplink subframes to be bound, where N is the number of uplink subframes included in one radio frame. Step 51: The base station receives multiple redundancy versions of the first TB on the N uplink subframes. Specifically, the N uplink subframes selected in step 50 are N consecutive uplink subframes or N non-contiguous uplink subframes.
  • an uplink subframe is separated between adjacent and bound uplink subframes in the same radio frame; and, in two The subframe number of the bonded uplink subframe in the adjacent radio frame is not repeated.
  • the base station After the base station receives the multiple redundancy versions of the first TB on the N uplink subframes, the base station sends the ACK/NACK indication to the terminal only after the downlink subframe i, and determines whether the terminal is determined according to the ACK/NACK indication. Re-transmission of multiple redundancy versions of the first TB is required. When it is determined that retransmission is required, the N uplink subframes that are bound are reselected, and the retransmission of the terminal is received on the reselected N uplink subframes. Multiple redundancy versions of one TB; or,
  • the base station sends an ACK/NACK indication to the terminal on the downlink subframe i, and after transmitting the UL grant signaling to the terminal in the downlink subframe n, re-selects the N uplink subframes to be bound, and reselects the N uplink subframes.
  • the frame receives a plurality of redundancy versions of the first TB retransmitted by the terminal or a plurality of redundancy versions of the second TB transmitted by the terminal.
  • the timing relationship between the downlink subframe i and the last subframe of the N uplink subframes complies with the transmission feedback timing relationship in the uplink HARQ specified in the LTE system protocol, as shown in Table 1 above.
  • the first subframe of the N uplink subframes selected in step 50 is the a subframe in the radio frame 1
  • the first subframe of the reselected N uplink subframes is The a-th subframe in the radio frame 1+3.
  • the timing relationship between the downlink subframe n and the first subframe of the reselected N uplink subframes complies with the scheduling transmission timing relationship in the uplink HARQ specified in the LTE system protocol.
  • the base station sends UL grant signaling to the terminal on the downlink subframe X;
  • the timing relationship between the downlink subframe X and the first subframe of the N uplink subframes selected in step 50 complies with the scheduling transmission timing relationship in the uplink HARQ specified in the LTE system protocol.
  • the value of 1 may be determined according to the above table 2.
  • the value of 1 may be determined according to Determined in Table 3 above.
  • the number of the first uplink subframe in the reselected N uplink subframes is n+k, where k is an integer greater than 0, and the value of k can be seen in Table 4; If the MSB information in the UL grant signaling is 1 or the IPHICH is 0, the number of the first uplink subframe in the reselected N uplink subframes is n+k; If the LSB information is 1 or the IPHICH is 1, the number of the first uplink subframe in the reselected N uplink subframes is n+7.
  • Embodiment 1 40 pairs of TDD uplink and downlink configuration 0;
  • Embodiment 1.1 Distributed (that is, N uplink subframes are N non-contiguous uplink subframes);
  • Step 1 The base station receives RV0-RV2-RV3-RV1-RV0- of the same TB on the 4th, 5th, and 9th uplink subframes in the radio frame n and the 4th, 8th, and 10th uplink subframes in the radio frame n+1. RV2.
  • Step 2 The base station sends the PHICH information (ie, the ACK/NACK indication) on the sixth subframe in the radio frame n+2. Further, the base station may further send the PDCCH DCI formatO in the sixth subframe in the radio frame n+2. which is
  • the base station can also use the high-level signaling to semi-continuously schedule uplink data.
  • Step 3 The base station receives RV0-RV2-RV3-RV1- of the retransmission TB on the 4th, 5th, and 9th uplink subframes in the radio frame n+3 and the 4th, 8th, and 10th uplink subframes in the radio frame n+4.
  • Step 1 The UE sends RV0-RV2-RV3-RV1-RV0- of the same TB on the 3rd, 5th, and 9th uplink subframes in the radio frame n and the 4th, 8th, and 10th uplink subframes in the radio frame n+1. RV2.
  • Step 2 The UE detects the PHICH information on the sixth subframe in the radio frame n+2.
  • Step 3 The UE retransmits the RV0-RV2- of the TB on the 4th, 8th, and 10th uplink subframes in the 3rd, 5th, and 9th radio frames n+3 and the 4th, 8th, and 10th uplink subframes in the radio frame n+4 according to the detected information.
  • RV3-RV1-RV0-RV2 or RV3-RV1-RV0-RV2-RV3-RV1, or RV0-RV2-RV3-RV1-RV0-RV2 transmitting a new TB.
  • Embodiment 2.1 Centralized (that is, N uplink subframes are N consecutive uplink subframes);
  • Step 1 The base station receives the same TB on the 3rd, 4th, 5th, 8th, 9th, and 10th uplink subframes in the radio frame n.
  • Step 2 The base station sends PHICH information in the sixth subframe in the radio frame n+1;
  • Step 3 The base station receives the RV0-RV2-RV3-RV1-RV0-RV2 or RV3-RV1- retransmitted TB on the 3rd, 4th, 5th, 8th, 9th, and 10th uplink subframes in the radio frame n+3.
  • Step 1 The UE transmits the same TB RV0-RV2-RV3 - RV1-RV0-RV2 on the 3rd, 4th, 5th, 8th, 9th, and 10th uplink subframes in the radio frame n.
  • Step 2 The UE detects PHICH information on the sixth subframe in the radio frame n+1;
  • Step 3 The UE retransmits the RV0-RV2-RV3-RV1-RV0-RV2 of the TB on the 3rd, 4th, 5th, 8th, 9th, and 10th uplink subframes in the radio frame n+3 according to the detected information.
  • Embodiment 2 40 pairs of TDD uplink and downlink configuration 1;
  • Embodiment 1.2 Distributed
  • N 4, and its transmission pattern is shown in Fig. 6B.
  • Step 1 The base station receives the same TB RV0-RV2-RV3-RV1 on the 4th and 8th uplink subframes in the radio frame n and the 4th and 9th uplink subframes.
  • Step 2 The base station sends PHICH information in the fifth subframe in the radio frame n+2;
  • the base station may also send the PDCCH DCI formatO in the seventh subframe in the radio frame n+2; the base station may also use the high layer signaling to semi-persistently schedule the uplink data.
  • Step 3 The base station receives the RV0-RV2-RV3-RV1 of the retransmitted TB, or the new TB on the 4th and 8th uplink subframes in the radio frame n+3 and the 4th and 9th uplink subframes in the radio frame n+4. RV0-RV2-RV3-RV1.
  • Step 1 The UE transmits the same TB RV0-RV2-RV3-RV1 on the 4th and 8th uplink subframes in the radio frame n and the 4th and 9th uplink subframes in the radio frame n+1.
  • Step 2 The UE detects the PHICH information on the fifth subframe in the radio frame n+2.
  • the UE also detects the PDCCH DCI formatO on the seventh subframe in the radio frame n+2;
  • Step 3 The UE retransmits the RV0-RV2-RV3-RV1 of the TB on the 4th and 8th uplink subframes in the 2nd and 8th radio frames n+3 and the 4th and 9th uplink subframes in the radio frame n+4 according to the detected PHICH information. , or transfer a new TB of RV0-RV2-RV3-RV1.
  • Example 2.2 centralized
  • N 4, and its transmission pattern is shown in Fig. 6B.
  • Step 1 The base station receives the same data RV0-RV2-RV3-RVl on the 3rd, 4th, 8th, and 9th uplink subframes in the radio frame n.
  • Step 2 The base station sends the PHICH information in the fifth subframe in the radio frame n+1;
  • the base station may also send the PDCCH DCI formatO in the seventh subframe in the radio frame n+2; the base station may also use the high layer signaling to semi-persistently schedule the uplink data.
  • Step 3 The base station receives the RV0-RV2-RV3-RV1 of the retransmitted TB or the RV0-RV2-RV3-RV1 of the new TB on the 3rd, 4th, 8th, and 9th uplink subframes in the radio frame n+3. .
  • Step 1 The UE sends the same data RV0-RV2-RV3-RVl on the 3rd, 4th, 8th, and 9th uplink subframes in the radio frame n.
  • Step 2 The UE detects PHICH information on the fifth subframe in the radio frame n+1;
  • the UE also detects the PDCCH DCI formatO on the seventh subframe in the radio frame n+2;
  • Step 3 The UE retransmits the RV0-RV2-RV3-RV1 of the TB on the 3rd, 4th, 8th, and 9th uplink subframes in the radio frame n+3 according to the detected information, or transmits the RV0 of the new TB. RV2-RV3-RV1.
  • Embodiment 3 For TDD uplink and downlink configuration 2;
  • Embodiment 1.3 Distributed
  • Step 1 The base station receives the RV0-RV2 of the same TB on the third uplink subframe in the radio frame n and the eighth uplink subframe in the radio frame n+1.
  • Step 2 The base station sends PHICH information in the fourth subframe in the radio frame n+2;
  • the base station may also send the PDCCH DCI format0 in the ninth subframe of the radio frame n+2; the base station may also use the high layer signaling to semi-persistently schedule the uplink data.
  • Step 3 The base station receives the RV0-RV2 or RV3-RV1 of the retransmission TB or the RV0-RV2 of the new TB on the 8th uplink subframe in the 3rd and the radio frame n+4 in the radio frame n+3. .
  • Step 1 The UE transmits the RV0-RV2 of the same TB on the third uplink subframe in the radio frame n and the eighth uplink subframe in the radio frame n+1.
  • Step 2 The UE detects PHICH information on the fourth subframe in the radio frame n+2.
  • the UE also detects the PDCCH DCI formatO on the ninth subframe in the radio frame n+2;
  • Step 3 The UE retransmits the RV0-RV2 or RV3-RV1 of the TB in the third uplink subframe in the radio frame n+3 and the eighth uplink subframe in the radio frame n+4 according to the detected information, or transmits a new one.
  • Example 2.3 centralized
  • Step 1 The base station receives the RV0-RV2 of the same TB on the 3rd and 8th uplink subframes in the radio frame n.
  • Step 2 The base station sends the PHICH information in the fourth subframe in the radio frame n+1;
  • the base station may also send the PDCCH DCI format0 in the ninth subframe of the radio frame n+2; the base station may also use the high layer signaling to semi-persistently schedule the uplink data.
  • Step 3 The base station receives the RV0-RV2 of the retransmitted TB on the 3rd and 8th uplink subframes in the radio frame n+3 or
  • RV3-RV1 RV3-RV1
  • new TB RV0-RV2 RV3-RV2
  • Step 1 The UE sends the RV0-RV2 of the same TB on the 3rd and 8th uplink subframes in the radio frame n.
  • Step 2 The UE detects PHICH information in the fourth subframe of the radio frame n+1;
  • the UE also detects the PDCCH DCI formatO on the ninth subframe in the radio frame n+2;
  • Step 3 The UE retransmits the RV0-RV2 or RV3-RV1 of the TB or the RV0-RV2 of the new TB on the 3rd and 8th uplink subframes in the radio frame n+3 according to the detected information.
  • Embodiment 4 For TDD uplink and downlink configuration 3;
  • Embodiment 1.4 Distributed
  • Step 1 The base station receives RV0-RV2-RV3 of the same TB on the 3rd, 5th, and 4th uplink subframes in the radio frame n+1.
  • Step 2 The base station sends PHICH information in the 10th subframe in the radio frame n+1;
  • the base station may also send the PDCCH DCI format0 in the ninth subframe of the radio frame n+2; the base station may also use the high layer signaling to semi-persistently schedule the uplink data.
  • Step 3 The base station receives RV0-RV2-RV3 or RV1-RV0-RV2, or new, of the retransmitted TB on the 3rd, 5th in the radio frame n+3 and the 4th uplink subframe in the radio frame n+4. TB of RV0-RV2-RV3.
  • Step 1 The UE sends the same one on the third uplink in the radio frame n and the fourth uplink subframe in the radio frame n+1.
  • Step 2 The UE detects PHICH information in the 10th subframe in the radio frame n+1;
  • the UE also detects the PDCCH DCI formatO on the ninth subframe in the radio frame n+2;
  • Step 3 The UE retransmits TB RV0-RV2-RV3 or RV1-RV0- in the third uplink subframe in the radio frame n+3 and the fourth uplink subframe in the radio frame n+4 according to the detected information. RV2, or RV0-RV2-RV3 that transmits a new TB.
  • Example 2.4 centralized
  • Step 1 The base station receives the RV0-RV2-RV3 of the same TB on the 3rd, 4th, and 5th uplink subframes in the radio frame n.
  • Step 2 The base station sends PHICH information in the first subframe in the radio frame n+1;
  • the base station may also send the PDCCH DCI format0 in the ninth subframe of the radio frame n+2; the base station may also use the high layer signaling to semi-persistently schedule the uplink data.
  • Step 3 The base station receives RV0-RV2-RV3 or RV1-RV0-RV2 of the retransmitted TB, or RV0-RV2-RV3 of the new TB on the 3rd, 4th, and 5th uplink subframes in the radio frame n+3. .
  • Step 1 The UE transmits RV0-RV2-RV3 of the same TB on the 3rd, 4th, and 5th uplink subframes in the radio frame n.
  • Step 2 The UE detects PHICH information in the first subframe of the radio frame n+1;
  • the UE also detects the PDCCH DCI formatO on the ninth subframe in the radio frame n+2;
  • Step 3 The UE retransmits the RV0-RV2-RV3 or the RV1-RV0-RV2 of the TB on the 3rd, 4th, and 5th uplink subframes in the radio frame n+3 according to the detected information, or transmits a new TB.
  • Embodiment 5 For TDD uplink and downlink configuration 4;
  • Embodiment 1.5 Distributed
  • Step 1 The base station receives the RV0-RV2 of the same TB on the third uplink subframe in the radio frame n and the fourth uplink subframe in the radio frame n+1.
  • Step 2 The base station sends PHICH information in the 10th subframe in the radio frame n+1;
  • the base station may also send the PDCCH DCI format0 in the ninth subframe of the radio frame n+2; the base station may also use the high layer signaling to semi-persistently schedule the uplink data.
  • Step 3 The base station receives the RV0-RV2 or RV3-RV1 of the retransmission TB or the RV0-RV2 of the new TB on the fourth uplink subframe in the radio frame n+3 and the fourth uplink subframe in the radio frame n+4. .
  • Step 1 The UE transmits the RV0-RV2 of the same TB on the third uplink subframe in the radio frame n and the fourth uplink subframe in the radio frame n+1.
  • Step 2 The UE detects PHICH information in the 10th subframe in the radio frame n+1;
  • the UE also detects the PDCCH DCI formatO on the ninth subframe in the radio frame n+2;
  • Step 3 The UE retransmits the RV0-RV2 or RV3-RV1 of the TB in the third uplink subframe in the radio frame n+3 and the fourth uplink subframe in the radio frame n+4 according to the detected information, or transmits a new one.
  • Example 2.5 centralized
  • Step 1 The base station receives the RV0-RV2 of the same TB on the 3rd and 4th uplink subframes in the radio frame n.
  • Step 2 The base station sends PHICH information in the 10th subframe in the radio frame n;
  • the base station may also send the PDCCH DCI format0 in the ninth subframe of the radio frame n+2; the base station may also use the high layer signaling to semi-persistently schedule the uplink data.
  • Step 3 The base station receives the RV0-RV2 of the retransmitted TB on the 3rd and 4th uplink subframes in the radio frame n+3 or
  • RV3-RV1, or RV0-RV2 of the new TB are examples of RV3-RV1, or RV0-RV2 of the new TB.
  • Step 1 The UE sends the RV0-RV2 of the same TB on the 3rd and 4th uplink subframes in the radio frame n.
  • Step 2 The UE detects PHICH information in the 10th subframe in the radio frame n.
  • the UE also detects the PDCCH DCI formatO on the ninth subframe in the radio frame n+2;
  • Step 3 The UE retransmits the RV0-RV2 or RV3-RV1 of the TB or the RV0-RV2 of the new TB on the 3rd and 4th uplink subframes in the radio frame n+3 according to the detected information.
  • Embodiment 6 For the uplink and downlink configuration of the TDD 5;
  • Embodiment 1.6 Distributed
  • N l
  • its transmission pattern is shown in Fig. 6F.
  • Step 1 The base station receives the RV0 of the same TB on the third uplink subframe in the radio frame n.
  • Step 2 The base station sends PHICH information in the ninth subframe of the radio frame n;
  • the base station may also send the PDCCH DCI format0 in the ninth subframe of the radio frame n+2; the base station may also use the high layer signaling to semi-persistently schedule the uplink data.
  • Step 3 The base station receives the RV0 or RV2 of the retransmitted TB or the RV0 of the new TB on the third uplink subframe in the radio frame n+3.
  • Step 1 The UE sends the RV0 of the same TB on the third uplink subframe in the radio frame n.
  • Step 2 The UE detects PHICH information on the ninth subframe of the radio frame n;
  • the UE also detects the PDCCH DCI formatO on the ninth subframe in the radio frame n+2;
  • Step 3 The UE retransmits the RV0 or RV2 of the TB in the third uplink subframe in the radio frame n+3 according to the detected information, or transmits the RV0 of the new TB.
  • Example 2.6 centralized
  • N l
  • its transmission pattern is shown in Fig. 6F.
  • Step 1 The base station receives the RV0 of the same TB on the third uplink subframe in the radio frame n.
  • Step 2 The base station sends the PHICH information on the ninth subframe in the radio frame n. Further, the base station may also send the PDCCH DCI format O in the ninth subframe of the radio frame n+2; the base station may also use the high layer signaling to semi-continuously schedule the uplink data.
  • Step 3 The base station receives the RV0 or RV2 of the retransmitted TB or the RV0 of the new TB on the third uplink subframe in the radio frame n+3.
  • Step 1 The UE sends the RV0 of the same TB on the third uplink subframe in the radio frame n.
  • Step 2 The UE detects PHICH information in the ninth subframe of the radio frame n;
  • the UE also detects the PDCCH DCI formatO on the ninth subframe in the radio frame n+2;
  • Step 3 The UE retransmits the RV0 or RV2 of the TB in the third uplink subframe in the radio frame n+3 according to the detected information, or transmits the RV0 of the new TB.
  • Embodiment 7 TDD uplink and downlink configuration 6;
  • Embodiment 1.7 Distributed
  • Step 1 The base station receives the same TB RV0-RV2-RV3-RV1-RV0 on the 4th, 8th, and 9th uplink subframes in the radio frame n.
  • Step 2 The base station sends PHICH information in the second subframe in the radio frame n+2;
  • the base station may also send the PDCCH DCI formatO in the sixth subframe in the radio frame n+2; the base station may also use the high layer signaling to semi-persistently schedule the uplink data.
  • Step 3 The base station receives the retransmission on the 4th, 8th, and 8th uplink subframes in the 3rd, 5th, and 9th radio frames n+1.
  • Step 1 The UE transmits the same TB RV0-RV2-RV3-RV1-RV0 on the 4th, 8th, and 9th uplink subframes in the radio frame n.
  • Step 2 The UE detects PHICH information in the second subframe in the radio frame n+2.
  • the UE also detects the PDCCH DCI formatO on the sixth subframe in the radio frame n+2;
  • Step 3 The UE retransmits the RV0-RV2-RV3-RV1 of the TB on the 4th, 5th, and 9th uplink subframes in the radio frame n and the 4th and 8th uplink subframes in the radio frame n+1 according to the detected information.
  • RV0 or RV2-RV3-RV1-RV0-RV2, or RV0-RV2-RV3-RV1-RV0 transmitting a new TB.
  • Step 1 The base station receives RV0-RV2-RV3-RV1-RV0 of the same TB on the 3rd, 4th, 5th, 8th, and 9th uplink subframes in the radio frame n.
  • Step 2 The base station sends PHICH information in the sixth subframe in the radio frame n+1;
  • the base station may also send the PDCCH DCI formatO in the sixth subframe in the radio frame n+2; the base station may also use the high layer signaling to semi-persistently schedule the uplink data.
  • Step 3 The base station receives RV0-RV2-RV3-RV1-RV0 or RV2-RV3-RV1-RV0- of the retransmitted TB on the 3rd, 4th, 5th, 8th, and 9th uplink subframes in the radio frame n+3. RV2, or new TB of RV0-RV2-RV3 -RV1-RV0.
  • Step 1 The UE sends the same TB on the 3rd, 4th, 5th, 8th, and 9th uplink subframes in the radio frame n.
  • RV0-RV2-RV3 -RV1-RV0 RV0-RV2-RV3 -RV1-RV0.
  • Step 2 The UE detects PHICH information on the sixth subframe in the radio frame n+1;
  • the UE also detects the PDCCH DCI formatO on the sixth subframe in the radio frame n+2;
  • Step 3 The UE retransmits TB RV0-RV2-RV3-RV1-RV0 or RV2-RV3-RV1 on the 3rd, 4th, 5th, 8th, and 9th uplink subframes in the radio frame n+3 according to the detected. -RV0-RV2, or transfer new TB's RV0-RV2-RV3 -RV1-RV0.
  • an embodiment of the present invention provides a terminal, where the terminal includes:
  • the subframe selecting unit 70 is configured to select the N uplink subframes to be bound, where N is the number of uplink subframes included in one radio frame;
  • the uplink transmission unit 71 is configured to send multiple redundant versions of the first data transmission block TB on the N uplink subframes.
  • the N uplink subframes are N consecutive uplink subframes or N non-contiguous uplink subframes. Further, when the N uplink subframes are N non-contiguous uplink subframes, an uplink subframe is separated between adjacent and bound uplink subframes in the same radio frame;
  • the subframe number of the bonded uplink subframe in two adjacent radio frames is not repeated.
  • the uplink transmission unit 71 is further configured to:
  • the ACK/NACK indication and the UL grant signaling retransmit or transmit multiple redundancy versions of the second TB on the reselected N uplink subframes.
  • the timing relationship between the downlink subframe i and the last one of the N uplink subframes complies with the transmission feedback timing in the uplink hybrid automatic repeat request HARQ specified in the Long Term Evolution (LTE) system protocol. relationship.
  • LTE Long Term Evolution
  • the first subframe of the selected N uplink subframes is the a subframe in the radio frame 1
  • the first subframe of the reselected N uplink subframes is wireless.
  • the timing relationship between the downlink subframe n and the first one of the reselected N uplink subframes complies with the uplink hybrid automatic repeat request HARQ specified in the Long Term Evolution (LTE) system protocol Scheduling transmission timing relationships.
  • LTE Long Term Evolution
  • the uplink transmission unit 71 when transmitting the multiple redundancy versions of the first TB, the uplink transmission unit 71 cyclically transmits the redundancy version of the first TB in the order of the version number 0, 2, 3, 1.
  • the terminal further includes: a downlink receiving unit 72, configured to receive, on the downlink subframe X, UL grant signaling sent by the network side before selecting the bound N uplinks; the downlink subframe x and the selected downlink
  • a downlink receiving unit 72 configured to receive, on the downlink subframe X, UL grant signaling sent by the network side before selecting the bound N uplinks; the downlink subframe x and the selected downlink
  • the timing relationship between the first subframes of the N uplink subframes complies with the scheduling transmission timing relationship in the uplink HARQ specified in the LTE system protocol.
  • an embodiment of the present invention provides a base station, where the base station includes:
  • the subframe selection unit 80 is configured to select the N uplink subframes to be bound, where N is the number of uplink subframes included in one radio frame;
  • the uplink receiving unit 81 is configured to receive multiple redundant versions of the first data transmission block TB on the N uplink subframes.
  • the N uplink subframes are N consecutive uplink subframes or N non-contiguous uplink subframes. Further, when the N uplink subframes are N non-contiguous uplink subframes, an uplink subframe is separated between adjacent and bound uplink subframes in the same radio frame;
  • the subframe number of the bonded uplink subframe in two adjacent radio frames is not repeated.
  • the uplink receiving unit 81 is further configured to:
  • the terminal After receiving the multiple redundancy versions of the first TB on the N uplink subframes, after sending the acknowledgement/negative acknowledgement ACK/NACK indication to the terminal on the downlink subframe i, determining according to the ACK/NACK indication Whether the terminal needs to retransmit the multiple redundancy versions of the first TB, and when it is determined that retransmission is required, re-select the N uplink subframes to be bound, and receive the terminal on the reselected N uplink subframes. Retransmitting multiple redundant versions of the first TB; or
  • the N uplink subframes that are bound are reselected, and the N selected subframes are reselected.
  • the timing relationship between the downlink subframe i and the last one of the N uplink subframes complies with the transmission feedback timing in the uplink hybrid automatic repeat request HARQ specified in the Long Term Evolution (LTE) system protocol. relationship.
  • the first subframe of the selected N uplink subframes is the a subframe in the radio frame 1
  • the first subframe of the reselected N uplink subframes is wireless.
  • the timing relationship between the downlink subframe n and the first one of the reselected N uplink subframes complies with the uplink hybrid automatic repeat request HARQ specified in the Long Term Evolution (LTE) system protocol Scheduling transmission timing relationships.
  • LTE Long Term Evolution
  • the uplink receiving unit 81 when receiving the multiple redundancy versions of the first TB, the uplink receiving unit 81: according to the version number is 0,
  • the sequence of 2, 3, 1 cyclically receives the redundancy version of the first TB.
  • the base station further includes: a downlink transmission unit 82, configured to send UL grant signaling to the terminal on the downlink subframe X before selecting the bound N uplinks; the downlink subframe x and the selected N
  • a downlink transmission unit 82 configured to send UL grant signaling to the terminal on the downlink subframe X before selecting the bound N uplinks; the downlink subframe x and the selected N
  • the timing relationship between the first subframes in the uplink subframe complies with the scheduling transmission timing relationship in the uplink HARQ specified in the LTE system protocol.
  • the beneficial effects of the present invention include:
  • the terminal sends multiple redundancy versions of the TB in the bundled N uplink subframes, where N is the number of uplink subframes included in one radio frame, and the base station is in the N uplink sub-frames.
  • N is the number of uplink subframes included in one radio frame
  • the base station is in the N uplink sub-frames.
  • Each redundancy version of the TB transmitted by the terminal is received on the frame.
  • the present invention more fully utilizes the uplink subframe, thereby enhancing the uplink coverage.
  • embodiments of the present invention can be provided as a method, system, or computer program product. Accordingly, the present invention may take the form of an entirely hardware embodiment, an entirely software embodiment, or a combination of software and hardware. Moreover, the present invention can be embodied in the form of a computer program product embodied on one or more computer-usable storage interfaces (including but not limited to disk storage, CD-ROM, optical storage, etc.) containing computer usable program code.
  • computer-usable storage interfaces including but not limited to disk storage, CD-ROM, optical storage, etc.
  • the computer program instructions can also be stored in a computer readable memory that can direct a computer or other programmable data processing device to operate in a particular manner, such that the instructions stored in the computer readable memory include instructions.
  • the manufacturing device, the instruction device implements the functions specified in one or more blocks of a flow or a flow and/or a block diagram of the flowchart.
  • These computer program instructions can also be loaded onto a computer or other programmable data processing device such that a series of operational steps are performed on a computer or other programmable device to produce computer-implemented processing for execution on a computer or other programmable device.
  • the instructions provide steps for implementing the functions specified in one or more of the flow or in a block or blocks of a flow diagram.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明实施例公开了一种时分双工系统中的上行数据发送及接收方法和设备,涉及无线通信技术领域,用于提高上行子帧的利用率,以增强上行覆盖。本发明中,终端在绑定的N个上行子帧上发送数据传输块TB的多个冗余版本,N为一个无线帧内包含的上行子帧的数目,基站在该N个上行子帧上接收终端发送的TB的各冗余版本。本发明更加充分的利用了上行子帧,从而增强了上行覆盖。

Description

时分双工系统中的上行数据发送及接收方法和设备 本申请要求在 2012年 07月 13日提交中国专利局、 申请号为 201210244270.8、发明名称为
"时分双工系统中的上行数据发送及接收方法和设备"的中国专利申请的优先权,其全部内容通 过引用结合在本申请中。 技术领域 本发明涉及无线通信领域, 尤其涉及一种时分双工系统中的上行数据发送及接收方法 和设备。 背景技术 在长期演进 ( Long Term Evolution, LTE )系统中, 受限于终端( User Equipment , UE ) 的最大发射功率, 每个数据包在一个传输时间间隔 (Transmission Time Interval, TTI ) 内 可以利用的功率非常有限, 因此, 恶劣信道条件下, 上行传输达不到性能要求。 为了提高 上行覆盖, LTE系统釆用 ΤΤΙ绑定(bundling )技术,期望至少达到高速上行分组接入( High Speed Uplink Packet Access , HSUPA )的性能。 所谓的 TTI bundling技术, 即是 UE基于基 站的一个调度指示, 在多个子帧内发送同一数据传输块(Transport Block, TB )在信道编 码后的多个冗余版本(Redundancy Version, RV ), 这样, 可以提高上行数据的传输增益, 从而增强上行信号的覆盖效果。 该多个上行子帧称为一个绑定子帧束( bundle )。
在时分双工 ( Time division duplex, TDD ) -LTE系统中, 针对三种上下行配置引入了 TTI bundling技术, 并且釆用了统一的绑定大小 ( bundling size ), 即一个 bundle中包含的 上行子帧的数目。 其他上下行配置不支持 TTI bundling技术。
对于 TDD-LTE系统, 连续的上行子帧数目小于 bundle大小, 因此数据包的多个冗余 版本( RV )在非连续的上行子帧内发送。 配置 TTI bundling操作的 TDD上下行配置 0, 1 和 6的上行混合自动重传请求( Hybrid Automatic Repeat reQuest, HARQ )进程分别如图 1-图 3所示。
对于 TDD上下行配置 0, 在 non-bundling时, 上行 HARQ进程数目为 7; 配置 TTI bundling时, 上行 HARQ进程数目为 3。
对于 TDD上下行配置 1 , 在 non-bundling时, 上行 HARQ进程数目为 4; 配置 TTI bundling时, 上行 HARQ进程数目为 2。
对于 TDD上下行配置 6, 在 non-bundling时, 上行 HARQ进程数目为 6; 配置 TTI bundling时, 上行 HARQ进程数目为 3。 在现有的 TDD-LTE系统中, 存在以下四个问题:
第一, 只有三种上下行配置(即上下行配置 0、 1、 6 )支持 TTI bundling, 其他上下行 配置无法支持 TTI bundling, 导致上行覆盖受限;
第二, 支持 TTI bundling的三种上下行配置釆用统一的 bundling size,并没有针对每种 上下行配置的上行子帧数进行优化, 使得上行子帧利用率达不到 100%, 导致上行覆盖受 损; 如图 1所示, 在上下行配置 0中, 即使配置最大的进程数(3 ), 仍然有两个上行子帧 空闲, 不能用于 TTI bundling传输。
第三, 由于 HARQ 时序关系复杂, 无法支持半持续调度( SPS ); 半持续调度是由高 层触发的周期性调度,可以减少上行调度信令的开销,特别适用于小数据包的场景(如 VoIP 业务)。 调度周期由一系列值 { sflO, s£20, sfi2, sf40, sf64, sffi0,sfl28, sfl60, sfi20, sf640}组 成, 单位为子帧 (sf )。 实际釆用哪个值由高层信令配置。 但无论选择哪个值与当前 TDD 系统的 TTI bundling都无法联合使用。 以 VoIP典型应用为例, 调度周期为 20ms, 并且釆 用上下行配置 1。 如果釆用 SPS, 当第一个 VoIP包在无线帧 N 的第三个子帧(子帧 2 )上 调度传输, 则第二个 VoIP包在子帧 N+2的第三个子帧 (子帧 2 )上调度传输。 但是根据 HARQ时序关系, 子帧 N+2的第三个子帧 (子帧 2 )用于第一个 VoIP包的重传。 当重传 发生时, 重传的第一个 VoIP包和第二个 VoIP包会发生冲突。 因此, 为了避免冲突, 当前 TDD系统 TTI bundling不支持 SPS。 上下行配置 0和 6也存在同样的问题。
第四, Bundling子帧为连续的上行子帧, 时间分集增益有限。 发明内容 本发明实施例提供一种时分双工系统中的上行数据发送及接收方法和设备, 用于提高 上行子帧的利用率, 以增强上行覆盖。
一种时分双工 TDD系统中的上行数据发送方法, 该方法包括:
终端选取绑定的 N个上行子帧, N为一个无线帧内包含的上行子帧的数目; 终端在所述 N个上行子帧上发送第一数据传输块 TB的多个冗余版本。
一种时分双工 TDD系统中的上行数据接收方法, 该方法包括:
基站选取绑定的 N个上行子帧, N为一个无线帧内包含的上行子帧的数目; 基站在所述 N个上行子帧上接收第一数据传输块 TB的多个冗余版本。
一种终端, 该终端包括:
子帧选取单元, 用于选取绑定的 N个上行子帧, N为一个无线帧内包含的上行子帧的 数目;
上行传输单元,用于在所述 N个上行子帧上发送第一数据传输块 TB的多个冗余版本。 一种基站, 该基站包括:
子帧选取单元, 用于选取绑定的 N个上行子帧, N为一个无线帧内包含的上行子帧的 数目;
上行接收单元,用于在所述 N个上行子帧上接收第一数据传输块 TB的多个冗余版本。 本方案中, 终端在绑定的 N个上行子帧上发送 TB的多个冗余版本, N为一个无线帧 内包含的上行子帧的数目, 基站在该 N个上行子帧上接收终端发送的 TB的各冗余版本。 与现有技术中终端在绑定的 4个上行子帧上发送 TB的多个冗余版本相比, 本发明更加充 分的利用了上行子帧, 从而增强了上行覆盖。 附图说明 图 1为现有技术中 TDD上下行配置 0的 HARQ进程示意图;
图 2为现有技术中 TDD上下行配置 1的 HARQ进程示意图;
图 3为现有技术中 TDD上下行配置 6的 HARQ进程示意图;
图 4为本发明实施例提供的方法流程示意图;
图 5为本发明实施例提供的另一方法流程示意图;
图 6A为本发明实施例一的 HARQ进程示意图;
图 6B为本发明实施例二的 HARQ进程示意图;
图 6C为本发明实施例三的 HARQ进程示意图;
图 6D为本发明实施例四的 HARQ进程示意图;
图 6E为本发明实施例五的 HARQ进程示意图;
图 6F为本发明实施例六的 HARQ进程示意图;
图 6G为本发明实施例七的 HARQ进程示意图;
图 7为本发明实施例提供的设备结构示意图;
图 8为本发明实施例提供的另一设备结构示意图。 具体实施方式 为了提高上行子帧的利用率, 以增强上行覆盖, 本发明实施例提供一种 TDD 系统中 的上行数据发送及接收方法。 本方法中, 终端在绑定的 N个上行子帧上发送 TB的多个冗 余版本, N为一个无线帧内包含的上行子帧的数目; 基站则在该 N个上行子帧上接收终端 发送的 TB的各冗余版本。
参见图 4, 本发明实施例的 TDD系统中的上行数据发送方法, 包括以下步骤: 步骤 40: 终端选取绑定的 N个上行子帧, N为一个无线帧内包含的上行子帧的数目; N的取值保证了上行资源利用率达到 100%。
步骤 41 : 终端在选取的 N个上行子帧上发送第一 TB的多个冗余版本( RV )。
可以预先在上行子帧中确定 N个并进行绑定, 终端在需要发送第一 TB的多个冗余版 本时, 即可选取该绑定的 N个上行子帧进行发送, 同时, 基站在接收该终端发送的第一 TB的多个冗余版本时, 也同样选取该绑定的 N个上行子帧进行接收。
具体的, 步骤 40中选取的 N个上行子帧为 N个连续的上行子帧或 N个非连续的上行 子帧。 这里, N个连续的上行子帧是指该 N个上行子帧中的任意两个相邻的上行子帧之间 不存在其他上行子帧, N个不连续的上行子帧是指在该 N个上行子帧中存在满足以下条件 的两个相邻的上行子帧: 该两个相邻的上行子帧之间存在其他上行子帧。 在 N个上行子帧 为 N个非连续的上行子帧时, 可以进一步获得时间分集增益。
较佳的, 在 N个上行子帧为 N个非连续的上行子帧时, 这 N个非连续的上行子帧必 然位于至少两个无线帧中, 此时, 在同一个无线帧内相邻的绑定上行子帧(即属于 N个上 行子帧的上行子帧)之间, 间隔一个上行子帧, 以及, 在两个相邻无线帧内的绑定上行子 帧的子帧号不重复, 即相邻的两个无线帧中绑定的图样互补, 在无线帧 n中绑定的上行子 帧在无线帧 n+1中不被绑定, 在无线帧 n中不被绑定的上行子帧在无线帧 n+1中可以被绑 定。
进一步的, 在终端在 N个上行子帧上发送第一 TB的多个冗余版本之后, 终端仅在下 行子帧 i上接收网络侧发送的肯定应答 /否定应答( ACK/NACK )指示后,根据该 ACK/NACK 指示确定是否需要对第一 TB的多个冗余版本进行重传, 在确定需要重传时, 重新选取绑 定的 N个上行子帧,并在重新选取的 N个上行子帧上对第一 TB的多个冗余版本进行重传; 或者,
终端在下行子帧 i上接收网络侧发送的 ACK/NACK指示、 在下行子帧 n上接收网络 侧发送的上行调度授权(UL grant )信令后, 重新选取绑定的 N个上行子帧, 并根据接收 到的 ACK/NACK指示和 UL grant信令, 在重新选取的 N个上行子帧上对第一 TB的多个 冗余版本进行重传或传输第二 TB的多个冗余版本。 具体的, 若 ACK/NACK指示为 ACK 指示、且 UL grant信令指示传输新的上行数据 , 则在重新选取的 N个上行子帧上传输第二 TB的多个冗余版本, 若 ACK/NACK指示为 NACK指示、 且 UL grant信令未指示传输新 的上行数据, 则在重新选取的 N个上行子帧上对第一 TB的多个冗余版本进行重传。
这里, ACK/NACK指示可以通过物理混合自动请求重传指示信道(PHICH )传输, UL grant信令可以通过物理下行控制信道( PDCCH ) 的下行控制信息 ( DCI )传输。
具体的, 下行子帧 i与步骤 40中选取的 N个上行子帧中的最后一个子帧之间的时序 关系, 遵守 LTE系统协议中规定的上行混合自动重传请求( HARQ ) 中的传输反馈时序关 系: 对于帧结构类型 2 的上下行配置 1-6 , 如果通过 PHICH在子帧 i接收到 ACK/NACK 指示, 那么相应的 PUSCH传输即上行传输应该在 i-k的位置, k的具体取值见下表 1 ; 对于帧结构类型 2的上下行配置 0 ,如果通过 PHICH信道在子帧 i接收到 ACK/NACK 指示、 且 IPHICH = 0 , 那么相应的 PUSCH传输即上行传输应该在 i-k的位置, k的具体取 值见下表 1; 如果 IPHICH = 1 , 相应的 PUSCH传输即上行传输在 i-6的位置。
Figure imgf000006_0001
表 1 具体的, 当步骤 40中选取的 N个上行子帧中第一个子帧为无线帧 1 中的第 a个子帧 时, 所述重新选取的 N个上行子帧中的第一个子帧为无线帧 1+3中的第 a个子帧。 这样的 时序设计使 TTI bundling可以支持半持续调度。
具体的, 下行子帧 n与重新选取的 N个上行子帧中的第一个子帧之间的时序关系, 遵 守 LTE系统协议中规定的上行 HARQ中的调度传输时序关系。
同样的, 在步骤 40之前, 终端在下行子帧 X上接收网络侧发送的 UL grant信令; 下 行子帧 X与步骤 40中选取的 N个上行子帧中第一个子帧之间的时序关系, 也遵守 LTE系 统协议中规定的上行 HARQ中的调度传输时序关系。
对于上下行配置 1-6 , 重新选取的 N个上行子帧中的第一个上行子帧的编号为 n+k, 其中 k为大于 0的整数, k的取值可以见下表 2; 对于上下行配置 0 , 若 UL grant信令中的 最高有效位 ( Most Significant Bit, MSB )信息为 1或 IPHICH为 0 , 则重新选取的 N个上 行子帧中的第一个上行子帧的编号为 n+k; 若 UL grant 信令中的最低有效位 (Least Significant Bit, LSB )信息为 1或 IPHICH为 1 , 则重新选取的 N个上行子帧中的第一个 上行子帧的编号为 n+7。
上下行配置 下行子帧号 n
0 1 2 3 4 5 6 7 8 9
0 4 6 4 6 2 4 4
3 4 4 4
4 4 4
5 4
6 7 7 7 7 5
表 2 具体的, 下行子帧 n与下行子帧 i之间的时序关系如表 3或表 4所述。 i=n-l , 1为不小 于 0的整数。 在 N个上行子帧为 N个连续的上行子帧时, 1的取值可以根据下表 3确定, 在 N个上行子帧为 N个非连续的上行子帧时, 1的取值可以根据下表 4确定。
Figure imgf000007_0001
表 3
Figure imgf000007_0002
表 4 在终端在发送第一 TB的多个冗余版本时, 按照版本号为 0、 2、 3、 1的顺序循环传输 该第一 TB的冗余版本。
参见图 5 , 本发明实施例提供的 TDD系统中的上行数据接收方法, 包括以下步骤: 步骤 50: 基站选取绑定的 N个上行子帧, N为一个无线帧内包含的上行子帧的数目; 步骤 51 : 基站在 N个上行子帧上接收第一 TB的多个冗余版本。 具体的, 步骤 50中选取的 N个上行子帧为 N个连续的上行子帧或 N个非连续的上行 子帧。
较佳的,在 N个上行子帧为 N个非连续的上行子帧时,在同一个无线帧内相邻的且绑 定上行子帧之间, 间隔一个上行子帧; 以及, 在两个相邻无线帧内的绑定上行子帧的子帧 号不重复。
进一步的, 在基站在 N个上行子帧上接收第一 TB的多个冗余版本之后 , 基站仅在下 行子帧 i上向终端发送 ACK/NACK指示后,根据该 ACK/NACK指示确定终端是否需要对 第一 TB的多个冗余版本进行重传, 在确定需要重传时, 重新选取绑定的 N个上行子帧, 并在重新选取的 N个上行子帧上接收终端重传的第一 TB的多个冗余版本; 或者,
基站在下行子帧 i上向终端发送 ACK/NACK指示、 在下行子帧 n上向终端发送 UL grant信令后, 重新选取绑定的 N个上行子帧, 并在重新选取的 N个上行子帧上接收终端 重传的第一 TB的多个冗余版本或终端传输的第二 TB的多个冗余版本。
具体的, 下行子帧 i与 N个上行子帧中的最后一个子帧之间的时序关系, 遵守 LTE系 统协议中规定的上行 HARQ中的传输反馈时序关系, 如上表 1所示的内容。
具体的, 当步骤 50中选取的 N个上行子帧中第一个子帧为无线帧 1 中的第 a个子帧 时, 所述重新选取的 N个上行子帧中的第一个子帧为无线帧 1+3中的第 a个子帧。
具体的, 下行子帧 n与重新选取的 N个上行子帧中的第一个子帧之间的时序关系, 遵 守 LTE系统协议中规定的上行 HARQ中的调度传输时序关系。
同样的, 在步骤 50之前, 基站在下行子帧 X上向终端发送 UL grant信令;
下行子帧 X与步骤 50中选取的 N个上行子帧中第一个子帧之间的时序关系,遵守 LTE 系统协议中规定的上行 HARQ中的调度传输时序关系。
具体的, i=n-l, 1为不小于 0的整数。 在 N个上行子帧为 N个连续的上行子帧时, 1 的取值可以根据上表 2确定, 在 N个上行子帧为 N个非连续的上行子帧时, 1的取值可以 根据上表 3确定。
对于上下行配置 1-6, 重新选取的 N个上行子帧中的第一个上行子帧的编号为 n+k, 其中 k为大于 0的整数, k的取值可以见表 4; 对于上下行配置 0, 若 UL grant信令中的 MSB信息为 1或 IPHICH为 0, 则重新选取的 N个上行子帧中的第一个上行子帧的编号为 n+k; 若 UL grant信令中的 LSB信息为 1或 IPHICH为 1 , 则重新选取的 N个上行子帧中 的第一个上行子帧的编号为 n+7。
下面结合具体实施例对本发明进行说明:
实施例一: 4十对 TDD上下行配置 0;
实施例 1.1 : 分布式(即 N个上行子帧为 N个非连续的上行子帧);
Ν=6 , 其传输图样如图 6 A所示。 基站侧:
步骤一: 基站在无线帧 n内的第 3,5,9和无线帧 n+1 内的第 4,8,10个上行子帧上接收 同一个 TB的 RV0-RV2-RV3-RV1-RV0-RV2。
步骤二: 基站在无线帧 n+2内第 6个子帧上发送 PHICH信息(即 ACK/NACK指示); 进一步的, 基站还可以在无线帧 n+2内第 6个子帧上发送 PDCCH DCI formatO (即
UL grant信令), 其中的 LSB置为 1 者1 PH1CH = 1; 或, 基站在无线帧 n+2内第 7个子帧 上发送 PDCCH DCI formatO, 其中的 MSB置为 1 者1 PH1CH = 0; 基站也可以釆用高层信 令半持续调度上行数据。
步骤三: 基站在无线帧 n+3 内的第 3,5,9和无线帧 n+4内的第 4,8,10个上行子帧上接 收重传 TB的 RV0-RV2-RV3-RV1-RV0-RV2或 RV3-RV1-RV0-RV2-RV3-RV1 ,或新的 TB的 RV0-RV2-RV3 -RV1-RV0-RV2。
终端侧:
步骤一: UE在无线帧 n内的第 3,5,9和无线帧 n+1内的第 4,8,10个上行子帧上发送同 一个 TB的 RV0-RV2-RV3-RV1-RV0-RV2。
步骤二: UE在无线帧 n+2内第 6个子帧上检测 PHICH信息;
进一步的, UE还在无线帧 n+2内第 6个子帧上检测 PDCCH DCI formatO, 其中 LSB 置为 1或者1 p 或在无线帧 n+2内第 7个子帧上发送 PDCCH DCI formatO, 其中 MSB置为 1或者 « = °;
步骤三: UE根据检测的信息, 在无线帧 n+3内的第 3,5,9和无线帧 n+4内的第 4,8,10 个上行子帧上重传 TB的 RV0-RV2-RV3-RV1-RV0-RV2或 RV3-RV1-RV0-RV2-RV3-RV1 , 或传输新的 TB的 RV0-RV2-RV3-RV1-RV0-RV2。
实施例 2.1 : 集中式(即 N个上行子帧为 N个连续的上行子帧);
Ν=6 , 其传输图样如图 6 A所示。
基站侧:
步骤一: 基站在无线帧 n 内的第 3,4,5,8,9,10 个上行子帧上接收同一个 TB 的
RV0-RV2-RV3 -RV1-RV0-RV2。
步骤二: 基站在无线帧 n+1内第 6个子帧上发送 PHICH信息;
进一步的, 基站还可以在无线帧 n+2内第 6个子帧上发送 PDCCH DCI formatO, 其中 的 LSB置为 1或者1 H = 1; 或在无线帧 n+2内第 7个子帧上发送 PDCCH DCI formatO, 其中的 MSB置为 1 者1 PH1CH = 0; 基站也可以釆用高层信令半持续调度上行数据。
步骤三: 基站在无线帧 n+3 内的第 3,4,5,8,9,10 个上行子帧上接收重传 TB 的 RV0-RV2-RV3-RV1-RV0-RV2 或 RV3-RV1-RV0-RV2-RV3-RV1 , 或 新 的 TB 的 RV0-RV2-RV3 -RV1-RV0-RV2。 终端侧:
步骤一: UE 在无线帧 n 内的第 3,4,5,8,9,10 个上行子帧上发送同一个 TB 的 RV0-RV2-RV3 -RV1-RV0-RV2。
步骤二: UE在无线帧 n+1内第 6个子帧上检测 PHICH信息;
进一步的, UE还在无线帧 n+2内第 6个子帧上检测 PDCCH DCI formatO, 其中 LSB 置为 1或者1 p 或在无线帧 n+2内第 7个子帧上发送 PDCCH DCI formatO, 其中 MSB置为 1或者 « = °;
步骤三: UE根据检测的信息,在无线帧 n+3内的第 3,4,5,8,9,10个上行子帧上重传 TB 的 RV0-RV2-RV3-RV1-RV0-RV2 或 RV3-RV1-RV0-RV2-RV3-RV1 , 或传输新的 TB 的 RV0-RV2-RV3 -RV1 -RV0-RV20
实施例二: 4十对 TDD上下行配置 1 ;
实施例 1.2: 分布式;
N=4, 其传输图样如图 6B所示。
基站侧:
步骤一: 基站在无线帧 n内的第 2,8和无线帧 n+1 内的第 4,9个上行子帧上接收同一 个 TB的 RV0-RV2-RV3-RV1。
步骤二: 基站在无线帧 n+2内第 5个子帧上发送 PHICH信息;
进一步的, 基站还可以在无线帧 n+2内第 7个子帧上发送 PDCCH DCI formatO; 基站 也可以釆用高层信令半持续调度上行数据。
步骤三: 基站在无线帧 n+3 内的第 2,8和无线帧 n+4内的第 4,9个上行子帧上接收重 传 TB的 RV0-RV2-RV3-RV1 , 或新的 TB的 RV0-RV2-RV3-RV1。
终端侧:
步骤一: UE在无线帧 n内的第 2,8和无线帧 n+1内的第 4,9个上行子帧上发送同一个 TB的 RV0-RV2-RV3-RV1。
步骤二: UE在无线帧 n+2内第 5个子帧上检测 PHICH信息;
进一步的, UE还在无线帧 n+2内第 7个子帧上检测 PDCCH DCI formatO;
步骤三: UE根据检测的 PHICH信息, 在无线帧 n+3内的第 2,8和无线帧 n+4内的第 4,9个上行子帧上重传 TB的 RV0-RV2-RV3-RV1 , 或传输新的 TB的 RV0-RV2-RV3-RV1。
实施例 2.2: 集中式;
N=4, 其传输图样如图 6B所示。
基站侧:
步骤一: 基站在无线帧 n 内的第 3,4,8,9 个上行子帧上接收同一个数据的 RV0-RV2-RV3-RVl o 步骤二: 基站在无线帧 n+1内第 5个子帧上发送 PHICH信息;
进一步的, 基站还可以在无线帧 n+2内第 7个子帧上发送 PDCCH DCI formatO; 基站 也可以釆用高层信令半持续调度上行数据。
步骤三: 基站在无线帧 n+3 内的第 3,4,8,9 个上行子帧上接收重传 TB 的 RV0-RV2-RV3-RV1 , 或新的 TB的 RV0-RV2-RV3-RV1。
终端侧:
步骤一: UE 在无线帧 n 内的第 3,4,8,9 个上行子帧上发送同一个数据的 RV0-RV2-RV3-RVl o
步骤二: UE在无线帧 n+1内第 5个子帧上检测 PHICH信息;
进一步的, UE还在无线帧 n+2内第 7个子帧上检测 PDCCH DCI formatO;
步骤三: UE根据检测的信息, 在无线帧 n+3 内的第 3,4,8,9个上行子帧上重传 TB的 RV0-RV2-RV3-RV1 , 或传输新的 TB的 RV0-RV2-RV3-RV1。
实施例三: 针对 TDD上下行配置 2;
实施例 1.3: 分布式;
N=2, 其传输图样如图 6C所示。
基站侧:
步骤一:基站在无线帧 n内的第 3和无线帧 n+1内的第 8个上行子帧上接收同一个 TB 的 RV0-RV2。
步骤二: 基站在无线帧 n+2内第 4个子帧上发送 PHICH信息;
进一步的, 基站还可以在无线帧 n+2内第 9个子帧上发送 PDCCH DCI formatO; 基站 也可以釆用高层信令半持续调度上行数据。
步骤三: 基站在无线帧 n+3 内的第 3和无线帧 n+4 内的第 8个上行子帧上接收重传 TB的 RV0-RV2或 RV3-RV1 , 或新的 TB的 RV0-RV2。
终端侧:
步骤一: UE在无线帧 n内的第 3和无线帧 n+1内的第 8个上行子帧上发送同一个 TB 的 RV0-RV2。
步骤二: UE在无线帧 n+2内第 4个子帧上检测 PHICH信息;
进一步的, UE还在无线帧 n+2内第 9个子帧上检测 PDCCH DCI formatO;
步骤三: UE根据检测的信息, 在无线帧 n+3 内的第 3和无线帧 n+4内的第 8个上行 子帧上重传 TB的 RV0-RV2或 RV3-RV1 , 或传输新的 TB的 RV0-RV2。
实施例 2.3: 集中式;
N=2, 其传输图样如图 6C所示。
基站侧: 步骤一: 基站在无线帧 n内的第 3,8个上行子帧上接收同一个 TB的 RV0-RV2。 步骤二: 基站在无线帧 n+1内第 4个子帧上发送 PHICH信息;
进一步的, 基站还可以在无线帧 n+2内第 9个子帧上发送 PDCCH DCI formatO; 基站 也可以釆用高层信令半持续调度上行数据。
步骤三: 基站在无线帧 n+3 内的第 3,8 个上行子帧上接收重传 TB 的 RV0-RV2 或
RV3-RV1 , 或新的 TB的 RV0-RV2。
终端侧:
步骤一: UE在无线帧 n内的第 3,8个上行子帧上发送同一个 TB的 RV0-RV2。
步骤二: UE在无线帧 n+1内第 4个子帧上检测 PHICH信息;
进一步的, UE还在无线帧 n+2内第 9个子帧上检测 PDCCH DCI formatO;
步骤三: UE根据检测的信息, 在无线帧 n+3 内的第 3,8 个上行子帧上重传 TB 的 RV0-RV2或 RV3-RV1 , 或传输新的 TB的 RV0-RV2。
实施例四: 针对 TDD上下行配置 3;
实施例 1.4: 分布式;
N=3 , 其传输图样如图 6D所示。
基站侧:
步骤一: 基站在无线帧 n内的第 3 , 5和无线帧 n+1 内的第 4个上行子帧上接收同一 个 TB的 RV0-RV2-RV3。
步骤二: 基站在无线帧 n+1内第 10个子帧上发送 PHICH信息;
进一步的, 基站还可以在无线帧 n+2内第 9个子帧上发送 PDCCH DCI formatO; 基站 也可以釆用高层信令半持续调度上行数据。
步骤三: 基站在无线帧 n+3内的第 3,5和无线帧 n+4内的第 4个上行子帧上接收重传 TB的 RV0-RV2-RV3或 RV1-RV0-RV2, 或新的 TB的 RV0-RV2-RV3。
终端侧:
步骤一: UE在无线帧 n内的第 3,5和无线帧 n+1 内的第 4个上行子帧上发送同一个
TB的 RV0-RV2-RV3。
步骤二: UE在无线帧 n+1内第 10个子帧上检测 PHICH信息;
进一步的, UE还在无线帧 n+2内第 9个子帧上检测 PDCCH DCI formatO;
步骤三: UE根据检测的信息,在无线帧 n+3内的第 3,5和无线帧 n+4内的第 4个上行 子帧上重传 TB的 RV0-RV2-RV3或 RV1-RV0-RV2, 或传输新的 TB的 RV0-RV2-RV3。
实施例 2.4: 集中式;
Ν=3 , 其传输图样如图 6D所示。
基站侧: 步骤一: 基站在无线帧 n内的第 3,4,5个上行子帧上接收同一个 TB的 RV0-RV2-RV3。 步骤二: 基站在无线帧 n+1内第 1个子帧上发送 PHICH信息;
进一步的, 基站还可以在无线帧 n+2内第 9个子帧上发送 PDCCH DCI formatO; 基站 也可以釆用高层信令半持续调度上行数据。
步骤三: 基站在无线帧 n+3 内的第 3,4,5个上行子帧上接收重传 TB的 RV0-RV2-RV3 或 RV1-RV0-RV2, 或新的 TB的 RV0-RV2-RV3。
终端侧:
步骤一: UE在无线帧 n内的第 3,4,5个上行子帧上发送同一个 TB的 RV0-RV2-RV3。 步骤二: UE在无线帧 n+1内第 1个子帧上检测 PHICH信息;
进一步的, UE还在无线帧 n+2内第 9个子帧上检测 PDCCH DCI formatO;
步骤三: UE根据检测的信息, 在无线帧 n+3 内的第 3,4,5个上行子帧上重传 TB的 RV0-RV2-RV3或 RV1-RV0-RV2, 或传输新的 TB的 RV0-RV2-RV3。
实施例五: 针对 TDD上下行配置 4;
实施例 1.5: 分布式;
Ν=2 , 其传输图样如图 6E所示。
基站侧:
步骤一:基站在无线帧 n内的第 3和无线帧 n+1内的第 4个上行子帧上接收同一个 TB 的 RV0-RV2。
步骤二: 基站在无线帧 n+1内第 10个子帧上发送 PHICH信息;
进一步的, 基站还可以在无线帧 n+2内第 9个子帧上发送 PDCCH DCI formatO; 基站 也可以釆用高层信令半持续调度上行数据。
步骤三: 基站在无线帧 n+3 内的第 3和无线帧 n+4 内的第 4个上行子帧上接收重传 TB的 RV0-RV2或 RV3-RV1 , 或新的 TB的 RV0-RV2。
终端侧:
步骤一: UE在无线帧 n内的第 3和无线帧 n+1内的第 4个上行子帧上发送同一个 TB 的 RV0-RV2。
步骤二: UE在无线帧 n+1内第 10个子帧上检测 PHICH信息;
进一步的, UE还在无线帧 n+2内第 9个子帧上检测 PDCCH DCI formatO;
步骤三: UE根据检测的信息, 在无线帧 n+3 内的第 3和无线帧 n+4内的第 4个上行 子帧上重传 TB的 RV0-RV2或 RV3-RV1 , 或传输新的 TB的 RV0-RV2。
实施例 2.5: 集中式;
Ν=2 , 其传输图样如图 6E所示。
基站侧: 步骤一: 基站在无线帧 n内的第 3,4个上行子帧上接收同一个 TB的 RV0-RV2。
步骤二: 基站在无线帧 n内第 10个子帧上发送 PHICH信息;
进一步的, 基站还可以在无线帧 n+2内第 9个子帧上发送 PDCCH DCI formatO; 基站 也可以釆用高层信令半持续调度上行数据。
步骤三: 基站在无线帧 n+3 内的第 3,4 个上行子帧上接收重传 TB 的 RV0-RV2 或
RV3-RV1 , 或新 TB的 RV0-RV2。
终端侧:
步骤一: UE在无线帧 n内的第 3,4个上行子帧上发送同一个 TB的 RV0-RV2。
步骤二: UE在无线帧 n内第 10个子帧上检测 PHICH信息;
进一步的, UE还在无线帧 n+2内第 9个子帧上检测 PDCCH DCI formatO;
步骤三: UE根据检测的信息, 在无线帧 n+3 内的第 3,4 个上行子帧上重传 TB 的 RV0-RV2或 RV3-RV1 , 或传输新的 TB的 RV0-RV2。
实施例六: 针对 TDD上下行配置 5;
实施例 1.6: 分布式;
N=l , 其传输图样如图 6F所示。
基站侧:
步骤一: 基站在无线帧 n内的第 3个上行子帧上接收同一个 TB的 RV0。
步骤二: 基站在无线帧 n内第 9个子帧上发送 PHICH信息;
进一步的, 基站还可以在无线帧 n+2内第 9个子帧上发送 PDCCH DCI formatO; 基站 也可以釆用高层信令半持续调度上行数据。
步骤三: 基站在无线帧 n+3内的第 3个上行子帧上接收重传 TB的 RV0或 RV2, 或新 的 TB的 RV0。
终端侧:
步骤一: UE在无线帧 n内的第 3个上行子帧上发送同一个 TB的 RV0。
步骤二: UE在无线帧 n第 9个子帧上检测 PHICH信息;
进一步的, UE还在无线帧 n+2内第 9个子帧上检测 PDCCH DCI formatO;
步骤三: UE根据检测的信息, 在无线帧 n+3 内的第 3个上行子帧上重传 TB的 RV0 或 RV2, 或传输新的 TB的 RV0。
实施例 2.6: 集中式;
N=l , 其传输图样如图 6F所示。
基站侧:
步骤一: 基站在无线帧 n内的第 3个上行子帧上接收同一个 TB的 RV0。
步骤二: 基站在无线帧 n内第 9个子帧上发送 PHICH信息; 进一步的, 基站还可以在无线帧 n+2内第 9个子帧上发送 PDCCH DCI formatO; 基站 也可以釆用高层信令半持续调度上行数据。
步骤三: 基站在无线帧 n+3内的第 3个上行子帧上接收重传 TB的 RV0或 RV2, 或新 的 TB的 RV0。
终端侧:
步骤一: UE在无线帧 n内的第 3个上行子帧上发送同一个 TB的 RV0。
步骤二: UE在无线帧 n内第 9个子帧上检测 PHICH信息;
进一步的, UE还在无线帧 n+2内第 9个子帧上检测 PDCCH DCI formatO;
步骤三: UE根据检测的信息, 在无线帧 n+3 内的第 3个上行子帧上重传 TB的 RV0 或 RV2, 或传输新的 TB的 RV0。
实施例七: TDD上下行配置 6;
实施例 1.7: 分布式;
Ν=5 , 其传输图样如图 6G所示。
基站侧:
步骤一:基站在无线帧 n内的第 3,5,9和无线帧 n+1内的第 4,8个上行子帧上接收同一 个 TB的 RV0-RV2-RV3-RV1-RV0。
步骤二: 基站在无线帧 n+2内第 2个子帧上发送 PHICH信息;
进一步的, 基站还可以在无线帧 n+2内第 6个子帧上发送 PDCCH DCI formatO; 基站 也可以釆用高层信令半持续调度上行数据。
步骤三:基站在无线帧 n内的第 3,5,9和无线帧 n+1内的第 4,8个上行子帧上接收重传
TB 的 RV0-RV2-RV3-RV1-RV0 或 RV2-RV3-RV1-RV0-RV2. , 或 新 的 TB 的 RV0-RV2-RV3 -RV1-RV0。
终端侧:
步骤一: UE在无线帧 n内的第 3,5,9和无线帧 n+1内的第 4,8个上行子帧上发送同一 个 TB的 RV0-RV2-RV3-RV1-RV0。
步骤二: UE在无线帧 n+2内第 2个子帧上检测 PHICH信息;
进一步的, UE还在无线帧 n+2内第 6个子帧上检测 PDCCH DCI formatO;
步骤三: UE根据检测的信息, 在无线帧 n内的第 3,5,9和无线帧 n+1内的第 4,8个上 行子帧上重传 TB的 RV0-RV2-RV3-RV1-RV0或 RV2-RV3-RV1-RV0-RV2, 或传输新的 TB 的 RV0-RV2-RV3-RV1-RV0。
实施例 2.7: 集中式;
Ν=5 , 其传输图样如图 6G所示。
基站侧: 步骤一: 基站在无线帧 n 内的第 3,4,5,8,9 个上行子帧上接收同一个 TB 的 RV0-RV2-RV3 -RV1-RV0。
步骤二: 基站在无线帧 n+1内第 6个子帧上发送 PHICH信息;
进一步的, 基站还可以在无线帧 n+2内第 6个子帧上发送 PDCCH DCI formatO; 基站 也可以釆用高层信令半持续调度上行数据。
步骤三: 基站在无线帧 n+3 内的第 3,4,5,8,9 个上行子帧上接收重传 TB 的 RV0-RV2-RV3-RV1-RV0 或 RV2-RV3-RV1-RV0-RV2 , 或 新 的 TB 的 RV0-RV2-RV3 -RV1-RV0。
终端侧:
步骤一: UE 在无线帧 n 内的第 3,4,5,8,9 个上行子帧上发送同一个 TB 的
RV0-RV2-RV3 -RV1-RV0。
步骤二: UE在无线帧 n+1内第 6个子帧上检测 PHICH信息;
进一步的, UE还在无线帧 n+2内第 6个子帧上检测 PDCCH DCI formatO;
步骤三: UE根据检测的, 在无线帧 n+3 内的第 3,4,5,8,9 个上行子帧上重传 TB 的 RV0-RV2-RV3-RV1-RV0 或 RV2-RV3-RV1-RV0-RV2 , 或 传 输 新 的 TB 的 RV0-RV2-RV3 -RV1-RV0。
参见图 7, 本发明实施例提供一种终端, 该终端包括:
子帧选取单元 70,用于选取绑定的 N个上行子帧, N为一个无线帧内包含的上行子帧 的数目;
上行传输单元 71 ,用于在所述 N个上行子帧上发送第一数据传输块 TB的多个冗余版 本。
进一步的, 所述 N个上行子帧为 N个连续的上行子帧或 N个非连续的上行子帧。 进一步的,在所述 N个上行子帧为 N个非连续的上行子帧时,在同一个无线帧内相邻 的且绑定上行子帧之间, 间隔一个上行子帧; 以及,
在两个相邻无线帧内的绑定上行子帧的子帧号不重复。
进一步的, 所述上行传输单元 71还用于:
在所述 N个上行子帧上发送第一 TB的多个冗余版本之后 , 仅在下行子帧 i上接收网 络侧发送的肯定应答 /否定应答 ACK/NACK指示后, 根据所述 ACK/NACK指示确定是否 需要对所述第一 TB的多个冗余版本进行重传, 在确定需要重传时, 重新选取绑定的 N个 上行子帧, 并在重新选取的 N个上行子帧上对所述第一 TB的多个冗余版本进行重传; 或 者,
在下行子帧 i上接收网络侧发送的 ACK/NACK指示、 在下行子帧 n上接收网络侧发 送的上行调度授权 UL grant 信令后, 重新选取绑定的 N 个上行子帧, 并根据所述 ACK/NACK指示和所述 UL grant信令, 在重新选取的 N个上行子帧上对所述第一 TB的 多个冗余版本进行重传或传输第二 TB的多个冗余版本。
进一步的, 所述下行子帧 i与所述 N个上行子帧中的最后一个子帧之间的时序关系, 遵守长期演进 LTE系统协议中规定的上行混合自动重传请求 HARQ中的传输反馈时序关 系。
进一步的, 当所述选取的 N个上行子帧中第一个子帧为无线帧 1 中的第 a个子帧时, 所述重新选取的 N个上行子帧中的第一个子帧为无线帧 1+3中的第 a个子帧。
进一步的,所述下行子帧 n与所述重新选取的 N个上行子帧中的第一个子帧之间的时 序关系, 遵守长期演进 LTE系统协议中规定的上行混合自动重传请求 HARQ中的调度传 输时序关系。
进一步的,所述上行传输单元 71在发送第一 TB的多个冗余版本时,按照版本号为 0、 2、 3、 1的顺序循环传输该第一 TB的冗余版本。
进一步的, 该终端还包括: 下行接收单元 72, 用于在选取绑定的 N个上行之前, 在下 行子帧 X上接收网络侧发送的 UL grant信令;下行子帧 x与所述选取的 N个上行子帧中第 一个子帧之间的时序关系, 遵守 LTE系统协议中规定的上行 HARQ中的调度传输时序关 系。
参见图 8, 本发明实施例提供一种基站, 该基站包括:
子帧选取单元 80,用于选取绑定的 N个上行子帧, N为一个无线帧内包含的上行子帧 的数目;
上行接收单元 81 ,用于在所述 N个上行子帧上接收第一数据传输块 TB的多个冗余版 本。
进一步的, 所述 N个上行子帧为 N个连续的上行子帧或 N个非连续的上行子帧。 进一步的,在所述 N个上行子帧为 N个非连续的上行子帧时,在同一个无线帧内相邻 的且绑定上行子帧之间, 间隔一个上行子帧; 以及,
在两个相邻无线帧内的绑定上行子帧的子帧号不重复。
进一步的, 所述上行接收单元 81还用于:
在所述 N个上行子帧上接收第一 TB的多个冗余版本之后, 仅在下行子帧 i上向终端 发送肯定应答 /否定应答 ACK/NACK指示后, 根据所述 ACK/NACK指示确定终端是否需 要对所述第一 TB的多个冗余版本进行重传, 在确定需要重传时, 重新选取绑定的 N个上 行子帧, 并在重新选取的 N个上行子帧上接收终端重传的所述第一 TB的多个冗余版本; 或者,
在下行子帧 i上向终端发送 ACK/NACK指示、 在下行子帧 n上向终端发送上行调度 授权 UL grant信令后 , 重新选取绑定的 N个上行子帧, 并在重新选取的 N个上行子帧上 接收终端重传的所述第一 TB的多个冗余版本或终端传输的第二 TB的多个冗余版本。 进一步的, 所述下行子帧 i与所述 N个上行子帧中的最后一个子帧之间的时序关系, 遵守长期演进 LTE系统协议中规定的上行混合自动重传请求 HARQ中的传输反馈时序关 系。
进一步的, 当所述选取的 N个上行子帧中第一个子帧为无线帧 1 中的第 a个子帧时, 所述重新选取的 N个上行子帧中的第一个子帧为无线帧 1+3中的第 a个子帧。
进一步的,所述下行子帧 n与所述重新选取的 N个上行子帧中的第一个子帧之间的时 序关系, 遵守长期演进 LTE系统协议中规定的上行混合自动重传请求 HARQ中的调度传 输时序关系。
进一步的,所述上行接收单元 81在接收第一 TB的多个冗余版本时:按照版本号为 0、
2、 3、 1的顺序循环接收该第一 TB的冗余版本。
进一步的, 该基站还包括: 下行传输单元 82, 用于在选取绑定的 N个上行之前, 在下 行子帧 X上向终端发送 UL grant信令;下行子帧 x与所述选取的 N个上行子帧中第一个子 帧之间的时序关系, 遵守 LTE系统协议中规定的上行 HARQ中的调度传输时序关系。
综上, 本发明的有益效果包括:
本发明实施例提供的方案中,终端在绑定的 N个上行子帧上发送 TB的多个冗余版本, N为一个无线帧内包含的上行子帧的数目, 基站在该 N个上行子帧上接收终端发送的 TB 的各冗余版本。与现有技术中终端在绑定的 4个上行子帧上发送 TB的多个冗余版本相比, 本发明更加充分的利用了上行子帧, 从而增强了上行覆盖。
本领域内的技术人员应明白, 本发明的实施例可提供为方法、 系统、 或计算机程序产 品。 因此, 本发明可釆用完全硬件实施例、 完全软件实施例、 或结合软件和硬件方面的实 施例的形式。 而且, 本发明可釆用在一个或多个其中包含有计算机可用程序代码的计算机 可用存储介盾 (包括但不限于磁盘存储器、 CD-ROM、 光学存储器等)上实施的计算机程 序产品的形式。
本发明是参照根据本发明实施例的方法、 设备(系统)、 和计算机程序产品的流程图 和 /或方框图来描述的。 应理解可由计算机程序指令实现流程图和 /或方框图中的每一流 程和 /或方框、 以及流程图和 /或方框图中的流程和 /或方框的结合。 可提供这些计算机 程序指令到通用计算机、 专用计算机、 嵌入式处理机或其他可编程数据处理设备的处理器 以产生一个机器, 使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用 于实现在流程图一个流程或多个流程和 /或方框图一个方框或多个方框中指定的功能的 装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方 式工作的计算机可读存储器中, 使得存储在该计算机可读存储器中的指令产生包括指令装 置的制造品, 该指令装置实现在流程图一个流程或多个流程和 /或方框图一个方框或多个 方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上, 使得在计算机 或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理, 从而在计算机或其他 可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和 /或方框图一个 方框或多个方框中指定的功能的步骤。
尽管已描述了本发明的优选实施例, 但本领域内的技术人员一旦得知了基本创造性概 念, 则可对这些实施例作出另外的变更和修改。 所以, 所附权利要求意欲解释为包括优选 实施例以及落入本发明范围的所有变更和修改。
显然, 本领域的技术人员可以对本发明实施例进行各种改动和变型而不脱离本发明实 施例的精神和范围。 这样, 倘若本发明实施例的这些修改和变型属于本发明权利要求及其 等同技术的范围之内, 则本发明也意图包含这些改动和变型在内。

Claims

权 利 要 求
1、 一种时分双工 TDD系统中的上行数据发送方法, 其特征在于, 该方法包括: 终端选取绑定的 N个上行子帧, N为一个无线帧内包含的上行子帧的数目; 终端在所述 N个上行子帧上发送第一数据传输块 TB的多个冗余版本。
2、 如权利要求 1所述的方法, 其特征在于, 所述 N个上行子帧为 N个连续的上行子 帧或 N个非连续的上行子帧。
3、 如权利要求 2所述的方法, 其特征在于, 在所述 N个上行子帧为 N个非连续的上 行子帧时, 在同一个无线帧内相邻的绑定上行子帧之间, 间隔一个上行子帧; 以及, 在两个相邻无线帧内的绑定上行子帧的子帧号不重复。
4、 如权利要求 1所述的方法, 其特征在于, 在终端在所述 N个上行子帧上发送第一
TB的多个冗余版本之后, 进一步包括:
终端仅在下行子帧 i上接收网络侧发送的肯定应答 /否定应答 ACK/NACK指示后, 根 据所述 ACK/NACK指示确定是否需要对所述第一 TB的多个冗余版本进行重传, 在确定 需要重传时,重新选取绑定的 N个上行子帧, 并在重新选取的 N个上行子帧上对所述第一 TB的多个冗余版本进行重传; 或者,
终端在下行子帧 i上接收网络侧发送的 ACK/NACK指示、 在下行子帧 n上接收网络 侧发送的上行调度授权 UL grant信令后, 重新选取绑定的 N 个上行子帧, 并根据所述 ACK/NACK指示和所述 UL grant信令, 在重新选取的 N个上行子帧上对所述第一 TB的 多个冗余版本进行重传或传输第二 TB的多个冗余版本。
5、 如权利要求 4所述的方法, 其特征在于, 所述下行子帧 i与所述 N个上行子帧中 的最后一个子帧之间的时序关系,遵守长期演进 LTE系统协议中规定的上行混合自动重传 请求 HARQ中的传输反馈时序关系。
6、 如权利要求 4所述的方法, 其特征在于, 当所述选取的 N个上行子帧中第一个子 帧为无线帧 1 中的第 a个子帧时,所述重新选取的 N个上行子帧中的第一个子帧为无线帧 1+3中的第 a个子帧。
7、 如权利要求 4所述的方法, 其特征在于, 所述下行子帧 n与所述重新选取的 N个 上行子帧中的第一个子帧之间的时序关系, 遵守长期演进 LTE 系统协议中规定的上行 HARQ中的调度传输时序关系。
8、 如权利要求 4所述的方法, 其特征在于, 终端在发送第一 TB的多个冗余版本时: 按照版本号为 0、 2、 3、 1的顺序循环传输该第一 TB的冗余版本。
9、 如权利要求 1所述的方法, 其特征在于, 在终端选取绑定的 N个上行之前, 进一 步包括: 终端在下行子帧 X上接收网络侧发送的 UL grant信令;
下行子帧 X与所述选取的 N个上行子帧中第一个子帧之间的时序关系,遵守 LTE系统 协议中规定的上行 HARQ中的调度传输时序关系。
10、 一种时分双工 TDD系统中的上行数据接收方法, 其特征在于, 该方法包括: 基站选取绑定的 N个上行子帧, N为一个无线帧内包含的上行子帧的数目; 基站在所述 N个上行子帧上接收第一数据传输块 TB的多个冗余版本。
11、 如权利要求 10所述的方法, 其特征在于, 所述 N个上行子帧为 N个连续的上行 子帧或 N个非连续的上行子帧。
12、 如权利要求 11所述的方法, 其特征在于, 在所述 N个上行子帧为 N个非连续的 上行子帧时, 在同一个无线帧内相邻的绑定上行子帧之间, 间隔一个上行子帧; 以及, 在两个相邻无线帧内的绑定上行子帧的子帧号不重复。
13、 如权利要求 10所述的方法, 其特征在于, 在基站在所述 N个上行子帧上接收第 一 TB的多个冗余版本之后 , 进一步包括:
基站仅在下行子帧 i上向终端发送肯定应答 /否定应答 ACK/NACK指示后, 根据所述 ACK/NACK指示确定终端是否需要对所述第一 TB的多个冗余版本进行重传,在确定需要 重传时,重新选取绑定的 N个上行子帧,并在重新选取的 N个上行子帧上接收终端重传的 所述第一 TB的多个冗余版本; 或者,
基站在下行子帧 i上向终端发送 ACK/NACK指示、 在下行子帧 n上向终端发送上行 调度授权 UL grant信令后 , 重新选取绑定的 N个上行子帧, 并在重新选取的 N个上行子 帧上接收终端重传的所述第一 TB的多个冗余版本或终端传输的第二 TB的多个冗余版本。
14、 如权利要求 13所述的方法, 其特征在于, 所述下行子帧 i与所述 N个上行子帧 中的最后一个子帧之间的时序关系,遵守长期演进 LTE系统协议中规定的上行混合自动重 传请求 HARQ中的传输反馈时序关系。
15、 如权利要求 13所述的方法, 其特征在于, 当所述选取的 N个上行子帧中第一个 子帧为无线帧 1 中的第 a个子帧时,所述重新选取的 N个上行子帧中的第一个子帧为无线 帧 1+3中的第 a个子帧。
16、 如权利要求 13所述的方法, 其特征在于, 所述下行子帧 n与所述重新选取的 N 个上行子帧中的第一个子帧之间的时序关系,遵守长期演进 LTE系统协议中规定的上行混 合自动重传请求 HARQ中的调度传输时序关系。
17、如权利要求 13所述的方法,其特征在于,基站在接收第一 TB的多个冗余版本时: 按照版本号为 0、 2、 3、 1的顺序循环接收该第一 TB的冗余版本。
18、 如权利要求 10所述的方法, 其特征在于, 在基站选取绑定的 N个上行之前, 进 一步包括: 基站在下行子帧 X上向终端发送 UL grant信令;
下行子帧 X与所述选取的 N个上行子帧中第一个子帧之间的时序关系,遵守 LTE系统 协议中规定的上行 HARQ中的调度传输时序关系。
19、 一种终端, 其特征在于, 该终端包括:
子帧选取单元, 用于选取绑定的 N个上行子帧, N为一个无线帧内包含的上行子帧的 数目;
上行传输单元,用于在所述 N个上行子帧上发送第一数据传输块 TB的多个冗余版本。
20、 如权利要求 19所述的终端, 其特征在于, 所述 N个上行子帧为 N个连续的上行 子帧或 N个非连续的上行子帧。
21、 如权利要求 20所述的终端, 其特征在于, 在所述 N个上行子帧为 N个非连续的 上行子帧时, 在同一个无线帧内相邻的绑定上行子帧之间, 间隔一个上行子帧; 以及, 在两个相邻无线帧内的绑定上行子帧的子帧号不重复。
22、 如权利要求 19所述的终端, 其特征在于, 所述上行传输单元还用于:
在所述 N个上行子帧上发送第一 TB的多个冗余版本之后 , 仅在下行子帧 i上接收网 络侧发送的肯定应答 /否定应答 ACK/NACK指示后, 根据所述 ACK/NACK指示确定是否 需要对所述第一 TB的多个冗余版本进行重传, 在确定需要重传时, 重新选取绑定的 N个 上行子帧, 并在重新选取的 N个上行子帧上对所述第一 TB的多个冗余版本进行重传; 或 者,
在下行子帧 i上接收网络侧发送的 ACK/NACK指示、 在下行子帧 n上接收网络侧发 送的上行调度授权 UL grant 信令后, 重新选取绑定的 N 个上行子帧, 并根据所述 ACK/NACK指示和所述 UL grant信令, 在重新选取的 N个上行子帧上对所述第一 TB的 多个冗余版本进行重传或传输第二 TB的多个冗余版本。
23、 如权利要求 22所述的终端, 其特征在于, 所述下行子帧 i与所述 N个上行子帧 中的最后一个子帧之间的时序关系,遵守长期演进 LTE系统协议中规定的上行混合自动重 传请求 HARQ中的传输反馈时序关系。
24、 如权利要求 22所述的终端, 其特征在于, 当所述选取的 N个上行子帧中第一个 子帧为无线帧 1 中的第 a个子帧时,所述重新选取的 N个上行子帧中的第一个子帧为无线 帧 1+3中的第 a个子帧。
25、 如权利要求 22所述的终端, 其特征在于, 所述下行子帧 n与所述重新选取的 N 个上行子帧中的第一个子帧之间的时序关系,遵守长期演进 LTE系统协议中规定的上行混 合自动重传请求 HARQ中的调度传输时序关系。
26、 如权利要求 22所述的终端, 其特征在于, 所述上行传输单元在发送第一 TB的多 个冗余版本时: 按照版本号为 0、 2、 3、 1的顺序循环传输该第一 TB的冗余版本。
27、 如权利要求 19所述的终端, 其特征在于, 该终端还包括:
下行接收单元, 用于在选取绑定的 N个上行之前, 在下行子帧 X上接收网络侧发送的 UL grant信令;
下行子帧 X与所述选取的 N个上行子帧中第一个子帧之间的时序关系,遵守 LTE系统 协议中规定的上行 HARQ中的调度传输时序关系。
28、 一种基站, 其特征在于, 该基站包括:
子帧选取单元, 用于选取绑定的 N个上行子帧, N为一个无线帧内包含的上行子帧的 数目;
上行接收单元,用于在所述 N个上行子帧上接收第一数据传输块 TB的多个冗余版本。
29、 如权利要求 28所述的基站, 其特征在于, 所述 N个上行子帧为 N个连续的上行 子帧或 N个非连续的上行子帧。
30、 如权利要求 29所述的基站, 其特征在于, 在所述 N个上行子帧为 N个非连续的 上行子帧时, 在同一个无线帧内相邻的绑定上行子帧之间, 间隔一个上行子帧; 以及, 在两个相邻无线帧内的绑定上行子帧的子帧号不重复。
31、 如权利要求 28所述的基站, 其特征在于, 所述上行接收单元还用于: 在所述 N 个上行子帧上接收第一 TB的多个冗余版本之后, 仅在下行子帧 i上向终端发送肯定应答 / 否定应答 ACK/NACK指示后, 根据所述 ACK/NACK指示确定终端是否需要对所述第一 TB的多个冗余版本进行重传, 在确定需要重传时, 重新选取绑定的 N个上行子帧, 并在 重新选取的 N个上行子帧上接收终端重传的所述第一 TB的多个冗余版本; 或者,
在下行子帧 i上向终端发送 ACK/NACK指示、 在下行子帧 n上向终端发送上行调度 授权 UL grant信令后 , 重新选取绑定的 N个上行子帧, 并在重新选取的 N个上行子帧上 接收终端重传的所述第一 TB的多个冗余版本或终端传输的第二 TB的多个冗余版本。
32、 如权利要求 31所述的基站, 其特征在于, 所述下行子帧 i与所述 N个上行子帧 中的最后一个子帧之间的时序关系,遵守长期演进 LTE系统协议中规定的上行混合自动重 传请求 HARQ中的传输反馈时序关系。
33、 如权利要求 31所述的基站, 其特征在于, 当所述选取的 N个上行子帧中第一个 子帧为无线帧 1 中的第 a个子帧时,所述重新选取的 N个上行子帧中的第一个子帧为无线 帧 1+3中的第 a个子帧。
34、 如权利要 31所述的基站, 其特征在于, 所述下行子帧 n与所述重新选取的 N个 上行子帧中的第一个子帧之间的时序关系,遵守长期演进 LTE系统协议中规定的上行混合 自动重传请求 HARQ中的调度传输时序关系。
35、 如权利要 31所述的基站, 其特征在于, 所述上行接收单元在接收第一 TB的多个 冗余版本时:
按照版本号为 0、 2、 3、 1的顺序循环接收该第一 TB的冗余版本。
36、 如权利要 31所述的基站, 其特征在于, 该基站还包括:
下行传输单元,用于在选取绑定的 N个上行之前,在下行子帧 X上向终端发送 UL grant 信令;
下行子帧 X与所述选取的 N个上行子帧中第一个子帧之间的时序关系,遵守 LTE系统 协议中规定的上行 HARQ中的调度传输时序关系。
PCT/CN2013/078431 2012-07-13 2013-06-28 时分双工系统中的上行数据发送及接收方法和设备 WO2014008818A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210244270.8A CN103546235B (zh) 2012-07-13 2012-07-13 时分双工系统中的上行数据发送及接收方法和设备
CN201210244270.8 2012-07-13

Publications (1)

Publication Number Publication Date
WO2014008818A1 true WO2014008818A1 (zh) 2014-01-16

Family

ID=49915392

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/078431 WO2014008818A1 (zh) 2012-07-13 2013-06-28 时分双工系统中的上行数据发送及接收方法和设备

Country Status (2)

Country Link
CN (1) CN103546235B (zh)
WO (1) WO2014008818A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106134271A (zh) * 2014-12-19 2016-11-16 华为技术有限公司 一种数据传输的装置和方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106603209B (zh) * 2015-10-16 2020-05-05 普天信息技术有限公司 一种时域频域资源联合绑定的数据传输方法及设备
CN107529225A (zh) 2016-06-22 2017-12-29 电信科学技术研究院 一种发送和接收反馈信息的方法及设备
CN107733579B (zh) * 2016-08-12 2020-03-03 电信科学技术研究院 一种ack/nack反馈方法、装置及系统
CN109327905A (zh) * 2017-07-31 2019-02-12 展讯通信(上海)有限公司 数据传输的方法、终端及计算机可读介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101860911A (zh) * 2009-04-10 2010-10-13 大唐移动通信设备有限公司 发送、转发上行数据的方法、装置及系统
US20110154170A1 (en) * 2009-12-21 2011-06-23 Qualcomm Incorporated System, method and apparatus for early termination based on transport block fail for acknowledgment bundling in time division duplex
CN102158325A (zh) * 2011-04-22 2011-08-17 中兴通讯股份有限公司 数据传输方法及装置
CN102281646A (zh) * 2011-07-29 2011-12-14 电信科学技术研究院 一种上行数据的传输方法及装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101499894B (zh) * 2008-02-01 2011-04-20 大唐移动通信设备有限公司 一种时分双工系统中的上行调度方法
CN101562901B (zh) * 2008-09-22 2011-11-02 华为技术有限公司 一种冗余版本和无线帧号以及子帧号绑定的方法和装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101860911A (zh) * 2009-04-10 2010-10-13 大唐移动通信设备有限公司 发送、转发上行数据的方法、装置及系统
US20110154170A1 (en) * 2009-12-21 2011-06-23 Qualcomm Incorporated System, method and apparatus for early termination based on transport block fail for acknowledgment bundling in time division duplex
CN102158325A (zh) * 2011-04-22 2011-08-17 中兴通讯股份有限公司 数据传输方法及装置
CN102281646A (zh) * 2011-07-29 2011-12-14 电信科学技术研究院 一种上行数据的传输方法及装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106134271A (zh) * 2014-12-19 2016-11-16 华为技术有限公司 一种数据传输的装置和方法
CN106134271B (zh) * 2014-12-19 2019-10-25 华为技术有限公司 一种数据传输的装置和方法

Also Published As

Publication number Publication date
CN103546235B (zh) 2017-04-19
CN103546235A (zh) 2014-01-29

Similar Documents

Publication Publication Date Title
JP6275802B2 (ja) 意図しないダウンリンクサブフレームのためのharq−ackハンドリング
JP6194006B2 (ja) 通信装置及び通信方法
US8321740B2 (en) Method and apparatus of handling TTI bundling
JP5009410B2 (ja) 移動局装置、無線通信方法および集積回路
US8477666B2 (en) Method and arrangement in a telecommunication system with signalling of assigned data packets in a bundling window
JP2020528225A (ja) 通信装置および通信方法
CN110036586A (zh) 用于处理时间缩减信令的系统和方法
CN103248464B (zh) 上行数据传输方法和装置
WO2015103722A1 (zh) Harq-ack反馈信息的传输方法、系统及终端和基站
CN102474392A (zh) 在针对采用多点协作传输接收的分组的nack传输中引入延迟
WO2014173351A1 (zh) 一种上行控制信息的发送方法及用户设备、基站
WO2017016351A1 (zh) 一种上行数据的传输方法及装置
JP5061128B2 (ja) 基地局装置、移動局、無線通信システム及び通信制御方法
WO2014008818A1 (zh) 时分双工系统中的上行数据发送及接收方法和设备
CN106171004A (zh) 一种rlc数据包分流方法及基站
WO2018112922A1 (zh) 一种数据传输的方法及设备
WO2013135015A1 (zh) 增强上行链路覆盖的方法及装置、基站
US20230284218A1 (en) Scheduling multiple communication channels via a single control element
WO2013159597A1 (zh) 数据传输方法、用户设备及基站
WO2015062276A1 (zh) Tti集束的传输处理方法及装置、网络侧设备、ue
CN109314590A (zh) 上行传输的方法和装置
WO2013166883A1 (zh) 传输或接收上行sps业务数据的方法和用户设备和基站
WO2012031483A1 (zh) 一种混合自动重传请求的处理方法及装置
CN103326823B (zh) 数据传输方法及装置
JP5502935B2 (ja) 移動局装置、無線通信方法および集積回路

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13817044

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13817044

Country of ref document: EP

Kind code of ref document: A1