WO2020182116A1 - An encoder, a decoder and corresponding methods using an adaptive loop filter - Google Patents

An encoder, a decoder and corresponding methods using an adaptive loop filter Download PDF

Info

Publication number
WO2020182116A1
WO2020182116A1 PCT/CN2020/078547 CN2020078547W WO2020182116A1 WO 2020182116 A1 WO2020182116 A1 WO 2020182116A1 CN 2020078547 W CN2020078547 W CN 2020078547W WO 2020182116 A1 WO2020182116 A1 WO 2020182116A1
Authority
WO
WIPO (PCT)
Prior art keywords
chroma
value
current block
video
block
Prior art date
Application number
PCT/CN2020/078547
Other languages
French (fr)
Inventor
Anand Meher Kotra
Semih Esenlik
Jianle Chen
Han GAO
Biao Wang
Original Assignee
Huawei Technologies Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huawei Technologies Co., Ltd. filed Critical Huawei Technologies Co., Ltd.
Publication of WO2020182116A1 publication Critical patent/WO2020182116A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/102Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
    • H04N19/117Filters, e.g. for pre-processing or post-processing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/134Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or criterion affecting or controlling the adaptive coding
    • H04N19/136Incoming video signal characteristics or properties
    • H04N19/14Coding unit complexity, e.g. amount of activity or edge presence estimation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/169Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding
    • H04N19/17Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object
    • H04N19/176Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object the region being a block, e.g. a macroblock
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/169Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding
    • H04N19/186Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being a colour or a chrominance component
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/85Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using pre-processing or post-processing specially adapted for video compression
    • H04N19/86Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using pre-processing or post-processing specially adapted for video compression involving reduction of coding artifacts, e.g. of blockiness

Definitions

  • Embodiments of the present application generally relate to the field of picture processing and more particularly to adaptive loop filter.
  • Video coding (video encoding and decoding) is used in a wide range of digital video applications, for example broadcast digital TV, video transmission over internet and mobile networks, real-time conversational applications such as video chat, video conferencing, DVD and Blu-ray discs, video content acquisition and editing systems, and camcorders of security applications.
  • digital video applications for example broadcast digital TV, video transmission over internet and mobile networks, real-time conversational applications such as video chat, video conferencing, DVD and Blu-ray discs, video content acquisition and editing systems, and camcorders of security applications.
  • video data is generally compressed before being communicated across modern day telecommunications networks.
  • the size of a video could also be an issue when the video is stored on a storage device because memory resources may be limited.
  • Video compression devices often use software and/or hardware at the source to code the video data prior to transmission or storage, thereby decreasing the quantity of data needed to represent digital video images.
  • the compressed data is then received at the destination by a video decompression device that decodes the video data.
  • Embodiments of the present application provide apparatuses and methods for encoding and decoding according to the independent claims.
  • a first embodiment of the present disclosure provides a method of coding implemented by a decoding device or an encoding device, wherein the method comprises obtaining a value of a Chroma quantization parameter (QP) for a current block; obtaining a value of an offset of the Chroma QP according to luma samples corresponding to the current block; and deblocking the current block according to the value of the offset of the Chroma QP and the value of the Chroma QP for the current block.
  • QP Chroma quantization parameter
  • the current block may be a chroma coding block of a current coding unit.
  • the luma samples corresponding to the current block may be the luma samples of a luma coding block corresponding to the current block.
  • the luma samples corresponding to the current block may be the luma samples of a current coding unit corresponding to the current block.
  • the current block may be deblocked based on a modified value of the Chroma QP for the current block, wherein the modified value of the Chroma QP is equal to the value of the offset of the Chroma QP plus the value of the Chroma QP for the current block.
  • the deblocking may be performed on an edge of the current block. Furthermore, the deblocking may be performed according to an average of QPs of the current block and a further block which the current block shares the edge with.
  • the value of the offset of the Chroma QP may be obtained according to an average of the luma samples corresponding to the current block.
  • the average of the luma samples corresponding to the current block may be an average of predicted luma samples corresponding to the current block.
  • the average of the luma samples of the current block may be an average of reconstructed luma samples corresponding to the current block.
  • the value of the offset of the Chroma QP may be obtained according to a forward reshaping lookup table applied to the average of the luma samples corresponding to the current block.
  • the value of the offset of the Chroma QP may be calculated according to the following formula,
  • cQPO is the value of the offset of the Chroma QP
  • FwdLUT′ is a lookup table
  • the value of the offset of the Chroma QP may be calculated according to the following formula,
  • cQPO is the value of the offset of the Chroma QP
  • CU current coding unit
  • FwdLUT′ is a lookup table
  • Luma reshaping may be applied to a luma component of the current CU.
  • Chroma residue scaling may be applied to chroma components of the current CU.
  • an encoder comprising processing circuitry for carrying out any one of the methods according to the first embodiment.
  • a decoder comprising processing circuitry for carrying out any one of the methods according to the first embodiment.
  • a computer program product comprising instructions which, when the program is executed by a computer, cause the computer to carry out any one of the methods according to the first embodiment.
  • a decoder comprising: one or more processors; and a non-transitory computer-readable storage medium coupled to the one or more processors and storing instructions for execution by the one or more processors, wherein the instructions, when executed by the one or more processors, configure the decoder to carry out any one of the methods according to the first embodiment.
  • an encoder comprising: one or more processors; and a non-transitory computer-readable storage medium coupled to the one or more processors and storing instructions for execution by the one or more processors, wherein the instructions, when executed by the one or more processors, configure the encoder to carry out any one of the methods according to the first embodiment.
  • a decoder comprising a quantization parameter (QP) determining module configured to obtain a value of a Chroma QP for a current block, a QP offset determining module configured to obtain a value of an offset of the Chroma QP according to luma samples corresponding to the current block, and a deblocking module configured to deblock the current block according to the value of the offset of the Chroma QP and the value of the Chroma QP for the current block.
  • QP quantization parameter
  • an encoder comprising a quantization parameter (QP) determining module configured to obtain a value of a Chroma QP for a current block, a QP offset determining module configured to obtain a value of an offset of the Chroma QP according to luma samples corresponding to the current block, and a deblocking module configured to deblock the current block according to the value of the offset of the Chroma QP and the value of the Chroma QP for the current block.
  • QP quantization parameter
  • a second embodiment of the present disclosure is a method of coding implemented by a decoding device or an encoding device, comprising obtaining a value of Chroma quantization parameter for a current block; obtaining a value of an offset according to a value of a luma sample of the current block; and deblocking the current block according to the value of the offset and the value of the Chroma quantization parameter for the current block.
  • deblocking may be performed on a boundary of the current block.
  • the current block may be deblocked based on a modified value of the Chroma quantization parameter for the current block, wherein the modified value of the Chroma quantization parameter is equal to the value of the offset plus the value of the Chroma quantization parameter for the current block.
  • the value of the offset may be calculated according to the following formula,
  • cQPO is the value of the offset
  • FwdLUT′ is a lookup table
  • the value of the offset may be calculated according to the following formula,
  • cQPO is the value of the offset
  • FwdLUT′ is a lookup table
  • an encoder comprising processing circuitry for carrying out any one of the methods according to the second embodiment.
  • a decoder comprising processing circuitry for carrying out any one of the methods according to the second embodiment.
  • a computer program product comprising a program code for performing any one of the methods according to the second embodiment.
  • a decoder comprising: one or more processors; and a non-transitory computer-readable storage medium coupled to the processors and storing programming for execution by the processors, wherein the programming, when executed by the processors, configures the decoder to carry out any one of the methods according to the second embodiment.
  • an encoder comprising: one or more processors; and a non-transitory computer-readable storage medium coupled to the processors and storing programming for execution by the processors, wherein the programming, when executed by the processors, configures the encoder to carry out any one of the methods according to the second embodiment.
  • a corresponding equivalent Chroma offset is derived.
  • the derived Chroma offset is added to the actual Chroma quantization parameter (QP) of a given block during the deblocking process. Consequently, the correct QP is applied during the Chroma deblocking process. Without the correction by the Chroma offset, an incorrect Chroma deblocking decision may be taken as a QP may be used in such a decision that does not correctly correspond to the actual chroma residual when Chroma scaling is applied.
  • QP Chroma quantization parameter
  • FIG. 1A is a block diagram showing an example of a video coding system configured to implement embodiments of the disclosure
  • FIG. 1B is a block diagram showing another example of a video coding system configured to implement embodiments of the disclosure
  • FIG. 2 is a block diagram showing an example of a video encoder configured to implement embodiments of the disclosure
  • FIG. 3 is a block diagram showing an example structure of a video decoder configured to implement embodiments of the disclosure
  • FIG. 4 is a block diagram illustrating an example of an encoding apparatus or a decoding apparatus
  • FIG. 5 is a block diagram illustrating another example of an encoding apparatus or a decoding apparatus
  • FIG. 6 is an example about a chroma residue scaling method which is applied for the chroma block but is not used further in the deblocking process;
  • FIG. 7 is an example about a chroma residue scaling method which is applied for the chroma block and is used further in the deblocking process according to the present disclosure
  • FIG. 8 is an embodiment of the present disclosure for using a chroma offset for the deblocking process
  • FIG. 9 shows a flowchart for a method of video coding according to an embodiment of the disclosure.
  • FIG. 10 shows a block diagram illustrating an example of an encoding apparatus or a decoding apparatus according to embodiments of the disclosure.
  • FIG. 11 is a block diagram showing an example structure of a content supply system 3100 which realizes a content delivery service.
  • FIG. 12 is a block diagram showing a structure of an example of a terminal device.
  • a disclosure in connection with a described method may also hold true for a corresponding device or system configured to perform the method and vice versa.
  • a corresponding device may include one or a plurality of units, e.g. functional units, to perform the described one or plurality of method steps (e.g. one unit performing the one or plurality of steps, or a plurality of units each performing one or more of the plurality of steps) , even if such one or more units are not explicitly described or illustrated in the figures.
  • a specific apparatus is described based on one or a plurality of units, e.g.
  • a corresponding method may include one step to perform the functionality of the one or plurality of units (e.g. one step performing the functionality of the one or plurality of units, or a plurality of steps each performing the functionality of one or more of the plurality of units) , even if such one or plurality of steps are not explicitly described or illustrated in the figures. Further, it is understood that the features of the various exemplary embodiments and/or aspects described herein may be combined with each other, unless specifically noted otherwise.
  • Video coding typically refers to the processing of a sequence of pictures, which form the video or video sequence. Instead of the term “picture” , the term “frame” or “image” may be used as synonyms in the field of video coding.
  • Video coding (or coding in general) comprises two parts: video encoding and video decoding.
  • Video encoding is performed at the source side, typically comprising processing (e.g. by compression) the original video pictures to reduce the amount of data required for representing the video pictures (for more efficient storage and/or transmission) .
  • Video decoding is performed at the destination side and typically comprises the inverse processing compared to the encoder to reconstruct the video pictures.
  • Embodiments referring to “coding” of video pictures shall be understood to relate to “encoding” or “decoding” of video pictures or respective video sequences.
  • the combination of the encoding part and the decoding part is also referred to as CODEC (Coding and Decoding) .
  • CODEC Coding and Decoding
  • the original video pictures can be reconstructed, i.e. the reconstructed video pictures have the same quality as the original video pictures (assuming no transmission loss or other data loss occurs during storage or transmission) .
  • further compression e.g. by quantization, is performed, to reduce the amount of data representing the video pictures, which cannot be completely reconstructed at the decoder, i.e. the quality of the reconstructed video pictures is lower or worse compared to the quality of the original video pictures.
  • Video coding standards belong to the group of “lossy hybrid video codecs” (i.e. combine spatial and temporal prediction in the sample domain and 2D transform coding for applying quantization in the transform domain) .
  • Each picture of a video sequence is typically partitioned into a set of non-overlapping blocks and the coding is typically performed on a block level.
  • the video is typically processed, i.e. encoded, on a block (video block) level, e.g.
  • the encoder duplicates the decoder processing loop such that both will generate identical predictions (e.g. intra-and inter predictions) and/or re-constructions for processing, i.e. coding, the subsequent blocks.
  • a video encoder 20 and a video decoder 30 are described based on Figs. 1 to 3.
  • the coding system 10 comprises a source device 12 configured to provide encoded picture data 21 e.g. to a destination device 14 for decoding the encoded picture data 13.
  • the source device 12 comprises an encoder 20, and may additionally, i.e. optionally, comprise a picture source 16, a pre-processor (or pre-processing unit) 18, e.g. a picture pre-processor 18, and a communication interface or communication unit 22.
  • the picture or picture data 17 may also be referred to as raw picture or raw picture data 17.
  • Pre-processor 18 may be configured to receive the (raw) picture data 17 and to perform pre-processing on the picture data 17 to obtain a pre-processed picture 19 or pre-processed picture data 19.
  • Pre-processing performed by the pre-processor 18 may, e.g., comprise trimming, color format conversion (e.g. from RGB to YCbCr) , color correction, or de-noising. It can be understood that the pre-processing unit 18 may be an optional component.
  • the destination device 14 comprises a decoder 30 (e.g. a video decoder 30) , and may additionally, i.e. optionally, comprise a communication interface or communication unit 28, a post-processor 32 (or post-processing unit 32) and a display device 34.
  • a decoder 30 e.g. a video decoder 30
  • the communication interface 28 of the destination device 14 may be configured to receive the encoded picture data 21 (or any further processed version thereof) , e.g. directly from the source device 12 or from any other source, e.g. a storage device, such as an encoded picture data storage device, and provide the encoded picture data 21 to the decoder 30.
  • a storage device such as an encoded picture data storage device
  • the communication interface 22 and the communication interface 28 may be configured to transmit or receive the encoded picture data 21 or encoded data 13 via a direct communication link between the source device 12 and the destination device 14, e.g. a direct wired or wireless connection, or via any kind of network, e.g. a wired or wireless network or any combination thereof, or any kind of private and public network, or any kind of combination thereof.
  • the communication interface 22 may be configured to package the encoded picture data 21 into an appropriate format, e.g. packets, and/or process the encoded picture data using any kind of transmission encoding or processing for transmission over a communication link or communication network.
  • the communication interface 28, forming the counterpart of the communication interface 22, may be configured to receive the transmitted data and process the transmission data using any kind of corresponding transmission decoding or processing and/or de-packaging to obtain the encoded picture data 21.
  • Both, communication interface 22 and communication interface 28 may be configured as unidirectional communication interfaces as indicated by the arrow for the communication channel 13 in Fig. 1A pointing from the source device 12 to the destination device 14, or as bi-directional communication interfaces, and may be configured to send and receive messages, e.g. to set up a connection, to acknowledge and exchange any other information related to the communication link and/or data transmission, such as encoded picture data transmission.
  • the decoder 30 may be configured to receive the encoded picture data 21 and provide decoded picture data 31 or a decoded picture 31 (further details will be described below, e.g., based on Fig. 3 or Fig. 5) .
  • the post-processor 32 of destination device 14 may be configured to post-process the decoded picture data 31 (also called reconstructed picture data) , e.g. the decoded picture 31, to obtain post-processed picture data 33, such as a post-processed picture 33.
  • the post-processing performed by the post-processing unit 32 may comprise any one or more of color format conversion (e.g. from YCbCr to RGB) , color correction, trimming, or re-sampling, or any other processing, e.g. for preparing the decoded picture data 31 for display, e.g. by display device 34.
  • the display device 34 of the destination device 14 may be configured to receive the post-processed picture data 33 for displaying the picture, e.g. to a user or viewer.
  • the display device 34 may be or comprise any kind of display for representing the reconstructed picture, such as an integrated or external display or monitor.
  • the display may be a liquid crystal displays (LCD) , an organic light emitting diodes (OLED) display, a plasma display, a projector , a micro LED display, a liquid crystal on silicon (LCoS) , a digital light processor (DLP) or any kind of other display.
  • Fig. 1A depicts the source device 12 and the destination device 14 as separate devices
  • embodiments of devices may also comprise both devices or both functionalities, i.e. the source device 12 or corresponding functionality and the destination device 14 or corresponding functionality.
  • the source device 12 or corresponding functionality and the destination device 14 or corresponding functionality may be implemented using the same hardware and/or software or by separate hardware and/or software or any combination thereof.
  • the encoder 20 (e.g. a video encoder 20) or the decoder 30 (e.g. a video decoder 30) or both, encoder 20 and decoder 30 may be implemented via processing circuitry as shown in Fig. 1B, such as one or more microprocessors, digital signal processors (DSPs) , application-specific integrated circuits (ASICs) , field-programmable gate arrays (FPGAs) , discrete logic, hardware, video coding dedicated or any combinations thereof.
  • the encoder 20 may be implemented via processing circuitry 46 to embody the various modules as discussed with respect to encoder 20 of Fig. 2 and/or any other encoder system or subsystem described herein.
  • the decoder 30 may be implemented via processing circuitry 46 to embody the various modules as discussed with respect to decoder 30 of Fig. 3 and/or any other decoder system or subsystem described herein.
  • the processing circuitry may be configured to perform the various operations as discussed later.
  • a device may store instructions for the software in a suitable, non-transitory computer-readable storage medium and may execute the instructions in hardware using one or more processors to perform the techniques of this disclosure.
  • Video encoder 20 and video decoder 30 may be integrated as part of a combined encoder/decoder (CODEC) in a single device, for example, as shown in Fig. 1B.
  • 1B comprises a processing circuitry implementing both a video encoder 20 and a video decoder 30.
  • one or more imaging devices 41 such as a camera for capturing real-world pictures
  • an antenna 42 such as a Bluetooth connection
  • one or more memory stores 44 such as a Wi-Fi connection
  • processors 43 such as a graphics processing unit (GPU)
  • a display device 45 such as the display device 34 described above, may be provided as part of the video coding system 40.
  • Source device 12 and destination device 14 may comprise any of a wide range of devices, including any kind of handheld or stationary devices, e.g. notebook or laptop computers, mobile phones, smart phones, tablets or tablet computers, cameras, desktop computers, set-top boxes, televisions, display devices, digital media players, video gaming consoles, video streaming devices (such as content services servers or content delivery servers) , broadcast receiver devices, broadcast transmitter devices, or the like and may use no or any kind of operating system.
  • the source device 12 and the destination device 14 may be equipped for wireless communication.
  • the source device 12 and the destination device 14 may be wireless communication devices.
  • video coding system 10 illustrated in Fig. 1A is merely an example and the techniques of the present application may apply to video coding systems (e.g., video encoding or video decoding) that do not necessarily include any data communication between the encoding and decoding devices.
  • data is retrieved from a local memory, streamed over a network, or the like.
  • a video encoding device may encode and store data in memory, and/or a video decoding device may retrieve and decode data from memory.
  • the encoding and decoding is performed by devices that do not communicate with one another, but simply encode data to memory and/or retrieve and decode data from memory.
  • Fig. 2 shows a schematic block diagram of an example video encoder 20 that is configured to implement the techniques of the present application.
  • the video encoder 20 comprises an input 201 (or input interface 201) , a residual calculation unit 204, a transform processing unit 206, a quantization unit 208, an inverse quantization unit 210, and an inverse transform processing unit 212, a reconstruction unit 214, a loop filter unit 220, a decoded picture buffer (DPB) 230, a mode selection unit 260, an entropy encoding unit 270 and an output 272 (or output interface 272) .
  • the mode selection unit 260 may include an inter prediction unit 244, an intra prediction unit 254 and a partitioning unit 262.
  • the inter prediction unit 244 may include a motion estimation unit and a motion compensation unit (not shown) .
  • a video encoder 20 as shown in Fig. 2 may also be referred to as a hybrid video encoder or a video encoder according to a hybrid video codec.
  • the inverse quantization unit 210, the inverse transform processing unit 212, the reconstruction unit 214, the loop filter 220, the decoded picture buffer (DPB) 230, the inter prediction unit 244 and the intra-prediction unit 254 are also referred to forming the “built-in decoder” of video encoder 20.
  • the encoder 20 may be configured to receive, e.g. via input 201, a picture 17 (or picture data 17) , e.g. a picture of a sequence of pictures forming a video or video sequence.
  • the received picture or picture data may also be a pre-processed picture 19 (or pre-processed picture data 19) .
  • the picture 17 may also be referred to as a current picture or a picture to be coded (in particular, in video coding to distinguish the current picture from other pictures, e.g. previously encoded and/or decoded pictures of the same video sequence, i.e. the video sequence which also comprises the current picture) .
  • a (digital) picture is or can be regarded as a two-dimensional array or matrix of samples with intensity values.
  • a sample in the array may also be referred to as pixel (short form of picture element) or a pel.
  • the number of samples in the horizontal and vertical direction (or axis) of the array or picture defines the size and/or resolution of the picture.
  • typically three color components are employed, i.e. the picture may be represented as or include three sample arrays.
  • RBG format or color space a picture comprises a corresponding red, green and blue sample array.
  • each pixel is typically represented in a luminance and chrominance format or color space, e.g.
  • YCbCr which comprises a luminance component indicated by Y (sometimes also L is used instead) and two chrominance components indicated by Cb and Cr.
  • the luminance (or short luma) component Y represents the brightness or grey level intensity (e.g. like in a grey-scale picture)
  • the two chrominance (or short chroma) components Cb and Cr represent the chromaticity or color information components.
  • a picture in YCbCr format comprises a luminance sample array of luminance sample values (Y) , and two chrominance sample arrays of chrominance values (Cb and Cr) .
  • Pictures in RGB format may be converted or transformed into YCbCr format and vice versa.
  • a picture is monochrome, the picture may comprise only a luminance sample array. Accordingly, a picture may be, for example, an array of luma samples in monochrome format or an array of luma samples and two corresponding arrays of chroma samples in 4: 2: 0, 4: 2: 2, and 4: 4: 4 colour format.
  • Embodiments of the video encoder 20 may comprise a picture partitioning unit (not depicted in Fig. 2) configured to partition the picture 17 into a plurality of (typically non-overlapping) picture blocks 203. These blocks may also be referred to as root blocks, macro blocks (H. 264/AVC) or coding tree blocks (CTB) or coding tree units (CTU) (according to H. 265/HEVC and VVC) .
  • the picture partitioning unit may be configured to use the same block size for all pictures of a video sequence and the corresponding grid defining the block size, or to change the block size between pictures or subsets or groups of pictures, and partition each picture into the corresponding blocks.
  • the video encoder may be configured to receive directly a block 203 of the picture 17, e.g. one, several or all blocks forming the picture 17.
  • the picture block 203 may also be referred to as current picture block or picture block to be coded.
  • the picture block 203 is or can be regarded as a two-dimensional array or matrix of samples with intensity values (sample values) , although of smaller dimension than the picture 17.
  • the block 203 may comprise, e.g., one sample array (e.g. a luma array in case of a monochrome picture 17, or a luma or chroma array in case of a color picture) or three sample arrays (e.g. a luma and two chroma arrays in case of a color picture 17) or any other number and/or kind of arrays depending on the color format applied.
  • the number of samples in the horizontal and vertical direction (or axis) of the block 203 defines the size of the block 203.
  • a block may, for example, comprise an M ⁇ N (M-column by N-row) array of samples, or an M ⁇ N array of transform coefficients.
  • Embodiments of the video encoder 20 as shown in Fig. 2 may be further configured to partition and/or encode the picture by using slices (also referred to as video slices) , wherein a picture may be partitioned into or encoded using one or more slices (typically non-overlapping) , and each slice may comprise one or more blocks (e.g. CTUs) .
  • slices also referred to as video slices
  • each slice may comprise one or more blocks (e.g. CTUs) .
  • Embodiments of the video encoder 20 as shown in Fig. 2 may be further configured to partition and/or encode the picture by using tile groups (also referred to as video tile groups) and/or tiles (also referred to as video tiles) , wherein a picture may be partitioned into or encoded using one or more tile groups (typically non-overlapping) , and each tile group may comprise one or more blocks (e.g. CTUs) or one or more tiles, wherein each tile may be of rectangular shape and may comprise one or more blocks (e.g. CTUs) , e.g. complete or fractional blocks.
  • tile groups also referred to as video tile groups
  • tiles also referred to as video tiles
  • each tile group may comprise one or more blocks (e.g. CTUs) or one or more tiles, wherein each tile may be of rectangular shape and may comprise one or more blocks (e.g. CTUs) , e.g. complete or fractional blocks.
  • the residual calculation unit 204 may be configured to calculate a residual block 205 (also referred to as residual 205) based on the picture block 203 and a prediction block 265 (further details about the prediction block 265 are provided later) , e.g. by subtracting sample values of the prediction block 265 from sample values of the picture block 203, sample by sample (pixel by pixel) to obtain the residual block 205 in the sample domain.
  • a residual block 205 also referred to as residual 205
  • a prediction block 265 further details about the prediction block 265 are provided later
  • the transform processing unit 206 may be configured to apply a transform, such as a discrete cosine transform (DCT) or discrete sine transform (DST) , on the sample values of the residual block 205 to obtain transform coefficients 207 in a transform domain.
  • a transform such as a discrete cosine transform (DCT) or discrete sine transform (DST)
  • DCT discrete cosine transform
  • DST discrete sine transform
  • the transform coefficients 207 may also be referred to as transform residual coefficients and represent the residual block 205 in the transform domain.
  • the transform processing unit 206 may be configured to apply integer approximations of DCT/DST, such as the transforms specified for H. 265/HEVC. Compared to an orthogonal DCT transform, such integer approximations are typically scaled by a certain factor. In order to preserve the norm of the residual block which is processed by forward and inverse transforms, additional scaling factors are applied as part of the transform process.
  • the scaling factors are typically chosen based on certain constraints like scaling factors being a power of two for shift operations, bit depth of the transform coefficients, tradeoff between accuracy and implementation costs, etc. Specific scaling factors are, for example, specified for the inverse transform, e.g. by inverse transform processing unit 212 (and the corresponding inverse transform, e.g. by inverse transform processing unit 312 at video decoder 30) and corresponding scaling factors for the forward transform, e.g. by transform processing unit 206, at an encoder 20 may be specified accordingly.
  • Embodiments of the video encoder 20 may be configured to output transform parameters, e.g. a type of transform or transforms, e.g. directly or encoded or compressed via the entropy encoding unit 270, so that, e.g., the video decoder 30 may receive and use the transform parameters for decoding.
  • transform parameters e.g. a type of transform or transforms, e.g. directly or encoded or compressed via the entropy encoding unit 270, so that, e.g., the video decoder 30 may receive and use the transform parameters for decoding.
  • the quantization unit 208 may be configured to quantize the transform coefficients 207 to obtain quantized coefficients 209, e.g. by applying scalar quantization or vector quantization.
  • the quantized coefficients 209 may also be referred to as quantized transform coefficients 209 or quantized residual coefficients 209.
  • small quantization parameters may correspond to fine quantization (small quantization step sizes) and large quantization parameters may correspond to coarse quantization (large quantization step sizes) or vice versa.
  • the quantization may include division by a quantization step size and a corresponding and/or the inverse dequantization, e.g. by inverse quantization unit 210, may include multiplication by the quantization step size.
  • Embodiments according to some standards, e.g. HEVC may be configured to use a quantization parameter to determine the quantization step size.
  • the quantization step size may be calculated based on a quantization parameter using a fixed point approximation of an equation including division.
  • Additional scaling factors may be introduced for quantization and dequantization to restore the norm of the residual block, which might get modified because of the scaling used in the fixed point approximation of the equation for quantization step size and quantization parameter.
  • the scaling of the inverse transform and dequantization might be combined.
  • customized quantization tables may be used and signaled from an encoder to a decoder, e.g. in a bitstream.
  • the quantization is a lossy operation, wherein the loss increases with increasing quantization step sizes.
  • Embodiments of the video encoder 20 may be configured to output quantization parameters (QPs) , e.g. directly or encoded via the entropy encoding unit 270, so that, e.g., the video decoder 30 may receive and apply the quantization parameters for decoding.
  • QPs quantization parameters
  • the inverse quantization unit 210 is configured to apply the inverse quantization of the quantization unit 208 on the quantized coefficients to obtain dequantized coefficients 211, e.g. by applying the inverse of the quantization scheme applied by the quantization unit 208 based on or using the same quantization step size as the quantization unit 208.
  • the dequantized coefficients 211 may also be referred to as dequantized residual coefficients 211 and correspond -although typically not identical to the transform coefficients due to the loss by quantization -to the transform coefficients 207.
  • the loop filter unit 220 (or short “loop filter” 220) , is configured to filter the reconstructed block 215 to obtain a filtered block 221, or in general, to filter reconstructed samples to obtain filtered samples.
  • the loop filter unit may be configured to smooth pixel transitions, or otherwise improve the video quality.
  • the loop filter unit 220 may comprise one or more loop filters such as a de-blocking filter, a sample-adaptive offset (SAO) filter or one or more other filters, such as a bilateral filter, an adaptive loop filter (ALF) , a sharpening, a smoothing filter or a collaborative filter, or any combination thereof.
  • the loop filter unit 220 is shown in Fig. 2 as being an in-loop filter, in other configurations, the loop filter unit 220 may be implemented as a post loop filter.
  • the filtered block 221 may also be referred to as a filtered reconstructed block 221.
  • Embodiments of the video encoder 20 may be configured to output loop filter parameters (such as sample adaptive offset information) , e.g. directly or encoded via the entropy encoding unit 270, so that, e.g., a decoder 30 may receive and apply the same loop filter parameters or respective loop filters for decoding.
  • loop filter parameters such as sample adaptive offset information
  • the decoded picture buffer (DPB) 230 may be a memory that stores reference pictures, or in general reference picture data, for encoding video data by video encoder 20.
  • the DPB 230 may be formed by any of a variety of memory devices, such as dynamic random access memory (DRAM) , including synchronous DRAM (SDRAM) , magnetoresistive RAM (MRAM) , resistive RAM (RRAM) , or other types of memory devices.
  • DRAM dynamic random access memory
  • SDRAM synchronous DRAM
  • MRAM magnetoresistive RAM
  • RRAM resistive RAM
  • the decoded picture buffer (DPB) 230 may be configured to store one or more filtered blocks 221.
  • the decoded picture buffer 230 may be further configured to store other previously filtered blocks, e.g. previously reconstructed and filtered blocks 221, of the same current picture or of different pictures, e.g.
  • the decoded picture buffer (DPB) 230 may also be configured to store one or more unfiltered reconstructed blocks 215, or in general unfiltered reconstructed samples, e.g. if the reconstructed block 215 is not filtered by loop filter unit 220, or any other further processed version of the reconstructed blocks or samples.
  • the mode selection unit 260 comprises partitioning unit 262, inter-prediction unit 244 and intra-prediction unit 254, and is configured to receive or obtain original picture data, such as an original block 203 (current block 203 of the current picture 17) , and reconstructed picture data, such as filtered and/or unfiltered reconstructed samples or blocks of the same (current) picture and/or from one or a plurality of previously decoded pictures, e.g. from decoded picture buffer 230 or other buffers (e.g. line buffer, not shown) .
  • the reconstructed picture data is used as reference picture data for prediction, e.g. inter-prediction or intra-prediction, to obtain a prediction block 265 or predictor 265.
  • Mode selection unit 260 may be configured to determine or select a partitioning for a current block prediction mode (including no partitioning) and a prediction mode (e.g. an intra-or inter-prediction mode) and generate a corresponding prediction block 265, which is used for the calculation of the residual block 205 and for the reconstruction of the reconstructed block 215.
  • a prediction mode e.g. an intra-or inter-prediction mode
  • Embodiments of the mode selection unit 260 may be configured to select the partitioning and the prediction mode (e.g. from those supported by or available for mode selection unit 260) , which provide the best match or in other words the minimum residual (minimum residual means better compression for transmission or storage) , or a minimum signaling overhead (minimum signaling overhead means better compression for transmission or storage) , or which considers or balances both.
  • the mode selection unit 260 may be configured to determine the partitioning and prediction mode based on rate distortion optimization (RDO) , i.e. select the prediction mode which provides a minimum rate distortion. Terms like “best” , “minimum” , “optimum” etc.
  • the partitioning unit 262 may be configured to partition the block 203 into smaller block partitions or sub-blocks (which again form blocks) , e.g. iteratively using quad-tree-partitioning (QT) , binary-tree partitioning (BT) or triple-tree-partitioning (TT) or any combination thereof, and to perform the prediction for each of the block partitions or sub-blocks, wherein the mode selection comprises the selection of the tree-structure of the partitioned block 203 and the prediction modes are applied to each of the block partitions or sub-blocks.
  • QT quad-tree-partitioning
  • BT binary-tree partitioning
  • TT triple-tree-partitioning
  • partitioning e.g. by partitioning unit 262
  • prediction processing by inter-prediction unit 244 and intra-prediction unit 254
  • the partitioning unit 262 may partition (or split) a current block 203 into smaller partitions, e.g. smaller blocks of square or rectangular size. These smaller blocks (which may also be referred to as sub-blocks) may be further partitioned into even smaller partitions.
  • This is also referred to as tree-partitioning or hierarchical tree-partitioning, wherein a root block, e.g. at root tree-level 0 (hierarchy-level 0, depth 0) , may be recursively partitioned, e.g. partitioned into two or more blocks of a next lower tree-level, e.g.
  • nodes at tree-level 1 (hierarchy-level 1, depth 1) , wherein these blocks may be again partitioned into two or more blocks of a next lower level, e.g. tree-level 2 (hierarchy-level 2, depth 2) , etc. until the partitioning is terminated, e.g. because a termination criterion is fulfilled, e.g. a maximum tree depth or minimum block size is reached.
  • Blocks which are not further partitioned are also referred to as leaf-blocks or leaf nodes of the tree.
  • a tree using partitioning into two partitions is referred to as a binary-tree (BT)
  • BT binary-tree
  • TT ternary-tree
  • QT quad-tree
  • the term “block” as used herein may be a portion, in particular a square or rectangular portion, of a picture.
  • the block may be or correspond to a coding tree unit (CTU) , a coding unit (CU) , a prediction unit (PU) , or a transform unit (TU) and/or to the corresponding blocks, e.g. a coding tree block (CTB) , a coding block (CB) , a transform block (TB) or a prediction block (PB) .
  • CTU coding tree unit
  • CU coding unit
  • PU prediction unit
  • TU transform unit
  • a coding tree unit may be or comprise a CTB of luma samples and two corresponding CTBs of chroma samples of a picture that has three sample arrays, or a CTB of samples of a monochrome picture or a picture that is coded using three separate colour planes and syntax structures used to code the samples.
  • a coding tree block may be an N ⁇ N block of samples for some value of N such that the division of a component into CTBs is a partitioning.
  • a coding unit may be or comprise a coding block of luma samples and two corresponding coding blocks of chroma samples of a picture that has three sample arrays, or a coding block of samples of a monochrome picture or a picture that is coded using three separate colour planes and syntax structures used to code the samples.
  • a coding block may be an M ⁇ N block of samples for some values of M and N such that the division of a CTB into coding blocks is a partitioning.
  • a coding tree unit may be split into CUs by using a quad-tree structure denoted as a coding tree.
  • the decision whether to code a picture area using inter-picture (temporal) or intra-picture (spatial) prediction is made at the CU level.
  • Each CU can be further split into one, two or four PUs according to the PU splitting type. Inside one PU, the same prediction process is applied and the relevant information is transmitted to the decoder on a PU basis.
  • a CU can be partitioned into transform units (TUs) according to another quad-tree structure similar to the coding tree for the CU.
  • a combined quad-tree and binary-tree (QTBT) partitioning is for example used to partition a coding block.
  • a CU can have either a square or rectangular shape.
  • a coding tree unit (CTU) is first partitioned by a quad-tree structure.
  • the quad-tree leaf nodes are further partitioned by a binary-tree or ternary (or triple) -tree structure.
  • the partitioning tree leaf nodes are called coding units (CUs) , and that partition is used for prediction and transform processing without any further partitioning.
  • CUs coding units
  • multiple partitions for example, triple-tree partition may be used together with the QTBT block structure.
  • the mode selection unit 260 of video encoder 20 may be configured to perform any combination of the partitioning techniques described herein.
  • the video encoder 20 is configured to determine or select the best or an optimum prediction mode from a set of (e.g. pre-determined) prediction modes.
  • the set of prediction modes may comprise intra-prediction modes and/or inter-prediction modes.
  • the set of intra-prediction modes may comprise 35 different intra-prediction modes, such as non-directional modes like DC (or mean) mode and planar mode, or directional modes, e.g. as defined in HEVC, or may comprise 67 different intra-prediction modes, such as non-directional modes like DC (or mean) mode and planar mode, or directional modes, e.g. as defined for VVC.
  • the intra-prediction unit 254 is configured to use reconstructed samples of neighboring blocks of the same current picture to generate an (intra-) prediction block 265 according to an intra-prediction mode from the set of intra-prediction modes.
  • the intra-prediction unit 254 (or in general the mode selection unit 260) may be further configured to output intra-prediction parameters (or in general information indicative of the selected intra-prediction mode for the block) to the entropy encoding unit 270 in the form of syntax elements 266 for inclusion into the encoded picture data 21, so that, e.g., the video decoder 30 may receive and use the prediction parameters for decoding.
  • the set of (or possible) inter-prediction modes depends on the available reference pictures (i.e. previous, at least partially decoded pictures, e.g. stored in DBP 230) and other inter-prediction parameters, e.g. whether the whole reference picture or only a part, e.g. a search window area around the area of the current block, of the reference picture is used for searching for a best matching reference block, and/or e.g. whether pixel interpolation is applied, such as half/semi-pel and/or quarter-pel interpolation, or not.
  • inter-prediction parameters e.g. whether the whole reference picture or only a part, e.g. a search window area around the area of the current block, of the reference picture is used for searching for a best matching reference block, and/or e.g. whether pixel interpolation is applied, such as half/semi-pel and/or quarter-pel interpolation, or not.
  • skip mode and/or direct mode may be applied.
  • the inter-prediction unit 244 may include a motion estimation (ME) unit and a motion compensation (MC) unit (both not shown in Fig. 2) .
  • the motion estimation unit may be configured to receive or obtain the picture block 203 (current picture block 203 of the current picture 17) and a decoded picture 231, or at least one or a plurality of previously reconstructed blocks, such as reconstructed blocks of one or a plurality of previously decoded pictures 231, for motion estimation.
  • a video sequence may comprise the current picture and the previously decoded pictures 231, or in other words, the current picture and the previously decoded pictures 231 may be part of or form a sequence of pictures forming a video sequence.
  • the encoder 20 may be configured to select a reference block from a plurality of reference blocks of the same or different pictures of the plurality of previously decoded pictures and provide a reference picture (or reference picture index) and/or an offset (spatial offset) between the position (x, y coordinates) of the reference block and the position of the current block as inter-prediction parameters to the motion estimation unit.
  • This offset is also called motion vector (MV) .
  • the motion compensation unit may be configured to obtain, e.g. receive, an inter-prediction parameter and to perform inter-prediction based on or using the inter-prediction parameter to obtain an (inter-) prediction block 265.
  • Motion compensation performed by the motion compensation unit, may involve fetching or generating the prediction block based on the motion/block vector determined by motion estimation, possibly performing interpolations to sub-pixel precision. Interpolation filtering may generate additional pixel samples from known pixel samples, thus potentially increasing the number of candidate prediction blocks that may be used to code a picture block.
  • the motion compensation unit may locate the prediction block to which the motion vector points in one of the reference picture lists.
  • the motion compensation unit may also generate syntax elements associated with the blocks and video slices for use by video decoder 30 in decoding the picture blocks of the video slice.
  • syntax elements associated with the blocks and video slices for use by video decoder 30 in decoding the picture blocks of the video slice.
  • tile groups and/or tiles and respective syntax elements may be generated or used.
  • the entropy encoding unit 270 is configured to apply, for example, an entropy encoding algorithm or scheme (e.g. a variable length coding (VLC) scheme, a context adaptive VLC scheme (CAVLC) , an arithmetic coding scheme, a binarization, a context adaptive binary arithmetic coding (CABAC) , syntax-based context-adaptive binary arithmetic coding (SBAC) , probability interval partitioning entropy (PIPE) coding or another entropy encoding methodology or technique) or bypass (no compression) on the quantized coefficients 209, inter-prediction parameters, intra-prediction parameters, loop filter parameters and/or other syntax elements to obtain encoded picture data 21 which can be output via the output 272, e.g.
  • an entropy encoding algorithm or scheme e.g. a variable length coding (VLC) scheme, a context adaptive VLC scheme (CAVLC) , an arithmetic coding scheme
  • the encoded bitstream 21 may be transmitted to video decoder 30, or stored in a memory for later transmission or retrieval by video decoder 30.
  • a non-transform based encoder 20 can quantize the residual signal directly without the transform processing unit 206 for certain blocks or frames.
  • an encoder 20 can have the quantization unit 208 and the inverse quantization unit 210 combined into a single unit.
  • Fig. 3 shows an example of a video decoder 30 that is configured to implement the techniques of the present application.
  • the video decoder 30 is configured to receive encoded picture data 21 (e.g. encoded bitstream 21) , e.g. encoded by encoder 20, to obtain a decoded picture 331.
  • the encoded picture data or bitstream comprises information for decoding the encoded picture data, e.g. data that represents picture blocks of an encoded video slice (and/or tile group or tile) and associated syntax elements.
  • the decoder 30 comprises an entropy decoding unit 304, an inverse quantization unit 310, an inverse transform processing unit 312, a reconstruction unit 314 (e.g. a summer 314) , a loop filter 320, a decoded picture buffer (DBP) 330, a mode application unit 360, an inter-prediction unit 344 and an intra-prediction unit 354.
  • Inter-prediction unit 344 may be or include a motion compensation unit.
  • Video decoder 30 may, in some examples, perform a decoding pass generally reciprocal to the encoding pass described with respect to video encoder 20 of Fig. 2.
  • the inverse quantization unit 210, the inverse transform processing unit 212, the reconstruction unit 214, the loop filter 220, the decoded picture buffer (DPB) 230, the inter-prediction unit 244 and the intra-prediction unit 254 are also referred to as forming the “built-in decoder” of video encoder 20.
  • the inverse quantization unit 310 may be identical in function to the inverse quantization unit 210
  • the inverse transform processing unit 312 may be identical in function to the inverse transform processing unit 212
  • the reconstruction unit 314 may be identical in function to reconstruction unit 214
  • the loop filter 320 may be identical in function to the loop filter 220
  • the decoded picture buffer 330 may be identical in function to the decoded picture buffer 230. Therefore, the explanations provided for the respective units and functions of the video 20 encoder apply correspondingly to the respective units and functions of the video decoder 30.
  • the entropy decoding unit 304 is configured to parse the bitstream 21 (or in general encoded picture data 21) and perform, for example, entropy decoding to the encoded picture data 21 to obtain, e.g., quantized coefficients 309 and/or decoded coding parameters 366, such as any or all of inter-prediction parameters (e.g. reference picture index and motion vector) , intra-prediction parameters (e.g. intra-prediction mode or index) , transform parameters, quantization parameters, loop filter parameters, and/or other syntax elements.
  • Entropy decoding unit 304 may be configured to apply the decoding algorithms or schemes corresponding to the encoding schemes as described with regard to the entropy encoding unit 270 of the encoder 20.
  • Entropy decoding unit 304 may be further configured to provide inter-prediction parameters, intra-prediction parameters and/or other syntax elements to the mode application unit 360 and other parameters to other units of the decoder 30.
  • Video decoder 30 may receive the syntax elements at the video slice level and/or the video block level. In addition or as an alternative to slices and respective syntax elements, tile groups and/or tiles and respective syntax elements may be received and/or used.
  • the inverse quantization unit 310 may be configured to receive quantization parameters (QP) (or in general, information related to the inverse quantization) and quantized coefficients from the encoded picture data 21 (e.g. by parsing and/or decoding, e.g. by entropy decoding unit 304) and to apply, based on the quantization parameters, an inverse quantization to the decoded quantized coefficients 309 to obtain dequantized coefficients 311, which may also be referred to as transform coefficients 311.
  • the inverse quantization process may include use of a quantization parameter determined by video encoder 20 for each video block in the video slice (or tile or tile group) to determine a degree of quantization and, likewise, a degree of inverse quantization that should be applied.
  • Inverse transform processing unit 312 may be configured to receive dequantized coefficients 311, also referred to as transform coefficients 311, and to apply a transform to the dequantized coefficients 311 in order to obtain reconstructed residual blocks 313 in the sample domain.
  • the reconstructed residual blocks 313 may also be referred to as transform blocks 313.
  • the transform may be an inverse transform, e.g., an inverse DCT, an inverse DST, an inverse integer transform, or a conceptually similar inverse transform process.
  • the inverse transform processing unit 312 may be further configured to receive transform parameters or corresponding information from the encoded picture data 21 (e.g. by parsing and/or decoding, e.g. by entropy decoding unit 304) to determine the transform to be applied to the dequantized coefficients 311.
  • the reconstruction unit 314 (e.g. adder or summer 314) may be configured to add the reconstructed residual block 313, to the prediction block 365 to obtain a reconstructed block 315 in the sample domain, e.g. by adding the sample values of the reconstructed residual block 313 and the sample values of the prediction block 365.
  • the loop filter unit 320 (either in the coding loop or after the coding loop) is configured to filter the reconstructed block 315 to obtain a filtered block 321, e.g. to smooth pixel transitions, or otherwise improve the video quality.
  • the loop filter unit 320 may comprise one or more loop filters such as a de-blocking filter, a sample-adaptive offset (SAO) filter or one or more other filters, e.g. a bilateral filter, an adaptive loop filter (ALF) , a sharpening, a smoothing filter or a collaborative filter, or any combination thereof.
  • the loop filter unit 320 is shown in Fig. 3 as being an in-loop filter, in other configurations, the loop filter unit 320 may be implemented as a post loop filter.
  • the decoded video blocks 321 of a picture are then stored in the decoded picture buffer 330, which stores the decoded pictures 331 as reference pictures for subsequent motion compensation for other pictures and/or for output or respectively display.
  • the decoder 30 is configured to output the decoded picture 311, e.g. via output 312, for presentation or viewing to a user.
  • the inter-prediction unit 344 may be identical to the inter-prediction unit 244 (in particular, to the motion compensation unit) and the intra-prediction unit 354 may be identical to the intra-prediction unit 254 in function, and performs split or partitioning decisions and prediction based on the partitioning and/or prediction parameters or respective information received from the encoded picture data 21 (e.g. by parsing and/or decoding, e.g. by entropy decoding unit 304) .
  • Mode application unit 360 may be configured to perform the prediction (intra-or inter-prediction) per block based on reconstructed pictures, blocks or respective samples (filtered or unfiltered) to obtain the prediction block 365.
  • intra-prediction unit 354 of mode application unit 360 is configured to generate prediction block 365 for a picture block of the current video slice based on a signaled intra-prediction mode and data from previously decoded blocks of the current picture.
  • inter-prediction unit 344 e.g. motion compensation unit
  • the prediction blocks may be produced from one of the reference pictures within one of the reference picture lists.
  • Video decoder 30 may construct the reference picture lists, List 0 and List 1, using default construction techniques based on reference pictures stored in DPB 330.
  • the same or similar approach may be applied for or by embodiments using tile groups (e.g. video tile groups) and/or tiles (e.g. video tiles) in addition or alternatively to slices (e.g. video slices) , e.g. a video may be coded using I, P or B tile groups and/or tiles.
  • Mode application unit 360 is configured to determine the prediction information for a video/picture block of the current video slice by parsing the motion vectors or related information and other syntax elements, and use the prediction information to produce the prediction blocks for the current video block being decoded. For example, the mode application unit 360 uses some of the received syntax elements to determine a prediction mode (e.g., intra-or inter-prediction) used to code the video blocks of the video slice, an inter-prediction slice type (e.g., B slice, P slice, or GPB slice) , construction information for one or more of the reference picture lists for the slice, motion vectors for each inter-coded video block of the slice, inter-prediction status for each inter-coded video block of the slice, and other information to decode the video blocks in the current video slice.
  • a prediction mode e.g., intra-or inter-prediction
  • an inter-prediction slice type e.g., B slice, P slice, or GPB slice
  • tile groups e.g. video tile groups
  • tiles e.g. video tiles
  • slices e.g. video slices
  • a video may be coded using I, P or B tile groups and/or tiles.
  • Embodiments of the video decoder 30 as shown in Fig. 3 may be configured to partition and/or decode the picture by using slices (also referred to as video slices) , wherein a picture may be partitioned into or decoded using one or more slices (typically non-overlapping) , and each slice may comprise one or more blocks (e.g. CTUs) .
  • slices also referred to as video slices
  • each slice may comprise one or more blocks (e.g. CTUs) .
  • Embodiments of the video decoder 30 as shown in Fig. 3 may be configured to partition and/or decode the picture by using tile groups (also referred to as video tile groups) and/or tiles (also referred to as video tiles) , wherein a picture may be partitioned into or decoded using one or more tile groups (typically non-overlapping) , and each tile group may comprise one or more blocks (e.g. CTUs) or one or more tiles, wherein each tile may be of rectangular shape and may comprise one or more blocks (e.g. CTUs) , e.g. complete or fractional blocks.
  • tile groups also referred to as video tile groups
  • tiles also referred to as video tiles
  • each tile group may comprise one or more blocks (e.g. CTUs) or one or more tiles, wherein each tile may be of rectangular shape and may comprise one or more blocks (e.g. CTUs) , e.g. complete or fractional blocks.
  • the video decoder 30 can be used to decode the encoded picture data 21.
  • the decoder 30 can produce the output video stream without the loop filtering unit 320.
  • a non-transform based decoder 30 can inverse-quantize the residual signal directly without the inverse-transform processing unit 312 for certain blocks or frames.
  • the video decoder 30 can have the inverse-quantization unit 310 and the inverse-transform processing unit 312 combined into a single unit.
  • a processing result of a current step may be further processed and then output to the next step.
  • a further operation such as Clip or shift, may be performed on the processing result of the interpolation filtering, motion vector derivation or loop filtering.
  • the value of a motion vector is constrained to a predefined range according to its representing bit number. If the representing bit number of the motion vector is bitDepth, then the range is -2 ⁇ (bitDepth-1) ⁇ 2 ⁇ (bitDepth-1) -1, where “ ⁇ ” means exponentiation.
  • bitDepth is set equal to 16
  • the range is -32768 ⁇ 32767
  • bitDepth is set equal to 18
  • the range is -131072 ⁇ 131071.
  • the value of the derived motion vector e.g. the MVs of four 4x4 sub-blocks within one 8x8 block
  • the maximum difference between integer parts of the four 4x4 sub-block MVs is no more than N pixels, such as no more than 1 pixel.
  • the following description provides two methods for constraining the motion vector according to the bitDepth.
  • Method 1 remove the overflow MSB (most significant bit) by the following operations:
  • ux (mvx+2 bitDepth ) %2 bitDepth (1)
  • mvx is a horizontal component of a motion vector of an image block or a sub-block
  • mvy is a vertical component of a motion vector of an image block or a sub-block
  • ux and uy indicate respective intermediate values
  • decimal numbers are stored as two’s complements.
  • the two’s complement of -32769 is 1, 0111, 1111, 1111, 1111 (17 bits) .
  • the MSB is discarded, so the resulting two’s complement is 0111, 1111, 1111, 1111 (decimal number is 32767) , which is the same as the output by applying formulae (1) and (2) .
  • ux (mvpx + mvdx +2 bitDepth ) %2 bitDepth (5)
  • the operations may be applied during the sum of the motion vector predictor mvp and the motion vector difference mvd, as shown in formulae (5) to (8) .
  • vx Clip3 (-2 bitDepth-1 , 2 bitDepth-1 -1, vx)
  • vy Clip3 (-2 bitDepth-1 , 2 bitDepth-1 -1, vy)
  • vx is a horizontal component of a motion vector of an image block or a sub-block
  • vy is a vertical component of a motion vector of an image block or a sub-block
  • x, y and z respectively correspond to three input values of the MV clipping process
  • the definition of the function Clip3 is as follows:
  • Fig. 4 is a schematic diagram of a video coding device 400 according to an embodiment of the present disclosure.
  • the video coding device 400 is suitable for implementing the disclosed embodiments as described below.
  • the video coding device 400 may be a decoder such as video decoder 30 of Fig. 1A or an encoder such as video encoder 20 of Fig. 1A.
  • the video coding device 400 may comprise ingress ports 410 (or input ports 410) and one or more receiver units (Rx) 420 for receiving data; a processor, logic unit, or central processing unit (CPU) 430 to process the data; one or more transmitter units (Tx) 440 and egress ports 450 (or output ports 450) for transmitting the data; and a memory 460 for storing the data.
  • the video coding device 400 may also comprise optical-to-electrical (OE) components and electrical-to-optical (EO) components coupled to the ingress ports 410, the receiver units 420, the transmitter units 440, and the egress ports 450 for egress or ingress of optical or electrical signals.
  • OE optical-to-electrical
  • EO electrical-to-optical
  • the inclusion of the coding module 470 therefore provides a substantial improvement to the functionality of the video coding device 400 and effects a transformation of the video coding device 400 to a different state.
  • the coding module 470 may be implemented as instructions stored in the memory 460 and executed by the processor 430.
  • the memory 460 may comprise one or more disks, tape drives, and solid-state drives and may be used as an over-flow data storage device, to store programs when such programs are selected for execution, and to store instructions and data that are read during program execution.
  • the memory 460 may be, for example, volatile and/or non-volatile and may be a read-only memory (ROM) , random access memory (RAM) , ternary content-addressable memory (TCAM) , and/or static random-access memory (SRAM) .
  • Fig. 5 is a simplified block diagram of an apparatus 500 that may be used as either or both of the source device 12 and the destination device 14 from Fig. 1A according to an exemplary embodiment.
  • a processor 502 in the apparatus 500 can be a central processing unit.
  • the processor 502 can be any other type of device, or multiple devices, capable of manipulating or processing information now-existing or hereafter developed.
  • the disclosed implementations can be practiced with a single processor as shown, e.g., the processor 502, advantages in speed and efficiency can be achieved using more than one processor.
  • a memory 504 in the apparatus 500 can be a read only memory (ROM) device or a random access memory (RAM) device in an implementation. Any other suitable type of storage can be used as the memory 504.
  • the memory 504 can include code and data 506 that is accessed by the processor 502 using a bus 512.
  • the memory 504 can further include an operating system 508 and application programs 510, the application programs 510 including least one program that permits the processor 502 to perform the methods described herein.
  • the application programs 510 can include applications 1 through N, which further include a video coding application that performs the methods described herein.
  • the apparatus 500 can also include one or more output devices, such as a display 518.
  • the display 518 may be, in one example, a touch sensitive display that combines a display with a touch sensitive element that is operable to sense touch inputs.
  • the display 518 can be coupled to the processor 502 via the bus 512.
  • the bus 512 of the apparatus 500 can be composed of multiple buses.
  • a secondary storage (not shown) can be directly coupled to the other components of the apparatus 500 or can be accessed via a network and can comprise a single integrated unit such as a memory card or multiple units such as multiple memory cards.
  • the apparatus 500 can thus be implemented in a wide variety of configurations.
  • the in-loop luma reshaper is implemented as a pair of look-up tables (LUTs) ; but only one of the two LUTs needs to be signaled as the other can be computed from the signaled LUT.
  • LUTs look-up tables
  • Each LUT is a one-dimensional, 10 bit, 1024-entry mapping table (1D-LUT) .
  • the other LUT is an inverse LUT, that maps altered code values Y r to represents the reconstruction values of Y i .
  • the chroma components are adjusted with chroma residue scaling.
  • CxResScaled is the scaled Cb or Cr residue signal of the CU to be transformed and quantized.
  • CxResScaled is the scaled chroma residue signal after inverse Q/T, and
  • index idx is an average luma value and cScaleInv is a look-up table.
  • the decoder can start inverse quantization and transform immediately for chroma decoding after syntax parsing.
  • the cScale being used for a CU is shared by the Cb and Cr components, and is derived as:
  • a chroma QP (quantization parameter) offset cQPO
  • Chroma components of the chroma signal are adjusted with chroma residue scaling.
  • the modified chroma QP offset is not used any further in the loop filter process.
  • this average QP process does not take into account the chroma QP offset which is used, when luma reshaping process is applied to a current block.
  • One embodiment of the present disclosure is related when this tool called “Luma reshaping” is applied.
  • This tool is mainly applied to the “Luma” component. Because luma and chroma are co-related, the “Luma reshaping” tool uses something called a “Luma based Chroma QP offset or Chroma QP offset” to compensate for the interaction between Luma and Chroma.
  • an average QP value of two blocks is used in a chroma deblocking process of the given edge, where the two blocks are sharing the given edge.
  • a deblocking filter uses the average of the QP values of both blocks P and Q. For example, if QP p is the QP of block P and QP q is the QP of block Q, then the average QP used is ( (QP p + QP q ) >> 1) , i.e. ( (QP p + QP q ) /2) .
  • the QP values used in the chroma deblocking filter are modified when luma reshaping is applied for a given block.
  • the chroma residue scaling applied for the chroma block is not used any further in the deblocking.
  • the embodiment of the disclosure solves this problem by using the modified chroma QP in the deblocking process (see Fig. 7) .
  • Fig. 6 shows an example of a chroma residue scaling method known in the art wherein the chroma residue scaling is applied for the chroma block in a decoding path but is not used further in the deblocking process.
  • the coded transform coefficients are in the reshaped or mapped domain, meaning that FwdLUT has already been applied to them.
  • step 610 inverse context adaptive binary arithmetic coding (CABAC -1 ) as well as inverse quantization Q -1 and inverse transform T -1 may be applied to the coded bitstream to determine the luma residue signal Y res .
  • CABAC -1 inverse context adaptive binary arithmetic coding
  • inverse quantization Q -1 and inverse transform T -1 may be applied to the coded bitstream to determine the luma residue signal Y res .
  • reconstruction step 611 a reconstructed luma signal Y r may be determined by adding the predicted luma signal Y’ pred to the luma residue signal Y res .
  • inverse reshaping using InvLUT may be applied to determine reconstructed luma values in the normal domain in step 612.
  • Loop filtering may be performed on the reconstructed luma values in step 613 and the filtered reconstructed luma values may be stored in the decoded picture buffer 614.
  • the chroma residue scaling compensates for luma signal interaction with the chroma signal.
  • Chroma residue scaling may be applied at the transform unit (TU) level.
  • CABAC -1 inverse context adaptive binary arithmetic coding
  • a scaled chroma residue signal C resScale may be determined. From the scaled chroma residue signal C resScale , the chroma residue signal C res may be determined by multiplication with the inverse scaling factor C ScaleInv in chroma residue scaling step 619.
  • the inverse scaling factor C ScaleInv may be determined in step 618 as a separate look-up table cScaleInv [idx] that may be signaled to the decoder as a piecewise look-up table.
  • cScaleInv [idx] may be determined as the reciprocal of the scaling factor cScale [] described above and may be calculated as the reciprocal of the above-described look-up table FwdLUT’ to perform multiplication instead of division at the decoder side.
  • the index idx into the inverse scaling factor may be based on an average luma value avgY’ TU of the predicted luma signal Y’ pred in the re-shaped or mapped domain and may be calculated for a transform unit in step 618.
  • a reconstructed chroma signal may be determined by adding the predicted chroma signal C pred to the chroma residue signal C res .
  • the predicted chroma signal C pred may be determined by intra prediction 621.
  • the predicted chroma signal C pred may be determined by inter prediction 624 based on previously decoded frames stored in the decoded picture buffer 623.
  • the decoded picture buffer 623 may be identical to the decoded picture buffer 614. As reshaping is only applied to the luma components, the reconstructed chroma signal may be in the normal domain.
  • the decoded chroma signal may be stored in the decoded picture buffer 623.
  • the deblocking decision in the loop filter 622 is based on the original chroma quantization parameters (QPs) coded in the bitstream. Therefore, an incorrect deblocking decision may be taken for the deblocking of an edge or boundary between two chroma coding blocks.
  • QPs quantization parameters
  • the chroma residue scaling method of the present disclosure determines a modified QP of the current block to be used in the averaging process shown in Fig. 8 and described below.
  • the modified QP of the current block may be determined according to the present disclosure by adding an equivalent chroma QP offset (cQPO) to the original chroma QP wherein the equivalent cQPO may be determined according to the above described equation (1) .
  • cQPO equivalent chroma QP offset
  • s may be the chroma residue scaling factor from cScaleInv [pieceIdx]
  • pieceIdx may be decided by the corresponding average luma value of the TU
  • CSCALE_FP_PREC may be a constant value to specify precision.
  • the equivalent cQPO may be -6*log2 (Qstepsize) .
  • the modified chroma QP of the current block is then used in the deblocking process of the loop filter 722 as shown in Fig. 7.
  • a vertical edge is shared by two blocks P and Q.
  • Block P is processed by luma reshaping, and the chroma QP values which are used by block P have to be modified by using the chroma QP offset.
  • the chroma QP value of block P is QP p
  • QP p QP p + cQPO
  • cQPO may be computed as shown in equation (1) above.
  • a chroma QP offset is used to compensate for the interaction between the luma and the chroma, and the resulting chroma QP offset is also used during the deblocking filter of chroma block boundaries.
  • the chroma QP may be refined with the luma based chroma QP offset, and then the refined QP is used further in the deblocking filter decisions.
  • the modified chroma QP value may be used during the deblocking of a chroma block when luma re-shaping is used for the corresponding luma block.
  • Fig. 9 shows a flowchart for a method of video coding according to an embodiment of the disclosure.
  • a value of a Chroma quantization parameter (QP) is obtained for a current block.
  • a value of an offset of the Chroma QP is obtained according to luma samples corresponding to the current block.
  • deblocking is performed on the current block according to the value of the offset of the Chroma QP and the value of the Chroma QP for the current block.
  • Fig. 10 shows a block diagram illustrating an example of an encoding apparatus 20 or a decoding apparatus 30 according to embodiments of the disclosure.
  • the encoding or decoding apparatus comprises a quantization parameter (QP) determining module (1110) configured to obtain a value of a Chroma QP for a current block, a QP offset determining module (1120) configured to obtain a value of an offset of the Chroma QP according to luma samples corresponding to the current block; and a deblocking module (1130) configured to deblock the current block according to the value of the offset of the Chroma QP and the value of the Chroma QP for the current block.
  • QP quantization parameter
  • the QP determining module (1110) , the QP offset determining module (1120) and the deblocking module (1130) may be implemented in hardware, software, firmware, or any combination thereof. If implemented in software, the functions may be stored on a computer-readable medium or transmitted over communication media as one or more instructions or code and executed by a hardware-based processing unit. Instructions may be executed by one or more processors, such as one or more digital signal processors (DSPs) , general purpose microprocessors, application specific integrated circuits (ASICs) , field programmable logic arrays (FPGAs) , or other equivalent integrated or discrete logic circuitry.
  • DSPs digital signal processors
  • ASICs application specific integrated circuits
  • FPGAs field programmable logic arrays
  • processor may refer to any of the foregoing structure or any other structure suitable for implementation of the techniques described herein.
  • functionality described herein may be provided within dedicated hardware and/or software modules configured for encoding and decoding, or incorporated in a combined codec. Also, the techniques could be fully implemented in one or more circuits or logic elements.
  • the capture device 3102 generates data, and may encode the data by the encoding method as shown in the above embodiments. Alternatively, the capture device 3102 may distribute the data to a streaming server (not shown in the Figures) , and the server encodes the data and transmits the encoded data to the terminal device 3106.
  • the capture device 3102 includes but not limited to camera, smart phone or Pad, computer or laptop, video conference system, PDA, vehicle mounted device, or a combination of any of them, or the like.
  • the capture device 3102 may include the source device 12 as described above. When the data includes video, the video encoder 20 included in the capture device 3102 may actually perform video encoding processing.
  • an audio encoder included in the capture device 3102 may actually perform audio encoding processing.
  • the capture device 3102 distributes the encoded video and audio data by multiplexing them together.
  • the encoded audio data and the encoded video data are not multiplexed.
  • Capture device 3102 distributes the encoded audio data and the encoded video data to the terminal device 3106 separately.
  • the terminal device 310 receives and reproduces the encoded data.
  • the terminal device 3106 could be a device with data receiving and recovering capability, such as smart phone or Pad 3108, computer or laptop 3110, network video recorder (NVR) /digital video recorder (DVR) 3112, TV 3114, set top box (STB) 3116, video conference system 3118, video surveillance system 3120, personal digital assistant (PDA) 3122, vehicle mounted device 3124, or a combination of any of them, or the like capable of decoding the above-mentioned encoded data.
  • the terminal device 3106 may include the destination device 14 as described above.
  • the encoded data includes video
  • the video decoder 30 included in the terminal device is prioritized to perform video decoding.
  • an audio decoder included in the terminal device is prioritized to perform audio decoding processing.
  • the terminal device can feed the decoded data to its display.
  • NVR network video recorder
  • DVR digital video recorder
  • TV 3114 TV 3114
  • PDA personal digital assistant
  • the terminal device can feed the decoded data to its display.
  • STB 3116, video conference system 3118, or video surveillance system 3120 an external display 3126 is contacted therein to receive and show the decoded data.
  • stream file is generated.
  • the file is outputted to a demultiplexing unit 3204.
  • the demultiplexing unit 3204 can separate the multiplexed data into the encoded audio data and the encoded video data. As described above, for some practical scenarios, for example in the video conference system, the encoded audio data and the encoded video data are not multiplexed. In this situation, the encoded data is transmitted to video decoder 3206 and audio decoder 3208 without through the demultiplexing unit 3204.
  • video elementary stream (ES) ES
  • audio ES and optionally subtitle are generated.
  • the video decoder 3206 which includes the video decoder 30 as explained in the above mentioned embodiments, decodes the video ES by the decoding method as shown in the above-mentioned embodiments to generate video frame, and feeds this data to the synchronous unit 3212.
  • the audio decoder 3208 decodes the audio ES to generate audio frame, and feeds this data to the synchronous unit 3212.
  • the video frame may store in a buffer (not shown in FIG. 12) before feeding it to the synchronous unit 3212.
  • the audio frame may store in a buffer (not shown in FIG. 12) before feeding it to the synchronous unit 3212.
  • the synchronous unit 3212 synchronizes the video frame and the audio frame, and supplies the video/audio to a video/audio display 3214.
  • the synchronous unit 3212 synchronizes the presentation of the video and audio information.
  • Information may code in the syntax using time stamps concerning the presentation of coded audio and visual data and time stamps concerning the delivery of the data stream itself.
  • the subtitle decoder 3210 decodes the subtitle, and synchronizes it with the video frame and the audio frame, and supplies the video/audio/subtitle to a video/audio/subtitle display 3216.
  • na When a relational operator is applied to a syntax element or variable that has been assigned the value "na” (not applicable) , the value “na” is treated as a distinct value for the syntax element or variable. The value “na” is considered not to be equal to any other value.
  • Bit-wise "or” When operating on integer arguments, operates on a two's complement representation of the integer value. When operating on a binary argument that contains fewer bits than another argument, the shorter argument is extended by adding more significant bits equal to 0.
  • x y Arithmetic right shift of a two's complement integer representation of x by y binary digits. This function is defined only for non-negative integer values of y. Bits shifted into the most significant bits (MSBs) as a result of the right shift have a value equal to the MSB of x prior to the shift operation.
  • MSBs most significant bits
  • Asin (x ) the trigonometric inverse sine function, operating on an argument x that is in the range of -1.0 to 1.0, inclusive, with an output value in the range of - ⁇ 2 to ⁇ 2, inclusive, in units of radians.
  • Atan (x ) the trigonometric inverse tangent function, operating on an argument x, with an output value in the range of - ⁇ 2 to ⁇ 2, inclusive, in units of radians.
  • Ceil (x ) the smallest integer greater than or equal to x.
  • Clip1 Y (x ) Clip3 (0, (1 ⁇ BitDepth Y ) -1, x )
  • Clip1 C (x ) Clip3 (0, (1 ⁇ BitDepth C ) -1, x )
  • Cos (x ) the trigonometric cosine function operating on an argument x in units of radians.
  • Ln(x ) the natural logarithm of x (the base-e logarithm, where e is the natural logarithm base constant 2.718 281 828... ) .
  • Tan (x ) the trigonometric tangent function operating on an argument x in units of radians
  • the table below specifies the precedence of operations from highest to lowest; a higher position in the table indicates a higher precedence.
  • statement 1 If one or more of the following conditions are true, statement 1:
  • embodiments of the disclosure have been primarily described based on video coding, it should be noted that embodiments of the coding system 10, encoder 20 and decoder 30 (and correspondingly the system 10) and the other embodiments described herein may also be configured for still picture processing or coding, i.e. the processing or coding of an individual picture independent of any preceding or consecutive picture as in video coding.
  • inter-prediction units 244 (encoder) and 344 (decoder) may not be available in case the picture processing coding is limited to a single picture 17. All other functionalities (also referred to as tools or technologies) of the video encoder 20 and the video decoder 30 may equally be used for still picture processing, e.g.
  • residual calculation 204/304 transform 206, quantization 208, inverse quantization 210/310, (inverse) transform 212/312, partitioning 262, intra-prediction 254/354, and/or loop filtering 220, 320, and entropy coding 270 and entropy decoding 304.
  • Embodiments, e.g. of the encoder 20 and the decoder 30, and functions described herein, e.g. with reference to the encoder 20 and the decoder 30, may be implemented in hardware, software, firmware, or any combination thereof. If implemented in software, the functions may be stored on a computer-readable medium or transmitted over communication media as one or more instructions or code and executed by a hardware-based processing unit.
  • Computer-readable media may include computer-readable storage media, which correspond to tangible media such as data storage media, or communication media including any medium that facilitates transfer of a computer program from one place to another, e.g., according to a communication protocol.
  • computer-readable media generally may correspond to (1) tangible computer-readable storage media which are non-transitory or (2) a communication medium such as a signal or carrier wave.
  • Data storage media may be any available media that can be accessed by one or more computers or one or more processors to retrieve instructions, code and/or data structures for implementation of the techniques described in this disclosure.
  • a computer program product may include a computer-readable medium.
  • Such computer-readable storage media can comprise RAM, ROM, EEPROM, CD-ROM or other optical disk storage, magnetic disk storage, or other magnetic storage devices, flash memory, or any other medium that can be used to store desired program code in the form of instructions or data structures and that can be accessed by a computer. Also, any connection is properly termed a computer-readable medium.
  • coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL) , or wireless technologies such as infrared, radio, and microwave are included in the definition of medium.
  • DSL digital subscriber line
  • computer-readable storage media and data storage media do not include connections, carrier waves, signals, or other transitory media, but are instead directed to non-transitory, tangible storage media.
  • Disk and disc include compact disc (CD) , laser disc, optical disc, digital versatile disc (DVD) , floppy disk and Blu-ray disc, where disks usually reproduce data magnetically, while discs reproduce data optically with lasers. Combinations of the above should also be included within the scope of computer-readable media.
  • processors such as one or more digital signal processors (DSPs) , general purpose microprocessors, application specific integrated circuits (ASICs) , field programmable logic arrays (FPGAs) , or other equivalent integrated or discrete logic circuitry.
  • DSPs digital signal processors
  • ASICs application specific integrated circuits
  • FPGAs field programmable logic arrays
  • processors may refer to any of the foregoing structure or any other structure suitable for implementation of the techniques described herein.
  • the functionality described herein may be provided within dedicated hardware and/or software modules configured for encoding and decoding, or incorporated in a combined codec. Also, the techniques could be fully implemented in one or more circuits or logic elements.
  • the techniques of this disclosure may be implemented in a wide variety of devices or apparatuses, including a wireless handset, an integrated circuit (IC) or a set of ICs (e.g., a chip set) .
  • IC integrated circuit
  • a set of ICs e.g., a chip set
  • Various components, modules, or units are described in this disclosure to emphasize functional aspects of devices configured to perform the disclosed techniques, but do not necessarily require realization by different hardware units. Rather, as described above, various units may be combined in a codec hardware unit or provided by a collection of interoperative hardware units, including one or more processors as described above, in conjunction with suitable software and/or firmware.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Compression Or Coding Systems Of Tv Signals (AREA)

Abstract

The present disclosure provides a method of video coding implemented by a decoding device or an encoding device, wherein an offset of a Chroma quantization parameter (QP) is obtained according to luma samples corresponding to a current Chroma coding block and added to the Chroma QP of the current Chroma coding block for deblocking of the current Chroma coding block.

Description

AN ENCODER, A DECODER AND CORRESPONDING METHODS USING AN ADAPTIVE LOOP FILTER
CROSS-REFERENCE TO RELATED APPLICATION
This application claims priority from US provisional application 62,816,204 filed on March 10, 2019, in the US Patent and Trademark Office, the disclosure of which is incorporated herein in its entirety by reference.
TECHNICAL FIELD
Embodiments of the present application generally relate to the field of picture processing and more particularly to adaptive loop filter.
BACKGROUND
Video coding (video encoding and decoding) is used in a wide range of digital video applications, for example broadcast digital TV, video transmission over internet and mobile networks, real-time conversational applications such as video chat, video conferencing, DVD and Blu-ray discs, video content acquisition and editing systems, and camcorders of security applications.
The amount of video data needed to depict even a relatively short video can be substantial, which may result in difficulties when the data is to be streamed or otherwise communicated across a communications network with limited bandwidth capacity. Thus, video data is generally compressed before being communicated across modern day telecommunications networks. The size of a video could also be an issue when the video is stored on a storage device because memory resources may be limited. Video compression devices often use software and/or hardware at the source to code the video data prior to transmission or storage, thereby decreasing the quantity of data needed to represent digital video images. The compressed data is then received at the destination by a video decompression device that decodes the video data. With limited network resources and ever increasing demands of higher video quality, improved compression and decompression techniques that improve compression ratio with little to no sacrifice in picture quality are desirable.
SUMMARY OF THE DISCLOSURE
Embodiments of the present application provide apparatuses and methods for encoding and decoding according to the independent claims.
The foregoing and other objects are achieved by the subject matter of the independent claims. Further implementation forms are apparent from the dependent claims, the description and the figures.
A first embodiment of the present disclosure provides a method of coding implemented by a decoding device or an encoding device, wherein the method comprises obtaining a value of a Chroma quantization parameter (QP) for a current block; obtaining a value of an offset of the Chroma QP according to luma samples corresponding to the current block; and deblocking the current block according to the value of the offset of the Chroma QP and the value of the Chroma QP for the current block.
The current block may be a chroma coding block of a current coding unit. The luma samples corresponding to the current block may be the luma samples of a luma coding block corresponding to the current block. The luma samples corresponding to the current block may be the luma samples of a current coding unit corresponding to the current block.
The current block may be deblocked based on a modified value of the Chroma QP for the current block, wherein the modified value of the Chroma QP is equal to the value of the offset of the Chroma QP plus the value of the Chroma QP for the current block. The deblocking may be performed on an edge of the current block. Furthermore, the deblocking may be performed according to an average of QPs of the current block and a further block which the current block shares the edge with.
The value of the offset of the Chroma QP may be obtained according to an average of the luma samples corresponding to the current block.
When the current block is predicted by inter-prediction, the average of the luma samples corresponding to the current block may be an average of predicted luma samples corresponding to the current block.
When the current block is predicted by intra-prediction, the average of the luma samples of the current block may be an average of reconstructed luma samples corresponding to the current block.
The value of the offset of the Chroma QP may be obtained according to a forward reshaping lookup table applied to the average of the luma samples corresponding to the current block.
The value of the offset of the Chroma QP may be calculated according to the following formula,
Figure PCTCN2020078547-appb-000001
wherein cQPO is the value of the offset of the Chroma QP, 
Figure PCTCN2020078547-appb-000002
is an average predicted luma value of a current coding unit in inter slices, and FwdLUT′ is a lookup table.
The value of the offset of the Chroma QP may be calculated according to the following formula,
Figure PCTCN2020078547-appb-000003
wherein cQPO is the value of the offset of the Chroma QP, 
Figure PCTCN2020078547-appb-000004
is an average reconstructed luma value of a current coding unit (CU) in intra slices, and FwdLUT′ is a lookup table.
Luma reshaping may be applied to a luma component of the current CU. Chroma residue scaling may be applied to chroma components of the current CU.
According to an aspect of the first embodiment, an encoder is provided comprising processing circuitry for carrying out any one of the methods according to the first embodiment.
According to a further aspect of the first embodiment, a decoder is provided comprising processing circuitry for carrying out any one of the methods according to the first embodiment.
According to a further aspect of the first embodiment, a computer program product is provided comprising instructions which, when the program is executed by a computer, cause the computer to carry out any one of the methods according to the first embodiment.
According to a further aspect of the first embodiment, a decoder is provided, comprising: one or more processors; and a non-transitory computer-readable storage medium coupled to the one or more processors and storing instructions for execution by the one or more processors,  wherein the instructions, when executed by the one or more processors, configure the decoder to carry out any one of the methods according to the first embodiment.
According to a further aspect of the first embodiment, an encoder is provided, comprising: one or more processors; and a non-transitory computer-readable storage medium coupled to the one or more processors and storing instructions for execution by the one or more processors, wherein the instructions, when executed by the one or more processors, configure the encoder to carry out any one of the methods according to the first embodiment.
According to a further aspect of the first embodiment, a decoder is provided, comprising a quantization parameter (QP) determining module configured to obtain a value of a Chroma QP for a current block, a QP offset determining module configured to obtain a value of an offset of the Chroma QP according to luma samples corresponding to the current block, and a deblocking module configured to deblock the current block according to the value of the offset of the Chroma QP and the value of the Chroma QP for the current block. The same variations described above with respect to the coding methods may be applied to the decoder of this aspect.
According to a further aspect of the first embodiment, an encoder is provided, comprising a quantization parameter (QP) determining module configured to obtain a value of a Chroma QP for a current block, a QP offset determining module configured to obtain a value of an offset of the Chroma QP according to luma samples corresponding to the current block, and a deblocking module configured to deblock the current block according to the value of the offset of the Chroma QP and the value of the Chroma QP for the current block. The same variations described above with respect to the coding methods may be applied to the encoder of this aspect.
A second embodiment of the present disclosure is a method of coding implemented by a decoding device or an encoding device, comprising obtaining a value of Chroma quantization parameter for a current block; obtaining a value of an offset according to a value of a luma sample of the current block; and deblocking the current block according to the value of the offset and the value of the Chroma quantization parameter for the current block. In an example, deblocking may be performed on a boundary of the current block.
The current block may be deblocked based on a modified value of the Chroma quantization parameter for the current block, wherein the modified value of the Chroma quantization parameter is equal to the value of the offset plus the value of the Chroma quantization parameter for the current block.
The value of the offset may be calculated according to the following formula,
Figure PCTCN2020078547-appb-000005
wherein cQPO is the value of the offset, 
Figure PCTCN2020078547-appb-000006
is the average predicted luma value of a current coding unit in inter slices, and FwdLUT′ is a lookup table.
The value of the offset may be calculated according to the following formula,
Figure PCTCN2020078547-appb-000007
wherein cQPO is the value of the offset, 
Figure PCTCN2020078547-appb-000008
is the average reconstructed luma value of a current CU in intra slices, and FwdLUT′ is a lookup table.
According to an aspect of the second embodiment, an encoder is provided comprising processing circuitry for carrying out any one of the methods according to the second embodiment.
According to a further aspect of the second embodiment, a decoder is provided comprising processing circuitry for carrying out any one of the methods according to the second embodiment.
According to a further aspect of the second embodiment, a computer program product is provided comprising a program code for performing any one of the methods according to the second embodiment.
According to a further aspect of the second embodiment, a decoder is provided, comprising: one or more processors; and a non-transitory computer-readable storage medium coupled to the processors and storing programming for execution by the processors, wherein the programming, when executed by the processors, configures the decoder to carry out any one of the methods according to the second embodiment.
According to a further aspect of the second embodiment, an encoder is provided, comprising: one or more processors; and a non-transitory computer-readable storage medium coupled to the processors and storing programming for execution by the processors, wherein the programming, when executed by the processors, configures the encoder to carry out any one of the methods according to the second embodiment.
According to the present disclosure, when chroma scaling is applied in an encoding or decoding process, a corresponding equivalent Chroma offset is derived. The derived Chroma offset is added to the actual Chroma quantization parameter (QP) of a given block during the deblocking process. Consequently, the correct QP is applied during the Chroma deblocking process. Without the correction by the Chroma offset, an incorrect Chroma deblocking decision may be taken as a QP may be used in such a decision that does not correctly correspond to the actual chroma residual when Chroma scaling is applied.
Details of one or more embodiments are set forth in the accompanying drawings and the description below. Other features, objects, and advantages will be apparent from the description, drawings, and claims.
BRIEF DESCRIPTION OF THE DRAWINGS
In the following, embodiments of the disclosure are described in more detail with reference to the attached figures and drawings, in which:
FIG. 1A is a block diagram showing an example of a video coding system configured to implement embodiments of the disclosure;
FIG. 1B is a block diagram showing another example of a video coding system configured to implement embodiments of the disclosure;
FIG. 2 is a block diagram showing an example of a video encoder configured to implement embodiments of the disclosure;
FIG. 3 is a block diagram showing an example structure of a video decoder configured to implement embodiments of the disclosure;
FIG. 4 is a block diagram illustrating an example of an encoding apparatus or a decoding apparatus;
FIG. 5 is a block diagram illustrating another example of an encoding apparatus or a decoding apparatus;
FIG. 6 is an example about a chroma residue scaling method which is applied for the chroma block but is not used further in the deblocking process;
FIG. 7 is an example about a chroma residue scaling method which is applied for the chroma block and is used further in the deblocking process according to the present disclosure;
FIG. 8 is an embodiment of the present disclosure for using a chroma offset for the deblocking process;
FIG. 9 shows a flowchart for a method of video coding according to an embodiment of the disclosure;
FIG. 10 shows a block diagram illustrating an example of an encoding apparatus or a decoding apparatus according to embodiments of the disclosure.
FIG. 11 is a block diagram showing an example structure of a content supply system 3100 which realizes a content delivery service.
FIG. 12 is a block diagram showing a structure of an example of a terminal device.
In the following, identical reference signs refer to identical or at least functionally equivalent features if not explicitly specified otherwise.
DETAILED DESCRIPTION OF THE EMBODIMENTS
In the following description, reference is made to the accompanying figures, which form part of the disclosure, and which show, by way of illustration, specific aspects of embodiments of the disclosure or specific aspects in which embodiments of the present disclosure may be used. It is understood that embodiments of the disclosure may be used in other aspects and comprise structural or logical changes not depicted in the figures. The following detailed description, therefore, is not to be taken in a limiting sense, and the scope of the present disclosure is defined by the appended claims.
For instance, it is understood that a disclosure in connection with a described method may also hold true for a corresponding device or system configured to perform the method and vice versa. For example, if one or a plurality of specific method steps are described, a corresponding device may include one or a plurality of units, e.g. functional units, to perform the described one or plurality of method steps (e.g. one unit performing the one or plurality of steps, or a plurality of units each performing one or more of the plurality of steps) , even if such one or more units are not explicitly described or illustrated in the figures. On the other hand, for  example, if a specific apparatus is described based on one or a plurality of units, e.g. functional units, a corresponding method may include one step to perform the functionality of the one or plurality of units (e.g. one step performing the functionality of the one or plurality of units, or a plurality of steps each performing the functionality of one or more of the plurality of units) , even if such one or plurality of steps are not explicitly described or illustrated in the figures. Further, it is understood that the features of the various exemplary embodiments and/or aspects described herein may be combined with each other, unless specifically noted otherwise.
Video coding typically refers to the processing of a sequence of pictures, which form the video or video sequence. Instead of the term “picture” , the term “frame” or “image” may be used as synonyms in the field of video coding. Video coding (or coding in general) comprises two parts: video encoding and video decoding. Video encoding is performed at the source side, typically comprising processing (e.g. by compression) the original video pictures to reduce the amount of data required for representing the video pictures (for more efficient storage and/or transmission) . Video decoding is performed at the destination side and typically comprises the inverse processing compared to the encoder to reconstruct the video pictures. Embodiments referring to “coding” of video pictures (or pictures in general) shall be understood to relate to “encoding” or “decoding” of video pictures or respective video sequences. The combination of the encoding part and the decoding part is also referred to as CODEC (Coding and Decoding) . In case of lossless video coding, the original video pictures can be reconstructed, i.e. the reconstructed video pictures have the same quality as the original video pictures (assuming no transmission loss or other data loss occurs during storage or transmission) . In case of lossy video coding, further compression, e.g. by quantization, is performed, to reduce the amount of data representing the video pictures, which cannot be completely reconstructed at the decoder, i.e. the quality of the reconstructed video pictures is lower or worse compared to the quality of the original video pictures.
Several video coding standards belong to the group of “lossy hybrid video codecs” (i.e. combine spatial and temporal prediction in the sample domain and 2D transform coding for applying quantization in the transform domain) . Each picture of a video sequence is typically partitioned into a set of non-overlapping blocks and the coding is typically performed on a block level. In other words, at the encoder the video is typically processed, i.e. encoded, on a block (video block) level, e.g. by using spatial (intra picture) prediction and/or temporal (inter picture) prediction to generate a prediction block, subtracting the prediction block from the current block (block currently processed/to be processed) to obtain a residual block, transforming the residual block and quantizing the residual block in the transform domain to  reduce the amount of data to be transmitted (compression) , whereas at the decoder the inverse processing compared to the encoder is applied to the encoded or compressed block to reconstruct the current block for representation. Furthermore, the encoder duplicates the decoder processing loop such that both will generate identical predictions (e.g. intra-and inter predictions) and/or re-constructions for processing, i.e. coding, the subsequent blocks.
In the following embodiments of a video coding system 10, a video encoder 20 and a video decoder 30 are described based on Figs. 1 to 3.
Fig. 1A is a schematic block diagram illustrating an example coding system 10, e.g. a video coding system 10 (or short coding system 10) that may utilize techniques of this present application. Video encoder 20 (or short encoder 20) and video decoder 30 (or short decoder 30) of video coding system 10 represent examples of devices that may be configured to perform techniques in accordance with various examples described in the present application.
As shown in Fig. 1A, the coding system 10 comprises a source device 12 configured to provide encoded picture data 21 e.g. to a destination device 14 for decoding the encoded picture data 13.
The source device 12 comprises an encoder 20, and may additionally, i.e. optionally, comprise a picture source 16, a pre-processor (or pre-processing unit) 18, e.g. a picture pre-processor 18, and a communication interface or communication unit 22.
The picture source 16 may comprise or be any kind of picture capturing device, for example a camera for capturing a real-world picture, and/or any kind of a picture generating device, for example a computer-graphics processor for generating a computer animated picture, or any kind of other device for obtaining and/or providing a real-world picture, a computer generated picture (e.g. a screen content, a virtual reality (VR) picture) and/or any combination thereof (e.g. an augmented reality (AR) picture) . The picture source may be any kind of memory or storage storing any of the aforementioned pictures.
In distinction to the pre-processor 18 and the processing performed by the pre-processing unit 18, the picture or picture data 17 may also be referred to as raw picture or raw picture data 17. Pre-processor 18 may be configured to receive the (raw) picture data 17 and to perform pre-processing on the picture data 17 to obtain a pre-processed picture 19 or pre-processed picture data 19. Pre-processing performed by the pre-processor 18 may, e.g., comprise trimming, color format conversion (e.g. from RGB to YCbCr) , color correction, or de-noising. It can be understood that the pre-processing unit 18 may be an optional component.
The video encoder 20 may be configured to receive the pre-processed picture data 19 and provide encoded picture data 21 (further details will be described below, e.g., based on Fig. 2) .  Communication interface 22 of the source device 12 may be configured to receive the encoded picture data 21 and to transmit the encoded picture data 21 (or any further processed version thereof) over communication channel 13 to another device, e.g. the destination device 14 or any other device, for storage or direct reconstruction.
The destination device 14 comprises a decoder 30 (e.g. a video decoder 30) , and may additionally, i.e. optionally, comprise a communication interface or communication unit 28, a post-processor 32 (or post-processing unit 32) and a display device 34.
The communication interface 28 of the destination device 14 may be configured to receive the encoded picture data 21 (or any further processed version thereof) , e.g. directly from the source device 12 or from any other source, e.g. a storage device, such as an encoded picture data storage device, and provide the encoded picture data 21 to the decoder 30.
The communication interface 22 and the communication interface 28 may be configured to transmit or receive the encoded picture data 21 or encoded data 13 via a direct communication link between the source device 12 and the destination device 14, e.g. a direct wired or wireless connection, or via any kind of network, e.g. a wired or wireless network or any combination thereof, or any kind of private and public network, or any kind of combination thereof.
The communication interface 22 may be configured to package the encoded picture data 21 into an appropriate format, e.g. packets, and/or process the encoded picture data using any kind of transmission encoding or processing for transmission over a communication link or communication network.
The communication interface 28, forming the counterpart of the communication interface 22, may be configured to receive the transmitted data and process the transmission data using any kind of corresponding transmission decoding or processing and/or de-packaging to obtain the encoded picture data 21.
Both, communication interface 22 and communication interface 28 may be configured as unidirectional communication interfaces as indicated by the arrow for the communication channel 13 in Fig. 1A pointing from the source device 12 to the destination device 14, or as bi-directional communication interfaces, and may be configured to send and receive messages, e.g. to set up a connection, to acknowledge and exchange any other information related to the communication link and/or data transmission, such as encoded picture data transmission.
The decoder 30 may be configured to receive the encoded picture data 21 and provide decoded picture data 31 or a decoded picture 31 (further details will be described below, e.g., based on Fig. 3 or Fig. 5) . The post-processor 32 of destination device 14 may be configured to post-process the decoded picture data 31 (also called reconstructed picture data) , e.g. the  decoded picture 31, to obtain post-processed picture data 33, such as a post-processed picture 33. The post-processing performed by the post-processing unit 32 may comprise any one or more of color format conversion (e.g. from YCbCr to RGB) , color correction, trimming, or re-sampling, or any other processing, e.g. for preparing the decoded picture data 31 for display, e.g. by display device 34.
The display device 34 of the destination device 14 may be configured to receive the post-processed picture data 33 for displaying the picture, e.g. to a user or viewer. The display device 34 may be or comprise any kind of display for representing the reconstructed picture, such as an integrated or external display or monitor. The display may be a liquid crystal displays (LCD) , an organic light emitting diodes (OLED) display, a plasma display, a projector , a micro LED display, a liquid crystal on silicon (LCoS) , a digital light processor (DLP) or any kind of other display.
Although Fig. 1A depicts the source device 12 and the destination device 14 as separate devices, embodiments of devices may also comprise both devices or both functionalities, i.e. the source device 12 or corresponding functionality and the destination device 14 or corresponding functionality. In such embodiments the source device 12 or corresponding functionality and the destination device 14 or corresponding functionality may be implemented using the same hardware and/or software or by separate hardware and/or software or any combination thereof.
As will be apparent for the skilled person based on the description, the existence and (exact) split of functionalities of the different units or functionalities within the source device 12 and/or destination device 14 as shown in Fig. 1A may vary depending on the actual device and application.
The encoder 20 (e.g. a video encoder 20) or the decoder 30 (e.g. a video decoder 30) or both, encoder 20 and decoder 30 may be implemented via processing circuitry as shown in Fig. 1B, such as one or more microprocessors, digital signal processors (DSPs) , application-specific integrated circuits (ASICs) , field-programmable gate arrays (FPGAs) , discrete logic, hardware, video coding dedicated or any combinations thereof. The encoder 20 may be implemented via processing circuitry 46 to embody the various modules as discussed with respect to encoder 20 of Fig. 2 and/or any other encoder system or subsystem described herein. The decoder 30 may be implemented via processing circuitry 46 to embody the various modules as discussed with respect to decoder 30 of Fig. 3 and/or any other decoder system or subsystem described herein. The processing circuitry may be configured to perform the various operations as discussed later. As shown in Fig. 5, if the techniques are implemented partially in software, a device may store  instructions for the software in a suitable, non-transitory computer-readable storage medium and may execute the instructions in hardware using one or more processors to perform the techniques of this disclosure. Video encoder 20 and video decoder 30 may be integrated as part of a combined encoder/decoder (CODEC) in a single device, for example, as shown in Fig. 1B. The video coding system 40 shown in Fig. 1B comprises a processing circuitry implementing both a video encoder 20 and a video decoder 30. In addition, one or more imaging devices 41, such as a camera for capturing real-world pictures, an antenna 42, one or more memory stores 44, one or more processors 43 and/or a display device 45, such the display device 34 described above, may be provided as part of the video coding system 40.
Source device 12 and destination device 14 may comprise any of a wide range of devices, including any kind of handheld or stationary devices, e.g. notebook or laptop computers, mobile phones, smart phones, tablets or tablet computers, cameras, desktop computers, set-top boxes, televisions, display devices, digital media players, video gaming consoles, video streaming devices (such as content services servers or content delivery servers) , broadcast receiver devices, broadcast transmitter devices, or the like and may use no or any kind of operating system. In some cases, the source device 12 and the destination device 14 may be equipped for wireless communication. Thus, the source device 12 and the destination device 14 may be wireless communication devices.
In some cases, video coding system 10 illustrated in Fig. 1A is merely an example and the techniques of the present application may apply to video coding systems (e.g., video encoding or video decoding) that do not necessarily include any data communication between the encoding and decoding devices. In other examples, data is retrieved from a local memory, streamed over a network, or the like. A video encoding device may encode and store data in memory, and/or a video decoding device may retrieve and decode data from memory. In some examples, the encoding and decoding is performed by devices that do not communicate with one another, but simply encode data to memory and/or retrieve and decode data from memory. For convenience of description, embodiments of the disclosure are described herein, for example, by reference to High-Efficiency Video Coding (HEVC) or to the reference software of Versatile Video coding (VVC) , the next generation video coding standard developed by the Joint Collaboration Team on Video Coding (JCT-VC) of ITU-T Video Coding Experts Group (VCEG) and ISO/IEC Motion Picture Experts Group (MPEG) . One of ordinary skill in the art will understand that embodiments of the disclosure are not limited to HEVC or VVC.
Encoder and Encoding Method
Fig. 2 shows a schematic block diagram of an example video encoder 20 that is configured to implement the techniques of the present application. In the example of Fig. 2, the video encoder 20 comprises an input 201 (or input interface 201) , a residual calculation unit 204, a transform processing unit 206, a quantization unit 208, an inverse quantization unit 210, and an inverse transform processing unit 212, a reconstruction unit 214, a loop filter unit 220, a decoded picture buffer (DPB) 230, a mode selection unit 260, an entropy encoding unit 270 and an output 272 (or output interface 272) . The mode selection unit 260 may include an inter prediction unit 244, an intra prediction unit 254 and a partitioning unit 262. The inter prediction unit 244 may include a motion estimation unit and a motion compensation unit (not shown) . A video encoder 20 as shown in Fig. 2 may also be referred to as a hybrid video encoder or a video encoder according to a hybrid video codec.
The residual calculation unit 204, the transform processing unit 206, the quantization unit 208, and the mode selection unit 260 may be referred to as forming a forward signal path of the encoder 20, whereas the inverse quantization unit 210, the inverse transform processing unit 212, the reconstruction unit 214, the loop filter 220, the decoded picture buffer (DPB) 230, the inter prediction unit 244 and the intra-prediction unit 254 may be referred to as forming a backward signal path of the video encoder 20, wherein the backward signal path of the video encoder 20 corresponds to the signal path of the decoder (see video decoder 30 in Fig. 3) . The inverse quantization unit 210, the inverse transform processing unit 212, the reconstruction unit 214, the loop filter 220, the decoded picture buffer (DPB) 230, the inter prediction unit 244 and the intra-prediction unit 254 are also referred to forming the “built-in decoder” of video encoder 20.
Pictures &Picture Partitioning (Pictures &Blocks)
The encoder 20 may be configured to receive, e.g. via input 201, a picture 17 (or picture data 17) , e.g. a picture of a sequence of pictures forming a video or video sequence. The received picture or picture data may also be a pre-processed picture 19 (or pre-processed picture data 19) . For the sake of simplicity the following description refers to the picture 17. The picture 17 may also be referred to as a current picture or a picture to be coded (in particular, in video coding to distinguish the current picture from other pictures, e.g. previously encoded and/or decoded pictures of the same video sequence, i.e. the video sequence which also comprises the current picture) .
A (digital) picture is or can be regarded as a two-dimensional array or matrix of samples with intensity values. A sample in the array may also be referred to as pixel (short form of picture element) or a pel. The number of samples in the horizontal and vertical direction (or axis) of the  array or picture defines the size and/or resolution of the picture. For representation of color, typically three color components are employed, i.e. the picture may be represented as or include three sample arrays. In RBG format or color space, a picture comprises a corresponding red, green and blue sample array. However, in video coding each pixel is typically represented in a luminance and chrominance format or color space, e.g. YCbCr, which comprises a luminance component indicated by Y (sometimes also L is used instead) and two chrominance components indicated by Cb and Cr. The luminance (or short luma) component Y represents the brightness or grey level intensity (e.g. like in a grey-scale picture) , while the two chrominance (or short chroma) components Cb and Cr represent the chromaticity or color information components. Accordingly, a picture in YCbCr format comprises a luminance sample array of luminance sample values (Y) , and two chrominance sample arrays of chrominance values (Cb and Cr) . Pictures in RGB format may be converted or transformed into YCbCr format and vice versa. The process is also known as color transformation or conversion. If a picture is monochrome, the picture may comprise only a luminance sample array. Accordingly, a picture may be, for example, an array of luma samples in monochrome format or an array of luma samples and two corresponding arrays of chroma samples in 4: 2: 0, 4: 2: 2, and 4: 4: 4 colour format.
Embodiments of the video encoder 20 may comprise a picture partitioning unit (not depicted in Fig. 2) configured to partition the picture 17 into a plurality of (typically non-overlapping) picture blocks 203. These blocks may also be referred to as root blocks, macro blocks (H. 264/AVC) or coding tree blocks (CTB) or coding tree units (CTU) (according to H. 265/HEVC and VVC) . The picture partitioning unit may be configured to use the same block size for all pictures of a video sequence and the corresponding grid defining the block size, or to change the block size between pictures or subsets or groups of pictures, and partition each picture into the corresponding blocks.
In further embodiments, the video encoder may be configured to receive directly a block 203 of the picture 17, e.g. one, several or all blocks forming the picture 17. The picture block 203 may also be referred to as current picture block or picture block to be coded.
Like the picture 17, the picture block 203 is or can be regarded as a two-dimensional array or matrix of samples with intensity values (sample values) , although of smaller dimension than the picture 17. In other words, the block 203 may comprise, e.g., one sample array (e.g. a luma array in case of a monochrome picture 17, or a luma or chroma array in case of a color picture) or three sample arrays (e.g. a luma and two chroma arrays in case of a color picture 17) or any other number and/or kind of arrays depending on the color format applied. The number of  samples in the horizontal and vertical direction (or axis) of the block 203 defines the size of the block 203. Accordingly, a block may, for example, comprise an M×N (M-column by N-row) array of samples, or an M×N array of transform coefficients.
Embodiments of the video encoder 20 as shown in Fig. 2 may be configured to encode the picture 17 block by block, e.g. the encoding and prediction is performed per block 203.
Embodiments of the video encoder 20 as shown in Fig. 2 may be further configured to partition and/or encode the picture by using slices (also referred to as video slices) , wherein a picture may be partitioned into or encoded using one or more slices (typically non-overlapping) , and each slice may comprise one or more blocks (e.g. CTUs) .
Embodiments of the video encoder 20 as shown in Fig. 2 may be further configured to partition and/or encode the picture by using tile groups (also referred to as video tile groups) and/or tiles (also referred to as video tiles) , wherein a picture may be partitioned into or encoded using one or more tile groups (typically non-overlapping) , and each tile group may comprise one or more blocks (e.g. CTUs) or one or more tiles, wherein each tile may be of rectangular shape and may comprise one or more blocks (e.g. CTUs) , e.g. complete or fractional blocks.
Residual Calculation
The residual calculation unit 204 may be configured to calculate a residual block 205 (also referred to as residual 205) based on the picture block 203 and a prediction block 265 (further details about the prediction block 265 are provided later) , e.g. by subtracting sample values of the prediction block 265 from sample values of the picture block 203, sample by sample (pixel by pixel) to obtain the residual block 205 in the sample domain.
Transform
The transform processing unit 206 may be configured to apply a transform, such as a discrete cosine transform (DCT) or discrete sine transform (DST) , on the sample values of the residual block 205 to obtain transform coefficients 207 in a transform domain. The transform coefficients 207 may also be referred to as transform residual coefficients and represent the residual block 205 in the transform domain.
The transform processing unit 206 may be configured to apply integer approximations of DCT/DST, such as the transforms specified for H. 265/HEVC. Compared to an orthogonal DCT transform, such integer approximations are typically scaled by a certain factor. In order to preserve the norm of the residual block which is processed by forward and inverse transforms, additional scaling factors are applied as part of the transform process. The scaling factors are  typically chosen based on certain constraints like scaling factors being a power of two for shift operations, bit depth of the transform coefficients, tradeoff between accuracy and implementation costs, etc. Specific scaling factors are, for example, specified for the inverse transform, e.g. by inverse transform processing unit 212 (and the corresponding inverse transform, e.g. by inverse transform processing unit 312 at video decoder 30) and corresponding scaling factors for the forward transform, e.g. by transform processing unit 206, at an encoder 20 may be specified accordingly.
Embodiments of the video encoder 20 (respectively, the transform processing unit 206) may be configured to output transform parameters, e.g. a type of transform or transforms, e.g. directly or encoded or compressed via the entropy encoding unit 270, so that, e.g., the video decoder 30 may receive and use the transform parameters for decoding.
Quantization
The quantization unit 208 may be configured to quantize the transform coefficients 207 to obtain quantized coefficients 209, e.g. by applying scalar quantization or vector quantization. The quantized coefficients 209 may also be referred to as quantized transform coefficients 209 or quantized residual coefficients 209.
The quantization process may reduce the bit depth associated with some or all of the transform coefficients 207. For example, an n-bit transform coefficient may be rounded down to an m-bit transform coefficient during quantization, where n is greater than m. The degree of quantization may be modified by adjusting a quantization parameter (QP) . For example for scalar quantization, different scalings may be applied to achieve finer or coarser quantization. Smaller quantization step sizes correspond to finer quantization, whereas larger quantization step sizes correspond to coarser quantization. The applicable quantization step size may be indicated by a quantization parameter (QP) . The quantization parameter may, for example, be an index of a predefined set of applicable quantization step sizes. For example, small quantization parameters may correspond to fine quantization (small quantization step sizes) and large quantization parameters may correspond to coarse quantization (large quantization step sizes) or vice versa. The quantization may include division by a quantization step size and a corresponding and/or the inverse dequantization, e.g. by inverse quantization unit 210, may include multiplication by the quantization step size. Embodiments according to some standards, e.g. HEVC, may be configured to use a quantization parameter to determine the quantization step size. Generally, the quantization step size may be calculated based on a quantization parameter using a fixed point approximation of an equation including division. Additional  scaling factors may be introduced for quantization and dequantization to restore the norm of the residual block, which might get modified because of the scaling used in the fixed point approximation of the equation for quantization step size and quantization parameter. In one examplary implementation, the scaling of the inverse transform and dequantization might be combined. Alternatively, customized quantization tables may be used and signaled from an encoder to a decoder, e.g. in a bitstream. The quantization is a lossy operation, wherein the loss increases with increasing quantization step sizes.
Embodiments of the video encoder 20 (respectively, the quantization unit 208) may be configured to output quantization parameters (QPs) , e.g. directly or encoded via the entropy encoding unit 270, so that, e.g., the video decoder 30 may receive and apply the quantization parameters for decoding.
Inverse Quantization
The inverse quantization unit 210 is configured to apply the inverse quantization of the quantization unit 208 on the quantized coefficients to obtain dequantized coefficients 211, e.g. by applying the inverse of the quantization scheme applied by the quantization unit 208 based on or using the same quantization step size as the quantization unit 208. The dequantized coefficients 211 may also be referred to as dequantized residual coefficients 211 and correspond -although typically not identical to the transform coefficients due to the loss by quantization -to the transform coefficients 207.
Inverse Transform
The inverse transform processing unit 212 is configured to apply the inverse transform of the transform applied by the transform processing unit 206, e.g. an inverse discrete cosine transform (DCT) or inverse discrete sine transform (DST) or other inverse transforms, to obtain a reconstructed residual block 213 (or corresponding dequantized coefficients 213) in the sample domain. The reconstructed residual block 213 may also be referred to as a transform block 213.
Reconstruction
The reconstruction unit 214 (e.g. adder or summer 214) is configured to add the transform block 213 (i.e. reconstructed residual block 213) to the prediction block 265 to obtain a reconstructed block 215 in the sample domain, e.g. by adding –sample by sample -the sample  values of the reconstructed residual block 213 and the sample values of the prediction block 265.
Filtering
The loop filter unit 220 (or short “loop filter” 220) , is configured to filter the reconstructed block 215 to obtain a filtered block 221, or in general, to filter reconstructed samples to obtain filtered samples. The loop filter unit may be configured to smooth pixel transitions, or otherwise improve the video quality. The loop filter unit 220 may comprise one or more loop filters such as a de-blocking filter, a sample-adaptive offset (SAO) filter or one or more other filters, such as a bilateral filter, an adaptive loop filter (ALF) , a sharpening, a smoothing filter or a collaborative filter, or any combination thereof. Although the loop filter unit 220 is shown in Fig. 2 as being an in-loop filter, in other configurations, the loop filter unit 220 may be implemented as a post loop filter. The filtered block 221 may also be referred to as a filtered reconstructed block 221.
Embodiments of the video encoder 20 (respectively, the loop filter unit 220) may be configured to output loop filter parameters (such as sample adaptive offset information) , e.g. directly or encoded via the entropy encoding unit 270, so that, e.g., a decoder 30 may receive and apply the same loop filter parameters or respective loop filters for decoding.
Decoded Picture Buffer
The decoded picture buffer (DPB) 230 may be a memory that stores reference pictures, or in general reference picture data, for encoding video data by video encoder 20. The DPB 230 may be formed by any of a variety of memory devices, such as dynamic random access memory (DRAM) , including synchronous DRAM (SDRAM) , magnetoresistive RAM (MRAM) , resistive RAM (RRAM) , or other types of memory devices. The decoded picture buffer (DPB) 230 may be configured to store one or more filtered blocks 221. The decoded picture buffer 230 may be further configured to store other previously filtered blocks, e.g. previously reconstructed and filtered blocks 221, of the same current picture or of different pictures, e.g. previously reconstructed pictures, and may provide complete previously reconstructed, i.e. decoded, pictures (and corresponding reference blocks and samples) and/or a partially reconstructed current picture (and corresponding reference blocks and samples) , for example for inter prediction. The decoded picture buffer (DPB) 230 may also be configured to store one or more unfiltered reconstructed blocks 215, or in general unfiltered reconstructed samples, e.g.  if the reconstructed block 215 is not filtered by loop filter unit 220, or any other further processed version of the reconstructed blocks or samples.
Mode Selection (Partitioning &Prediction)
The mode selection unit 260 comprises partitioning unit 262, inter-prediction unit 244 and intra-prediction unit 254, and is configured to receive or obtain original picture data, such as an original block 203 (current block 203 of the current picture 17) , and reconstructed picture data, such as filtered and/or unfiltered reconstructed samples or blocks of the same (current) picture and/or from one or a plurality of previously decoded pictures, e.g. from decoded picture buffer 230 or other buffers (e.g. line buffer, not shown) . The reconstructed picture data is used as reference picture data for prediction, e.g. inter-prediction or intra-prediction, to obtain a prediction block 265 or predictor 265.
Mode selection unit 260 may be configured to determine or select a partitioning for a current block prediction mode (including no partitioning) and a prediction mode (e.g. an intra-or inter-prediction mode) and generate a corresponding prediction block 265, which is used for the calculation of the residual block 205 and for the reconstruction of the reconstructed block 215.
Embodiments of the mode selection unit 260 may be configured to select the partitioning and the prediction mode (e.g. from those supported by or available for mode selection unit 260) , which provide the best match or in other words the minimum residual (minimum residual means better compression for transmission or storage) , or a minimum signaling overhead (minimum signaling overhead means better compression for transmission or storage) , or which considers or balances both. The mode selection unit 260 may be configured to determine the partitioning and prediction mode based on rate distortion optimization (RDO) , i.e. select the prediction mode which provides a minimum rate distortion. Terms like “best” , “minimum” , “optimum” etc. in this context do not necessarily refer to an overall “best” , “minimum” , “optimum” , etc. but may also refer to the fulfillment of a termination or selection criterion like a value exceeding or falling below a threshold or other constraints leading potentially to a “sub-optimum selection” but reducing complexity and processing time.
In other words, the partitioning unit 262 may be configured to partition the block 203 into smaller block partitions or sub-blocks (which again form blocks) , e.g. iteratively using quad-tree-partitioning (QT) , binary-tree partitioning (BT) or triple-tree-partitioning (TT) or any combination thereof, and to perform the prediction for each of the block partitions or sub-blocks, wherein the mode selection comprises the selection of the tree-structure of the  partitioned block 203 and the prediction modes are applied to each of the block partitions or sub-blocks.
In the following, the partitioning (e.g. by partitioning unit 262) and prediction processing (by inter-prediction unit 244 and intra-prediction unit 254) performed by an example video encoder 20 will be explained in more detail.
Partitioning
The partitioning unit 262 may partition (or split) a current block 203 into smaller partitions, e.g. smaller blocks of square or rectangular size. These smaller blocks (which may also be referred to as sub-blocks) may be further partitioned into even smaller partitions. This is also referred to as tree-partitioning or hierarchical tree-partitioning, wherein a root block, e.g. at root tree-level 0 (hierarchy-level 0, depth 0) , may be recursively partitioned, e.g. partitioned into two or more blocks of a next lower tree-level, e.g. nodes at tree-level 1 (hierarchy-level 1, depth 1) , wherein these blocks may be again partitioned into two or more blocks of a next lower level, e.g. tree-level 2 (hierarchy-level 2, depth 2) , etc. until the partitioning is terminated, e.g. because a termination criterion is fulfilled, e.g. a maximum tree depth or minimum block size is reached. Blocks which are not further partitioned are also referred to as leaf-blocks or leaf nodes of the tree. A tree using partitioning into two partitions is referred to as a binary-tree (BT) , a tree using partitioning into three partitions is referred to as a ternary-tree (TT) , and a tree using partitioning into four partitions is referred to as a quad-tree (QT) .
As mentioned before, the term “block” as used herein may be a portion, in particular a square or rectangular portion, of a picture. With reference, for example, to HEVC and VVC, the block may be or correspond to a coding tree unit (CTU) , a coding unit (CU) , a prediction unit (PU) , or a transform unit (TU) and/or to the corresponding blocks, e.g. a coding tree block (CTB) , a coding block (CB) , a transform block (TB) or a prediction block (PB) .
For example, a coding tree unit (CTU) may be or comprise a CTB of luma samples and two corresponding CTBs of chroma samples of a picture that has three sample arrays, or a CTB of samples of a monochrome picture or a picture that is coded using three separate colour planes and syntax structures used to code the samples. Correspondingly, a coding tree block (CTB) may be an N×N block of samples for some value of N such that the division of a component into CTBs is a partitioning. A coding unit (CU) may be or comprise a coding block of luma samples and two corresponding coding blocks of chroma samples of a picture that has three sample arrays, or a coding block of samples of a monochrome picture or a picture that is coded using three separate colour planes and syntax structures used to code the samples.
Correspondingly, a coding block (CB) may be an M×N block of samples for some values of M and N such that the division of a CTB into coding blocks is a partitioning.
In some embodiments, e.g., according to HEVC, a coding tree unit (CTU) may be split into CUs by using a quad-tree structure denoted as a coding tree. The decision whether to code a picture area using inter-picture (temporal) or intra-picture (spatial) prediction is made at the CU level. Each CU can be further split into one, two or four PUs according to the PU splitting type. Inside one PU, the same prediction process is applied and the relevant information is transmitted to the decoder on a PU basis. After obtaining the residual block by applying the prediction process based on the PU splitting type, a CU can be partitioned into transform units (TUs) according to another quad-tree structure similar to the coding tree for the CU.
In some embodiments, e.g., according to the latest video coding standard currently in development, which is referred to as Versatile Video Coding (VVC) , a combined quad-tree and binary-tree (QTBT) partitioning is for example used to partition a coding block. In the QTBT block structure, a CU can have either a square or rectangular shape. For example, a coding tree unit (CTU) is first partitioned by a quad-tree structure. The quad-tree leaf nodes are further partitioned by a binary-tree or ternary (or triple) -tree structure. The partitioning tree leaf nodes are called coding units (CUs) , and that partition is used for prediction and transform processing without any further partitioning. This means that the CU, PU and TU have the same block size in the QTBT coding block structure. In parallel, multiple partitions, for example, triple-tree partition may be used together with the QTBT block structure.
In one example, the mode selection unit 260 of video encoder 20 may be configured to perform any combination of the partitioning techniques described herein.
As described above, the video encoder 20 is configured to determine or select the best or an optimum prediction mode from a set of (e.g. pre-determined) prediction modes. The set of prediction modes may comprise intra-prediction modes and/or inter-prediction modes.
Intra-Prediction
The set of intra-prediction modes may comprise 35 different intra-prediction modes, such as non-directional modes like DC (or mean) mode and planar mode, or directional modes, e.g. as defined in HEVC, or may comprise 67 different intra-prediction modes, such as non-directional modes like DC (or mean) mode and planar mode, or directional modes, e.g. as defined for VVC.
The intra-prediction unit 254 is configured to use reconstructed samples of neighboring blocks of the same current picture to generate an (intra-) prediction block 265 according to an intra-prediction mode from the set of intra-prediction modes.
The intra-prediction unit 254 (or in general the mode selection unit 260) may be further configured to output intra-prediction parameters (or in general information indicative of the selected intra-prediction mode for the block) to the entropy encoding unit 270 in the form of syntax elements 266 for inclusion into the encoded picture data 21, so that, e.g., the video decoder 30 may receive and use the prediction parameters for decoding.
Inter-Prediction
The set of (or possible) inter-prediction modes depends on the available reference pictures (i.e. previous, at least partially decoded pictures, e.g. stored in DBP 230) and other inter-prediction parameters, e.g. whether the whole reference picture or only a part, e.g. a search window area around the area of the current block, of the reference picture is used for searching for a best matching reference block, and/or e.g. whether pixel interpolation is applied, such as half/semi-pel and/or quarter-pel interpolation, or not.
In addition to the above prediction modes, skip mode and/or direct mode may be applied.
The inter-prediction unit 244 may include a motion estimation (ME) unit and a motion compensation (MC) unit (both not shown in Fig. 2) . The motion estimation unit may be configured to receive or obtain the picture block 203 (current picture block 203 of the current picture 17) and a decoded picture 231, or at least one or a plurality of previously reconstructed blocks, such as reconstructed blocks of one or a plurality of previously decoded pictures 231, for motion estimation. By way of example, a video sequence may comprise the current picture and the previously decoded pictures 231, or in other words, the current picture and the previously decoded pictures 231 may be part of or form a sequence of pictures forming a video sequence.
The encoder 20 may be configured to select a reference block from a plurality of reference blocks of the same or different pictures of the plurality of previously decoded pictures and provide a reference picture (or reference picture index) and/or an offset (spatial offset) between the position (x, y coordinates) of the reference block and the position of the current block as inter-prediction parameters to the motion estimation unit. This offset is also called motion vector (MV) .
The motion compensation unit may be configured to obtain, e.g. receive, an inter-prediction parameter and to perform inter-prediction based on or using the inter-prediction parameter to  obtain an (inter-) prediction block 265. Motion compensation, performed by the motion compensation unit, may involve fetching or generating the prediction block based on the motion/block vector determined by motion estimation, possibly performing interpolations to sub-pixel precision. Interpolation filtering may generate additional pixel samples from known pixel samples, thus potentially increasing the number of candidate prediction blocks that may be used to code a picture block. Upon receiving the motion vector for the PU of the current picture block, the motion compensation unit may locate the prediction block to which the motion vector points in one of the reference picture lists.
The motion compensation unit may also generate syntax elements associated with the blocks and video slices for use by video decoder 30 in decoding the picture blocks of the video slice. In addition or as an alternative to slices and respective syntax elements, tile groups and/or tiles and respective syntax elements may be generated or used.
Entropy Coding
The entropy encoding unit 270 is configured to apply, for example, an entropy encoding algorithm or scheme (e.g. a variable length coding (VLC) scheme, a context adaptive VLC scheme (CAVLC) , an arithmetic coding scheme, a binarization, a context adaptive binary arithmetic coding (CABAC) , syntax-based context-adaptive binary arithmetic coding (SBAC) , probability interval partitioning entropy (PIPE) coding or another entropy encoding methodology or technique) or bypass (no compression) on the quantized coefficients 209, inter-prediction parameters, intra-prediction parameters, loop filter parameters and/or other syntax elements to obtain encoded picture data 21 which can be output via the output 272, e.g. in the form of an encoded bitstream 21, so that, e.g., the video decoder 30 may receive and use the parameters for decoding. The encoded bitstream 21 may be transmitted to video decoder 30, or stored in a memory for later transmission or retrieval by video decoder 30.
Other structural variations of the video encoder 20 can be used to encode the video stream. For example, a non-transform based encoder 20 can quantize the residual signal directly without the transform processing unit 206 for certain blocks or frames. In another implementation, an encoder 20 can have the quantization unit 208 and the inverse quantization unit 210 combined into a single unit.
Decoder and Decoding Method
Fig. 3 shows an example of a video decoder 30 that is configured to implement the techniques of the present application. The video decoder 30 is configured to receive encoded picture data 21 (e.g. encoded bitstream 21) , e.g. encoded by encoder 20, to obtain a decoded picture 331. The encoded picture data or bitstream comprises information for decoding the encoded picture data, e.g. data that represents picture blocks of an encoded video slice (and/or tile group or tile) and associated syntax elements.
In the example of Fig. 3, the decoder 30 comprises an entropy decoding unit 304, an inverse quantization unit 310, an inverse transform processing unit 312, a reconstruction unit 314 (e.g. a summer 314) , a loop filter 320, a decoded picture buffer (DBP) 330, a mode application unit 360, an inter-prediction unit 344 and an intra-prediction unit 354. Inter-prediction unit 344 may be or include a motion compensation unit. Video decoder 30 may, in some examples, perform a decoding pass generally reciprocal to the encoding pass described with respect to video encoder 20 of Fig. 2.
As explained with regard to the encoder 20, the inverse quantization unit 210, the inverse transform processing unit 212, the reconstruction unit 214, the loop filter 220, the decoded picture buffer (DPB) 230, the inter-prediction unit 244 and the intra-prediction unit 254 are also referred to as forming the “built-in decoder” of video encoder 20. Accordingly, the inverse quantization unit 310 may be identical in function to the inverse quantization unit 210, the inverse transform processing unit 312 may be identical in function to the inverse transform processing unit 212, the reconstruction unit 314 may be identical in function to reconstruction unit 214, the loop filter 320 may be identical in function to the loop filter 220, and the decoded picture buffer 330 may be identical in function to the decoded picture buffer 230. Therefore, the explanations provided for the respective units and functions of the video 20 encoder apply correspondingly to the respective units and functions of the video decoder 30.
Entropy Decoding
The entropy decoding unit 304 is configured to parse the bitstream 21 (or in general encoded picture data 21) and perform, for example, entropy decoding to the encoded picture data 21 to obtain, e.g., quantized coefficients 309 and/or decoded coding parameters 366, such as any or all of inter-prediction parameters (e.g. reference picture index and motion vector) , intra-prediction parameters (e.g. intra-prediction mode or index) , transform parameters, quantization parameters, loop filter parameters, and/or other syntax elements. Entropy decoding unit 304 may be configured to apply the decoding algorithms or schemes corresponding to the encoding schemes as described with regard to the entropy encoding unit  270 of the encoder 20. Entropy decoding unit 304 may be further configured to provide inter-prediction parameters, intra-prediction parameters and/or other syntax elements to the mode application unit 360 and other parameters to other units of the decoder 30. Video decoder 30 may receive the syntax elements at the video slice level and/or the video block level. In addition or as an alternative to slices and respective syntax elements, tile groups and/or tiles and respective syntax elements may be received and/or used.
Inverse Quantization
The inverse quantization unit 310 may be configured to receive quantization parameters (QP) (or in general, information related to the inverse quantization) and quantized coefficients from the encoded picture data 21 (e.g. by parsing and/or decoding, e.g. by entropy decoding unit 304) and to apply, based on the quantization parameters, an inverse quantization to the decoded quantized coefficients 309 to obtain dequantized coefficients 311, which may also be referred to as transform coefficients 311. The inverse quantization process may include use of a quantization parameter determined by video encoder 20 for each video block in the video slice (or tile or tile group) to determine a degree of quantization and, likewise, a degree of inverse quantization that should be applied.
Inverse Transform
Inverse transform processing unit 312 may be configured to receive dequantized coefficients 311, also referred to as transform coefficients 311, and to apply a transform to the dequantized coefficients 311 in order to obtain reconstructed residual blocks 313 in the sample domain. The reconstructed residual blocks 313 may also be referred to as transform blocks 313. The transform may be an inverse transform, e.g., an inverse DCT, an inverse DST, an inverse integer transform, or a conceptually similar inverse transform process. The inverse transform processing unit 312 may be further configured to receive transform parameters or corresponding information from the encoded picture data 21 (e.g. by parsing and/or decoding, e.g. by entropy decoding unit 304) to determine the transform to be applied to the dequantized coefficients 311.
Reconstruction
The reconstruction unit 314 (e.g. adder or summer 314) may be configured to add the reconstructed residual block 313, to the prediction block 365 to obtain a reconstructed block  315 in the sample domain, e.g. by adding the sample values of the reconstructed residual block 313 and the sample values of the prediction block 365.
Filtering
The loop filter unit 320 (either in the coding loop or after the coding loop) is configured to filter the reconstructed block 315 to obtain a filtered block 321, e.g. to smooth pixel transitions, or otherwise improve the video quality. The loop filter unit 320 may comprise one or more loop filters such as a de-blocking filter, a sample-adaptive offset (SAO) filter or one or more other filters, e.g. a bilateral filter, an adaptive loop filter (ALF) , a sharpening, a smoothing filter or a collaborative filter, or any combination thereof. Although the loop filter unit 320 is shown in Fig. 3 as being an in-loop filter, in other configurations, the loop filter unit 320 may be implemented as a post loop filter.
Decoded Picture Buffer
The decoded video blocks 321 of a picture are then stored in the decoded picture buffer 330, which stores the decoded pictures 331 as reference pictures for subsequent motion compensation for other pictures and/or for output or respectively display.
The decoder 30 is configured to output the decoded picture 311, e.g. via output 312, for presentation or viewing to a user.
Prediction
The inter-prediction unit 344 may be identical to the inter-prediction unit 244 (in particular, to the motion compensation unit) and the intra-prediction unit 354 may be identical to the intra-prediction unit 254 in function, and performs split or partitioning decisions and prediction based on the partitioning and/or prediction parameters or respective information received from the encoded picture data 21 (e.g. by parsing and/or decoding, e.g. by entropy decoding unit 304) . Mode application unit 360 may be configured to perform the prediction (intra-or inter-prediction) per block based on reconstructed pictures, blocks or respective samples (filtered or unfiltered) to obtain the prediction block 365.
When the video slice or picture is coded as an intra-coded (I) slice, intra-prediction unit 354 of mode application unit 360 is configured to generate prediction block 365 for a picture block of the current video slice based on a signaled intra-prediction mode and data from previously decoded blocks of the current picture. When the video slice or picture is coded as an inter-coded (i.e., B, or P) slice, inter-prediction unit 344 (e.g. motion compensation unit) of  mode application unit 360 is configured to produce prediction block 365 for a video block of the current video slice based on the motion vectors and other syntax elements received from entropy decoding unit 304. For inter-prediction, the prediction blocks may be produced from one of the reference pictures within one of the reference picture lists. Video decoder 30 may construct the reference picture lists, List 0 and List 1, using default construction techniques based on reference pictures stored in DPB 330. The same or similar approach may be applied for or by embodiments using tile groups (e.g. video tile groups) and/or tiles (e.g. video tiles) in addition or alternatively to slices (e.g. video slices) , e.g. a video may be coded using I, P or B tile groups and/or tiles.
Mode application unit 360 is configured to determine the prediction information for a video/picture block of the current video slice by parsing the motion vectors or related information and other syntax elements, and use the prediction information to produce the prediction blocks for the current video block being decoded. For example, the mode application unit 360 uses some of the received syntax elements to determine a prediction mode (e.g., intra-or inter-prediction) used to code the video blocks of the video slice, an inter-prediction slice type (e.g., B slice, P slice, or GPB slice) , construction information for one or more of the reference picture lists for the slice, motion vectors for each inter-coded video block of the slice, inter-prediction status for each inter-coded video block of the slice, and other information to decode the video blocks in the current video slice. The same or similar approach may be applied for or by embodiments using tile groups (e.g. video tile groups) and/or tiles (e.g. video tiles) in addition or alternatively to slices (e.g. video slices) , e.g. a video may be coded using I, P or B tile groups and/or tiles.
Embodiments of the video decoder 30 as shown in Fig. 3 may be configured to partition and/or decode the picture by using slices (also referred to as video slices) , wherein a picture may be partitioned into or decoded using one or more slices (typically non-overlapping) , and each slice may comprise one or more blocks (e.g. CTUs) .
Embodiments of the video decoder 30 as shown in Fig. 3 may be configured to partition and/or decode the picture by using tile groups (also referred to as video tile groups) and/or tiles (also referred to as video tiles) , wherein a picture may be partitioned into or decoded using one or more tile groups (typically non-overlapping) , and each tile group may comprise one or more blocks (e.g. CTUs) or one or more tiles, wherein each tile may be of rectangular shape and may comprise one or more blocks (e.g. CTUs) , e.g. complete or fractional blocks.
Other variations of the video decoder 30 can be used to decode the encoded picture data 21. For example, the decoder 30 can produce the output video stream without the loop filtering  unit 320. For example, a non-transform based decoder 30 can inverse-quantize the residual signal directly without the inverse-transform processing unit 312 for certain blocks or frames. In another implementation, the video decoder 30 can have the inverse-quantization unit 310 and the inverse-transform processing unit 312 combined into a single unit.
It should be understood that, in the encoder 20 and the decoder 30, a processing result of a current step may be further processed and then output to the next step. For example, after interpolation filtering, motion vector derivation or loop filtering, a further operation, such as Clip or shift, may be performed on the processing result of the interpolation filtering, motion vector derivation or loop filtering.
It should be noted that further operations may be applied to the derived motion vectors of the current block (including but not limited to control point motion vectors of affine mode, sub-block motion vectors in affine, planar, ATMVP modes, temporal motion vectors, and so on) . For example, the value of a motion vector is constrained to a predefined range according to its representing bit number. If the representing bit number of the motion vector is bitDepth, then the range is -2^ (bitDepth-1) ~ 2^ (bitDepth-1) -1, where “^” means exponentiation. For example, if bitDepth is set equal to 16, the range is -32768 ~ 32767; if bitDepth is set equal to 18, the range is -131072~131071. For example, the value of the derived motion vector (e.g. the MVs of four 4x4 sub-blocks within one 8x8 block) is constrained such that the maximum difference between integer parts of the four 4x4 sub-block MVs is no more than N pixels, such as no more than 1 pixel. The following description provides two methods for constraining the motion vector according to the bitDepth.
Method 1: remove the overflow MSB (most significant bit) by the following operations:
ux= (mvx+2 bitDepth ) %2 bitDepth                          (1)
mvx = (ux >= 2 bitDepth-1 ) ? (ux -2 bitDepth ) : ux              (2)
uy= (mvy+2 bitDepth ) %2 bitDepth                          (3)
mvy = (uy >= 2 bitDepth-1 ) ? (uy -2 bitDepth ) : uy              (4)
where mvx is a horizontal component of a motion vector of an image block or a sub-block, mvy is a vertical component of a motion vector of an image block or a sub-block, and ux and uy indicate respective intermediate values.
For example, if the value of mvx is -32769, after applying formulae (1) and (2) , the resulting value is 32767. In a computer system, decimal numbers are stored as two’s complements. The two’s complement of -32769 is 1, 0111, 1111, 1111, 1111 (17 bits) . Then, the MSB is discarded, so the resulting two’s complement is 0111, 1111, 1111, 1111 (decimal number is 32767) , which is the same as the output by applying formulae (1) and (2) .
ux= (mvpx + mvdx +2 bitDepth ) %2 bitDepth                          (5)
mvx = (ux >= 2 bitDepth-1 ) ? (ux -2 bitDepth ) : ux                      (6)
uy= (mvpy + mvdy +2 bitDepth ) %2 bitDepth                          (7)
mvy = (uy >= 2 bitDepth-1 ) ? (uy -2 bitDepth ) : uy                      (8)
The operations may be applied during the sum of the motion vector predictor mvp and the motion vector difference mvd, as shown in formulae (5) to (8) .
Method 2: remove the overflow MSB by clipping the value:
vx = Clip3 (-2 bitDepth-1, 2 bitDepth-1 -1, vx)
vy = Clip3 (-2 bitDepth-1, 2 bitDepth-1 -1, vy)
where vx is a horizontal component of a motion vector of an image block or a sub-block, vy is a vertical component of a motion vector of an image block or a sub-block; x, y and z respectively correspond to three input values of the MV clipping process, and the definition of the function Clip3 is as follows:
Figure PCTCN2020078547-appb-000009
Fig. 4 is a schematic diagram of a video coding device 400 according to an embodiment of the present disclosure. The video coding device 400 is suitable for implementing the disclosed  embodiments as described below. In an embodiment, the video coding device 400 may be a decoder such as video decoder 30 of Fig. 1A or an encoder such as video encoder 20 of Fig. 1A. The video coding device 400 may comprise ingress ports 410 (or input ports 410) and one or more receiver units (Rx) 420 for receiving data; a processor, logic unit, or central processing unit (CPU) 430 to process the data; one or more transmitter units (Tx) 440 and egress ports 450 (or output ports 450) for transmitting the data; and a memory 460 for storing the data. The video coding device 400 may also comprise optical-to-electrical (OE) components and electrical-to-optical (EO) components coupled to the ingress ports 410, the receiver units 420, the transmitter units 440, and the egress ports 450 for egress or ingress of optical or electrical signals.
The processor 430 may be implemented by hardware and software. The processor 430 may be implemented as one or more CPU chips, cores (e.g., as a multi-core processor) , FPGAs, ASICs, and DSPs. The processor 430 may be in communication with the ingress ports 410, the receiver units 420, the transmitter units 440, egress ports 450, and the memory 460. The processor 430 may comprise a coding module 470. The coding module 470 implements the disclosed embodiments described above and below. For instance, the coding module 470 may implement, process, prepare, or provide the various coding operations. The inclusion of the coding module 470 therefore provides a substantial improvement to the functionality of the video coding device 400 and effects a transformation of the video coding device 400 to a different state. Alternatively, the coding module 470 may be implemented as instructions stored in the memory 460 and executed by the processor 430.
The memory 460 may comprise one or more disks, tape drives, and solid-state drives and may be used as an over-flow data storage device, to store programs when such programs are selected for execution, and to store instructions and data that are read during program execution. The memory 460 may be, for example, volatile and/or non-volatile and may be a read-only memory (ROM) , random access memory (RAM) , ternary content-addressable memory (TCAM) , and/or static random-access memory (SRAM) .
Fig. 5 is a simplified block diagram of an apparatus 500 that may be used as either or both of the source device 12 and the destination device 14 from Fig. 1A according to an exemplary embodiment.
processor 502 in the apparatus 500 can be a central processing unit. Alternatively, the processor 502 can be any other type of device, or multiple devices, capable of manipulating or processing information now-existing or hereafter developed. Although the disclosed  implementations can be practiced with a single processor as shown, e.g., the processor 502, advantages in speed and efficiency can be achieved using more than one processor.
memory 504 in the apparatus 500 can be a read only memory (ROM) device or a random access memory (RAM) device in an implementation. Any other suitable type of storage can be used as the memory 504. The memory 504 can include code and data 506 that is accessed by the processor 502 using a bus 512. The memory 504 can further include an operating system 508 and application programs 510, the application programs 510 including least one program that permits the processor 502 to perform the methods described herein. example, the application programs 510 can include applications 1 through N, which further include a video coding application that performs the methods described herein.
The apparatus 500 can also include one or more output devices, such as a display 518. The display 518 may be, in one example, a touch sensitive display that combines a display with a touch sensitive element that is operable to sense touch inputs. The display 518 can be coupled to the processor 502 via the bus 512.
Although depicted here as a single bus, the bus 512 of the apparatus 500 can be composed of multiple buses. Further, a secondary storage (not shown) can be directly coupled to the other components of the apparatus 500 or can be accessed via a network and can comprise a single integrated unit such as a memory card or multiple units such as multiple memory cards. The apparatus 500 can thus be implemented in a wide variety of configurations.
Background of in-loop luma reshaping
The in-loop luma reshaper is implemented as a pair of look-up tables (LUTs) ; but only one of the two LUTs needs to be signaled as the other can be computed from the signaled LUT.
Each LUT is a one-dimensional, 10 bit, 1024-entry mapping table (1D-LUT) . One LUT is forward LUT, FwdLUT that maps input luma code values Y i to altered values Y r: Y r=FwdLUT [Y i] . The other LUT is an inverse LUT, that maps altered code values Y r to
Figure PCTCN2020078547-appb-000010
Figure PCTCN2020078547-appb-000011
Figure PCTCN2020078547-appb-000012
represents the reconstruction values of Y i.
For intra slices, only the InvLUT is applied. For inter slices, both FwdLUT and InvLUT are applied. LUTs are applied before loop filtering for both intra and inter slices. Processing operations and data flow are identical for Standard-Dynamic-Range (SDR) and High-Dynamic-Range (HDR) .
In-loop chroma residue scaling
To compensate for the luma signal interaction with the chroma signal when luma reshaping is performed, the chroma components are adjusted with chroma residue scaling. At the encoder side, for the residue (CxRes = CxOrg -CxPred) of chroma component Cx of each CU,
Figure PCTCN2020078547-appb-000013
CxResScaled is the scaled Cb or Cr residue signal of the CU to be transformed and quantized. At the decoder side, CxResScaled is the scaled chroma residue signal after inverse Q/T, and
Figure PCTCN2020078547-appb-000014
As shown in Figs. 6 and 7, the scaled chroma residue signal after inverse Q/T is alternatively calculated by the multiplication
CxRes = CxResScale *cScaleInv [idx]
wherein the index idx is an average luma value and cScaleInv is a look-up table.
The final reconstruction of the chroma component is CxRec = CxPred + CxRes. In this way, the decoder can start inverse quantization and transform immediately for chroma decoding after syntax parsing. The cScale being used for a CU is shared by the Cb and Cr components, and is derived as:
Figure PCTCN2020078547-appb-000015
Figure PCTCN2020078547-appb-000016
where
Figure PCTCN2020078547-appb-000017
is the average predicted luma value of current CU in inter slices (where dual tree coding is not used and therefore reconstructed luma is not available) , and
Figure PCTCN2020078547-appb-000018
is the average reconstructed luma value of current CU in intra slices (where dual tree coding is used) .
In an example, in a loop luma reshaping process (for example, a loop luma reshaping method is disclosed in a proposal ITU JVET-M0427, the link for this proposal, http: //phenix. it-sudparis. eu/jvet/doc_end_user/current_document. php? id=5236) , based on the luma samples values, a chroma QP (quantization parameter) offset (cQPO) is applied to compensate for the luma signal (in an example, a luma siginal interacts with the chroma signal) . Chroma components of the chroma signal are adjusted with chroma residue scaling. However, the modified chroma QP offset is not used any further in the loop filter process. In the case that a deblocking filter uses an average QP of the two blocks sharing the edge, this  average QP process does not take into account the chroma QP offset which is used, when luma reshaping process is applied to a current block.
One embodiment of the present disclosure is related when this tool called “Luma reshaping” is applied. This tool is mainly applied to the “Luma” component. Because luma and chroma are co-related, the “Luma reshaping” tool uses something called a “Luma based Chroma QP offset or Chroma QP offset” to compensate for the interaction between Luma and Chroma.
Therefore, basically for the chroma block instead of using the signaled QP value directly, a modified Qp value determined as Qp = QP + CQPO (where CQPO is the chroma QP offset) is used.
In an example, an average QP value of two blocks is used in a chroma deblocking process of the given edge, where the two blocks are sharing the given edge. For example, when a given edge is shared by two blocks P and Q, a deblocking filter uses the average of the QP values of both blocks P and Q. For example, if QP p is the QP of block P and QP q is the QP of block Q, then the average QP used is ( (QP p + QP q) >> 1) , i.e. ( (QP p + QP q) /2) . In the present example, a chroma QP offset is used when luma reshaping is applied for a given block (say block P) , where the QP value used by the deblocking filter is denoted by QP p. In an example, QP p =QP p + cQPO, where cQPO is the chroma QP offset. In this way, the QP which is used in the inverse transform or transform of a given block is also used in the loop filter operation (for deblocking operation) .
In some embodiments of the disclosure, the QP values used in the chroma deblocking filter are modified when luma reshaping is applied for a given block.
In one example, as shown in Fig. 6, the chroma residue scaling applied for the chroma block is not used any further in the deblocking. The embodiment of the disclosure solves this problem by using the modified chroma QP in the deblocking process (see Fig. 7) .
Fig. 6 shows an example of a chroma residue scaling method known in the art wherein the chroma residue scaling is applied for the chroma block in a decoding path but is not used further in the deblocking process.
In the bitstream that a decoder receives, the coded transform coefficients are in the reshaped or mapped domain, meaning that FwdLUT has already been applied to them.
In step 610, inverse context adaptive binary arithmetic coding (CABAC -1) as well as inverse quantization Q -1 and inverse transform T -1 may be applied to the coded bitstream to determine the luma residue signal Y res. In reconstruction step 611, a reconstructed luma signal Y r may be determined by adding the predicted luma signal Y’ pred to the luma residue signal Y res.
In intra slices, intra prediction 617 may be used to get the predicted luma signal Y’ pred in the reshaped or mapped domain. In inter slices, prediction values are based on previously decoded frames stored in the decoded picture buffer 614. The samples of these decoded frames may be stored in the normal domain, meaning that InvLUT has been applied to the samples before storing. Therefore, after performing inter prediction in step 615 to determine a predicted luma signal Y pred in the normal domain, a forward reshaping may be applied to the signal in step 616 using FwdLUT to determine the predicted luma signal Y’ pred in the reshaped or mapped domain. Then, inverse reshaping using InvLUT may be applied to determine reconstructed luma values
Figure PCTCN2020078547-appb-000019
in the normal domain in step 612. Loop filtering may be performed on the reconstructed luma values in step 613 and the filtered reconstructed luma values may be stored in the decoded picture buffer 614.
The chroma residue scaling compensates for luma signal interaction with the chroma signal. Chroma residue scaling may be applied at the transform unit (TU) level. By applying inverse context adaptive binary arithmetic coding (CABAC -1) as well as inverse quantization Q -1 and inverse transform T -1 to the coded bitstream in step 610, a scaled chroma residue signal C resScale may be determined. From the scaled chroma residue signal C resScale , the chroma residue signal C res may be determined by multiplication with the inverse scaling factor C ScaleInv in chroma residue scaling step 619.
The inverse scaling factor C ScaleInv may be determined in step 618 as a separate look-up table cScaleInv [idx] that may be signaled to the decoder as a piecewise look-up table.
cScaleInv [idx] may be determined as the reciprocal of the scaling factor cScale [] described above and may be calculated as the reciprocal of the above-described look-up table FwdLUT’ to perform multiplication instead of division at the decoder side. The index idx into the inverse scaling factor may be based on an average luma value avgY’ TU of the predicted luma  signal Y’ pred in the re-shaped or mapped domain and may be calculated for a transform unit in step 618.
In step 620, a reconstructed chroma signal
Figure PCTCN2020078547-appb-000020
may be determined by adding the predicted chroma signal C pred to the chroma residue signal C res. For intra slices, the predicted chroma signal C pred may be determined by intra prediction 621. For inter slices, the predicted chroma signal C pred may be determined by inter prediction 624 based on previously decoded frames stored in the decoded picture buffer 623. The decoded picture buffer 623 may be identical to the decoded picture buffer 614. As reshaping is only applied to the luma components, the reconstructed chroma signal
Figure PCTCN2020078547-appb-000021
may be in the normal domain.
After performing a deblocking process in the loop filter 622 on the reconstructed chroma signal
Figure PCTCN2020078547-appb-000022
the decoded chroma signal may be stored in the decoded picture buffer 623.
In the chroma residue scaling method of the art shown in Fig. 6, the deblocking decision in the loop filter 622 is based on the original chroma quantization parameters (QPs) coded in the bitstream. Therefore, an incorrect deblocking decision may be taken for the deblocking of an edge or boundary between two chroma coding blocks.
This issue is resolved with the chroma residue scaling method of the present disclosure as shown in Fig. 7. Identical method steps and elements are shown with identical reference signs and description thereof is omitted here for clarity.
As opposed to the chroma residue scaling method of the art, the chroma residue scaling method of the present disclosure determines a modified QP of the current block to be used in the averaging process shown in Fig. 8 and described below. The modified QP of the current block may be determined according to the present disclosure by adding an equivalent chroma QP offset (cQPO) to the original chroma QP wherein the equivalent cQPO may be determined according to the above described equation (1) .
Alternatively, the equivalent cQPO may be determined as follows:
Qstepsize = (1 << CSCALE_FP_PREC) / (s)
where “s” may be the chroma residue scaling factor from cScaleInv [pieceIdx] , pieceIdx may be decided by the corresponding average luma value of the TU, and CSCALE_FP_PREC  may be a constant value to specify precision. In this case, the equivalent cQPO may be -6*log2 (Qstepsize) .
Correspondingly, “s” may be the chroma residue scaling factor determined from 
Figure PCTCN2020078547-appb-000023
where
Figure PCTCN2020078547-appb-000024
is the corresponding average luma value of the TU, and CSCALE_FP_PREC is a constant value to specify precision. In this case, the equivalent cQPO may be 6*log2 (Qstepsize) ) .
The modified chroma QP of the current block is then used in the deblocking process of the loop filter 722 as shown in Fig. 7.
In one embodiment, as shown in Fig. 8, a vertical edge is shared by two blocks P and Q.
Block P is processed by luma reshaping, and the chroma QP values which are used by block P have to be modified by using the chroma QP offset.
In an example, the chroma QP value of block P is QP p, and QP p = QP p + cQPO , where cQPO may be computed as shown in equation (1) above.
Here
Figure PCTCN2020078547-appb-000025
is the average predicted luma value of the current CU in inter slices (where dual tree coding is not used and therefore reconstructed luma is not available) , and
Figure PCTCN2020078547-appb-000026
is the average reconstructed luma value of the current CU in intra slices (where dual tree coding is used) , and FwdLUT′ is the forward reshaping lookup table. The details of how FwdLUT′ are constructed are given in ITU-JVET-M0427
(http: //phenix. it-sudparis. eu/jvet/doc_end_user/current_document. php? id=5236) .
In an embodiment of the disclosure, when luma reshaping is applied for a current block, a chroma QP offset is used to compensate for the interaction between the luma and the chroma, and the resulting chroma QP offset is also used during the deblocking filter of chroma block boundaries.
In an example, as shown in Fig. 8, whenever the luma reshaping is applied for a given block, the chroma QP may be refined with the luma based chroma QP offset, and then the refined QP is used further in the deblocking filter decisions. The modified chroma QP value may be  used during the deblocking of a chroma block when luma re-shaping is used for the corresponding luma block.
Fig. 9 shows a flowchart for a method of video coding according to an embodiment of the disclosure. In step 1010, a value of a Chroma quantization parameter (QP) is obtained for a current block. In step 1020, a value of an offset of the Chroma QP is obtained according to luma samples corresponding to the current block. In stept 1030 finally, deblocking is performed on the current block according to the value of the offset of the Chroma QP and the value of the Chroma QP for the current block.
Fig. 10 shows a block diagram illustrating an example of an encoding apparatus 20 or a decoding apparatus 30 according to embodiments of the disclosure. The encoding or decoding apparatus comprises a quantization parameter (QP) determining module (1110) configured to obtain a value of a Chroma QP for a current block, a QP offset determining module (1120) configured to obtain a value of an offset of the Chroma QP according to luma samples corresponding to the current block; and a deblocking module (1130) configured to deblock the current block according to the value of the offset of the Chroma QP and the value of the Chroma QP for the current block.
The QP determining module (1110) , the QP offset determining module (1120) and the deblocking module (1130) may be implemented in hardware, software, firmware, or any combination thereof. If implemented in software, the functions may be stored on a computer-readable medium or transmitted over communication media as one or more instructions or code and executed by a hardware-based processing unit. Instructions may be executed by one or more processors, such as one or more digital signal processors (DSPs) , general purpose microprocessors, application specific integrated circuits (ASICs) , field programmable logic arrays (FPGAs) , or other equivalent integrated or discrete logic circuitry. Accordingly, the term “processor, ” as used herein may refer to any of the foregoing structure or any other structure suitable for implementation of the techniques described herein. In addition, in some aspects, the functionality described herein may be provided within dedicated hardware and/or software modules configured for encoding and decoding, or incorporated in a combined codec. Also, the techniques could be fully implemented in one or more circuits or logic elements.
Following is an explanation of the applications of the encoding method as well as the decoding method as shown in the above-mentioned embodiments, and a system using them. FIG. 11 is a block diagram showing a content supply system 3100 for realizing content distribution service. This content supply system 3100 includes capture device 3102, terminal device 3106, and optionally includes display 3126. The capture device 3102 communicates with the terminal device 3106 over communication link 3104. The communication link may include the communication channel 13 described above. The communication link 3104 includes but not limited to WIFI, Ethernet, Cable, wireless (3G/4G/5G) , USB, or any kind of combination thereof, or the like.
The capture device 3102 generates data, and may encode the data by the encoding method as shown in the above embodiments. Alternatively, the capture device 3102 may distribute the data to a streaming server (not shown in the Figures) , and the server encodes the data and transmits the encoded data to the terminal device 3106. The capture device 3102 includes but not limited to camera, smart phone or Pad, computer or laptop, video conference system, PDA, vehicle mounted device, or a combination of any of them, or the like. For example, the capture device 3102 may include the source device 12 as described above. When the data includes video, the video encoder 20 included in the capture device 3102 may actually perform video encoding processing. When the data includes audio (i.e., voice) , an audio encoder included in the capture device 3102 may actually perform audio encoding processing. For some practical scenarios, the capture device 3102 distributes the encoded video and audio data by multiplexing them together. For other practical scenarios, for example in the video conference system, the encoded audio data and the encoded video data are not multiplexed. Capture device 3102 distributes the encoded audio data and the encoded video data to the terminal device 3106 separately.
In the content supply system 3100, the terminal device 310 receives and reproduces the encoded data. The terminal device 3106 could be a device with data receiving and recovering capability, such as smart phone or Pad 3108, computer or laptop 3110, network video recorder (NVR) /digital video recorder (DVR) 3112, TV 3114, set top box (STB) 3116, video conference system 3118, video surveillance system 3120, personal digital assistant (PDA) 3122, vehicle mounted device 3124, or a combination of any of them, or the like capable of decoding the above-mentioned encoded data. For example, the terminal device 3106 may include the destination device 14 as described above. When the encoded data includes video, the video decoder 30 included in the terminal device is prioritized to perform video decoding.  When the encoded data includes audio, an audio decoder included in the terminal device is prioritized to perform audio decoding processing.
For a terminal device with its display, for example, smart phone or Pad 3108, computer or laptop 3110, network video recorder (NVR) /digital video recorder (DVR) 3112, TV 3114, personal digital assistant (PDA) 3122, or vehicle mounted device 3124, the terminal device can feed the decoded data to its display. For a terminal device equipped with no display, for example, STB 3116, video conference system 3118, or video surveillance system 3120, an external display 3126 is contacted therein to receive and show the decoded data.
When each device in this system performs encoding or decoding, the picture encoding device or the picture decoding device, as shown in the above-mentioned embodiments, can be used. FIG. 12 is a diagram showing a structure of an example of the terminal device 3106. After the terminal device 3106 receives stream from the capture device 3102, the protocol proceeding unit 3202 analyzes the transmission protocol of the stream. The protocol includes but not limited to Real Time Streaming Protocol (RTSP) , Hyper Text Transfer Protocol (HTTP) , HTTP Live streaming protocol (HLS) , MPEG-DASH, Real-time Transport protocol (RTP) , Real Time Messaging Protocol (RTMP) , or any kind of combination thereof, or the like.
After the protocol proceeding unit 3202 processes the stream, stream file is generated. The file is outputted to a demultiplexing unit 3204. The demultiplexing unit 3204 can separate the multiplexed data into the encoded audio data and the encoded video data. As described above, for some practical scenarios, for example in the video conference system, the encoded audio data and the encoded video data are not multiplexed. In this situation, the encoded data is transmitted to video decoder 3206 and audio decoder 3208 without through the demultiplexing unit 3204.
Via the demultiplexing processing, video elementary stream (ES) , audio ES, and optionally subtitle are generated. The video decoder 3206, which includes the video decoder 30 as explained in the above mentioned embodiments, decodes the video ES by the decoding method as shown in the above-mentioned embodiments to generate video frame, and feeds this data to the synchronous unit 3212. The audio decoder 3208, decodes the audio ES to generate audio frame, and feeds this data to the synchronous unit 3212. Alternatively, the video frame may store in a buffer (not shown in FIG. 12) before feeding it to the synchronous unit 3212. Similarly, the audio frame may store in a buffer (not shown in FIG. 12) before feeding it to the synchronous unit 3212.
The synchronous unit 3212 synchronizes the video frame and the audio frame, and supplies the video/audio to a video/audio display 3214. For example, the synchronous unit 3212  synchronizes the presentation of the video and audio information. Information may code in the syntax using time stamps concerning the presentation of coded audio and visual data and time stamps concerning the delivery of the data stream itself.
If subtitle is included in the stream, the subtitle decoder 3210 decodes the subtitle, and synchronizes it with the video frame and the audio frame, and supplies the video/audio/subtitle to a video/audio/subtitle display 3216.
The present invention is not limited to the above-mentioned system, and either the picture encoding device or the picture decoding device in the above-mentioned embodiments can be incorporated into other system, for example, a car system.
Mathematical Operators
The mathematical operators used in this application are similar to those used in the C programming language. However, the results of integer division and arithmetic shift operations are defined more precisely, and additional operations are defined, such as exponentiation and real-valued division. Numbering and counting conventions generally begin from 0, i.e. "the first" is equivalent to the 0-th, "the second" is equivalent to the 1st, etc.
Arithmetic operators
The following arithmetic operators are defined as follows:
Figure PCTCN2020078547-appb-000027
Figure PCTCN2020078547-appb-000028
Logical operators
The following logical operators are defined as follows:
x &&y Boolean logical "and" of x and y
x | | y Boolean logical "or" of x and y
! Boolean logical "not"
x ? y : z If x is TRUE or not equal to 0, evaluates to the value of y; otherwise, evaluates to the value of z.
Relational operators
The following relational operators are defined as follows:
> Greater than
>= Greater than or equal to
< Less than
<= Less than or equal to
= = Equal to
!= Not equal to
When a relational operator is applied to a syntax element or variable that has been assigned the value "na" (not applicable) , the value "na" is treated as a distinct value for the syntax element or variable. The value "na" is considered not to be equal to any other value.
Bit-wise operators
The following bit-wise operators are defined as follows:
& Bit-wise "and" . When operating on integer arguments, operates on a two's complement representation of the integer value. When operating on a binary argument that contains fewer bits than another argument, the shorter argument is extended by adding more significant bits equal to 0.
| Bit-wise "or" . When operating on integer arguments, operates on a two's complement representation of the integer value. When operating on a binary  argument that contains fewer bits than another argument, the shorter argument is extended by adding more significant bits equal to 0.
^ Bit-wise "exclusive or" . When operating on integer arguments, operates on a two's complement representation of the integer value. When operating on a binary argument that contains fewer bits than another argument, the shorter argument is extended by adding more significant bits equal to 0.
x >> y Arithmetic right shift of a two's complement integer representation of x by y binary digits. This function is defined only for non-negative integer values of y. Bits shifted into the most significant bits (MSBs) as a result of the right shift have a value equal to the MSB of x prior to the shift operation.
x << y Arithmetic left shift of a two's complement integer representation of x by y binary digits. This function is defined only for non-negative integer values of y. Bits shifted into the least significant bits (LSBs) as a result of the left shift have a value equal to 0.
Assignment operators
The following arithmetic operators are defined as follows:
= Assignment operator
+ + Increment, i.e., x+ + is equivalent to x = x + 1; when used in an array index, evaluates to the value of the variable prior to the increment operation.
- - Decrement, i.e., x--is equivalent to x = x -1; when used in an array index, evaluates to the value of the variable prior to the decrement operation.
+= Increment by amount specified, i.e., x += 3 is equivalent to x = x + 3, and x += (-3) is equivalent to x = x + (-3) .
-= Decrement by amount specified, i.e., x -= 3 is equivalent to x = x -3, and x -= (-3) is equivalent to x = x - (-3) .
Range notation
The following notation is used to specify a range of values:
x = y.. z x takes on integer values starting from y to z, inclusive, with x, y, and z being integer numbers and z being greater than y.
Mathematical functions
The following mathematical functions are defined:
Figure PCTCN2020078547-appb-000029
Asin (x ) the trigonometric inverse sine function, operating on an argument x that is in the range of -1.0 to 1.0, inclusive, with an output value in the range of -π÷2 to π÷2, inclusive, in units of radians.
Atan (x ) the trigonometric inverse tangent function, operating on an argument x, with an output value in the range of -π÷2 to π÷2, inclusive, in units of radians.
Figure PCTCN2020078547-appb-000030
Ceil (x ) the smallest integer greater than or equal to x.
Clip1 Y (x ) = Clip3 (0, (1 << BitDepth Y ) -1, x )
Clip1 C (x ) = Clip3 (0, (1 << BitDepth C ) -1, x )
Figure PCTCN2020078547-appb-000031
Cos (x ) the trigonometric cosine function operating on an argument x in units of radians.
Floor (x ) the largest integer less than or equal to x.
Figure PCTCN2020078547-appb-000032
Ln(x ) the natural logarithm of x (the base-e logarithm, where e is the natural logarithm base constant 2.718 281 828... ) .
Log2 (x ) the base-2 logarithm of x.
Log10 (x ) the base-10 logarithm of x.
Figure PCTCN2020078547-appb-000033
Figure PCTCN2020078547-appb-000034
Round (x ) = Sign (x ) *Floor (Abs (x ) + 0.5 )
Figure PCTCN2020078547-appb-000035
Sin (x ) the trigonometric sine function operating on an argument x in units of radians
Figure PCTCN2020078547-appb-000036
Swap (x, y ) = (y, x )
Tan (x ) the trigonometric tangent function operating on an argument x in units of radians
Order of operation precedence
When an order of precedence in an expression is not indicated explicitly by use of parentheses, the following rules apply:
– Operations of a higher precedence are evaluated before any operation of a lower precedence.
– Operations of the same precedence are evaluated sequentially from left to right.
The table below specifies the precedence of operations from highest to lowest; a higher position in the table indicates a higher precedence.
For those operators that are also used in the C programming language, the order of precedence used in this Specification is the same as used in the C programming language.
Table: Operation precedence from highest (at top of table) to lowest (at bottom of table)
Figure PCTCN2020078547-appb-000037
Text description of logical operations
In the text, a statement of logical operations as would be described mathematically in the following form:
Figure PCTCN2020078547-appb-000038
Figure PCTCN2020078547-appb-000039
may be described in the following manner:
... as follows /... the following applies:
– If condition 0, statement 0
– Otherwise, if condition 1, statement 1
– ...
– Otherwise (informative remark on remaining condition) , statement n
Each "If ... Otherwise, if ... Otherwise, ... " statement in the text is introduced with "... as follows" or "... the following applies" immediately followed by "If ... " . The last condition of the "If ... Otherwise, if ... Otherwise, ... " may always be an "Otherwise, ... " . Interleaved "If ... Otherwise, if ... Otherwise, ... " statements can be identified by matching "... as follows" or "... the following applies" with the ending "Otherwise, ... " .
In the text, a statement of logical operations as would be described mathematically in the following form:
Figure PCTCN2020078547-appb-000040
may be described in the following manner:
... as follows /... the following applies:
– If all of the following conditions are true, statement 0:
– condition 0a
– condition 0b
– Otherwise, if one or more of the following conditions are true, statement 1:
– condition 1a
– condition 1b
– ...
– Otherwise, statement n
In the text, a statement of logical operations as would be described mathematically in the following form:
if (condition 0 )
statement 0
if (condition 1 )
statement 1
may be described in the following manner:
When condition 0, statement 0
When condition 1, statement 1
Although embodiments of the disclosure have been primarily described based on video coding, it should be noted that embodiments of the coding system 10, encoder 20 and decoder 30 (and correspondingly the system 10) and the other embodiments described herein may also be configured for still picture processing or coding, i.e. the processing or coding of an individual picture independent of any preceding or consecutive picture as in video coding. In general only inter-prediction units 244 (encoder) and 344 (decoder) may not be available in case the picture processing coding is limited to a single picture 17. All other functionalities (also referred to as tools or technologies) of the video encoder 20 and the video decoder 30 may equally be used for still picture processing, e.g. residual calculation 204/304, transform 206, quantization 208, inverse quantization 210/310, (inverse) transform 212/312, partitioning 262, intra-prediction 254/354, and/or  loop filtering  220, 320, and entropy coding 270 and entropy decoding 304.
Embodiments, e.g. of the encoder 20 and the decoder 30, and functions described herein, e.g. with reference to the encoder 20 and the decoder 30, may be implemented in hardware, software, firmware, or any combination thereof. If implemented in software, the functions may be stored on a computer-readable medium or transmitted over communication media as one or more instructions or code and executed by a hardware-based processing unit. Computer-readable media may include computer-readable storage media, which correspond to tangible media such as data storage media, or communication media including any medium that facilitates transfer of a computer program from one place to another, e.g., according to a communication protocol. In this manner, computer-readable media generally may correspond  to (1) tangible computer-readable storage media which are non-transitory or (2) a communication medium such as a signal or carrier wave. Data storage media may be any available media that can be accessed by one or more computers or one or more processors to retrieve instructions, code and/or data structures for implementation of the techniques described in this disclosure. A computer program product may include a computer-readable medium.
By way of example, and not limiting, such computer-readable storage media can comprise RAM, ROM, EEPROM, CD-ROM or other optical disk storage, magnetic disk storage, or other magnetic storage devices, flash memory, or any other medium that can be used to store desired program code in the form of instructions or data structures and that can be accessed by a computer. Also, any connection is properly termed a computer-readable medium. For example, if instructions are transmitted from a website, server, or other remote source using a coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL) , or wireless technologies such as infrared, radio, and microwave, then the coaxial cable, fiber optic cable, twisted pair, DSL, or wireless technologies such as infrared, radio, and microwave are included in the definition of medium. It should be understood, however, that computer-readable storage media and data storage media do not include connections, carrier waves, signals, or other transitory media, but are instead directed to non-transitory, tangible storage media. Disk and disc, as used herein, include compact disc (CD) , laser disc, optical disc, digital versatile disc (DVD) , floppy disk and Blu-ray disc, where disks usually reproduce data magnetically, while discs reproduce data optically with lasers. Combinations of the above should also be included within the scope of computer-readable media.
Instructions may be executed by one or more processors, such as one or more digital signal processors (DSPs) , general purpose microprocessors, application specific integrated circuits (ASICs) , field programmable logic arrays (FPGAs) , or other equivalent integrated or discrete logic circuitry. Accordingly, the term “processor, ” as used herein may refer to any of the foregoing structure or any other structure suitable for implementation of the techniques described herein. In addition, in some aspects, the functionality described herein may be provided within dedicated hardware and/or software modules configured for encoding and decoding, or incorporated in a combined codec. Also, the techniques could be fully implemented in one or more circuits or logic elements.
The techniques of this disclosure may be implemented in a wide variety of devices or apparatuses, including a wireless handset, an integrated circuit (IC) or a set of ICs (e.g., a chip set) . Various components, modules, or units are described in this disclosure to  emphasize functional aspects of devices configured to perform the disclosed techniques, but do not necessarily require realization by different hardware units. Rather, as described above, various units may be combined in a codec hardware unit or provided by a collection of interoperative hardware units, including one or more processors as described above, in conjunction with suitable software and/or firmware.

Claims (19)

  1. A method of coding implemented by a decoding device or an encoding device, comprising:
    obtaining (1010) a value of a Chroma quantization parameter, QP, for a current block;
    obtaining (1020) a value of an offset of the Chroma QP according to luma samples corresponding to the current block; and
    deblocking (1030) the current block according to the value of the offset of the Chroma QP and the value of the Chroma QP for the current block.
  2. The method of claim 1, wherein the current block is deblocked based on a modified value of the Chroma QP for the current block, wherein the modified value of the Chroma QP is equal to the value of the offset of the Chroma QP plus the value of the Chroma QP for the current block.
  3. The method of claim 1 or 2, wherein the deblocking (1030) is performed on an edge of the current block.
  4. The method of claim 3, wherein the deblocking (1030) is performed according to an average of QPs of the current block and a further block which the current block shares the edge with.
  5. The method of any one of the preceding claims, wherein the value of the offset of the Chroma QP is obtained according to an average of the luma samples corresponding to the current block.
  6. The method of claim 5, wherein, when the current block is predicted by inter-prediction,  the average of the luma samples corresponding to the current block is an average of predicted luma samples corresponding to the current block.
  7. The method of claim 5, wherein, when the current block is predicted by intra-prediction, the average of the luma samples of the current block is an average of reconstructed luma samples corresponding to the current block.
  8. The method of any one of claims 5 to 7, wherein the value of the offset of the Chroma QP is obtained according to a forward reshaping lookup table applied to the average of the luma samples corresponding to the current block.
  9. The method of claim 5, wherein the value of the offset of the Chroma QP is calculated according to the following formula,
    Figure PCTCN2020078547-appb-100001
    wherein cQPO is the value of the offset of the Chroma QP, 
    Figure PCTCN2020078547-appb-100002
    is an average predicted luma value of a current coding unit in inter slices, and FwdLUT′ is a lookup table.
  10. The method of claim 5, wherein the value of the offset of the Chroma QP is calculated according to the following formula,
    Figure PCTCN2020078547-appb-100003
    wherein cQPO is the value of the offset of the Chroma QP, 
    Figure PCTCN2020078547-appb-100004
    is an average reconstructed luma value of a current CU in intra slices, and FwdLUT′ is a lookup table.
  11. The method of any one of the preceding claims, wherein luma reshaping is applied to a luma component of the current CU.
  12. The method of any one of the preceding claims, wherein chroma residue scaling is applied to chroma components of the current CU.
  13. An encoder (20) comprising processing circuitry for carrying out the method according to any one of claims 1 to 12.
  14. A decoder (30) comprising processing circuitry for carrying out the method according to any one of claims 1 to 12.
  15. A computer program product comprising instructions which, when the program is executed by a computer, cause the computer to carry out the method according to any one of claims 1 to 12.
  16. A decoder (30) , comprising:
    one or more processors; and
    a non-transitory computer-readable storage medium coupled to the one or more processors and storing instructions for execution by the one or more processors, wherein the instructions, when executed by the one or more processors, configure the decoder to carry out the method according to any one of claims 1 to 12.
  17. An encoder (20) , comprising:
    one or more processors; and
    a non-transitory computer-readable storage medium coupled to the one or more processors and storing instructions for execution by the one or more processors, wherein the instructions, when executed by the one or more processors, configure the encoder to carry out the method according to any one of claims 1 to 12.
  18. A decoder (30) , comprising:
    a quantization parameter, QP, determining module (1110) configured to obtain a value of a Chroma QP for a current block;
    a QP offset determining module (1120) configured to obtain a value of an offset of the Chroma QP according to luma samples corresponding to the current block; and
    a deblocking module (1130) configured to deblock the current block according to the value of the offset of the Chroma QP and the value of the Chroma QP for the current block.
  19. An encoder (20) , comprising:
    a quantization parameter, QP, determining module (1110) configured to obtain a value of a Chroma QP for a current block;
    a QP offset determining module (1120) configured to obtain a value of an offset of the Chroma QP according to luma samples corresponding to the current block; and
    a deblocking module (1130) configured to deblock the current block according to the value of the offset of the Chroma QP and the value of the Chroma QP for the current block.
PCT/CN2020/078547 2019-03-10 2020-03-10 An encoder, a decoder and corresponding methods using an adaptive loop filter WO2020182116A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201962816204P 2019-03-10 2019-03-10
US62/816,204 2019-03-10

Publications (1)

Publication Number Publication Date
WO2020182116A1 true WO2020182116A1 (en) 2020-09-17

Family

ID=72427726

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/078547 WO2020182116A1 (en) 2019-03-10 2020-03-10 An encoder, a decoder and corresponding methods using an adaptive loop filter

Country Status (1)

Country Link
WO (1) WO2020182116A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140003498A1 (en) * 2012-07-02 2014-01-02 Microsoft Corporation Use of chroma quantization parameter offsets in deblocking
GB2506852A (en) * 2012-09-28 2014-04-16 Canon Kk Determining the Value of a Chroma Quantisation Parameter
US20170006289A1 (en) * 2014-03-14 2017-01-05 Samsung Electronics Co., Ltd. Image encoding method for sample value compensation and apparatus therefor, and image decoding method for sample value compensation and apparatus therefor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140003498A1 (en) * 2012-07-02 2014-01-02 Microsoft Corporation Use of chroma quantization parameter offsets in deblocking
GB2506852A (en) * 2012-09-28 2014-04-16 Canon Kk Determining the Value of a Chroma Quantisation Parameter
US20170006289A1 (en) * 2014-03-14 2017-01-05 Samsung Electronics Co., Ltd. Image encoding method for sample value compensation and apparatus therefor, and image decoding method for sample value compensation and apparatus therefor

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SHIH-TA HSIANG ET AL.: "CE7.3.3: Derivation of chroma QP from luma QP,", JOINT VIDEO EXPERTS TEAM(JVET) OF ITU-T SG 16 WP 3 AND ISO/IEC JTC 1/SC 29/WG 11, 18 July 2018 (2018-07-18), DOI: 20200529221359Y *

Similar Documents

Publication Publication Date Title
WO2020221203A1 (en) An encoder, a decoder and corresponding methods of intra prediction
WO2020177520A1 (en) An encoder, a decoder and corresponding methods using ibc search range optimization for abitrary ctu size
WO2020211765A1 (en) An encoder, a decoder and corresponding methods harmonzting matrix-based intra prediction and secoundary transform core selection
AU2020318106B2 (en) An encoder, a decoder and corresponding methods related to intra prediction mode
WO2020224545A1 (en) An encoder, a decoder and corresponding methods using an adaptive loop filter
WO2021159962A1 (en) An encoder, a decoder and corresponding methods for subpicture signalling in sequence parameter set
WO2021068918A1 (en) An encoder, a decoder and corresponding methods for simplifying signalling picture header
US20240121433A1 (en) Method and apparatus for chroma intra prediction in video coding
WO2021017923A1 (en) An encoder, a decoder and corresponding methods of chroma intra mode derivation
US11876956B2 (en) Encoder, a decoder and corresponding methods for local illumination compensation
WO2020211849A1 (en) Method and apparatus for division-free intra-prediction
AU2020227859B2 (en) An encoder, a decoder and corresponding methods using intra mode coding for intra prediction
WO2020182052A1 (en) An encoder, a decoder and corresponding methods restricting size of sub-partitions from intra sub-partition coding mode tool
WO2021025597A1 (en) Method and apparatus of sample adaptive offset in-loop filter with application region size constraint
WO2020182116A1 (en) An encoder, a decoder and corresponding methods using an adaptive loop filter
WO2020182079A1 (en) An encoder, a decoder and corresponding methods using intra mode coding for intra prediction
WO2020182195A1 (en) An encoder, a decoder and corresponding methods using intra mode coding for intra prediction
US20220329781A1 (en) Method and apparatus of reference sample interpolation filtering for directional intra prediction
WO2021034231A2 (en) Method and apparatus of position dependent prediction combination for oblique directional intra prediction

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20770171

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20770171

Country of ref document: EP

Kind code of ref document: A1