WO2014008212A1 - Use of chroma quantization parameter offsets in deblocking - Google Patents

Use of chroma quantization parameter offsets in deblocking Download PDF

Info

Publication number
WO2014008212A1
WO2014008212A1 PCT/US2013/048983 US2013048983W WO2014008212A1 WO 2014008212 A1 WO2014008212 A1 WO 2014008212A1 US 2013048983 W US2013048983 W US 2013048983W WO 2014008212 A1 WO2014008212 A1 WO 2014008212A1
Authority
WO
WIPO (PCT)
Prior art keywords
chroma
offset
slice
picture
level
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
PCT/US2013/048983
Other languages
English (en)
French (fr)
Inventor
Gary J. Sullivan
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Microsoft Corp
Original Assignee
Microsoft Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Microsoft Corp filed Critical Microsoft Corp
Priority to JP2015520632A priority Critical patent/JP6272321B2/ja
Priority to EP19207170.2A priority patent/EP3624448B1/en
Priority to EP13737759.4A priority patent/EP2867761B1/en
Priority to KR1020147036987A priority patent/KR102143663B1/ko
Priority to EP25153993.8A priority patent/EP4521750A3/en
Priority to CN201380045746.8A priority patent/CN104584560B/zh
Priority to EP25153995.3A priority patent/EP4521751A3/en
Priority to EP25153992.0A priority patent/EP4521749A3/en
Publication of WO2014008212A1 publication Critical patent/WO2014008212A1/en
Anticipated expiration legal-status Critical
Ceased legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/102Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
    • H04N19/124Quantisation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/70Methods or arrangements for coding, decoding, compressing or decompressing digital video signals characterised by syntax aspects related to video coding, e.g. related to compression standards
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/102Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
    • H04N19/117Filters, e.g. for pre-processing or post-processing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/102Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
    • H04N19/124Quantisation
    • H04N19/126Details of normalisation or weighting functions, e.g. normalisation matrices or variable uniform quantisers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/134Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or criterion affecting or controlling the adaptive coding
    • H04N19/146Data rate or code amount at the encoder output
    • H04N19/15Data rate or code amount at the encoder output by monitoring actual compressed data size at the memory before deciding storage at the transmission buffer
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/169Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding
    • H04N19/17Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object
    • H04N19/172Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object the region being a picture, frame or field
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/169Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding
    • H04N19/17Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object
    • H04N19/174Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object the region being a slice, e.g. a line of blocks or a group of blocks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/169Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding
    • H04N19/186Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being a colour or a chrominance component
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/85Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using pre-processing or post-processing specially adapted for video compression
    • H04N19/86Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using pre-processing or post-processing specially adapted for video compression involving reduction of coding artifacts, e.g. of blockiness
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/169Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding
    • H04N19/17Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object
    • H04N19/176Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object the region being a block, e.g. a macroblock
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/169Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding
    • H04N19/184Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being bits, e.g. of the compressed video stream

Definitions

  • Engineers use compression (also called source coding or source encoding) to reduce the bit rate of digital video. Compression decreases the cost of storing and transmitting video information by converting the information into a lower bit rate form. Decompression (also called decoding) reconstructs a version of the original information from the compressed form.
  • a "codec” is an encoder/decoder system.
  • H.261, H.262 MPEG-2 or ISO/IEC 13818-2
  • H.263 and H.264 AVC or ISO/IEC 14496-10) standards
  • MPEG-1 ISO/IEC 11172-2
  • MPEG-4 Visual ISO/IEC 14496-2
  • SMPTE 421M SMPTE 421M
  • a video codec standard typically defines options for the syntax of an encoded video bitstream, detailing parameters in the bitstream when particular features are used in encoding and decoding.
  • a video codec standard also provides details about the decoding operations a decoder should perform to achieve correct results in decoding.
  • various proprietary codec formats define other options for the syntax of an encoded video bitstream and corresponding decoding operations.
  • QP quantization parameter
  • an encoder sets values of QP to adjust quality and bitrate. In general, for a lower value of QP, the quality of the encoded video is higher but more bits are consumed. On the other hand, for a higher value of QP, the quality of the encoded video is lower and fewer bits are consumed.
  • a decoder uses QP values when reconstructing video content from the encoded video.
  • a video source such as a camera, animation output, screen capture module, etc. typically provides video that is converted to a format such as a YUV format.
  • a YUV format includes a luma (or Y) component with sample values representing brightness values as well as multiple chroma components with sample values representing color difference values.
  • the precise definitions of the color difference values (and conversion operations to/from YUV color space to another color space such as RGB) depend on implementation.
  • a luma/chroma color space can be any color space with a luma (or luminance) component and one or more chroma (or chrominance) components, including YUV, Y'UV, YIQ, Y'lQ and YDbDr as well as variations such as YCbCr and YCoCg, where the Y term represents a luma component and the other terms represent chroma components.
  • an encoder can set different values of QP for a luma component and chroma components. In this way, the encoder can control how quantization is performed for different color components, and thereby regulate quality and bitrate between components.
  • Prior approaches to controlling and using QP values for chroma components have various shortcomings, however, including a lack of fine-grained control in high QP situations, and failure to provide an appropriate level of responsiveness in other decoding operations.
  • the detailed description presents innovations in control and use of chroma quantization parameter ("QP") values that depend on luma QP values. More generally, the innovations relate to control and use of QP values for a secondary color component (e.g., a chroma component) that depend on QP values for a primary color component (e.g., a luma component).
  • QP quantization parameter
  • a video encoder encodes video with multiple color components for which values of QP vary according to a relationship between a primary component and at least one secondary component.
  • the encoding includes deblock filtering during which derivation of a control parameter (to control the deblock filtering) is based at least in part on a chroma QP offset.
  • the chroma QP offset indicates a difference from a luma QP value, which is signaled elsewhere.
  • a picture-level chroma QP offset can be used to specify a difference for chroma QP value that applies for a picture.
  • a slice-level chroma QP offset can be used to specify a difference for chroma QP value that applies for a slice, which is part of a picture, in addition to a picture-level chroma QP offset.
  • the chroma QP offset that is considered can be specified with a only picture-level chroma QP offset to simplify implementation of the adaptive deblock filtering, even when a combination of picture-level and slice-level chroma QP offsets has been used for rate control purposes, and such slice-level chroma QP offsets are available to an encoder and decoder.
  • the encoder outputs at least part of a bitstream or bitstream portion including the encoded video, potentially including both picture-level chroma QP offsets and slice-level chroma QP offsets.
  • an image or video encoder encodes image or video content for which values of QP vary according to a relationship between a luma component and chroma components.
  • the encoder sets a picture-level chroma QP offset and a slice-level chroma QP offset for encoding of a slice of a picture.
  • the encoder also performs deblock filtering of at least part of the slice, where derivation of a control parameter for the deblock filtering of the part of the slice considers the picture-level chroma QP offset but not the slice-level chroma QP offset.
  • the encoder then outputs at least part of a bitstream including the encoded content.
  • a video decoder receives at least part of a bitstream or bitstream portion including encoded video with multiple color components for which values of QP vary according to a relationship between a primary component and at least one secondary component.
  • the bitstream or bitstream portion potentially includes both picture-level chroma QP offsets and slice-level chroma QP offsets.
  • the decoder decodes the encoded video.
  • the decoding includes deblock filtering during which derivation of a control parameter is based at least in part on a chroma QP offset.
  • the chroma QP offset that is considered can be specified with only a picture-level chroma QP offset to simplify implementation of the adaptive deblock filtering, even when a combination of picture- level and slice-level chroma QP offsets has been used for rate control, and such slice-level chroma QP offsets are available to the decoder.
  • an image or video decoder receives at least part of a bitstream including encoded image or video content, and decodes content for which values of QP vary according to a relationship between a luma component and chroma components.
  • the decoder sets a picture-level chroma QP offset and a slice-level chroma QP offset for decoding of a slice of a picture.
  • the decoder also performs deblock filtering of at least part of the slice, where derivation of a control parameter for the deblock filtering of the part of the slice considers the picture-level chroma QP offset but not the slice-level chroma QP offset.
  • the encoding or decoding can be implemented as part of a method, as part of a computing device adapted to perform the method or as part of a tangible computer- readable media storing computer-executable instructions for causing a computing device to perform the method.
  • Figure 1 is a diagram of an example computing system in which some described embodiments can be implemented.
  • FIGs 2a and 2b are diagrams of example network environments in which some described embodiments can be implemented.
  • Figure 3 is a diagram of an example encoder system in conjunction with which some described embodiments can be implemented.
  • Figure 4 is a diagram of an example decoder system in conjunction with which some described embodiments can be implemented.
  • Figure 5 is a diagram illustrating an example video encoder in conjunction with which some described embodiments can be implemented.
  • Figure 6 is a diagram illustrating an example video decoder in conjunction with which some described embodiments can be implemented.
  • Figure 7a is a table illustrating a new flag slicelevel chroma qp flag in picture parameter set RBSP syntax
  • Figure 7b is a table illustrating new values
  • Figure 8 is a flowchart illustrating a generalized technique for using chroma QP offsets to control deblock filtering during encoding.
  • Figure 9 is a flowchart illustrating a generalized technique for using chroma QP offsets to control deblock filtering during decoding.
  • an important aspect of the design is control of the granularity of the quantization for each of the color components.
  • control is typically achieved by establishing a scaling relationship between the quantization step size(s) associated with one color component (often called the primary component) and other color component (often called a secondary component).
  • the primary component is a luma component
  • the secondary component(s) are chroma component(s).
  • the relationship between QP for a luma component and chroma components is determined according to a value of QP, a look-up table and an encoder-controlled offset, sometimes together with a quantization scaling matrix for establishing frequency-specific scaling factors.
  • QP quantization scaling matrix
  • the maximum value of QP for chroma components in H.264 is limited to a value that is substantially smaller than the maximum value of QP supported for the luma component (indicating coarsest quantization for luma).
  • the described approaches include use of an extended size for the lookup table that may be used to establish the relationship between the primary and secondary color components.
  • the functional relationship in QP values established by such a lookup table can alternatively be provided through the use of simple mathematical operations. Additional innovative aspects of control of QP values in video coding and decoding are also described.
  • the described techniques may be applied to additional applications other than video coding/decoding, such as still-image coding/decoding, medical scan content coding/decoding, multispectral imagery content coding/decoding, etc.
  • operations described herein are in places described as being performed by an encoder (e.g., video encoder) or decoder (e.g., video decoder), in many cases the operations can alternatively be performed by another type of media processing tool.
  • some of the methods described herein can be altered by changing the ordering of the method acts described, by splitting, repeating, or omitting certain method acts, etc.
  • the various aspects of the disclosed technology can be used in combination or separately.
  • Different embodiments use one or more of the described innovations.
  • Some of the innovations described herein address one or more of the problems noted in the background. Typically, a given technique/tool does not solve all such problems.
  • Figure 1 illustrates a generalized example of a suitable computing system (100) in which several of the described innovations may be implemented.
  • the computing system (100) is not intended to suggest any limitation as to scope of use or functionality, as the innovations may be implemented in diverse general-purpose or special-purpose computing systems.
  • the computing system (100) includes one or more processing units (1 10, 1 15) and memory (120, 125). In Figure 1 , this most basic configuration (130) is included within a dashed line.
  • the processing units (1 10, 1 15) execute computer-executable instructions.
  • a processing unit can be a general-purpose central processing unit (CPU), processor in an application-specific integrated circuit (ASIC) or any other type of processor.
  • ASIC application-specific integrated circuit
  • multiple processing units execute computer-executable instructions to increase processing power.
  • Figure 1 shows a central processing unit (1 10) as well as a graphics processing unit or co-processing unit (1 15).
  • the tangible memory (120, 125) may be volatile memory (e.g., registers, cache, RAM), non-volatile memory (e.g., ROM, EEPROM, flash memory, etc.), or some combination of the two, accessible by the processing unit(s).
  • the memory (120, 125) stores software (180) implementing one or more innovations for using chroma QP offsets in deblock filtering, in the form of computer-executable instructions suitable for execution by the processing unit(s).
  • a computing system may have additional features.
  • the computing system (100) includes storage (140), one or more input devices (150), one or more output devices (160), and one or more communication connections (170).
  • An interconnection mechanism (not shown) such as a bus, controller, or network interconnects the
  • operating system software provides an operating environment for other software executing in the computing system (100), and coordinates activities of the components of the computing system (100).
  • the tangible storage (140) may be removable or non-removable, and includes magnetic disks, magnetic tapes or cassettes, CD-ROMs, DVDs, or any other medium which can be used to store information and which can be accessed within the computing system (100).
  • the storage (140) stores instructions for the software (180) implementing one or more innovations for using chroma QP offsets in deblock filtering.
  • the input device(s) (150) may be a touch input device such as a keyboard, mouse, pen, or trackball, a voice input device, a scanning device, or another device that provides input to the computing system (100).
  • the input device(s) (150) may be a camera, video card, TV tuner card, or similar device that accepts video input in analog or digital form, or a CD-ROM or CD-RW that reads video samples into the computing system (100).
  • the output device(s) (160) may be a display, printer, speaker, CD-writer, or another device that provides output from the computing system (100).
  • the communication connection(s) (170) enable communication over a
  • the communication medium conveys information such as computer-executable instructions, audio or video input or output, or other data in a modulated data signal.
  • a modulated data signal is a signal that has one or more of its characteristics set or changed in such a manner as to encode information in the signal.
  • communication media can use an electrical, optical, RF, or other carrier.
  • Computer-readable media are any available tangible media that can be accessed within a computing environment.
  • Computer-readable media include memory (120, 125), storage (140), and combinations of any of the above.
  • program modules include routines, programs, libraries, objects, classes, components, data structures, etc. that perform particular tasks or implement particular abstract data types.
  • the functionality of the program modules may be combined or split between program modules as desired in various embodiments.
  • Computer-executable instructions for program modules may be executed within a local or distributed computing system.
  • system and “device” are used interchangeably herein. Unless the context clearly indicates otherwise, neither term implies any limitation on a type of computing system or computing device. In general, a computing system or computing device can be local or distributed, and can include any combination of special-purpose hardware and/or general-purpose hardware with software implementing the functionality described herein.
  • the disclosed methods can also be implemented using specialized computing hardware configured to perform any of the disclosed methods.
  • the disclosed methods can be implemented by an integrated circuit (e.g. , an application specific integrated circuit ("ASIC”) (such as an ASIC digital signal process unit (“DSP”), a graphics processing unit (“GPU”), or a programmable logic device (“PLD”), such as a field programmable gate array (“FPGA”)) specially designed or configured to implement any of the disclosed methods.
  • ASIC application specific integrated circuit
  • DSP digital signal process unit
  • GPU graphics processing unit
  • PLD programmable logic device
  • FPGA field programmable gate array
  • Figures 2a and 2b show example network environments (201 , 202) that include video encoders (220) and video decoders (270).
  • the encoders (220) and decoders (270) are connected over a network (250) using an appropriate communication protocol.
  • the network (250) can include the Internet or another computer network.
  • RTC communication
  • a given encoder (220) can produce output compliant with the SMPTE 421M standard, ISO-IEC 14496-10 standard (also known as H.264 or AVC), HEVC standard, another standard, or a proprietary format, with a corresponding decoder (270) accepting encoded data from the encoder (220).
  • the bidirectional communication can be part of a video conference, video telephone call, or other two-party communication scenario.
  • the network environment (201) in Figure 2a includes two real-time communication tools (210), the network environment (201) can instead include three or more real-time communication tools (210) that participate in multi-party communication.
  • a real-time communication tool (210) manages encoding by an encoder (220).
  • Figure 3 shows an example encoder system (300) that can be included in the real-time communication tool (210).
  • the real-time communication tool (210) uses another encoder system.
  • a real-time communication tool (210) also manages decoding by a decoder (270).
  • Figure 4 shows an example decoder system (400), which can be included in the real-time communication tool (210).
  • the real-time communication tool (210) uses another decoder system.
  • an encoding tool (212) includes an encoder (220) that encodes video for delivery to multiple playback tools (214), which include decoders (270).
  • the unidirectional communication can be provided for a video surveillance system, web camera monitoring system, remote desktop conferencing presentation or other scenario in which video is encoded and sent from one location to one or more other locations.
  • the network environment (202) in Figure 2b includes two playback tools (214)
  • the network environment (202) can include more or fewer playback tools (214).
  • a playback tool (214) communicates with the encoding tool (212) to determine a stream of video for the playback tool (214) to receive.
  • the playback tool (214) receives the stream, buffers the received encoded data for an appropriate period, and begins decoding and playback.
  • Figure 3 shows an example encoder system (300) that can be included in the encoding tool (212). Alternatively, the encoding tool (212) uses another encoder system. The encoding tool (212) can also include server- side controller logic for managing connections with one or more playback tools (214).
  • Figure 4 shows an example decoder system (400), which can be included in the playback tool (214). Alternatively, the playback tool (214) uses another decoder system. A playback tool (214) can also include client-side controller logic for managing connections with the encoding tool (212).
  • FIG. 3 is a block diagram of an example encoder system (300) in conjunction with which some described embodiments may be implemented.
  • the encoder system (300) can be a general-purpose encoding tool capable of operating in any of multiple encoding modes such as a low-latency encoding mode for real-time communication, transcoding mode, and regular encoding mode for media playback from a file or stream, or it can be a special-purpose encoding tool adapted for one such encoding mode.
  • the encoder system (300) can be implemented as an operating system module, as part of an application library or as a standalone application.
  • the encoder system (300) receives a sequence of source video frames (311) from a video source (310) and produces encoded data as output to a channel (390).
  • the encoded data output to the channel can include syntax elements that indicate QP values set for chroma, such as picture-level chroma QP offsets and/or slice-level chroma QP offsets.
  • the video source (310) can be a camera, tuner card, storage media, or other digital video source.
  • the video source (310) produces a sequence of video frames at a frame rate of, for example, 30 frames per second.
  • frame generally refers to source, coded or reconstructed image data.
  • a frame is a progressive video frame.
  • an interlaced video frame is de -interlaced prior to encoding.
  • two complementary interlaced video fields are encoded as an interlaced video frame or separate fields.
  • frame can indicate a single non- paired video field, a complementary pair of video fields, a video object plane that represents a video object at a given time, or a region of interest in a larger image.
  • the video object plane or region can be part of a larger image that includes multiple objects or regions of a scene.
  • An arriving source frame (311) is stored in a source frame temporary memory storage area (320) that includes multiple frame buffer storage areas (321, 322, ... , 32/?).
  • a frame buffer (321, 322, etc.) holds one source frame in the source frame storage area (320).
  • a frame selector (330) periodically selects an individual source frame from the source frame storage area (320).
  • the order in which frames are selected by the frame selector (330) for input to the encoder (340) may differ from the order in which the frames are produced by the video source (310), e.g., a frame may be ahead in order, to facilitate temporally backward prediction.
  • the encoder system (300) can include a pre-processor (not shown) that performs pre-processing ⁇ e.g., filtering) of the selected frame (331) before encoding.
  • the pre-processing can also include color space conversion into primary and secondary components for encoding.
  • the encoder (340) encodes the selected frame (331) to produce a coded frame (341) and also produces memory management control operation ("MMCO") signals (342) or reference picture set (“RPS") information. If the current frame is not the first frame that has been encoded, when performing its encoding process, the encoder (340) may use one or more previously encoded/decoded frames (369) that have been stored in a decoded frame temporary memory storage area (360). Such stored decoded frames (369) are used as reference frames for inter-frame prediction of the content of the current source frame (331). Generally, the encoder (340) includes multiple encoding modules that perform encoding tasks such as motion estimation and compensation, frequency transforms, quantization and entropy coding.
  • MMCO memory management control operation
  • RPS reference picture set
  • the exact operations performed by the encoder (340) can vary depending on compression format.
  • the format of the output encoded data can be a Windows Media Video format, VC-1 format, MPEG-x format (e.g., MPEG-1 , MPEG-2, or MPEG-4), H.26x format (e.g., H.261 , H.262, H.263, H.264), HEVC format or other format.
  • an inter-coded, predicted frame is represented in terms of prediction from reference frames.
  • a motion estimator estimates motion of blocks or other sets of samples of a source frame (341) with respect to one or more reference frames (369). When multiple reference frames are used, the multiple reference frames can be from different temporal directions or the same temporal direction.
  • the motion estimator outputs motion information such as motion vector information, which is entropy coded.
  • a motion compensator applies motion vectors to reference frames to determine motion-compensated prediction values.
  • the encoder determines the differences (if any) between a block's motion-compensated prediction values and corresponding original values. These prediction residual values are further encoded using a frequency transform, quantization and entropy encoding.
  • the quantization can use values of chroma QP.
  • the encoder (340) sets values for luma QP and chroma QP for a picture, slice and/or other portion of video, and quantizes transform coefficients accordingly.
  • the encoder (340) can determine intra-prediction values for a block, determine prediction residual values, and encode the prediction residual values (with a frequency transform, quantization and entropy encoding).
  • the entropy coder of the encoder (340) compresses quantized transform coefficient values as well as certain side information (e.g., motion vector information, QP values, mode decisions, parameter choices).
  • Typical entropy coding techniques include Exp-Golomb coding, arithmetic coding, differential coding, Huffman coding, run length coding, variable-length-to-variable-length (“V2V”) coding, variable- length-to-fixed-length (“V2F”) coding, LZ coding, dictionary coding, probability interval partitioning entropy coding ("PIPE”), and combinations of the above.
  • the entropy coder can use different coding techniques for different kinds of information, and can choose from among multiple code tables within a particular coding technique.
  • the coded frames (341) and MMCO/RPS information (342) are processed by a decoding process emulator (350).
  • the decoding process emulator (350) implements some of the functionality of a decoder, for example, decoding tasks to reconstruct reference frames that are used by the encoder (340) in motion estimation and compensation.
  • the decoding process emulator (350) uses the MMCO/RPS information (342) to determine whether a given coded frame (341) needs to be reconstructed and stored for use as a reference frame in inter-frame prediction of subsequent frames to be encoded.
  • the decoding process emulator (350) models the decoding process that would be conducted by a decoder that receives the coded frame (341) and produces a corresponding decoded frame (351). In doing so, when the encoder (340) has used decoded frame(s) (369) that have been stored in the decoded frame storage area (360), the decoding process emulator (350) also uses the decoded frame(s) (369) from the storage area (360) as part of the decoding process.
  • the decoded frame temporary memory storage area (360) includes multiple frame buffer storage areas (361 , 362, . .. , 36/?).
  • the decoding process emulator (350) uses the MMCO/RPS information (342) to manage the contents of the storage area (360) in order to identify any frame buffers (361 , 362, etc.) with frames that are no longer needed by the encoder (340) for use as reference frames.
  • the decoding process emulator (350) stores a newly decoded frame (351) in a frame buffer (361 , 362, etc.) that has been identified in this manner.
  • the coded frames (341) and MMCO/RPS information (342) are also buffered in a temporary coded data area (370).
  • the coded data that is aggregated in the coded data area (370) can contain, as part of the syntax of an elementary coded video bitstream, syntax elements that indicate QP values set for chroma, such as picture-level chroma QP offsets and/or slice-level chroma QP offsets.
  • the coded data that is aggregated in the coded data area (370) can also include media metadata relating to the coded video data (e.g., as one or more parameters in one or more supplemental enhancement information ("SEI") messages or video usability information (“VUI”) messages).
  • SEI Supplemental Enhancement Information
  • VUI video usability information
  • the aggregated data (371) from the temporary coded data area (370) are processed by a channel encoder (380).
  • the channel encoder (380) can packetize the aggregated data for transmission as a media stream (e.g., according to a media container format such as ISO/IEC 14496-12), in which case the channel encoder (380) can add syntax elements as part of the syntax of the media transmission stream.
  • the channel encoder (380) can organize the aggregated data for storage as a file (e.g., according to a media container format such as ISO/IEC 14496-12), in which case the channel encoder (380) can add syntax elements as part of the syntax of the media storage file.
  • the channel encoder (380) can implement one or more media system multiplexing protocols or transport protocols, in which case the channel encoder (380) can add syntax elements as part of the syntax of the protocol(s).
  • the channel encoder (380) provides output to a channel (390), which represents storage, a communications connection, or another channel for the output.
  • FIG. 4 is a block diagram of an example decoder system (400) in conjunction with which some described embodiments may be implemented.
  • the decoder system (400) can be a general-purpose decoding tool capable of operating in any of multiple decoding modes such as a low-latency decoding mode for real-time communication and regular decoding mode for media playback from a file or stream, or it can be a special-purpose decoding tool adapted for one such decoding mode.
  • the decoder system (400) can be implemented as an operating system module, as part of an application library or as a standalone application. Overall, the decoder system (400) receives coded data from a channel (410) and produces reconstructed frames as output for an output destination (490).
  • the coded data can include syntax elements that indicate QP values set for chroma, such as picture-level chroma QP offsets and/or slice-level chroma QP offsets.
  • the decoder system (400) includes a channel (410), which can represent storage, a communications connection, or another channel for coded data as input.
  • the channel (410) produces coded data that has been channel coded.
  • a channel decoder (420) can process the coded data. For example, the channel decoder (420) de-packetizes data that has been aggregated for transmission as a media stream (e.g., according to a media container format such as ISO/IEC 14496-12), in which case the channel decoder (420) can parse syntax elements added as part of the syntax of the media transmission stream.
  • the channel decoder (420) separates coded video data that has been aggregated for storage as a file (e.g., according to a media container format such as ISO/IEC 14496-12), in which case the channel decoder (420) can parse syntax elements added as part of the syntax of the media storage file.
  • the channel decoder (420) can implement one or more media system demultiplexing protocols or transport protocols, in which case the channel decoder (420) can parse syntax elements added as part of the syntax of the protocol(s).
  • the coded data (421) that is output from the channel decoder (420) is stored in a temporary coded data area (430) until a sufficient quantity of such data has been received.
  • the coded data (421) includes coded frames (431) and MMCO/RPS information (432).
  • the coded data (421) in the coded data area (430) can contain, as part of the syntax of an elementary coded video bitstream, syntax elements that indicate QP values set for chroma, such as picture-level chroma QP offsets and/or slice-level chroma QP offsets.
  • the coded data (421) in the coded data area (430) can also include media metadata relating to the encoded video data (e.g., as one or more parameters in one or more SEI messages or VUI messages).
  • the coded data area (430) temporarily stores coded data (421) until such coded data (421) is used by the decoder (450). At that point, coded data for a coded frame (431) and MMCO/RPS information (432) are transferred from the coded data area (430) to the decoder (450). As decoding continues, new coded data is added to the coded data area (430) and the oldest coded data remaining in the coded data area (430) is transferred to the decoder (450).
  • the decoder (450) periodically decodes a coded frame (431) to produce a corresponding decoded frame (451). As appropriate, when performing its decoding process, the decoder (450) may use one or more previously decoded frames (469) as reference frames for inter-frame prediction. The decoder (450) reads such previously decoded frames (469) from a decoded frame temporary memory storage area (460).
  • the decoder (450) includes multiple decoding modules that perform decoding tasks such as entropy decoding, inverse quantization (which can use values of chroma QP), inverse frequency transforms and motion compensation.
  • decoding tasks such as entropy decoding, inverse quantization (which can use values of chroma QP), inverse frequency transforms and motion compensation.
  • the exact operations performed by the decoder (450) can vary depending on compression format.
  • the decoder (450) receives encoded data for a compressed frame or sequence of frames and produces output including decoded frame (451).
  • a buffer receives encoded data for a compressed frame and makes the received encoded data available to an entropy decoder.
  • the entropy decoder entropy decodes entropy-coded quantized data as well as entropy-coded side information, typically applying the inverse of entropy encoding performed in the encoder.
  • An intra prediction module can spatially predict sample values of a current block from neighboring, previously reconstructed sample values.
  • the decoder (450) also reconstructs prediction residuals.
  • An inverse quantizer inverse quantizes entropy-decoded data, potentially using values of chroma QP. For example, the decoder (450) sets values for luma QP and chroma QP for a picture, slice and/or other portion of video based on syntax elements in the bitstream, and inverse quantizes transform coefficients accordingly.
  • An inverse frequency transformer converts the quantized, frequency domain data into spatial domain information.
  • the decoder (450) For a predicted frame, the decoder (450) combines reconstructed prediction residuals with motion-compensated predictions to form a reconstructed frame.
  • the decoder (450) can similarly combine prediction residuals with spatial predictions from intra prediction.
  • a motion compensation loop in the video decoder (450) includes an adaptive de -blocking filter to smooth discontinuities across block boundary rows and/or columns in the decoded frame (451).
  • the decoded frame temporary memory storage area (460) includes multiple frame buffer storage areas (461, 462, ..., 46/?).
  • the decoded frame storage area (460) is an example of a DPB.
  • the decoder (450) uses the MMCO/RPS information (432) to identify a frame buffer (461, 462, etc.) in which it can store a decoded frame (451).
  • the decoder (450) stores the decoded frame (451) in that frame buffer.
  • An output sequencer (480) uses the MMCO/RPS information (432) to identify when the next frame to be produced in output order is available in the decoded frame storage area (460).
  • the output sequencer (480) is read by the output sequencer (480) and output to the output destination (490) (e.g., display).
  • the order in which frames are output from the decoded frame storage area (460) by the output sequencer (480) may differ from the order in which the frames are decoded by the decoder (450).
  • Figure 5 is a block diagram of a generalized video encoder (500) in conjunction with which some described embodiments may be implemented.
  • the encoder (500) receives a sequence of video frames including a current frame (505) and produces encoded data (595) as output.
  • the encoder (500) is block-based and uses a block format that depends on implementation. Blocks may be further sub-divided at different stages, e.g., at the frequency transform and entropy encoding stages. For example, a frame can be divided into 64x64 blocks, 32x32 blocks or 16x16 blocks, which can in turn be divided into smaller blocks and sub-blocks of pixel values for coding and decoding.
  • the encoder system (500) compresses predicted frames and intra-coded frames.
  • Figure 5 shows an "intra path" through the encoder (500) for intra-frame coding and an "inter path” for inter-frame coding.
  • Many of the components of the encoder (500) are used for both intra-frame coding and inter-frame coding. The exact operations performed by those components can vary depending on the type of information being compressed.
  • a motion estimator (510) estimates motion of blocks, sub-blocks or other sets of pixel values of the current frame (505) with respect to one or more reference frames.
  • the frame store (520) buffers one or more reconstructed previous frames (525) for use as reference frames.
  • the multiple reference frames can be from different temporal directions or the same temporal direction.
  • the motion estimator (510) outputs as side information motion information (515) such as differential motion vector information.
  • the motion compensator (530) applies reconstructed motion vectors to the reconstructed reference frame(s) (525) when forming a motion-compensated current frame (535).
  • the difference (if any) between a sub-block, block, etc. of the motion-compensated current frame (535) and corresponding part of the original current frame (505) is the prediction residual (545) for the sub-block, block, etc.
  • reconstructed prediction residuals are added to the motion-compensated current frame (535) to obtain a reconstructed frame that is closer to the original current frame (505). In lossy compression, however, some information is still lost from the original current frame (505).
  • the intra path can include an intra prediction module (not shown) that spatially predicts pixel values of a current block or sub-block from
  • a frequency transformer (560) converts spatial domain video information into frequency domain (i.e., spectral, transform) data.
  • the frequency transformer (560) applies a discrete cosine transform, an integer approximation thereof, or another type of forward block transform to blocks or sub-blocks of pixel value data or prediction residual data, producing blocks/sub-b locks of frequency transform coefficients.
  • a quantizer (570) then quantizes the transform coefficients. For example, the quantizer (570) applies non-uniform, scalar quantization to the frequency domain data with a step size that varies on a frame-by-frame basis, slice-by-slice basis, block-by-block basis or other basis.
  • the quantizer (570) can use QP values for luma components and chroma components that include chroma QP values, as described in Section VII.
  • the encoder (500) sets values for luma QP and chroma QP for a picture, slice and/or other portion of video such as a coding unit, and quantizes transform coefficients accordingly.
  • an inverse quantizer (576) performs inverse quantization on the quantized frequency coefficient data.
  • the inverse quantizer (576) can also use chroma QP values.
  • An inverse frequency transformer (566) performs an inverse frequency transform, producing blocks/sub-b locks of reconstructed prediction residuals or pixel values.
  • the encoder (500) For a predicted frame, the encoder (500) combines reconstructed prediction residuals (545) with motion-compensated predictions (535) to form the reconstructed frame (505). (Although not shown in Figure 5, in the intra path, the encoder (500) can combine prediction residuals with spatial predictions from intra prediction.)
  • the frame store (520) buffers the reconstructed current frame for use in subsequent motion-compensated prediction.
  • Quantization and other lossy processing can result in visible lines at boundaries between blocks or sub-blocks of a frame.
  • Such "blocking artifacts” might occur, for example, if adjacent blocks in a smoothly changing region of a picture (such as a sky area) are quantized to different average levels.
  • an encoder and decoder can use "deblock” filtering to smooth boundary discontinuities between blocks and/or sub-blocks in reference frames. Such filtering is "in-loop" in that it occurs inside a motion-compensation loop - the encoder and decoder perform it on reference frames used later in encoding/decoding.
  • In-loop deblock filtering is usually enabled during encoding, in which case a decoder also performs in-loop deblock filtering for correct decoding.
  • the details of deblock filtering vary depending on the codec standard or format, and can be quite complex.
  • the rules of applying deblock filtering can vary depending on factors such as content/smoothness, coding mode (e.g., intra or inter), motion vectors for blocks/sub-blocks on different sides of a boundary, block/sub-block size, coded/not coded status (e.g., whether transform coefficient information is signaled in the bitstream).
  • a motion compensation loop in the encoder (500) includes an adaptive in-loop deblock filter (510) before or after the frame store (520).
  • the decoder (500) applies in-loop filtering to reconstructed frames to adaptively smooth discontinuities across boundaries in the frames.
  • Section VII describes examples in which deblock filtering changes depending on value of chroma QP offset.
  • the entropy coder (580) compresses the output of the quantizer (570) as well as motion information (515) and certain side information (e.g., QP values).
  • the entropy coder (580) provides encoded data (595) to the buffer (590), which multiplexes the encoded data into an output bitstream.
  • the encoded data can include syntax elements that indicate QP values set for chroma, such as picture-level chroma QP offsets and/or slice- level chroma QP offsets. Section VII describes examples of such syntax elements.
  • a controller receives inputs from various modules of the encoder.
  • the controller evaluates intermediate results during encoding, for example, setting QP values and performing rate-distortion analysis.
  • the controller works with other modules to set and change coding parameters during encoding.
  • the controller can vary QP values and other control parameters to control quantization of luma components and chroma components during encoding.
  • the controller can set a picture-level luma QP value, slice-level luma QP value or coding-unit-level luma QP value during encoding so as to control quantization at the picture level, slice level or coding unit level within a slice.
  • the luma QP value can be set to the picture-level luma QP or a slice-level luma QP, which will be represented in the bitstream with the picture-level luma QP plus a slice-level luma QP offset.
  • the controller can set a luma QP value for a given coding unit within the slice.
  • a coding-unit-level luma QP offset is signaled in the bitstream, along with a slice-level luma QP offset and the picture-level luma QP value, to indicate the coding-unit-level luma QP value.
  • the controller can also set a picture-level chroma QP value or slice-level chroma QP value, as indicated in the bitstream with one or more chroma QP offsets.
  • a chroma QP offset does not directly specify the chroma QP value, but rather is used in a derivation process (as described in section VII) to determine the chroma QP value.
  • the controller can also specify a quantization scaling matrix to establish frequency-specific scaling factors for coefficients of a luma component and/or chroma component.
  • a QP value controls the coarseness of the quantization of the luma and chroma transform coefficients.
  • a QP value may control a scaling factor known as a quantization step size ("QSS") according to a defined relationship.
  • QSS quantization step size
  • the QP value is signaled in the bitstream as QP minus 26, and the QSS is S * 2 ⁇ p/6 ⁇ or
  • an integer-based formula indicates a QSS that approximates S * 2 ⁇ pl6 ⁇
  • a high value of QP signifies a high (i.e., coarse) QSS
  • a low value of QP indicates a low (i.e., fine) QSS.
  • QP can be inversely related to QSS. For example, a QP value is signaled in the bitstream as 25 minus QP, and the QSS is
  • the same QSS values can effectively be signaled, but a high value of QP signifies a low QSS, and a low value of QP signifies a high QSS.
  • the innovations described herein can be applied for various relationships between QP and QSS, including the relationships described above as well as relationships in which the QP is a parameter such as the parameter called QUANT in the H.263 standard, and relationships in which the QP is a parameter such as the parameter called quantiser scale in the H.262 standard.
  • the controller can set luma QP and chroma QP for a picture, slice or other portion of video, and then evaluate results of encoding of the content (e.g., quantizing transform coefficients and/or entropy coding the quantized transform coefficients) in terms of quality and/or bitrate. If the results are satisfactory, the controller can select the luma QP and chroma QP that were set. Otherwise, the controller can adjust the luma QP and/or chroma QP.
  • results of encoding of the content e.g., quantizing transform coefficients and/or entropy coding the quantized transform coefficients
  • the controller can adjust QP to increase chroma QSS and/or decrease luma QSS to balance quality between luma and chroma components while also considering overall targets for rate and/or quality.
  • the controller can adjust QP to decrease chroma QSS and/or increase luma QSS to balance quality between luma and chroma components while also considering overall targets for rate and/or quality.
  • the setting and adjustment of luma QP and chroma QP can be repeated on a picture -by-picture basis, slice-by-slice basis or some other basis.
  • modules of the encoder can be added, omitted, split into multiple modules, combined with other modules, and/or replaced with like modules.
  • encoders with different modules and/or other configurations of modules perform one or more of the described techniques.
  • Specific embodiments of encoders typically use a variation or supplemented version of the encoder (500). The relationships shown between modules within the encoder (500) indicate general flows of information in the encoder; other relationships are not shown for the sake of simplicity.
  • Figure 6 is a block diagram of a generalized decoder (600) in conjunction with which several described embodiments may be implemented.
  • the decoder (600) receives encoded data (695) for a compressed frame or sequence of frames and produces output including a reconstructed frame (605).
  • Figure 6 shows an "intra path" through the decoder (600) for intra-frame decoding and an "inter path" for inter-frame decoding.
  • Many of the components of the decoder (600) are used for both intra-frame decoding and inter-frame decoding. The exact operations performed by those components can vary depending on the type of information being decompressed.
  • a buffer (690) receives encoded data (695) for a compressed frame and makes the received encoded data available to the parser / entropy decoder (680).
  • the encoded data can include syntax elements that indicate QP values set for chroma, such as picture-level chroma QP offsets and/or slice-level chroma QP offsets. Section VII describes examples of such syntax elements.
  • the parser / entropy decoder (680) entropy decodes entropy- coded quantized data as well as entropy-coded side information, typically applying the inverse of entropy encoding performed in the encoder.
  • a motion compensator (630) applies motion information (615) to one or more reference frames (625) to form motion-compensated predictions (635) of sub-blocks and/or blocks of the frame (605) being reconstructed.
  • the frame store (620) stores one or more previously reconstructed frames for use as reference frames.
  • the intra path can include an intra prediction module (not shown) that spatially predicts pixel values of a current block or sub-block from neighboring, previously reconstructed pixel values.
  • the decoder (600) reconstructs prediction residuals.
  • An inverse quantizer (670) inverse quantizes entropy-decoded data, potentially using values of chroma QP. For example, the decoder (600) sets values for luma QP and chroma QP for a picture, slice and/or other portion of video such as a coding unit, based on syntax elements in the bitstream, and the inverse quantizer (670) inverse quantizes transform coefficients accordingly.
  • the decoder can set a picture-level luma QP value, slice- level luma QP value or coding-unit-level luma QP value during decoding, as indicated by syntax elements in the bitstream, including a picture-level luma QP value, a slice-level luma QP offset (if present) and coding-unit-level luma QP offset (if present).
  • a picture-level luma QP value a slice-level luma QP offset (if present)
  • coding-unit-level luma QP offset if present.
  • Different slices within a picture can have different luma QP values specified, and different coding units within a slice can have different luma QP values specified.
  • the decoder also sets a picture-level chroma QP value or slice-level chroma QP value, as indicated in the bitstream with one or more chroma QP offsets.
  • the decoder can also use a quantization scaling matrix to establish frequency-specific scaling factors for coefficients of a luma component and/or chroma component.
  • a QP value represents a quantization step size ("QSS") according to a defined relationship, as described above.
  • An inverse frequency transformer (660) converts the reconstructed frequency domain data into spatial domain information.
  • the inverse frequency transformer (660) applies an inverse block transform to frequency transform coefficients, producing pixel value data or prediction residual data.
  • the inverse frequency transform can be an inverse discrete cosine transform, an integer approximation thereof, or another type of inverse frequency transform.
  • the decoder (600) For a predicted frame, the decoder (600) combines reconstructed prediction residuals (645) with motion-compensated predictions (635) to form the reconstructed frame (605). (Although not shown in Figure 6, in the intra path, the decoder (600) can combine prediction residuals with spatial predictions from intra prediction.)
  • a motion compensation loop in the decoder (600) includes an adaptive in-loop deblock filter (610) before or after the frame store (620). The decoder (600) applies in-loop filtering to reconstructed frames to adaptively smooth discontinuities across boundaries in the frames.
  • deblock filtering during decoding typically mirror the details of deblock filtering during encoding.
  • the decoder (600) also includes a post-processing deblock filter (608).
  • the post-processing deblock filter (608) optionally smoothes discontinuities in
  • filtering can also be applied as part of the post-processing filtering.
  • modules of the decoder can be added, omitted, split into multiple modules, combined with other modules, and/or replaced with like modules.
  • decoders with different modules and/or other configurations of modules perform one or more of the described techniques.
  • Specific embodiments of decoders typically use a variation or supplemented version of the decoder (600).
  • the relationships shown between modules within the decoder (600) indicate general flows of information in the decoder; other relationships are not shown for the sake of simplicity. VII. Control and Use of Extended-Range Chroma QP Values
  • the QP for chroma is limited to the range [0, 39] for a bit-depth of 8.
  • the QP for luma can vary in the range [0, 51] for a bit- depth of 8. The range is increased appropriately for higher bit-depths for both luma and chroma.
  • the QP value used for chroma saturates at a much smaller value compared to the QP value used for luma. That is, the highest QP value (and highest QSS) used for chroma is much smaller than the highest QP value (and highest QSS) used for luma.
  • This restriction can cause problems for rate control in low bit-rate applications, when an excessive (inefficient, unwarranted) amount of bits is allocated to encoding of chroma components relative to luma components. Also, the design may not be well-suited for a wide variety of color formats.
  • the QPs used for chroma components Cb and Cr are derived from the QP used for luma component (QPY) as follows.
  • the values of QPcb and QPcr are equal to the value of QPc as specified in Table 1 based on a lookup for the intermediate QP index qPi.
  • Table 1 specifies QPc as a function of qPi.
  • QPc as a function of qPi in JCTVC-I1003 [088]
  • the intermediate QP index qPi can be qPicb (for Cb chroma component) or qPicr (Cr chroma component). It is derived as:
  • Clip3 is a function defined as follows. Clip3(x, y, z) is x when z ⁇ x, is y when z > y, and is z otherwise.
  • the values cb qp offset and cr qp offset are picture-level chroma QP offset values that can be signaled in a picture parameter set ("PPS").
  • QPY is a QP value for luma.
  • QpBdOffsetc is a chroma QP range offset that depends on chroma bit depth (increasing for higher bit depths).
  • bit_depth_chroma_minus8 is in the range of 0 to 6, inclusive, for bit depths of 8 to 14 bits per sample.
  • the overall process of deriving a chroma QP value is to: (1) determine an intermediate QP index qPi (e.g., qPicb or qPicr) from the luma QP value (QPY) and picture-level chroma QP offset (e.g., cb qp offset or cr qp offset), (2) determine a value QPc (e.g., QPcb or QP&) through a table look-up operation, and (3) adjust the value of QPc by QpBdOffsetc.
  • qPi e.g., qPicb or qPicr
  • QPY luma QP value
  • picture-level chroma QP offset e.g., cb qp offset or cr qp offset
  • a chroma QP value (e.g., QP'cb or QP'cr) is as follows.
  • an intermediate QP index qPi (e.g. , qPicb or qPicr) is determined from a luma QP value (QPY) and chroma QP offset.
  • the chroma QP offset accounts for picture-level chroma QP offsets, and it may also account for slice-level chroma QP offset in some new approaches.
  • a value QPc (e.g. , QPcb or QP&) is determined through a table look-up operation or other mapping operation. Then, the value of QPc is adjusted by QpBdOffsetc.
  • the final stage can be skipped when QpBdOffsetc is zero. Again, example values for QpBdOffsetc are 0, 6, 12, 18, 24 and 36.
  • Table 2 is extended from 51 to 71 for the index qPi. Also, compared to Table 1 , the chroma QP value QPc is different for values of index qPi above 43.
  • the index qPi (for qPicb or qPicr) is derived as follows. In these equations the upper limit is 71 instead of 51.
  • qPicb Clip3( -QpBdOffsetc, 71, QPY + cb qp offset)
  • qPicr Clip3( -QpBdOffsetc, 71, QPY + cr qp offset)
  • QPc and qPi can be specified as a table for every value of the index qPi.
  • a table containing only 5 entries is needed, and the remaining part can be implemented using logic represented as follows, in which "»" denotes an arithmetic right shift of an integer represented in two's complement arithmetic:
  • qPicb Clip3( -QpBdOffsetc, 57, QPY + cb qp offset)
  • qPicr Clip3( -QpBdOffsetc, 57, QPY + cr qp offset) [098]
  • the relationship between QPc and qPi can be specified as a table for every value of the index qPi.
  • a table containing only 5 entries is needed, and the remaining part can be implemented using logic represented as follows:
  • Table 4 QPc as a function of qPi in new approach 3 [0100] Compared to Table 1, Table 4 is extended from 51 to 71 for the index qPi. Also, compared to Table 1, the chroma QP value QPc is different when the index qPi is 34 and for values of index qPi above 43.
  • the index qPi (for qPicb or qPicr) is derived as follows. In these equations the upper limit is 71 instead of 51.
  • qPicb Clip3( -QpBdOffsetc, 71 , QPY + cb qp offset)
  • the relationship between QPc and qPi can be specified as a table for every value of the index qPi.
  • the relationship can be specified as a piece-wise linear function and be implemented using logic represented as follows:
  • qPicb Clip3( -QpBdOffsetc, 57, QPY + cb qp offset)
  • the relationship between QPc and qPi can be specified as a table for every value of the index qPi.
  • the relationship can be specified as a piece-wise linear function and be implemented using logic represented as follows:
  • New approach 5 combines new approach 3 with the use of slice-level chroma QP offsets.
  • the use of slice-level chroma QP offsets can be enabled/disabled using a flag signaled in the sequence parameter set ("SPS"), PPS or other higher level syntax structure.
  • SPS sequence parameter set
  • New approach 5 is otherwise identical to new approach 3 except that the values for the index qPi are derived as follows:
  • qPicb Clip3( -QpBdOffsetc, 71, QPY + cb qp offset +
  • qPiCr Clip3( -QpBdOffsetc, 71, QPY + cr qp offset + slice qp delta cr)
  • slice qp delta cb and slice qp delta cr are slice-level chroma QP offset values for Cb and Cr components, respectively, that can be signaled in a slice header.
  • new approach 6 combines new approach 4 with the use of slice-level chroma QP offsets.
  • the use of slice-level chroma QP offsets can be enabled/disabled using a flag signaled in the SPS, PPS or other higher level syntax structure.
  • the table for determining QPc as a function of qPi is effectively extended to enable reaching higher values of chroma QP (indicating higher values of QSS for chroma, according to example relationships between QP and QSS).
  • the tables are effectively extended such that the maximum possible value of QP for chroma is now 51 instead of 39 (in JCTVC-I1003). This allows for more aggressive (i.e., coarse) quantization for chroma components in high QP scenarios, which reduces bitrate for the chroma components.
  • the saved bits can instead be used for luma components, so as to improve the overall quality.
  • the table can be implemented using simple formulas/logic as described above.
  • QSS quantization step size
  • the ratio of QSS represented by QP index (derived from QP for luma) to QSS for chroma can be as large as 4 in the HEVC design in JCTVC-I1003 (e.g., roughly 2 8 5 versus 2 6 5 for luma QP of 51 and chroma QP of 39). In new approaches 2, 4 and 6, in contrast, the ratio is at most 2
  • Limiting the ratio for QSS can help prevent excessive bit usage for chroma components when quantization is intended to be coarse.
  • a fixed chroma QP offset of 6 can be used to achieve equal QSSs for luma and chroma at high QP (high QSS) operation.
  • the chroma QP offset needed to achieve a desired relative relationship is much smaller than in JCTVC-I1003.
  • JCTVC-I1003 if the encoder wants to use a QP of 39 for both luma and chroma, the necessary chroma QP offset is 12. This value for offset becomes even larger if Table 1 is simply extended at the same slope seen at the end. In new approaches 2, 4 and 6, however, the same relative relationship can be achieved using a much smaller offset of 6.
  • the extended range for chroma QP values does not significantly impact rate- distortion performance for common usage conditions with low and mid-range QP values (for fine quantization and mid-range quantization), since the modifications in the new approaches mostly apply outside the range of QP values used in the common usage conditions.
  • high QP high QSS
  • the loss in chroma quality is more than offset by gain in luma quality.
  • any of the new approaches for expressing QP for chroma as a function of QP for luma can be used in conjunction with a quantization scaling matrix for establishing frequency-specific scaling factors for coefficients of a luma component and/or chroma component.
  • a quantization scaling matrix for establishing frequency-specific scaling factors for coefficients of a luma component and/or chroma component.
  • the range of -12 to 12 is effective in example implementations for chroma QP offset.
  • a chroma QP offset is similarly limited to the range -12 to 12, inclusive.
  • This range has useful properties. For example, for new approach 4 at high QPs, since a chroma QP offset of 6 represents the case where luma QP is equal to the chroma QP, the offset of 12 represents the counter-point to an offset of 0.
  • the larger QSS is exactly 2x the smaller QSS (e.g., QSS of 2 9 5 for chroma QP of 57 is 2x the QSS of 2 8 5 for chroma QP of 51, which is 2x the QSS of 2 7 5 for chroma QP of 45) , for example relationships between QP and QSS.
  • bitstream syntax and semantics support the signaling of slice-level chroma QP offsets.
  • Slice-level chroma QP offsets provide the encoder with greater ability to precisely control the chroma QP for different regions within a picture.
  • Figure 7a shows a new flag slicelevel chroma qp flag in PPS RBSP syntax
  • Figure 7b shows new values slice_qp_delta_cb and slice_qp_delta_cr in slice header syntax, for example implementations.
  • slice qp delta cr are conditionally present in a slice header depending on the value of slicelevel chroma qp flag in the applicable PPS.
  • slice-level syntax overhead is avoided.
  • the values cb qp offset and cr qp offset specify a base offset used in obtaining QPcb and QPcr, respectively, as specified above.
  • slicelevel chroma qp flag 1 specifies that syntax elements slice qp delta cb and slice qp delta cr are present in the associated slice headers. Otherwise, the syntax elements slice qp delta cb and slice qp delta cr are not present in the associated slice headers.
  • slice qp delta specifies the initial value of QPY to be used for all the coding blocks in the slice until modified by the value of cu qp delta in the coding unit layer.
  • the initial QPY quantization parameter for the slice is computed as
  • slice qp delta is limited such that SliceQPY is in the range of -QpBdOffsetY to +51, inclusive.
  • slice qp delta cb and slice qp delta cr specify a delta offset used in obtaining QPcb and QPcr respectively, as specified for new approaches 5 and 6.
  • the value of these syntax elements is inferred to be 0.
  • the filter "strength" (tc parameter) used while deblocking a block edge of a chroma component is determined using a value QPc.
  • the variable QPc is determined as specified in Table 1 using an index qPi that is derived as:
  • QPQ and QPp represent the luma QP values for the blocks present on either side of the edge.
  • the general idea is to adjust the filter strength based on the QP values used to quantize the samples around the edge. This approach to determining qPi for chroma deblock filtering is inefficient when chroma QP offsets (cb qp offset and cr qp offset) are not equal to zero. For different, non-zero values of chroma QP offsets, the QP used for chroma components would be different, but the filter strength remains the same.
  • index qPi is derived as:
  • the derivation of the index qPi for chroma deblock filtering accounts for the effects of chroma QP offsets, but otherwise is based upon the way qPi is derived in JCTVC-I1003 when expressing QP for chroma as a function of QP for luma.
  • the index qPi for deblock filtering can be derived as:
  • QPmax is equal to 71.
  • QPmax is equal to 57.
  • cqp offset represents cb qp offset and cr qp offset for components Cb and Cr, respectively.
  • cqp offset represents (cb qp offset + slice qp delta cb) and (cr qp offset + slice qp delta cr) for components Cb and Cr, respectively. More generally, when the value of the index qPi is derived for deblock filtering,
  • variable qPi is then used to determine a variable QPc as specified in table 5, above.
  • Another variable Q is derived as:
  • Q Clip3( 0, 53, QPc + 2 * ( bS - 1 ) + ( slice_tc_offset_div2 « 1 ) ), where bS is a boundary filtering strength set depending on coding mode (intra or inter), presence of non-zero transform coefficients in a block, motion vector values and/or other factors, where slice_tc_offset_div2 is the value of the syntax element slice_tc_offset_div2 for the slice that contains a first sample on the side of an edge to be filtered. The value of the variable tc' is then determined based on the mapping of Q to tc' shown in the following table.
  • the filter "strength" (tc parameter) used while deblocking a block edge of a chroma component is determined using a value QPc.
  • the variable QPc is determined as specified in Table 1 using an index qPi that is derived as:
  • QPQ and QPp represent the luma QP values for the blocks present on either side of the edge.
  • the general idea is to adjust the filter strength based on the QP values used to quantize the samples around the edge.
  • This approach to determining qPi makes sense when the chroma QP offsets (that is, pic cb qp offset + slice cb qp offset and pic cr qp offset + slice cr qp offset) are equal to zero; this approach to determining qPi does not make sense, however, when the chroma QP offsets are not equal to zero.
  • the QP used for chroma components would be different, but the filter strength would remain the same.
  • the deblock filtering design described in JCTVC- K0030 does not provide component- specific customization of the strength of the deblocking filter process.
  • This section describes approaches that take into account the effects of chroma QP offsets when determining the parameter tc for controlling the deblock filtering of chroma components. These approaches help properly reflect the actual QP used for chroma when non-zero QP offsets are used. In some example implementations, the effect of chroma QP offsets is taken into account when determining qPi for chroma deblock filtering. [0126] This may involve storing the chroma QP values on a coding tree unit ("CTU") basis. In many cases, the impact on computational complexity of storing chroma QP values for this purpose is relatively small and, in any case, the impact on complexity is typically outweighed by the benefits of adaptive deblock filtering that accounts for actual chroma QP values.
  • CTU coding tree unit
  • deblock filtering can account for picture-level chroma QP offsets without accounting for slice-level QP offsets (or other fine-grained chroma QP offsets within a picture).
  • compromise approaches ignore some information about chroma QP offsets that is available to the encoder and decoder, and signaled in the bitstream, they eliminate the requirement for buffering of actual chroma QP values, while still providing better performance than the current scheme of completely ignoring the chroma QP values in the deblocking filter process.
  • cqp offset represents pic cb qp offset + slice cb qp offset for Cb
  • cqp offset represents pic cr qp offset + slice cr qp offset for Cr
  • cqp offset still represents pic cb qp offset + slice cb qp offset for Cb
  • cqp offset still represents pic cr qp offset + slice cr qp offset for Cr
  • qPi Clip3( 0, 57, ( ( ( QPQ + QPp + 1 ) » 1 ) + cqp_offset ) ), where cqp offset represents pic cb qp offset for Cb, and cqp offset represents pic cr qp offset for Cr.
  • cqp offset represents pic cb qp offset for Cb
  • cqp offset represents pic cr qp offset for Cr
  • the first two approaches are capable of accounting for both picture-level chroma QP offsets and slice-level chroma QP offsets
  • the second two approaches are simplifications that account only for chroma QP offsets specified at the picture-level (but not chroma QP offsets specified at the slice level).
  • the chroma QP values or offsets do not need to be stored on a slice basis or CTU basis. Instead, only the picture-level offsets (2 per picture) are stored.
  • An encoder can still use slice-level chroma QP offsets (and/or other fine-grained chroma QP offsets) for the purpose of rate control. Even in such situations, considering only picture-level chroma QP offsets may be adequate for adjusting the strength of deblock filtering.
  • chroma planes are considered to be of equal or greater importance than luma planes (where chroma QP offsets need to be non-zero to match the chroma QP to luma QP).
  • picture-level chroma QP offsets typically have more of an impact (than slice-level chroma QP offsets) when considered for the purpose of controlling how to deblock filter chroma components.
  • Some encoders may use only picture-level chroma QP offsets, and not slice-level chroma QP offsets, for rate control. Thus, even if available slice-level chroma QP offsets (or other available finegrained chroma QP offsets) are not considered in controlling deblock filtering, there are advantages to considering picture-level chroma QP offsets.
  • the way that the variable qPi is used in deblock filtering depends on implementation. For example, the variable qPi is derived as:
  • variable cQpPicOffset provides an adjustment for the value of picture-level QP offset for the Cb or Cr component of a picture, but avoids the need to vary the amount of adjustment within the picture by not including an adjustment for the value of slice-level QP offset for the Cb or Cr component.
  • the variable qPi is then used to determine a variable QPc as specified in Table 5, above.
  • Another variable Q is then derived from QPc as:
  • slice_tc_offset_div2 is the value of the syntax element slice_tc_offset_div2 for the slice that contains a first sample on the side of an edge to be filtered.
  • the value of the variable tc' is then determined based on the mapping of Q to tc' shown in Table 6.
  • Figure 8 shows a generalized technique (800) for using chroma QP offsets to control deblock filtering during encoding.
  • a video encoder such as one described above with reference to Figure 5 or other image or video encoder performs the technique (800).
  • the encoder encodes image or video content for which values of QP vary according to a relationship between a luma component and chroma components.
  • the encoder sets (810) a picture-level chroma QP offset and a slice-level chroma QP offset for encoding of a slice of a picture.
  • the encoder quantizes transform coefficients for one or more portions of the slice as regulated by chroma QP, which is indicated by the picture-level chroma QP offset and the slice-level chroma QP offset.
  • the encoder can adjust the picture-level chroma QP offset and/or the slice-level chroma QP offset during encoding for purposes of rate control, and the encoder can set different slice- level chroma QP offsets for different slices of the picture.
  • the encoder stores the picture- level chroma offset for use in deblock filtering, but the encoder need not store slice-level chroma QP offsets for use in deblock filtering.
  • the encoder also performs (820) deblock filtering of at least part of the slice that was encoded with the picture-level chroma QP offset and the slice-level chroma QP offset.
  • the encoder derives a control parameter considering the picture- level chroma QP offset but not the slice-level chroma QP offset.
  • the control parameter depends on a variable qPi derived as:
  • variables QPQ and QPp represent luma QP values for blocks on either side of an edge in the part of the slice on which deblock filtering is performed
  • variable cqp offset represents the picture-level chroma QP offset (but not the slice-level chroma QP offset).
  • the picture-level chroma QP offset can be separately signaled for two different chroma components of the picture (e.g., for Cb and Cr), such that values of the variable qPi and control parameter are separately computed for the two different chroma components.
  • the encoder outputs (830) at least part of a bitstream including the encoded content.
  • the bitstream can include one or more syntax elements that indicate the picture- level chroma QP offset for the picture and one or more syntax elements that indicate the slice-level chroma QP offset for the slice.
  • a picture-level chroma QP offset can be separately signaled in the bitstream for each different chroma component of the picture, or different chroma components of the picture can use the same picture-level chroma QP offset signaled in the bitstream.
  • a slice-level chroma QP offset can be separately signaled in the bitstream for each different chroma component of the slice, or different chroma components of the slice can use the same slice-level chroma QP offset signaled in the bitstream.
  • Figure 9 shows a generalized technique (900) for using chroma QP offsets to control deblock filtering during decoding.
  • a video decoder such as one described above with reference to Figure 6 or other image or video decoder performs the technique (900).
  • the decoder receives (910) at least part of a bitstream including encoded image or video content.
  • values of QP vary according to a relationship between a luma component and chroma components.
  • the bitstream includes one or more syntax elements that indicate the picture-level chroma QP offset for a picture and one or more syntax elements that indicate the slice-level chroma QP offset for a slice in the picture.
  • a picture-level chroma QP offset can be separately signaled in the bitstream for each different chroma component of the picture, or different chroma components of the picture can use the same picture-level chroma QP offset signaled in the bitstream.
  • a slice-level chroma QP offset can be separately signaled in the bitstream for each different chroma component of the slice, or different chroma components of the slice can use the same slice-level chroma QP offset signaled in the bitstream.
  • the decoder decodes the encoded content. As part of the decoding, the decoder sets (920) a picture-level chroma QP offset and a slice-level chroma QP offset for decoding of a slice of a picture. The decoder inverse quantizes transform coefficients for one or more portions of the slice as regulated by chroma QP, which is indicated by the picture-level chroma QP offset and the slice-level chroma QP offset. The decoder can set different slice-level chroma QP offsets for different slices of the picture. The decoder stores the picture-level chroma offset for use in deblock filtering, but the decoder need not store slice-level chroma QP offsets for use in deblock filtering.
  • the decoder also performs (930) deblock filtering of at least part of the slice that was encoded with the picture-level chroma QP offset and the slice-level chroma QP offset.
  • the decoder derives a control parameter considering the picture- level chroma QP offset but not the slice-level chroma QP offset.
  • the control parameter depends on a variable qPi derived as:
  • variables QPQ and QPp represent luma QP values for blocks on either side of an edge in the part of the slice on which deblock filtering is performed
  • variable cqp offset represents the picture-level chroma QP offset (but not the slice-level chroma QP offset).
  • the picture-level chroma QP offset can be separately signaled for two different chroma components of the picture (e.g., for Cb and Cr), such that different values of the variable qPi and control parameter are separately computed for the two different chroma components.
  • some of the examples described herein include the parameters slicelevel chroma qp flag, cb qp offset, cr qp offset, slice qp delta cb and
  • slicelevel chroma qp flag is relabeled pic_slice_chroma_qp_offsets_present_flag but has essentially the same meaning.
  • the picture-level chroma QP offsets are called
  • a QP value is signaled in the bitstream as QP minus 26, and the QSS is S * 2 (QP/6) or roughly S * 2 (QP/6) , where S is a scaling factor such as a fixed-value constant, a transform-specific scaling factor or a frequency-specific scaling factor.
  • S is a scaling factor such as a fixed-value constant, a transform-specific scaling factor or a frequency-specific scaling factor.
  • a high value of QP signifies a high (i.e., coarse) QSS
  • a low value of QP indicates a low (i.e., fine) QSS.
  • QP can be inversely related to QSS.
  • a QP value is signaled in the bitstream as 25 minus QP, and the QSS is S * 2 « 51 -Q p ) /6 ) or approximately S * 2 « 51 -W 6
  • the same QSS values can effectively be signaled, but a high value of QP signifies a low QSS, and a low value of QP signifies a high QSS.
  • the innovations described herein can be applied for various relationships between QP and QSS, including the relationships described above as well as relationships in which the QP is a parameter such as the parameter called QUANT in the H.263 standard, and relationships in which the QP is a parameter such as the parameter called quantiser scale in the H.262 standard.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Compression Or Coding Systems Of Tv Signals (AREA)
PCT/US2013/048983 2012-07-02 2013-07-01 Use of chroma quantization parameter offsets in deblocking Ceased WO2014008212A1 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP2015520632A JP6272321B2 (ja) 2012-07-02 2013-07-01 デブロッキングにおけるクロマ量子化パラメータ・オフセットの使用
EP19207170.2A EP3624448B1 (en) 2012-07-02 2013-07-01 Use of chroma quantization parameter offsets in deblocking
EP13737759.4A EP2867761B1 (en) 2012-07-02 2013-07-01 Use of chroma quantization parameter offsets in deblocking
KR1020147036987A KR102143663B1 (ko) 2012-07-02 2013-07-01 디블록킹에서 채도 양자화 파라미터 오프셋을 사용하는 기법
EP25153993.8A EP4521750A3 (en) 2012-07-02 2013-07-01 Use of chroma quantization parameter offsets in deblocking
CN201380045746.8A CN104584560B (zh) 2012-07-02 2013-07-01 在去块时使用色度量化参数偏移
EP25153995.3A EP4521751A3 (en) 2012-07-02 2013-07-01 Use of chroma quantization parameter offsets in deblocking
EP25153992.0A EP4521749A3 (en) 2012-07-02 2013-07-01 Use of chroma quantization parameter offsets in deblocking

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
US201261667381P 2012-07-02 2012-07-02
US61/667,381 2012-07-02
US201261707948P 2012-09-29 2012-09-29
US61/707,948 2012-09-29
US13/732,369 2012-12-31
US13/732,369 US9591302B2 (en) 2012-07-02 2012-12-31 Use of chroma quantization parameter offsets in deblocking

Publications (1)

Publication Number Publication Date
WO2014008212A1 true WO2014008212A1 (en) 2014-01-09

Family

ID=49778133

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2013/048983 Ceased WO2014008212A1 (en) 2012-07-02 2013-07-01 Use of chroma quantization parameter offsets in deblocking

Country Status (14)

Country Link
US (13) US9591302B2 (enExample)
EP (5) EP4521749A3 (enExample)
JP (1) JP6272321B2 (enExample)
KR (1) KR102143663B1 (enExample)
CN (1) CN104584560B (enExample)
DK (1) DK3624448T3 (enExample)
ES (1) ES3026211T3 (enExample)
HR (1) HRP20250545T1 (enExample)
HU (1) HUE071184T2 (enExample)
LT (1) LT3624448T (enExample)
PL (1) PL3624448T3 (enExample)
PT (1) PT3624448T (enExample)
RS (1) RS66743B1 (enExample)
WO (1) WO2014008212A1 (enExample)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2016056398A1 (ja) * 2014-10-06 2017-07-20 ソニー株式会社 画像処理装置および方法
WO2018057339A1 (en) * 2016-09-23 2018-03-29 Apple Inc. Video compression system providing selection of deblocking filters parameters based on bit-depth of video data
US10602111B2 (en) 2016-09-06 2020-03-24 Apple Inc. Auto white balance control algorithm based upon flicker frequency detection
US20220321882A1 (en) 2019-12-09 2022-10-06 Bytedance Inc. Using quantization groups in video coding
JP2022543581A (ja) * 2019-08-22 2022-10-13 エルジー エレクトロニクス インコーポレイティド クロマ量子化パラメータオフセット関連情報をコーディングする画像デコード方法及びその装置
JP2022547571A (ja) * 2019-09-14 2022-11-14 バイトダンス インコーポレイテッド クロマデブロックフィルタリングのための量子化パラメータオフセット
US11750806B2 (en) 2019-12-31 2023-09-05 Bytedance Inc. Adaptive color transform in video coding
US11785260B2 (en) 2019-10-09 2023-10-10 Bytedance Inc. Cross-component adaptive loop filtering in video coding
US12284371B2 (en) 2020-01-05 2025-04-22 Beijing Bytedance Technology Co., Ltd. Use of offsets with adaptive colour transform coding tool
US12284347B2 (en) 2020-01-18 2025-04-22 Beijing Bytedance Network Technology Co., Ltd. Adaptive colour transform in image/video coding

Families Citing this family (70)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI678103B (zh) * 2011-11-03 2019-11-21 美商太陽專利信託 用於解區塊之有效修整技術(三)
US9414054B2 (en) 2012-07-02 2016-08-09 Microsoft Technology Licensing, Llc Control and use of chroma quantization parameter values
US9591302B2 (en) * 2012-07-02 2017-03-07 Microsoft Technology Licensing, Llc Use of chroma quantization parameter offsets in deblocking
US9485506B2 (en) 2012-09-11 2016-11-01 Texas Instruments Incorporated Method and system for constraining slice header processing overhead in video coding
JP5826730B2 (ja) * 2012-09-20 2015-12-02 株式会社ソニー・コンピュータエンタテインメント 動画圧縮装置、画像処理装置、動画圧縮方法、画像処理方法、および動画圧縮ファイルのデータ構造
US10785482B2 (en) 2012-09-24 2020-09-22 Texas Instruments Incorporated Method and system for constraining tile processing overhead in video coding
CN105122804A (zh) * 2013-04-05 2015-12-02 夏普株式会社 利用颜色位深缩放的视频压缩
US9538190B2 (en) * 2013-04-08 2017-01-03 Qualcomm Incorporated Intra rate control for video encoding based on sum of absolute transformed difference
US9294766B2 (en) * 2013-09-09 2016-03-22 Apple Inc. Chroma quantization in video coding
EP2854404B1 (en) * 2013-09-09 2024-11-20 Apple Inc. Chroma quantization in video coding
CA2925183C (en) 2013-10-14 2020-03-10 Microsoft Technology Licensing, Llc Features of base color index map mode for video and image coding and decoding
US9596478B2 (en) * 2013-11-20 2017-03-14 Kyocera Document Solutions Inc. Image compressing/decompressing apparatus and image forming apparatus
US10622522B2 (en) * 2014-09-05 2020-04-14 Theodore Lowes LED packages with chips having insulated surfaces
JP2017535145A (ja) 2014-09-30 2017-11-24 マイクロソフト テクノロジー ライセンシング,エルエルシー 波面並列処理が可能にされた場合のピクチャ内予測モードに関する規則
CN107113431B (zh) 2014-10-03 2020-12-01 日本电气株式会社 视频编码设备、视频解码设备、视频编码方法、视频解码方法和程序
EP3010231A1 (en) 2014-10-17 2016-04-20 Thomson Licensing Method for color mapping a video signal based on color mapping data and method of encoding a video signal and color mapping data and corresponding devices
US20180167615A1 (en) * 2015-06-07 2018-06-14 Sharp Kabushiki Kaisha Systems and methods for optimizing video coding based on a luminance transfer function or video color component values
EP3308540B1 (en) * 2015-06-09 2020-04-15 Microsoft Technology Licensing, LLC Robust encoding/decoding of escape-coded pixels in palette mode
US10110926B2 (en) 2015-10-15 2018-10-23 Cisco Technology, Inc. Efficient loop filter for video codec
US10277921B2 (en) * 2015-11-20 2019-04-30 Nvidia Corporation Hybrid parallel decoder techniques
EP3244617A1 (en) * 2016-05-13 2017-11-15 Thomson Licensing A method and device for deblocking filtering a boundary within an intra predicted block
WO2018025211A1 (en) * 2016-08-03 2018-02-08 Amimon Ltd. Successive refinement video compression
US11310495B2 (en) * 2016-10-03 2022-04-19 Sharp Kabushiki Kaisha Systems and methods for applying deblocking filters to reconstructed video data
CN113891096B (zh) * 2016-10-04 2022-12-06 有限公司B1影像技术研究所 图像数据编码/解码方法和装置
US10455254B2 (en) * 2016-11-10 2019-10-22 Mediatek Inc. Method and apparatus of video coding
WO2018097299A1 (ja) 2016-11-28 2018-05-31 日本放送協会 符号化装置、復号装置、符号化方法、及び復号方法
US11070818B2 (en) * 2017-07-05 2021-07-20 Telefonaktiebolaget Lm Ericsson (Publ) Decoding a block of video samples
EP3425911A1 (en) 2017-07-06 2019-01-09 Thomson Licensing A method and a device for picture encoding and decoding
US11019339B2 (en) 2017-07-12 2021-05-25 Futurewei Technologies, Inc. Fractional quantization parameter offset in video compression
US10778978B2 (en) * 2017-08-21 2020-09-15 Qualcomm Incorporated System and method of cross-component dynamic range adjustment (CC-DRA) in video coding
US10812798B2 (en) 2017-10-19 2020-10-20 Qualcomm Incorporated Chroma quantization parameter (QP) offset
US10819965B2 (en) * 2018-01-26 2020-10-27 Samsung Electronics Co., Ltd. Image processing device and method for operating image processing device
US11909974B2 (en) * 2018-03-30 2024-02-20 Interdigital Vc Holdings, Inc. Chroma quantization parameter adjustment in video encoding and decoding
US11259023B2 (en) * 2018-04-12 2022-02-22 Qualcomm Incorporated Harmonization of transform-based quantization and dynamic range adjustment scale derivation in video coding
EP3868095A4 (en) * 2018-11-26 2021-12-15 Huawei Technologies Co., Ltd. APPARATUS AND METHOD FOR DERIVATING A CHROMINANCE QUANTIFICATION PARAMETER
EP3700205A1 (en) * 2019-02-19 2020-08-26 Nokia Technologies Oy Quantization parameter derivation for cross-channel residual encoding and decoding
WO2020182116A1 (en) * 2019-03-10 2020-09-17 Huawei Technologies Co., Ltd. An encoder, a decoder and corresponding methods using an adaptive loop filter
KR20250079228A (ko) 2019-04-26 2025-06-04 후아웨이 테크놀러지 컴퍼니 리미티드 크로마 양자화 파라미터의 매핑 함수의 시그널링을 위한 방법 및 장치
CN113906763B (zh) 2019-05-05 2024-01-12 北京字节跳动网络技术有限公司 用于视频编解码的色度去方块协调
EP4113998A1 (en) * 2019-05-28 2023-01-04 Dolby Laboratories Licensing Corporation Quantization parameter signaling
KR102775880B1 (ko) * 2019-06-11 2025-02-28 엘지전자 주식회사 크로마 양자화 파라미터 데이터 기반 영상 디코딩 방법 및 그 장치
EP3967036A4 (en) 2019-06-21 2022-08-17 Huawei Technologies Co., Ltd. ENCODER, DECODER AND RELATED CHROMINANCE QUANTIZATION CONTROL METHODS
US11418787B2 (en) 2019-06-28 2022-08-16 Qualcomm Incorporated Chroma delta QP in video coding
US11381819B2 (en) 2019-07-05 2022-07-05 Qualcomm Incorporated Chroma delta quantization parameter (QP) in video coding
JP7318110B2 (ja) * 2019-08-22 2023-07-31 エルジー エレクトロニクス インコーポレイティド クロマ量子化パラメータを使用する画像デコード方法及びその装置
BR112021010416A2 (pt) 2019-08-23 2021-08-24 Huawei Technologies Co., Ltd. Codificador, decodificador e métodos correspondentes para realizar desblocagem de croma para blocos que usam codificação de croma em conjunto
WO2021043165A1 (en) * 2019-09-02 2021-03-11 Beijing Bytedance Network Technology Co., Ltd. Chroma deblocking harmonization for video coding
EP4020994A4 (en) * 2019-09-06 2022-10-26 Sony Group Corporation IMAGE PROCESSING DEVICE AND IMAGE PROCESSING METHOD
WO2021055138A1 (en) * 2019-09-20 2021-03-25 Alibaba Group Holding Limited Quantization parameter signaling in video processing
CN114586362A (zh) * 2019-09-23 2022-06-03 华为技术有限公司 色度量化参数指示方法和装置
CN114424554B (zh) * 2019-09-23 2024-04-09 华为技术有限公司 色度qp偏移表指示和推导的方法和装置
US12200190B2 (en) * 2019-09-23 2025-01-14 Interdigtal Vc Holdings, Inc. Switching logic for bi-directional optical flow
CN114556924B (zh) * 2019-10-14 2024-01-26 字节跳动有限公司 视频处理中色度残差的联合编解码与滤波的方法、装置及介质
WO2021086021A1 (ko) * 2019-10-28 2021-05-06 엘지전자 주식회사 적응적 변환을 이용한 영상 부호화/복호화 방법, 장치 및 비트스트림을 전송하는 방법
CN114902680B (zh) 2019-12-19 2025-03-21 抖音视界(北京)有限公司 视频的自适应颜色变换和差分编解码的联合使用
WO2021134072A1 (en) * 2019-12-27 2021-07-01 Beijing Dajia Internet Information Technology Co., Ltd. Methods and apparatus of video coding in 4:4:4 chroma format
WO2021134700A1 (zh) * 2019-12-31 2021-07-08 北京大学 视频编解码的方法和装置
CN114982237A (zh) * 2020-01-14 2022-08-30 抖音视界(北京)有限公司 视频编解码中量化参数的信令通知
WO2021143802A1 (en) * 2020-01-15 2021-07-22 Beijing Bytedance Network Technology Co., Ltd. Deblocking filtering using quantization parameter information
BR112022015242A2 (pt) 2020-02-04 2022-09-20 Huawei Tech Co Ltd Codificador, decodificador e métodos correspondentes sobre sinalização de sintaxe de alto nível
KR20210104592A (ko) * 2020-02-17 2021-08-25 현대자동차주식회사 크로마 신호의 리샘플링에 기반하는 영상 부호화 및 복호화
KR20220143859A (ko) * 2020-02-21 2022-10-25 알리바바 그룹 홀딩 리미티드 크로마 신호를 처리하기 위한 방법
WO2021170036A1 (en) * 2020-02-26 2021-09-02 Mediatek Inc. Methods and apparatuses of loop filter parameter signaling in image or video processing system
WO2021185540A1 (en) * 2020-03-16 2021-09-23 Interdigital Vc Holdings France Signaling chroma offset presence in video coding
MX2022003395A (es) * 2020-04-02 2023-03-02 Japan Broadcasting Corp Dispositivo y programa de control de filtro de desbloqueo.
US11652996B2 (en) * 2021-05-25 2023-05-16 Tencent America LLC Method and apparatus for video coding
US11665351B2 (en) 2021-06-30 2023-05-30 Tencent America LLC Method and apparatus for video coding
WO2023013736A1 (ja) * 2021-08-06 2023-02-09 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ 符号化装置、復号装置、符号化方法、および復号方法
CN114584834B (zh) * 2022-01-27 2024-02-13 百果园技术(新加坡)有限公司 视频质量优化方法、装置、设备和存储介质
US20240414339A1 (en) * 2023-06-09 2024-12-12 Qualcomm Incorporated Quantization offsets for dependent quantization in video coding

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080317377A1 (en) * 2007-06-19 2008-12-25 Katsuo Saigo Image coding apparatus and image coding method

Family Cites Families (55)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030112863A1 (en) 2001-07-12 2003-06-19 Demos Gary A. Method and system for improving compressed image chroma information
US7319415B2 (en) 2002-05-01 2008-01-15 Thomson Licensing Chroma deblocking filter
EP1559275A1 (en) 2002-11-01 2005-08-03 Nokia Corporation A method and device for transcoding images
US7227901B2 (en) * 2002-11-21 2007-06-05 Ub Video Inc. Low-complexity deblocking filter
US8014450B2 (en) 2003-09-07 2011-09-06 Microsoft Corporation Flexible range reduction
US8625680B2 (en) * 2003-09-07 2014-01-07 Microsoft Corporation Bitstream-controlled post-processing filtering
JP4407249B2 (ja) * 2003-11-18 2010-02-03 ソニー株式会社 データ処理装置およびその方法と符号化装置、その方法及びプログラム
KR100647295B1 (ko) * 2004-11-10 2006-11-23 삼성전자주식회사 비디오 디코더에서의 인접 정보 처리 장치 및 방법과 그방법을 수행하기 위한 프로그램이 저장된 기록 매체
US7873105B2 (en) 2005-04-01 2011-01-18 Broadcom Corporation Hardware implementation of optimized single inverse quantization engine for a plurality of standards
US8681867B2 (en) 2005-10-18 2014-03-25 Qualcomm Incorporated Selective deblock filtering techniques for video coding based on motion compensation resulting in a coded block pattern value
JP4769605B2 (ja) 2006-03-17 2011-09-07 富士通株式会社 動画像符号装置及び方法
US20070230564A1 (en) * 2006-03-29 2007-10-04 Qualcomm Incorporated Video processing with scalability
US9445128B2 (en) * 2006-12-08 2016-09-13 Freescale Semiconductor, Inc. System and method of determining deblocking control flag of scalable video system for indicating presentation of deblocking parameters for multiple layers
US9961372B2 (en) 2006-12-08 2018-05-01 Nxp Usa, Inc. Adaptive disabling of deblock filtering based on a content characteristic of video information
US8634462B2 (en) 2007-03-13 2014-01-21 Matthias Narroschke Quantization for hybrid video coding
US8204129B2 (en) * 2007-03-27 2012-06-19 Freescale Semiconductor, Inc. Simplified deblock filtering for reduced memory access and computational complexity
US8724698B2 (en) 2007-04-13 2014-05-13 Apple Inc. Method and system for video rate control
US8150187B1 (en) 2007-11-29 2012-04-03 Lsi Corporation Baseband signal quantizer estimation
JP5007259B2 (ja) * 2008-03-27 2012-08-22 ルネサスエレクトロニクス株式会社 画像符号化装置
US8199823B2 (en) * 2008-04-15 2012-06-12 Sony Corporation Estimation of B frame average rate quantization parameter (QP) in a group of pictures (GOP)
US8189677B2 (en) * 2008-04-15 2012-05-29 Sony Corporation Estimation of P frame average rate quantization parameter (QP) in a group of pictures (GOP)
US8279924B2 (en) 2008-10-03 2012-10-02 Qualcomm Incorporated Quantization parameter selections for encoding of chroma and luma video blocks
JP5094760B2 (ja) 2009-02-13 2012-12-12 三菱電機株式会社 動画像符号化装置
KR101060495B1 (ko) * 2009-03-19 2011-08-30 주식회사 코아로직 인코딩 장치와 방법 및 그 인코딩 장치를 포함한 멀티미디어 장치
US20110274162A1 (en) 2010-05-04 2011-11-10 Minhua Zhou Coding Unit Quantization Parameters in Video Coding
JP2011250400A (ja) 2010-04-27 2011-12-08 Panasonic Corp 動画像符号化装置及び動画像符号化方法
JP2011259362A (ja) 2010-06-11 2011-12-22 Sony Corp 画像処理装置および方法
US9462280B2 (en) * 2010-12-21 2016-10-04 Intel Corporation Content adaptive quality restoration filtering for high efficiency video coding
KR101566366B1 (ko) * 2011-03-03 2015-11-16 한국전자통신연구원 색차 성분 양자화 매개 변수 결정 방법 및 이러한 방법을 사용하는 장치
MY202153A (en) * 2011-03-11 2024-04-09 Sony Corp Image processing apparatus and method
US9854275B2 (en) 2011-06-25 2017-12-26 Qualcomm Incorporated Quantization in video coding
KR20140046055A (ko) * 2011-09-08 2014-04-17 모토로라 모빌리티 엘엘씨 계수들의 직사각형 블록의 양자화 및 역양자화를 위한 방법들 및 장치
WO2013037254A1 (en) * 2011-09-13 2013-03-21 Mediatek Inc. Method and apparatus for reduction of deblocking filter
US9485521B2 (en) * 2011-09-19 2016-11-01 Lg Electronics Inc. Encoding and decoding image using sample adaptive offset with start band indicator
US8976857B2 (en) * 2011-09-23 2015-03-10 Microsoft Technology Licensing, Llc Quality-based video compression
US9185404B2 (en) * 2011-10-07 2015-11-10 Qualcomm Incorporated Performing transform dependent de-blocking filtering
US9510020B2 (en) * 2011-10-20 2016-11-29 Qualcomm Incorporated Intra pulse code modulation (IPCM) and lossless coding mode deblocking for video coding
US9167269B2 (en) * 2011-10-25 2015-10-20 Qualcomm Incorporated Determining boundary strength values for deblocking filtering for video coding
US9538200B2 (en) * 2012-01-19 2017-01-03 Qualcomm Incorporated Signaling of deblocking filter parameters in video coding
CN106162185B (zh) * 2012-01-20 2019-10-18 维洛媒体国际有限公司 色度量化参数扩展
US9451258B2 (en) * 2012-04-03 2016-09-20 Qualcomm Incorporated Chroma slice-level QP offset and deblocking
GB2501535A (en) * 2012-04-26 2013-10-30 Sony Corp Chrominance Processing in High Efficiency Video Codecs
US9031137B2 (en) * 2012-05-03 2015-05-12 Texas Instruments Incorporated Signaling signed band offset values for sample adaptive offset (SAO) filtering in video coding
US9591302B2 (en) 2012-07-02 2017-03-07 Microsoft Technology Licensing, Llc Use of chroma quantization parameter offsets in deblocking
US9414054B2 (en) 2012-07-02 2016-08-09 Microsoft Technology Licensing, Llc Control and use of chroma quantization parameter values
JP6406014B2 (ja) * 2012-12-18 2018-10-17 ソニー株式会社 画像処理装置及び画像処理方法
EP2952003B1 (en) * 2013-01-30 2019-07-17 Intel Corporation Content adaptive partitioning for prediction and coding for next generation video
GB2512826B (en) * 2013-04-05 2017-05-10 Canon Kk Method and device for determining the value of a quantization parameter
US10708588B2 (en) * 2013-06-19 2020-07-07 Apple Inc. Sample adaptive offset control
US9294766B2 (en) * 2013-09-09 2016-03-22 Apple Inc. Chroma quantization in video coding
US9843812B2 (en) * 2014-05-23 2017-12-12 Sony Corporation Video transmission system with color gamut partitioning and method of operation thereof
US10038919B2 (en) * 2014-05-29 2018-07-31 Apple Inc. In loop chroma deblocking filter
US9807410B2 (en) * 2014-07-02 2017-10-31 Apple Inc. Late-stage mode conversions in pipelined video encoders
JP6194427B2 (ja) * 2014-10-06 2017-09-06 テレフオンアクチーボラゲット エルエム エリクソン(パブル) 量子化パラメータのコーディング及び導出
WO2019194422A1 (en) * 2018-04-01 2019-10-10 Lg Electronics Inc. An image coding apparatus and method thereof based on a quantization parameter derivation

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080317377A1 (en) * 2007-06-19 2008-12-25 Katsuo Saigo Image coding apparatus and image coding method

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
"High efficiency video coding (''HEVC'') text specification draft 7", JCTVC-L1003_D5, 9TH MEETING, GENEVA, April 2012 (2012-04-01)
KANUMURI S ET AL: "Use of Chroma QP offsets in Deblocking", 11. JCT-VC MEETING; 102. MPEG MEETING; 10-10-2012 - 19-10-2012; SHANGHAI; (JOINT COLLABORATIVE TEAM ON VIDEO CODING OF ISO/IEC JTC1/SC29/WG11 AND ITU-T SG.16 ); URL: HTTP://WFTP3.ITU.INT/AV-ARCH/JCTVC-SITE/,, no. JCTVC-K0220, 1 October 2012 (2012-10-01), XP030113102 *
SULLIVAN G J ET AL: "Chroma QP range extension", 10. JCT-VC MEETING; 101. MPEG MEETING; 11-7-2012 - 20-7-2012; STOCKHOLM; (JOINT COLLABORATIVE TEAM ON VIDEO CODING OF ISO/IEC JTC1/SC29/WG11 AND ITU-T SG.16 ); URL: HTTP://WFTP3.ITU.INT/AV-ARCH/JCTVC-SITE/,, no. JCTVC-J0342, 3 July 2012 (2012-07-03), XP030112704 *
VAN DER AUWERA G ET AL: "AHG6: Chroma QP Offsets and Chroma Deblocking Filtering", 9. JCT-VC MEETING; 100. MPEG MEETING; 27-4-2012 - 7-5-2012; GENEVA; (JOINT COLLABORATIVE TEAM ON VIDEO CODING OF ISO/IEC JTC1/SC29/WG11 AND ITU-T SG.16 ); URL: HTTP://WFTP3.ITU.INT/AV-ARCH/JCTVC-SITE/,, no. JCTVC-I0283, 17 April 2012 (2012-04-17), XP030112046 *
WAN W ET AL: "Consistent chroma QP derivation in deblocking and inverse quantization processes", 102. MPEG MEETING; 15-10-2012 - 19-10-2012; SHANGHAI; (MOTION PICTURE EXPERT GROUP OR ISO/IEC JTC1/SC29/WG11),, no. m26439, 9 October 2012 (2012-10-09), XP030054772 *
XU (SONY) J ET AL: "Chroma QP extension and signalling enhancement", 100. MPEG MEETING; 30-4-2012 - 4-5-2012; GENEVA; (MOTION PICTURE EXPERT GROUP OR ISO/IEC JTC1/SC29/WG11),, no. m24512, 28 April 2012 (2012-04-28), XP030052855 *
YAMAKAGE T ET AL: "CE12: Deblocking filter parameter adjustment in slice level", 7. JCT-VC MEETING; 98. MPEG MEETING; 21-11-2011 - 30-11-2011; GENEVA; (JOINT COLLABORATIVE TEAM ON VIDEO CODING OF ISO/IEC JTC1/SC29/WG11 AND ITU-T SG.16 ); URL: HTTP://WFTP3.ITU.INT/AV-ARCH/JCTVC-SITE/,, no. JCTVC-G174, 8 November 2011 (2011-11-08), XP030110158 *

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2016056398A1 (ja) * 2014-10-06 2017-07-20 ソニー株式会社 画像処理装置および方法
US10602111B2 (en) 2016-09-06 2020-03-24 Apple Inc. Auto white balance control algorithm based upon flicker frequency detection
WO2018057339A1 (en) * 2016-09-23 2018-03-29 Apple Inc. Video compression system providing selection of deblocking filters parameters based on bit-depth of video data
JP7284342B2 (ja) 2019-08-22 2023-05-30 エルジー エレクトロニクス インコーポレイティド クロマ量子化パラメータオフセット関連情報をコーディングする画像デコード方法及びその装置
US12088806B2 (en) 2019-08-22 2024-09-10 Lg Electronics Inc. Image decoding method and device for coding chroma quantization parameter offset-related information
JP2022543581A (ja) * 2019-08-22 2022-10-13 エルジー エレクトロニクス インコーポレイティド クロマ量子化パラメータオフセット関連情報をコーディングする画像デコード方法及びその装置
JP7459347B2 (ja) 2019-08-22 2024-04-01 エルジー エレクトロニクス インコーポレイティド クロマ量子化パラメータオフセット関連情報をコーディングする画像デコード方法及びその装置
JP2023096120A (ja) * 2019-08-22 2023-07-06 エルジー エレクトロニクス インコーポレイティド クロマ量子化パラメータオフセット関連情報をコーディングする画像デコード方法及びその装置
JP2023143946A (ja) * 2019-09-14 2023-10-06 バイトダンス インコーポレイテッド クロマデブロックフィルタリングのための量子化パラメータオフセット
US12382060B2 (en) 2019-09-14 2025-08-05 Bytedance Inc. Chroma quantization parameter in video coding
JP7321364B2 (ja) 2019-09-14 2023-08-04 バイトダンス インコーポレイテッド ビデオコーディングにおけるクロマ量子化パラメータ
JP7321365B2 (ja) 2019-09-14 2023-08-04 バイトダンス インコーポレイテッド クロマデブロックフィルタリングの量子化パラメータ
JP7322285B2 (ja) 2019-09-14 2023-08-07 バイトダンス インコーポレイテッド クロマデブロックフィルタリングのための量子化パラメータオフセット
JP2022548008A (ja) * 2019-09-14 2022-11-16 バイトダンス インコーポレイテッド クロマデブロックフィルタリングの量子化パラメータ
JP2022548007A (ja) * 2019-09-14 2022-11-16 バイトダンス インコーポレイテッド ビデオコーディングにおけるクロマ量子化パラメータ
JP7622153B2 (ja) 2019-09-14 2025-01-27 バイトダンス インコーポレイテッド クロマデブロックフィルタリングのための量子化パラメータオフセット
JP2022547571A (ja) * 2019-09-14 2022-11-14 バイトダンス インコーポレイテッド クロマデブロックフィルタリングのための量子化パラメータオフセット
US11973959B2 (en) 2019-09-14 2024-04-30 Bytedance Inc. Quantization parameter for chroma deblocking filtering
US11985329B2 (en) 2019-09-14 2024-05-14 Bytedance Inc. Quantization parameter offset for chroma deblocking filtering
US11785260B2 (en) 2019-10-09 2023-10-10 Bytedance Inc. Cross-component adaptive loop filtering in video coding
US12356020B2 (en) 2019-10-09 2025-07-08 Bytedance Inc. Cross-component adaptive loop filtering in video coding
US20220321882A1 (en) 2019-12-09 2022-10-06 Bytedance Inc. Using quantization groups in video coding
US12418647B2 (en) 2019-12-09 2025-09-16 Bytedance Inc. Using quantization groups in video coding
US12425586B2 (en) 2019-12-09 2025-09-23 Bytedance Inc. Using quantization groups in video coding
US11750806B2 (en) 2019-12-31 2023-09-05 Bytedance Inc. Adaptive color transform in video coding
US12284371B2 (en) 2020-01-05 2025-04-22 Beijing Bytedance Technology Co., Ltd. Use of offsets with adaptive colour transform coding tool
US12395650B2 (en) 2020-01-05 2025-08-19 Beijing Bytedance Network Technology Co., Ltd. General constraints information for video coding
US12477130B2 (en) 2020-01-05 2025-11-18 Beijing Bytedance Network Technology Co., Ltd. Use of offsets with adaptive colour transform coding tool
US12284347B2 (en) 2020-01-18 2025-04-22 Beijing Bytedance Network Technology Co., Ltd. Adaptive colour transform in image/video coding

Also Published As

Publication number Publication date
US9591302B2 (en) 2017-03-07
US20250159172A1 (en) 2025-05-15
HRP20250545T1 (hr) 2025-06-20
EP4521751A3 (en) 2025-05-21
PL3624448T3 (pl) 2025-06-16
PT3624448T (pt) 2025-05-22
CN104584560A (zh) 2015-04-29
ES3026211T3 (en) 2025-06-10
US20190098307A1 (en) 2019-03-28
HUE071184T2 (hu) 2025-08-28
US20250159173A1 (en) 2025-05-15
EP4521751A2 (en) 2025-03-12
EP2867761A1 (en) 2015-05-06
US20190289291A1 (en) 2019-09-19
EP4521750A3 (en) 2025-05-21
EP4521749A3 (en) 2025-05-21
US20200228803A1 (en) 2020-07-16
US20210211669A1 (en) 2021-07-08
US10972735B2 (en) 2021-04-06
KR102143663B1 (ko) 2020-08-11
US10097832B2 (en) 2018-10-09
EP4521750A2 (en) 2025-03-12
EP4521749A2 (en) 2025-03-12
US20170353725A1 (en) 2017-12-07
EP2867761B1 (en) 2019-11-27
EP3624448A1 (en) 2020-03-18
DK3624448T3 (da) 2025-05-19
US10652542B2 (en) 2020-05-12
US9781421B2 (en) 2017-10-03
JP2015523029A (ja) 2015-08-06
EP3624448B1 (en) 2025-02-19
JP6272321B2 (ja) 2018-01-31
US11595651B2 (en) 2023-02-28
US20240314314A1 (en) 2024-09-19
KR20150035810A (ko) 2015-04-07
RS66743B1 (sr) 2025-05-30
US20230156194A1 (en) 2023-05-18
CN104584560B (zh) 2018-04-10
US20250159171A1 (en) 2025-05-15
US11943442B2 (en) 2024-03-26
US20170134728A1 (en) 2017-05-11
US20140003498A1 (en) 2014-01-02
US10313670B2 (en) 2019-06-04
LT3624448T (lt) 2025-06-10
US20250159170A1 (en) 2025-05-15

Similar Documents

Publication Publication Date Title
US11943442B2 (en) Use of chroma quantization parameter offsets in deblocking
US12177436B2 (en) Control and use of chroma quantization parameter values
HK40123174A (en) Use of chroma quantization parameter offsets in deblocking
HK40123172A (en) Use of chroma quantization parameter offsets in deblocking
HK40123173A (en) Use of chroma quantization parameter offsets in deblocking

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13737759

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2013737759

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2015520632

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20147036987

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE