WO2014007143A1 - 押出成形装置及びこれを用いた成形体の製造方法 - Google Patents

押出成形装置及びこれを用いた成形体の製造方法 Download PDF

Info

Publication number
WO2014007143A1
WO2014007143A1 PCT/JP2013/067695 JP2013067695W WO2014007143A1 WO 2014007143 A1 WO2014007143 A1 WO 2014007143A1 JP 2013067695 W JP2013067695 W JP 2013067695W WO 2014007143 A1 WO2014007143 A1 WO 2014007143A1
Authority
WO
WIPO (PCT)
Prior art keywords
resistance
downstream
upstream
pin
tube
Prior art date
Application number
PCT/JP2013/067695
Other languages
English (en)
French (fr)
Inventor
照夫 小森
朝 吉野
Original Assignee
住友化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友化学株式会社 filed Critical 住友化学株式会社
Publication of WO2014007143A1 publication Critical patent/WO2014007143A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B3/00Producing shaped articles from the material by using presses; Presses specially adapted therefor
    • B28B3/20Producing shaped articles from the material by using presses; Presses specially adapted therefor wherein the material is extruded
    • B28B3/206Forcing the material through screens or slots
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B17/00Details of, or accessories for, apparatus for shaping the material; Auxiliary measures taken in connection with such shaping
    • B28B17/0063Control arrangements
    • B28B17/0081Process control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B3/00Producing shaped articles from the material by using presses; Presses specially adapted therefor
    • B28B3/20Producing shaped articles from the material by using presses; Presses specially adapted therefor wherein the material is extruded
    • B28B3/26Extrusion dies
    • B28B3/2672Means for adjusting the flow inside the die, e.g. using choke means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/268Throttling of the flow, e.g. for cooperating with plasticising elements or for degassing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/375Plasticisers, homogenisers or feeders comprising two or more stages
    • B29C48/385Plasticisers, homogenisers or feeders comprising two or more stages using two or more serially arranged screws in separate barrels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/395Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using screws surrounded by a cooperating barrel, e.g. single screw extruders
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/50Details of extruders
    • B29C48/505Screws
    • B29C48/52Screws with an outer diameter varying along the longitudinal axis, e.g. for obtaining different thread clearance
    • B29C48/525Conical screws
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/50Details of extruders
    • B29C48/695Flow dividers, e.g. breaker plates
    • B29C48/70Flow dividers, e.g. breaker plates comprising means for dividing, distributing and recombining melt flows
    • B29C48/705Flow dividers, e.g. breaker plates comprising means for dividing, distributing and recombining melt flows in the die zone, e.g. to create flow homogeneity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/92Measuring, controlling or regulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92504Controlled parameter
    • B29C2948/9258Velocity
    • B29C2948/926Flow or feed rate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92504Controlled parameter
    • B29C2948/92609Dimensions
    • B29C2948/92666Distortion, shrinkage, dilatation, swell or warpage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/375Plasticisers, homogenisers or feeders comprising two or more stages
    • B29C48/38Plasticisers, homogenisers or feeders comprising two or more stages using two or more serially arranged screws in the same barrel

Definitions

  • the present invention relates to a manufacturing technique of a molded body, and more particularly to an extrusion molding apparatus for manufacturing a ceramic molded body and a manufacturing method of a molded body using the same.
  • honeycomb filter structures have been widely known for use in diesel particulate filters.
  • This honeycomb filter structure has a structure in which one end side of some through holes of a honeycomb structure having a large number of through holes is sealed with a sealing material, and the other end side of the remaining through holes is sealed with a sealing material.
  • Patent Documents 1 and 2 disclose a die and an extrusion molding apparatus used for manufacturing a honeycomb structure.
  • a honeycomb filter structure for a diesel particle filter is generally used in a state of being housed in a rigid case. If the dimensional accuracy of the honeycomb filter structure is low, problems such as cracks in the honeycomb filter structure due to thermal stress or the like are likely to occur. Therefore, high dimensional accuracy is required for the green molded body before firing. In addition, some honeycomb structures have a narrow cell pitch (for example, about 1.1 to 2.8 mm), and high dimensional accuracy is required for the thickness of partition walls that define a large number of through holes.
  • the flow rate of the raw material composition reaching the upstream surface of the die is uneven and the flow rate of the raw material composition in a specific region is high compared to other regions.
  • the formed body is extruded from the die. If this is to be corrected straight afterwards, there arises a problem that the partition walls of the molded body are curved or cracks are formed on the outer surface. Further, even if a straight product is obtained at the initial stage when the production of the molded body is started, the bending of the molded body may become gradually noticeable due to die wear or the like.
  • the present invention has been made in view of the above problems, and in order to produce a molded body having a sufficiently small bend and high dimensional accuracy, an extrusion capable of adjusting the flow rate of the raw material composition to a higher degree than before. It is an object of the present invention to provide a molding apparatus and a method for producing a molded body using the same.
  • the extrusion molding apparatus includes a flow path for transferring a paste-like raw material composition, a screw provided on the upstream side of the flow path, kneading the raw material composition and transferring it downstream, and a flow path A die provided on the downstream side from which a molded body made of the raw material composition is extruded, a rectifying plate provided between the screw and the die and having a plurality of openings penetrating in the thickness direction, and a downstream side of the rectifying plate and the die
  • Resistance pipes that communicate with each other, a plurality of upstream resistance pins that can be freely changed in length protruding inside the resistance pipe, and on the downstream side of the upstream resistance pin.
  • a plurality of downstream resistance pins are provided so as to penetrate through the tube wall of the resistance tube, and the length protruding inside the resistance tube can be changed.
  • the upstream resistance pin and the downstream resistance pin provided in the extrusion molding apparatus of the present invention are for uniformizing the flow velocity distribution of the raw material composition introduced into the die. Check the degree and direction of bending of the extruded product, and if bending exceeding the required accuracy is observed, adjust the protruding length of the upstream resistance pin and / or downstream resistance pin to ensure sufficient bending. Small and high dimensional accuracy compacts can be produced efficiently.
  • resistance pins upstream resistance pins and downstream resistance pins
  • the flow rate of the raw material composition can be adjusted to a higher degree than in the past.
  • the downstream resistance pin when viewing the upstream resistance pin and the downstream resistance pin from the upstream side of the resistance tube, the downstream resistance pin is provided between the positions where the two adjacent upstream resistance pins are provided. Is preferred.
  • the flow rate of the raw material composition that has passed between the two adjacent upstream resistance pins can be adjusted to a sufficiently high level with the downstream resistance pin.
  • both the upstream resistance pin and the downstream resistance pin are made of a cylindrical member, if the radius of the upstream resistance pin is a and the radius of the downstream resistance pin is b, the center of the upstream resistance pin and the downstream resistance
  • the distance D at the center of the pin preferably satisfies the following formula (1) (see FIG. 6). (A + b) ⁇ D ⁇ 2 ⁇ (a + b) (1)
  • the flow rate of the raw material composition can be adjusted to a higher degree.
  • the upstream resistance pin and the downstream resistance pin preferably have a flat tip surface.
  • the inner surface of the resistance tube and the tip end surface can be made continuous, and there is an advantage that retention of the raw material composition can be suppressed.
  • the resistance pins arranged in one stage Can be reduced. For this reason, even if the tip of the resistor pin is flat, the resistor pin can be inserted to the vicinity of the center of the resistor tube without interference with the adjacent resistor pin (see FIGS. 5 and 7).
  • This invention is a manufacturing method of the molded object using the said extrusion molding apparatus, The method provided with the process of changing the protrusion length of at least 1 resistance pin among an upstream resistance pin and a downstream resistance pin. provide. According to the method of the present invention, by appropriately adjusting the protruding length of the upstream resistance pin and / or the downstream resistance pin, it is possible to efficiently produce a molded body with sufficiently small bending and high dimensional accuracy.
  • (A) is a perspective view which shows an example of the green molded object for honeycomb structures
  • (b) is the elements on larger scale of a green molded object.
  • a green molded body 70 shown in FIG. 1 is obtained by extruding a raw material composition.
  • the green molded body 70 is a cylindrical body in which a large number of through holes 70a are arranged substantially in parallel.
  • the cross-sectional shape of the through hole 70a is a square as shown in FIG.
  • the plurality of through holes 70a are arranged in a square arrangement in the green molded body 70, that is, such that the central axis of the through hole 70a is located at the apex of the square.
  • the square size of the cross section of the through hole 70a can be set to, for example, 0.8 to 2.5 mm on a side.
  • a honeycomb structure is manufactured by firing the green molded body 70 at a predetermined temperature.
  • the length of the green molded body 70 in the direction in which the through hole 70a extends is not particularly limited, and can be, for example, 40 to 350 mm. Further, the outer diameter of the green molded body 70 is not particularly limited, and can be, for example, 100 to 320 mm.
  • the raw material composition forming the green molded body 70 is not particularly limited, and in the case of manufacturing a honeycomb structure for a diesel particle filter, an inorganic compound source powder that is a ceramic raw material, an organic binder such as methyl cellulose, and Additives added as needed.
  • suitable ceramic materials include alumina, silica, mullite, cordierite, glass, oxides such as aluminum titanate, silicon carbide, silicon nitride, and the like.
  • the aluminum titanate can further contain magnesium and / or silicon.
  • the inorganic compound source powder when producing a green molded body of aluminum titanate, includes an aluminum source powder such as ⁇ -alumina powder and a titanium source powder such as anatase type or rutile type titania powder. Furthermore, magnesium source powders such as magnesia powder and magnesia spinel powder and / or silicon source powders such as silicon oxide powder and glass frit can be included.
  • organic binder examples include celluloses such as methylcellulose, carboxymethylcellulose, hydroxyalkylmethylcellulose, and sodium carboxymethylcellulose; alcohols such as polyvinyl alcohol; and lignin sulfonate.
  • additives examples include pore formers, lubricants and plasticizers, dispersants, and solvents.
  • pore-forming agents include carbon materials such as graphite; resins such as polyethylene, polypropylene, and polymethyl methacrylate; plant materials such as starch, nut shells, walnut shells, and corn; ice; and dry ice.
  • Lubricants and plasticizers include alcohols such as glycerol; higher fatty acids such as caprylic acid, lauric acid, palmitic acid, arachidic acid, oleic acid and stearic acid; metal stearates such as Al stearate, polyoxyalkylene alkyl And ether (POAAE).
  • alcohols such as glycerol
  • higher fatty acids such as caprylic acid, lauric acid, palmitic acid, arachidic acid, oleic acid and stearic acid
  • metal stearates such as Al stearate, polyoxyalkylene alkyl And ether (POAAE).
  • dispersant examples include inorganic acids such as nitric acid, hydrochloric acid, and sulfuric acid; organic acids such as oxalic acid, citric acid, acetic acid, malic acid, and lactic acid; alcohols such as methanol, ethanol, and propanol; ammonium polycarboxylate; Surfactants such as oxyalkylene alkyl ethers are listed.
  • the solvent examples include alcohols such as methanol, ethanol, butanol, and propanol; glycols such as propylene glycol, polypropylene glycol, and ethylene glycol; and water.
  • the extrusion molding apparatus 10 shown in FIG. 2 is for producing a green molded body 70 from a powdery or pasty raw material composition.
  • the extrusion molding apparatus 10 includes a screw 2A provided at the upper stage in the housing 1 and a screw 2B provided at the lower stage.
  • the screws 2A and 2B are for kneading the raw material composition supplied from the inlet 1a and transferring it downstream through the flow path 1b.
  • a vacuum chamber 3 is provided between the screws 2A and 2B, and the raw material composition can be degassed by reducing the pressure in the vacuum chamber 3.
  • the raw material composition in the vacuum chamber 3 is introduced into the lower screw 2B by a roller 3a.
  • the extrusion molding apparatus 10 includes a rectifying plate 5 provided on the downstream side of the screw 2B, a die 8 from which a molded body 70A made of a raw material composition is extruded, a resistance tube 9 that communicates the flow path 1b and the die 8, and a resistance. It further includes an upstream resistance pin Pa and a downstream resistance pin Pb, which are provided so as to penetrate the tube wall of the tube 9 and whose length protruding inside the resistance tube 9 can be changed.
  • the resistance tube 9 includes a tapered portion 9a having a flow passage cross-sectional area that gradually decreases from the upstream side toward the downstream side, and a straight tube portion 9b connected to the downstream side of the tapered portion 9a.
  • the part 9b is provided with an upstream resistance pin Pa and a downstream resistance pin Pb (see FIG. 3).
  • the resistance tube 9 may have an enlarged portion in which the flow path cross section increases from upstream to downstream.
  • a support base 15 for supporting the molded body 70A is installed next to the extrusion molding apparatus 10 so that the molded body 70A extruded from the die 8 is not deformed.
  • the rectifying plate 5 and the resistance pins Pa and Pb are for making the flow velocity distribution uniform before introducing the raw material composition into the die 8.
  • the rectifying plate 5 is detachably attached to the housing 1 and is disposed between the screw 2B and the die 8.
  • 4A is a front view of the current plate 5
  • FIG. 4B is a cross-sectional view of the current plate 5.
  • the rectifying plate 5 has a plurality of openings 5a penetrating in the thickness direction.
  • the rectifying plate 5 may have a net-like resistor (not shown) in order to enhance the effect of adjusting the flow rate.
  • the net-like resistor for example, a wire net having a mesh number of 5 to 200 mesh (more preferably 50 to 150 mesh) can be used.
  • the number of meshes (mesh) of the metal mesh here means the number of meshes between 1 inch (25.4 mm).
  • the first condition is that the mesh opening W is small with respect to the opening (slit width) of the die. Good.
  • the rectifying plate 5 is preferably a structure that hardly causes distortion even when pressure is applied from the upstream side.
  • the material of the rectifying plate 5 is preferably carbon steel, for example.
  • suitable materials other than carbon steel include special steels containing nickel, chromium, tungsten and the like.
  • the thickness of the current plate 5 is preferably 10 to 100 mm from the viewpoint of ensuring sufficient strength.
  • the rectifying plate 5 has a plurality of openings 5a having a diameter of 1 to 10 mm penetrating in the thickness direction.
  • the opening ratio of the rectifying plate 5 is preferably 30 to 80%.
  • the opening ratio of the rectifying plate 5 is preferably 40 to 80%, and more preferably 50 to 80%.
  • the “aperture ratio” means a value calculated by dividing the total area of the openings on one surface of the current plate 5 by the area of the one surface (excluding the peripheral edge covered by the housing). .
  • the total area of the opening may vary depending on the position of the rectifying plate in the thickness direction (feeding direction of the raw material composition). This means a value calculated using the minimum value of the sum.
  • the upstream resistance pin Pa (first resistance pin) is made of a cylindrical member, and is provided so as to penetrate the tube wall of the straight tube portion 9b of the resistance tube 9 as shown in FIG.
  • the six upstream resistance pins Pa are arranged at substantially equal intervals in the circumferential direction of the straight pipe portion 9b (see FIG. 5).
  • the upstream resistance pin Pa can be freely changed in length protruding inside the straight pipe portion 9b.
  • the downstream resistance pin Pb (second resistance pin) is also made of a cylindrical member, and penetrates the tube wall of the straight tube portion 9b of the resistance tube 9 on the downstream side of the upstream resistance pin Pa as shown in FIG. It is provided as follows.
  • the six downstream resistance pins Pb are arranged at substantially equal intervals in the circumferential direction of the straight pipe portion 9b (see FIG. 5).
  • the length of the downstream resistance pin Pb protruding inside the straight pipe portion 9b can be freely changed.
  • the upstream resistance pin Pa and the downstream resistance pin Pb have a sealing mechanism that prevents the raw material composition from leaking from the space between the tube wall of the straight tube portion 9b and are slidable with respect to the tube wall of the straight tube portion 9b. It is.
  • the screw rotation type mechanism using screws provided on the resistance pins Pa and Pb and screw holes provided on the straight pipe portion 9b is used as a configuration that allows the protruding length to be changed. Also good.
  • the number of resistance pins Pa and Pb is not limited to 6 each, but it is preferably 4 to 12 in order to obtain a sufficient flow rate adjusting effect.
  • the downstream resistance pin is located between the positions where the two adjacent upstream resistance pins Pa are provided. Pb is provided.
  • the flow rate of the raw material composition that has passed between the two adjacent upstream resistance pins Pa can be adjusted by the downstream resistance pin Pb.
  • the adjacent resistance pin Pa and resistance pin Pb are likely to interfere when the resistance pins Pa and Pb are inserted to the vicinity of the center of the straight pipe portion 9b.
  • the value of the distance D is larger than twice the sum of a and b, the effect of the two-stage flow rate adjustment by the resistance pins Pa and Pb tends to be insufficient.
  • the radii a and b of the resistance pins Pa and Pb can be about 8 to 16 mm.
  • the resistance pins Pa and Pb are preferably arranged at predetermined positions on the upstream side of the die 8. That is, the distance from the center of the downstream resistance pin Pb to the upstream surface of the die 8 is preferably about 1/8 to 1/12 of the inner diameter of the straight tube portion 9b. More specifically, the distance from the center of the downstream resistance pin Pb to the upstream surface of the die 8 is preferably 10 to 100 mm, more preferably 10 to 50 mm.
  • the protruding lengths of the resistance pins Pa and Pb can be changed. By increasing the protruding length, the flow rate of the raw material composition flowing in the region can be reduced, and the bending of the green molded body 70 can be reduced. For example, when the extruded green molded body 70 is curved upward, it is considered that the flow rate of the raw material composition flowing in the lower region of the resistance tube 9 is higher than in other regions. In this case, a plurality of resistance pins Pa and Pb located in the region may be protruded.
  • the green molded body 70 having sufficiently high dimensional accuracy can be continuously manufactured by checking the degree and direction of bending of the extruded molded body and changing the protruding length of each resistance pin P.
  • the resistance pins Pa and Pb have flat tip surfaces Fa and Fb, respectively, as shown in FIG.
  • the resistance pins Pa and Pb are not projected, the inner surface of the straight tube portion 9b and the front end surfaces Fa and Fb can be made continuous, and the retention of the raw material composition is suppressed.
  • the resistance pins Pa and Pb are arranged in two stages, even if the total number is the same as that in the case where the resistance pins P are arranged as shown in FIG. The number of resistance pins to be reduced can be reduced. For this reason, even if the front ends of the resistance pins Pa and Pb are flat, the resistance pins can be inserted to the vicinity of the center of the resistance tube without interference between the adjacent resistance pins Pa or the resistance pins Pb (see FIG. 5).
  • the resistance pins Pa and Pb may be arranged such that the angle formed with the central axis of the straight pipe portion 9b is 90 °, or may be arranged so as to be inclined upstream or downstream.
  • the inclination angles of the resistance pins Pa and Pb are preferably within 30 ° with respect to a plane having the central axis of the straight pipe portion 9b as a normal line. .
  • the die 8 is for producing a molded body having the shape shown in FIG. 1 from the raw material composition, and has a grid-like flow path (not shown) corresponding thereto.
  • a die used for manufacturing a molded body having a cell structure such as the green molded body 70 needs to set the flow path precisely, and is generally expensive. For this reason, it is desirable to reduce the frequency of die replacement work as much as possible.
  • the frequency of changing the setting of the die 8 can be reduced by changing the protruding length of the resistance pins Pa and Pb provided in the straight pipe portion 9b of the resistance tube 9, and the flow rate of the raw material composition can be reduced. Uniformity extends the life of the die 8, and the replacement frequency can be lowered.
  • the resistance pins Pa and Pb are provided in the straight pipe portion 9b of the resistance tube 9 .
  • the position where the resistance pins Pa and Pb are provided is between the rectifying plate 5 and the die 8.
  • the present invention is not limited to this.
  • the resistance pins Pa and Pb may be provided on the resistance tube 9 (tapered portion 9a) without providing the straight tube portion 9b.
  • the raw material composition is introduced into the flow path 1b from the inlet 1a.
  • the raw material composition is kneaded and transferred downstream.
  • the kneaded material is passed through the opening 5 a of the rectifying plate 5 to make the flow velocity distribution uniform, and then introduced into the die 8 through the resistance tube 9.
  • the linear velocity of the raw material composition on the downstream side of the die 8 can be about 10 to 150 cm / min.
  • the raw material composition with a uniform flow velocity distribution is extruded from the die 8 and the compact 70A is collected on the support base 15.
  • the green molded body 70 is obtained by cutting the molded body 70A into a predetermined length.
  • a step of changing the protruding lengths of the resistance pins Pa and Pb is performed.
  • This step can be performed without stopping the supply of the raw material composition to the extrusion molding apparatus 10, whereby the green molded body 70 having sufficiently high dimensional accuracy without changing or changing the setting of the die 8. Can be efficiently produced over a sufficiently long period of time.
  • an extrusion molding apparatus having a mechanism for automatically controlling the protruding lengths of the resistance pins Pa and Pb is used, the protruding lengths of the resistance pins Pa and Pb can be automatically changed.
  • the extrusion molding apparatus 20 includes a sensor 12 that detects the degree and direction of bending of the molded body 70 ⁇ / b> A extruded from the die 8, and a computer that calculates the length to which the resistance pins Pa and Pb should be projected based on data from the sensor 12. 13 and a pin drive mechanism 14 that changes the protruding lengths of the resistance pins Pa and Pb based on the output from the computer 13.
  • a non-contact type displacement sensor using a laser beam or LED light L, a non-contact type size measuring device, or the like can be used.
  • the pin drive mechanism 14 when the resistance pins Pa and Pb are of a slide type or a screw rotation type, a mechanism that reciprocates or rotates the resistance pin P with a gear or the like can be employed.
  • FIG. 9 is a diagram showing a configuration of a bending detection mechanism when a non-contact type dimension measuring device LS-7000 (trade name, manufactured by Keyence Corporation) is used as the sensor 12.
  • the bending of the molded body 70A is detected by using four sets of sensors (non-contact type dimension measuring devices 12A to 12D) each including a light emitting element 12a that emits laser light or LED light L and a light receiving element 12b.
  • a circle Y consisting of a broken line in FIG. 9 shows a cross-sectional position of the green body when a straight green body 70A is obtained, and a circle N consisting of a solid line shows the cross-sectional position of the green body where bending has occurred. is there.
  • Two sets of non-contact type dimension measuring instruments 12A and 12B may be used.
  • FIG. 10 is a diagram showing a configuration of a bending detection mechanism when a non-contact displacement sensor LK-G (trade name, manufactured by Keyence Corporation) is used as the sensor 12.
  • LK-G trade name, manufactured by Keyence Corporation
  • Sixteen non-contact displacement sensors 12a to 12p are arranged so as to surround the molded body 70A.
  • a circle Y consisting of a broken line in FIG. 9 shows a cross-sectional position of the green body when a straight green body 70A is obtained, and a circle N consisting of a solid line shows the cross-sectional position of the green body where bending has occurred. is there.
  • the non-contact type displacement sensors are arranged as shown in FIG.
  • the number of the sensors is not particularly correlated with the total number of the resistance pins Pa and Pb, but more than the total number of the resistance pins Pa and Pb. A large amount is preferable. Further, only one of a pair of opposing measuring devices may be used. For example, only the non-contact type displacement sensors 12a to 12h shown in FIG. 10 may be used.
  • the present invention is not limited to the above-mentioned embodiment.
  • the device having the resistance pins Pa and Pb arranged in two stages is illustrated, but the number of stages of the resistance pins is not limited to two, but it is a multistage structure of three or more stages. May be.
  • the second and subsequent resistance pins may be present between the positions where the resistance pins are provided upstream one stage.
  • the cylindrical green molded body 70 is exemplified, but the shape and structure of the molded body are not limited to this.
  • the outer shape of the green molded body 70 may be, for example, a rectangular column such as a quadrangular column or an elliptical column.
  • the arrangement of the through holes 70a may not be a square arrangement, and may be, for example, a substantially triangular arrangement, a substantially hexagonal arrangement, or the like.
  • the shape of the through hole 70a may not be square, and may be, for example, a substantially triangular shape, a substantially hexagonal shape, a substantially octagonal shape, a substantially circular shape, or a combination thereof.
  • Examples of the combination of a plurality of shapes include a combination of a regular hexagon and an asymmetric hexagon (see FIG. 11), a combination of a square and an octagon (octosquare), and the like.
  • the 11 has a plurality of through-holes 81a and 81b having different cross-sectional shapes.
  • the plurality of through holes 81 a and 81 b are partitioned by a partition wall 82 extending substantially parallel to the central axis of the green honeycomb molded body 80.
  • the through hole 81a has a regular hexagonal cross-sectional shape.
  • the through-hole 81b has a flat hexagonal cross-sectional shape and is disposed so as to surround one through-hole 81a.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Automation & Control Theory (AREA)
  • Press-Shaping Or Shaping Using Conveyers (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)

Abstract

 本発明に係る押出成形装置は、ペースト状の原料組成物を移送する流路と、流路の上流側に設けられ、原料組成物を混練すると共に下流側へと移送するスクリューと、流路の下流側に設けられ、原料組成物からなる成形体が押し出されるダイと、スクリューとダイの間に設けられ、厚さ方向に貫通する複数の開口を有する整流板と、整流板の下流側とダイを連通する抵抗管と、抵抗管の管壁を貫通するように設けられ、抵抗管の内側に突出する長さがそれぞれ変更自在の複数の上流側抵抗ピンと、上流側抵抗ピンよりも下流側に且つ抵抗管の管壁を貫通するように設けられ、抵抗管の内側に突出する長さがそれぞれ変更自在の複数の下流側抵抗ピンとを備える。

Description

押出成形装置及びこれを用いた成形体の製造方法
 本発明は、成形体の製造技術に関するものであり、より詳細にはセラミックス成形体を製造するための押出成形装置及びこれを用いた成形体の製造方法に関する。
 従来より、ハニカムフィルタ構造体が、ディーゼル粒子フィルタ(Diesel particulate filter)用等として広く知られている。このハニカムフィルタ構造体は、多数の貫通孔を有するハニカム構造体の一部の貫通孔の一端側を封口材で封じると共に、残りの貫通孔の他端側を封口材で封じた構造を有する。特許文献1,2には、ハニカム構造体の製造に使用されるダイス及び押出成形装置が開示されている。
特開昭61-5915号公報 特許第4099896号公報
 ところで、ディーゼル粒子フィルタ用のハニカムフィルタ構造体は一般に剛性を有するケースに収容された状態で使用される。ハニカムフィルタ構造体の寸法精度が低いと熱応力等によってハニカムフィルタ構造体に亀裂が入るなどの不具合が生じやすくなる。そのため、焼成前のグリーン成形体に対して高い寸法精度が要求される。また、ハニカム構造体は、狭いセルピッチ(例えば1.1~2.8mm程度)を有するものもあり、多数の貫通孔を画成する隔壁の厚さについても高い寸法精度が要求される。
 押出成形装置でグリーン成形体を製造する際、ダイの上流側の面に到達する原料組成物の流速が不均一で特定領域の原料組成物の流速が他の領域と比較して高いと、湾曲した成形体がダイから押し出される。これを後から真っ直ぐに矯正しようとすると、成形体の隔壁が湾曲したり外面にクラックが入ったりするといった不具合が生じる。また、成形体の製造を開始した初期の段階では真っ直ぐなものが得られていても、ダイの摩耗などによって成形体の曲がりが徐々に顕著となる場合がある。
 本発明は、上記課題に鑑みてなされたものであり、曲がりが十分に小さく、寸法精度が高い成形体を製造するため、従来と比較してより高度に原料組成物の流量を調整可能な押出成形装置及びこれを用いた成形体の製造方法を提供することを目的とする。
 本発明に係る押出成形装置は、ペースト状の原料組成物を移送する流路と、流路の上流側に設けられ、原料組成物を混練すると共に下流側へと移送するスクリューと、流路の下流側に設けられ、原料組成物からなる成形体が押し出されるダイと、スクリューとダイの間に設けられ、厚さ方向に貫通する複数の開口を有する整流板と、整流板の下流側とダイを連通する抵抗管と、抵抗管の管壁を貫通するように設けられ、抵抗管の内側に突出する長さがそれぞれ変更自在の複数の上流側抵抗ピンと、上流側抵抗ピンよりも下流側に且つ抵抗管の管壁を貫通するように設けられ、抵抗管の内側に突出する長さがそれぞれ変更自在の複数の下流側抵抗ピンとを備える。
 本発明の押出成形装置が備える上流側抵抗ピン及び下流側抵抗ピンは、ダイに導入される原料組成物の流速分布の均一化を図るためのものである。押し出されてくる成形体の曲がりの程度及び方向をチェックし、要求精度を超える曲がりが認められる場合、上流側抵抗ピン及び/又は下流側抵抗ピンの突出長さを調節することによって曲がりが十分に小さく、寸法精度が高い成形体を効率的に製造できる。少なくとも二段に配置された抵抗ピン(上流側抵抗ピン及び下流側抵抗ピン)を採用したことで、従来と比較してより高度に原料組成物の流量調整が可能である。
 本発明においては、抵抗管の上流側から上流側抵抗ピン及び下流側抵抗ピンを見ると、隣り合う二つの上流側抵抗ピンが設けられた位置の間に下流側抵抗ピンが設けられていることが好ましい。このように上流側抵抗ピンと下流側抵抗ピンを互い違いに設けることで、隣接する二つの上流側抵抗ピンの間を通過した原料組成物の流速を下流側抵抗ピンで十分高度に調節できる。
 上流側抵抗ピン及び下流側抵抗ピンがいずれも円柱状部材からなる場合、上流側抵抗ピンの半径をaとし且つ下流側抵抗ピンの半径をbとすると、上流側抵抗ピンの中心と下流側抵抗ピンの中心の距離Dは下記式(1)を満たすことが好ましい(図6参照)。
   (a+b)<D<2×(a+b) ・・・(1)
 式(1)の条件を満たすように上流側抵抗ピン及び下流側抵抗ピンを配置することで、より一層高度に原料組成物の流量を調整できる。
 上流側抵抗ピン及び下流側抵抗ピンは平坦な先端面を有することが好ましい。かかる構成を採用することにより、これらの抵抗ピンを突出させない場合に抵抗管の内面と上記先端面とを連続した面とすることができ、原料組成物の滞留を抑制できるという利点がある。また、本発明においては、少なくとも二段に複数の抵抗ピンを配置するため、一段式で抵抗ピンを配置する場合と比較して全体の本数が同じであっても、一段分に配置する抵抗ピンの数を少なくできる。このため、抵抗ピンの先端が平坦であっても、隣接する抵抗ピンとの干渉されることなく抵抗ピンを抵抗管の中心付近まで挿入できる(図5,7参照)。
 本発明は、上記押出成形装置を用いた成形体の製造方法であり、上流側抵抗ピン及び下流側抵抗ピンのうちの少なくとも一本の抵抗ピンの突出長さを変更する工程を備えた方法を提供する。本発明の方法によれば、上流側抵抗ピン及び/又は下流側抵抗ピンの突出長さを適宜調節することで、曲がりが十分に小さく、寸法精度が高い成形体を効率的に製造できる。
 本発明によれば、曲がりが十分に小さく、寸法精度が高い成形体を効率的に製造できる。
(a)はハニカム構造体用グリーン成形体の一例を示す斜視図、(b)はグリーン成形体の部分拡大図である。 本発明に係る押出成形装置の実施形態を示す概略断面図である。 図1に示す抵抗管及びその管壁を貫通するように設けられた抵抗ピンの構成を示す部分断面図である。 整流板の構成を示す図である。 上流側抵抗ピン及び下流側抵抗ピンが抵抗管(直管部)の内側に突出している様子を示す断面図である。 上流側抵抗ピン及び下流側抵抗ピンを設置する位置を示す断面図である。 一段式の抵抗ピンが抵抗管の内側に突出している様子を示す断面図である。 本発明に係る押出成形装置の他の実施形態であって抵抗ピンの突出長さを自動制御する機構を備えた形態を示す構成図である。 非接触式寸法測定器によって成形体の曲がりを検出する機構の一例を示す模式図である。 非接触式変位センサによって成形体の曲がりを検出する機構の一例を示す模式図である。 グリーン成形体の他の例を示す図である。
 以下、図面を参照しながら、本発明の好適な実施形態について詳細に説明する。まず、本発明に係る押出成形装置の説明に先立ち、ハニカム構造体用のグリーン成形体について説明する。
<グリーン成形体>
 図1に示すグリーン成形体70は、原料組成物を押出成形することによって得られたものである。図1の(a)に示すように、グリーン成形体70は多数の貫通孔70aが略平行に配置された円柱体である。貫通孔70aの断面形状は、図1の(b)に示すように正方形である。これらの複数の貫通孔70aは、グリーン成形体70において、端面から見て、正方形配置、すなわち、貫通孔70aの中心軸が、正方形の頂点にそれぞれ位置するように配置されている。貫通孔70aの断面の正方形のサイズは、例えば、一辺0.8~2.5mmとすることができる。なお、グリーン成形体70を所定の温度で焼成することによってハニカム構造体が製造される。
 グリーン成形体70の貫通孔70aが延びる方向の長さは特に限定されず、例えば、40~350mmとすることができる。また、グリーン成形体70の外径も特に限定されず、例えば、100~320mmとすることできる。
 グリーン成形体70をなす原料組成物は特に限定されず、ディーゼル粒子フィルタ用のハニカム構造体を製造する場合にあっては、セラミクス原料である無機化合物源粉末、及び、メチルセルロース等の有機バインダ、及び、必要に応じて添加される添加剤を含む。ハニカム構造体の高温耐性の観点から、好適なセラミクス材料として、アルミナ、シリカ、ムライト、コーディエライト、ガラス、チタン酸アルミニウム等の酸化物、シリコンカーバイド、窒化珪素等が挙げられる。なお、チタン酸アルミニウムは、更に、マグネシウム及び/又はケイ素を含むことができる。
 例えば、チタン酸アルミニウムのグリーン成形体を製造する場合、無機化合物源粉末は、αアルミナ粉等のアルミニウム源粉末、及び、アナターゼ型やルチル型のチタニア粉末等のチタニウム源粉末を含み、必要に応じて、更に、マグネシア粉末やマグネシアスピネル粉末等のマグネシウム源粉末及び/又は、酸化ケイ素粉末やガラスフリット等のケイ素源粉末を含むことができる。
 有機バインダとしては、メチルセルロース、カルボキシルメチルセルロース、ヒドロキシアルキルメチルセルロース、ナトリウムカルボキシルメチルセルロースなどのセルロース類;ポリビニルアルコールなどのアルコール類;リグニンスルホン酸塩が挙げられる。
 添加物としては、例えば、造孔剤、潤滑剤及び可塑剤、分散剤、溶媒が挙げられる。
 造孔剤としては、グラファイト等の炭素材;ポリエチレン、ポリプロピレン、ポリメタクリル酸メチル等の樹脂類;でんぷん、ナッツ殻、クルミ殻、コーンなどの植物材料;氷;及びドライアイス等などが挙げられる。
 潤滑剤及び可塑剤としては、グリセリンなどのアルコール類;カプリル酸、ラウリン酸、パルミチン酸、アラキジン酸、オレイン酸、ステアリン酸などの高級脂肪酸;ステアリン酸Alなどのステアリン酸金属塩、ポリオキシアルキレンアルキルエーテル(POAAE)などが挙げられる。
 分散剤としては、例えば、硝酸、塩酸、硫酸などの無機酸;シュウ酸、クエン酸、酢酸、リンゴ酸、乳酸などの有機酸;メタノール、エタノール、プロパノールなどのアルコール類;ポリカルボン酸アンモニウム、ポリオキシアルキレンアルキルエーテルなどの界面活性剤などが挙げられる。
 溶媒としては、例えば、メタノール、エタノール、ブタノール、プロパノールなどのアルコール類;プロピレングリコール、ポリプロピレングリコール、エチレングリコールなどのグリコール類;及び水などが挙げられる。
<押出成形装置>
 図2~6を参照しながら、本発明に係る押出成形装置の好適な実施形態について説明する。図2に示す押出成形装置10は、粉末状又はペースト状の原料組成物からグリーン成形体70を製造するためのものである。
 押出成形装置10は、ハウジング1内の上段に設けられたスクリュー2A及び下段に設けられたスクリュー2Bを備える。スクリュー2A,2Bは、入口1aから供給された原料組成物を混練すると共に流路1bを通じて下流側へと移送するためのものである。スクリュー2A,2Bの間には、真空室3が設けられており、真空室3内を減圧することによって原料組成物を脱気処理できるようになっている。真空室3内の原料組成物はローラ3aによって下段のスクリュー2Bに導入される。
 押出成形装置10は、スクリュー2Bの下流側に設けられた整流板5と、原料組成物からなる成形体70Aが押し出されるダイ8と、流路1bとダイ8を連通する抵抗管9と、抵抗管9の管壁を貫通するように設けられ、抵抗管9の内側に突出する長さがそれぞれ変更自在の上流側抵抗ピンPa及び下流側抵抗ピンPbとを更に備える。抵抗管9は、上流側から下流側に向けて流路断面積が徐々に小さくなっているテーパ部9aと、テーパ部9aの下流側に接続された直管部9bとを有し、直管部9bに上流側抵抗ピンPa及び下流側抵抗ピンPbが設けられている(図3参照)。なお、スクリュー2Bの径よりも径が大きい成形体70Aを製造する場合などには、抵抗管9は上流から下流に向けて流路断面が大きくなる拡大部を有してもよい。ダイ8から押し出された成形体70Aが変形しないように、押出成形装置10の隣には成形体70Aを支持するための支持台15が設置されている。整流板5及び抵抗ピンPa,Pbは、ダイ8に原料組成物を導入するに先立ち、その流速分布の均一化を図るためのものである。
 整流板5は、ハウジング1に対して着脱自在に設けられており、スクリュー2Bとダイ8の間に配置されている。図4の(a)は整流板5の正面図であり、図4の(b)は整流板5の断面図である。整流板5は厚さ方向に貫通する複数の開口5aを有する。整流板5は、流量調整の効果を高めるために網状の抵抗体(図示せず)を有していてもよい。網状の抵抗体として、例えば、網目数が5~200メッシュ(より好ましくは50~150メッシュ)の金網を使用できる。一枚又は複数枚の金網を整流板5の上流側の表面に配置することで、より高い整流効果が得られると共に、原料組成物に含まれる異物を除去できる。ここでいう金網の網目数(メッシュ)は、1インチ(25.4mm)の間にある目数を意味する。使用するメッシュを選定するに際しては、ダイの開口(スリット幅)に対してメッシュの目開きWが小さいことを第一条件とし、更に、強度的に十分な線径dを有するものを選定すればよい。メッシュ数Nは以下の式によって算出できる。
  N=25.4/(W+d)
 式中、Wはメッシュの目開き(mm)を示し、dはメッシュの線径(mm)を示す。
 整流板5は、上流側から圧力を受けてもほとんど歪みを起こさない構造体であることが好ましい。かかる観点から、整流板5の材質としては、例えば、炭素鋼等が好ましい。炭素鋼以外の好適な材質として、ニッケル、クロム、タングステン等を含有する特殊鋼を例示できる。整流板5の厚さは、十分の強度を確保する観点から、10~100mmであることが好ましい。
 整流板5は、厚さ方向に貫通する直径1~10mmの開口5aを複数有する。整流板5の開口率は30~80%であることが好ましい。開口率が30%未満の整流板5を使用した場合、上流側の圧力を過度に高くしないと、単位時間当たり十分な量の原料組成物を通過させることができず、圧力が装置の許容圧力以上となりやすい。他方、開口率が80%を超える整流板5は強度が不十分となりやすい。整流板5の開口率は40~80%であることが好ましく、50~80%であることがより好ましい。
 ここでいう「開口率」とは、整流板5の一方面における開口の面積の合計を当該一方面の面積(ハウジングによって覆われる周縁部を除く)で除すことによって算出される値を意味する。なお、開口の流路断面積が一定ではない整流板の場合、整流板の厚さ方向(原料組成物の移送方向)の位置によって開口の面積の合計は変化し得るが、「開口率」はこの合計の最小値を用いて算出される値を意味する。
 上流側抵抗ピンPa(一段目の抵抗ピン)は、円柱状部材からなり、図3に示す通り、抵抗管9の直管部9bの管壁を貫通するように設けられている。6本の上流側抵抗ピンPaは直管部9bの周方向にほぼ均等の間隔で配置されている(図5参照)。上流側抵抗ピンPaは、直管部9bの内側に突出する長さを自在に変更することが可能となっている。下流側抵抗ピンPb(二段目の抵抗ピン)も円柱状部材からなり、図3に示す通り、上流側抵抗ピンPaの下流側に、抵抗管9の直管部9bの管壁を貫通するように設けられている。6本の下流側抵抗ピンPbは直管部9bの周方向にほぼ均等の間隔で配置されている(図5参照)。下流側抵抗ピンPbも直管部9bの内側に突出する長さを自在に変更することが可能となっている。
 上流側抵抗ピンPa及び下流側抵抗ピンPbは、直管部9bの管壁との間から原料組成物がリークしないシール機構を有しており、直管部9bの管壁に対してスライド自在である。なお、突出する長さを変更自在とする構成として、スライド式の機構の代わりに、抵抗ピンPa,Pbに設けたネジ及び直管部9bに設けたネジ穴によるネジ回転式の機構であってもよい。また、抵抗ピンPa,Pbの本数は、それぞれ6本ずつに限定されるものではないが、十分な流速調整効果を得るには、それぞれ4~12本であることが好ましい。
 図5に示すように、抵抗管9の上流側から上流側抵抗ピンPa及び下流側抵抗ピンPbを見ると、隣り合う二つの上流側抵抗ピンPaが設けられた位置の間に下流側抵抗ピンPbが設けられている。このように上流側抵抗ピンPaと下流側抵抗ピンPbを互い違いに設けることで、隣接する二つの上流側抵抗ピンPaの間を通過した原料組成物の流速を下流側抵抗ピンPbで調節できる。
 上流側抵抗ピンPaの半径をaとし且つ下流側抵抗ピンPbの半径をbとすると、上流側抵抗ピンPaの中心と下流側抵抗ピンPbの中心の距離D(図6参照)は下記式(1)を満たすことが好ましい。
   (a+b)<D<2×(a+b) ・・・(1)
 距離Dの値がaとbの和よりも小さいと、抵抗ピンPa,Pbを直管部9bの中心付近にまで挿入しようとすると隣接する抵抗ピンPaと抵抗ピンPbが干渉しやすくなる。他方、距離Dの値がaとbの和の2倍よりも大きいと、抵抗ピンPa,Pbによる二段式の流量調整の効果が不十分となりやすい。なお、抵抗ピンPa,Pbの半径a,bは8~16mm程度とすることができる。
 十分な流量調整効果を得る観点から、抵抗ピンPa,Pbはダイ8の上流側の所定の位置に配置されていることが好ましい。すなわち、下流側抵抗ピンPbの中心からダイ8の上流側の面までの距離は、直管部9bの内径の1/8~1/12程度であることが好ましい。より具体的には下流側抵抗ピンPbの中心からダイ8の上流側の面までの距離は、好ましくは10~100mmであり、より好ましくは10~50mmである。
 抵抗ピンPa,Pbの突出長さは変更自在であり、突出長さを長くすることによってその領域を流れる原料組成物の流速を低減してグリーン成形体70の曲がりを小さくすることができる。例えば、押し出されているグリーン成形体70が上方に湾曲している場合、抵抗管9の下方領域を流れる原料組成物の流速が他の領域と比較して高いことが原因と考えられる。この場合、当該領域に位置する複数の抵抗ピンPa,Pbを突出させればよい。押し出されてくる成形体の曲がりの程度及び方向をチェックし、抵抗ピンPのそれぞれの突出長さを変更することによって寸法精度が十分に高いグリーン成形体70を継続的に製造できる。
 抵抗ピンPa,Pbは、図5に示すように、平坦な先端面Fa,Fbをそれぞれ有する。かかる構成を採用することにより、これらの抵抗ピンPa,Pbを突出させない場合に直管部9bの内面と先端面Fa,Fbとを連続した面とすることができ、原料組成物の滞留を抑制できるという利点がある。また、二段式で抵抗ピンPa,Pbを配置するため、図7に示すように一段式で抵抗ピンPを配置する場合と比較して全体の本数が同じであっても、一段分に配置する抵抗ピンの数を少なくできる。このため、抵抗ピンPa,Pbの先端が平坦であっても、隣接する抵抗ピンPa同士又は抵抗ピンPb同士が干渉することなく抵抗ピンを抵抗管の中心付近まで挿入できる(図5参照)。
 抵抗ピンPa,Pbは直管部9bの中心軸とのなす角度が90°となるように配置してもよく、上流側もしくは下流側に傾斜するように配置してもよい。抵抗ピンPa,Pbを上流側又は下流側に傾斜させる場合、抵抗ピンPa,Pbの傾斜角は、直管部9bの中心軸を法線とする面に対して30°以内であることが好ましい。
 ダイ8は、原料組成物から図1に示す形状の成形体を製造するためのものであり、これに対応する格子状の流路(図示せず)を有する。グリーン成形体70のようなセル構造の成形体の製造に用いられるダイは、流路の設定を緻密に行う必要があり、また一般的に高価である。このため、ダイの交換作業の頻度はなるべく低くすることが望ましい。本実施形態においては、抵抗管9の直管部9bに設けた抵抗ピンPa,Pbの突出長さを変更することでダイ8の設定を変更する頻度を低減できると共に、原料組成物の流量の均一化によりダイ8の長寿命化が図られ、その交換頻度を低くできる。
 なお、上記実施形態においては、抵抗管9の直管部9bに抵抗ピンPa,Pbを設ける場合を例示したが、抵抗ピンPa,Pbを設ける位置は整流板5とダイ8の間であれば、これに限定されない。例えば、直管部9bを設けることなく、抵抗管9(テーパ部9a)に抵抗ピンPa,Pbを設けてもよい。
<グリーン成形体の製造方法>
 次に、押出成形装置10を用いてグリーン成形体70を製造する方法について説明する。まず、原料組成物を入口1aから流路1b内に導入する。スクリュー2A,2B及びローラ3aを作動させることによって原料組成物を混練すると共に下流側に移送する。混練物を整流板5の開口5aを通過させて流速分布を均一化させた後、抵抗管9を通じてダイ8に導入する。ダイ8の下流側における原料組成物の線速度は10~150cm/分程度とすることができる。
 流速分布の均一化が図られた原料組成物をダイ8から押し出し、支持台15上に成形体70Aを回収する。成形体70Aを所定の長さに切断することによってグリーン成形体70を得る。
 整流板5の整流作用のみでは流速分布の均一化が不十分でグリーン成形体70の曲がりの程度が顕著となったとき、抵抗ピンPa,Pbの突出長さを変更する工程を実施する。この工程は、押出成形装置10への原料組成物の供給を停止することなく実施でき、これにより、ダイ8の設定の変更や交換を実施しなくても寸法精度が十分に高いグリーン成形体70を十分に長期にわたって効率的に製造することが可能となる。特に、抵抗ピンPa,Pbの突出長さを自動制御する機構を備えた押出成形装置を用いれば、抵抗ピンPa,Pbの突出長さを自動的に変更することができる。
 図8に示す押出成形装置20は、抵抗ピンPa,Pbのそれぞれの突出長さを自動で制御する機構を更に具備する他は、上述の押出成形装置10と同様の構成を有する。押出成形装置20は、ダイ8から押し出される成形体70Aの曲がりの程度及び方向を検知するセンサ12と、センサ12からのデータに基づいて抵抗ピンPa,Pbの突出させるべき長さを算出するコンピュータ13と、コンピュータ13からの出力に基づいて抵抗ピンPa,Pbのそれぞれの突出長さを変更するピン駆動機構14とを更に備える。センサ12としては、レーザー光又はLED光Lを利用した非接触式変位センサや非接触式寸法測定器などを使用することができる。ピン駆動機構14としては、抵抗ピンPa,Pbがスライド式又はネジ回転式のものである場合、歯車等によって抵抗ピンPを往復運動又は回転運動させるものを採用することができる。
 図9は、センサ12として非接触式寸法測定器LS-7000(商品名、株式会社キーエンス製)を使用した場合の曲がり検出機構の構成を示す図である。レーザー光又はLED光Lを発する発光素子12aと、受光素子12bとからなるセンサを4組(非接触式寸法測定器12A~12D)使用することによって、成形体70Aの曲がりを検出する。図9中の破線からなる円Yは真っ直ぐな成形体70Aが得られている場合の成形体断面位置を示し、実線からなる円Nは曲がりが発生した状態の成形体断面位置をそれぞれ示すものである。なお、非接触式寸法測定器12A,12Bの2組であってもよい。
 図10は、センサ12として非接触式変位センサLK-G(商品名、株式会社キーエンス製)を使用した場合の曲がり検出機構の構成を示す図である。成形体70Aの周りを取り囲むように16台の非接触式変位センサ12a~12pが配置されている。図9中の破線からなる円Yは真っ直ぐな成形体70Aが得られている場合の成形体断面位置を示し、実線からなる円Nは曲がりが発生した状態の成形体断面位置をそれぞれ示すものである。なお、図10のように非接触式変位センサを配置する場合、その台数は抵抗ピンPa,Pbの合計の本数と特に相関があるわけではないが、抵抗ピンPa,Pbの合計の本数よりも多いことが好ましい。また、対向する一対の測定器のどちらか一方のみでもよく、例えば、図10に示す非接触式変位センサ12a~12hのみでもよい。
 以上、本発明の好適な実施形態について詳細に説明したが、本発明は上記実施形態に限定されるものではない。例えば、上記実施形態においては、二段に配置された抵抗ピンPa,Pbを有する装置を例示したが、抵抗ピンの段数は二段に限定されるものではなく、三段以上の多段構えであってもよい。二段目以降の抵抗ピン(下流側抵抗ピン)は、抵抗管の上流側から見た場合、一段上流にある抵抗ピンが設けられた位置の間に存在するようにすればよい。
 また、上記実施形態においては、円柱体のグリーン成形体70を例示したが、成形体の形状や構造はこれに限定されない。グリーン成形体70の外形形状は、例えば、四角柱等の角柱や楕円柱でもよい。また、貫通孔70aの配置も、正方形配置でなくてもよく、例えば、略三角配置、略六角配置等でも構わない。更に、貫通孔70aの形状も、正方形でなくてもよく、例えば、略三角形、略六角形、略八角形、略円形及びこれらの組み合わせであってもよい。複数の形状の組み合わせとしては、正六角形と非対称六角形の組み合わせ(図11参照)、及び、四角形と八角形の組み合わせ(オクトスクエア)などが挙げられる。
 図11に示すグリーンハニカム成形体80は、断面形状が異なる複数の貫通孔81a,81bを有する。複数の貫通孔81a,81bは、グリーンハニカム成形体80の中心軸に略平行に延びる隔壁82により仕切られている。貫通孔81aは断面形状が正六角形である。一方、貫通孔81bは断面形状が扁平六角形であり一つの貫通孔81aを囲むように配置されている。
 本発明によれば、曲がりが十分に小さく、寸法精度が高い成形体を効率的に製造できる。
1…ハウジング、1b…流路、2B…スクリュー、5…整流板、5a…開口、8…ダイ、9…抵抗管、9a…テーパ部、9b…直管部、10,20…押出成形装置、70…グリーン成形体、80…グリーンハニカム成形体、70A…成形体、Fa…上流側抵抗ピンの先端面、Fb…下流側抵抗ピンの先端面、Pa…上流側抵抗ピン、Pb…下流側抵抗ピン。

Claims (8)

  1.  ペースト状の原料組成物を移送する流路と、
     前記流路の上流側に設けられ、前記原料組成物を混練すると共に下流側へと移送するスクリューと、
     前記流路の下流側に設けられ、前記原料組成物からなる成形体が押し出されるダイと、
     前記スクリューと前記ダイの間に設けられ、厚さ方向に貫通する複数の開口を有する整流板と、
     前記整流板の下流側と前記ダイを連通する抵抗管と、
     前記抵抗管の管壁を貫通するように設けられ、前記抵抗管の内側に突出する長さがそれぞれ変更自在の複数の上流側抵抗ピンと、
     前記上流側抵抗ピンよりも下流側に且つ前記抵抗管の管壁を貫通するように設けられ、前記抵抗管の内側に突出する長さがそれぞれ変更自在の複数の下流側抵抗ピンと、
    を備える押出成形装置。
  2.  前記抵抗管の上流側から前記上流側抵抗ピン及び前記下流側抵抗ピンを見ると、隣り合う二つの前記上流側抵抗ピンが設けられた位置の間に前記下流側抵抗ピンが設けられている、請求項1に記載の押出成形装置。
  3.  前記上流側抵抗ピン及び前記下流側抵抗ピンはいずれも円柱状部材からなり、前記上流側抵抗ピンの半径をaとし且つ前記下流側抵抗ピンの半径をbとすると、前記上流側抵抗ピンの中心と前記下流側抵抗ピンの中心の距離Dは下記式(1)を満たす、請求項1又は2に記載の押出成形装置。
       (a+b)<D<2×(a+b) ・・・(1)
  4.  前記上流側抵抗ピン及び前記下流側抵抗ピンは平坦な先端面を有する、請求項1~3のいずれか一項に記載の押出成形装置。
  5.  前記抵抗管は上流から下流に向けて流路断面が小さくなるテーパ部と、前記テーパ部の下流側に接続された直管部とを有する、請求項1~4のいずれか一項に記載の装置。
  6.  前記ダイから押し出される成形体の曲がりの程度及び方向を検知するセンサと、
     前記センサからのデータに基づいて前記複数の抵抗ピンの突出させるべき長さを算出するコンピュータと、
     前記コンピュータからの出力に基づいて前記複数の上流側抵抗ピン及び前記複数の下流側抵抗ピンのそれぞれの突出長さを変更するピン駆動機構と、
    を更に備える、請求項1~5のいずれか一項に記載の装置。
  7.  請求項1~6のいずれか一項に記載の押出成形装置を用いた成形体の製造方法であり、前記上流側抵抗ピン及び前記下流側抵抗ピンのうちの少なくとも一本の抵抗ピンの突出長さを変更する工程を備える方法。
  8.  請求項6に記載の押出成形装置装を用いた成形体の製造方法であり、前記上流側抵抗ピン及び前記下流側抵抗ピンのうちの少なくとも一本の抵抗ピンの突出長さを自動的に変更する工程を備える方法。
PCT/JP2013/067695 2012-07-02 2013-06-27 押出成形装置及びこれを用いた成形体の製造方法 WO2014007143A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012148525A JP5965748B2 (ja) 2012-07-02 2012-07-02 押出成形装置及びこれを用いた成形体の製造方法
JP2012-148525 2012-07-02

Publications (1)

Publication Number Publication Date
WO2014007143A1 true WO2014007143A1 (ja) 2014-01-09

Family

ID=49881900

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/067695 WO2014007143A1 (ja) 2012-07-02 2013-06-27 押出成形装置及びこれを用いた成形体の製造方法

Country Status (2)

Country Link
JP (1) JP5965748B2 (ja)
WO (1) WO2014007143A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110167740A (zh) * 2017-02-16 2019-08-23 横滨橡胶株式会社 橡胶挤出装置及橡胶挤出物的制造方法
WO2020236477A1 (en) * 2019-05-17 2020-11-26 Corning Incorporated Inline extrudate bow measurement and control

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004249513A (ja) * 2003-02-19 2004-09-09 Hoden Seimitsu Kako Kenkyusho Ltd セラミックスシートの押し出し成形方法及びその装置
WO2012036284A1 (ja) * 2010-09-17 2012-03-22 住友化学株式会社 押出成形装置及びこれを用いた成形体の製造方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004249513A (ja) * 2003-02-19 2004-09-09 Hoden Seimitsu Kako Kenkyusho Ltd セラミックスシートの押し出し成形方法及びその装置
WO2012036284A1 (ja) * 2010-09-17 2012-03-22 住友化学株式会社 押出成形装置及びこれを用いた成形体の製造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110167740A (zh) * 2017-02-16 2019-08-23 横滨橡胶株式会社 橡胶挤出装置及橡胶挤出物的制造方法
WO2020236477A1 (en) * 2019-05-17 2020-11-26 Corning Incorporated Inline extrudate bow measurement and control

Also Published As

Publication number Publication date
JP2014008737A (ja) 2014-01-20
JP5965748B2 (ja) 2016-08-10

Similar Documents

Publication Publication Date Title
WO2013137346A1 (ja) 押出成形装置及びこれを用いた成形体の製造方法
JP5785465B2 (ja) 押出成形装置及びこれを用いたハニカム構造体用グリーン成形体の製造方法
JP5771074B2 (ja) 押出成形装置及びこれを用いた成形体の製造方法
EP2233265B1 (en) Extrusion-forming device and method for manufacturing formed article by use of the device
JP5753005B2 (ja) ハニカム構造体用グリーン成形体の製造方法
JP5753006B2 (ja) 押出成形装置及びこれを用いた成形体の製造方法
WO2014007143A1 (ja) 押出成形装置及びこれを用いた成形体の製造方法
JP5686709B2 (ja) 押出成形装置及びこれを用いた成形体の製造方法
JP5908345B2 (ja) ハニカム構造体成形用金型及びこれを用いたハニカム構造体の製造方法
JP5945413B2 (ja) 押出成形金型
JP2014014983A (ja) 金型、及び、ハニカム構造体の製造方法
JP2013193279A (ja) 押出成形装置及びこれを用いた成形体の製造方法
WO2013125483A1 (ja) ハニカム構造体の検査方法、ハニカム構造体の製造方法、ハニカム構造体、封口用マスクの設計方法、及びハニカム構造体の検査プログラム
JP5953102B2 (ja) 押出成形装置及びこれを用いたグリーンハニカム成形体の製造方法
JP6010368B2 (ja) ハニカム構造体成形用金型及びこれを用いたハニカム構造体の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13813167

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13813167

Country of ref document: EP

Kind code of ref document: A1