WO2014007102A1 - Optical pickup device - Google Patents

Optical pickup device Download PDF

Info

Publication number
WO2014007102A1
WO2014007102A1 PCT/JP2013/067294 JP2013067294W WO2014007102A1 WO 2014007102 A1 WO2014007102 A1 WO 2014007102A1 JP 2013067294 W JP2013067294 W JP 2013067294W WO 2014007102 A1 WO2014007102 A1 WO 2014007102A1
Authority
WO
WIPO (PCT)
Prior art keywords
housing
pickup device
optical pickup
laser
laser light
Prior art date
Application number
PCT/JP2013/067294
Other languages
French (fr)
Japanese (ja)
Inventor
佐藤 実
加藤 英之
貴史 阿久津
賢一 竹内
Original Assignee
三洋電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2012151667A external-priority patent/JP2015167056A/en
Priority claimed from JP2012151668A external-priority patent/JP2015167057A/en
Application filed by 三洋電機株式会社 filed Critical 三洋電機株式会社
Publication of WO2014007102A1 publication Critical patent/WO2014007102A1/en

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/22Apparatus or processes for the manufacture of optical heads, e.g. assembly
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/123Integrated head arrangements, e.g. with source and detectors mounted on the same substrate
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B2007/0003Recording, reproducing or erasing systems characterised by the structure or type of the carrier
    • G11B2007/0006Recording, reproducing or erasing systems characterised by the structure or type of the carrier adapted for scanning different types of carrier, e.g. CD & DVD

Definitions

  • the present invention relates to an optical pickup device that performs an operation of reading a signal recorded on an optical disc and an operation of recording a signal on the optical disc.
  • optical pickup devices that optically record and reproduce optical signals using laser light on optical discs such as DVDs (Digital Versatile Discs) and CDs (Compact Discs) are becoming thinner.
  • an optical pickup device generally called a slim type has a thickness of 12.7 mm
  • an optical pickup device called an ultra slim type has a thickness of 9.5 mm.
  • Various techniques have been developed for thin optical pickup devices (see, for example, Patent Document 1).
  • thin optical pickup devices such as slim type and ultra slim type
  • information on optical discs using optical components such as lenses and mirrors, as well as optical components such as lenses and mirrors, in a housing with a predetermined height (12.7 mm or 9.5 mm)
  • An electronic component such as a laser unit for recording and reading data, and a printed circuit board on which a conductive path for electrically connecting the electronic components is formed are housed in a high density.
  • FPC Flexible Printed circuit board
  • the present invention has been made in view of the above problems, and an object thereof is to make it possible to use a rigid substrate even in a thin optical pickup device such as a slim type or an ultra slim type.
  • the rigid substrate has a lower heat dissipation than the FPC due to its thickness, material, etc., a large amount of heat generated from the laser light generating element accommodated in the housing causes an increase in the temperature of the optical pickup device. There is a fear.
  • the present invention has been made in view of the above problems, and one object is to make it possible to efficiently dissipate heat generated from a laser light generating element in a thin optical pickup device using a rigid substrate. To do.
  • An optical pickup device has a bottom surface and a side surface surrounding the bottom surface, a housing having an open top surface, and a laser beam mounted in the housing for recording and reading information on an optical disc.
  • a laser unit that emits light in a direction along the bottom surface, an optical component that is mounted in the housing and disposed on the optical path of the laser light, and is mounted on the housing so as to overlap the laser unit from the top surface side
  • An optical pickup apparatus has a bottom surface and a side surface surrounding the bottom surface, a housing having an open top surface, and a laser mounted in the housing for recording and reading information on an optical disc.
  • a laser light generating element for emitting light in a direction along the bottom surface, an optical component mounted in the housing and disposed on the optical path of the laser light, and the laser light generating element on the side of the top surface
  • a rigid substrate mounted on the housing so as to overlap the substrate and having a conductive pattern for transmitting a drive signal for emitting the laser light to the laser light generating element, the rigid substrate further comprising the laser
  • a heat conducting pattern for taking in heat generated by the light generating element is formed.
  • Rigid substrates can also be used in thin optical pickup devices such as slim type and ultra slim type.
  • FIG. 1 It is a figure which shows the internal structure of an optical pick-up apparatus. It is a figure which shows a mode that a laser unit is soldered to a rigid board
  • the optical pickup device 1000 is a device that performs a read operation of a signal recorded on the optical disc 5 and a recording operation of a signal on the optical disc 5 by irradiating the optical disc 5 with laser light having a predetermined wavelength.
  • the optical disc 5 is, for example, a BD (Blu-ray (registered trademark)) optical disc, a DVD (Digital Versatile Disc) standard optical disc, a CD (Compact Disc) standard optical disc, or the like.
  • BD Blu-ray (registered trademark)
  • DVD Digital Versatile Disc
  • CD Compact Disc
  • the optical pickup device 1000 has a bottom surface and a side surface surrounding the bottom surface, and has a predetermined inside of the housing 300 whose top surface is open.
  • the laser unit 100 that emits laser light
  • the composite optical element 210 the polarizing beam splitter 220, the quarter wavelength plate 230, the collimator lens 240, the reflection mirror 250, the AS (AStigmatism) plate 270, the objective lens driving device 400
  • the first heat radiating plate 500, the second heat radiating plate 600, the printed circuit board 700, and the like are accommodated
  • the cover 800 is attached to the upper surface of the housing 300, and the cover 800 and the housing 300 are fixed with screws 301. .
  • the first heat radiating plate 500 and the second heat radiating plate 600 are metal plates for effectively radiating heat generated from a heat source such as the laser unit 100.
  • the printed circuit board 700 includes a rigid substrate unit 710 formed of a rigid substrate and a flexible substrate unit 720 formed of a flexible printed circuit board (FPC).
  • the rigid board portion 710 and the flexible board portion 720 are each formed with a conductive path, but each conductive path is electrically connected as appropriate, and is formed to be a unified conductive path in the entire printed circuit board 700. Has been.
  • a connector 730 is attached to the rigid board portion 710.
  • Connector 730 is provided with terminals that are respectively coupled to the respective conductive paths formed on printed circuit board 700.
  • the connector 730 is for a control circuit that is a flexible printed circuit board that is electrically connected to a main circuit board 2000 of a rigid printed circuit board in an optical disk device in which a control circuit of the optical pickup device 1000 is formed.
  • the FPC 2100 is detachably connected.
  • a photodetector 280 and a front monitor light receiving detector 290 described later are connected to the flexible substrate unit 720.
  • the light detector 280 and the front monitor light reception detector 290 are configured to include a light sensor that receives the laser light emitted from the laser unit 100.
  • the light detector 280 and the front monitor light reception detector 290 transmit a signal corresponding to the detected intensity of the laser light to the main board 2000 via the control circuit FPC 2100 connected to the connector 730.
  • a substrate opening (through hole) 711 is formed in the rigid substrate portion 710 at a portion facing the laser unit 100.
  • the housing 300 has a bottom surface and a side surface surrounding the bottom surface, and has an open top surface, and is formed of a metal such as a magnesium alloy or a synthetic resin such as PPS (polyphenylene sulfide).
  • a metal such as a magnesium alloy or a synthetic resin such as PPS (polyphenylene sulfide).
  • the Z axis is an axis along the direction of the rotation center axis 50 of the optical disk 5, and the direction from the optical pickup device 1000 toward the optical disk 5 is the + Z direction.
  • the X axis is an axis along the direction in which the optical pickup device 1000 moves in the tracking direction of the optical disk 5 among the directions from the center of the optical disk 5 toward the outer periphery, and the direction away from the center of the optical disk 5 is the + X direction.
  • the Y axis is an axis orthogonal to the Z axis and the X axis, and is an axis along the tangential direction of the optical disc 5.
  • the optical pickup apparatus 1000 of the present embodiment performs recording and reproduction on the DVD standard optical disk 5 and the CD standard optical disk 5.
  • the laser unit 100 when performing recording and reproduction on the DVD standard optical disk 5, for example, a laser beam having a wavelength of 655 nm (both the first laser beam) in the red wavelength band (645 nm to 675 nm) corresponding to the DVD standard.
  • a laser beam having a wavelength of 785 nm (both the second laser beam) is emitted.
  • the laser unit 100 selectively emits one of two types of laser beams (first laser beam and second laser beam) having different wavelengths.
  • the laser unit 100 selectively outputs either the first laser beam or the second laser beam in accordance with the drive signal output from the main board 2000.
  • the laser light emitted from the laser unit 100 is irradiated onto the optical disk 5 from the objective lens 260 by various optical components 200 (210 to 290) housed in the housing 300 of the optical pickup device 1000, and then the reflected light is reflected. Guided to the photodetector 280.
  • FIG. 3 shows a state in which the optical component 200 constituting the optical system of the optical pickup device 1000 according to this embodiment is housed in the housing 300.
  • a laser unit 100 a composite optical element 210, a polarizing beam splitter 220, a quarter-wave plate 230, a collimator lens 240, and a reflection mirror 250 (not shown in FIG. ),
  • the objective lens 260, the AS plate 270, the light detector 280, and the front monitor light receiving detector 290 are mounted.
  • optical system of the optical pickup device 1000 in this embodiment will be described with reference to FIGS.
  • the laser unit 100 includes, for example, a wavelength of 655 nm among the red wavelength band (645 nm to 675 nm) irradiated to the DVD standard optical disk 5 and an infrared wavelength band (765 nm to 805 nm) irradiated to the CD standard optical disk 5. ), For example, one of two types of laser beams having different wavelengths such as a wavelength of 785 nm is selectively generated.
  • the laser unit 100 includes a laser chip 110 described later.
  • the laser chip 110 is formed with a first laser diode 111 having a first light emitting part for generating a first laser light and a second laser diode 112 having a second light emitting part for generating a second laser light. .
  • the first or second laser light selectively emitted from the laser unit 100 is incident on the composite optical element 210.
  • the composite optical element 210 includes a half-wave plate 211 and a diffraction grating 212.
  • the half-wave plate 211 converts the laser light emitted from the laser unit 100 into S-polarized linearly polarized light with respect to the polarizing beam splitter 220, for example.
  • the diffraction grating 212 separates the laser light emitted from the laser unit 100 into three beams, a zero-order light beam, a + 1st-order diffracted light beam, and a ⁇ 1st-order diffracted light beam.
  • the polarization beam splitter 220 reflects most of the S-polarized laser light in the red wavelength band and the infrared wavelength band and transmits part of the S-polarized laser light in the red wavelength band and the infrared wavelength band.
  • the polarization beam splitter 220 transmits most of the P-polarized laser light in the red wavelength band and the infrared wavelength band, for example.
  • the polarization beam splitter 220 reflects most of the S-polarized laser light in the red wavelength band or the infrared wavelength band incident from the composite optical element 210 in the direction of the quarter wavelength plate 230, and a part of the front monitor. The light passes in the direction of the light receiving detector 290.
  • the front monitor light receiving detector 290 is an optical component that is used to receive the laser light transmitted through the polarization beam splitter 220 and adjust the intensity of the laser light emitted from the laser unit 100.
  • the front monitor light receiving detector 290 outputs a monitor signal that changes according to the intensity of the detected laser light to a predetermined terminal of the connector 730 via a conductive path formed in the flexible substrate portion 720 and the rigid substrate portion 710. To do.
  • the monitor signal is transmitted to the main board 2000 via the control circuit FPC 2100 connected to the connector 730.
  • the control circuit of the main board 2000 outputs a drive signal based on the monitor signal so that the laser light output from the laser unit 100 has a predetermined intensity.
  • This drive signal is input from the main board 2000 to a predetermined terminal of the connector 730 via the control circuit FPC 2100 and input to the laser unit 100 via a laser driver (not shown) attached to the rigid board 710. Is done.
  • the quarter-wave plate 230 converts the laser light incident from the polarization beam splitter 220 from S-polarized linearly polarized light to circularly polarized light.
  • the quarter-wave plate 230 converts the return light of the laser light incident from the collimator lens 240 from circularly polarized light to P-polarized linearly polarized light.
  • the collimator lens 240 converts the laser light incident as diffused light from the quarter wavelength plate 230 into parallel light.
  • the reflection mirror 250 reflects the laser light incident from the collimator lens 240 in the direction of the objective lens 260.
  • the reflection mirror 250 reflects the return light of the laser light incident from the objective lens 260 in the direction of the collimator lens 240.
  • the objective lens 260 focuses the laser beam incident from the reflection mirror 250 on the signal recording layer on the recording surface of the optical disc 5.
  • the objective lens 260 is held by the objective lens driving device 400 as shown in FIG.
  • the objective lens driving device 400 includes an actuator 410 and a lens holder 420. Based on a control signal transmitted from a control circuit of the main board 2000 that controls the optical pickup device 1000, the actuator 410 detects the position of the lens holder 420 and the like. By controlling the direction, focusing control, tracking control, and the like are performed so that the laser light passing through the objective lens 260 attached to the lens holder 420 is appropriately applied to the signal recording layer of the optical disc 5.
  • the return light of the laser light reflected by the signal recording layer of the optical disk 5 is converted into parallel light by the objective lens 260, then passes through the collimator lens 240 through the reflection mirror 250, and is circularly polarized by the quarter wavelength plate 230. To P-polarized linearly polarized light.
  • the return light of the laser light that has become P-polarized light passes through the polarization beam splitter 220 and enters the AS plate 270.
  • the AS plate 270 generates astigmatism in the return light of the laser light transmitted through the polarization beam splitter 220 and focuses it on the photodetector 280.
  • the AS plate 270 is configured, for example, by tilting a parallel plate in a predetermined direction in consideration of the astigmatism generation direction.
  • the photodetector 280 detects the return light of the laser light incident from the AS plate 270.
  • the light detector 280 is configured to include a light receiving unit that receives the return light of the laser light separated into three beams by the diffraction grating 212, and reads information recorded on the signal recording layer of the optical disc 5.
  • a reproduction signal for performing, a focus error signal for performing focusing control, and a tracking error signal for performing tracking control are generated. These reproduction signal, focus error signal, and tracking error signal are transmitted to the main board 2000.
  • the optical pickup apparatus 1000 can cope with recording and reproduction of a DVD and also with recording and reproduction of a CD.
  • the frame portion 120, the resin mold portion 130, the laser chip 110, and the submount 150 are collectively referred to as a main body portion.
  • the laser unit 100 has a structure in which laser light is emitted from the main body and the first terminal 141, the second terminal 142, and the third terminal 143 extend from the main body.
  • the frame portion 120 is made of a substantially flat plate made of metal, and a submount 150 made of a dielectric is attached.
  • the laser chip 110 is fixed to the submount 150.
  • the frame unit 120 is grounded via the second terminal 142.
  • the laser chip 110 is configured by forming, for example, a first laser diode 111 that emits first laser light and a second laser diode 112 that emits second laser light on a crystal substrate of GaAs (gallium arsenide).
  • GaAs gallium arsenide
  • the first terminal 141 and the third terminal 143 are input terminals for inputting a drive signal of the laser unit 100 output from the main board 2000.
  • the second terminal 142 is grounded.
  • the first terminal 141, the second terminal 142, and the third terminal 143 extend from the resin mold part 130 in the direction opposite to the laser light emission direction.
  • the first terminal 141 of the laser unit 100, the first The two terminals 142 and the third terminals 143 are soldered to conductive paths formed in the rigid board portion 710, respectively.
  • the first terminal 141 and the third terminal 143 are conductively connected to the main board 2000 via the control circuit FPC 2100, and the second terminal 142 is grounded.
  • the laser unit 100 emits the first laser beam in the red wavelength band from the first laser diode 111 when a predetermined drive signal is input from the main substrate 2000 to the first terminal 141. Further, when a predetermined drive signal is input from the main board 2000 to the third terminal 143, the laser unit 100 emits the second laser light in the infrared wavelength band from the second laser diode 112.
  • the resin mold part 130 is a synthetic resin formed so as to cover part of both surfaces of the frame part 120.
  • the resin mold part 130 fixes the first terminal 141 and the third terminal 143, and insulates the first terminal 141 from the frame part 120 and the third terminal 143 from the frame part 120, respectively.
  • the resin mold part 130 has a wall surface surrounding the laser chip 110 so as to surround three directions except for the direction in which the laser light is emitted.
  • the second terminal 142 and the frame portion 120 are connected so as to be conductive.
  • the second terminal 142 and the frame portion 120 are integrally formed.
  • FIG. 7A is a diagram illustrating a state in which the laser unit 100 and the rigid board portion 710 are mounted on the housing 300 when viewed from the upper surface side of the housing.
  • FIG. 7B is a diagram illustrating a state in which the laser unit 100 and the rigid substrate unit 710 are mounted on the housing 300 when viewed from the first laser diode 111 and the second laser diode 112 of the laser chip 110.
  • FIG. 7C is a diagram illustrating a state in which the laser unit 100 and the rigid board portion 710 are mounted on the housing 300 when viewed from the direction in which laser light is emitted leftward in FIG. 7C.
  • the optical pickup device 1000 is configured to be able to accommodate the rigid substrate portion 710 formed of a rigid substrate in the housing 300, although it is a slim type or an ultra slim type.
  • the reference protrusion 303 may be, for example, a protrusion formed integrally when forming the housing 300, or formed by fixing a resin or metal flat plate to the housing 300 with an adhesive or the like. It may be what was done.
  • the laser unit 100 is mounted on the bottom surface 302 of the housing 300 so that the frame portion 120 of the laser unit 100 is brought into contact with the adhesive 170. At this time, the laser unit 100 is mounted so that laser light is emitted in a direction along the bottom surface 302 of the housing 300 (for example, the ⁇ X direction), and the first terminal 141, the second terminal 142, and the third terminal 143 are provided.
  • the housing 300 is mounted so as to extend in a direction along the bottom surface 302 (for example, + X direction).
  • the laser unit 100 when the laser unit 100 is attached to the bottom surface 302 of the housing 300, the reference protrusion in the height direction of the laser unit 100 is brought into contact with the abutting surface of the housing 300 with which the lower surface of the frame portion 120 of the laser unit 100 abuts.
  • the laser unit 100 sets the distance from the lower end of the housing 300 to the center of the optical axis as h2, as shown in FIG. 7B.
  • the rigid board portion 710 is mounted from the upper surface side of the housing 300 so as to overlap the laser unit 100.
  • the substrate opening 711 that opens to the rigid substrate portion 710 is aligned with the position of the resin mold portion 130 of the laser unit 100, and the upper end 131 of the resin mold portion 130 penetrates the substrate opening 711 so that the rigid substrate is formed.
  • the part 710 is attached to the housing 300.
  • the optical pickup device 1000 is provided with the substrate opening 711 in the rigid substrate portion 710, and the laser unit 100 is inserted into the substrate opening 711 so that the rigid substrate portion 710 is housed in the housing.
  • the height h1 from the lower end portion of the housing 300 to the upper end portion of the rigid board portion 710 can be suppressed.
  • the optical pickup device 1000 can prevent the height of the housing 300 from increasing in the height direction even when a rigid substrate is used. Even if it exists, it becomes possible to use a rigid board
  • the rigid board portion 710 is mounted on the housing 300 so as to be connected to the first terminal 141, the second terminal 142, and the third terminal 143 of the laser unit 100. More specifically, each of the first terminal 141, the second terminal 142, and the third terminal 143 of the laser unit 100 can be connected to three conductive paths formed on the rigid substrate portion 710, respectively. 710 is attached to the housing 300. For example, the conductive path of the rigid board portion 710 and the first terminal 141, the second terminal 142, and the third terminal 143 are connected using a connector or connected by soldering.
  • the first terminal 141, the second terminal 142, and the third terminal 143 are soldered by the respective conductive paths and the solder 160. Details of this soldering will be described later.
  • optical components other than the objective lens 260 and the reflecting mirror 250 such as the polarizing beam splitter 220 and the collimator lens 240, which are separately mounted in the housing 300, are determined with a molding accuracy of the housing by an installation portion formed in the housing 300.
  • the position and angle of the reflection mirror 250 are fixedly bonded to the housing 300 by adjusting the position and angle of the reflection mirror 250 by an adhesive, and the optical axis of the laser beam incident on the objective lens 260 is finely adjusted.
  • the mounting position of the reflection mirror 250 it is adjusted so as to absorb the tolerance of the distance h2 from the lower end of the housing 300 to the center of the optical axis, and the laser light incident on the objective lens 260 is adjusted. It is adjusted so that there is no tilt.
  • FIG. 8 shows a state in which the rigid substrate portion 710 is mounted on the housing 300 in the optical pickup device 1000 according to the present embodiment.
  • the substrate opening 711 of the rigid substrate portion 710 is formed in a portion facing the laser unit 100 so as to be able to penetrate the upper end portion 131 of the resin mold portion 130 of the laser unit 100.
  • the resin mold portion 130 of the laser unit 100 passes through the substrate opening 711 formed in the rigid substrate portion 710.
  • the rigid board portion 710 includes a connector 730 on a surface opposite to the surface facing the bottom surface 302 of the housing 300 (that is, a surface facing the + Z axis direction). 1, the control circuit FPC 2100 connected to the main board 2000 is detachably connected to the connector 730.
  • the optical pickup device 1000 can be equipped with the connector 730 that can be detachably connected to the control circuit FPC 2100 by providing the rigid substrate portion 710.
  • the connector 730 that can be detachably connected to the control circuit FPC 2100 by providing the rigid substrate portion 710.
  • the optical pickup apparatus 1000 can be used as it is only by exchanging only the control circuit FPC 2100, so that repair work can be facilitated and repaired. Costs can also be reduced.
  • the ends of the rigid board portion 710 are attached to a pair of rigid board fixing claws 320 formed on the inner wall surface of the housing 300. And the rigid board portion 710 is pushed in the direction of the bottom surface 302 of the housing 300 (the ⁇ Z axis direction) to fit. Thereafter, a cover 800 or the like is attached from above the rigid substrate portion 710 and then fixed with screws 301.
  • FIG. 9 shows a state in which the first terminal 141, the second terminal 142, and the third terminal 143 of the laser unit 100 according to the present embodiment are soldered to the conductive path of the rigid board portion 710.
  • the first terminal 141, the second terminal 142, and the third terminal 143 of the laser unit 100 are visually recognized from the outside on the bottom surface 302 of the housing 300 according to the present embodiment, and these terminals are respectively rigid.
  • a housing opening 310 for soldering to the conductive path of the substrate part 710 is formed.
  • the first terminal 141, the second terminal 142, and the third terminal 143 of the laser unit 100 are soldered through the housing opening 310.
  • the soldering operation between the laser unit 100 and the rigid board 710 can be facilitated.
  • the laser unit 100 is directly soldered to the rigid board portion 710, the height h1 from the lower end portion of the housing 300 to the upper end portion of the rigid board portion 710 is suppressed as shown in FIGS. 7B and 7C. It becomes possible to do.
  • the height of the housing 300 can be prevented from increasing in the height direction. Therefore, even in the slim type or ultra slim type optical pickup device 1000, the rigid substrate can be used. It becomes possible.
  • the laser unit 100 and the laser driver 180 will be described with reference to FIG.
  • the laser unit 100 and the laser driver 180 are mounted on the rigid board portion 710 by soldering.
  • the laser unit 100 and the laser driver 180 are connected by a conductive pattern formed on the rigid substrate portion 710 and constitute a circuit for emitting laser light.
  • the main board 2000 outputs a predetermined control signal for controlling the laser driver 180 when the laser light is emitted, and this control signal is supplied to the laser driver 180 on the rigid board portion 710, and the laser driver 180 receives the control signal.
  • the laser unit 100 is driven by a drive signal corresponding to the above.
  • a power supply voltage is applied to the laser driver 180 via the connector 730.
  • the main board 2000 outputs a first control signal to emit the first laser beam
  • the first control signal is input to the laser driver 180.
  • the laser driver 180 outputs a drive signal between the first terminal 141 and the second terminal 142 of the laser unit 100.
  • the laser unit 100 emits the first laser light from the first laser diode 111.
  • the main board 2000 when the main board 2000 outputs a second control signal for emitting the second laser light, the second control signal is input to the laser driver 180.
  • the laser driver 180 outputs a drive signal between the third terminal 143 and the second terminal 142 of the laser unit 100. Then, the laser unit 100 emits the second laser light from the second laser diode 112.
  • the optical pickup device 1000 of the present embodiment emits laser light by using the laser unit 100 and the laser driver 180.
  • the laser unit 100 and the laser driver 180 of this embodiment function as a laser beam generating element.
  • the control signal output for the main substrate 2000 to control the laser driver 180 and the drive signal output for the laser driver 180 to drive the laser unit 100 are both for causing the laser light to be emitted. It is included in the drive signal.
  • various optical components 200 and electronic components are mounted in a thin housing 300 at a high density, and the laser unit 100 and the laser driver 180 are mounted from the upper surface side of the housing 300. Since the rigid substrate portion 710 is mounted so as to overlap, the heat generated from the laser unit 100 and the laser driver 180 is required to be released more efficiently.
  • the rigid substrate unit 710 in addition to the conductive pattern for transmitting signals for driving the electronic components such as the laser unit 100 and the laser driver 180, the rigid substrate unit 710 according to the present embodiment, as shown in FIG. A heat conducting pattern 712 that conducts heat generated by the laser unit 100 and the laser driver 180 is formed.
  • the heat conducting pattern 712 is formed on the rigid substrate portion 710, and the heat generated from the laser unit 100 and the laser driver 180 is released to the heat conducting pattern 712, so that the laser unit 100 and the laser driver 180 are formed. It becomes possible to cool effectively.
  • the heat conducting pattern 712 is formed by laminating the surface of the rigid substrate portion 710 and the inside of the rigid substrate portion 710 along the surface of the rigid substrate portion 710.
  • the metal layer is formed.
  • metal plating 714 that covers the surface of a through hole 713 (through hole) that penetrates each metal layer laminated between one surface of the rigid substrate portion 710 and the other surface. It is configured to be.
  • the heat conducting pattern 712 may be a single metal layer formed on or inside the rigid substrate portion 710.
  • the optical pickup device 1000 includes a first heat radiating plate 500 and a second heat radiating plate 600 made of metal.
  • the first heat radiating plate 500 is mounted in the housing 300 so as to be adjacent to the laser unit 100
  • the second heat radiating plate 600 is mounted in the housing 300 so as to be adjacent to the laser driver 180.
  • the heat generated from the laser unit 100 is taken into the heat conducting pattern 712 of the rigid substrate unit 710 via the first heat radiating plate 500, and the heat generated from the laser driver 180 passes through the second heat radiating plate 600.
  • the heat conducting pattern 712 of the rigid substrate portion 710 is incorporated.
  • the heat generated from the laser unit 100 and the laser driver 180 is effectively transmitted to the first heat radiating plate 500 and the second heat radiating plate 600 made of metal, and in addition, a rigid substrate. It can also be transmitted to the heat conducting pattern 712 of the portion 710. Thereby, the heat from the laser unit 100 and the laser driver 180 can be radiated more effectively.
  • the heat conducting pattern 712 of the rigid substrate portion 710 can be downsized.
  • the rigid substrate portion 710 itself can be reduced in size, and the optical pickup device 1000 can also be reduced in size.
  • the optical pickup device 1000 may be configured not to include the first heat radiating plate 500 and the second heat radiating plate 600.
  • the heat generated from the laser unit 100 and the laser driver 180 is transmitted to the heat conducting pattern 712 without passing through the first heat radiating plate 500 and the second heat radiating plate 600, but the first heat radiating plate 500 and the second heat radiating plate 500 Since the heat radiating plate 600 is not provided, the optical pickup device 1000 can be reduced in weight and size.
  • the optical pickup device 1000 has a thermal conductivity between the laser unit 100 and the first heat dissipation plate 500, but an insulating heat dissipation gel (thermally conductive elastic material). 900 is interposed. The heat generated by the laser unit 100 is taken into the first heat radiating plate 500 via the heat radiating gel 900.
  • the heat dissipating gel 900 is made of an elastic resin. Therefore, the laser unit 100 and the first heat radiating plate 500 can be elastically brought into contact with each other. Therefore, for example, a distance between the laser unit 100 and the first heat radiating plate 500 due to aging, manufacturing error, or the like. Even if is changed, the heat conduction path can be maintained.
  • a heat radiating gel (thermally conductive elastic material) 900 is interposed between the laser driver 180 and the second heat radiating plate 600. I am doing so. The heat generated by the laser driver 180 is taken into the second heat radiating plate 600 via the heat radiating gel 900.
  • the laser driver 180 and the second heat radiating plate 600 can be elastically brought into contact with each other. Therefore, for example, a distance between the laser driver 180 and the second heat radiating plate 600 due to aging, manufacturing error, or the like. Even if is changed, the heat conduction path can be maintained.
  • the optical pickup device 1000 can be configured not to include the first heat radiating plate 500 and the second heat radiating plate 600.
  • the heat from the laser unit 100 and the laser driver 180 is transmitted to the heat conducting pattern 712 of the rigid board portion 710 without passing through the first heat radiating plate 500 or the second heat radiating plate 600.
  • the optical pickup device 1000 can be reduced in weight and size.
  • a heat radiating gel (thermally conductive elastic material) 900 may be interposed between the laser unit 100 or the laser driver 180 and the heat conducting pattern 712 of the rigid substrate portion 710.
  • the heat generated by the laser unit 100 and the laser driver 180 is taken into the heat conducting pattern 712 via the heat radiating gel 900.
  • FIG. 13 shows as an example the case where the heat generated by the laser diode 180 is released, but the same applies to the case where the heat generated by the laser unit 100 is released.
  • the heat conducting pattern 712 is formed by a plurality of metal layers formed by being laminated on the surface and inside of the rigid substrate unit 710 along the surface of the rigid substrate unit 710. ing.
  • metal plating 714 that covers the surface of a through hole 713 (through hole) that penetrates each metal layer laminated between one surface of the rigid substrate portion 710 and the other surface. It is configured to be.
  • the metal layer constituting the heat conducting pattern 712 can be made of copper, gold, or the like, like the conductive pattern. Since copper and gold have high thermal conductivity, the heat generated by the laser unit 100 and the laser driver 180 can be quickly and efficiently exhausted.
  • the heat conducting pattern 712 may be shared with the conductive pattern formed on the rigid substrate unit 710. In this way, since the area of the pattern formed on the rigid substrate portion 710 can be reduced, the rigid substrate portion 710 can be downsized.
  • a conductive pattern having a ground potential formed on the rigid substrate portion 710 may be used as the heat conducting pattern 712.
  • the rigid substrate portion 710 is formed with a conductive pattern having a large area of ground potential, usually called a solid pattern, for improving noise resistance, lowering impedance, and the like. This solid pattern is used as the heat conduction pattern 712.
  • a solid pattern is used as the heat conduction pattern 712.
  • the optical pickup apparatus 1000 according to this embodiment has been described above. However, according to the optical pickup apparatus 1000 according to this embodiment, a rigid substrate can be used even in a thin optical pickup apparatus such as a slim type or an ultra slim type. It becomes possible.
  • the configuration in which the substrate opening 711 is opened in the rigid substrate portion 710 and the upper end 131 of the laser unit 100 is penetrated through the substrate opening 711 has been described as an example.
  • the housing 300 of the rigid substrate portion 710 is described.
  • the surface 715 (the surface facing the ⁇ Z axis direction) opposite to the bottom surface 302 of the laser unit 100 is configured to be closer to the bottom surface 302 of the housing 300 than the upper end portion 131 of the laser unit 100, It may be configured.
  • a recess may be formed in the portion of the rigid substrate portion 710 that faces the laser unit 100 so that the upper end portion 131 of the laser unit 100 cannot be inserted.
  • the rigid substrate portion 710 is mounted on the housing 300 so that the upper end portion 131 of the laser unit 100 is fixed in a state of being inserted into the recess.
  • the rigid substrate portion 710 can be mounted close to the bottom surface 302 of the housing 300 as much as the upper end portion 131 of the laser unit 100 enters the recess, and the optical pickup device 1000 can be thinned. It becomes possible.
  • a cut portion that bypasses the laser unit 100 may be formed in the rigid board portion 710.
  • the rigid substrate portion 710 is mounted closer to the bottom surface 302 of the housing 300 than the upper end portion 131 of the laser unit 100 without causing the rigid substrate portion 710 and the laser unit 100 to interfere with each other.
  • the optical pickup device 1000 can be made thinner.
  • heat generated from laser light generating elements such as the laser unit 100 and the laser driver 180 can be efficiently released in a thin optical pickup device using a rigid substrate. Is possible.
  • the heat is generated inside the housing 300, and the housing 300 is deformed.
  • it is generated from the laser light generating element by forming the heat conducting pattern 712 that conducts the heat generated by the laser light generating element on the rigid substrate portion 710 as in this embodiment. It is possible to effectively release the heat to be transmitted and to reduce the amount of heat transmitted to the housing 300.
  • the case of a dual wavelength laser compatible with DVD and CD has been described as an example of the laser unit 100. It may be a three-wavelength laser adapted to the Blu-ray Disc (registered trademark) standard, or a one-wavelength laser or a two-wavelength laser corresponding to any one or two of them.
  • the slim type (height 12.7 mm) or ultra slim type (height 9.5 mm) optical pickup apparatus 1000 has been described as an example. However, in the optical pickup apparatus 1000 of other thicknesses (for example, thinner), There may be.
  • Optical disc 50 Rotating shaft 100 Laser unit 110 Laser chip 111 First laser diode 112 Second laser diode 120 Frame portion 130 Resin mold portion 140 Input terminal 141 First terminal 142 Second terminal 143 Third terminal 150 Submount 160 Solder 170 Adhesion Agent 200 Optical component 210 Composite optical element 211 1/2 wavelength plate 212 Diffraction grating 220 Polarizing beam splitter 230 1/4 wavelength plate 240 Collimator lens 250 Reflecting mirror 260 Objective lens 270 AS plate 280 Photodetector 290 Front monitor light receiving detector 300 Housing 301 Screw 310 Housing opening 320 Rigid substrate fixing claw 400 Objective lens driving device 410 Actuator 420 Lens holder 500 First heat sink 60 0 Second heat sink 700 Printed circuit board 710 Rigid board 711 Board opening 712 Heat conduction pattern 713 Through hole 714 Metal plating 720 Flexible board 730 Connector 800 Cover 900 Heat radiation gel 1000 Optical pickup device 2000 Main board 2100 FPC for control circuit

Abstract

[Problem] To use a rigid circuit board even in a low-profile optical pickup device. [Solution] An optical pickup device comprises: a housing having a bottom face, side faces surrounding the bottom face, and an open upper face; a laser unit mounted within the housing and emitting a laser beam in the direction along the bottom face, the laser beam being used to write and read information to and from an optical disk; an optical component mounted within the housing and disposed in the path of the laser beam; and a rigid circuit board mounted to the housing so as to overlap the laser unit from the upper face side and having an electrically conducting path formed thereon, the electrically conducting path transmitting to the laser unit a drive signal for driving the laser unit. The optical pickup device is characterized in that the rigid circuit board is mounted to the housing in such a manner that a face of the rigid circuit board, the face facing the bottom face, is located closer to the bottom face than the upper end of the laser unit.

Description

光ピックアップ装置Optical pickup device
 本発明は、光ディスクに記録されている信号の読み出し動作や光ディスクに信号の記録動作を行う光ピックアップ装置に関する。 The present invention relates to an optical pickup device that performs an operation of reading a signal recorded on an optical disc and an operation of recording a signal on the optical disc.
 近年の技術進歩に伴って、DVD(Digital Versatile Disc)やCD(Compact Disc)等の光ディスクに対してレーザ光を用いて光学的に信号の記録再生を行う光ピックアップ装置の薄型化が進んでいる。例えば、一般的にスリムタイプと呼ばれる光ピックアップ装置の場合は、厚さが12.7mmであり、ウルトラスリムタイプと呼ばれる光ピックアップ装置の場合は、厚さが9.5mmである。また薄型の光ピックアップ装置に関して様々な技術が開発されている(例えば特許文献1参照)。 With recent technological advances, optical pickup devices that optically record and reproduce optical signals using laser light on optical discs such as DVDs (Digital Versatile Discs) and CDs (Compact Discs) are becoming thinner. . For example, an optical pickup device generally called a slim type has a thickness of 12.7 mm, and an optical pickup device called an ultra slim type has a thickness of 9.5 mm. Various techniques have been developed for thin optical pickup devices (see, for example, Patent Document 1).
特開2010-073229号公報JP 2010-073229 A
 スリムタイプやウルトラスリムタイプのようないわゆる薄型の光ピックアップ装置では、所定高さ(12.7mmや9.5mm)のハウジング内に、レンズやミラー等の光学部品の他、これらの光学部品を用いて光ディスクに対する情報の記録や読み出しを行なうためのレーザユニット等の電子部品、さらに、各電子部品を電気的に接続するための導電路が形成されたプリント基板等が高密度に収納されて構成される。そしてこれらの薄型の光ピックアップ装置では、ミリ単位の厚さを有するリジッド基板を用いることは困難であり、厚さ数十マイクロメートル程度のフレキシブルプリント基板(以下、FPC(Flexible Printed Circuit)とも記載する)が用いられている。ところがFPCは、リジッド基板に比べて傷や破損を生じやすく、コストも割高であるため、スリムタイプやウルトラスリムタイプのような薄型の光ピックアップ装置においてもリジッド基板を用いることを可能にする技術が望まれている。 In so-called thin optical pickup devices such as slim type and ultra slim type, information on optical discs using optical components such as lenses and mirrors, as well as optical components such as lenses and mirrors, in a housing with a predetermined height (12.7 mm or 9.5 mm) An electronic component such as a laser unit for recording and reading data, and a printed circuit board on which a conductive path for electrically connecting the electronic components is formed are housed in a high density. In these thin optical pickup devices, it is difficult to use a rigid substrate having a thickness of millimeter units, and it is also described as a flexible printed circuit board (hereinafter referred to as FPC (Flexible Printed Circuit)) having a thickness of several tens of micrometers. ) Is used. However, since FPC is more likely to be scratched or damaged than a rigid substrate and is expensive, a technology that makes it possible to use a rigid substrate even in a thin optical pickup device such as a slim type or an ultra slim type is desired. ing.
 本発明は上記課題を鑑みてなされたものであり、スリムタイプやウルトラスリムタイプのような薄型の光ピックアップ装置においても、リジッド基板を用いることを可能にすることを一つの目的とする。 The present invention has been made in view of the above problems, and an object thereof is to make it possible to use a rigid substrate even in a thin optical pickup device such as a slim type or an ultra slim type.
 また、リジッド基板はその厚みや材質等に起因してFPCに比べて放熱性が低いため、ハウジング内に収容されるレーザ光発生素子から発生する大量の熱により、光ピックアップ装置の温度上昇を招くおそれがある。 In addition, since the rigid substrate has a lower heat dissipation than the FPC due to its thickness, material, etc., a large amount of heat generated from the laser light generating element accommodated in the housing causes an increase in the temperature of the optical pickup device. There is a fear.
 そのため、リジッド基板を用いた薄型の光ピックアップ装置において、レーザ光発生素子から発生する熱を効率良く放出することを可能にする技術が求められている。 For this reason, there is a demand for a technology that enables efficient release of heat generated from a laser light generating element in a thin optical pickup device using a rigid substrate.
 本発明は上記課題を鑑みてなされたものであり、リジッド基板を用いた薄型の光ピックアップ装置において、レーザ光発生素子から発生する熱を効率良く放熱することを可能にすることを一つの目的とする。 SUMMARY OF THE INVENTION The present invention has been made in view of the above problems, and one object is to make it possible to efficiently dissipate heat generated from a laser light generating element in a thin optical pickup device using a rigid substrate. To do.
 一つの側面に係る光ピックアップ装置は、底面及び前記底面を囲む側面を有し、上面が開放されたハウジングと、前記ハウジング内に装着され、光ディスクに対する情報の記録及び読み出しを行なうためのレーザ光を前記底面に沿った方向に発光するレーザユニットと、前記ハウジング内に装着され、前記レーザ光の光路上に配置される光学部品と、前記レーザユニットに前記上面の側から重なるように前記ハウジングに装着され、前記レーザユニットを駆動するための駆動信号を前記レーザユニットに伝達する導電路が形成されたリジッド基板と、を備え、前記リジッド基板は、前記底面に相対する面が前記レーザユニットの上端部よりも前記底面に近接するように前記ハウジングに装着される。 An optical pickup device according to one aspect has a bottom surface and a side surface surrounding the bottom surface, a housing having an open top surface, and a laser beam mounted in the housing for recording and reading information on an optical disc. A laser unit that emits light in a direction along the bottom surface, an optical component that is mounted in the housing and disposed on the optical path of the laser light, and is mounted on the housing so as to overlap the laser unit from the top surface side A rigid substrate on which a conductive path for transmitting a drive signal for driving the laser unit to the laser unit is formed, the surface of the rigid substrate facing the bottom surface being an upper end portion of the laser unit. It is attached to the housing so as to be closer to the bottom surface.
 また、一つの側面に係る光ピックアップ装置は、底面及び前記底面を囲む側面を有し、上面が開放されたハウジングと、前記ハウジング内に装着され、光ディスクに対する情報の記録及び読み出しを行なうためのレーザ光を前記底面に沿った方向に発光するためのレーザ光発生素子と、前記ハウジング内に装着され、前記レーザ光の光路上に配置される光学部品と、前記レーザ光発生素子に前記上面の側から重なるように前記ハウジングに装着され、前記レーザ光を発光させるための駆動信号を前記レーザ光発生素子に伝達する導電パターンが形成されたリジッド基板と、を備え、前記リジッド基板はさらに、前記レーザ光発生素子が発生した熱を取り入れる導熱用パターンが形成されてなる。 An optical pickup apparatus according to one aspect has a bottom surface and a side surface surrounding the bottom surface, a housing having an open top surface, and a laser mounted in the housing for recording and reading information on an optical disc. A laser light generating element for emitting light in a direction along the bottom surface, an optical component mounted in the housing and disposed on the optical path of the laser light, and the laser light generating element on the side of the top surface A rigid substrate mounted on the housing so as to overlap the substrate and having a conductive pattern for transmitting a drive signal for emitting the laser light to the laser light generating element, the rigid substrate further comprising the laser A heat conducting pattern for taking in heat generated by the light generating element is formed.
 その他、本願が開示する課題、及びその解決方法は、発明を実施するための形態の欄の記載、及び図面の記載等により明らかにされる。 The other problems disclosed by the present application and the solutions thereof will be clarified by the description in the column of the embodiment for carrying out the invention and the description of the drawings.
 スリムタイプやウルトラスリムタイプのような薄型の光ピックアップ装置においても、リジッド基板を用いることが可能になる。 Rigid substrates can also be used in thin optical pickup devices such as slim type and ultra slim type.
 また、リジッド基板を用いた薄型の光ピックアップ装置において、レーザ光発生素子から発生する熱を効率良く放出することが可能になる。 Also, in a thin optical pickup device using a rigid substrate, it is possible to efficiently release heat generated from the laser light generating element.
光ピックアップ装置の外観構成を示す図である。It is a figure which shows the external appearance structure of an optical pick-up apparatus. 光ピックアップ装置の内部構成を示す図である。It is a figure which shows the internal structure of an optical pick-up apparatus. 光ピックアップ装置の内部構成を示す図である。It is a figure which shows the internal structure of an optical pick-up apparatus. 光ピックアップ装置の光学系を説明するための図である。It is a figure for demonstrating the optical system of an optical pick-up apparatus. 光ピックアップ装置の光学系を説明するための図である。It is a figure for demonstrating the optical system of an optical pick-up apparatus. レーザユニットの外観構成を示す図である。It is a figure which shows the external appearance structure of a laser unit. レーザユニットがハウジングに収容される様子を示す図である。It is a figure which shows a mode that a laser unit is accommodated in a housing. レーザユニットがハウジングに収容される様子を示す図である。It is a figure which shows a mode that a laser unit is accommodated in a housing. レーザユニットがハウジングに収容される様子を示す図である。It is a figure which shows a mode that a laser unit is accommodated in a housing. 光ピックアップ装置の内部構成を示す図である。It is a figure which shows the internal structure of an optical pick-up apparatus. レーザユニットがリジッド基板に半田付けされる様子を示す図である。It is a figure which shows a mode that a laser unit is soldered to a rigid board | substrate. レーザ光の発生回路を示す図である。It is a figure which shows the generation circuit of a laser beam. レーザ光発生素子に隣接して放熱板が装着される様子を示す図である。It is a figure which shows a mode that a heat sink is mounted adjacent to a laser beam generating element. リジッド基板に導熱用パターンが形成される様子を示す図である。It is a figure which shows a mode that the pattern for heat conduction is formed in a rigid board | substrate. レーザドライバからの熱を放熱板を介してリジッド基板の導熱用パターンに伝導させる様子を示す図である。It is a figure which shows a mode that the heat from a laser driver is conducted to the pattern for heat conduction of a rigid board | substrate through a heat sink.
 本明細書および添付図面の記載により、少なくとも以下の事項が明らかとなる。
==光ピックアップ装置の全体構成==
 本発明の実施形態における光ピックアップ装置1000の外観構成を図1に示す。また光ピックアップ装置1000の分解斜視図を図2に示す。また光ピックアップ装置1000の内部構成を図3に示す。また光ピックアップ装置1000の光学系の構成を図4及び図5に示す。
At least the following matters will become apparent from the description of this specification and the accompanying drawings.
== Overall configuration of optical pickup device ==
An external configuration of an optical pickup device 1000 according to an embodiment of the present invention is shown in FIG. An exploded perspective view of the optical pickup device 1000 is shown in FIG. The internal configuration of the optical pickup device 1000 is shown in FIG. The configuration of the optical system of the optical pickup device 1000 is shown in FIGS.
 光ピックアップ装置1000は、光ディスク5に所定波長のレーザ光を照射することにより、光ディスク5に記録されている信号の読み出し動作や光ディスク5に信号の記録動作を行う装置である。 The optical pickup device 1000 is a device that performs a read operation of a signal recorded on the optical disc 5 and a recording operation of a signal on the optical disc 5 by irradiating the optical disc 5 with laser light having a predetermined wavelength.
 光ディスク5は、例えばBD(Blu-ray(登録商標、以下同様))規格の光ディスク、DVD(Digital Versatile Disc)規格の光ディスク、CD(Compact Disc)規格の光ディスク等である。 The optical disc 5 is, for example, a BD (Blu-ray (registered trademark)) optical disc, a DVD (Digital Versatile Disc) standard optical disc, a CD (Compact Disc) standard optical disc, or the like.
 詳細は後述するが、本実施形態に係る光ピックアップ装置1000は、図1及び図2に示すように、底面と、底面を囲む側面と、を有すると共に、上面が開放されたハウジング300内の所定位置に、レーザ光を発光するレーザユニット100や、複合光学素子210、偏光ビームスプリッタ220、1/4波長板230、コリメートレンズ240、反射ミラー250、AS(AStigmatism)板270、対物レンズ駆動装置400、第1放熱板500、第2放熱板600、プリント基板700等を収容した上で、ハウジング300の上面にカバー800を装着し、カバー800とハウジング300とをビス301で固定して構成される。 Although details will be described later, as shown in FIGS. 1 and 2, the optical pickup device 1000 according to the present embodiment has a bottom surface and a side surface surrounding the bottom surface, and has a predetermined inside of the housing 300 whose top surface is open. At the position, the laser unit 100 that emits laser light, the composite optical element 210, the polarizing beam splitter 220, the quarter wavelength plate 230, the collimator lens 240, the reflection mirror 250, the AS (AStigmatism) plate 270, the objective lens driving device 400 The first heat radiating plate 500, the second heat radiating plate 600, the printed circuit board 700, and the like are accommodated, the cover 800 is attached to the upper surface of the housing 300, and the cover 800 and the housing 300 are fixed with screws 301. .
 第1放熱板500及び第2放熱板600は、レーザユニット100等の発熱源から発生する熱を効果的に放熱するための金属板である。 The first heat radiating plate 500 and the second heat radiating plate 600 are metal plates for effectively radiating heat generated from a heat source such as the laser unit 100.
 またプリント基板700は、図2に示されるように、リジッド基板で構成されるリジッド基板部710と、フレキシブルプリント基板(FPC)で構成されるフレキシブル基板部720とを有して構成されている。リジッド基板部710及びフレキシブル基板部720は、それぞれに導電路が形成されているが、各導電路は電気的に適宜接続されており、プリント基板700全体で統一的な導電路となるように形成されている。 Further, as shown in FIG. 2, the printed circuit board 700 includes a rigid substrate unit 710 formed of a rigid substrate and a flexible substrate unit 720 formed of a flexible printed circuit board (FPC). The rigid board portion 710 and the flexible board portion 720 are each formed with a conductive path, but each conductive path is electrically connected as appropriate, and is formed to be a unified conductive path in the entire printed circuit board 700. Has been.
 またリジッド基板部710にはコネクタ730が装着されている。コネクタ730には、プリント基板700に形成される各導電路とそれぞれ結合される端子が設けられている。図1に示すように、コネクタ730には、光ピックアップ装置1000の制御回路が形成される光ディスク装置内のリジッド型プリント基板のメイン基板2000に電気的に接続されるフレキシブルプリント基板である制御回路用FPC2100が着脱自在に接続される。 Also, a connector 730 is attached to the rigid board portion 710. Connector 730 is provided with terminals that are respectively coupled to the respective conductive paths formed on printed circuit board 700. As shown in FIG. 1, the connector 730 is for a control circuit that is a flexible printed circuit board that is electrically connected to a main circuit board 2000 of a rigid printed circuit board in an optical disk device in which a control circuit of the optical pickup device 1000 is formed. The FPC 2100 is detachably connected.
 またフレキシブル基板部720には、図2に示すように、後述する光検出器280やフロントモニタ受光検出器290が接続される。光検出器280及びフロントモニタ受光検出器290は、レーザユニット100から出射されたレーザ光を受光する光センサを有して構成されている。光検出器280及びフロントモニタ受光検出器290は、検出したレーザ光の強度に応じた信号を、コネクタ730に接続された制御回路用FPC2100を介して、メイン基板2000に伝達する。 Further, as shown in FIG. 2, a photodetector 280 and a front monitor light receiving detector 290 described later are connected to the flexible substrate unit 720. The light detector 280 and the front monitor light reception detector 290 are configured to include a light sensor that receives the laser light emitted from the laser unit 100. The light detector 280 and the front monitor light reception detector 290 transmit a signal corresponding to the detected intensity of the laser light to the main board 2000 via the control circuit FPC 2100 connected to the connector 730.
 また詳細は後述するが、リジッド基板部710には、レーザユニット100と対面する部分に基板開口部(貫通穴)711が形成されている。 Although details will be described later, a substrate opening (through hole) 711 is formed in the rigid substrate portion 710 at a portion facing the laser unit 100.
 ハウジング300は、底面と、底面を囲む側面と、を有すると共に、上面が開放されており、例えばマグネシウム合金等の金属、あるいはPPS(ポリフェニレンサルファイド)等の合成樹脂により形成される。 The housing 300 has a bottom surface and a side surface surrounding the bottom surface, and has an open top surface, and is formed of a metal such as a magnesium alloy or a synthetic resin such as PPS (polyphenylene sulfide).
 なお図1において、Z軸は光ディスク5の回転中心軸50の方向に沿う軸であり、光ピックアップ装置1000から光ディスク5に向かう向きを+Z方向とする。X軸は光ディスク5の中心から外周に向かう向きのうち、光ピックアップ装置1000が光ディスク5のトラッキング方向に移動する方向に沿う軸であり、光ディスク5の中心から離れる方向を+X方向とする。Y軸は、Z軸及びX軸に直交する軸であり、光ディスク5のタンジェンシャル方向に沿った軸である。
==光学系==
 本実施形態における光ピックアップ装置1000の光学系について、図3~図5を参照しながら説明する。
In FIG. 1, the Z axis is an axis along the direction of the rotation center axis 50 of the optical disk 5, and the direction from the optical pickup device 1000 toward the optical disk 5 is the + Z direction. The X axis is an axis along the direction in which the optical pickup device 1000 moves in the tracking direction of the optical disk 5 among the directions from the center of the optical disk 5 toward the outer periphery, and the direction away from the center of the optical disk 5 is the + X direction. The Y axis is an axis orthogonal to the Z axis and the X axis, and is an axis along the tangential direction of the optical disc 5.
== Optical system ==
The optical system of the optical pickup device 1000 in this embodiment will be described with reference to FIGS.
 本実施形態の光ピックアップ装置1000は、一例として、DVD規格の光ディスク5及びCD規格の光ディスク5に対して記録や再生を行う。 As an example, the optical pickup apparatus 1000 of the present embodiment performs recording and reproduction on the DVD standard optical disk 5 and the CD standard optical disk 5.
 そのため、レーザユニット100は、DVD規格の光ディスク5に対する記録、再生を行なう場合には、DVD規格に対応した赤色波長帯(645nm~675nm)のうち例えば655nmの波長のレーザ光(第1レーザ光とも記す)を出射し、CD規格の光ディスク5に対する記録、再生を行なう場合には、CD規格に対応した赤外波長帯(765nm~805nm)のうち例えば785nmの波長のレーザ光(第2レーザ光とも記す)を出射する。つまりレーザユニット100は、波長が異なる2種類のレーザ光(第1レーザ光、第2レーザ光)のうちのいずれか一方を選択的に出射する。 Therefore, the laser unit 100, when performing recording and reproduction on the DVD standard optical disk 5, for example, a laser beam having a wavelength of 655 nm (both the first laser beam) in the red wavelength band (645 nm to 675 nm) corresponding to the DVD standard. In the infrared wavelength band (765 nm to 805 nm) corresponding to the CD standard, for example, a laser beam having a wavelength of 785 nm (both the second laser beam) is emitted. ) Is emitted. That is, the laser unit 100 selectively emits one of two types of laser beams (first laser beam and second laser beam) having different wavelengths.
 レーザユニット100は、メイン基板2000から出力される駆動信号に従って、第1レーザ光あるいは第2レーザ光のいずれか一方を選択的に出力する。 The laser unit 100 selectively outputs either the first laser beam or the second laser beam in accordance with the drive signal output from the main board 2000.
 レーザユニット100から出射されたレーザ光は、光ピックアップ装置1000のハウジング300内に収容される各種光学部品200(210~290)により、対物レンズ260から光ディスク5に照射された後、その反射光が光検出器280に導かれる。 The laser light emitted from the laser unit 100 is irradiated onto the optical disk 5 from the objective lens 260 by various optical components 200 (210 to 290) housed in the housing 300 of the optical pickup device 1000, and then the reflected light is reflected. Guided to the photodetector 280.
 本実施形態における光ピックアップ装置1000の光学系を構成する光学部品200がハウジング300に収容される様子を図3に示す。 FIG. 3 shows a state in which the optical component 200 constituting the optical system of the optical pickup device 1000 according to this embodiment is housed in the housing 300.
 具体的には、図3には、ハウジング300内に、レーザユニット100、複合光学素子210、偏光ビームスプリッタ220、1/4波長板230、コリメートレンズ240、反射ミラー250(図3には不図示)、対物レンズ260、AS板270、光検出器280、及びフロントモニタ受光検出器290が装着されている様子が示されている。 Specifically, in FIG. 3, a laser unit 100, a composite optical element 210, a polarizing beam splitter 220, a quarter-wave plate 230, a collimator lens 240, and a reflection mirror 250 (not shown in FIG. ), The objective lens 260, the AS plate 270, the light detector 280, and the front monitor light receiving detector 290 are mounted.
 本実施形態における光ピックアップ装置1000の光学系を図4、図5を参照しながら説明する。 The optical system of the optical pickup device 1000 in this embodiment will be described with reference to FIGS.
 レーザユニット100は、上述したように、DVD規格の光ディスク5に照射する赤色波長帯(645nm~675nm)のうち例えば655nmの波長と、CD規格の光ディスク5に照射する赤外波長帯(765nm~805nm)のうち例えば785nmの波長のように、波長が異なる2種類のレーザ光のうちのいずれか一方を選択的に発生する。 As described above, the laser unit 100 includes, for example, a wavelength of 655 nm among the red wavelength band (645 nm to 675 nm) irradiated to the DVD standard optical disk 5 and an infrared wavelength band (765 nm to 805 nm) irradiated to the CD standard optical disk 5. ), For example, one of two types of laser beams having different wavelengths such as a wavelength of 785 nm is selectively generated.
 レーザユニット100は、後述するレーザチップ110を有して構成されている。そしてレーザチップ110に、第1レーザ光を発生する第1発光部を有する第1レーザダイオード111と、第2レーザ光を発生する第2発光部を有する第2レーザダイオード112とが形成されている。 The laser unit 100 includes a laser chip 110 described later. The laser chip 110 is formed with a first laser diode 111 having a first light emitting part for generating a first laser light and a second laser diode 112 having a second light emitting part for generating a second laser light. .
 レーザユニット100から選択的に出射された第1あるいは第2レーザ光は、複合光学素子210に入射される。複合光学素子210は、1/2波長板211と回折格子212とを備える。 The first or second laser light selectively emitted from the laser unit 100 is incident on the composite optical element 210. The composite optical element 210 includes a half-wave plate 211 and a diffraction grating 212.
 1/2波長板211は、レーザユニット100から出射されたレーザ光を、例えば偏光ビームスプリッタ220に対してS偏光の直線偏光に変換する。 The half-wave plate 211 converts the laser light emitted from the laser unit 100 into S-polarized linearly polarized light with respect to the polarizing beam splitter 220, for example.
 回折格子212は、レーザユニット100から出射されたレーザ光を、0次光ビームと、+1次回折光ビームと、-1次回折光ビームとの3ビームに分離する。 The diffraction grating 212 separates the laser light emitted from the laser unit 100 into three beams, a zero-order light beam, a + 1st-order diffracted light beam, and a −1st-order diffracted light beam.
 偏光ビームスプリッタ220は、例えば、赤色波長帯及び赤外波長帯のS偏光のレーザ光の大部分を反射し、赤色波長帯及び赤外波長帯のS偏光のレーザ光の一部を透過する。また偏光ビームスプリッタ220は、例えば、赤色波長帯及び赤外波長帯のP偏光のレーザ光の大部分を透過する。 For example, the polarization beam splitter 220 reflects most of the S-polarized laser light in the red wavelength band and the infrared wavelength band and transmits part of the S-polarized laser light in the red wavelength band and the infrared wavelength band. The polarization beam splitter 220 transmits most of the P-polarized laser light in the red wavelength band and the infrared wavelength band, for example.
 そのため、偏光ビームスプリッタ220は、複合光学素子210から入射する赤色波長帯又は赤外波長帯のS偏光のレーザ光の大部分を1/4波長板230の方向に反射し、一部をフロントモニタ受光検出器290の方向に透過する。 Therefore, the polarization beam splitter 220 reflects most of the S-polarized laser light in the red wavelength band or the infrared wavelength band incident from the composite optical element 210 in the direction of the quarter wavelength plate 230, and a part of the front monitor. The light passes in the direction of the light receiving detector 290.
 フロントモニタ受光検出器290は、偏光ビームスプリッタ220を透過したレーザ光を受光して、レーザユニット100から出射されるレーザ光の強度を調整するために用いられる光学部品である。フロントモニタ受光検出器290は、検出したレーザ光の強度に応じて変化するモニタ信号を、フレキシブル基板部720及びリジッド基板部710に形成される導電路を経由してコネクタ730の所定の端子に出力する。そしてモニタ信号は、コネクタ730に接続された制御回路用FPC2100を経由して、メイン基板2000に伝達される。 The front monitor light receiving detector 290 is an optical component that is used to receive the laser light transmitted through the polarization beam splitter 220 and adjust the intensity of the laser light emitted from the laser unit 100. The front monitor light receiving detector 290 outputs a monitor signal that changes according to the intensity of the detected laser light to a predetermined terminal of the connector 730 via a conductive path formed in the flexible substrate portion 720 and the rigid substrate portion 710. To do. The monitor signal is transmitted to the main board 2000 via the control circuit FPC 2100 connected to the connector 730.
 メイン基板2000の制御回路は、このモニタ信号に基づいて、レーザユニット100から出力されるレーザ光が所定強度になるように駆動信号を出力する。この駆動信号は、メイン基板2000から制御回路用FPC2100を経由してコネクタ730の所定端子に入力され、リジッド基板部710に装着されているレーザドライバ(不図示)を経由してレーザユニット100に入力される。 The control circuit of the main board 2000 outputs a drive signal based on the monitor signal so that the laser light output from the laser unit 100 has a predetermined intensity. This drive signal is input from the main board 2000 to a predetermined terminal of the connector 730 via the control circuit FPC 2100 and input to the laser unit 100 via a laser driver (not shown) attached to the rigid board 710. Is done.
 1/4波長板230は、偏光ビームスプリッタ220から入射するレーザ光を、S偏光の直線偏光から円偏光に変換する。又1/4波長板230は、コリメータレンズ240から入射するレーザ光の戻り光を、円偏光からP偏光の直線偏光に変換する。 The quarter-wave plate 230 converts the laser light incident from the polarization beam splitter 220 from S-polarized linearly polarized light to circularly polarized light. The quarter-wave plate 230 converts the return light of the laser light incident from the collimator lens 240 from circularly polarized light to P-polarized linearly polarized light.
 コリメートレンズ240は、1/4波長板230から拡散光として入射するレーザ光を平行光に変換する。 The collimator lens 240 converts the laser light incident as diffused light from the quarter wavelength plate 230 into parallel light.
 反射ミラー250は、コリメートレンズ240から入射するレーザ光を、対物レンズ260の方向に反射する。又、反射ミラー250は、対物レンズ260から入射するレーザ光の戻り光をコリメートレンズ240の方向に反射する。 The reflection mirror 250 reflects the laser light incident from the collimator lens 240 in the direction of the objective lens 260. The reflection mirror 250 reflects the return light of the laser light incident from the objective lens 260 in the direction of the collimator lens 240.
 対物レンズ260は、反射ミラー250から入射したレーザ光を、光ディスク5の記録面における信号記録層に集光する。 The objective lens 260 focuses the laser beam incident from the reflection mirror 250 on the signal recording layer on the recording surface of the optical disc 5.
 対物レンズ260は、図2に示すように、対物レンズ駆動装置400に保持されている。対物レンズ駆動装置400は、アクチュエータ410及びレンズホルダ420を備えており、光ピックアップ装置1000を制御するメイン基板2000の制御回路から送信される制御信号に基づいて、アクチュエータ410がレンズホルダ420の位置や向きを制御することで、レンズホルダ420に装着される対物レンズ260を通過するレーザ光が光ディスク5の信号記録層に適切に照射されるようにフォーカシング制御やトラッキング制御等の制御を行なう。 The objective lens 260 is held by the objective lens driving device 400 as shown in FIG. The objective lens driving device 400 includes an actuator 410 and a lens holder 420. Based on a control signal transmitted from a control circuit of the main board 2000 that controls the optical pickup device 1000, the actuator 410 detects the position of the lens holder 420 and the like. By controlling the direction, focusing control, tracking control, and the like are performed so that the laser light passing through the objective lens 260 attached to the lens holder 420 is appropriately applied to the signal recording layer of the optical disc 5.
 光ディスク5の信号記録層で反射したレーザ光の戻り光は、対物レンズ260によって平行光に変換された後、反射ミラー250を介してコリメートレンズ240を透過し、1/4波長板230によって円偏光からP偏光の直線偏光に変換される。 The return light of the laser light reflected by the signal recording layer of the optical disk 5 is converted into parallel light by the objective lens 260, then passes through the collimator lens 240 through the reflection mirror 250, and is circularly polarized by the quarter wavelength plate 230. To P-polarized linearly polarized light.
 P偏光となったレーザ光の戻り光は、偏光ビームスプリッタ220を透過してAS板270に入射する。 The return light of the laser light that has become P-polarized light passes through the polarization beam splitter 220 and enters the AS plate 270.
 AS板270は、偏光ビームスプリッタ220を透過したレーザ光の戻り光に非点収差を発生させて光検出器280に集光させる。AS板270は、例えば平行平板を非点収差の発生方向を考慮した所定方向に傾けて構成されている。 The AS plate 270 generates astigmatism in the return light of the laser light transmitted through the polarization beam splitter 220 and focuses it on the photodetector 280. The AS plate 270 is configured, for example, by tilting a parallel plate in a predetermined direction in consideration of the astigmatism generation direction.
 光検出器280は、AS板270から入射されるレーザ光の戻り光を検出する。光検出器280は、回折格子212により3ビームに分離されたレーザ光の戻り光をそれぞれ受光する受光部を備えて構成されており、光ディスク5の信号記録層に記録されている情報の読み取りを行うための再生信号や、フォーカシング制御を行うためのフォーカスエラー信号、トラッキング制御を行うためのトラッキングエラー信号の生成を行う。これらの再生信号、フォーカスエラー信号、トラッキングエラー信号は、メイン基板2000に伝達される。 The photodetector 280 detects the return light of the laser light incident from the AS plate 270. The light detector 280 is configured to include a light receiving unit that receives the return light of the laser light separated into three beams by the diffraction grating 212, and reads information recorded on the signal recording layer of the optical disc 5. A reproduction signal for performing, a focus error signal for performing focusing control, and a tracking error signal for performing tracking control are generated. These reproduction signal, focus error signal, and tracking error signal are transmitted to the main board 2000.
 以上のようにして、本実施形態の光ピックアップ装置1000は、DVDの記録及び再生に対応すると共に、CDの記録及び再生にも対応することができる。
==レーザユニット==
 次に、図6を参照して本実施形態に係るレーザユニット100について詳細に説明する。本実施形態に係るレーザユニット100は、図6に示すように、フレーム部120と、樹脂モールド部130と、レーザチップ110と、サブマウント150と、第1端子141と、第2端子142と、第3端子143と、を有して構成されている。
As described above, the optical pickup apparatus 1000 according to the present embodiment can cope with recording and reproduction of a DVD and also with recording and reproduction of a CD.
== Laser unit ==
Next, the laser unit 100 according to the present embodiment will be described in detail with reference to FIG. As shown in FIG. 6, the laser unit 100 according to the present embodiment includes a frame part 120, a resin mold part 130, a laser chip 110, a submount 150, a first terminal 141, a second terminal 142, And a third terminal 143.
 なお、フレーム部120と、樹脂モールド部130と、レーザチップ110と、サブマウント150と、をまとめて本体部とも記す。この場合、レーザユニット100は、本体部からレーザ光が発光されると共に、本体部から第1端子141、第2端子142、第3端子143が延伸する構造となる。 The frame portion 120, the resin mold portion 130, the laser chip 110, and the submount 150 are collectively referred to as a main body portion. In this case, the laser unit 100 has a structure in which laser light is emitted from the main body and the first terminal 141, the second terminal 142, and the third terminal 143 extend from the main body.
 フレーム部120は金属製の略平板状の板により構成されており、誘電体により構成されるサブマウント150が貼付されている。そしてこのサブマウント150にはレーザチップ110が固定される。なおフレーム部120は、第2端子142を介して接地されている。 The frame portion 120 is made of a substantially flat plate made of metal, and a submount 150 made of a dielectric is attached. The laser chip 110 is fixed to the submount 150. The frame unit 120 is grounded via the second terminal 142.
 レーザチップ110は、例えばGaAs(ガリウム砒素)の結晶基板上に、第1レーザ光を発光する第1レーザダイオード111と、第2レーザ光を発光する第2レーザダイオード112とが形成されて構成される。 The laser chip 110 is configured by forming, for example, a first laser diode 111 that emits first laser light and a second laser diode 112 that emits second laser light on a crystal substrate of GaAs (gallium arsenide). The
 第1端子141及び第3端子143は、メイン基板2000から出力されるレーザユニット100の駆動信号を入力する入力端子である。第2端子142は接地されている。 The first terminal 141 and the third terminal 143 are input terminals for inputting a drive signal of the laser unit 100 output from the main board 2000. The second terminal 142 is grounded.
 また第1端子141、第2端子142、及び第3端子143は、樹脂モールド部130から、レーザ光の発光方向とは反対方向にそれぞれ延伸している。 The first terminal 141, the second terminal 142, and the third terminal 143 extend from the resin mold part 130 in the direction opposite to the laser light emission direction.
 また詳細は後述するが、レーザユニット100がハウジング300に装着され、その後にリジッド基板部710がレーザユニット100に重なるようにハウジング300に装着される際に、レーザユニット100の第1端子141、第2端子142及び第3端子143は、それぞれリジッド基板部710に形成されている導電路に半田付けされる。そして第1端子141及び第3端子143は、制御回路用FPC2100を介してメイン基板2000と導電可能に接続され、第2端子142は接地される。 As will be described in detail later, when the laser unit 100 is mounted on the housing 300 and then the rigid board portion 710 is mounted on the housing 300 so as to overlap the laser unit 100, the first terminal 141 of the laser unit 100, the first The two terminals 142 and the third terminals 143 are soldered to conductive paths formed in the rigid board portion 710, respectively. The first terminal 141 and the third terminal 143 are conductively connected to the main board 2000 via the control circuit FPC 2100, and the second terminal 142 is grounded.
 レーザユニット100は、メイン基板2000から所定の駆動信号が第1端子141に入力されると、第1レーザダイオード111から赤色波長帯の第1レーザ光を出射する。またレーザユニット100は、メイン基板2000から所定の駆動信号が第3端子143に入力されると、第2レーザダイオード112から赤外波長帯の第2レーザ光を出射する。 The laser unit 100 emits the first laser beam in the red wavelength band from the first laser diode 111 when a predetermined drive signal is input from the main substrate 2000 to the first terminal 141. Further, when a predetermined drive signal is input from the main board 2000 to the third terminal 143, the laser unit 100 emits the second laser light in the infrared wavelength band from the second laser diode 112.
 樹脂モールド部130は、フレーム部120の両面の一部を覆うように形成される合成樹脂である。樹脂モールド部130は、第1端子141及び第3端子143を固定すると共に、第1端子141とフレーム部120との間、第3端子143とフレーム部120との間をそれぞれ絶縁する。 The resin mold part 130 is a synthetic resin formed so as to cover part of both surfaces of the frame part 120. The resin mold part 130 fixes the first terminal 141 and the third terminal 143, and insulates the first terminal 141 from the frame part 120 and the third terminal 143 from the frame part 120, respectively.
 また樹脂モールド部130は、レーザチップ110の周囲において、レーザ光が発光される方向を除く3方を囲むように壁面を形成している。 Also, the resin mold part 130 has a wall surface surrounding the laser chip 110 so as to surround three directions except for the direction in which the laser light is emitted.
 なお上述したように、第2端子142とフレーム部120との間は導電可能に接続されており、例えば第2端子142とフレーム部120とは一体的に形成される。
==レーザユニットの装着==
 次に、図7A、図7B、図7Cを参照して、本実施形態に係るレーザユニット100がハウジング300に装着される様子について詳細に説明する。
As described above, the second terminal 142 and the frame portion 120 are connected so as to be conductive. For example, the second terminal 142 and the frame portion 120 are integrally formed.
== Installation of laser unit ==
Next, with reference to FIG. 7A, FIG. 7B, and FIG. 7C, how the laser unit 100 according to the present embodiment is mounted on the housing 300 will be described in detail.
 図7Aは、ハウジング300にレーザユニット100及びリジッド基板部710が装着された際の様子を、ハウジングの上面側から見た場合について示す図である。図7Bは、ハウジング300にレーザユニット100及びリジッド基板部710が装着された際の様子を、レーザチップ110の第1レーザダイオード111、第2レーザダイオード112に向かって見た場合について示す図である。図7Cは、ハウジング300にレーザユニット100及びリジッド基板部710が装着された際の様子を、レーザ光が図7Cの左向きに発光される方向から見た場合について示す図である。 FIG. 7A is a diagram illustrating a state in which the laser unit 100 and the rigid board portion 710 are mounted on the housing 300 when viewed from the upper surface side of the housing. FIG. 7B is a diagram illustrating a state in which the laser unit 100 and the rigid substrate unit 710 are mounted on the housing 300 when viewed from the first laser diode 111 and the second laser diode 112 of the laser chip 110. . FIG. 7C is a diagram illustrating a state in which the laser unit 100 and the rigid board portion 710 are mounted on the housing 300 when viewed from the direction in which laser light is emitted leftward in FIG. 7C.
 上述したように、本実施形態に係る光ピックアップ装置1000は、スリムタイプ、あるいはウルトラスリムタイプでありながら、リジッド基板から構成されるリジッド基板部710をハウジング300に収容可能に構成されている。 As described above, the optical pickup device 1000 according to the present embodiment is configured to be able to accommodate the rigid substrate portion 710 formed of a rigid substrate in the housing 300, although it is a slim type or an ultra slim type.
 まず図7Aに示すように、レーザユニット100のフレーム部120が搭載されるハウジング300の底面の所定位置(2箇所)に形成された基準用突部303の近傍の所定位置(例えば4箇所)に、接着剤170が塗布される。 First, as shown in FIG. 7A, at predetermined positions (for example, four locations) near the reference protrusion 303 formed at predetermined positions (two locations) on the bottom surface of the housing 300 on which the frame portion 120 of the laser unit 100 is mounted. The adhesive 170 is applied.
 基準用突部303は、例えばハウジング300を形成する際に一体的に形成される凸部であってもよいし、樹脂製や金属製の平板を接着剤等によりハウジング300に固定することにより形成されたものであってもよい。 The reference protrusion 303 may be, for example, a protrusion formed integrally when forming the housing 300, or formed by fixing a resin or metal flat plate to the housing 300 with an adhesive or the like. It may be what was done.
 そして図7B、図7Cに示すように、レーザユニット100のフレーム部120を上記接着剤170に接触させるようにして、レーザユニット100を、ハウジング300の底面302に装着する。このときレーザユニット100は、レーザ光がハウジング300の底面302に沿った方向(例えば-X方向)に発光するように装着されると共に、第1端子141、第2端子142、第3端子143がハウジング300の底面302に沿った方向(例えば+X方向)に延伸するように装着される。 7B and 7C, the laser unit 100 is mounted on the bottom surface 302 of the housing 300 so that the frame portion 120 of the laser unit 100 is brought into contact with the adhesive 170. At this time, the laser unit 100 is mounted so that laser light is emitted in a direction along the bottom surface 302 of the housing 300 (for example, the −X direction), and the first terminal 141, the second terminal 142, and the third terminal 143 are provided. The housing 300 is mounted so as to extend in a direction along the bottom surface 302 (for example, + X direction).
 ここで、レーザユニット100を、ハウジング300の底面302に装着する際、レーザユニット100のフレーム部120の下面が当接されるハウジング300の当接面にレーザユニット100の高さ方向の基準用突部303が形成されることによりレーザユニット100は、図7Bに示すように、ハウジング300の下端部から光軸の中心までの距離がh2に設定される。 Here, when the laser unit 100 is attached to the bottom surface 302 of the housing 300, the reference protrusion in the height direction of the laser unit 100 is brought into contact with the abutting surface of the housing 300 with which the lower surface of the frame portion 120 of the laser unit 100 abuts. By forming the portion 303, the laser unit 100 sets the distance from the lower end of the housing 300 to the center of the optical axis as h2, as shown in FIG. 7B.
 次に、リジッド基板部710を、レーザユニット100に重ねるように、ハウジング300の上面側から装着する。このとき、リジッド基板部710に開口する基板開口部711をレーザユニット100の樹脂モールド部130の位置にあわせ、樹脂モールド部130の上端部131が基板開口部711を貫通するようにして、リジッド基板部710をハウジング300に装着する。 Next, the rigid board portion 710 is mounted from the upper surface side of the housing 300 so as to overlap the laser unit 100. At this time, the substrate opening 711 that opens to the rigid substrate portion 710 is aligned with the position of the resin mold portion 130 of the laser unit 100, and the upper end 131 of the resin mold portion 130 penetrates the substrate opening 711 so that the rigid substrate is formed. The part 710 is attached to the housing 300.
 本実施形態に係る光ピックアップ装置1000は、このように、リジッド基板部710に基板開口部711を設け、そしてこの基板開口部711にレーザユニット100を挿入するようにして、リジッド基板部710をハウジング300に装着するので、図7Bに示すように、ハウジング300の下端部からリジッド基板部710の上端部までの高さh1を抑制することができる。 As described above, the optical pickup device 1000 according to the present embodiment is provided with the substrate opening 711 in the rigid substrate portion 710, and the laser unit 100 is inserted into the substrate opening 711 so that the rigid substrate portion 710 is housed in the housing. As shown in FIG. 7B, the height h1 from the lower end portion of the housing 300 to the upper end portion of the rigid board portion 710 can be suppressed.
 つまり、本実施形態に係る光ピックアップ装置1000は、リジッド基板を用いてもハウジング300の高さ方向に高さを増大させないようにすることができるので、スリムタイプ、あるいはウルトラスリムタイプの光ピックアップ装置1000であっても、リジッド基板を用いることが可能となる。 That is, the optical pickup device 1000 according to the present embodiment can prevent the height of the housing 300 from increasing in the height direction even when a rigid substrate is used. Even if it exists, it becomes possible to use a rigid board | substrate.
 なおこのとき、図7Cに示すように、リジッド基板部710は、レーザユニット100の第1端子141、第2端子142、第3端子143に接続されるようにハウジング300に装着される。より詳しくは、レーザユニット100の第1端子141、第2端子142、第3端子143のそれぞれが、リジッド基板部710上に形成されている3本の導電路にそれぞれ接続可能に、リジッド基板部710がハウジング300に装着される。例えば、リジッド基板部710の導電路と第1端子141、第2端子142、第3端子143とが、コネクタを用いて接続、あるいは半田付けにより接続される。 At this time, as shown in FIG. 7C, the rigid board portion 710 is mounted on the housing 300 so as to be connected to the first terminal 141, the second terminal 142, and the third terminal 143 of the laser unit 100. More specifically, each of the first terminal 141, the second terminal 142, and the third terminal 143 of the laser unit 100 can be connected to three conductive paths formed on the rigid substrate portion 710, respectively. 710 is attached to the housing 300. For example, the conductive path of the rigid board portion 710 and the first terminal 141, the second terminal 142, and the third terminal 143 are connected using a connector or connected by soldering.
 本実施形態に係る光ピックアップ装置1000では、第1端子141、第2端子142、第3端子143は、それぞれの導電路と半田160により半田付けされる。この半田付けの詳細については後述する。 In the optical pickup device 1000 according to the present embodiment, the first terminal 141, the second terminal 142, and the third terminal 143 are soldered by the respective conductive paths and the solder 160. Details of this soldering will be described later.
 この後、ハウジング300内に別途それぞれ装着される偏光ビームスプリッタ220やコリメータレンズ240等の対物レンズ260及び反射ミラー250を除く光学部品は、ハウジング300に形成される設置部によってハウジングの成型精度で所定位置に接着剤により接着固定され、前記反射ミラー250はハウジング300に接着固定する位置や角度が調整されて、対物レンズ260に入射されるレーザ光の光軸を微調整する。すなわち、反射ミラー250の取付位置を調整することによりハウジング300の下端部から光軸の中心までの距離h2の公差分を吸収するように調整され、また、対物レンズ260に入射されるレーザ光に傾きが無いように調整される。 Thereafter, optical components other than the objective lens 260 and the reflecting mirror 250 such as the polarizing beam splitter 220 and the collimator lens 240, which are separately mounted in the housing 300, are determined with a molding accuracy of the housing by an installation portion formed in the housing 300. The position and angle of the reflection mirror 250 are fixedly bonded to the housing 300 by adjusting the position and angle of the reflection mirror 250 by an adhesive, and the optical axis of the laser beam incident on the objective lens 260 is finely adjusted. In other words, by adjusting the mounting position of the reflection mirror 250, it is adjusted so as to absorb the tolerance of the distance h2 from the lower end of the housing 300 to the center of the optical axis, and the laser light incident on the objective lens 260 is adjusted. It is adjusted so that there is no tilt.
 図8に、本実施形態における光ピックアップ装置1000において、リジッド基板部710がハウジング300に装着されている様子を示す。図8に示すように、リジッド基板部710の基板開口部711は、レーザユニット100と対面する部分に、レーザユニット100の樹脂モールド部130の上端部131を貫通可能に形成されている。そしてレーザユニット100の樹脂モールド部130は、リジッド基板部710に形成された基板開口部711を貫通している。 FIG. 8 shows a state in which the rigid substrate portion 710 is mounted on the housing 300 in the optical pickup device 1000 according to the present embodiment. As shown in FIG. 8, the substrate opening 711 of the rigid substrate portion 710 is formed in a portion facing the laser unit 100 so as to be able to penetrate the upper end portion 131 of the resin mold portion 130 of the laser unit 100. The resin mold portion 130 of the laser unit 100 passes through the substrate opening 711 formed in the rigid substrate portion 710.
 またリジッド基板部710は、ハウジング300の底面302に相対する面とは反対側の面(すなわち+Z軸方向に向かう面)にコネクタ730を備えている。このコネクタ730には、図1にも示したように、メイン基板2000に接続される制御回路用FPC2100が着脱自在に接続される。 The rigid board portion 710 includes a connector 730 on a surface opposite to the surface facing the bottom surface 302 of the housing 300 (that is, a surface facing the + Z axis direction). 1, the control circuit FPC 2100 connected to the main board 2000 is detachably connected to the connector 730.
 このように、本実施形態に係る光ピックアップ装置1000は、リジッド基板部710を備える構成とすることによって、制御回路用FPC2100を着脱自在に接続可能なコネクタ730を搭載することが可能となる。これにより、例えば光ピックアップ装置1000に接続されるメイン基板2000が複数種類存在する場合であっても、コネクタ730に共通に結合可能な複数種類の制御回路用FPC2100を各メイン基板2000に合わせて作成しておくことにより、光ピックアップ装置1000を共通化することが可能となる。これにより、光ピックアップ装置1000の量産効果により、コストダウンを図ることが可能となる。 As described above, the optical pickup device 1000 according to the present embodiment can be equipped with the connector 730 that can be detachably connected to the control circuit FPC 2100 by providing the rigid substrate portion 710. Thereby, for example, even when there are a plurality of types of main boards 2000 connected to the optical pickup device 1000, a plurality of types of control circuit FPCs 2100 that can be commonly coupled to the connector 730 are created according to each main board 2000. As a result, the optical pickup device 1000 can be shared. As a result, the cost can be reduced by the mass production effect of the optical pickup device 1000.
 また、例えば制御回路用FPC2100が損傷した場合であっても、制御回路用FPC2100のみを交換するだけで、光ピックアップ装置1000はそのまま使用し続けることができるため、修理作業を容易化できると共に、修理コストも低下させることが可能となる。 Further, for example, even if the control circuit FPC 2100 is damaged, the optical pickup apparatus 1000 can be used as it is only by exchanging only the control circuit FPC 2100, so that repair work can be facilitated and repaired. Costs can also be reduced.
 なお、ハウジング300にリジッド基板部710を装着する際には、図8に示すように、例えば、ハウジング300の内壁面に形成されている一対のリジッド基板固定爪320にリジッド基板部710の端部をそれぞれ合わせ、そのままリジッド基板部710をハウジング300の底面302の方向(-Z軸方向)に押し込んで、はめ込むようにする。その後リジッド基板部710の上からカバー800等を装着した後、ビス301で固定する。 When the rigid board portion 710 is attached to the housing 300, as shown in FIG. 8, for example, the ends of the rigid board portion 710 are attached to a pair of rigid board fixing claws 320 formed on the inner wall surface of the housing 300. And the rigid board portion 710 is pushed in the direction of the bottom surface 302 of the housing 300 (the −Z axis direction) to fit. Thereafter, a cover 800 or the like is attached from above the rigid substrate portion 710 and then fixed with screws 301.
 次に、本実施形態に係るレーザユニット100の第1端子141、第2端子142、第3端子143を、リジッド基板部710の導電路と半田付けする様子を図9に示す。 Next, FIG. 9 shows a state in which the first terminal 141, the second terminal 142, and the third terminal 143 of the laser unit 100 according to the present embodiment are soldered to the conductive path of the rigid board portion 710.
 図9に示すように、本実施形態に係るハウジング300の底面302には、レーザユニット100の第1端子141、第2端子142、第3端子143を外部から視認し、これらの端子をそれぞれリジッド基板部710の導電路に半田付けするためのハウジング開口部310が形成されている。 As shown in FIG. 9, the first terminal 141, the second terminal 142, and the third terminal 143 of the laser unit 100 are visually recognized from the outside on the bottom surface 302 of the housing 300 according to the present embodiment, and these terminals are respectively rigid. A housing opening 310 for soldering to the conductive path of the substrate part 710 is formed.
 光ピックアップ装置1000の製造時に、このハウジング開口部310を介して、レーザユニット100の第1端子141、第2端子142、第3端子143に半田付けを行なう。 At the time of manufacturing the optical pickup device 1000, the first terminal 141, the second terminal 142, and the third terminal 143 of the laser unit 100 are soldered through the housing opening 310.
 このように、ハウジング300の底面302にハウジング開口部310を設けることにより、レーザユニット100とリジッド基板部710との半田付け作業を容易化することが可能となる。 As described above, by providing the housing opening 310 on the bottom surface 302 of the housing 300, the soldering operation between the laser unit 100 and the rigid board 710 can be facilitated.
 またレーザユニット100をリジッド基板部710に直接半田付けする構造であるため、図7B、図7Cに示したように、ハウジング300の下端部からリジッド基板部710の上端部までの高さh1を抑制することが可能となる。 Further, since the laser unit 100 is directly soldered to the rigid board portion 710, the height h1 from the lower end portion of the housing 300 to the upper end portion of the rigid board portion 710 is suppressed as shown in FIGS. 7B and 7C. It becomes possible to do.
 これにより、リジッド基板を用いてもハウジング300の高さ方向に高さを増大させないようにすることができるので、スリムタイプ、あるいはウルトラスリムタイプの光ピックアップ装置1000であっても、リジッド基板を用いることが可能となる。 Accordingly, even if a rigid substrate is used, the height of the housing 300 can be prevented from increasing in the height direction. Therefore, even in the slim type or ultra slim type optical pickup device 1000, the rigid substrate can be used. It becomes possible.
 次に図10を参照して、レーザユニット100及びレーザドライバ180について説明する。図10に示すように、レーザユニット100及びレーザドライバ180はリジッド基板部710上に半田付けにより装着されている。そしてレーザユニット100及びレーザドライバ180は、リジッド基板部710に形成されている導電パターンにより接続され、レーザ光を発光させるための回路を構成している。 Next, the laser unit 100 and the laser driver 180 will be described with reference to FIG. As shown in FIG. 10, the laser unit 100 and the laser driver 180 are mounted on the rigid board portion 710 by soldering. The laser unit 100 and the laser driver 180 are connected by a conductive pattern formed on the rigid substrate portion 710 and constitute a circuit for emitting laser light.
 メイン基板2000はレーザ光を発光させる際にレーザドライバ180を制御する所定の制御信号を出力し、この制御信号は、リジッド基板部710上のレーザドライバ180に供給され、レーザドライバ180は前記制御信号に応じた駆動信号によりレーザユニット100を駆動する。 The main board 2000 outputs a predetermined control signal for controlling the laser driver 180 when the laser light is emitted, and this control signal is supplied to the laser driver 180 on the rigid board portion 710, and the laser driver 180 receives the control signal. The laser unit 100 is driven by a drive signal corresponding to the above.
 具体的には、まずレーザドライバ180には、コネクタ730を介して電源電圧が印加される。 Specifically, first, a power supply voltage is applied to the laser driver 180 via the connector 730.
 そしてメイン基板2000が第1レーザ光を発光させるために第1制御信号を出力すると、この第1制御信号がレーザドライバ180に入力される。そしてレーザドライバ180がレーザユニット100の第1端子141及び第2端子142間に駆動信号を出力する。そうすると、レーザユニット100が第1レーザダイオード111から第1レーザ光を出射する。 Then, when the main board 2000 outputs a first control signal to emit the first laser beam, the first control signal is input to the laser driver 180. The laser driver 180 outputs a drive signal between the first terminal 141 and the second terminal 142 of the laser unit 100. Then, the laser unit 100 emits the first laser light from the first laser diode 111.
 またメイン基板2000が第2レーザ光を発光させるために第2制御信号を出力すると、この第2制御信号がレーザドライバ180に入力される。そしてレーザドライバ180がレーザユニット100の第3端子143及び第2端子142間に駆動信号を出力する。そうすると、レーザユニット100が第2レーザダイオード112から第2レーザ光を出射する。 Further, when the main board 2000 outputs a second control signal for emitting the second laser light, the second control signal is input to the laser driver 180. The laser driver 180 outputs a drive signal between the third terminal 143 and the second terminal 142 of the laser unit 100. Then, the laser unit 100 emits the second laser light from the second laser diode 112.
 このように、本実施形態の光ピックアップ装置1000は、レーザユニット100とレーザドライバ180とを用いることでレーザ光の発光を行う。このため、本実施形態のレーザユニット100及びレーザドライバ180は、レーザ光発生素子として機能する。また、メイン基板2000がレーザドライバ180を制御するために出力する上記制御信号や、レーザドライバ180がレーザユニット100を駆動するために出力する上記駆動信号は、いずれも、レーザ光を発光させるための駆動信号に含まれる。
==放熱構造==
 上記レーザユニット100やレーザドライバ180は、光ディスク5に対する情報の記録や読み出しを適切に行なうために、相応の電力を使用してレーザ光を発生させる。そのため、レーザユニット100やレーザドライバ180からは相応の熱が発生する。そのためこの熱を適切に放出することが必要となる。
As described above, the optical pickup device 1000 of the present embodiment emits laser light by using the laser unit 100 and the laser driver 180. For this reason, the laser unit 100 and the laser driver 180 of this embodiment function as a laser beam generating element. The control signal output for the main substrate 2000 to control the laser driver 180 and the drive signal output for the laser driver 180 to drive the laser unit 100 are both for causing the laser light to be emitted. It is included in the drive signal.
== Heat dissipation structure ==
The laser unit 100 and the laser driver 180 generate laser light using appropriate power in order to appropriately record and read information on the optical disc 5. Therefore, corresponding heat is generated from the laser unit 100 and the laser driver 180. Therefore, it is necessary to release this heat appropriately.
 特に本実施形態に係る光ピックアップ装置1000は、薄型のハウジング300内に高密度に様々な光学部品200や電子部品等が装着されている上、ハウジング300の上面側からレーザユニット100やレーザドライバ180に重ねるように、リジッド基板部710が装着されているため、レーザユニット100やレーザドライバ180から発生する熱をより効率的に放出することが求められる。 In particular, in the optical pickup device 1000 according to the present embodiment, various optical components 200 and electronic components are mounted in a thin housing 300 at a high density, and the laser unit 100 and the laser driver 180 are mounted from the upper surface side of the housing 300. Since the rigid substrate portion 710 is mounted so as to overlap, the heat generated from the laser unit 100 and the laser driver 180 is required to be released more efficiently.
 このため、本実施形態に係るリジッド基板部710には、レーザユニット100やレーザドライバ180等の電子部品を駆動するための信号を伝達するための導電パターンに加えて、図12に示すように、レーザユニット100やレーザドライバ180が発生した熱を伝導させる導熱用パターン712が形成されている。 Therefore, in addition to the conductive pattern for transmitting signals for driving the electronic components such as the laser unit 100 and the laser driver 180, the rigid substrate unit 710 according to the present embodiment, as shown in FIG. A heat conducting pattern 712 that conducts heat generated by the laser unit 100 and the laser driver 180 is formed.
 このように、リジッド基板部710に導熱用パターン712を形成し、レーザユニット100やレーザドライバ180から発生した熱を導熱用パターン712に放出するようにすることにより、レーザユニット100やレーザドライバ180を効果的に冷却することが可能となる。 In this way, the heat conducting pattern 712 is formed on the rigid substrate portion 710, and the heat generated from the laser unit 100 and the laser driver 180 is released to the heat conducting pattern 712, so that the laser unit 100 and the laser driver 180 are formed. It becomes possible to cool effectively.
 なお詳しくは図13を参照しながら後述するが、本実施形態に係る導熱用パターン712は、リジッド基板部710の表面に沿って、リジッド基板部710の表面及び内部に積層して形成される複数の金属層により形成されている。 Although details will be described later with reference to FIG. 13, the heat conducting pattern 712 according to the present embodiment is formed by laminating the surface of the rigid substrate portion 710 and the inside of the rigid substrate portion 710 along the surface of the rigid substrate portion 710. The metal layer is formed.
 そしてこれらの各金属層は、リジッド基板部710の一方の表面と他方の表面との間に積層される各金属層を貫通するスルーホール713(貫通穴)の表面を被覆する金属めっき714により接続されるように構成されている。 These metal layers are connected by a metal plating 714 that covers the surface of a through hole 713 (through hole) that penetrates each metal layer laminated between one surface of the rigid substrate portion 710 and the other surface. It is configured to be.
 このような構成により、レーザユニット100やレーザドライバ180で発生したより多くの熱を速やかに導熱用パターン712に伝達させて放熱することが可能となる。もちろん導熱用パターン712は、リジッド基板部710の表面あるいは内部に形成される単層の金属層であっても良い。 With such a configuration, more heat generated by the laser unit 100 and the laser driver 180 can be quickly transferred to the heat conducting pattern 712 to be dissipated. Of course, the heat conducting pattern 712 may be a single metal layer formed on or inside the rigid substrate portion 710.
 また図2に示したように、本実施形態に係る光ピックアップ装置1000は、金属製の第1放熱板500及び第2放熱板600を備えている。そして第1放熱板500はレーザユニット100に隣接するようにハウジング300内に装着され、第2放熱板600はレーザドライバ180に隣接するようにハウジング300内に装着されている。 Further, as shown in FIG. 2, the optical pickup device 1000 according to the present embodiment includes a first heat radiating plate 500 and a second heat radiating plate 600 made of metal. The first heat radiating plate 500 is mounted in the housing 300 so as to be adjacent to the laser unit 100, and the second heat radiating plate 600 is mounted in the housing 300 so as to be adjacent to the laser driver 180.
 そのため、レーザユニット100から発生した熱は、第1放熱板500を経由してリジッド基板部710の導熱用パターン712に取り入れられ、レーザドライバ180から発生した熱は、第2放熱板600を経由してリジッド基板部710の導熱用パターン712に取り入れられる。 Therefore, the heat generated from the laser unit 100 is taken into the heat conducting pattern 712 of the rigid substrate unit 710 via the first heat radiating plate 500, and the heat generated from the laser driver 180 passes through the second heat radiating plate 600. The heat conducting pattern 712 of the rigid substrate portion 710 is incorporated.
 このような構造をとることにより、レーザユニット100やレーザドライバ180から発生した熱は、金属製の第1放熱板500や第2放熱板600に効果的に伝達されると共に、それに加えてリジッド基板部710の導熱用パターン712にも伝達されるようにすることができる。これにより、レーザユニット100やレーザドライバ180からの熱をさらに効果的に放熱することが可能となる。 By adopting such a structure, the heat generated from the laser unit 100 and the laser driver 180 is effectively transmitted to the first heat radiating plate 500 and the second heat radiating plate 600 made of metal, and in addition, a rigid substrate. It can also be transmitted to the heat conducting pattern 712 of the portion 710. Thereby, the heat from the laser unit 100 and the laser driver 180 can be radiated more effectively.
 また、金属製の第1放熱板500及び第2放熱板600を備える構造とすることにより、リジッド基板部710の導熱用パターン712を小型化することも可能となる。このため、リジッド基板部710自体を小型化することが可能となり、光ピックアップ装置1000を小型化することも可能となる。 In addition, by adopting a structure including the first heat radiating plate 500 and the second heat radiating plate 600 made of metal, the heat conducting pattern 712 of the rigid substrate portion 710 can be downsized. For this reason, the rigid substrate portion 710 itself can be reduced in size, and the optical pickup device 1000 can also be reduced in size.
 なおもちろん、本実施形態に係る光ピックアップ装置1000は、第1放熱板500や第2放熱板600を備えない構成とすることも可能である。この場合は、レーザユニット100やレーザドライバ180から発生した熱は、第1放熱板500や第2放熱板600を経由せずに導熱用パターン712に伝えられるが、第1放熱板500や第2放熱板600を備えない分、光ピックアップ装置1000を軽量化、小型化することが可能になる。 Of course, the optical pickup device 1000 according to the present embodiment may be configured not to include the first heat radiating plate 500 and the second heat radiating plate 600. In this case, the heat generated from the laser unit 100 and the laser driver 180 is transmitted to the heat conducting pattern 712 without passing through the first heat radiating plate 500 and the second heat radiating plate 600, but the first heat radiating plate 500 and the second heat radiating plate 500 Since the heat radiating plate 600 is not provided, the optical pickup device 1000 can be reduced in weight and size.
 さらに本実施形態に係る光ピックアップ装置1000は、図11に示すように、レーザユニット100と第1放熱板500との間に熱伝導性を有するが絶縁性の放熱ゲル(熱伝導性弾性材)900を介装するようにしている。そしてレーザユニット100が発生した熱は、放熱ゲル900を経由して第1放熱板500に取り入れるようにしている。 Furthermore, as shown in FIG. 11, the optical pickup device 1000 according to the present embodiment has a thermal conductivity between the laser unit 100 and the first heat dissipation plate 500, but an insulating heat dissipation gel (thermally conductive elastic material). 900 is interposed. The heat generated by the laser unit 100 is taken into the first heat radiating plate 500 via the heat radiating gel 900.
 放熱ゲル900は弾力を有する樹脂から構成されている。そのため、レーザユニット100と第1放熱板500との間を弾性的に接触させることが可能になるため、経年変化や製造誤差等により、例えばレーザユニット100と第1放熱板500との間の距離が変化した場合であっても、熱伝導路を維持することが可能となる。 The heat dissipating gel 900 is made of an elastic resin. Therefore, the laser unit 100 and the first heat radiating plate 500 can be elastically brought into contact with each other. Therefore, for example, a distance between the laser unit 100 and the first heat radiating plate 500 due to aging, manufacturing error, or the like. Even if is changed, the heat conduction path can be maintained.
 また同様に、本実施形態に係る光ピックアップ装置1000は、図13に示すように、レーザドライバ180と第2放熱板600との間にも放熱ゲル(熱伝導性弾性材)900を介装するようにしている。そしてレーザドライバ180が発生した熱は、放熱ゲル900を経由して第2放熱板600に取り入れるようにしている。 Similarly, in the optical pickup device 1000 according to the present embodiment, as shown in FIG. 13, a heat radiating gel (thermally conductive elastic material) 900 is interposed between the laser driver 180 and the second heat radiating plate 600. I am doing so. The heat generated by the laser driver 180 is taken into the second heat radiating plate 600 via the heat radiating gel 900.
 そのため、レーザドライバ180と第2放熱板600との間を弾性的に接触させることが可能になるため、経年変化や製造誤差等により、例えばレーザドライバ180と第2放熱板600との間の距離が変化した場合であっても、熱伝導路を維持することが可能となる。 Therefore, the laser driver 180 and the second heat radiating plate 600 can be elastically brought into contact with each other. Therefore, for example, a distance between the laser driver 180 and the second heat radiating plate 600 due to aging, manufacturing error, or the like. Even if is changed, the heat conduction path can be maintained.
 また上述したが、本実施形態の光ピックアップ装置1000は、第1放熱板500や第2放熱板600を備えない構成とすることも可能である。この場合は、レーザユニット100やレーザドライバ180からの熱は、第1放熱板500や第2放熱板600を経由することなく、リジッド基板部710の導熱用パターン712に伝達される。この場合、光ピックアップ装置1000を軽量化、小型化することが可能になる。 As described above, the optical pickup device 1000 according to this embodiment can be configured not to include the first heat radiating plate 500 and the second heat radiating plate 600. In this case, the heat from the laser unit 100 and the laser driver 180 is transmitted to the heat conducting pattern 712 of the rigid board portion 710 without passing through the first heat radiating plate 500 or the second heat radiating plate 600. In this case, the optical pickup device 1000 can be reduced in weight and size.
 またこの場合、レーザユニット100やレーザドライバ180とリジッド基板部710の導熱用パターン712との間に放熱ゲル(熱伝導性弾性材)900を介装するようにしてもよい。 In this case, a heat radiating gel (thermally conductive elastic material) 900 may be interposed between the laser unit 100 or the laser driver 180 and the heat conducting pattern 712 of the rigid substrate portion 710.
 この場合は、レーザユニット100やレーザドライバ180が発生した熱は、放熱ゲル900を経由して導熱用パターン712に取り入れられる。 In this case, the heat generated by the laser unit 100 and the laser driver 180 is taken into the heat conducting pattern 712 via the heat radiating gel 900.
 このようにすることにより、レーザユニット100とリジッド基板部710との間や、レーザドライバ180とリジッド基板部710との間を弾性的に接触させることが可能になるため、経年変化や製造誤差等により、例えばレーザユニット100とリジッド基板部710との間の距離や、レーザドライバ180とリジッド基板部710との間の距離が変化した場合であっても、熱伝導路を維持することが可能となる。 By doing so, it becomes possible to make elastic contact between the laser unit 100 and the rigid substrate unit 710, or between the laser driver 180 and the rigid substrate unit 710. Thus, for example, even when the distance between the laser unit 100 and the rigid substrate unit 710 or the distance between the laser driver 180 and the rigid substrate unit 710 changes, the heat conduction path can be maintained. Become.
 次に、本実施形態に係るリジッド基板部710に形成される導熱用パターン712について、図13を参照しながら説明する。なお図13は、レーザダイオード180が発生した熱を放出する場合を例として示すが、レーザユニット100が発生した熱を放出する場合も同様である。 Next, the heat conductive pattern 712 formed on the rigid substrate unit 710 according to the present embodiment will be described with reference to FIG. FIG. 13 shows as an example the case where the heat generated by the laser diode 180 is released, but the same applies to the case where the heat generated by the laser unit 100 is released.
 図13に示すように、本実施形態に係る導熱用パターン712は、リジッド基板部710の表面に沿って、リジッド基板部710の表面及び内部に積層して形成される複数の金属層により形成されている。 As shown in FIG. 13, the heat conducting pattern 712 according to the present embodiment is formed by a plurality of metal layers formed by being laminated on the surface and inside of the rigid substrate unit 710 along the surface of the rigid substrate unit 710. ing.
 そしてこれらの各金属層は、リジッド基板部710の一方の表面と他方の表面との間に積層される各金属層を貫通するスルーホール713(貫通穴)の表面を被覆する金属めっき714により接続されるように構成されている。 These metal layers are connected by a metal plating 714 that covers the surface of a through hole 713 (through hole) that penetrates each metal layer laminated between one surface of the rigid substrate portion 710 and the other surface. It is configured to be.
 導熱用パターン712を構成する金属層は、導電パターンと同様に、銅や金などにより構成することが可能である。銅や金は熱伝導度が高いため、レーザユニット100やレーザドライバ180で発生した熱を速やかに効率良く排熱することが可能となる。 The metal layer constituting the heat conducting pattern 712 can be made of copper, gold, or the like, like the conductive pattern. Since copper and gold have high thermal conductivity, the heat generated by the laser unit 100 and the laser driver 180 can be quickly and efficiently exhausted.
 また、導熱用パターン712を、リジッド基板部710に形成される導電パターンと共用するようにしてもよい。このようにすれば、リジッド基板部710上に形成されるパターンの面積を減らすことができるので、リジッド基板部710を小型化することも可能となる。 Further, the heat conducting pattern 712 may be shared with the conductive pattern formed on the rigid substrate unit 710. In this way, since the area of the pattern formed on the rigid substrate portion 710 can be reduced, the rigid substrate portion 710 can be downsized.
 その場合、リジッド基板部710に形成されているグランド電位の導電パターンを、導熱用パターン712として利用するようにすることも可能である。リジッド基板部710には、耐ノイズ性向上やインピーダンス低下等のために、通常ベタパターンと呼ばれる広面積のグランド電位の導電パターンが形成されているが、このベタパターンを導熱用パターン712として用いることにより、大きな熱容量を持った導熱用パターン712を効果的に形成することが可能となる。 In that case, a conductive pattern having a ground potential formed on the rigid substrate portion 710 may be used as the heat conducting pattern 712. The rigid substrate portion 710 is formed with a conductive pattern having a large area of ground potential, usually called a solid pattern, for improving noise resistance, lowering impedance, and the like. This solid pattern is used as the heat conduction pattern 712. Thus, it is possible to effectively form the heat conducting pattern 712 having a large heat capacity.
 以上、本実施形態に係る光ピックアップ装置1000について説明したが、本実施形態に係る光ピックアップ装置1000によれば、スリムタイプやウルトラスリムタイプのような薄型の光ピックアップ装置においても、リジッド基板を用いることが可能になる。 The optical pickup apparatus 1000 according to this embodiment has been described above. However, according to the optical pickup apparatus 1000 according to this embodiment, a rigid substrate can be used even in a thin optical pickup apparatus such as a slim type or an ultra slim type. It becomes possible.
 なお上記実施形態では、リジッド基板部710に基板開口部711を開口させ、この基板開口部711にレーザユニット100の上端部131を貫通させる構成を一例として説明したが、リジッド基板部710のハウジング300の底面302に相対する側の面715(-Z軸方向を向いた面)が、レーザユニット100の上端部131よりもハウジング300の底面302に近接可能なように構成されていれば、他の構成でもよい。 In the above embodiment, the configuration in which the substrate opening 711 is opened in the rigid substrate portion 710 and the upper end 131 of the laser unit 100 is penetrated through the substrate opening 711 has been described as an example. However, the housing 300 of the rigid substrate portion 710 is described. As long as the surface 715 (the surface facing the −Z axis direction) opposite to the bottom surface 302 of the laser unit 100 is configured to be closer to the bottom surface 302 of the housing 300 than the upper end portion 131 of the laser unit 100, It may be configured.
 例えば、リジッド基板部710のレーザユニット100と対面する部分に、レーザユニット100の上端部131が挿入可能なくぼみ(凹部)を形成するようにしてもよい。この場合リジッド基板部710は、レーザユニット100の上端部131がこのくぼみに挿入された状態で固定されるようにハウジング300に装着される。 For example, a recess (concave portion) may be formed in the portion of the rigid substrate portion 710 that faces the laser unit 100 so that the upper end portion 131 of the laser unit 100 cannot be inserted. In this case, the rigid substrate portion 710 is mounted on the housing 300 so that the upper end portion 131 of the laser unit 100 is fixed in a state of being inserted into the recess.
 これにより、レーザユニット100の上端部131がくぼみの内部に入り込んだ分だけ、リジッド基板部710をハウジング300の底面302に近接させて装着することが可能になり、光ピックアップ装置1000を薄型化することが可能になる。 As a result, the rigid substrate portion 710 can be mounted close to the bottom surface 302 of the housing 300 as much as the upper end portion 131 of the laser unit 100 enters the recess, and the optical pickup device 1000 can be thinned. It becomes possible.
 あるいは、リジッド基板部710がハウジング300に装着される際に、レーザユニット100を迂回するような切れ込み部を、リジッド基板部710に形成するようにしてもよい。 Alternatively, when the rigid board portion 710 is attached to the housing 300, a cut portion that bypasses the laser unit 100 may be formed in the rigid board portion 710.
 このような構成によれば、リジッド基板部710とレーザユニット100とを干渉させることなく、リジッド基板部710を、レーザユニット100の上端部131よりもハウジング300の底面302に近接させて装着することが可能となり、光ピックアップ装置1000を薄型化することが可能になる。 According to such a configuration, the rigid substrate portion 710 is mounted closer to the bottom surface 302 of the housing 300 than the upper end portion 131 of the laser unit 100 without causing the rigid substrate portion 710 and the laser unit 100 to interfere with each other. Thus, the optical pickup device 1000 can be made thinner.
 また、本実施形態に係る光ピックアップ装置1000によれば、リジッド基板を用いた薄型の光ピックアップ装置において、レーザユニット100やレーザドライバ180等のレーザ光発生素子から発生する熱を効率良く放出することが可能になる。 Further, according to the optical pickup device 1000 according to the present embodiment, heat generated from laser light generating elements such as the laser unit 100 and the laser driver 180 can be efficiently released in a thin optical pickup device using a rigid substrate. Is possible.
 さらに、例えば樹脂製のハウジング300を用いた光ピックアップ装置1000である場合には、レーザ光発生素子から発生する熱がハウジング300に伝わると、ハウジング300の内部に熱が籠り、ハウジング300の変形などを生じる可能性があるが、本実施形態の様に、リジッド基板部710に、レーザ光発生素子が発生した熱を伝導させる導熱用パターン712を形成しておくことにより、レーザ光発生素子から発生する熱を効果的に放出し、ハウジング300に伝わる熱量を減らすことが可能となる。 Further, for example, in the case of the optical pickup device 1000 using the resin housing 300, when heat generated from the laser light generating element is transmitted to the housing 300, the heat is generated inside the housing 300, and the housing 300 is deformed. However, it is generated from the laser light generating element by forming the heat conducting pattern 712 that conducts the heat generated by the laser light generating element on the rigid substrate portion 710 as in this embodiment. It is possible to effectively release the heat to be transmitted and to reduce the amount of heat transmitted to the housing 300.
 また上記実施形態では、レーザユニット100の一例として、DVD及びCDに対応した2波長レーザの場合について説明したが、レーザユニット100は、青紫色波長帯395nm~420nmのレーザ光(例えば405nm)を用いたBlu-ray Disc(登録商標)規格にも適合させた3波長レーザでも良いし、それらのうちのいずれか1つあるいは2つに対応した1波長レーザあるいは2波長レーザでも良い。 In the above-described embodiment, the case of a dual wavelength laser compatible with DVD and CD has been described as an example of the laser unit 100. It may be a three-wavelength laser adapted to the Blu-ray Disc (registered trademark) standard, or a one-wavelength laser or a two-wavelength laser corresponding to any one or two of them.
 また上記実施形態では、一例としてスリムタイプ(高さ12.7mm)またはウルトラスリムタイプ(高さ9.5mm)の光ピックアップ装置1000について説明したが、それ以外の厚さ(例えばより薄型)の光ピックアップ装置1000であっても良い。 In the above-described embodiment, the slim type (height 12.7 mm) or ultra slim type (height 9.5 mm) optical pickup apparatus 1000 has been described as an example. However, in the optical pickup apparatus 1000 of other thicknesses (for example, thinner), There may be.
 以上、前述した発明の実施の形態は、本発明の理解を容易にするためのものであり、本発明を限定して解釈するためのものではない。本発明は、その趣旨を逸脱することなく変更、改良され得るとともに、本発明にはその等価物も含まれる。 As mentioned above, the embodiments of the invention described above are for facilitating understanding of the present invention, and are not intended to limit the present invention. The present invention can be changed and improved without departing from the gist thereof, and equivalents thereof are also included in the present invention.
5    光ディスク
50   回転軸
100  レーザユニット
110  レーザチップ
111  第1レーザダイオード
112  第2レーザダイオード
120  フレーム部
130  樹脂モールド部
140  入力端子
141  第1端子
142  第2端子
143  第3端子
150  サブマウント
160  はんだ
170  接着剤
200  光学部品
210  複合光学素子
211  1/2波長板
212  回折格子
220  偏光ビームスプリッタ
230  1/4波長板
240  コリメートレンズ
250  反射ミラー
260  対物レンズ
270  AS板
280  光検出器
290  フロントモニタ受光検出器
300  ハウジング
301  ビス
310  ハウジング開口部
320  リジッド基板固定爪
400  対物レンズ駆動装置
410  アクチュエータ
420  レンズホルダ
500  第1放熱板
600  第2放熱板
700  プリント基板
710  リジッド基板部
711  基板開口部
712  導熱用パターン
713  スルーホール
714  金属めっき
720  フレキシブル基板部
730  コネクタ
800  カバー
900  放熱ゲル
1000 光ピックアップ装置
2000 メイン基板
2100 制御回路用FPC
5 Optical disc 50 Rotating shaft 100 Laser unit 110 Laser chip 111 First laser diode 112 Second laser diode 120 Frame portion 130 Resin mold portion 140 Input terminal 141 First terminal 142 Second terminal 143 Third terminal 150 Submount 160 Solder 170 Adhesion Agent 200 Optical component 210 Composite optical element 211 1/2 wavelength plate 212 Diffraction grating 220 Polarizing beam splitter 230 1/4 wavelength plate 240 Collimator lens 250 Reflecting mirror 260 Objective lens 270 AS plate 280 Photodetector 290 Front monitor light receiving detector 300 Housing 301 Screw 310 Housing opening 320 Rigid substrate fixing claw 400 Objective lens driving device 410 Actuator 420 Lens holder 500 First heat sink 60 0 Second heat sink 700 Printed circuit board 710 Rigid board 711 Board opening 712 Heat conduction pattern 713 Through hole 714 Metal plating 720 Flexible board 730 Connector 800 Cover 900 Heat radiation gel 1000 Optical pickup device 2000 Main board 2100 FPC for control circuit

Claims (16)

  1.  底面及び前記底面を囲む側面を有し、上面が開放されたハウジングと、
     前記ハウジング内に装着され、光ディスクに対する情報の記録及び読み出しを行なうためのレーザ光を前記底面に沿った方向に発光するレーザユニットと、
     前記ハウジング内に装着され、前記レーザ光の光路上に配置される光学部品と、
     前記レーザユニットに前記上面の側から重なるように前記ハウジングに装着され、前記レーザユニットを駆動するための駆動信号を前記レーザユニットに伝達する導電路が形成されたリジッド基板と、
    を備え、
     前記リジッド基板は、前記底面に相対する面が前記レーザユニットの上端部よりも前記底面に近接するように前記ハウジングに装着される
    ことを特徴とする光ピックアップ装置。
    A housing having a bottom surface and a side surface surrounding the bottom surface, the top surface being open;
    A laser unit that is mounted in the housing and emits laser light in a direction along the bottom surface for recording and reading information on an optical disc;
    An optical component mounted in the housing and disposed on the optical path of the laser beam;
    A rigid substrate mounted on the housing so as to overlap the laser unit from the upper surface side, and having a conductive path for transmitting a drive signal for driving the laser unit to the laser unit;
    With
    The optical pickup device, wherein the rigid substrate is attached to the housing such that a surface facing the bottom surface is closer to the bottom surface than an upper end portion of the laser unit.
  2.  請求項1に記載の光ピックアップ装置であって、
     前記リジッド基板は、前記レーザユニットと対面する部分に、前記レーザユニットの上端部を貫通可能に開口された貫通穴が形成され、前記レーザユニットの前記上端部が前記貫通穴を貫通した状態で前記ハウジングに固定される
    ことを特徴とする光ピックアップ装置。
    The optical pickup device according to claim 1,
    In the rigid substrate, a through-hole that is open so as to be able to pass through the upper end of the laser unit is formed in a portion facing the laser unit, and the upper end of the laser unit passes through the through-hole. An optical pickup device fixed to a housing.
  3.  請求項1に記載の光ピックアップ装置であって、
     前記リジッド基板は、前記レーザユニットと対面する部分に、前記レーザユニットの上端部が挿入可能な凹部が形成され、前記レーザユニットの前記上端部が前記凹部に挿入された状態で前記ハウジングに固定される
    ことを特徴とする光ピックアップ装置。
    The optical pickup device according to claim 1,
    The rigid substrate has a recess into which the upper end of the laser unit can be inserted in a portion facing the laser unit, and is fixed to the housing with the upper end of the laser unit being inserted into the recess. An optical pickup device.
  4.  請求項1に記載の光ピックアップ装置であって、
     前記リジッド基板は、前記ハウジングに装着される際に前記レーザユニットを迂回するような切れ込み部が形成されてなる
    ことを特徴とする光ピックアップ装置。
    The optical pickup device according to claim 1,
    2. The optical pickup device according to claim 1, wherein the rigid substrate is formed with a notch that bypasses the laser unit when mounted on the housing.
  5.  請求項1~4のいずれかに記載の光ピックアップ装置であって、
     前記レーザユニットは、前記駆動信号が入力される入力端子を有し、前記入力端子が前記ハウジングの前記底面に沿った方向に延伸するように前記ハウジングに装着され、
     前記リジッド基板が前記ハウジングに装着される際に、前記リジッド基板の前記導電路と前記レーザユニットの前記入力端子とが半田付けされてなる
    ことを特徴とする光ピックアップ装置。
    The optical pickup device according to any one of claims 1 to 4,
    The laser unit has an input terminal to which the drive signal is input, and is attached to the housing such that the input terminal extends in a direction along the bottom surface of the housing,
    The optical pickup device, wherein the conductive path of the rigid board and the input terminal of the laser unit are soldered when the rigid board is mounted on the housing.
  6.  請求項5に記載の光ピックアップ装置であって、
     前記ハウジングには、前記入力端子を前記導電路に半田付けするために開口された開口部が前記底面に形成されてなる
    ことを特徴とする光ピックアップ装置。
    The optical pickup device according to claim 5,
    The optical pickup device according to claim 1, wherein the housing has an opening formed on the bottom surface for soldering the input terminal to the conductive path.
  7.  請求項1~6のいずれかに記載の光ピックアップ装置であって、
     前記リジッド基板は、前記底面に相対する面とは反対側の面に、前記駆動信号を出力する制御回路に接続されるフレキシブルプリント基板を着脱自在に接続可能なコネクタを備えてなる
    ことを特徴とする光ピックアップ装置。
    The optical pickup device according to any one of claims 1 to 6,
    The rigid board includes a connector that can be detachably connected to a flexible printed board connected to a control circuit that outputs the drive signal, on a surface opposite to a surface opposite to the bottom surface. An optical pickup device.
  8.  底面及び前記底面を囲む側面を有し、上面が開放されたハウジングと、
     前記ハウジング内に装着され、光ディスクに対する情報の記録及び読み出しを行なうためのレーザ光を前記底面に沿った方向に発光するためのレーザ光発生素子と、
     前記ハウジング内に装着され、前記レーザ光の光路上に配置される光学部品と、
     前記レーザ光発生素子に前記上面の側から重なるように前記ハウジングに装着され、前記レーザ光を発光させるための駆動信号を前記レーザ光発生素子に伝達する導電パターンが形成されたリジッド基板と、
    を備え、
     前記リジッド基板はさらに、前記レーザ光発生素子が発生した熱を取り入れる導熱用パターンが形成されてなる
    ことを特徴とする光ピックアップ装置。
    A housing having a bottom surface and a side surface surrounding the bottom surface, the top surface being open;
    A laser light generating element that is mounted in the housing and emits laser light for recording and reading information to and from the optical disc in a direction along the bottom surface;
    An optical component mounted in the housing and disposed on the optical path of the laser beam;
    A rigid substrate mounted on the housing so as to overlap the laser light generating element from the upper surface side, and having a conductive pattern for transmitting a driving signal for emitting the laser light to the laser light generating element;
    With
    The optical pickup device, wherein the rigid substrate is further formed with a heat conducting pattern for taking in heat generated by the laser light generating element.
  9.  請求項8に記載の光ピックアップ装置であって、
     前記レーザ光発生素子に隣接して前記ハウジング内に装着され、前記レーザ光発生素子が発生した熱を取り入れる金属製の放熱板をさらに備え、
     前記リジッド基板に形成される前記導熱用パターンは、前記レーザ光発生素子が発生した熱を、前記放熱板を経由して取り入れる
    ことを特徴とする光ピックアップ装置。
    The optical pickup device according to claim 8, wherein
    A metal heat dissipating plate mounted in the housing adjacent to the laser light generating element and taking in heat generated by the laser light generating element;
    The optical pickup device, wherein the heat conducting pattern formed on the rigid substrate takes in heat generated by the laser light generating element via the heat radiating plate.
  10.  請求項9に記載の光ピックアップ装置であって、
     前記レーザ光発生素子と前記放熱板との間に介挿される熱伝導性弾性材をさらに備え、
     前記放熱板は、前記レーザ光発生素子が発生した熱を、前記熱伝性弾性材を経由して取り入れる
    ことを特徴とする光ピックアップ装置。
    The optical pickup device according to claim 9, wherein
    A heat conductive elastic material interposed between the laser light generating element and the heat radiating plate;
    2. The optical pickup device according to claim 1, wherein the heat radiating plate takes in heat generated by the laser light generating element via the thermoconductive elastic material.
  11.  請求項8に記載の光ピックアップ装置であって、
     前記レーザ光発生素子と前記リジッド基板の前記導熱用パターンとの間に介挿される熱伝導性弾性材をさらに備え、
     前記リジッド基板の前記導熱用パターンは、前記レーザ光発生素子が発生した熱を、前記熱伝性弾性材を経由して取り入れる
    ことを特徴とする光ピックアップ装置。
    The optical pickup device according to claim 8, wherein
    A heat conductive elastic material interposed between the laser light generating element and the heat conducting pattern of the rigid substrate;
    The optical pickup device, wherein the heat conducting pattern of the rigid substrate takes in heat generated by the laser light generating element via the thermoconductive elastic material.
  12.  請求項8~11のいずれかに記載の光ピックアップ装置であって、
     前記リジッド基板に形成される前記導熱用パターンは、前記リジッド基板の表面に沿って、前記リジッド基板の表面及び内部に積層して形成される複数の金属層により形成され、前記各金属層は、前記リジッド基板の一方の表面と他方の表面との間の前記各金属層を貫通する貫通穴の表面を被覆する金属により接続される
    ことを特徴とする光ピックアップ装置。
    The optical pickup device according to any one of claims 8 to 11,
    The heat conducting pattern formed on the rigid substrate is formed of a plurality of metal layers formed by laminating on the surface and inside of the rigid substrate along the surface of the rigid substrate. An optical pickup device, wherein the rigid substrate is connected by a metal covering a surface of a through hole penetrating each metal layer between one surface and the other surface.
  13.  底面及び前記底面を囲む側面を有し、上面が開放された樹脂製ハウジングと、
     前記ハウジング内に装着され、光ディスクに対する情報の記録及び読み出しを行なうためのレーザ光を前記底面に沿った方向に発光するためのレーザ光発生素子と、
     前記ハウジング内に装着され、前記レーザ光の光路上に配置される光学部品と、
     前記レーザ光発生素子に隣接して前記ハウジング内に装着され、前記レーザ光発生素子が発生した熱を取り入れる金属製の熱伝導板と、
     前記レーザ光発生素子前記熱伝導板に前記上面の側から重なるように前記ハウジングに装着され、前記レーザ光発生素子を駆動するための駆動信号を前記レーザ光発生素子に伝達する導電パターンが形成されたリジッド基板と、
    を備え、
     前記熱伝導板を前記ハウジングと前記リジッド基板との間に介在させた
    ことを特徴とする光ピックアップ装置。
    A resin housing having a bottom surface and a side surface surrounding the bottom surface, the top surface being open;
    A laser light generating element that is mounted in the housing and emits laser light for recording and reading information to and from the optical disc in a direction along the bottom surface;
    An optical component mounted in the housing and disposed on the optical path of the laser beam;
    A metal heat conduction plate mounted in the housing adjacent to the laser light generating element and taking in heat generated by the laser light generating element;
    The laser light generating element is mounted on the housing so as to overlap the heat conduction plate from the upper surface side, and a conductive pattern for transmitting a drive signal for driving the laser light generating element to the laser light generating element is formed. A rigid board,
    With
    An optical pickup device, wherein the heat conducting plate is interposed between the housing and the rigid substrate.
  14.  請求項13に記載の光ピックアップ装置であって、
     前記熱伝導板はその一部が前記ハウジングと前記リジッド基板との間から露出させて配置される
    ことを特徴とする光ピックアップ装置。
    The optical pickup device according to claim 13,
    The optical pickup device according to claim 1, wherein a part of the heat conducting plate is disposed to be exposed from between the housing and the rigid substrate.
  15.  請求項13に記載の光ピックアップ装置であって、
    前記リジッド基板の裏面には前記レーザ光発生素子を駆動するレーザドライバが設置され、
    前記熱伝導板は、前記レーザ光発生素子に隣接して熱結合される第1熱伝導板と、前記レーザドライバに相対して熱結合される第2熱伝導板とから構成される
    ことを特徴とする光ピックアップ装置。
    The optical pickup device according to claim 13,
    A laser driver for driving the laser light generating element is installed on the back surface of the rigid substrate,
    The thermal conductive plate is configured by a first thermal conductive plate thermally coupled adjacent to the laser light generating element and a second thermal conductive plate thermally coupled relative to the laser driver. Optical pickup device.
  16.  請求項15に記載の光ピックアップ装置であって、
     前記レーザ光発生素子に隣接して前記ハウジング内に装着され、前記レーザ光発生素子が発生した熱を取り入れる金属製の熱伝導板
     前記リジッド基板は、前記第1熱伝導板を経由して取り入れられる前記レーザ光発生素子が発生した熱を取り入れる導熱用パターンが形成される、
    ことを特徴とする光ピックアップ装置。
    The optical pickup device according to claim 15,
    A metal heat conduction plate that is mounted in the housing adjacent to the laser light generation element and takes in heat generated by the laser light generation element. The rigid substrate is taken in via the first heat conduction plate. A heat conducting pattern for taking in the heat generated by the laser light generating element is formed,
    An optical pickup device characterized by that.
PCT/JP2013/067294 2012-07-05 2013-06-24 Optical pickup device WO2014007102A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2012151667A JP2015167056A (en) 2012-07-05 2012-07-05 optical pickup device
JP2012-151667 2012-07-05
JP2012-151668 2012-07-05
JP2012151668A JP2015167057A (en) 2012-07-05 2012-07-05 optical pickup device

Publications (1)

Publication Number Publication Date
WO2014007102A1 true WO2014007102A1 (en) 2014-01-09

Family

ID=49881860

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/067294 WO2014007102A1 (en) 2012-07-05 2013-06-24 Optical pickup device

Country Status (1)

Country Link
WO (1) WO2014007102A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11195869A (en) * 1998-01-06 1999-07-21 Sony Corp Combinational structure of electronic device and board
JP2005339709A (en) * 2004-05-28 2005-12-08 Victor Co Of Japan Ltd Structure for mounting semiconductor conversion element of optical pickup
JP2008027530A (en) * 2006-07-21 2008-02-07 Mitsumi Electric Co Ltd Optical pickup device
WO2008023575A2 (en) * 2006-08-24 2008-02-28 Panasonic Corporation Optical disk recording/reproducing device and optical head
JP2012113785A (en) * 2010-11-25 2012-06-14 Funai Electric Co Ltd Optical pickup

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11195869A (en) * 1998-01-06 1999-07-21 Sony Corp Combinational structure of electronic device and board
JP2005339709A (en) * 2004-05-28 2005-12-08 Victor Co Of Japan Ltd Structure for mounting semiconductor conversion element of optical pickup
JP2008027530A (en) * 2006-07-21 2008-02-07 Mitsumi Electric Co Ltd Optical pickup device
WO2008023575A2 (en) * 2006-08-24 2008-02-28 Panasonic Corporation Optical disk recording/reproducing device and optical head
JP2012113785A (en) * 2010-11-25 2012-06-14 Funai Electric Co Ltd Optical pickup

Similar Documents

Publication Publication Date Title
JP4253559B2 (en) Optical pickup device and optical disk device
JP3972814B2 (en) Semiconductor integrated device
JP2011100526A (en) Integrated optical module and assembly adjusting method of the same
US8387080B2 (en) Optical pickup apparatus having a heatsink for dissipating heat generated by a laser diode
JP2003187477A (en) Optical pickup device
WO2014007102A1 (en) Optical pickup device
JP2001053372A (en) Laser module
JPH10233028A (en) Optical pickup device
US20130242715A1 (en) Optical pickup apparatus
JP2015167057A (en) optical pickup device
JP2015167056A (en) optical pickup device
JP2014022023A (en) Optical pickup device
JP4595824B2 (en) Optical pickup device and optical disk device
JP4577142B2 (en) Optical pickup and optical disk apparatus
JP2014017028A (en) Optical pickup device
JP2012113785A (en) Optical pickup
JP2006190736A (en) Semiconductor laser cap, semiconductor laser device using the same, optical pickup device and optical disk device
JP2006209936A (en) Optical pickup device and optical disk drive
JP4744840B2 (en) Optical pickup
WO2007063956A1 (en) Optical head device, and its manufacturing method
JP4770604B2 (en) Optical pickup device
JP2014106998A (en) Optical pickup device
TW559802B (en) Composite optical component and composite optical unit using the same
JP2014022024A (en) Optical pickup device
JP2007018583A (en) Optical pickup device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13813051

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13813051

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP