WO2014007260A1 - Porous polypropylene film, separator for electricity storage devices, and electricity storage device - Google Patents

Porous polypropylene film, separator for electricity storage devices, and electricity storage device Download PDF

Info

Publication number
WO2014007260A1
WO2014007260A1 PCT/JP2013/068169 JP2013068169W WO2014007260A1 WO 2014007260 A1 WO2014007260 A1 WO 2014007260A1 JP 2013068169 W JP2013068169 W JP 2013068169W WO 2014007260 A1 WO2014007260 A1 WO 2014007260A1
Authority
WO
WIPO (PCT)
Prior art keywords
polypropylene film
porous polypropylene
film
separator
porous
Prior art date
Application number
PCT/JP2013/068169
Other languages
French (fr)
Japanese (ja)
Inventor
大 西村
今西 康之
大倉 正寿
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to CN201380030174.6A priority Critical patent/CN104395382B/en
Priority to KR1020147033038A priority patent/KR20150035548A/en
Priority to JP2013552793A priority patent/JP5626486B2/en
Publication of WO2014007260A1 publication Critical patent/WO2014007260A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • H01M50/491Porosity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/10Homopolymers or copolymers of propene
    • C08L23/12Polypropene
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/417Polyolefins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2323/10Homopolymers or copolymers of propene
    • C08J2323/12Polypropene
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/443Particulate material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention provides a porous polypropylene film capable of suppressing an increase in separator resistance and exhibiting excellent battery characteristics when a functional layer that imparts or improves performance such as heat resistance and adhesion to an electrode is provided, and
  • the present invention relates to a power storage device separator using a porous polypropylene film, and a power storage device using the power storage device separator.
  • Porous polypropylene films are being considered for use in a wide range of applications, including separators for batteries and electrolytic capacitors, various separation membranes, clothing, moisture-permeable waterproof membranes for medical applications, reflectors for flat panel displays, and thermal transfer recording sheets.
  • a porous film is suitable as a separator for lithium ion batteries widely used in mobile devices such as notebook personal computers, mobile phones, and digital cameras.
  • lithium-ion batteries have been used in electric vehicles and hybrid vehicles, and as the output of batteries increases and the capacity increases, studies on coating porous films with inorganic particle layers and heat-resistant resin layers are actively conducted. (For example, refer to Patent Documents 1 and 2). Further, since the size of the battery is increased and the area to be used is increased, cost reduction is also strongly desired.
  • a ⁇ -crystal method can be cited as a dry method and a method capable of forming a film with high productivity by biaxial stretching.
  • the ⁇ crystal method is a method in which voids are formed in a film by utilizing the crystal density difference and crystal transition between ⁇ type crystal ( ⁇ crystal) and ⁇ type crystal ( ⁇ crystal), which are polymorphs of polypropylene.
  • Many proposals have been made (see, for example, Patent Documents 3 to 5).
  • many proposals have been made on a method of coating a functional layer such as a heat-resistant layer on the surface of a porous polypropylene film by the ⁇ crystal method (see, for example, Patent Documents 6 to 15).
  • a ⁇ -crystal porous polypropylene film is coated with a coating material containing an inorganic or organic material that forms a functional layer
  • the pore structure may change depending on the solvent used, or a component having a binder function may be a base material.
  • the air resistance changes due to, for example, remaining in the film.
  • the use of a high molecular weight polypropylene resin is restricted from the viewpoint of pressure at the time of melt extrusion, etc., so that it is more organic than polyethylene films such as Patent Documents 1 and 2.
  • the resistance to the solvent was low, and the solvent of the coating material for the functional layer had to be limited to an aqueous system.
  • the object of the present invention is to solve the above-mentioned problems. That is, to provide a porous polypropylene film capable of suppressing an increase in separator resistance and exhibiting excellent battery characteristics when a functional layer that imparts or improves performance such as heat resistance and adhesion to an electrode is provided. is there.
  • the present invention provides a porous polypropylene film mainly composed of a polypropylene resin, the separator resistance R1 ( ⁇ ) of the porous polypropylene film, and the porous
  • the separator resistance R2 ( ⁇ ) after applying and drying a coating simulation liquid composed of a functional polymer and an organic solvent on a polypropylene film satisfies the following formula (1).
  • porous polypropylene film of the present invention When the porous polypropylene film of the present invention is provided with a functional layer that imparts or improves performance such as heat resistance and adhesion with an electrode, it suppresses an increase in separator resistance and can exhibit excellent battery characteristics. It can be suitably used as a separator for an electricity storage device.
  • FIG. 1 is an equivalent circuit diagram used when measuring the separator resistance.
  • the porous polypropylene film of the present invention comprises a polypropylene resin composition containing a polypropylene resin as a main component.
  • a polypropylene resin as a main component, it is possible to satisfy the heat resistance necessary for preventing a short circuit of the battery when used as a separator for an electricity storage device.
  • having a polypropylene resin as a main component means that the proportion of the polypropylene resin in all the components constituting the porous polypropylene film is 50% by mass or more, preferably 80% by mass or more, more preferably It is 90 mass% or more, More preferably, it is 95 mass% or more.
  • the porous polypropylene film of the present invention has pores that penetrate from one surface of the film toward the other surface and have air permeability (hereinafter referred to as through-holes).
  • Examples of the method for forming the through hole include an extraction method, a lamellar stretching method, a ⁇ crystal method, and the like. From the viewpoint of productivity and uniformity of physical properties in the longitudinal direction and the width direction, the ⁇ crystal method is preferable.
  • the ⁇ crystal method uses a cast sheet of a polypropylene resin composition having a ⁇ crystal as a crystal structure, and longitudinally stretches the cast sheet to transfer the crystal structure of the ⁇ crystal to an ⁇ crystal and This is a technique for obtaining a film having through-holes by forming ⁇ -crystal fibrils oriented in the film direction and cleaving the fibrils in a transverse stretching process to form a network structure.
  • the cast sheet means an unstretched sheet obtained by molding a molten polypropylene resin composition into a sheet shape on a cast drum.
  • a ⁇ crystal nucleating agent to the polypropylene resin composition to enhance the ⁇ crystal forming ability. Since the ⁇ -crystal forming ability is high, the portion of the crystal structure that causes crystal transition to the ⁇ -crystal increases, and the number of voids formed in the film can be increased. In addition, by controlling the raw material containing the ⁇ crystal nucleating agent, the orientation and denseness of the polypropylene crystals are improved, and the pores are uniformly and densely opened, whereby the porous polypropylene film is used as a separator for an electricity storage device. Reduction of separator resistance can be achieved.
  • the ⁇ -crystal forming ability of the porous polypropylene film is preferably 60% or more from the viewpoint of the through-hole formability. More preferred is 65 to 90%, and particularly preferred is 65 to 85%.
  • the ⁇ crystal forming ability is less than 60%, the amount of ⁇ crystals is small, so that the number of voids formed in the film using the transition to ⁇ crystal is reduced, and the separator resistance of the film may be inferior.
  • a method of controlling the ⁇ crystal formation ability to 60% or more a method using a polypropylene resin having a high isotactic index, a ⁇ crystal is selectively formed by adding it to a polypropylene resin called a ⁇ crystal nucleating agent.
  • a method of using a ⁇ crystal nucleating agent described later, or a ⁇ crystal nucleating agent described later in a polypropylene resin having a high isotactic index it is preferable to use the method used as
  • Examples of the ⁇ crystal nucleating agent used in the present invention include alkali or alkaline earth metal salts of carboxylic acids such as calcium 1,2-hydroxystearate and magnesium succinate, and N, N′-dicyclohexyl-2,6-naphthalene.
  • Amide compounds represented by carboxamide tetraoxaspiro compounds such as 3,9-bis [4- (N-cyclohexylcarbamoyl) phenyl] -2,4,8,10-tetraoxaspiro [5.5] undecane
  • aromatic sulfonic acid compounds such as sodium benzene sulfonate and sodium naphthalene sulfonate, imide carboxylic acid derivatives, and quinacridone pigments, particularly amide compounds disclosed in JP-A-5-310665. It is preferable to use it.
  • the content of the ⁇ crystal nucleating agent varies depending on the ⁇ crystal nucleating agent to be used, but when the amide compound is used, it is 0.05 to 0.5 based on the whole polypropylene composition.
  • the content is preferably 0.1% by mass, more preferably 0.1 to 0.3% by mass, and particularly preferably 0.22 to 0.3% by mass in order to have the effects described later. If it is less than 0.05% by mass, the formation of ⁇ crystals becomes insufficient, and the separator resistance of the porous polypropylene film may increase.
  • an isotactic polypropylene resin having a melt flow rate (hereinafter referred to as MFR) of 2 to 30 g / 10 min is used as the polypropylene resin from the viewpoint of extrusion moldability and uniform pore formation.
  • MFR is an index indicating the melt viscosity of a resin defined in JIS K 7210 (1995), and is a physical property value indicating the characteristics of a polyolefin resin. In the present invention, it refers to a value measured at 230 ° C. and 2.16 kg.
  • the isotactic index of the polypropylene resin is preferably in the range of 90 to 99.9%, more preferably 95 to 99%.
  • the isotactic index is less than 90%, the crystallinity of the resin is lowered, the film forming property may be lowered, and the strength of the film may be inferior.
  • the polypropylene resin used in the present invention is made of the above-mentioned isotopic material from the viewpoint of suppressing the increase in separator resistance when a functional layer is provided that makes the pore structure uniform and imparts or improves performance such as heat resistance and adhesion to electrodes.
  • tactic polypropylene it is preferable to add low molecular weight isotactic polypropylene having an MFR of 70 g / 10 min or more, preferably 100 g / 10 min or more, more preferably 500 g / 10 min or more.
  • the upper limit is that the MFR is 5000 g / 10 min.
  • the MFR exceeds 5000 g / 10 min, it may be difficult to homogenize with the above-described isotactic polypropylene.
  • low molecular weight isotactic polypropylene having an MFR of 70 g / 10 min or more has not been used in the field of films because it has poor film-forming properties and causes a decrease in strength.
  • the low molecular weight isotactic polypropylene is 0.1 to 50% by mass, preferably 1 to 20% by mass, more preferably 2 to 10% by mass, and most preferably 2%.
  • the content of ⁇ 5% by mass can suppress an increase in separator resistance when a functional layer that imparts or improves performance such as heat resistance and adhesion to an electrode is provided.
  • the cause is still unknown, but low molecular weight polypropylene added in small amounts increases the molecular chain end concentration at the crystal interface and promotes pore formation at the crystal interface in longitudinal stretching, that is, it functions as a hole opening aid.
  • the coating composition is difficult to clog, or even if clogged, a large number of through-holes are formed. It is presumed that the increase in separator resistance can be suppressed in order to survive.
  • the melting point of the low molecular weight isotactic polypropylene resin having an MFR of 70 g / 10 min or more is preferably 130 ° C. or more, more preferably 140 ° C. or more, and further preferably 150 ° C. or more.
  • the melting point is lower than 130 ° C., the openability of the porous polypropylene film may be lowered.
  • Examples of the low molecular weight isotactic polypropylene having the above-described properties include commercially available polypropylene resins S10AL, S10CL, J13B manufactured by Prime Polymer, and polypropylene resin 6936G1 manufactured by ExxonMobil.
  • the polypropylene resin composition forming the porous polypropylene film of the present invention includes an antioxidant, a heat stabilizer, an antistatic agent, a lubricant composed of inorganic or organic particles, and a blocking agent within the range that does not impair the effects of the present invention.
  • You may contain various additives, such as an inhibitor, a filler, and an incompatible polymer.
  • an antioxidant for the purpose of suppressing oxidative deterioration due to the thermal history of the polypropylene resin.
  • the addition amount of the antioxidant is preferably 2 parts by mass or less, more preferably 1 part by mass or less, still more preferably 0.5 parts by mass or less with respect to 100 parts by mass of the polypropylene resin composition.
  • the polypropylene resin composition for forming the porous polypropylene film of the present invention can contain a pore-forming aid composed of inorganic particles or organic particles within a range not impairing the effects of the present invention.
  • the porous polypropylene film of the present invention has a separator resistance R1 ( ⁇ ) of the porous polypropylene film, and after applying a solution containing a functional polymer that is a coating simulation liquid and an organic solvent to the porous polypropylene film,
  • the separator resistance R2 ( ⁇ ) of the film after drying the organic solvent satisfies the following formula (1).
  • the separator resistance means an electric resistance obtained by preparing an evaluation cell by a method described later and calculating a Cole-Cole plot measured by an AC impedance method from the equivalent circuit shown in FIG.
  • a functional layer that imparts or improves performance such as heat resistance and adhesion to an electrode is provided on a conventionally produced porous polypropylene film
  • a functional polymer having a binder function as an inorganic particle or organic particle.
  • PVdF polyvinylidene fluoride
  • EOA ethylene-acrylic acid copolymer
  • SBR fluorine-based rubber Styrene butadiene rubber
  • cross-linked acrylic resin polyurethane, polyvinyl butyral, polyethylene, polyvinyl alcohol, polytetrafluoroethylene, polyvinyl pyrrolidone, polyimide, polyamide, polysulfide, polyvinyl methyl ether, polyethylene
  • organic solvents eg, acetone, N-methyl-2-pyrrolidone (NMP), dimethylformamide (DMF), dimethyl sulfoxide (DMSO), cyclohexanone, ⁇ -butyrolactone (GBL), dimethylace
  • PVdF resin which is one kind of functional polymer
  • acetone which is one kind of solvent.
  • the dissolved coating simulation solution is applied and dried by the method described later to prepare a simulated coating film for evaluation.
  • Small R2 / R1 is considered to indicate that the functional polymer clogs the pores, and that the resistance increase due to the structure change at the time of solvent swelling and solvent drying hardly occurs.
  • R2 / R1 can be used as an index of the degree of increase in resistance relative to the base material when a functional layer for imparting or improving the performance is provided.
  • R2 / R1 satisfies the formula (1)
  • the film can suppress an increase in separator resistance when a functional layer that imparts or improves performance such as heat resistance and adhesion to an electrode is provided.
  • the value of R2 / R1 exceeds 1.2, it means that resistance is likely to increase when a functional layer that imparts or improves performance such as heat resistance and adhesion to electrodes is provided.
  • There are industrial disadvantages such as restrictions.
  • the addition amount of the ⁇ crystal nucleating agent in the raw material is within the above-mentioned range, the above-mentioned raw material is used, the temperature of the cast drum, the draw ratio and the temperature in the longitudinal direction.
  • the transverse stretching speed, the temperature and time in the heat treatment step, and the relaxation rate in the relaxation zone can be obtained within the ranges described below.
  • the ratio PMD / PTD of the breaking strength PMD in the longitudinal direction and the breaking strength PTD in the width direction preferably satisfies the following formula (2).
  • the direction parallel to the film forming direction is referred to as the film forming direction, the longitudinal direction, the MD direction, or simply MD, and the direction perpendicular to the film forming direction in the film plane is the width direction and the TD direction.
  • the value of PMD / PTD is preferably 0.7 ⁇ PMD / PTD ⁇ 1.6, and more preferably 0.8 ⁇ PMD / PTD ⁇ 1.4.
  • the addition amount of the ⁇ crystal nucleating agent in the raw material should be within the above-mentioned range, the above-mentioned raw material is used, the temperature of the cast drum, and the longitudinal direction.
  • the stretching ratio and temperature, the transverse stretching speed, the temperature and time in the heat treatment step, and the relaxation rate in the relaxation zone can be controlled within the ranges described below.
  • breaking strength itself of the porous polypropylene film is low, the safety may be inferior or the process suitability in the coating process and the battery assembly process may be insufficient.
  • the breaking strength is preferably 60 MPa or more in both the longitudinal direction and the width direction. More preferably, both are 80 MPa or more, and more preferably both are 100 MPa or more.
  • the amount of ⁇ crystal nucleating agent in the raw material is set in the above-described range, the above-described raw material is used, and the cast drum
  • the temperature, the stretching ratio and temperature in the longitudinal direction, the transverse stretching speed, the temperature and time in the heat treatment step, and the relaxation rate in the relaxation zone can be controlled within the ranges described below.
  • the porous polypropylene film of the present invention preferably has an air permeability resistance of 10 to 1,000 seconds / 100 ml, more preferably 50 to 500 seconds / 100 ml, and 80 to 300 seconds / 100 ml. Particularly preferred.
  • air permeation resistance is less than 10 seconds / 100 ml, mechanical strength such as breaking strength, which is an indicator of process suitability, may be lowered.
  • breaking strength which is an indicator of process suitability
  • the output characteristics may be deteriorated particularly when used as a separator for a high-power storage device.
  • the air permeation resistance is determined by setting the addition amount of the ⁇ crystal nucleating agent in the raw material within the above-described range, using the above-described raw material, the temperature of the cast drum, the stretching ratio and temperature in the longitudinal direction, the transverse stretching speed, and the heat treatment step It is possible to control by controlling the temperature and time of each of them and the relaxation rate in the relaxation zone within the range described later.
  • the porous polypropylene film of the present invention preferably has a film thickness of 5 to 30 ⁇ m. If the thickness is less than 5 ⁇ m, the film may break during use. If the thickness exceeds 30 ⁇ m, the separator resistance increases and the output characteristics may deteriorate when used as a separator, and the porous film occupies the power storage device. In some cases, the volume ratio of becomes high, and a high energy density cannot be obtained.
  • the film thickness is more preferably 10 to 25 ⁇ m, still more preferably 12 to 20 ⁇ m.
  • the porous polypropylene film of the present invention preferably has a porosity of 40 to 85% from the viewpoint of achieving both battery characteristics and strength. More preferably, it is 50 to 80%, and particularly preferably 55 to 75%.
  • the porosity is less than 40%, the separator resistance may increase particularly when used as a separator for a high-power electricity storage device.
  • the porosity exceeds 85%, mechanical strength such as elastic modulus and tensile strength may be lowered.
  • the porosity is determined by setting the amount of ⁇ -crystal nucleating agent in the raw material within the above-mentioned range, using the above-described raw material, the temperature of the cast drum, the stretching ratio and temperature in the longitudinal direction, the transverse stretching speed, and the heat treatment step. It is possible to control by controlling the temperature and time of each of them and the relaxation rate in the relaxation zone within the range described later.
  • the porous polypropylene film of the present invention preferably has a heat shrinkage in the width direction of 10% or less when heat-treated at 135 ° C. for 60 minutes. More preferably, it is 5% or less, More preferably, it is 3% or less.
  • a heat shrinkage rate when heat-treated at 135 ° C. for 60 minutes exceeds 10%, it may be inferior in safety when used as a separator for an electricity storage device.
  • polyethylene is applied to the surface of the porous polyolefin film of the present invention.
  • the porous polyolefin film as the base material may shrink and the battery may short circuit is there.
  • the lower limit is 0.1%.
  • the heat shrinkage ratio is within the above-mentioned range for the amount of ⁇ -crystal nucleating agent in the raw material, the raw material is used, the temperature of the cast drum, the stretching ratio and temperature in the longitudinal direction, the transverse stretching speed, and the heat treatment step. It is possible to control by controlling the temperature and time of each of them and the relaxation rate in the relaxation zone within the range described later.
  • the porous polypropylene film of the present invention may have a laminated structure for the purpose of imparting various effects.
  • the number of laminations may be two-layer lamination, three-layer lamination, or a larger number of laminations.
  • As a lamination method there are a feed block method by co-extrusion, a multi-manifold method, a method of laminating porous films by lamination, and the lamination method may be selected according to the physical properties of the resin to be laminated.
  • a laminated structure for example, a layer containing polyethylene may be laminated for the purpose of imparting a shutdown property at a low temperature, or a layer containing particles may be laminated for the purpose of imparting strength or heat resistance.
  • the method for producing the porous polypropylene film of the present invention will be described based on a specific example.
  • the manufacturing method of the film of this invention is not limited to this.
  • polypropylene resin 94.5 parts by mass of commercially available homopolypropylene resin with MFR 8 g / 10 min, 5 parts by mass of commercially available low molecular weight polypropylene resin with MFR 1,000 g / 10 min, and N, N′-dicyclohexyl-2 as ⁇ crystal nucleating agent , 6-Naphthalenedicarboxamide 0.3 parts by mass, “IRGANOX (registered trademark)” 1010 as an antioxidant, 0.1 parts by mass of “IRGAFOS (registered trademark)” 168, and 0.05 mg of calcium behenate as a lubricant Feed the raw material from the weighing hopper to the twin screw extruder so that the mass part is mixed at this ratio, melt and knead, discharge the strand from the die, cool and solidify in a 25 ° C water bath, cut into chips Thus, a polypropylene resin composition (a) is prepared. At this time, the melting temperature is preferably 280 to 310 ° C.
  • the polypropylene resin composition (a) is supplied to a single screw extruder, and melt extrusion is performed at 200 to 230 ° C. And after removing a foreign material, a modified polymer, etc. with the filter installed in the middle of the polymer pipe
  • a plurality of extruders are used to form a laminated structure by a feed block method or a multi-manifold method, and then discharged from a T-die onto a cast drum. It can be a sheet.
  • the cast drum preferably has a surface temperature of 105 to 130 ° C.
  • the forming of the end portion of the sheet affects the subsequent stretchability, and therefore it is preferable that the end portion is sprayed with spot air to be in close contact with the drum. Further, air may be blown over the entire surface using an air knife as necessary from the state in which the entire sheet is in close contact with the drum.
  • the obtained cast sheet is biaxially oriented to form pores in the film.
  • a biaxial orientation method the film is stretched in the longitudinal direction of the film and then stretched in the width direction, or the sequential biaxial stretching method in which the film is stretched in the width direction and then stretched in the longitudinal direction.
  • the simultaneous biaxial stretching method can be used, but it is preferable to adopt the sequential biaxial stretching method in that it is easy to obtain a film having a balance between the separator resistance and the mechanical strength, particularly after stretching in the longitudinal direction.
  • the film is preferably stretched in the width direction.
  • stretching is performed in the longitudinal direction while controlling the temperature of the cast sheet.
  • a temperature control method a method using a temperature-controlled rotating roll, a method using a hot air oven, or the like can be adopted.
  • the stretching temperature in the longitudinal direction is preferably 90 to 140 ° C., more preferably 100 to 130 ° C., and particularly preferably 115 to 125 ° C., from the viewpoint of achieving both the R2 / R1 value and the mechanical strength. If it is less than 90 degreeC, a film may fracture
  • the separator resistance decreases.
  • film breakage is likely to occur in the next transverse stretching process, and the air permeability resistance becomes too low and the mechanical strength may decrease. is there.
  • the transverse stretching temperature is preferably 130 to 155 ° C., more preferably 145 to 155 ° C., from the viewpoint of achieving both the R2 / R1 value and the mechanical strength. If it is less than 130 degreeC, a film may fracture
  • the draw ratio in the width direction is preferably 2 to 12 times from the viewpoint of improving the tensile strength. More preferably, it is 4 to 11 times, and further preferably 7 to 10 times. If it is less than twice, the air resistance may increase or the tensile strength in the width direction may decrease. If it exceeds 12 times, the film may break.
  • the transverse stretching speed at this time is preferably 500 to 6,000% / min, more preferably 1,000 to 5,000% / min.
  • the area ratio (longitudinal stretch ratio ⁇ transverse stretch ratio) is preferably high, specifically 20 times or more, more preferably 30 times or more. 45 times or more is particularly preferable.
  • the area magnification is low, specifically, when it is less than 20 times, it is difficult to reduce air resistance and improve mechanical strength.
  • the upper limit of the area magnification is not particularly provided, but if it exceeds 60 times, the film forming property is deteriorated and may be easily broken.
  • the heat treatment step includes a heat setting zone (hereinafter referred to as HS1 zone) in which heat treatment is performed with the width after transverse stretching, and a relaxation zone (hereinafter referred to as Rx zone) in which heat treatment is performed while relaxing the film by narrowing the width of the tenter.
  • HS1 zone heat setting zone
  • Rx zone relaxation zone
  • HS2 zone heat fixing zone
  • the temperature of the HS1 zone is preferably 140 to 165 ° C., more preferably 150 to 160 ° C. from the viewpoint of achieving both R2 / R1 value and mechanical strength. If it is lower than 140 ° C., the thermal shrinkage in the width direction may increase. If the temperature exceeds 165 ° C, the relaxation of the orientation of the film is too large, so that the relaxation rate cannot be increased in the subsequent Rx zone, and it may be difficult to achieve both R2 / R1 and mechanical strength. In some cases, the air resistance is increased due to melting of the polymer.
  • the heat treatment time in the HS1 zone is preferably 0.1 seconds or more and 10 seconds or less from the viewpoint of achieving both the thermal shrinkage in the width direction and the productivity.
  • the relaxation rate in the Rx zone in the present invention is preferably from 5 to 35%, more preferably from 10 to 25%, from the viewpoint of reducing the heat shrinkage rate in addition to the improvement of the value of R2 / R1 and mechanical strength. preferable. If the relaxation rate is less than 5%, the thermal shrinkage rate may increase. If it exceeds 35%, air resistance may increase, and thickness unevenness and flatness in the width direction may decrease.
  • the temperature of the Rx zone is preferably 155 to 170 ° C., more preferably 160 to 165 ° C., from the viewpoint of the value of R2 / R1 and the reduction of the heat shrinkage rate.
  • the temperature of the Rx zone is less than 155 ° C., the shrinkage stress for relaxation is lowered, and the above-described high relaxation rate may not be achieved, and the thermal shrinkage rate in the width direction may be increased.
  • the temperature exceeds 170 ° C. the polymer around the pores may melt due to high temperature, and the separator resistance may increase.
  • the relaxation rate in the Rx zone is preferably 100 to 1,000% / min, and more preferably 150 to 500% / min.
  • the relaxation rate is less than 100% / min, it is necessary to slow down the film forming rate or increase the tenter length, which may be inferior in productivity. If it exceeds 1,000% / min, the speed at which the film shrinks becomes slower than the speed at which the rail width of the tenter shrinks, the film flutters in the tenter and breaks, or the physical properties in the width direction are uneven and the flatness is lowered. There is a case.
  • the temperature of the HS2 zone is preferably 155 to 165 ° C, more preferably 160 to 165 ° C, from the viewpoint of achieving both the R2 / R1 value and the mechanical strength.
  • the temperature is lower than 155 ° C., the tension of the film after thermal relaxation becomes insufficient, which may cause uneven physical properties in the width direction and a decrease in flatness, or increase the heat shrinkage rate in the width direction.
  • the higher the temperature of the HS zone 2 the higher the mechanical strength tends to be. If it exceeds 165 ° C., the polymer around the pores may melt due to the high temperature and the separator resistance may increase.
  • the heat treatment time in the HS2 zone is preferably 0.1 seconds or more and 10 seconds or less from the viewpoint of physical property unevenness in the width direction and flatness and productivity.
  • the film after the heat setting step is removed by slitting the ears gripped by the tenter clip, and wound around the core with a winder to obtain a product. Thereafter, a coating layer may be provided on at least one side to form a porous film having a functional layer.
  • the porous polypropylene film of the present invention has a low R2 / R1 value of the separator resistance ratio before and after application of the application simulation liquid, a functional layer is formed using a coating liquid containing an organic solvent.
  • a coating liquid containing an organic solvent As the coating method, various methods can be used. For example, at least one organic solvent selected from acetone, ethanol, tetrahydrofuran, N-methyl-2-pyrrolidone and the like is used as a solvent,
  • the porous polypropylene of the present invention is prepared using a die coating method or a gravure coating method by adding a functional polymer for binding them and an additive such as a thickener as necessary to prepare a coating solution.
  • a porous film having a functional layer can be obtained by coating on at least one side of the film and drying the organic solvent using a drying oven.
  • the porous polypropylene film of the present invention not only has excellent heat resistance, mechanical strength, and productivity, but also has excellent extrusion stability, so that it can be used for packaging products, sanitary products, agricultural products, building products, medical products, separation membranes, light. Although it can be used for diffuser plates and reflective sheet applications, it is difficult to increase resistance when a functional layer that imparts or improves performance such as heat resistance and adhesion to electrodes is used. Can be preferably used.
  • examples of the electricity storage device include a non-aqueous electrolyte secondary battery represented by a lithium ion secondary battery, and an electric double layer capacitor such as a lithium ion capacitor.
  • the separator for an electricity storage device formed by laminating a functional layer on the porous polypropylene film of the present invention is not only excellent in separator resistance and productivity, but also excellent in heat resistance and short circuit resistance. It can be preferably used as a power storage device separator for power supply devices such as electric vehicles and hybrid electric vehicles.
  • the separator using the porous polypropylene film of the present invention, the positive electrode, the negative electrode, and the electrolytic solution can be suitably used for power supplies of industrial equipment and automobiles because of the excellent characteristics of the separator.
  • the bar coating machine # 10 manufactured by Matsuo Sangyo Co., Ltd. was moved in the longitudinal direction (bar coating method) to apply the coating liquid. It was dried with hot air at 1 ° C. for 1 minute. Thereafter, the four corners were cut off to obtain a coating simulation film.
  • the coating simulation liquid was prepared without mixing additives such as heat-resistant resin, inorganic particles, and thickeners that form the functional layer. Was used. The characteristics were measured and evaluated by the following methods.
  • the thickness of the porous polypropylene film was measured using a contact-type film thickness meter, Mitsutyo Lightmatic VL-50A (10.5 mm ⁇ carbide spherical surface probe, measuring load 0.06 N). The measurement was performed 10 times at different locations, and the average value was taken as the thickness of the porous polypropylene film.
  • Air permeability resistance A square having a size of 100 mm ⁇ 100 mm was cut from a porous polypropylene film or a coating simulation film, and used as a sample. Using a JIS P 8117 (1998) B-type Gurley tester, the permeation time of 100 ml of air was measured at 23 ° C. and a relative humidity of 65%. The measurement was performed three times by changing the sample, and the average value of the permeation time was taken as the air resistance of the film.
  • R1 or R2 A porous polypropylene film or a coating simulation film was punched into a circle having a diameter of 24 mm. From the bottom, SUS plate with a diameter of 16 mm, porous polypropylene film or coating simulation film, SUS plate with a diameter of 16 mm are stacked in this order, and a stainless steel small container with a lid (manufactured by Hosen Co., Ltd., HS cell, spring pressure 1 kgf). Stowed. The container and the lid are insulated, and the container and the lid are in contact with the SUS plate.
  • the melting of the ⁇ crystal is the melting peak of the ⁇ crystal
  • the melting peak of the ⁇ crystal is taken as the melting peak of the base
  • a sample prepared under the following conditions is determined to have ⁇ -crystal forming ability when the K value calculated from each diffraction peak intensity of the diffraction profile obtained by the 2 ⁇ / ⁇ scan is 0.3 or more.
  • sample preparation conditions and the measurement conditions of the wide angle X-ray diffraction method are shown below.
  • ⁇ sample The direction of the film is aligned, and the samples are stacked so that the sample thickness after hot press preparation is about 1 mm.
  • This sample is sandwiched between two aluminum plates having a thickness of 0.5 mm, and is hot-pressed at 280 ° C. for 3 minutes to be melted and compressed to make the polymer chain substantially non-oriented.
  • the obtained sheet is crystallized by being immersed in boiling water at 100 ° C. for 5 minutes immediately after being taken out together with the aluminum plate. Then, a sample obtained by cutting a sheet obtained by cooling in an atmosphere at 25 ° C. is used for measurement.
  • ⁇ Wide-angle X-ray diffraction method measurement conditions In accordance with the above conditions, an X-ray diffraction profile is obtained by 2 ⁇ / ⁇ scanning.
  • the K value is an empirical value indicating the ratio of ⁇ crystals.
  • K H ⁇ 1 / ⁇ H ⁇ 1 + (H ⁇ 1 + H ⁇ 2 + H ⁇ 3) ⁇
  • the structure of the polypropylene crystal type ( ⁇ crystal, ⁇ crystal), the obtained wide-angle X-ray diffraction profile, etc. are described in, for example, Edward P. Moore Jr. Written by "Polypropylene Handbook", Industrial Research Committee (1998), p.
  • MFR Melt flow rate
  • Breaking strength A porous polypropylene film was cut into a rectangle having a length of 150 mm and a width of 10 mm and used as a sample. In addition, the length direction of 150 mm was matched with the width direction of the film. Using a tensile tester (Orientec Tensilon UCT-100), the initial chuck distance was 50 mm, the tensile speed was 300 mm / min, and a tensile test was performed in the width direction of the film. A load applied to the film when the sample broke was read, and a value obtained by dividing the load by the cross-sectional area of the sample before the test (film thickness ⁇ width (10 mm)) was used as an index of the breaking strength. The measurement was performed 5 times for each sample, and the average value was evaluated.
  • a tensile tester Orientec Tensilon UCT-100
  • Tm Melting point (Tm) of polypropylene resin 5 mg of polypropylene resin used for the porous polypropylene film was sampled in an aluminum pan and measured using a differential scanning calorimeter (Seiko Denshi Kogyo RDC220). First, the temperature was raised from room temperature to 220 ° C. at 40 ° C./min in a nitrogen atmosphere (first run), held for 5 minutes, and then cooled to 20 ° C. at 10 ° C./min (first run). The melting peak observed when the temperature was raised again (second run) at 10 ° C./min after holding for 5 minutes was taken as the melting point of the polypropylene resin.
  • the obtained polypropylene composition (I) is supplied to a uniaxial melt extruder, melt extruded at 210 ° C., foreign matter is removed with a 60 ⁇ m cut sintered filter, and the surface temperature is adjusted to 122 ° C. with a T-die.
  • a cast sheet was obtained by discharging to a controlled cast drum.
  • preheating was performed using a ceramic roll heated to 123 ° C., and the film was stretched 5.0 times in the longitudinal direction of the film.
  • the edge part was hold
  • heat treatment was performed at 150 ° C. for 2 seconds while maintaining the distance between the clips after stretching (HS1 zone), and further relaxation was performed to achieve a relaxation rate of 17% at 163 ° C. for 5 seconds (Rx zone). Heat treatment was performed at 163 ° C. for 5 seconds while maintaining the distance between the clips (HS2 zone).
  • gripped with the clip was cut and removed, and the porous polypropylene film of thickness 21 micrometers and air permeation resistance 140 second / 100 ml was obtained.
  • the air resistance of the coating simulation film prepared using this porous polypropylene film was 290 seconds / 100 ml.
  • Example 2 In Example 1, a porous polypropylene film having a thickness of 22 ⁇ m was obtained by the same raw material and film forming method as in Example 1 except that the draw ratio in the longitudinal direction was 4.5 times.
  • a porous polypropylene film having a thickness of 22 ⁇ m was obtained by the same film forming method as in Example 1 using a chip of the polypropylene composition (II).
  • a chip of the polypropylene resin composition (III) a porous polypropylene film having a thickness of 23 ⁇ m was obtained by the same film forming method as in Example 1.
  • Example 7 In Example 1, heat treatment (HS1 zone) was performed at 163 ° C. for 2 seconds while maintaining the distance between the clips after stretching in the width direction at 9.5 times at a transverse stretching speed of 1,800% / min in the width direction. Except for the above, a porous polypropylene film having a thickness of 21 ⁇ m was obtained by the same raw material and film forming method as in Example 1.
  • the mixture is melt-kneaded, discharged from a die, cooled and solidified in a 25 ° C. water bath, cut into chips, and a polypropylene resin composition (VI) chip is formed. Obtained.
  • a chip of the polypropylene resin composition (VI) a porous polypropylene film having a thickness of 23 ⁇ m was obtained by the same film forming method as in Example 1.
  • the raw material is supplied from the weighing hopper to the twin screw extruder so that the parts are mixed at this ratio, melt kneaded at 240 ° C., discharged from the die in a strand shape, cooled and solidified in a 25 ° C.
  • the edge part was hold
  • heat treatment was performed at 150 ° C. for 2 seconds (HS1 zone) while maintaining the distance between the clips after stretching (HS1 zone), and further relaxed at a relaxation rate of 17% at 163 ° C. for 5 seconds (Rx zone). Heat treatment was performed at 163 ° C. for 5 seconds while keeping the distance (HS2 zone). Then, the ear
  • Example 3 (Comparative Example 3)
  • heat treatment was performed at 150 ° C. for 2 seconds while maintaining the distance between the clips after stretching in the width direction (HS1 zone), and further relaxation was performed so that the relaxation rate became 5% at 153 ° C. for 5 seconds (Rx zone).
  • a porous polypropylene film having a thickness of 21 ⁇ m was obtained by the same raw material and film forming method as in Example 1 except that heat treatment was performed at 153 ° C. for 5 seconds (HS2 zone) while maintaining the distance between the clips after relaxation. .
  • the value of R2 / R1 is low, and thus the function of imparting or improving the performance such as heat resistance and adhesion to the electrode. It can be suitably used as a base material for a separator for an electricity storage device having a layer.
  • the value of R2 / R1 is high, and it is difficult to use it as a base material for an electricity storage device separator having a functional layer that imparts or improves performance such as heat resistance and adhesion to electrodes.
  • porous polypropylene film of the present invention When the porous polypropylene film of the present invention is provided with a functional layer that imparts or improves performance such as heat resistance and adhesion with an electrode, it suppresses an increase in separator resistance and can exhibit excellent battery characteristics. It can be suitably used as a separator for an electricity storage device.

Abstract

To provide a porous polypropylene film which is suppressed in increase of the separator resistance in cases where the porous polypropylene film is provided with a functional layer, which imparts or improves properties such as heat resistance and adhesion to an electrode. The present invention is a porous polypropylene film which is mainly composed of a polypropylene resin, and which is characterized in that the separator resistance (R1 (Ω)) of the porous polypropylene film and the separator resistance (R2 (Ω)) thereof after applying a simulated coating liquid that is composed of a functional polymer and an organic solvent onto the porous polypropylene film and drying the simulated coating liquid thereon satisfy formula (1). R2/R1 ≤ 1.2 (1)

Description

多孔性ポリプロピレンフィルム、蓄電デバイス用セパレータおよび蓄電デバイスPorous polypropylene film, separator for electricity storage device, and electricity storage device
 本発明は、耐熱性や電極との接着性などの性能を付与もしくは向上させる機能層を設けた際に、セパレータ抵抗の上昇を抑制し、優れた電池特性を発現できる多孔性ポリプロピレンフィルム、及び該多孔性ポリプロピレンフィルムを用いた蓄電デバイス用セパレータ、および該蓄電デバイス用セパレータを用いた蓄電デバイスに関する。 The present invention provides a porous polypropylene film capable of suppressing an increase in separator resistance and exhibiting excellent battery characteristics when a functional layer that imparts or improves performance such as heat resistance and adhesion to an electrode is provided, and The present invention relates to a power storage device separator using a porous polypropylene film, and a power storage device using the power storage device separator.
 多孔性ポリプロピレンフィルムは、電池や電解コンデンサーのセパレータや各種分離膜、衣料、医療用途における透湿防水膜、フラットパネルディスプレイの反射板や感熱転写記録シートなど多岐に亘る用途への展開が検討されている。中でも、ノート型パーソナルコンピュータや携帯電話、デジタルカメラなどのモバイル機器などに広く使用されているリチウムイオン電池用のセパレータとして、多孔性フィルムは好適である。特に近年、電気自動車やハイブリッド車にリチウムイオン電池が使用されるようになり、電池の高出力化、高容量化に伴い、多孔性フィルムに無機粒子層や耐熱樹脂層をコーティングする検討が盛んに行われている(たとえば、特許文献1,2参照)。また、電池のサイズが大きくなり使用する面積が増えることから、低コスト化も強く望まれている。 Porous polypropylene films are being considered for use in a wide range of applications, including separators for batteries and electrolytic capacitors, various separation membranes, clothing, moisture-permeable waterproof membranes for medical applications, reflectors for flat panel displays, and thermal transfer recording sheets. Yes. Among these, a porous film is suitable as a separator for lithium ion batteries widely used in mobile devices such as notebook personal computers, mobile phones, and digital cameras. In particular, in recent years, lithium-ion batteries have been used in electric vehicles and hybrid vehicles, and as the output of batteries increases and the capacity increases, studies on coating porous films with inorganic particle layers and heat-resistant resin layers are actively conducted. (For example, refer to Patent Documents 1 and 2). Further, since the size of the battery is increased and the area to be used is increased, cost reduction is also strongly desired.
 ポリプロピレンフィルムを多孔化する手法としては、様々な提案がなされているが、中でも乾式法であり、かつ二軸延伸により生産性よく製膜可能な方法として、β晶法が挙げられる。β晶法とは、ポリプロピレンの結晶多形であるα型結晶(α晶)とβ型結晶(β晶)の結晶密度の差と結晶転移を利用してフィルム中に空隙を形成させる方法であり、数多くの提案がなされている(たとえば、特許文献3~5参照)。さらに、β晶法による多孔性ポリプロピレンフィルムの表面に耐熱層などの機能層をコーティングする方法について数多くの提案がなされている(たとえば、特許文献6~15参照)。 Various proposals have been made as a method for making a polypropylene film porous. Among them, a β-crystal method can be cited as a dry method and a method capable of forming a film with high productivity by biaxial stretching. The β crystal method is a method in which voids are formed in a film by utilizing the crystal density difference and crystal transition between α type crystal (α crystal) and β type crystal (β crystal), which are polymorphs of polypropylene. Many proposals have been made (see, for example, Patent Documents 3 to 5). Furthermore, many proposals have been made on a method of coating a functional layer such as a heat-resistant layer on the surface of a porous polypropylene film by the β crystal method (see, for example, Patent Documents 6 to 15).
 しかしながら、β晶法による多孔性ポリプロピレンフィルムに、機能層を形成する無機材料や有機材料を含む塗剤をコーティングすると、使用する溶剤によっては孔構造が変化したり、バインダー機能を備える成分が基材フィルム内に残留するなどしたりして、透気抵抗が変化してしまう場合があった。特許文献6~15記載のように、β晶法では、溶融押出時の圧力等の観点から、高分子量のポリプロピレン樹脂の使用が制限されるため、特許文献1および2のようなポリエチレンフィルムより有機溶媒に対する耐性が低く、機能層用の塗剤の溶媒は水系に限定せざるを得ないという問題があった。 However, if a β-crystal porous polypropylene film is coated with a coating material containing an inorganic or organic material that forms a functional layer, the pore structure may change depending on the solvent used, or a component having a binder function may be a base material. In some cases, the air resistance changes due to, for example, remaining in the film. As described in Patent Documents 6 to 15, in the β crystal method, the use of a high molecular weight polypropylene resin is restricted from the viewpoint of pressure at the time of melt extrusion, etc., so that it is more organic than polyethylene films such as Patent Documents 1 and 2. There was a problem that the resistance to the solvent was low, and the solvent of the coating material for the functional layer had to be limited to an aqueous system.
 従って、β晶法による多孔性ポリプロピレンフィルムでは、乾燥速度を向上でき、材料の溶解性の高い有機溶媒を用いることが困難であるなど、塗剤設計には制限があった。一方で、有機溶媒の使用等、塗剤設計を自由に行ない、かつ、コーティング後の多孔性ポリプロピレンフィルムの特性を保持するためには、過剰に透気性が高かったり、空孔率の高い多孔性ポリプロピレンフィルムを基材に用いる必要があるが、このような基材は生産性が悪かったり、強度が低かったりするため、実用上問題があった。 Therefore, in the case of a porous polypropylene film by the β crystal method, the drying rate can be improved, and it is difficult to use an organic solvent having high material solubility. On the other hand, in order to freely design coating materials such as the use of organic solvents and maintain the characteristics of the porous polypropylene film after coating, it is highly porous or highly porous. Although it is necessary to use a polypropylene film as a base material, such a base material has a problem in practical use because of poor productivity or low strength.
特開2007-273443号公報JP 2007-273443 A 特開2006-164873号公報JP 2006-164873 A 特開昭63-199742号公報Japanese Unexamined Patent Publication No. 63-199742 特開平6-100720号公報Japanese Patent Application Laid-Open No. 6-100720 特開平9-255804号公報Japanese Patent Laid-Open No. 9-255804 特開2009-19118号公報JP 2009-19118 A 特開2009-114434号公報JP 2009-114434 A 特開2009-226746号公報JP 2009-226746 A 特開2009-227819号公報JP 2009-227819 A 特開2010-65088号公報JP 2010-65088 A 特開2010-219037号公報JP 2010-219037 A 特開2011-110704号公報JP 2011-110704 A 特開2011-126275号公報JP 2011-126275 A 国際公開第2010/8003号International Publication No. 2010/8003 特開2011-171290号公報JP 2011-171290 A
 本発明の課題は、上記した問題点を解決することにある。すなわち、耐熱性や電極との接着性などの性能を付与もしくは向上させる機能層を設けた際に、セパレータ抵抗の上昇を抑制し、優れた電池特性を発現できる多孔性ポリプロピレンフィルムを提供することにある。 The object of the present invention is to solve the above-mentioned problems. That is, to provide a porous polypropylene film capable of suppressing an increase in separator resistance and exhibiting excellent battery characteristics when a functional layer that imparts or improves performance such as heat resistance and adhesion to an electrode is provided. is there.
 上述した課題を解決し、目的を達成するために、本発明は、ポリプロピレン樹脂を主成分とする多孔性ポリプロピレンフィルムであって、前記多孔性ポリプロピレンフィルムのセパレータ抵抗R1(Ω)と、前記多孔性ポリプロピレンフィルムに、機能性ポリマーと有機溶媒とからなる塗工模擬液を塗布し乾燥した後のセパレータ抵抗R2(Ω)とが、下記式(1)を満たすことを特徴とする。
  R2/R1≦1.2   ・・・(1)
In order to solve the above-described problems and achieve the object, the present invention provides a porous polypropylene film mainly composed of a polypropylene resin, the separator resistance R1 (Ω) of the porous polypropylene film, and the porous The separator resistance R2 (Ω) after applying and drying a coating simulation liquid composed of a functional polymer and an organic solvent on a polypropylene film satisfies the following formula (1).
R2 / R1 ≦ 1.2 (1)
 本発明の多孔性ポリプロピレンフィルムは、耐熱性や電極との接着性などの性能を付与もしくは向上させる機能層を設けた際に、セパレータ抵抗の上昇を抑制し、優れた電池特性を発現できるため、蓄電デバイス用のセパレータとして好適に使用することができる。 When the porous polypropylene film of the present invention is provided with a functional layer that imparts or improves performance such as heat resistance and adhesion with an electrode, it suppresses an increase in separator resistance and can exhibit excellent battery characteristics. It can be suitably used as a separator for an electricity storage device.
図1は、セパレータ抵抗を測定する際に使用する等価回路図である。FIG. 1 is an equivalent circuit diagram used when measuring the separator resistance.
 本発明の多孔性ポリプロピレンフィルムは、ポリプロピレン樹脂を主成分とするポリプロピレン樹脂組成物からなる。ポリプロピレン樹脂を主成分とすることにより、蓄電デバイス用セパレータとして使用する際に電池の短絡を防ぐために必要な耐熱性を満足することができる。ここで、ポリプロピレン樹脂を主成分とするとは、多孔性ポリプロピレンフィルムを構成する全成分中に占めるポリプロピレン樹脂の割合が50質量%以上であることを意味し、好ましくは80質量%以上、より好ましくは90質量%以上、さらに好ましくは95質量%以上である。 The porous polypropylene film of the present invention comprises a polypropylene resin composition containing a polypropylene resin as a main component. By using a polypropylene resin as a main component, it is possible to satisfy the heat resistance necessary for preventing a short circuit of the battery when used as a separator for an electricity storage device. Here, having a polypropylene resin as a main component means that the proportion of the polypropylene resin in all the components constituting the porous polypropylene film is 50% by mass or more, preferably 80% by mass or more, more preferably It is 90 mass% or more, More preferably, it is 95 mass% or more.
 本発明の多孔性ポリプロピレンフィルムは、フィルムの一方の表面から他方の表面に向かって貫通し、透気性を有する孔(以下、貫通孔という)を有している。貫通孔を形成する方法としては、抽出法、ラメラ延伸法、β晶法などが挙げられるが、生産性、長手方向と幅方向の物性の均一性の観点から、β晶法によることが好ましい。 The porous polypropylene film of the present invention has pores that penetrate from one surface of the film toward the other surface and have air permeability (hereinafter referred to as through-holes). Examples of the method for forming the through hole include an extraction method, a lamellar stretching method, a β crystal method, and the like. From the viewpoint of productivity and uniformity of physical properties in the longitudinal direction and the width direction, the β crystal method is preferable.
 ここで、β晶法とは、結晶構造としてβ晶を有するポリプロピレン樹脂組成物のキャストシートを用い、該キャストシートを縦延伸することにより、β晶の結晶構造をα晶に転移させるとともに、製膜方向に配向したα晶のフィブリル状物を形成させ、そのフィブリル状物を横延伸工程において開裂させて網目構造を形成させることにより、貫通孔を有するフィルムを得る手法である。ここで、キャストシートとは、溶融したポリプロピレン樹脂組成物をキャストドラム上でシート状に成型した、未延伸のシートを意味する。β晶法においては、多孔性ポリプロピレンフィルムの物性を向上させるために、ポリプロピレン樹脂組成物にβ晶核剤を添加しβ晶形成能を高めることが好ましい。β晶形成能が高いことにより、α晶への結晶転移を起こす結晶構造の部分が多くなり、フィルム中に形成される空隙の数を増加させることができる。また、β晶核剤を含む原料制御により、ポリプロピレン結晶の配向性、緻密性を向上させ、孔を均一かつ緻密に開孔させることにより、多孔性ポリプロピレンフィルムを蓄電デバイス用セパレータとして用いた際のセパレータ抵抗の低減を達成することができる。また、開孔状態の均一性を向上させることにより、粗大孔を減少させ、弾性率や引張伸度などの機械物性を向上させることができ、また、耐熱性や電極との接着性などの性能を付与もしくは向上させる機能層を設けた際に、セパレータ抵抗の上昇を抑制することができる。これらのβ晶法におけるセパレータ抵抗の低減と機械特性の向上、耐熱性や電極との接着性などの性能を付与もしくは向上させる機能層を設けた際のセパレータ抵抗の上昇抑制は、後述する原料を用い、特定の製膜条件で製膜を行うことにより達成することができる。 Here, the β crystal method uses a cast sheet of a polypropylene resin composition having a β crystal as a crystal structure, and longitudinally stretches the cast sheet to transfer the crystal structure of the β crystal to an α crystal and This is a technique for obtaining a film having through-holes by forming α-crystal fibrils oriented in the film direction and cleaving the fibrils in a transverse stretching process to form a network structure. Here, the cast sheet means an unstretched sheet obtained by molding a molten polypropylene resin composition into a sheet shape on a cast drum. In the β crystal method, in order to improve the physical properties of the porous polypropylene film, it is preferable to add a β crystal nucleating agent to the polypropylene resin composition to enhance the β crystal forming ability. Since the β-crystal forming ability is high, the portion of the crystal structure that causes crystal transition to the α-crystal increases, and the number of voids formed in the film can be increased. In addition, by controlling the raw material containing the β crystal nucleating agent, the orientation and denseness of the polypropylene crystals are improved, and the pores are uniformly and densely opened, whereby the porous polypropylene film is used as a separator for an electricity storage device. Reduction of separator resistance can be achieved. In addition, by improving the uniformity of the open state, coarse pores can be reduced, mechanical properties such as elastic modulus and tensile elongation can be improved, and performance such as heat resistance and adhesion to electrodes can be achieved. When a functional layer for imparting or improving the resistance is provided, an increase in separator resistance can be suppressed. In these β crystal methods, reduction of separator resistance and improvement of mechanical properties, suppression of increase in separator resistance when a functional layer that imparts or improves performance such as heat resistance and adhesion to electrodes is provided by using the raw materials described later. It can be achieved by performing film formation under specific film formation conditions.
 つぎに本発明の多孔性ポリプロピレンフィルムに用いる原料について説明する。
 本発明において、多孔性ポリプロピレンフィルムのβ晶形成能は、貫通孔の形成性の観点から60%以上とすることが好ましい。より好ましくは65~90%であり、65~85%が特に好ましい。β晶形成能が60%未満の場合、β晶量が少ないためにα晶への転移を利用してフィルム中に形成される空隙数が少なくなり、フィルムのセパレータ抵抗に劣る場合がある。β晶形成能を60%以上に制御する方法としては、アイソタクチックインデックスの高いポリプロピレン樹脂を使用する方法、β晶核剤と呼ばれる、ポリプロピレン樹脂中に添加することでβ晶を選択的に形成させる結晶化核剤を添加剤として用いる方法があるが、本発明においては、後述するβ晶核剤を使用する方法、またはアイソタクチックインデックスの高いポリプロピレン樹脂に後述するβ晶核剤を添加剤として用いる方法によることが好ましい。
Next, the raw materials used for the porous polypropylene film of the present invention will be described.
In the present invention, the β-crystal forming ability of the porous polypropylene film is preferably 60% or more from the viewpoint of the through-hole formability. More preferred is 65 to 90%, and particularly preferred is 65 to 85%. When the β crystal forming ability is less than 60%, the amount of β crystals is small, so that the number of voids formed in the film using the transition to α crystal is reduced, and the separator resistance of the film may be inferior. As a method of controlling the β crystal formation ability to 60% or more, a method using a polypropylene resin having a high isotactic index, a β crystal is selectively formed by adding it to a polypropylene resin called a β crystal nucleating agent. In the present invention, there is a method of using a β crystal nucleating agent described later, or a β crystal nucleating agent described later in a polypropylene resin having a high isotactic index. It is preferable to use the method used as
 本発明で用いるβ晶核剤としては、たとえば、1,2-ヒドロキシステアリン酸カルシウム、コハク酸マグネシウムなどのカルボン酸のアルカリあるいはアルカリ土類金属塩、N,N’-ジシクロヘキシル-2,6-ナフタレンジカルボキシアミドに代表されるアミド系化合物、3,9-ビス[4-(N-シクロヘキシルカルバモイル)フェニル]-2,4,8,10-テトラオキサスピロ[5.5]ウンデカンなどのテトラオキサスピロ化合物、ベンゼンスルホン酸ナトリウム、ナフタレンスルホン酸ナトリウムなどの芳香族スルホン酸化合物、イミドカルボン酸誘導体、キナクリドン系顔料を挙げることができるが、特に特開平5-310665号公報に開示されているアミド系化合物を用いることが好ましい。また、β晶核剤の含有量としては使用するβ晶核剤によって異なるが、上記アミド系化合物を使用する場合には、ポリプロピレン組成物全体を基準とした場合に、0.05~0.5質量%であることが好ましく、0.1~0.3質量%であればより好ましく、後述する効果を有するためには0.22~0.3質量%であれば特に好ましい。0.05質量%未満では、β晶の形成が不十分となり、多孔性ポリプロピレンフィルムのセパレータ抵抗が増大する場合がある。また、0.5質量%を超えると、β晶核剤の凝集などによりフィルムに粗大ボイドが形成され、粗大ボイドを形成し、耐熱性や電極との接着性などの性能を付与もしくは向上させる機能層を設けた際のセパレータ抵抗の上昇度合いが大きくなる場合がある。 Examples of the β crystal nucleating agent used in the present invention include alkali or alkaline earth metal salts of carboxylic acids such as calcium 1,2-hydroxystearate and magnesium succinate, and N, N′-dicyclohexyl-2,6-naphthalene. Amide compounds represented by carboxamide, tetraoxaspiro compounds such as 3,9-bis [4- (N-cyclohexylcarbamoyl) phenyl] -2,4,8,10-tetraoxaspiro [5.5] undecane And aromatic sulfonic acid compounds such as sodium benzene sulfonate and sodium naphthalene sulfonate, imide carboxylic acid derivatives, and quinacridone pigments, particularly amide compounds disclosed in JP-A-5-310665. It is preferable to use it. Further, the content of the β crystal nucleating agent varies depending on the β crystal nucleating agent to be used, but when the amide compound is used, it is 0.05 to 0.5 based on the whole polypropylene composition. The content is preferably 0.1% by mass, more preferably 0.1 to 0.3% by mass, and particularly preferably 0.22 to 0.3% by mass in order to have the effects described later. If it is less than 0.05% by mass, the formation of β crystals becomes insufficient, and the separator resistance of the porous polypropylene film may increase. Moreover, when it exceeds 0.5% by mass, coarse voids are formed in the film due to aggregation of the β-crystal nucleating agent, etc., and the coarse voids are formed, thereby imparting or improving performance such as heat resistance and adhesion to the electrode. In some cases, the degree of increase in separator resistance when the layer is provided increases.
 本発明においては、ポリプロピレン樹脂として、メルトフローレート(以下、MFRと表記する)が2~30g/10分のアイソタクチックポリプロピレン樹脂を用いることが、押出成形性及び孔の均一な形成の観点から好ましい。ここで、MFRとはJIS K 7210(1995)で規定されている樹脂の溶融粘度を示す指標であり、ポリオレフィン樹脂の特徴を示す物性値である。本発明においては230℃、2.16kgで測定した値を指す。本発明においては、結晶性の観点からポリプロピレン樹脂のアイソタクチックインデックスは90~99.9%の範囲であることが好ましく、95~99%であることがより好ましい。アイソタクチックインデックスが90%未満の場合、樹脂の結晶性が低くなり、製膜性が低下する場合があるほか、フィルムの強度が劣る場合がある。 In the present invention, an isotactic polypropylene resin having a melt flow rate (hereinafter referred to as MFR) of 2 to 30 g / 10 min is used as the polypropylene resin from the viewpoint of extrusion moldability and uniform pore formation. preferable. Here, MFR is an index indicating the melt viscosity of a resin defined in JIS K 7210 (1995), and is a physical property value indicating the characteristics of a polyolefin resin. In the present invention, it refers to a value measured at 230 ° C. and 2.16 kg. In the present invention, from the viewpoint of crystallinity, the isotactic index of the polypropylene resin is preferably in the range of 90 to 99.9%, more preferably 95 to 99%. When the isotactic index is less than 90%, the crystallinity of the resin is lowered, the film forming property may be lowered, and the strength of the film may be inferior.
 本発明で用いるポリプロピレン樹脂は、孔構造を均一化し、耐熱性や電極との接着性などの性能を付与もしくは向上させる機能層を設けた際のセパレータ抵抗の上昇を抑制する観点から、上述したアイソタクチックポリプロピレンに加え、MFRが70g/10分以上、好ましくは100g/10分以上、さらに好ましくは500g/10分以上の低分子量アイソタクチックポリプロピレンを添加することが好ましい。上限はMFRが5000g/10分とするものであり、MFRが5000g/10分を超える場合には、上述したアイソタクチックポリプロピレンと均一化することが困難となる可能性がある。通常、MFRが70g/10分以上の低分子量アイソタクチックポリプロピレンは製膜性が悪く、強度の低下を招くために、フィルムの分野では使用されてこなかった。しかしながら、ポリプロピレン樹脂全体を100質量%としたときに、低分子量アイソタクチックポリプロピレンを0.1~50質量%、好ましくは1~20質量%、さらに好ましくは2~10質量%、最も好ましくは2~5質量%含有することで、耐熱性や電極との接着性などの性能を付与もしくは向上させる機能層を設けた際に、セパレータ抵抗の上昇を抑制できることがわかった。原因は未だ不明であるが、少量添加した低分子量ポリプロピレンが、結晶界面の分子鎖末端濃度を高め、縦延伸において結晶界面での孔形成を促進させる、すなわち開孔助剤としてはたらくことから均一な開孔が起こり、耐熱性や電極との接着性などの性能を付与もしくは向上させる機能層を設けた際に、塗剤の成分が目詰まりしにくい、もしくは目詰まりしても多数の貫通孔が生き残るために、セパレータ抵抗の上昇を抑制できるものと推察される。 The polypropylene resin used in the present invention is made of the above-mentioned isotopic material from the viewpoint of suppressing the increase in separator resistance when a functional layer is provided that makes the pore structure uniform and imparts or improves performance such as heat resistance and adhesion to electrodes. In addition to tactic polypropylene, it is preferable to add low molecular weight isotactic polypropylene having an MFR of 70 g / 10 min or more, preferably 100 g / 10 min or more, more preferably 500 g / 10 min or more. The upper limit is that the MFR is 5000 g / 10 min. If the MFR exceeds 5000 g / 10 min, it may be difficult to homogenize with the above-described isotactic polypropylene. Usually, low molecular weight isotactic polypropylene having an MFR of 70 g / 10 min or more has not been used in the field of films because it has poor film-forming properties and causes a decrease in strength. However, when the total amount of the polypropylene resin is 100% by mass, the low molecular weight isotactic polypropylene is 0.1 to 50% by mass, preferably 1 to 20% by mass, more preferably 2 to 10% by mass, and most preferably 2%. It has been found that the content of ˜5% by mass can suppress an increase in separator resistance when a functional layer that imparts or improves performance such as heat resistance and adhesion to an electrode is provided. The cause is still unknown, but low molecular weight polypropylene added in small amounts increases the molecular chain end concentration at the crystal interface and promotes pore formation at the crystal interface in longitudinal stretching, that is, it functions as a hole opening aid. When a functional layer that provides or improves performance such as heat resistance and adhesion to electrodes is provided, the coating composition is difficult to clog, or even if clogged, a large number of through-holes are formed. It is presumed that the increase in separator resistance can be suppressed in order to survive.
 ここでMFR70g/10分以上の低分子量アイソタクチックポリプロピレン樹脂の融点は、130℃以上であることが好ましく、140℃以上がより好ましく、150℃以上がさらに好ましい。融点が130℃未満である場合には多孔性ポリプロピレンフィルムの開孔性が低下する場合がある。 Here, the melting point of the low molecular weight isotactic polypropylene resin having an MFR of 70 g / 10 min or more is preferably 130 ° C. or more, more preferably 140 ° C. or more, and further preferably 150 ° C. or more. When the melting point is lower than 130 ° C., the openability of the porous polypropylene film may be lowered.
 上述した性質を持つ低分子量アイソタクチックポリプロピレンとしては、市販されているプライムポリマー社製ポリプロピレン樹脂S10AL、S10CL、J13B、エクソンモービル社製ポリプロピレン樹脂6936G1などを挙げることができる。 Examples of the low molecular weight isotactic polypropylene having the above-described properties include commercially available polypropylene resins S10AL, S10CL, J13B manufactured by Prime Polymer, and polypropylene resin 6936G1 manufactured by ExxonMobil.
 本発明の多孔性ポリプロピレンフィルムを形成するポリプロピレン樹脂組成物には、本発明の効果を損なわない範囲において、酸化防止剤、熱安定剤、帯電防止剤や無機あるいは有機粒子からなる滑剤、さらにはブロッキング防止剤や充填剤、非相溶性ポリマーなどの各種添加剤を含有させてもよい。特に、ポリプロピレン樹脂の熱履歴による酸化劣化を抑制する目的で、酸化防止剤を添加することが好ましい。酸化防止剤の添加量は、ポリプロピレン樹脂組成物100質量部に対して2質量部以下とすることが好ましく、より好ましくは1質量部以下、更に好ましくは0.5質量部以下である。 The polypropylene resin composition forming the porous polypropylene film of the present invention includes an antioxidant, a heat stabilizer, an antistatic agent, a lubricant composed of inorganic or organic particles, and a blocking agent within the range that does not impair the effects of the present invention. You may contain various additives, such as an inhibitor, a filler, and an incompatible polymer. In particular, it is preferable to add an antioxidant for the purpose of suppressing oxidative deterioration due to the thermal history of the polypropylene resin. The addition amount of the antioxidant is preferably 2 parts by mass or less, more preferably 1 part by mass or less, still more preferably 0.5 parts by mass or less with respect to 100 parts by mass of the polypropylene resin composition.
 本発明の多孔性ポリプロピレンフィルムを形成するポリプロピレン樹脂組成物には、本発明の効果を損なわない範囲において、無機粒子あるいは有機粒子からなる孔形成助剤を含有させることができる。 The polypropylene resin composition for forming the porous polypropylene film of the present invention can contain a pore-forming aid composed of inorganic particles or organic particles within a range not impairing the effects of the present invention.
 本発明の多孔性ポリプロピレンフィルムは、多孔性ポリプロピレンフィルムのセパレータ抵抗R1(Ω)と、該多孔性ポリプロピレンフィルムに、塗工模擬液である機能性ポリマーと有機溶媒とを含む溶液を塗布した後、有機溶媒を乾燥させた後のフィルム(以下、塗工模擬フィルムと称する)のセパレータ抵抗R2(Ω)とが、下記式(1)を満たすことを特徴とする。
  R2/R1≦1.2   ・・・(1)
 塗工模擬液の塗付前、塗布後のセパレータ抵抗の比であるR2/R1(単位は無次元)は、好ましくは1.1以下、さらに好ましくは1.05以下である。
The porous polypropylene film of the present invention has a separator resistance R1 (Ω) of the porous polypropylene film, and after applying a solution containing a functional polymer that is a coating simulation liquid and an organic solvent to the porous polypropylene film, The separator resistance R2 (Ω) of the film after drying the organic solvent (hereinafter referred to as a coating simulation film) satisfies the following formula (1).
R2 / R1 ≦ 1.2 (1)
R2 / R1 (unit is dimensionless), which is the ratio of the separator resistance before and after application of the coating simulation liquid, is preferably 1.1 or less, and more preferably 1.05 or less.
 ここで、セパレータ抵抗とは、後述する方法によって評価セルを作製し、交流インピーダンス法で測定したCole-Coleプロットを図1に示す等価回路から算出した電気抵抗のことをいう。一般に、従来製造されている多孔性ポリプロピレンフィルム上に耐熱性や電極との接着性などの性能を付与もしくは向上させる機能層を設ける際に、無機粒子や有機粒子を、バインダー機能を有する機能性ポリマー(例えば、ポリフッ化ビニリデン(PVdF)、アクリル、セルロースおよび/またはセルロース塩、アクリル系樹脂、エチレンビニルアルコール、エチレン-エチルアクリレート共重合体(EEA)などのエチレン-アクリル酸共重合体、フッ素系ゴム、スチレンブタジエンゴム(SBR)、架橋アクリル樹脂、ポリウレタン、ポリビニルブチラール、ポリエチレン、ポリビニルアルコール、ポリテトラフルオロエチレン、ポリビニルピロリドン、ポリイミド、ポリアミド、ポリサルファイド、ポリビニルメチルエーテル、ポリエチレンオキシド、ポリプロピレンオキシド、メラミン樹脂、ポリビニルピリジンなど)とともに、有機溶媒(例えば、アセトン、N-メチル-2-ピロリドン(NMP)、ジメチルフォルムアミド(DMF)、ジメチルスルホキシド(DMSO)、シクロヘキサノン、γ-ブチロラクトン(GBL)、ジメチルアセトアミド、メチルエチルケトン(MEK)、ジエチルエーテル、酢酸エチル、テトラヒドロフラン(THF)など)に分散させた塗液を多孔フィルムに塗工すると、有機溶媒によりフィルムが膨潤し、これにより有機溶媒の乾燥時に細孔の構造変化が生じたり、有機溶媒に溶解した機能性ポリマーが細孔内に侵入(無機粒子や有機粒子は、多孔フィルム表面で濾過されて、多孔フィルム内部に侵入しないこともある)し、有機溶媒の乾燥によって機能性ポリマーが細孔を閉塞させたり、細孔径を小さくする場合があった。 Here, the separator resistance means an electric resistance obtained by preparing an evaluation cell by a method described later and calculating a Cole-Cole plot measured by an AC impedance method from the equivalent circuit shown in FIG. In general, when a functional layer that imparts or improves performance such as heat resistance and adhesion to an electrode is provided on a conventionally produced porous polypropylene film, a functional polymer having a binder function as an inorganic particle or organic particle. (For example, polyvinylidene fluoride (PVdF), acrylic, cellulose and / or cellulose salt, acrylic resin, ethylene-vinyl alcohol, ethylene-acrylic acid copolymer (EEA) and other ethylene-acrylic acid copolymers, fluorine-based rubber Styrene butadiene rubber (SBR), cross-linked acrylic resin, polyurethane, polyvinyl butyral, polyethylene, polyvinyl alcohol, polytetrafluoroethylene, polyvinyl pyrrolidone, polyimide, polyamide, polysulfide, polyvinyl methyl ether, polyethylene Along with ethylene oxide, polypropylene oxide, melamine resin, polyvinyl pyridine, etc.), organic solvents (eg, acetone, N-methyl-2-pyrrolidone (NMP), dimethylformamide (DMF), dimethyl sulfoxide (DMSO), cyclohexanone, γ-butyrolactone (GBL), dimethylacetamide, methyl ethyl ketone (MEK), diethyl ether, ethyl acetate, tetrahydrofuran (THF), etc.) are applied to a porous film, the film swells with an organic solvent, which causes the organic solvent to swell. Changes in the pore structure occur during drying, or functional polymers dissolved in organic solvents enter the pores (inorganic particles and organic particles may be filtered on the porous film surface and not enter the porous film. Yes) and organic In some cases, the functional polymer may block the pores or reduce the pore diameter by drying the solvent.
 そこで本願では、前記のような有機溶媒や機能性ポリマーによる細孔閉塞等の性能悪化の程度を評価するため、機能性ポリマーの1種であるPVdF系樹脂を、溶媒の1種であるアセトンに溶解させた塗工模擬液を後述する方法で塗布・乾燥させ、模擬塗工フィルムを作成し評価に供している。R2/R1が小さいことは、機能性ポリマーが細孔を閉塞させることや溶媒による膨潤や溶媒乾燥時の構造変化による抵抗上昇が起こりにくいことを示すと考えられ、耐熱性や電極との接着性などの性能を付与もしくは向上させる機能層を設けた際の、基材対比での抵抗上昇度合いの指標としてR2/R1を用いることができる。R2/R1が式(1)を満たす場合、耐熱性や電極との接着性などの性能を付与もしくは向上させる機能層を設けた際に、セパレータ抵抗の上昇を抑制できるフィルムであるといえる。R2/R1の値が1.2を超えると、耐熱性や電極との接着性などの性能を付与もしくは向上させる機能層を設けた際、抵抗が上昇しやすいことを意味するため、塗剤設計に制約が生じるなど、産業上不利である。式(1)を満足する多孔性ポリプロピレンフィルムは、原料中のβ晶核剤の添加量を前述した範囲とすること、前述した原料を用いること、キャストドラムの温度、長手方向の延伸倍率と温度、横延伸速度、熱処理工程での温度と時間、およびリラックスゾーンでの弛緩率を後述する範囲内とすることにより得ることができる。 Therefore, in this application, in order to evaluate the degree of performance deterioration such as pore clogging due to the organic solvent and functional polymer as described above, PVdF resin, which is one kind of functional polymer, is changed to acetone, which is one kind of solvent. The dissolved coating simulation solution is applied and dried by the method described later to prepare a simulated coating film for evaluation. Small R2 / R1 is considered to indicate that the functional polymer clogs the pores, and that the resistance increase due to the structure change at the time of solvent swelling and solvent drying hardly occurs. R2 / R1 can be used as an index of the degree of increase in resistance relative to the base material when a functional layer for imparting or improving the performance is provided. When R2 / R1 satisfies the formula (1), it can be said that the film can suppress an increase in separator resistance when a functional layer that imparts or improves performance such as heat resistance and adhesion to an electrode is provided. When the value of R2 / R1 exceeds 1.2, it means that resistance is likely to increase when a functional layer that imparts or improves performance such as heat resistance and adhesion to electrodes is provided. There are industrial disadvantages such as restrictions. In the porous polypropylene film satisfying the formula (1), the addition amount of the β crystal nucleating agent in the raw material is within the above-mentioned range, the above-mentioned raw material is used, the temperature of the cast drum, the draw ratio and the temperature in the longitudinal direction. The transverse stretching speed, the temperature and time in the heat treatment step, and the relaxation rate in the relaxation zone can be obtained within the ranges described below.
 本発明の多孔性ポリプロピレンフィルムは、長手方向の破断強度PMDと幅方向の破断強度PTDとの比PMD/PTDが下記式(2)を満たしていることが好ましい。尚、本願においては、フィルムの製膜する方向に平行な方向を、製膜方向、長手方向、MD方向あるいは単にMDと称し、フィルム面内で製膜方向に直交する方向を幅方向、TD方向あるいは単にTDと称することがある。
  0.7≦PMD/PTD≦2.0   ・・・(2)
 PMD/PTDの値は、好ましくは0.7≦PMD/PTD≦1.6であり、さらに好ましくは0.8≦PMD/PTD≦1.4である。PMD/PTDの値が0.7未満または2.0を超えた値であると、長手または幅方向に過度に縮んだり、裂けやすくなったりして、熱保護層などの機能層を設けた際にセパレータ抵抗が上昇しやすくなったり、塗工工程および電池組立工程における工程適性が不十分となる場合がある。式(2)を満足する多孔性ポリプロピレンフィルムを得る方法としては、原料中のβ晶核剤の添加量を前述した範囲とすること、前述した原料を用いること、キャストドラムの温度、長手方向の延伸倍率と温度、横延伸速度、熱処理工程での温度と時間、およびリラックスゾーンでの弛緩率を後述する範囲内とすることにより制御することができる。
In the porous polypropylene film of the present invention, the ratio PMD / PTD of the breaking strength PMD in the longitudinal direction and the breaking strength PTD in the width direction preferably satisfies the following formula (2). In the present application, the direction parallel to the film forming direction is referred to as the film forming direction, the longitudinal direction, the MD direction, or simply MD, and the direction perpendicular to the film forming direction in the film plane is the width direction and the TD direction. Alternatively, it may be simply referred to as TD.
0.7 ≦ PMD / PTD ≦ 2.0 (2)
The value of PMD / PTD is preferably 0.7 ≦ PMD / PTD ≦ 1.6, and more preferably 0.8 ≦ PMD / PTD ≦ 1.4. When the value of PMD / PTD is less than 0.7 or more than 2.0, when the functional layer such as a heat protection layer is provided, it shrinks excessively in the longitudinal or width direction, or becomes easy to tear. In some cases, the separator resistance is likely to increase, and the process suitability in the coating process and the battery assembly process may be insufficient. As a method for obtaining a porous polypropylene film satisfying the formula (2), the addition amount of the β crystal nucleating agent in the raw material should be within the above-mentioned range, the above-mentioned raw material is used, the temperature of the cast drum, and the longitudinal direction. The stretching ratio and temperature, the transverse stretching speed, the temperature and time in the heat treatment step, and the relaxation rate in the relaxation zone can be controlled within the ranges described below.
 また、多孔性ポリプロピレンフィルムの破断強度そのものが低いと、安全性に劣ったり、塗工工程および電池組立工程における工程適性が不十分となったりする場合があるため、本発明の多孔性ポリプロピレンフィルムの破断強度は、長手方向・幅方向ともに、60MPa以上であることが好ましい。より好ましくはともに80MPa以上、さらに好ましくはともに100MPa以上である。長手方向・幅方向ともに、破断強度が60MPa以上の多孔性ポリプロピレンフィルムを得る方法としては、原料中のβ晶核剤の添加量を前述した範囲とすること、前述した原料を用いること、キャストドラムの温度、長手方向の延伸倍率と温度、横延伸速度、熱処理工程での温度と時間、およびリラックスゾーンでの弛緩率を後述する範囲内とすることにより制御することができる。 Further, if the breaking strength itself of the porous polypropylene film is low, the safety may be inferior or the process suitability in the coating process and the battery assembly process may be insufficient. The breaking strength is preferably 60 MPa or more in both the longitudinal direction and the width direction. More preferably, both are 80 MPa or more, and more preferably both are 100 MPa or more. As a method for obtaining a porous polypropylene film having a breaking strength of 60 MPa or more in both the longitudinal direction and the width direction, the amount of β crystal nucleating agent in the raw material is set in the above-described range, the above-described raw material is used, and the cast drum The temperature, the stretching ratio and temperature in the longitudinal direction, the transverse stretching speed, the temperature and time in the heat treatment step, and the relaxation rate in the relaxation zone can be controlled within the ranges described below.
 本発明の多孔性ポリプロピレンフィルムは、透気抵抗が10~1,000秒/100mlであることが好ましく、50~500秒/100mlであることがより好ましく、80~300秒/100mlであることが特に好ましい。透気抵抗が10秒/100ml未満であると、工程適性の指標となる破断強度などの機械強度が低下する場合がある。透気抵抗が1,000秒/100mlを超えると、特に高出力蓄電デバイス用のセパレータとして用いた際に出力特性が低下する場合がある。透気抵抗は、原料中のβ晶核剤の添加量を前述した範囲とすること、前述した原料を用いること、キャストドラムの温度、長手方向の延伸倍率と温度、横延伸速度、熱処理工程での温度と時間、およびリラックスゾーンでの弛緩率を後述する範囲内とすることにより制御可能である。 The porous polypropylene film of the present invention preferably has an air permeability resistance of 10 to 1,000 seconds / 100 ml, more preferably 50 to 500 seconds / 100 ml, and 80 to 300 seconds / 100 ml. Particularly preferred. When the air permeation resistance is less than 10 seconds / 100 ml, mechanical strength such as breaking strength, which is an indicator of process suitability, may be lowered. When the air permeability resistance exceeds 1,000 seconds / 100 ml, the output characteristics may be deteriorated particularly when used as a separator for a high-power storage device. The air permeation resistance is determined by setting the addition amount of the β crystal nucleating agent in the raw material within the above-described range, using the above-described raw material, the temperature of the cast drum, the stretching ratio and temperature in the longitudinal direction, the transverse stretching speed, and the heat treatment step It is possible to control by controlling the temperature and time of each of them and the relaxation rate in the relaxation zone within the range described later.
 本発明の多孔性ポリプロピレンフィルムは、フィルム厚みが5~30μmであることが好ましい。厚みが5μm未満では使用時にフィルムが破断する場合があり、30μmを超えると、セパレータ抵抗が増大してセパレータとして用いた際に出力特性が低下する場合があるほか、蓄電デバイス内に占める多孔性フィルムの体積割合が高くなり、高いエネルギー密度を得ることができなくなる場合がある。フィルム厚みは10~25μmであればより好ましく、12~20μmであればなお好ましい。 The porous polypropylene film of the present invention preferably has a film thickness of 5 to 30 μm. If the thickness is less than 5 μm, the film may break during use. If the thickness exceeds 30 μm, the separator resistance increases and the output characteristics may deteriorate when used as a separator, and the porous film occupies the power storage device. In some cases, the volume ratio of becomes high, and a high energy density cannot be obtained. The film thickness is more preferably 10 to 25 μm, still more preferably 12 to 20 μm.
 本発明の多孔性ポリプロピレンフィルムは、電池特性と強度を両立させる観点から、空孔率が40~85%であることが好ましい。より好ましくは50~80%であり、55~75%であることが特に好ましい。空孔率が40%未満では、特に高出力蓄電デバイス用のセパレータとして使用したときにセパレータ抵抗が大きくなる場合がある。一方、空孔率が85%を超えると、弾性率や引張強度などの機械強度が低下する場合がある。空孔率は、原料中のβ晶核剤の添加量を前述した範囲とすること、前述した原料を用いること、キャストドラムの温度、長手方向の延伸倍率と温度、横延伸速度、熱処理工程での温度と時間、およびリラックスゾーンでの弛緩率を後述する範囲内とすることにより制御可能である。 The porous polypropylene film of the present invention preferably has a porosity of 40 to 85% from the viewpoint of achieving both battery characteristics and strength. More preferably, it is 50 to 80%, and particularly preferably 55 to 75%. When the porosity is less than 40%, the separator resistance may increase particularly when used as a separator for a high-power electricity storage device. On the other hand, if the porosity exceeds 85%, mechanical strength such as elastic modulus and tensile strength may be lowered. The porosity is determined by setting the amount of β-crystal nucleating agent in the raw material within the above-mentioned range, using the above-described raw material, the temperature of the cast drum, the stretching ratio and temperature in the longitudinal direction, the transverse stretching speed, and the heat treatment step. It is possible to control by controlling the temperature and time of each of them and the relaxation rate in the relaxation zone within the range described later.
 本発明の多孔性ポリプロピレンフィルムは、135℃で60分間熱処理したときの幅方向の熱収縮率が10%以下であることが好ましい。より好ましくは5%以下であり、さらに好ましくは3%以下である。135℃で60分間熱処理したときの熱収縮率が10%を超えると、蓄電デバイス用セパレータとして使用した際に安全性に劣る場合があるほか、例えば本発明の多孔性ポリオレフィンフィルムの表面にポリエチレンを含むシャットダウン層を塗布や共押出積層などにより積層して用いる場合、135℃付近でポリエチレンが溶けて孔を塞いだときに、基材である多孔性ポリオレフィンフィルムも収縮して電池が短絡する場合がある。他方、下限は0.1%とするものである。熱収縮率は、原料中のβ晶核剤の添加量を前述した範囲とすること、前述した原料を用いること、キャストドラムの温度、長手方向の延伸倍率と温度、横延伸速度、熱処理工程での温度と時間、およびリラックスゾーンでの弛緩率を後述する範囲内とすることにより制御可能である。 The porous polypropylene film of the present invention preferably has a heat shrinkage in the width direction of 10% or less when heat-treated at 135 ° C. for 60 minutes. More preferably, it is 5% or less, More preferably, it is 3% or less. When the heat shrinkage rate when heat-treated at 135 ° C. for 60 minutes exceeds 10%, it may be inferior in safety when used as a separator for an electricity storage device. For example, polyethylene is applied to the surface of the porous polyolefin film of the present invention. If the shutdown layer is used by laminating by coating or coextrusion lamination, etc., when the polyethylene melts and closes the hole at around 135 ° C, the porous polyolefin film as the base material may shrink and the battery may short circuit is there. On the other hand, the lower limit is 0.1%. The heat shrinkage ratio is within the above-mentioned range for the amount of β-crystal nucleating agent in the raw material, the raw material is used, the temperature of the cast drum, the stretching ratio and temperature in the longitudinal direction, the transverse stretching speed, and the heat treatment step. It is possible to control by controlling the temperature and time of each of them and the relaxation rate in the relaxation zone within the range described later.
 本発明の多孔性ポリプロピレンフィルムは、様々な効果を付与する目的で積層構成をとっても構わない。積層数としては、2層積層でも3層積層でも、また、それ以上の積層数でもよく、本発明の多孔性ポリプロピレンフィルムを少なくとも一方の表層とする積層形態、本発明の多孔性ポリプロピレンフィルムの両表面に同一もしくは異なる表層を形成する積層形態のいずれを採用してもよい。積層の方法としては、共押出によるフィードブロック方式やマルチマニホールド方式、ラミネートにより多孔性フィルム同士を貼り合わせる方法などがあるが、積層する樹脂などの物性に応じて、積層方法を選択すればよい。積層構成としては、例えば、低温でのシャットダウン性を付与する目的でポリエチレンを含む層を積層したり、強度や耐熱性を付与する目的で粒子を含む層を積層したりすることができる。 The porous polypropylene film of the present invention may have a laminated structure for the purpose of imparting various effects. The number of laminations may be two-layer lamination, three-layer lamination, or a larger number of laminations. Both the laminated form having the porous polypropylene film of the present invention as at least one surface layer and the porous polypropylene film of the present invention. Any of laminated forms in which the same or different surface layers are formed on the surface may be adopted. As a lamination method, there are a feed block method by co-extrusion, a multi-manifold method, a method of laminating porous films by lamination, and the lamination method may be selected according to the physical properties of the resin to be laminated. As a laminated structure, for example, a layer containing polyethylene may be laminated for the purpose of imparting a shutdown property at a low temperature, or a layer containing particles may be laminated for the purpose of imparting strength or heat resistance.
 以下に本発明の多孔性ポリプロピレンフィルムの製造方法を具体的な一例をもとに説明する。なお、本発明のフィルムの製造方法はこれに限定されるものではない。 Hereinafter, the method for producing the porous polypropylene film of the present invention will be described based on a specific example. In addition, the manufacturing method of the film of this invention is not limited to this.
 ポリプロピレン樹脂として、MFR8g/10分の市販のホモポリプロピレン樹脂94.5質量部、MFR1,000g/10分の市販の低分子量ポリプロピレン樹脂5質量部、β晶核剤としてN,N’-ジシクロヘキシル-2,6-ナフタレンジカルボキシアミド0.3質量部、酸化防止剤として“IRGANOX(登録商標)”1010、“IRGAFOS(登録商標)”168を各々0.1質量部、滑剤としてベヘン酸カルシウム0.05質量部がこの比率で混合されるように計量ホッパーから二軸押出機に原料供給して溶融混練を行い、ストランドをダイから吐出して、25℃の水槽にて冷却固化し、チップ状にカットしてポリプロピレン樹脂組成物(a)を準備する。この際、溶融温度は280~310℃とすることが好ましく、チップの断面形状は、円、楕円、長方形のいずれでもかまわない。 As polypropylene resin, 94.5 parts by mass of commercially available homopolypropylene resin with MFR 8 g / 10 min, 5 parts by mass of commercially available low molecular weight polypropylene resin with MFR 1,000 g / 10 min, and N, N′-dicyclohexyl-2 as β crystal nucleating agent , 6-Naphthalenedicarboxamide 0.3 parts by mass, “IRGANOX (registered trademark)” 1010 as an antioxidant, 0.1 parts by mass of “IRGAFOS (registered trademark)” 168, and 0.05 mg of calcium behenate as a lubricant Feed the raw material from the weighing hopper to the twin screw extruder so that the mass part is mixed at this ratio, melt and knead, discharge the strand from the die, cool and solidify in a 25 ° C water bath, cut into chips Thus, a polypropylene resin composition (a) is prepared. At this time, the melting temperature is preferably 280 to 310 ° C., and the cross-sectional shape of the chip may be any of a circle, an ellipse, and a rectangle.
 次に、ポリプロピレン樹脂組成物(a)を単軸押出機に供給し、200~230℃にて溶融押出を行う。そして、ポリマー管の途中に設置したフィルターにて異物や変性ポリマーなどを除去した後、Tダイよりキャストドラム上に吐出し、未延伸シートを得る。ここで、共押出しによりフィルムを積層構造とする場合には、複数の押出機を用い、フィードブロック方式やマルチマニホールド方式により積層構造とした後、Tダイよりキャストドラム上に吐出し、積層未延伸シートとすることができる。キャストドラムは、表面温度が105~130℃であることが、R2/R1の値制御の観点から好ましく、120~130℃がさらに好ましい。この際、特にシートの端部の成形が、後の延伸性に影響するので、端部にスポットエアーを吹き付けてドラムに密着させることが好ましい。また、シート全体のドラム上への密着状態から、必要に応じて全面にエアナイフを用いて空気を吹き付けてもよい。 Next, the polypropylene resin composition (a) is supplied to a single screw extruder, and melt extrusion is performed at 200 to 230 ° C. And after removing a foreign material, a modified polymer, etc. with the filter installed in the middle of the polymer pipe | tube, it discharges on a cast drum from T-die, and an unstretched sheet is obtained. Here, when the film is made into a laminated structure by co-extrusion, a plurality of extruders are used to form a laminated structure by a feed block method or a multi-manifold method, and then discharged from a T-die onto a cast drum. It can be a sheet. The cast drum preferably has a surface temperature of 105 to 130 ° C. from the viewpoint of R2 / R1 value control, and more preferably 120 to 130 ° C. At this time, particularly, the forming of the end portion of the sheet affects the subsequent stretchability, and therefore it is preferable that the end portion is sprayed with spot air to be in close contact with the drum. Further, air may be blown over the entire surface using an air knife as necessary from the state in which the entire sheet is in close contact with the drum.
 次に、得られたキャストシートを二軸配向させ、フィルム中に空孔を形成する。二軸配向させる方法としては、フィルム長手方向に延伸後幅方向に延伸、あるいは幅方向に延伸後長手方向に延伸する逐次二軸延伸法、またはフィルムの長手方向と幅方向をほぼ同時に延伸していく同時二軸延伸法などを用いることができるが、セパレータ抵抗と機械強度のバランスの取れたフィルムを得やすいという点で逐次二軸延伸法を採用することが好ましく、特に、長手方向に延伸後、幅方向に延伸することが好ましい。 Next, the obtained cast sheet is biaxially oriented to form pores in the film. As a biaxial orientation method, the film is stretched in the longitudinal direction of the film and then stretched in the width direction, or the sequential biaxial stretching method in which the film is stretched in the width direction and then stretched in the longitudinal direction. The simultaneous biaxial stretching method can be used, but it is preferable to adopt the sequential biaxial stretching method in that it is easy to obtain a film having a balance between the separator resistance and the mechanical strength, particularly after stretching in the longitudinal direction. The film is preferably stretched in the width direction.
 具体的な延伸条件としては、まず、キャストシートの温度を制御しながら長手方向に延伸する。温度制御の方法は、温度制御された回転ロールを用いる方法、熱風オーブンを使用する方法などを採用することができる。長手方向の延伸温度としては、R2/R1の値と機械強度の両立の観点から、90~140℃であることが好ましく、より好ましくは100~130℃、特に好ましくは115~125℃である。90℃未満では、フィルムが破断する場合がある。また、140℃を超えると、透気抵抗が増大する場合がある。R2/R1の値と機械強度の両立の観点から、延伸倍率としては、3~10倍であることが好ましい。より好ましくは4.5~6倍である。延伸倍率を高くするほどセパレータ抵抗は低下するが、10倍を超えて延伸すると、次の横延伸工程でフィルム破れが起きやすくなるほか、透気抵抗が低くなりすぎて機械強度が低下する場合がある。 As specific stretching conditions, first, stretching is performed in the longitudinal direction while controlling the temperature of the cast sheet. As a temperature control method, a method using a temperature-controlled rotating roll, a method using a hot air oven, or the like can be adopted. The stretching temperature in the longitudinal direction is preferably 90 to 140 ° C., more preferably 100 to 130 ° C., and particularly preferably 115 to 125 ° C., from the viewpoint of achieving both the R2 / R1 value and the mechanical strength. If it is less than 90 degreeC, a film may fracture | rupture. On the other hand, if the temperature exceeds 140 ° C., the air resistance may increase. From the viewpoint of achieving both R2 / R1 value and mechanical strength, the draw ratio is preferably 3 to 10 times. More preferably, it is 4.5 to 6 times. As the draw ratio is increased, the separator resistance decreases. However, if the film is stretched more than 10 times, film breakage is likely to occur in the next transverse stretching process, and the air permeability resistance becomes too low and the mechanical strength may decrease. is there.
 次に、テンター式延伸機にフィルム端部を把持させて導入する。横延伸温度は、R2/R1の値と機械強度の両立の観点から、130~155℃であることが好ましく、より好ましくは145~155℃である。130℃未満ではフィルムが破断する場合があり、155℃を超えると透気抵抗が増大する場合がある。幅方向の延伸倍率は、引張強度向上の観点から2~12倍であることが好ましい。より好ましくは4~11倍、更に好ましくは7~10倍である。2倍未満であると、透気抵抗が増大したり、幅方向の引張強度が低下する場合がある。12倍を超えるとフィルムが破断する場合がある。なお、このときの横延伸速度としては、500~6,000%/分で行うことが好ましく、1,000~5,000%/分であればより好ましい。 Next, the film end is held by a tenter type stretching machine and introduced. The transverse stretching temperature is preferably 130 to 155 ° C., more preferably 145 to 155 ° C., from the viewpoint of achieving both the R2 / R1 value and the mechanical strength. If it is less than 130 degreeC, a film may fracture | rupture, and if it exceeds 155 degreeC, air permeability resistance may increase. The draw ratio in the width direction is preferably 2 to 12 times from the viewpoint of improving the tensile strength. More preferably, it is 4 to 11 times, and further preferably 7 to 10 times. If it is less than twice, the air resistance may increase or the tensile strength in the width direction may decrease. If it exceeds 12 times, the film may break. The transverse stretching speed at this time is preferably 500 to 6,000% / min, more preferably 1,000 to 5,000% / min.
 透気抵抗を低減させながら機械強度を向上させる観点から、面積倍率(縦延伸倍率×横延伸倍率)は、高倍とするほうが好ましく、具体的には20倍以上が好ましく、30倍以上がより好ましく、45倍以上が特に好ましい。面積倍率が低倍の場合、具体的には20倍未満の場合、透気抵抗低減と機械強度向上が困難となる。面積倍率の上限は特に設けないが、60倍を超えると製膜性が悪くなり破れやすくなる場合がある。 From the viewpoint of improving mechanical strength while reducing air resistance, the area ratio (longitudinal stretch ratio × transverse stretch ratio) is preferably high, specifically 20 times or more, more preferably 30 times or more. 45 times or more is particularly preferable. When the area magnification is low, specifically, when it is less than 20 times, it is difficult to reduce air resistance and improve mechanical strength. The upper limit of the area magnification is not particularly provided, but if it exceeds 60 times, the film forming property is deteriorated and may be easily broken.
 横延伸に続いて、テンター内で熱処理工程を行う。ここで熱処理工程は、横延伸後の幅のまま熱処理を行う熱固定ゾーン(以後、HS1ゾーンと記す)、テンターの幅を狭めてフィルムを弛緩させながら熱処理を行うリラックスゾーン(以後、Rxゾーンと記す)、リラックス後の幅のまま熱処理を行う熱固定ゾーン(以後、HS2ゾーンと記す)の3ゾーンに分かれていることが、セパレータ抵抗と機械強度の両立、さらには低熱収の観点から好ましい。 続 い Following transverse stretching, a heat treatment step is performed in the tenter. Here, the heat treatment step includes a heat setting zone (hereinafter referred to as HS1 zone) in which heat treatment is performed with the width after transverse stretching, and a relaxation zone (hereinafter referred to as Rx zone) in which heat treatment is performed while relaxing the film by narrowing the width of the tenter. It is preferable to divide into three zones, a heat fixing zone (hereinafter referred to as HS2 zone) in which heat treatment is performed with the width after relaxation, from the viewpoint of compatibility between separator resistance and mechanical strength, and low heat yield.
 HS1ゾーンの温度は、R2/R1の値と機械強度の両立の観点から140~165℃であることが好ましく、150~160℃であることがより好ましい。140℃未満であると、幅方向の熱収縮率が大きくなる場合がある。165℃を超えると、フィルムの配向緩和が大きすぎるために、続くRxゾーンにおいて弛緩率を高くできず、R2/R1の値と機械強度の両立が困難となる場合があるほか、高温により孔周辺のポリマーが溶けて透気抵抗が大きくなる場合がある。 The temperature of the HS1 zone is preferably 140 to 165 ° C., more preferably 150 to 160 ° C. from the viewpoint of achieving both R2 / R1 value and mechanical strength. If it is lower than 140 ° C., the thermal shrinkage in the width direction may increase. If the temperature exceeds 165 ° C, the relaxation of the orientation of the film is too large, so that the relaxation rate cannot be increased in the subsequent Rx zone, and it may be difficult to achieve both R2 / R1 and mechanical strength. In some cases, the air resistance is increased due to melting of the polymer.
 HS1ゾーンでの熱処理時間は、幅方向の熱収縮率と生産性の両立の観点から0.1秒以上10秒以下であることが好ましい。 The heat treatment time in the HS1 zone is preferably 0.1 seconds or more and 10 seconds or less from the viewpoint of achieving both the thermal shrinkage in the width direction and the productivity.
 本発明におけるRxゾーンでの弛緩率は、R2/R1の値と機械強度の向上に加えて熱収縮率低減の観点から、5~35%であることが好ましく、10~25%であるとより好ましい。弛緩率が5%未満であると熱収縮率が大きくなる場合がある。35%を超えると透気抵抗が増大する場合があるほか、幅方向の厚み斑や平面性が低下する場合がある。 The relaxation rate in the Rx zone in the present invention is preferably from 5 to 35%, more preferably from 10 to 25%, from the viewpoint of reducing the heat shrinkage rate in addition to the improvement of the value of R2 / R1 and mechanical strength. preferable. If the relaxation rate is less than 5%, the thermal shrinkage rate may increase. If it exceeds 35%, air resistance may increase, and thickness unevenness and flatness in the width direction may decrease.
 Rxゾーンの温度は、R2/R1の値と熱収縮率低減の観点から、155~170℃であることが好ましく、160~165℃であるとより好ましい。Rxゾーンの温度が155℃未満であると、弛緩の為の収縮応力が低くなり、上述した高い弛緩率を達成できない場合があるほか、幅方向の熱収縮率が大きくなる場合がある。170℃を超えると、高温により孔周辺のポリマーが溶けてセパレータ抵抗が増大する場合がある。 The temperature of the Rx zone is preferably 155 to 170 ° C., more preferably 160 to 165 ° C., from the viewpoint of the value of R2 / R1 and the reduction of the heat shrinkage rate. When the temperature of the Rx zone is less than 155 ° C., the shrinkage stress for relaxation is lowered, and the above-described high relaxation rate may not be achieved, and the thermal shrinkage rate in the width direction may be increased. When the temperature exceeds 170 ° C., the polymer around the pores may melt due to high temperature, and the separator resistance may increase.
 Rxゾーンでの弛緩速度は、100~1,000%/分であることが好ましく、150~500%/分であることがより好ましい。弛緩速度が100%/分未満であると、製膜速度を遅くしたり、テンター長さを長くする必要があり、生産性に劣る場合がある。1,000%/分を超えると、テンターのレール幅が縮む速度よりフィルムが収縮する速度が遅くなり、テンター内でフィルムがばたついて破れたり、幅方向の物性ムラや平面性の低下を生じる場合がある。 The relaxation rate in the Rx zone is preferably 100 to 1,000% / min, and more preferably 150 to 500% / min. When the relaxation rate is less than 100% / min, it is necessary to slow down the film forming rate or increase the tenter length, which may be inferior in productivity. If it exceeds 1,000% / min, the speed at which the film shrinks becomes slower than the speed at which the rail width of the tenter shrinks, the film flutters in the tenter and breaks, or the physical properties in the width direction are uneven and the flatness is lowered. There is a case.
 HS2ゾーンの温度は、R2/R1の値と機械強度の両立の観点から、155~165℃であることが好ましく、160~165℃であることがより好ましい。155℃未満であると、熱弛緩後のフィルムの緊張が不十分となり、幅方向の物性ムラや平面性の低下を生じたり、幅方向の熱収縮率が大きくなる場合がある。また、HSゾーン2の温度が高い方が、機械強度が高くなる傾向があり、155℃未満では機械強度に劣る場合がある。165℃を超えると、高温により孔周辺のポリマーが溶けてセパレータ抵抗が増大する場合がある。 The temperature of the HS2 zone is preferably 155 to 165 ° C, more preferably 160 to 165 ° C, from the viewpoint of achieving both the R2 / R1 value and the mechanical strength. When the temperature is lower than 155 ° C., the tension of the film after thermal relaxation becomes insufficient, which may cause uneven physical properties in the width direction and a decrease in flatness, or increase the heat shrinkage rate in the width direction. Further, the higher the temperature of the HS zone 2, the higher the mechanical strength tends to be. If it exceeds 165 ° C., the polymer around the pores may melt due to the high temperature and the separator resistance may increase.
 本発明におけるHS2ゾーンでの熱処理時間は、幅方向の物性ムラや平面性と生産性の両立の観点から0.1秒以上10秒以下であることが好ましい。熱固定工程後のフィルムは、テンターのクリップで把持した耳部をスリットして除去し、ワインダーでコアに巻き取って製品とする。
 その後、少なくとも片面にコート層を設けて、機能層を有する多孔性フィルムとしてもよい。
In the present invention, the heat treatment time in the HS2 zone is preferably 0.1 seconds or more and 10 seconds or less from the viewpoint of physical property unevenness in the width direction and flatness and productivity. The film after the heat setting step is removed by slitting the ears gripped by the tenter clip, and wound around the core with a winder to obtain a product.
Thereafter, a coating layer may be provided on at least one side to form a porous film having a functional layer.
 本発明の多孔性ポリプロピレンフィルムは、塗工模擬液の塗付前、塗布後のセパレータ抵抗の比であるR2/R1の値が低いため、有機溶媒を含む塗液を用いて機能層を形成しても良好な電池特性を保つことが可能である。コーティング方法としては種々の手法を用いることができ、例えば、溶剤にアセトン、エタノール、テトラヒドロフラン、N-メチル-2-ピロリドンなどから選ばれる少なくとも1種類の有機溶媒を使用し、耐熱樹脂や無機粒子と、それらを結着させるための機能性ポリマーと、必要に応じて増粘剤などの添加剤を添加して塗液を調合し、ダイコート法やグラビアコート法を用いて、本発明の多孔性ポリプロピレンフィルムの少なくとも片面に塗工し、乾燥オーブンを用いて有機溶媒を乾燥させることにより機能層を有する多孔性フィルムを得ることができる。 Since the porous polypropylene film of the present invention has a low R2 / R1 value of the separator resistance ratio before and after application of the application simulation liquid, a functional layer is formed using a coating liquid containing an organic solvent. However, good battery characteristics can be maintained. As the coating method, various methods can be used. For example, at least one organic solvent selected from acetone, ethanol, tetrahydrofuran, N-methyl-2-pyrrolidone and the like is used as a solvent, The porous polypropylene of the present invention is prepared using a die coating method or a gravure coating method by adding a functional polymer for binding them and an additive such as a thickener as necessary to prepare a coating solution. A porous film having a functional layer can be obtained by coating on at least one side of the film and drying the organic solvent using a drying oven.
 本発明の多孔性ポリプロピレンフィルムは、耐熱性、機械強度、生産性に優れるだけでなく、押出安定性に優れることから、包装用品、衛生用品、農業用品、建築用品、医療用品、分離膜、光拡散板、反射シート用途で用いることができるが、耐熱性や電極との接着性などの性能を付与もしくは向上させる機能層を設けた際、抵抗が上昇しにくいことから、特に蓄電デバイス用のセパレータとして好ましく用いることができる。ここで、蓄電デバイスとしては、リチウムイオン二次電池に代表される非水電解液二次電池や、リチウムイオンキャパシタなどの電気二重層キャパシタなどを挙げることができる。このような蓄電デバイスは充放電することで繰り返し使用することができるので、産業装置や生活機器、電気自動車やハイブリッド電気自動車などの電源装置として使用することができる。本発明の多孔性ポリプロピレンフィルム上に機能層を積層してなる蓄電デバイス用セパレータは、セパレータ抵抗、生産性に優れるだけでなく、耐熱性、耐短絡性に優れることから、産業装置や生活機器、電気自動車やハイブリッド電気自動車などの電源装置用の蓄電デバイスセパレータとして好ましく用いることができる。本発明の多孔性ポリプロピレンフィルムを用いたセパレータと、正極と、負極と、電解液を備えた蓄電デバイスは、セパレータの優れた特性から産業機器や自動車の電源装置に好適に用いることができる。 The porous polypropylene film of the present invention not only has excellent heat resistance, mechanical strength, and productivity, but also has excellent extrusion stability, so that it can be used for packaging products, sanitary products, agricultural products, building products, medical products, separation membranes, light. Although it can be used for diffuser plates and reflective sheet applications, it is difficult to increase resistance when a functional layer that imparts or improves performance such as heat resistance and adhesion to electrodes is used. Can be preferably used. Here, examples of the electricity storage device include a non-aqueous electrolyte secondary battery represented by a lithium ion secondary battery, and an electric double layer capacitor such as a lithium ion capacitor. Since such an electricity storage device can be repeatedly used by charging and discharging, it can be used as a power supply device for industrial devices, household equipment, electric vehicles, hybrid electric vehicles, and the like. The separator for an electricity storage device formed by laminating a functional layer on the porous polypropylene film of the present invention is not only excellent in separator resistance and productivity, but also excellent in heat resistance and short circuit resistance. It can be preferably used as a power storage device separator for power supply devices such as electric vehicles and hybrid electric vehicles. The separator using the porous polypropylene film of the present invention, the positive electrode, the negative electrode, and the electrolytic solution can be suitably used for power supplies of industrial equipment and automobiles because of the excellent characteristics of the separator.
 以下、実施例により本発明を詳細に説明する。 Hereinafter, the present invention will be described in detail by way of examples.
 (1)塗工模擬フィルムの作成
 PVdF-HFP共重合体(アルケマ社製:KYNAR POWERFLEX LBG)5質量部を、アセトン(関東化学社製:特級)95質量部に加え、12時間撹拌することで溶解させ、塗工模擬液を作成した。各実施例または比較例で得られた多孔性ポリプロピレンフィルムを長手方向150mm×幅方向100mmの大きさに切り出し、厚紙(HSKアイボリー、A4サイズ)に乗せ、4隅をテープで固定した。塗液を多孔フィルムの端に幅方向に亘ってスポイトで1.5mL乗せたのち、松尾産業(株)製バーコーター#10を長手方向に動かして(バーコーター方式)塗液を塗布し、40℃で1分間熱風乾燥させた。その後4隅を切り離し、塗工模擬フィルムを得た。なお、塗液によるセパレータ抵抗への影響を判断するため、塗工模擬液として、機能層を形成する耐熱樹脂や無機粒子、および増粘剤などの添加剤は混入させずに調合を行ったものを用いた。
 また、特性は以下の方法により測定、評価を行った。
(1) Preparation of coating simulation film 5 parts by mass of PVdF-HFP copolymer (manufactured by Arkema: KYNAR POWERFLEX LBG) is added to 95 parts by mass of acetone (manufactured by Kanto Chemical Co., Ltd .: special grade) and stirred for 12 hours. Dissolved to create a simulated coating solution. The porous polypropylene film obtained in each Example or Comparative Example was cut into a size of 150 mm in the longitudinal direction and 100 mm in the width direction, and placed on cardboard (HSK ivory, A4 size), and the four corners were fixed with tape. After applying 1.5 mL of the coating liquid to the end of the porous film with a dropper across the width direction, the bar coating machine # 10 manufactured by Matsuo Sangyo Co., Ltd. was moved in the longitudinal direction (bar coating method) to apply the coating liquid. It was dried with hot air at 1 ° C. for 1 minute. Thereafter, the four corners were cut off to obtain a coating simulation film. In addition, in order to judge the effect of the coating liquid on the separator resistance, the coating simulation liquid was prepared without mixing additives such as heat-resistant resin, inorganic particles, and thickeners that form the functional layer. Was used.
The characteristics were measured and evaluated by the following methods.
 (2)厚み
 接触式の膜厚計ミツトヨ社製ライトマチックVL-50A(10.5mmφ超硬球面測定子、測定荷重0.06N)にて、多孔性ポリプロピレンフィルムの厚みを測定した。測定は場所を替えて10回行い、その平均値を多孔性ポリプロピレンフィルムの厚みとした。
(2) Thickness The thickness of the porous polypropylene film was measured using a contact-type film thickness meter, Mitsutyo Lightmatic VL-50A (10.5 mmφ carbide spherical surface probe, measuring load 0.06 N). The measurement was performed 10 times at different locations, and the average value was taken as the thickness of the porous polypropylene film.
 (3)透気抵抗
 多孔性ポリプロピレンフィルムまたは塗工模擬フィルムから100mm×100mmの大きさの正方形を切取り試料とした。JIS P 8117(1998)のB形ガーレー試験器を用いて、23℃、相対湿度65%にて、100mlの空気の透過時間の測定を行った。測定は試料を替えて3回行い、透過時間の平均値をそのフィルムの透気抵抗とした。
(3) Air permeability resistance A square having a size of 100 mm × 100 mm was cut from a porous polypropylene film or a coating simulation film, and used as a sample. Using a JIS P 8117 (1998) B-type Gurley tester, the permeation time of 100 ml of air was measured at 23 ° C. and a relative humidity of 65%. The measurement was performed three times by changing the sample, and the average value of the permeation time was taken as the air resistance of the film.
 (4)セパレータ抵抗:R1またはR2
 多孔性ポリプロピレンフィルムまたは塗工模擬フィルムを直径24mmの円形に打ち抜いた。下から直径16mmのSUS板、多孔性ポリプロピレンフィルムまたは塗工模擬フィルム、直径16mmのSUS板の順に重ね、蓋付ステンレス金属製小容器(宝泉(株)製、HSセル、ばね圧1kgf)に収納した。容器と蓋とは絶縁され、容器と蓋はSUS板と接している。この容器内にエチレンカーボネート:ジメチルカーボネート=3:7(体積比)の混合溶媒に溶質としてLiPFを濃度1モル/リットルとなるように溶解させた電解液を注入して密閉し、評価用セルを作製した。
 作製した各評価用セルについて、25℃雰囲気下で、電圧振幅10mV、周波数10Hz~100kHzの条件下で、交流インピーダンスを測定し、Cole-Coleプロットを図1の等価回路を用いてセパレータ抵抗を求めた。測定は試料を替えて5回行い、多孔性ポリプロピレンフィルムで得られたセパレータ抵抗の平均値をセパレータ抵抗R1(Ω)、塗工模擬フィルムで得られたセパレータ抵抗の平均値をセパレータ抵抗R2(Ω)とした。
(4) Separator resistance: R1 or R2
A porous polypropylene film or a coating simulation film was punched into a circle having a diameter of 24 mm. From the bottom, SUS plate with a diameter of 16 mm, porous polypropylene film or coating simulation film, SUS plate with a diameter of 16 mm are stacked in this order, and a stainless steel small container with a lid (manufactured by Hosen Co., Ltd., HS cell, spring pressure 1 kgf). Stowed. The container and the lid are insulated, and the container and the lid are in contact with the SUS plate. In this container, an electrolytic solution in which LiPF 6 was dissolved as a solute in a mixed solvent of ethylene carbonate: dimethyl carbonate = 3: 7 (volume ratio) to a concentration of 1 mol / liter was injected and sealed, and an evaluation cell was obtained. Was made.
For each of the fabricated cells for evaluation, the AC impedance was measured under the conditions of a voltage amplitude of 10 mV and a frequency of 10 Hz to 100 kHz in a 25 ° C. atmosphere, and the separator resistance was obtained using the Cole-Cole plot using the equivalent circuit of FIG. It was. The measurement was performed five times with different samples. The separator resistance R1 (Ω) was the average value of the separator resistance obtained with the porous polypropylene film, and the separator resistance R2 (Ω was the average value of the separator resistance obtained with the coating simulation film. ).
 (5)β晶形成能
 多孔性ポリプロピレンフィルム5mgを試料としてアルミニウム製のパンに採取し、示差走査熱量計(セイコー電子工業製RDC220)を用いて測定した。まず、窒素雰囲気下で室温から220℃まで40℃/分で昇温(ファーストラン)し、5分間保持した後、20℃まで10℃/分で冷却(ファーストラン)した。5分保持後、再度10℃/分で昇温(セカンドラン)した際に観測される融解ピークについて、145~157℃の温度領域にピークが存在する融解をβ晶の融解ピーク、158℃以上にピークが観察される融解をα晶の融解ピークとして、高温側の平坦部を基準に引いたベースラインとピークに囲まれる領域の面積から、それぞれの融解熱量を求め、α晶の融解熱量をΔHα、β晶の融解熱量をΔHβとしたとき、以下の式で計算される値をβ晶形成能とした。なお、融解熱量の校正はインジウムを用いて行った。
  β晶形成能(%) = 〔ΔHβ / (ΔHα + ΔHβ)〕 × 100
 ただし、上記方法において、140~160℃に頂点を有する融解ピークが存在するが、β晶の融解に起因するものか不明確な場合は、140~160℃に融解ピークの頂点が存在することと、下記条件で調製したサンプルについて、上記2θ/θスキャンで得られる回折プロファイルの各回折ピーク強度から算出されるK値が0.3以上であることをもってβ晶形成能を有するものと判定する。
(5) β crystal forming ability 5 mg of a porous polypropylene film was taken as a sample in an aluminum pan and measured using a differential scanning calorimeter (Seiko Denshi Kogyo RDC220). First, the temperature was raised from room temperature to 220 ° C. at 40 ° C./min in a nitrogen atmosphere (first run), held for 5 minutes, and then cooled to 20 ° C. at 10 ° C./min (first run). The melting peak observed when the temperature is raised again (second run) at 10 ° C / min after holding for 5 minutes is the melting peak of 145 ° C to 157 ° C. The melting of the α crystal is the melting peak of the α crystal, the melting peak of the α crystal is taken as the melting peak of the base, and the area of the region surrounded by the peak drawn from the flat portion on the high temperature side. When the heat of fusion of ΔHα and β crystals was ΔHβ, the value calculated by the following formula was defined as β crystal forming ability. The heat of fusion was calibrated using indium.
β crystal forming ability (%) = [ΔHβ / (ΔHα + ΔHβ)] × 100
However, in the above method, a melting peak having an apex at 140 to 160 ° C. exists, but if it is unclear whether it is caused by the melting of β crystal, the apex of the melting peak exists at 140 to 160 ° C. A sample prepared under the following conditions is determined to have β-crystal forming ability when the K value calculated from each diffraction peak intensity of the diffraction profile obtained by the 2θ / θ scan is 0.3 or more.
 下記にサンプル調製条件、広角X線回折法の測定条件を示す。
 ・サンプル:
 フィルムの方向を揃え、熱プレス調製後のサンプル厚さが1mm程度になるよう重ね合わせる。このサンプルを0.5mm厚みの2枚のアルミ板で挟み、280℃で3分間熱プレスして融解・圧縮させ、ポリマー鎖をほぼ無配向化する。得られたシートを、アルミ板ごと取り出した直後に100℃の沸騰水中に5分間浸漬して結晶化させる。その後25℃の雰囲気下で冷却して得られるシートを切り出したサンプルを測定に供する。
 ・広角X線回折方法測定条件:
 上記条件に準拠し、2θ/θスキャンによりX線回折プロファイルを得る。
 ここで、K値は、2θ=16°付近に観測され、β晶に起因する(300)面の回折ピーク強度(Hβ1とする)と2θ=14,17,19°付近にそれぞれ観測され、α晶に起因する(110)、(040)、(130)面の回折ピーク強度(それぞれHα1、Hα2、Hα3とする)とから、下記の数式により算出できる。K値はβ晶の比率を示す経験的な値であり、各回折ピーク強度の算出方法などK値の詳細については、ターナージョーンズ(A.Turner Jones)ら,“マクロモレキュラーレ ヒェミー”(Makromolekulare Chemie),75,134-158頁(1964)を参考にすればよい。
  K = Hβ1/{Hβ1+(Hα1+Hα2+Hα3)}
 なお、ポリプロピレンの結晶型(α晶、β晶)の構造、得られる広角X線回折プロファイルなどは、例えば、エドワード・P・ムーア・Jr.著、“ポリプロピレンハンドブック”、工業調査会(1998)、p.135-163;田所宏行著、“高分子の構造”、化学同人(1976)、p.393;ターナージョーンズ(A.Turner Jones)ら,“マクロモレキュラーレ ヒェミー”(Makromolekulare Chemie),75,134-158頁(1964)や、これらに挙げられた参考文献なども含めて多数の報告があり、それを参考にすればよい。
The sample preparation conditions and the measurement conditions of the wide angle X-ray diffraction method are shown below.
·sample:
The direction of the film is aligned, and the samples are stacked so that the sample thickness after hot press preparation is about 1 mm. This sample is sandwiched between two aluminum plates having a thickness of 0.5 mm, and is hot-pressed at 280 ° C. for 3 minutes to be melted and compressed to make the polymer chain substantially non-oriented. The obtained sheet is crystallized by being immersed in boiling water at 100 ° C. for 5 minutes immediately after being taken out together with the aluminum plate. Then, a sample obtained by cutting a sheet obtained by cooling in an atmosphere at 25 ° C. is used for measurement.
・ Wide-angle X-ray diffraction method measurement conditions:
In accordance with the above conditions, an X-ray diffraction profile is obtained by 2θ / θ scanning.
Here, the K value is observed in the vicinity of 2θ = 16 °, and is observed in the diffraction peak intensity of the (300) plane (referred to as Hβ1) due to the β crystal and in the vicinity of 2θ = 14, 17, 19 °, and α From the diffraction peak intensities (referred to as Hα1, Hα2, and Hα3, respectively) of the (110), (040), and (130) planes due to the crystal, it can be calculated by the following mathematical formula. The K value is an empirical value indicating the ratio of β crystals. For details of the K value, such as the calculation method of each diffraction peak intensity, see A. Turner Jones et al., “Macromoleculare Chemie” (Macromoleculare Chemie). ), 75, pages 134-158 (1964).
K = Hβ1 / {Hβ1 + (Hα1 + Hα2 + Hα3)}
The structure of the polypropylene crystal type (α crystal, β crystal), the obtained wide-angle X-ray diffraction profile, etc. are described in, for example, Edward P. Moore Jr. Written by "Polypropylene Handbook", Industrial Research Committee (1998), p. 135-163; Hiroyuki Tadokoro, “Structure of Polymer”, Kagaku Dojin (1976), p. 393; A. Turner Jones et al., “Macromoleculare Chemie”, 75, 134-158 (1964), and many reports including references cited therein. You can refer to it.
 (6)メルトフローレート(MFR)
 ポリプロピレン樹脂のMFRは、JIS K 7210(1995)の条件M(230℃、2.16kg)に準拠して測定した。
(6) Melt flow rate (MFR)
The MFR of the polypropylene resin was measured according to the condition M (230 ° C., 2.16 kg) of JIS K 7210 (1995).
 (7)破断強度
 多孔性ポリプロピレンフィルムを長さ150mm×幅10mmの矩形に切り出しサンプルとした。なお、150mmの長さ方向をフィルムの幅方向に合わせた。引張試験機(オリエンテック製テンシロンUCT-100)を用いて、初期チャック間距離50mmとし、引張速度を300mm/分としてフィルムの幅方向に引張試験を行った。サンプルが破断した時にフィルムにかかっていた荷重を読み取り、試験前の試料の断面積(フィルム厚み×幅(10mm))で除した値を破断強度の指標とした。測定は各サンプル5回ずつ行い、その平均値で評価を行った。
(7) Breaking strength A porous polypropylene film was cut into a rectangle having a length of 150 mm and a width of 10 mm and used as a sample. In addition, the length direction of 150 mm was matched with the width direction of the film. Using a tensile tester (Orientec Tensilon UCT-100), the initial chuck distance was 50 mm, the tensile speed was 300 mm / min, and a tensile test was performed in the width direction of the film. A load applied to the film when the sample broke was read, and a value obtained by dividing the load by the cross-sectional area of the sample before the test (film thickness × width (10 mm)) was used as an index of the breaking strength. The measurement was performed 5 times for each sample, and the average value was evaluated.
 (8)熱収縮率
 多孔性ポリプロピレンフィルムを長さ150mm×幅10mmの矩形に切り出しサンプルとした。なお、150mmの長さ方向をフィルムの幅方向に合わせた。サンプルの中央部に100mmの間隔で標線を描き、加熱前の標線間距離Lを測定した。サンプルの上端を把持し、下端に3gの加重をかけ、135℃に加熱した熱風オーブン内に吊り下げて60分間静置し加熱処理を行った。熱処理後、放冷し、加重を外したあと、加熱後の標線間距離Lを測定し、以下の式で計算される値を熱収縮率とした。測定は各サンプルにつき5回実施して平均値を表1に記した。
 熱収縮率(%) = (L-L)/L×100
(8) Heat shrinkage rate A porous polypropylene film was cut into a rectangular shape having a length of 150 mm and a width of 10 mm as a sample. In addition, the length direction of 150 mm was matched with the width direction of the film. Mark lines were drawn at 100 mm intervals in the center of the sample, and the distance L 0 between the mark lines before heating was measured. The upper end of the sample was gripped, a weight of 3 g was applied to the lower end, the sample was suspended in a hot air oven heated to 135 ° C. and left to stand for 60 minutes for heat treatment. After the heat treatment, allowed to cool, after removing the weight, the gauge length L 1 after heating was measured and the value calculated by the following formula was heat shrinkage. The measurement was performed 5 times for each sample, and the average value is shown in Table 1.
Thermal contraction rate (%) = (L 0 −L 1 ) / L 0 × 100
(9)ポリプロピレン樹脂の融点(Tm)
 多孔性ポリプロピレンフィルムに用いるポリプロピレン樹脂5mgを試料としてアルミニウム製のパンに採取し、示差走査熱量計(セイコー電子工業製RDC220)を用いて測定した。まず、窒素雰囲気下で室温から220℃まで40℃/分で昇温(ファーストラン)し、5分間保持した後、20℃まで10℃/分で冷却(ファーストラン)した。5分保持後、再度10℃/分で昇温(セカンドラン)した際に観測される融解ピークをポリプロピレン樹脂の融点とした。
(9) Melting point (Tm) of polypropylene resin
5 mg of polypropylene resin used for the porous polypropylene film was sampled in an aluminum pan and measured using a differential scanning calorimeter (Seiko Denshi Kogyo RDC220). First, the temperature was raised from room temperature to 220 ° C. at 40 ° C./min in a nitrogen atmosphere (first run), held for 5 minutes, and then cooled to 20 ° C. at 10 ° C./min (first run). The melting peak observed when the temperature was raised again (second run) at 10 ° C./min after holding for 5 minutes was taken as the melting point of the polypropylene resin.
 (実施例1)
 ポリプロピレン樹脂として、MFR=7.5g/10分の住友化学(株)製ホモポリプロピレンFLX80E4(融点=165℃)を94.7質量部、MFR=1,000g/10分の(株)プライムポリマー製低分子量ポリプロピレンS10CL(融点=163℃)を5質量部、β晶核剤としてN,N’-ジシクロヘキシル-2,6-ナフタレンジカルボキシアミド(新日本理化(株)製、NU-100)を0.3質量部、ベヘン酸カルシウム0.05質量部、さらに酸化防止剤であるチバ・スペシャリティ・ケミカルズ製“IRGANOX(登録商標)”1010、“IRGAFOS(登録商標)”168を各々0.1質量部ずつがこの比率で混合されるように計量ホッパーからL/D=41の二軸押出機に原料供給し、300℃で溶融混練を行い、ダイから吐出して、25℃の水槽にて冷却固化し、チップ状にカットしてなるポリプロピレン組成物(I)のチップを得た。
 得られたポリプロピレン組成物(I)を単軸の溶融押出機に供給し、210℃で溶融押出を行い、60μmカットの焼結フィルターで異物を除去後、Tダイにて122℃に表面温度を制御したキャストドラムに吐出してキャストシートを得た。ついで、123℃に加熱したセラミックロールを用いて予熱を行いフィルムの長手方向に5.0倍延伸を行った。次に端部をクリップで把持して150℃で幅方向に1,800%/分の横延伸速度で7.7倍延伸した。
 続く熱処理工程で、延伸後のクリップ間距離に保ったまま150℃で2秒間熱処理し(HS1ゾーン)、更に163℃5秒間で弛緩率17%となるようリラックスを行い(Rxゾーン)、弛緩後のクリップ間距離に保ったまま163℃で5秒間熱処理を行った(HS2ゾーン)。
 その後、クリップで把持したフィルムの耳部をカットして除去し、厚み21μm、透気抵抗140秒/100mlの多孔性ポリプロピレンフィルムを得た。この多孔性ポリプロピレンフィルムを用いて作成した塗工模擬フィルムの透気抵抗は290秒/100mlであった。
(Example 1)
As the polypropylene resin, 94.7 parts by mass of Homopolypropylene FLX80E4 (melting point = 165 ° C.) manufactured by Sumitomo Chemical Co., Ltd. with MFR = 7.5 g / 10 min, manufactured by Prime Polymer Co., Ltd. with MFR = 1,000 g / 10 min. 5 parts by mass of low molecular weight polypropylene S10CL (melting point = 163 ° C.) and 0, N, N′-dicyclohexyl-2,6-naphthalenedicarboxyamide (manufactured by Shin Nippon Rika Co., Ltd., NU-100) as β crystal nucleating agent .3 parts by mass, 0.05 parts by mass of calcium behenate, and 0.1 parts by mass of “IRGANOX (registered trademark)” 1010 and “IRGAFOS (registered trademark)” 168 manufactured by Ciba Specialty Chemicals, which are antioxidants. The raw materials are supplied from the weighing hopper to the twin screw extruder with L / D = 41 so that each is mixed at this ratio, and melt kneaded at 300 ° C. Performed by ejecting from the die was cooled and solidified at 25 ° C. water bath, to obtain a chip polypropylene composition obtained by cutting into chips (I).
The obtained polypropylene composition (I) is supplied to a uniaxial melt extruder, melt extruded at 210 ° C., foreign matter is removed with a 60 μm cut sintered filter, and the surface temperature is adjusted to 122 ° C. with a T-die. A cast sheet was obtained by discharging to a controlled cast drum. Next, preheating was performed using a ceramic roll heated to 123 ° C., and the film was stretched 5.0 times in the longitudinal direction of the film. Next, the edge part was hold | gripped with the clip and it extended | stretched 7.7 times in the width direction at 150 degreeC with the horizontal extending | stretching speed | rate of 1,800% / min.
In the subsequent heat treatment process, heat treatment was performed at 150 ° C. for 2 seconds while maintaining the distance between the clips after stretching (HS1 zone), and further relaxation was performed to achieve a relaxation rate of 17% at 163 ° C. for 5 seconds (Rx zone). Heat treatment was performed at 163 ° C. for 5 seconds while maintaining the distance between the clips (HS2 zone).
Then, the ear | edge part of the film hold | gripped with the clip was cut and removed, and the porous polypropylene film of thickness 21 micrometers and air permeation resistance 140 second / 100 ml was obtained. The air resistance of the coating simulation film prepared using this porous polypropylene film was 290 seconds / 100 ml.
 (実施例2)
 実施例1において、長手方向の延伸倍率を4.5倍とした以外は、実施例1と同じ原料・製膜方法で、厚み22μmの多孔性ポリプロピレンフィルムを得た。
(Example 2)
In Example 1, a porous polypropylene film having a thickness of 22 μm was obtained by the same raw material and film forming method as in Example 1 except that the draw ratio in the longitudinal direction was 4.5 times.
 (実施例3)
 ポリプロピレン樹脂として、MFR=7.5g/10分の住友化学(株)製ホモポリプロピレンFLX80E4(融点=165℃)を94.7質量部、MFR=100g/10分の(株)プライムポリマー製低分子量ポリプロピレンS10AL(融点=161℃)を5質量部、β晶核剤としてN,N’-ジシクロヘキシル-2,6-ナフタレンジカルボキシアミド(新日本理化(株)製、NU-100)を0.3質量部、ベヘン酸カルシウム0.05質量部、さらに酸化防止剤であるチバ・スペシャリティ・ケミカルズ製“IRGANOX(登録商標)”1010、“IRGAFOS(登録商標)”168を各々0.1質量部ずつがこの比率で混合されるように計量ホッパーからL/D=41の二軸押出機に原料供給し、300℃で溶融混練を行い、ダイから吐出して、25℃の水槽にて冷却固化し、チップ状にカットしてポリプロピレン組成物(II)のチップを得た。
 ポリプロピレン組成物(II)のチップを使用し、実施例1と同様の製膜方法にて、厚み22μmの多孔性ポリプロピレンフィルムを得た。
(Example 3)
As a polypropylene resin, 94.7 parts by mass of homopolypropylene FLX80E4 (melting point = 165 ° C.) manufactured by Sumitomo Chemical Co., Ltd. with MFR = 7.5 g / 10 min, low molecular weight manufactured by Prime Polymer Co., Ltd. with MFR = 100 g / 10 min. 5 parts by mass of polypropylene S10AL (melting point = 161 ° C.), 0.3 N, N′-dicyclohexyl-2,6-naphthalenedicarboxyamide (manufactured by Shin Nippon Rika Co., Ltd., NU-100) as β crystal nucleating agent 1 part by mass of 0.1 part by mass of “IRGANOX (registered trademark)” 1010 and “IRGAFOS (registered trademark)” 168 manufactured by Ciba Specialty Chemicals, which are antioxidants, respectively. The raw materials are fed from the weighing hopper to the L / D = 41 twin screw extruder so that they are mixed at this ratio, and melt kneading is performed at 300 ° C. , Ejected from the die, it cooled and solidified at 25 ° C. water bath and then cut into chips to obtain a chip polypropylene composition (II).
A porous polypropylene film having a thickness of 22 μm was obtained by the same film forming method as in Example 1 using a chip of the polypropylene composition (II).
 (実施例4)
 ポリプロピレン樹脂として、MFR=7.5g/10分の住友化学(株)製ホモポリプロピレンFLX80E4(融点=165℃)を97.7質量部、MFR=1,000g/10分の(株)プライムポリマー製低分子量ポリプロピレンS10CL(融点=161℃)を2質量部、β晶核剤としてN,N’-ジシクロヘキシル-2,6-ナフタレンジカルボキシアミド(新日本理化(株)製、NU-100)を0.3質量部、ベヘン酸カルシウム0.05質量部、さらに酸化防止剤であるチバ・スペシャリティ・ケミカルズ製“IRGANOX(登録商標)”1010、“IRGAFOS(登録商標)”168を各々0.1質量部ずつがこの比率で混合されるように計量ホッパーからL/D=41の二軸押出機に原料供給し、300℃で溶融混練を行い、ダイから吐出して、25℃の水槽にて冷却固化し、チップ状にカットしてポリプロピレン樹脂組成物(III)のチップを得た。
 ポリプロピレン樹脂組成物(III)のチップを使用し、実施例1と同様の製膜方法にて、厚み23μmの多孔性ポリプロピレンフィルムを得た。
Example 4
As the polypropylene resin, 97.7 parts by mass of Homopolypropylene FLX80E4 (melting point = 165 ° C.) manufactured by Sumitomo Chemical Co., Ltd. with MFR = 7.5 g / 10 min, manufactured by Prime Polymer Co., Ltd. with MFR = 1,000 g / 10 min. 2 parts by mass of low molecular weight polypropylene S10CL (melting point = 161 ° C.) and 0, N, N′-dicyclohexyl-2,6-naphthalenedicarboxyamide (manufactured by Shin Nippon Rika Co., Ltd., NU-100) as a β crystal nucleating agent .3 parts by mass, 0.05 parts by mass of calcium behenate, and 0.1 parts by mass of “IRGANOX (registered trademark)” 1010 and “IRGAFOS (registered trademark)” 168 manufactured by Ciba Specialty Chemicals, which are antioxidants. The raw materials are supplied from the weighing hopper to the twin screw extruder with L / D = 41 so that each is mixed at this ratio, and melt kneaded at 300 ° C. Performed by ejecting from the die was cooled and solidified at 25 ° C. water bath and then cut into chips to obtain chips of the polypropylene resin composition (III).
Using a chip of the polypropylene resin composition (III), a porous polypropylene film having a thickness of 23 μm was obtained by the same film forming method as in Example 1.
 (実施例5)
 ポリプロピレン樹脂として、MFR=7.5g/10分の住友化学(株)製ホモポリプロピレンFLX80E4(融点=165℃)を92.7質量部、MFR=1,000g/10分の(株)プライムポリマー製低分子量ポリプロピレンS10CL(融点=163℃)を8質量部、β晶核剤としてN,N’-ジシクロヘキシル-2,6-ナフタレンジカルボキシアミド(新日本理化(株)製、NU-100)を0.3質量部、ベヘン酸カルシウム0.05質量部、さらに酸化防止剤であるチバ・スペシャリティ・ケミカルズ製“IRGANOX(登録商標)”1010、“IRGAFOS(登録商標)”168を各々0.1質量部ずつがこの比率で混合されるように計量ホッパーからL/D=41の二軸押出機に原料供給し、300℃で溶融混練を行い、ダイから吐出して、25℃の水槽にて冷却固化し、チップ状にカットしてポリプロピレン樹脂組成物(IV)のチップを得た。
 ポリプロピレン樹脂組成物(IV)のチップを使用し、実施例1と同様の製膜方法にて、厚み21μmの多孔性ポリプロピレンフィルムを得た。
(Example 5)
As a polypropylene resin, 92.7 parts by mass of Homopolypropylene FLX80E4 (melting point = 165 ° C.) manufactured by Sumitomo Chemical Co., Ltd. with MFR = 7.5 g / 10 min, manufactured by Prime Polymer Co., Ltd. with MFR = 1,000 g / 10 min. 8 parts by mass of low molecular weight polypropylene S10CL (melting point = 163 ° C.), 0 N, N′-dicyclohexyl-2,6-naphthalenedicarboxyamide (manufactured by Shin Nippon Rika Co., Ltd., NU-100) as β crystal nucleating agent .3 parts by mass, 0.05 parts by mass of calcium behenate, and 0.1 parts by mass of “IRGANOX (registered trademark)” 1010 and “IRGAFOS (registered trademark)” 168 manufactured by Ciba Specialty Chemicals, which are antioxidants. The raw materials are supplied from the weighing hopper to the twin screw extruder with L / D = 41 so that each is mixed at this ratio, and melt kneaded at 300 ° C. Performed by ejecting from the die was cooled and solidified at 25 ° C. water bath, was obtained by cutting into chips the polypropylene resin composition chips (IV).
Using a polypropylene resin composition (IV) chip, a porous polypropylene film having a thickness of 21 μm was obtained by the same film forming method as in Example 1.
 (実施例6)
 ポリプロピレン樹脂として、MFR=7.5g/10分の住友化学(株)製ホモポリプロピレンFLX80E4(融点=165℃)を94.7質量部、MFR=210g/10分の(株)プライムポリマー製低分子量ポリプロピレンJ13B(融点=165℃)を5質量部、β晶核剤としてN,N’-ジシクロヘキシル-2,6-ナフタレンジカルボキシアミド(新日本理化(株)製、NU-100)を0.3質量部、ベヘン酸カルシウム0.05質量部、さらに酸化防止剤であるチバ・スペシャリティ・ケミカルズ製“IRGANOX(登録商標)”1010、“IRGAFOS(登録商標)”168を各々0.1質量部ずつがこの比率で混合されるように計量ホッパーからL/D=41の二軸押出機に原料供給し、300℃で溶融混練を行い、ダイから吐出して、25℃の水槽にて冷却固化し、チップ状にカットしてポリプロピレン樹脂組成物(V)のチップを得た。
 ポリプロピレン樹脂組成物(V)のチップを使用し、実施例1と同様の製膜方法にて、厚み21μmの多孔性ポリプロピレンフィルムを得た。
(Example 6)
As the polypropylene resin, 94.7 parts by mass of Homopolypropylene FLX80E4 (melting point = 165 ° C.) manufactured by Sumitomo Chemical Co., Ltd. with MFR = 7.5 g / 10 min, low molecular weight manufactured by Prime Polymer Co., Ltd. with MFR = 210 g / 10 min. 5 parts by mass of polypropylene J13B (melting point = 165 ° C.), 0.3 N, N′-dicyclohexyl-2,6-naphthalenedicarboxamide (manufactured by Shin Nippon Rika Co., Ltd., NU-100) as β crystal nucleating agent 1 part by mass of 0.1 part by mass of “IRGANOX (registered trademark)” 1010 and “IRGAFOS (registered trademark)” 168 manufactured by Ciba Specialty Chemicals, which are antioxidants, respectively. The raw materials are supplied from the weighing hopper to the twin screw extruder of L / D = 41 so that they are mixed at this ratio, and melt kneading is performed at 300 ° C. Ejected from the die, it cooled and solidified at 25 ° C. water bath, was obtained by cutting into chips the polypropylene resin composition chips (V).
Using a polypropylene resin composition (V) chip, a porous polypropylene film having a thickness of 21 μm was obtained by the same film forming method as in Example 1.
 (実施例7)
 実施例1において、幅方向に1,800%/分の横延伸速度で延伸倍率を9.5倍、幅方向延伸後のクリップ間距離に保ったまま163℃で2秒間熱処理(HS1ゾーン)とした以外は、実施例1と同じ原料・製膜方法で、厚み21μmの多孔性ポリプロピレンフィルムを得た。
(Example 7)
In Example 1, heat treatment (HS1 zone) was performed at 163 ° C. for 2 seconds while maintaining the distance between the clips after stretching in the width direction at 9.5 times at a transverse stretching speed of 1,800% / min in the width direction. Except for the above, a porous polypropylene film having a thickness of 21 μm was obtained by the same raw material and film forming method as in Example 1.
 (比較例1)
 ポリプロピレン樹脂として、MFR=7.5g/10分の住友化学(株)製ホモポリプロピレンFLX80E4(融点=165℃)を99.7質量部、β晶核剤としてN,N’-ジシクロヘキシル-2,6-ナフタレンジカルボキシアミド(新日本理化(株)製、NU-100)を0.3質量部、ベヘン酸カルシウム0.05質量部、さらに酸化防止剤であるチバ・スペシャリティ・ケミカルズ製“IRGANOX(登録商標)”1010、“IRGAFOS(登録商標)”168を各々0.1質量部ずつがこの比率で混合されるように計量ホッパーからL/D=41の二軸押出機に原料供給し、300℃で溶融混練を行い、ダイから吐出して、25℃の水槽にて冷却固化し、チップ状にカットしてポリプロピレン樹脂組成物(VI)のチップを得た。
 ポリプロピレン樹脂組成物(VI)のチップを使用し、実施例1と同様の製膜方法にて、厚み23μmの多孔性ポリプロピレンフィルムを得た。
(Comparative Example 1)
As the polypropylene resin, 99.7 parts by mass of Homopolypropylene FLX80E4 (melting point = 165 ° C.) manufactured by Sumitomo Chemical Co., Ltd. with MFR = 7.5 g / 10 min and N, N′-dicyclohexyl-2,6 as the β crystal nucleating agent -0.3 parts by weight of naphthalene dicarboxyamide (manufactured by Shin Nippon Rika Co., Ltd., NU-100), 0.05 parts by weight of calcium behenate, and IRGANOX (registered by Ciba Specialty Chemicals, an antioxidant) Trademark) “1010” and “IRGAFOS (registered trademark)” 168 are fed to a twin screw extruder of L / D = 41 from a weighing hopper so that 0.1 parts by mass of each are mixed at this ratio, and 300 ° C. The mixture is melt-kneaded, discharged from a die, cooled and solidified in a 25 ° C. water bath, cut into chips, and a polypropylene resin composition (VI) chip is formed. Obtained.
Using a chip of the polypropylene resin composition (VI), a porous polypropylene film having a thickness of 23 μm was obtained by the same film forming method as in Example 1.
 (比較例2)
 融点165℃、MFR=7.5g/10分の住友化学(株)製ホモポリプロピレンFLX80E4(融点=165℃)を70質量部、共重合PE樹脂としてエチレン-オクテン-1共重合体(ダウ・ケミカル製 Engage8411、MFR:18g/10分)を30質量部、さらに酸化防止剤であるチバ・スペシャリティ・ケミカルズ製“IRGANOX(登録商標)”1010、“IRGAFOS(登録商標)”168を各々0.1質量部がこの比率で混合されるように計量ホッパーから二軸押出機に原料供給し、240℃で溶融混練を行い、ストランド状にダイから吐出して、25℃の水槽にて冷却固化し、チップ状にカットしてポリプロピレン樹脂組成物(VII)のチップを得た。
 比較例1で得たポリプロピレン樹脂組成物(VI)90質量部とポリプロピレン樹脂組成物(VII)10質量部をドライブレンドして単軸の溶融押出機に供給し、210℃で溶融押出を行い、60μmカットの焼結フィルターで異物を除去後、Tダイにて121℃に表面温度を制御したキャストドラムに吐出してキャストシートを得た。ついで、123℃に加熱したセラミックロールを用いて予熱を行いフィルムの長手方向に5.0倍延伸を行った。次に端部をクリップで把持して150℃で幅方向に1,800%/分の横延伸速度で7.7倍延伸した。
 続く熱処理工程で、延伸後のクリップ間距離に保ったまま150℃で2秒間熱処理し(HS1ゾーン)、更に163℃5秒間で弛緩率17%でリラックスを行い(Rxゾーン)、弛緩後のクリップ間距離に保ったまま163℃で5秒間熱処理を行った(HS2ゾーン)。
 その後、クリップで把持したフィルムの耳部をカットして除去し、厚み23μmの多孔性ポリプロピレンフィルムを得た。
(Comparative Example 2)
70 parts by mass of homopolypropylene FLX80E4 (melting point = 165 ° C.) manufactured by Sumitomo Chemical Co., Ltd. having a melting point of 165 ° C. and MFR = 7.5 g / 10 min, and an ethylene-octene-1 copolymer (Dow Chemical) as a copolymer PE resin Engage 8411, MFR: 18 g / 10 min), 30 parts by mass, and further, “IRGANOX (registered trademark)” 1010 and “IRGAFOS (registered trademark)” 168 manufactured by Ciba Specialty Chemicals, which are antioxidants, each 0.1 mass The raw material is supplied from the weighing hopper to the twin screw extruder so that the parts are mixed at this ratio, melt kneaded at 240 ° C., discharged from the die in a strand shape, cooled and solidified in a 25 ° C. water tank, and chips A chip of polypropylene resin composition (VII) was obtained.
90 parts by mass of the polypropylene resin composition (VI) obtained in Comparative Example 1 and 10 parts by mass of the polypropylene resin composition (VII) were dry blended and supplied to a uniaxial melt extruder, and melt extrusion was performed at 210 ° C. Foreign matters were removed with a 60 μm cut sintered filter, and then discharged onto a cast drum whose surface temperature was controlled at 121 ° C. with a T-die to obtain a cast sheet. Next, preheating was performed using a ceramic roll heated to 123 ° C., and the film was stretched 5.0 times in the longitudinal direction of the film. Next, the edge part was hold | gripped with the clip and it extended | stretched 7.7 times in the width direction at 150 degreeC with the horizontal extending | stretching speed | rate of 1,800% / min.
In the subsequent heat treatment process, heat treatment was performed at 150 ° C. for 2 seconds (HS1 zone) while maintaining the distance between the clips after stretching (HS1 zone), and further relaxed at a relaxation rate of 17% at 163 ° C. for 5 seconds (Rx zone). Heat treatment was performed at 163 ° C. for 5 seconds while keeping the distance (HS2 zone).
Then, the ear | edge part of the film hold | gripped with the clip was cut and removed, and the 23-micrometer-thick porous polypropylene film was obtained.
 (比較例3)
 実施例1において、幅方向延伸後のクリップ間距離に保ったまま150℃で2秒間熱処理し(HS1ゾーン)、更に153℃5秒間で弛緩率5%となるようリラックスを行い(Rxゾーン)、弛緩後のクリップ間距離に保ったまま153℃で5秒間熱処理を行った(HS2ゾーン)とした以外は、実施例1と同じ原料・製膜方法で、厚み21μmの多孔性ポリプロピレンフィルムを得た。
(Comparative Example 3)
In Example 1, heat treatment was performed at 150 ° C. for 2 seconds while maintaining the distance between the clips after stretching in the width direction (HS1 zone), and further relaxation was performed so that the relaxation rate became 5% at 153 ° C. for 5 seconds (Rx zone). A porous polypropylene film having a thickness of 21 μm was obtained by the same raw material and film forming method as in Example 1 except that heat treatment was performed at 153 ° C. for 5 seconds (HS2 zone) while maintaining the distance between the clips after relaxation. .
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 本発明の要件を満足する実施例では透気抵抗が低く、機械強度に優れるだけでなく、R2/R1の値が低いため、耐熱性や電極との接着性などの性能を付与もしくは向上させる機能層を持つ蓄電デバイス用セパレータの基材として、好適に用いることが可能である。一方、比較例では、R2/R1の値が高く、耐熱性や電極との接着性などの性能を付与もしくは向上させる機能層を持つ蓄電デバイス用セパレータの基材として用いることが困難である。 In the examples satisfying the requirements of the present invention, not only the air resistance is low and the mechanical strength is excellent, but also the value of R2 / R1 is low, and thus the function of imparting or improving the performance such as heat resistance and adhesion to the electrode. It can be suitably used as a base material for a separator for an electricity storage device having a layer. On the other hand, in the comparative example, the value of R2 / R1 is high, and it is difficult to use it as a base material for an electricity storage device separator having a functional layer that imparts or improves performance such as heat resistance and adhesion to electrodes.
 本発明の多孔性ポリプロピレンフィルムは、耐熱性や電極との接着性などの性能を付与もしくは向上させる機能層を設けた際に、セパレータ抵抗の上昇を抑制し、優れた電池特性を発現できるため、蓄電デバイス用のセパレータとして好適に使用することができる。 When the porous polypropylene film of the present invention is provided with a functional layer that imparts or improves performance such as heat resistance and adhesion with an electrode, it suppresses an increase in separator resistance and can exhibit excellent battery characteristics. It can be suitably used as a separator for an electricity storage device.

Claims (9)

  1.  ポリプロピレン樹脂を主成分とする多孔性ポリプロピレンフィルムであって、
     前記多孔性ポリプロピレンフィルムのセパレータ抵抗R1(Ω)と、前記多孔性ポリプロピレンフィルムに、機能性ポリマーと有機溶媒とからなる塗工模擬液を塗布し乾燥した後のセパレータ抵抗R2(Ω)とが、下記式(1)を満たすことを特徴とする多孔性ポリプロピレンフィルム。
      R2/R1≦1.2   ・・・(1)
    A porous polypropylene film mainly composed of polypropylene resin,
    Separator resistance R1 (Ω) of the porous polypropylene film and separator resistance R2 (Ω) after applying and drying a coating simulation liquid composed of a functional polymer and an organic solvent on the porous polypropylene film, The porous polypropylene film characterized by satisfying the following formula (1).
    R2 / R1 ≦ 1.2 (1)
  2.  前記有機溶媒はアセトンであることを特徴とする請求項1記載の多孔性ポリプロピレンフィルム。 2. The porous polypropylene film according to claim 1, wherein the organic solvent is acetone.
  3.  下記式(2)を満たすことを特徴とする、請求項1または2記載の多孔性ポリプロピレンフィルム。
      0.7≦PMD/PTD≦2.0   ・・・(2)
     (PMD:多孔性ポリプロピレンフィルムの長手方向の破断強度、PTD:多孔性ポリプロピレンフィルムの幅方向の破断強度)
    The porous polypropylene film according to claim 1, wherein the following formula (2) is satisfied.
    0.7 ≦ PMD / PTD ≦ 2.0 (2)
    (PMD: breaking strength in the longitudinal direction of the porous polypropylene film, PTD: breaking strength in the width direction of the porous polypropylene film)
  4.  前記多孔性ポリプロピレンフィルム中のポリプロピレン樹脂の含有量が80質量%以上であることを特徴とする、請求項1~3のいずれかに記載の多孔性ポリプロピレンフィルム。 4. The porous polypropylene film according to claim 1, wherein the content of the polypropylene resin in the porous polypropylene film is 80% by mass or more.
  5.  前記多孔性ポリプロピレンフィルムのβ晶形成能が60%以上であることを特徴とする、請求項1~4のいずれかに記載の多孔性ポリプロピレンフィルム。 The porous polypropylene film according to any one of claims 1 to 4, wherein the porous polypropylene film has a β-crystal forming ability of 60% or more.
  6.  135℃で60分間熱処理したときの幅方向の熱収縮率が10%以下であることを特徴とする、請求項1~5のいずれかに記載の多孔性ポリプロピレンフィルム。 The porous polypropylene film according to any one of claims 1 to 5, wherein the heat shrinkage in the width direction when heat-treated at 135 ° C for 60 minutes is 10% or less.
  7.  請求項1~6のいずれかに記載の多孔性ポリプロピレンフィルムを用いてなる蓄電デバイス用セパレータ。 A power storage device separator using the porous polypropylene film according to any one of claims 1 to 6.
  8.  請求項1~6のいずれかに記載の多孔性ポリプロピレンフィルム上に、機能層を積層してなる蓄電デバイス用セパレータ。 An electricity storage device separator obtained by laminating a functional layer on the porous polypropylene film according to any one of claims 1 to 6.
  9.  請求項7または8に記載の蓄電デバイス用セパレータと、正極と、負極と、電解液とを備えた蓄電デバイス。 An electricity storage device comprising the separator for an electricity storage device according to claim 7 or 8, a positive electrode, a negative electrode, and an electrolytic solution.
PCT/JP2013/068169 2012-07-04 2013-07-02 Porous polypropylene film, separator for electricity storage devices, and electricity storage device WO2014007260A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201380030174.6A CN104395382B (en) 2012-07-04 2013-07-02 Porous polypropylene film, power storage device separator and electrical storage device
KR1020147033038A KR20150035548A (en) 2012-07-04 2013-07-02 Porous polypropylene film, separator for electricity storage devices, and electricity storage device
JP2013552793A JP5626486B2 (en) 2012-07-04 2013-07-02 Porous polypropylene film, separator for electricity storage device, and electricity storage device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012150211 2012-07-04
JP2012-150211 2012-07-04

Publications (1)

Publication Number Publication Date
WO2014007260A1 true WO2014007260A1 (en) 2014-01-09

Family

ID=49882014

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/068169 WO2014007260A1 (en) 2012-07-04 2013-07-02 Porous polypropylene film, separator for electricity storage devices, and electricity storage device

Country Status (4)

Country Link
JP (1) JP5626486B2 (en)
KR (1) KR20150035548A (en)
CN (1) CN104395382B (en)
WO (1) WO2014007260A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014194010A (en) * 2013-02-28 2014-10-09 Sumitomo Chemical Co Ltd Polypropylene-based resin composition, and sheet and film of the same
JP2015182420A (en) * 2014-03-26 2015-10-22 東レ株式会社 Laminated porous film, method of producing the same, and separator for electricity storage device
JP2016102202A (en) * 2014-11-12 2016-06-02 東レ株式会社 Porous film, moisture-permeable waterproof sheet, complex and protective clothing
WO2017038843A1 (en) * 2015-08-31 2017-03-09 凸版印刷株式会社 Decorative sheet and method for manufacturing decorative sheet
CN113574732A (en) * 2019-03-18 2021-10-29 帝人株式会社 Separator for nonaqueous secondary battery and nonaqueous secondary battery

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180030666A (en) * 2015-07-15 2018-03-23 미쯔비시 케미컬 주식회사 Laminated porous film, separator for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery, and method for producing laminated porous film
TWI770004B (en) * 2016-03-29 2022-07-11 日商東麗股份有限公司 Polyolefin microporous membrane and method for producing the same, separator for battery and method for producing the same
CN107522941A (en) * 2017-07-28 2017-12-29 广东圆融新材料有限公司 A kind of heat resistant transparent anti-impact PVDF/PP alloy materials and preparation method thereof
CN109422613B (en) * 2017-08-29 2021-06-11 中国石油化工股份有限公司 Method and device for decoloring crude styrene separated from pyrolysis gasoline
KR102421619B1 (en) * 2019-02-22 2022-07-15 주식회사 엘지에너지솔루션 Separator for -lithium secondary battery and manufacturing method thereof
KR20220165920A (en) * 2021-06-09 2022-12-16 주식회사 엘지에너지솔루션 Separator for Secondary Battery with Improved Adhesion

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011062285A1 (en) * 2009-11-20 2011-05-26 三菱樹脂株式会社 Laminated porous film, separator for battery, and battery
JP2011171290A (en) * 2010-01-21 2011-09-01 Toray Ind Inc Separator for power storage device
WO2012105661A1 (en) * 2011-02-03 2012-08-09 東レ株式会社 Porous polypropylene film, separator for electricity storage device, and electricity storage device
WO2013002164A1 (en) * 2011-06-29 2013-01-03 三菱樹脂株式会社 Porous film, battery separator and battery
WO2013015230A1 (en) * 2011-07-28 2013-01-31 住友化学株式会社 Laminated porous film and non-aqueous electrolyte secondary cell

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101401833B1 (en) * 2005-10-18 2014-05-29 도레이 카부시키가이샤 Microporous film for power storage device separator and power storage device separator making use of the same
EP2306552B1 (en) * 2008-07-16 2014-11-26 Toray Industries, Inc. Separator for electricity storage device
JP5354132B2 (en) * 2011-10-14 2013-11-27 東レ株式会社 Porous polypropylene film and power storage device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011062285A1 (en) * 2009-11-20 2011-05-26 三菱樹脂株式会社 Laminated porous film, separator for battery, and battery
JP2011171290A (en) * 2010-01-21 2011-09-01 Toray Ind Inc Separator for power storage device
WO2012105661A1 (en) * 2011-02-03 2012-08-09 東レ株式会社 Porous polypropylene film, separator for electricity storage device, and electricity storage device
WO2013002164A1 (en) * 2011-06-29 2013-01-03 三菱樹脂株式会社 Porous film, battery separator and battery
WO2013015230A1 (en) * 2011-07-28 2013-01-31 住友化学株式会社 Laminated porous film and non-aqueous electrolyte secondary cell

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014194010A (en) * 2013-02-28 2014-10-09 Sumitomo Chemical Co Ltd Polypropylene-based resin composition, and sheet and film of the same
JP2015182420A (en) * 2014-03-26 2015-10-22 東レ株式会社 Laminated porous film, method of producing the same, and separator for electricity storage device
JP2016102202A (en) * 2014-11-12 2016-06-02 東レ株式会社 Porous film, moisture-permeable waterproof sheet, complex and protective clothing
WO2017038843A1 (en) * 2015-08-31 2017-03-09 凸版印刷株式会社 Decorative sheet and method for manufacturing decorative sheet
KR20180048825A (en) * 2015-08-31 2018-05-10 도판 인사츠 가부시키가이샤 Method for manufacturing a decorative sheet and a decorative sheet
US10518510B2 (en) 2015-08-31 2019-12-31 Toppan Printing Co., Ltd. Decorative sheet and method of manufacturing the same
KR102556221B1 (en) 2015-08-31 2023-07-18 도판 인사츠 가부시키가이샤 Cosmetic sheet and manufacturing method of cosmetic sheet
CN113574732A (en) * 2019-03-18 2021-10-29 帝人株式会社 Separator for nonaqueous secondary battery and nonaqueous secondary battery
CN113574732B (en) * 2019-03-18 2024-03-22 帝人株式会社 Separator for nonaqueous secondary battery and nonaqueous secondary battery

Also Published As

Publication number Publication date
CN104395382A (en) 2015-03-04
JP5626486B2 (en) 2014-11-19
CN104395382B (en) 2016-11-23
KR20150035548A (en) 2015-04-06
JPWO2014007260A1 (en) 2016-06-02

Similar Documents

Publication Publication Date Title
JP5626486B2 (en) Porous polypropylene film, separator for electricity storage device, and electricity storage device
JP5354132B2 (en) Porous polypropylene film and power storage device
JP5907066B2 (en) Porous polypropylene film, separator for electricity storage device, and electricity storage device
JP5672007B2 (en) Porous polypropylene film roll
JP6273898B2 (en) Laminated porous film and power storage device
EP2669322A1 (en) Polyolefin resin porous film, and non-aqueous electrolyte cell separator using same
JP2012007156A (en) Porous polypropylene film
JP2010242060A (en) Porous polypropylene film roll
JPWO2013183666A1 (en) Polyolefin resin porous film
JP6089581B2 (en) Porous polyolefin film, laminated porous film, and electricity storage device
JP5251193B2 (en) Porous polyolefin film
JP6361251B2 (en) Porous film, separator for electricity storage device, and electricity storage device
JP5724329B2 (en) Porous polypropylene film roll
JP5267754B1 (en) Porous polyolefin film and electricity storage device
JP2013100487A (en) Porous film and electricity storage device
KR20140148371A (en) Porous film and electrical storage device
JPWO2014103713A1 (en) Porous polyolefin film, method for producing the same, and separator for power storage device using the same
JP5354131B2 (en) Porous polypropylene film, laminated porous film, and electricity storage device
WO2013187326A1 (en) Porous polypropylene film, separator for electricity storage devices, and electricity storage device
JP2014060146A (en) Porous polyolefin film, and electric power storage device
JP2012022911A (en) Laminate separator and power storage device
JP2014198832A (en) Porous film, separator for power storage device, and power storage device
WO2013054931A1 (en) Porous polypropylene film and electricity-storage device
JP2013199511A (en) Porous film, and electricity storage device
JP2013100458A (en) Porous polyolefin film and electric storage system

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2013552793

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13813767

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20147033038

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13813767

Country of ref document: EP

Kind code of ref document: A1