WO2014008753A1 - 等离子水燃料工业炉 - Google Patents

等离子水燃料工业炉 Download PDF

Info

Publication number
WO2014008753A1
WO2014008753A1 PCT/CN2013/000815 CN2013000815W WO2014008753A1 WO 2014008753 A1 WO2014008753 A1 WO 2014008753A1 CN 2013000815 W CN2013000815 W CN 2013000815W WO 2014008753 A1 WO2014008753 A1 WO 2014008753A1
Authority
WO
WIPO (PCT)
Prior art keywords
plasma
water
primary
hole
solid
Prior art date
Application number
PCT/CN2013/000815
Other languages
English (en)
French (fr)
Inventor
郭志男
Original Assignee
Guo Zhinan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guo Zhinan filed Critical Guo Zhinan
Publication of WO2014008753A1 publication Critical patent/WO2014008753A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/04Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of inorganic compounds, e.g. ammonia
    • C01B3/042Decomposition of water
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Definitions

  • the present invention relates to an industrial furnace, and more particularly to a plasma water fuel industrial furnace.
  • the stove with the main fuel of coal and coal as the main fuel adopts a single air intake and a secondary air intake method to increase the combustion support, and the coal and the diesel oil are first immersed in water and then burned into the furnace to support the steam.
  • a more advanced approach is to add a gasifier to the furnace to heat the water into steam for combustion.
  • the object of the present invention is to provide a plasma water fuel industrial furnace which has the advantages of simple structure, high combustion efficiency, low cost and the like.
  • the present invention provides a plasma water fuel industrial furnace comprising a primary plasma generator, a superposed plasma amplification generator and a heating device, the primary plasma generator being provided with a primary plasma region formed by a solid plasma catalyst And a first water vapor supply port located at a middle portion of a bottom end of the primary plasma region; the stacked plasma amplification generator is provided with a secondary plasma region formed by a solid plasma catalyst and located at a bottom end of the secondary plasma region a second water vapor supply port, the heating device being disposed adjacent to the primary plasma region for heating the solid plasma catalyst of the primary plasma region to a predetermined temperature, the first water vapor supply port for providing water vapor through the primary In the plasma region, the water molecules are cleaved into hydrogen and oxygen and burned to heat the solid plasma catalyst in the secondary plasma region, or the furnace body is heated by the pyrolysis of heated water to generate hydrogen and oxygen to burn the layer of water. structure.
  • the primary plasma generator includes a primary water tank, the primary water tank has an axial first through hole, a first isolation net is disposed at a bottom of the first through hole, and the first through hole is disposed on the first isolation network.
  • a solid plasma catalyst is formed to form the primary plasma region
  • the primary water tank is provided with a first water storage space surrounding the first through hole, and a first water inlet pipe communicating with the first water storage space
  • a first exhaust pipe the first steam supply port is disposed at an end of the first exhaust pipe and extends to a middle portion of a bottom end of the first isolation net
  • the superposed plasma expansion generator is disposed in the primary plasma
  • the generator including a secondary water tank, the secondary water tank has an axial second through hole, and a bottom end of the second through hole is opposite to a top end of the first through hole, the second through hole
  • the top of the second through hole is provided with a second isolation net
  • the second through hole is provided with a solid plasma catalyst on the second isolation net to form the secondary plasma region
  • a water level display meter is respectively disposed on the primary water tank and the secondary water tank, and a water quantity regulating valve is respectively disposed on the first water inlet pipe and the second water inlet pipe.
  • the second through hole has an aperture that gradually increases from bottom to top.
  • the second row of tubes has a plurality of exhaust branches, and the ends of the plurality of exhaust branches respectively form the second water vapor supply port and extend to the middle of the bottom end of the second isolation net corresponding thereto
  • the second exhaust pipe further has a pressure relief branch, the pressure relief branch is provided with a pressure relief valve, and the plurality of exhaust branches of the second exhaust pipe are respectively provided with a gas pressure regulating valve.
  • the solid plasma catalyst is a solid material having excellent thermal conductivity and high temperature stability.
  • the solid plasma catalyst is graphite or a metal having a softening temperature of 1000 ° C or more.
  • the heating device is a liquid or gaseous flame spray gun, or a solid fuel, electric heating combined with a steam combined flame spray gun, disposed in the middle of the bottom end of the primary plasma region.
  • the invention has the advantages of simple structure, simple ignition, high material consumption, abundant sources, convenient maintenance and replacement, and the like.
  • FIG. 1 is a schematic cross-sectional view showing a preferred embodiment of a plasma water fuel industrial furnace according to the present invention.
  • Figure 2 is a plan view of the primary plasma generator in the plasma water fuel industrial furnace shown in Figure 1.
  • Figure 3 is a top plan view of the superposed plasma expansion generator of the plasma water fuel industrial furnace shown in Figure 1.
  • FIG. 1 and FIG. 3 it is a preferred embodiment of the plasma water fuel industrial furnace of the present invention.
  • the plasma water fuel industrial furnace includes a primary plasma generator 10, a superposed plasma amplification generator 0, and a heating device 30, the primary plasma generator 10 being provided with a primary formed by a solid plasma catalyst 14.
  • the superposed plasma amplification generator 20 is provided with a secondary plasma region 25 formed by a solid plasma catalyst 24 and a second water vapor supply port 281 located at a middle portion of the bottom end of the secondary plasma region 25.
  • the heating device 30 is disposed adjacent to the primary plasma region 15 for heating the solid plasma catalyst 14 of the primary plasma region 15 to a predetermined temperature, the first water vapor supply port 181 for providing water vapor through the primary plasma region 15
  • a solid plasma catalyst 24 that cleaves water molecules into hydrogen and oxygen and combusts to heat the secondary plasma region 25.
  • the temperature of the solid plasma catalyst 14 of the primary plasma region 15 after heating is not lower than 1000 V, so that the water vapor supplied from the first steam supply port 181 is accelerated and cracked to decompose high-quality hydrogen atom fuel and is optimal.
  • the combustion promoter oxygen atom is then combusted to heat the solid plasma catalyst 24 of the secondary plasma region 25 to effect multi-stage combustion.
  • the plasma water fuel industrial furnace may include a plurality of superimposed plasma amplification generators stacked on each other, and the latter stage superimposed plasma expansion generators have the same structure as the previous one-stage superposition plasma amplification generator, but the volume It is larger than the previous stage superimposed plasma amplification generator.
  • the primary plasma generator 10 includes a primary water tank 11 having a first through hole 12 in the axial direction, and a first isolation net 13 is disposed at the bottom of the first through hole 12, the first A solid plasma catalyst 14 is disposed in the through hole 12 on the first isolation net 13 to form the primary plasma region 15, and the primary water tank 11 is provided with a first water storage space 16 surrounding the first through hole 12.
  • the superposed plasma expansion generator 20 is disposed above the primary plasma generator 10, including a secondary water tank 21 having an axial second through hole 22, the bottom end of the second through hole 22 is opposite to the top end of the first through hole 12, the top end of the second through hole 22 is a stove top, and the second through hole 22 is provided with a second The isolation net 23, the second through hole 22 is fixed on the second isolation net 23 a plasma catalyst 24 to form the secondary plasma region 25, the secondary water tank 21 is provided with a second water storage space 26 surrounding the second through hole 22, and is connected to the second water storage space 26.
  • the second inlet pipe 27 and the second exhaust pipe 28 are disposed at the end of the second exhaust pipe 28 and extend to the middle of the bottom end of the second isolation net 23.
  • the water level in the primary water tank 11 does not exceed the first exhaust pipe 18, and the water level in the secondary water tank 21 does not exceed the second exhaust pipe 28.
  • the primary water tank 11 and the secondary water tank 21 are made of a material resistant to high temperatures such as metal. ⁇
  • the solid plasma catalyst 14 in the primary plasma region 15 is heated by the heating device 30, and then the water in the primary water tank 11 is heated to be boiled by the inner wall of the primary water tank to generate water vapor, and the generated water vapor passes through the first row.
  • the gas pipe 18 is transmitted to the first steam supply port 181, and is injected into the solid plasma catalyst 14 in the primary plasma region 15 under high and low action.
  • the water is boiled to generate water vapor, and the generated water vapor is transferred to the second steam supply port 281 through the second exhaust pipe 28, and is injected into the solid plasma catalyst 24 in the secondary plasma region 25 under the action of high pressure. , in order to continuously expand the plasma area continuously.
  • the primary water tank 11 and the secondary water tank 21 are respectively provided with water level display meters 111 and 211, and the first water inlet pipe 17 and the second water inlet pipe 27 are respectively provided with water amount adjusting valves 171 and 271.
  • the second through hole 22 has a tapered shape, and its aperture gradually increases from bottom to top.
  • a plurality of second isolation nets 23 disposed at intervals may be disposed in the second through holes 22, and the second through holes 22 are respectively provided with solid plasma catalysts 24 on the plurality of second isolation nets 23 to Forming a plurality of secondary plasma regions 25, the second exhaust pipe 28 having a plurality of exhaust branches 282, the ends of the plurality of exhaust branches 282 respectively forming the second water vapor supply port 281 and extending To the middle of the bottom end of the second isolation net 23 corresponding thereto.
  • two second isolation nets 23 are disposed in the second through hole 22 and two secondary plasma regions 25 are formed.
  • only one isolation grid 23 may be provided and a secondary plasma region 25 may be formed, or more isolation grids 23 or more secondary plasma regions 25 may be formed, depending on the application.
  • the second exhaust pipe 28 further has a pressure relief branch 283, the pressure relief branch 283 is provided with a pressure relief valve 284, and the plurality of exhaust branches 282 of the second exhaust pipe 28 are respectively provided Air pressure regulating valve 285.
  • the solid plasma catalyst 14 is a solid material having excellent thermal conductivity and high temperature stability, such as graphite, a metal having a softening temperature of 1000 ⁇ or more.
  • the heating device 30 is a gas heating device, a solid fuel heating device or an electric heating device.
  • the heating device 30 is a gas heating device, specifically a liquid or gaseous flame spray gun, a solid fuel or an electric heating combination.
  • a steam flame spray gun is disposed in the middle of the bottom end of the primary plasma region 15.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Abstract

一种等离子水燃料工业炉,包括初级等离子发生器(10),叠加式等离子扩大发生器(20)及加热装置(30)。初级等离子发生器(10)设有由固体等离子催化物(14)形成的初级等离子区域(15)及位于初级等离子区域(15)底端中部的第一水蒸汽供应口(181),叠加式等离子扩大发生器(20)设有由固体等离子催化物(14)形成的次级等离子区域(25)及位于次级等离子区域(25)底端中部的第二水蒸汽供应口(281),加热装置(30)靠近初级等离子区域(15)设置,用于将初级等离子区域(15)的固体等离子催化物(14)加热至预定温度,第一水蒸汽供应口(181)用于提供水蒸汽穿过初级等离子区域(15),使水分子裂解成氢与氧并进行燃烧以加热次级等离子区域(25)的固定等离子催化物(14)。该等离子水燃料工业炉具有结构简单、燃烧效率高、成本低的优点。

Description

等离子水燃料工业炉
技术领域
本发明涉及一种工业炉, 尤其涉及一种等离子水燃料工业炉。
背景技术
现有技术中, 以柴、 煤为主要燃料的炉灶, 多采用一次进风、 二次进风办法以 增加助燃, 也有先将煤、 柴浸水后再入炉燃烧以图蒸气助燃的。 更为先进的办法是 在炉内增加一个气化器用炉温将水加热成蒸汽参加燃烧。 这些办法都不同程度的起 到助燃的作用, 也能够节省一些燃料。 但是, 现有的这些技术都存在结构复 , 助 燃效率不高等缺点。
发明内容
因此, 本发明的目的在于提供一种等离子水燃料工业炉, 具有结构简单、 燃烧 . 效率高、 低成本等优点。
为实现上述目的, 本发明提供一种等离子水燃料工业炉, 包括初级等离子发生 器、 叠加式等离子扩大发生器及加热装置, 所述初级等离子发生器设有由固体等离 子催化物形成的初级等离子区域及位于所述初级等离子区域底端中部的第一水蒸汽 供应口; 所述叠加式等离子扩大发生器设有由固体等离子催化物形成的次级等离子 区域及位于所述次级等离子区域底端中部的第二水蒸汽供应口, 所述加热装置靠近 初级等离子区域设置, 用于将初级等离子区域的固体等离子催化物加热至预定温 度, 所述第一水蒸汽供应口用于提供水蒸汽穿过初级等离子区域, 使水分子裂解成 氢与氧并进行燃烧以加热次级等离子区域的固体等离子催化物, 或说是以加热水分 子裂解产生氢和氧燃烧逐层加热裂解下级水分子燃烧的炉体结构。
所述初级等离子发生器包括初级水箱、 所述初级水箱具有轴向的第一通孔, 所 述第一通孔底部设有第一隔离网, 所述第一通孔内于第一隔离网上设有固体等离子 催化物以形成所述初级等离子区域, 所述初级水箱设有环绕所述第一通孔的第一储 - 水空间、 及与所述第一储水空间相连通的第一进水管及第一排气管, 所述第一水蒸 汽供应口设于所述第一排气管的末端并延伸到第一隔离网的底端中部, 所述叠加式 等离子扩大发生器设于初级等离子发生器的上方, 包括次级水箱, 所述次级水箱具 有轴向的第二通孔, 所述第二通孔的底端与第一通孔的顶端相正对, 所述第二通孔 的顶端为炉灶口, 所述第二通孔内设有第二隔离网, 所述第二通孔内于第二隔离网 上设有固体等离子催化物以形成所述次级等离子区域, 所述次级水箱设有环绕所述 第二通孔的第二储水空间、 及与所述第二储水空间相连通的第二进水管及第二排气 管, 所述第二水蒸汽供应口设于所述第二排气管的末端并延伸到第二隔离网的底端 中部。
所述初级水箱及次级水箱上分别设有水位显示计, 所述第一进水管及第二进水 管上分别设有水量调节阀。 ' 所述第二通孔其孔径由下往上逐渐增大。 '
所述第二通孔内设有呈间隔设置的多个第二隔离网, 所述第二通孔内于所述多 个第二隔离网上设有固体等离子催化物以形成多个次级等离子区域, 所述第二排所 管具有多个排气支路, 所述多个排气支路的末端分别形成所述第二水蒸汽供应口并 延伸到与之对应的第二隔离网的底端中部, 所述第二排气管还具有泄压支路, 所述 泄压支路上设有泄压阀门, 所述第二排气管的多个排气支路分别设有气压调节阀。
所述固体等离子催化物为具优良导热性及高温稳定性的固体物质。
所述固体等离子催化物为石墨或软化温度在 1000'C以上的金属。
所述加热装置为液态或气态火焰喷枪, 或固体燃料、 电加热配合蒸汽组合火焰 喷枪, 设于初级等离子区域的底端中部。
本发明的有效效果: 该等离子水燃料工业炉结构简单, 具备点火简单、 用料经 济, 来源丰富, 安全维修更换方便等优点。
为更进一步阐述本发明为实现预定目的所采取的技术手段及功效, 请参阅以下 有关本实用新型的详细说明与附图, 相信本实用新型的目的、 特征与特点, 应当可 由此得到深入且具体的了解, 然而附图仅提供参考与说明用, 并非用来对本发明加 以限制。
附图说明
下面结合附图, 通过对本发明的具体实施方式详细描述, 将使本发明的技术方 案及其他有益效果显而易见。
附图中
图 1为本发明等离子水燃料工业炉一较佳实施例的剖面结构示意图。
图 2为图 1所示等离子水燃料工业炉中初级等离子发生器的俯视图。
图 3为图 1所示等离子水燃料工业炉中叠加式等离子扩大发生器的俯视图。
具体实施方式
如图 1与图 3所示, 为本发明等离子水燃料工业炉的一较佳实施例。
该等离子水燃料工业炉, 包括初级等离子发生器 10、 叠加式等离子扩大发生器 0及加热装置 30, 所述初级等离子发生器 10设有由固体等离子催化物 14形成的初级 等离子区域 15及位于所述初级等离子区域 15底端中部的第一水蒸汽供应口 181。 所 述叠加式等离子扩大发生器 20设有由固体等离子催化物 24形成的次级等离子区域 25 及位于所述次级等离子区域 25底端中部的第二水蒸汽供应口 281。 所述加热装置 30 靠近初级等离子区域 15设置, 用于将初级等离子区域 15的固体等离子催化物 14加热 至预定温度, 所述第一水蒸汽供应口 181用于提供水蒸汽穿过初级等离子区域 15, 使水分子裂解成氢与氧并进行燃烧以加热次级等离子区域 25的固体等离子催化物 24。 所述初级等离子区域 15的固体等离子催化物 14被加热后的温度应不低于 1000 V, 以使第一水蒸汽供应口 181提供的水蒸汽加速裂化分解出优质的氢原子燃料与 最佳的助燃剂氧原子, 随即进行燃烧以加热次级等离子区域 25的固体等离子催化物 24, 实现多级燃烧。 根据实际使用需要, 所述等离子水燃料工业炉可包括多个相互 叠加的叠加式等离子扩大发生器, 后一些级叠加式等离子扩大发生器与前一级叠加 式等离子扩大发生器结构相同, 但体积要大于前一级叠加式等离子扩大发生器。
具体地, 所述初级等离子发生器 10包括初级水箱 11, 所述初级水箱 11具有轴向 的第一通孔 12, 所述第一通孔 12底部设有第一隔离网 13, 所述第一通孔 12内于第一 隔离网 13上设有固体等离子催化物 14以形成所述初级等离子区域 15, 所述初级水箱 1 1设有环绕所述第一通孔 12的第一储水空间 16、 及与所述第一储水空间 16相连通的 第一进水管 17及第一排气管 18, 所述第一水蒸汽供应口 181设于所 ί&第一排气管 18 的末端并延伸到第一隔离网 13的底端中部, 所述叠加式等离子扩大发生器 20设于初 级等离子发生器 10的上方, 包括次级水箱 21, 所述次级水箱 21具有轴向的第二通孔 22, 所述第二通孔 22的底端与第一通孔 12的顶端相正对, 所述第二通孔 22的顶端为 炉灶灶口, 所述第二通孔 22内设有第二隔离网 23, 所述第二通孔 22内于第二隔离网 23上设有固体等离子催化物 24以形成所述次级等离子区域 25, 所述次级水箱 21设有 环绕所述第二通孔 22的第二储水空间 26、 及与所述第二储水空间 26相连通的第二进 水管 27及第二排气管 28, 所述第二水蒸汽供应口 281设于所述第二排气管 28的末端 并延伸到第二隔离网 23的底端中部。 使用时, 初级水箱 11中的水位不超过第一排气 管 18, 次级水箱 21中的水位不超过第二排气管 28。 所述初级水箱 11及次级水箱 21由 耐高温的材料如金属制成。 ·
工作时, 由加热装置 30加热初级等离子区域 15内的固体等离子催化物 14, 然后 执量经初级水箱内壁传导加热初级水箱 11内的水至沸腾产生水蒸汽, 所产生的水蒸 汽经第一排气管 18传至第一水蒸汽供应口 181, 在高低作用下喷射入初级等离子区 域 15内的固体等离子催化物 14, 当这些高度活跃的水蒸汽在穿越具高温的初级等离 子区域 15时, 等离子体中的带电粒子产生的正、 负电场起到电解的作用, 加上这一 过程中分子与分子的高速运作猛烈撞击的共同作用, 使原本极难断裂的水分子链发 生瞬 1 断裂, 从而由水蒸汽分解出优质的氢原子燃料与最佳的助燃剂氧原子, 并在 该条件下完成燃烧, 喷涌出暗蓝色火焰, 释放出大量的热能, 以加热次级等离子区 域 25内的固体等离子催化物 24, 然后热量经次级水箱 21内壁传导加热次级水箱 21内 的水至沸腾产生水蒸汽, 所产生的水蒸汽经第二排气管 28传至第二水蒸汽供应口 281, 在高压作用下喷射入次级等离子区域 25内的固体等离子催化物 24, 如此反 复, 以此不断连续地扩展等离子区域。
所述初级水箱 11及次级水箱 21上分别设有水位显示计 111、 211, 所述第一进水 . 管 17及第二进水管 27上分别设有水量调节阀 171、 271。
所述第二通孔 22呈锥形, 其孔径由下到上逐渐增大。
所述第二通孔 22内可设置呈间隔设置的多个第二隔离网 23, 所述第二通孔 22内 于所述多个第二隔离网 23上分别设有固体等离子催化物 24以形成多个次级等离子区 域 25, 所述第二排气管 28具有多个排气支路 282, 所述多个排气支路 282的末端分别 形成所述第二水蒸汽供应口 281并延伸到与之对应的第二隔离网 23的底端中部。 本 实施例中, 所述第二通孔 22内设有两个第二隔离网 23及形成有两个次级等离子区域 25。 在其它实施例中, 也可以仅设一个隔离网 23及形成一个次级等离子区域 25, 或 者是形成更多个隔离网 23或更多个次级等离子区域 25, 具体根据应用需要设置。
所述第二排气管 28还具有泄压支路 283, 所述泄压支路 283上设有泄压阀门 284, 所述第二排气管 28的多个排气支路 282分别设有气压调节阀 285。
所述固体等离子催化物 14为具优良导热性及高温稳定性的固体物质, 如石墨、 软化温度在 1000Ό以上的金属等。 " - 所述加热装置 30为燃气加热装置、 固体燃料加热装置或电加热装置。 本实施例 中, 所述加热装置 30为燃气加热装置, 具体为液态或气态火焰喷枪, 固体燃料或电 加热组合成蒸汽火焰喷枪, 设于初级等离子区域 15的底端中部。
以上所述, 对于本领域的普通技术人员来说, 可以根据本发明的技术方案和技 术构思作出其他各种相应的改变和变形, 而所有这些改变和变形都应属于本发明后 附的权利要求的保护范围。

Claims

权利要求书
一种等离子水燃料工业炉, 其特征在于, 包括初级等离子发生器、 叠加式 等离子扩大发生器及加热装置, 所述初级等离子发生器设有由固体等离子催化物形 成的初级等离子区域及位于所述初级等离子区域及位于所述初级等离子区域底端中 部的第一水蒸汽供应口, 所述叠加式等离子扩大发生器设有由固体等离子催化物形 成的次级等离子区域及位于所述次级等离子区域底端中部的第二水蒸汽供^ ΐ口, 所 述加热装置靠近初级等离子区域设置, 用于将初级等离子区域的固体等离子催化物 加热至预定温度, 所述第一水蒸汽供应口用于提供水蒸气穿过初级等离子区域, 使 水分子裂解成氢与氧并进行燃烧以加热次级等离子区域的固体等离子催化物, 或说 是以加热水分子裂解产生氢和氧燃烧逐层加热裂解下级水分子燃烧的炉体结构。
2、 如权利要求 1所述的等离子水燃料工业炉, 其特征在于, 所述初级等离子发 生器包括初级水箱, 所述初级水箱具有轴向的第一通孔, 所述第一通孔底部设有第 一隔离网, 所述第一通孔内于第一隔离网上设有固体等离子催化物以形成所述初级 等离子区域, 所述初级水箱设有环绕所述第一通孔的第一储水空间、 及与所述第一 储水空间相连通的第一进水管及第一排气管, 所述第一水蒸汽供应口设于所述第一 排气管的末端并延伸到第一隔离网的底端中部, 所述叠加式等离子扩大发生器设于 初级等离子发生器的上方, 包括次级水箱, 所述次级水箱具有轴向的第二通孔, 所 述第二通孔内设有第二隔离网, 所述第二通孔内于第二隔离网上设有固体等离子催 化物以形成所述次级等离子区域, 所述次级水箱设有环绕所述第二通孔的第二储水 空间、 及与所述第二储水空间相连通的第二进水管及第二排气管, 所述第二水蒸汽 供应口设于所述第二排气管的末端并延伸到第二隔离网的底端中部。
3、 如权利要求 2所述的等离子水燃料工业炉, 其特征在于, 所述初级水箱及次 级水箱上分别设有水位显示计, 所述第一进水管及第二进水管上分别设有水量调节 阀。
4、 如权利要求 2所述的等离子水燃料工业炉, 其特征在于, 所述第二通孔其孔 径由下往上逐渐增大。
5、 如权利要求 2所述的等离子水燃料工业炉, 其特征在于, 所述第二通孔内设 . 有呈间隔设置的多个第二隔离网, 所述第二通孔内于所述多个第二隔离网上设有固 体等离子催化物以形成多个次级等离子区域, 所述第二排气管具有多个排气支路, 所述多个排气支路的末端分别形成所述第二水蒸汽供应口并延伸到与之对应的第二 隔离网的底端中间, 所述第二排气管还具有泄压支路, 所述泄压支路上设有泄压阀 门。 所述第二排气管的多个排气支路分别设有气压调节阀。
6、 如权利要求 7所述的等离子水燃料工业炉, 其特征在于, 所述固体等离子催 化物为石墨或软化温度在 1000'C以上的金属。
7、 如权利要求 1所述的等离子水燃料工业炉, 其特征在于, 所述加热装置为液 态或气态火焰喷枪, 或固体燃料、 电加热配合蒸汽组合火焰喷枪。 设于初级等离子 区域的底端中部。
PCT/CN2013/000815 2012-07-09 2013-07-03 等离子水燃料工业炉 WO2014008753A1 (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CN201220328989.5 2012-07-09
CN201220328989 2012-07-09
CNNONE 2014-06-27

Publications (1)

Publication Number Publication Date
WO2014008753A1 true WO2014008753A1 (zh) 2014-01-16

Family

ID=47642452

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/000815 WO2014008753A1 (zh) 2012-07-09 2013-07-03 等离子水燃料工业炉

Country Status (2)

Country Link
CN (2) CN202973155U (zh)
WO (1) WO2014008753A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2541033A (en) * 2015-08-07 2017-02-08 Ultimate Engines Ltd Reactor

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202973155U (zh) * 2012-07-09 2013-06-05 郭志男 等离子水燃料工业炉
CN111006200B (zh) * 2019-11-11 2023-10-03 黑龙江赫尔特生物质能源发展有限公司 用于小型房屋带自动上料装置使用整捆秸秆燃料的锅炉

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1470454A (zh) * 2002-07-22 2004-01-28 邱纪林 一种氢能转换方法及装置
CN201014545Y (zh) * 2007-01-18 2008-01-30 侯慧敏 燃水反应炉
WO2010008237A2 (ko) * 2008-07-17 2010-01-21 Ra Kyu Sung H₂o의 고온 분해에 따른 기체 추출 및 열에너지 발생장치
WO2010053387A1 (en) * 2008-06-25 2010-05-14 Centrum Innowacji, Badan I Wdrozen A method and reactor for thermal decomposition of water
WO2010077350A2 (en) * 2009-01-02 2010-07-08 James Cornwell Method and apparatus for dissociating hydrogen and oxygen from water
CN102927584A (zh) * 2012-07-09 2013-02-13 郭志男 等离子水燃料工业炉

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2588237Y (zh) * 2002-11-13 2003-11-26 任志伟 气化的水与液体燃料混合燃烧的燃具
CN1621744A (zh) * 2003-11-24 2005-06-01 何忠文 水煤气炉
JP4035850B2 (ja) * 2005-02-21 2008-01-23 有限会社クレセント 光触媒作用を利用した燃焼効率改善方法および光触媒作用を利用した燃焼効率改善装置
RU2386819C2 (ru) * 2008-04-11 2010-04-20 Геннадий Павлович Барчан Способ преобразования энергии с регенерацией энергоносителей в циклическом процессе (барчана)

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1470454A (zh) * 2002-07-22 2004-01-28 邱纪林 一种氢能转换方法及装置
CN201014545Y (zh) * 2007-01-18 2008-01-30 侯慧敏 燃水反应炉
WO2010053387A1 (en) * 2008-06-25 2010-05-14 Centrum Innowacji, Badan I Wdrozen A method and reactor for thermal decomposition of water
WO2010008237A2 (ko) * 2008-07-17 2010-01-21 Ra Kyu Sung H₂o의 고온 분해에 따른 기체 추출 및 열에너지 발생장치
WO2010077350A2 (en) * 2009-01-02 2010-07-08 James Cornwell Method and apparatus for dissociating hydrogen and oxygen from water
CN102927584A (zh) * 2012-07-09 2013-02-13 郭志男 等离子水燃料工业炉
CN202973155U (zh) * 2012-07-09 2013-06-05 郭志男 等离子水燃料工业炉

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2541033A (en) * 2015-08-07 2017-02-08 Ultimate Engines Ltd Reactor

Also Published As

Publication number Publication date
CN102927584A (zh) 2013-02-13
CN102927584B (zh) 2015-04-08
CN202973155U (zh) 2013-06-05

Similar Documents

Publication Publication Date Title
CN104154519B (zh) 一种醇基燃料蒸汽锅炉
WO2014008753A1 (zh) 等离子水燃料工业炉
WO2016206431A1 (zh) 用于生物质燃气工业热水器的燃烧器
US11326773B2 (en) Waste heat recovery boiler in producing glass beads
KR20170023689A (ko) 열분해를 이용한 버너연소기 시스템
CN111115577A (zh) 一种催化制氢系统及氢气燃烧还原氮氧化物系统
CN204042838U (zh) 一种醇基燃料蒸汽锅炉
CN214715684U (zh) 一种fnc废气排放装置
CN112524586A (zh) 一种全预混板式蒸汽发生器
CN102252321B (zh) 燃烧装置
CN211770294U (zh) 催化制氢系统及氢气燃烧还原氮氧化物系统
CN103807850B (zh) 一种用于燃气轮机余热锅炉的补燃燃烧器
CN202675390U (zh) 液体燃料汽化炉具
CN103307597B (zh) 一种采用醇基燃料的气化式灶芯
CN203478235U (zh) 一种醇基液体气化燃烧器
WO2016184123A1 (zh) 蒸汽变换氢氧预混清洁锅炉
CN203349267U (zh) 一种新型双高燃烧器
CN214425958U (zh) 一种全预混板式蒸汽发生器
CN201512508U (zh) 一种高效水煤气发生炉
CN110425585A (zh) 一种新型醇基燃料炉
CN202485055U (zh) 气化灶
CN210951255U (zh) 一种便于自动加水的卧式锅炉
CN219433318U (zh) 一种方便添加燃料的燃烧器装置
CN104214774A (zh) 低能耗环保型燃烧器
CN203744233U (zh) 一种用于燃气轮机余热锅炉的补燃燃烧器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13817245

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13817245

Country of ref document: EP

Kind code of ref document: A1