WO2014005603A1 - Procédé de fonctionnement d'un dispositif de soudage par laser et dispositif - Google Patents

Procédé de fonctionnement d'un dispositif de soudage par laser et dispositif Download PDF

Info

Publication number
WO2014005603A1
WO2014005603A1 PCT/EP2012/002795 EP2012002795W WO2014005603A1 WO 2014005603 A1 WO2014005603 A1 WO 2014005603A1 EP 2012002795 W EP2012002795 W EP 2012002795W WO 2014005603 A1 WO2014005603 A1 WO 2014005603A1
Authority
WO
WIPO (PCT)
Prior art keywords
welding
variable
change
laser
manipulated
Prior art date
Application number
PCT/EP2012/002795
Other languages
German (de)
English (en)
Inventor
Andreas Blug
Felix Abt
Leonardo Nicolosi
Andreas Heider
Original Assignee
Baden-Württemberg Stiftung Ggmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Baden-Württemberg Stiftung Ggmbh filed Critical Baden-Württemberg Stiftung Ggmbh
Priority to EP12731313.8A priority Critical patent/EP2869962A1/fr
Priority to PCT/EP2012/002795 priority patent/WO2014005603A1/fr
Publication of WO2014005603A1 publication Critical patent/WO2014005603A1/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/03Observing, e.g. monitoring, the workpiece
    • B23K26/032Observing, e.g. monitoring, the workpiece using optical means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/062Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam
    • B23K26/0626Energy control of the laser beam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/0665Shaping the laser beam, e.g. by masks or multi-focusing by beam condensation on the workpiece, e.g. for focusing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/073Shaping the laser spot

Definitions

  • the invention relates to a method for operating a laser welding device for welding workpieces by means of a laser beam, in which method by means of at least one detection means a change in a change associated with the change of at least a first controlled variable of the welding process, optically detectable feature is detected, and by at least one data processing unit based the feature change at least a first manipulated variable for processing by at least one control device is generated. Moreover, the invention relates to an apparatus for carrying out such a method.
  • Such methods for controlling the process energy in welding processes are already known from DE 197 41 329 C1 and from DE 10 2010 013 914 A1 a method for process control in laser welding with high control quality, in which a characteristic optical feature at a certain value of the process energy Transition between two states.
  • seam defects can occur, which correspond to the required properties of the workpiece to be machined, for example. visibly of strength, counteract.
  • a key cause of seam defects are melt losses, which can be caused by migration of the melt into a too large gap or by increased spattering. By means of these melt losses, the load-bearing cross section and thereby the strength of the welded joint can be reduced.
  • melt volume is insufficient to safely bridge a gap occurring between the joining partners to large gap.
  • the problem here is that when a critical gap is exceeded, the melt flows in the upper sheet and the lower sheet separate. Moreover, the entire melt volume from the top sheet can disappear into the gap, so that no more connection exists.
  • a lack of melt volume manifests itself in a so-called suture incision at the seam top bead, ie the surface of the melt zone lowers relative to the surface of the workpiece and thus influences the flatness of the workpiece in the seam area.
  • a welding process should be regulated so that under the given production conditions a uniform strength and flatness of the seam is given.
  • the vapor capillary (also called “keyhole”) can expand so far in the direction of the molten bath that the equilibrium between vapor pressure and surface tension of the melt becomes unstable
  • a hole often occurs as an undesirable defect of the seam, and if no hole is formed, the defects are at least manifested by the surface of the molten bath relative to the surface of the workpiece
  • This seam incidence is an indication of a lack of melt volume.
  • the melt volume is increased by maintaining a constant weld depth perpendicular to the Feed direction a wider area is melted.
  • the gradient (perpendicular to the welding direction, y-direction) increases in the course of the temperature between the surfaces of the molten bath and the workpiece. If one observes the thermal image of the melting zone, one can differentiate the hotter vapor capillary from the cooler melt bath and the still cooler workpiece. A seam incidence changes the temperature profile and thus also the shape of the vapor capillary and the melt in the thermal image. Evaporation temperature prevails on the surface of the vapor capillary. As the distance to the vapor capillary increases, the temperature drops to room temperature.
  • the method according to the invention thus forms a type of multi-variable control which can be operated as follows:
  • One of the control circuits keeps the suture incidence constant on the basis of the change in the optically detectable feature of the capillary length L, the capillary width B or the suture signal L / B.
  • a second control loop keeps the welding depth constant with respect to a specific interface. This interface may be, for example, the top or bottom of the joining partners.
  • the welding depth can thus be independent of feed or defocus are considered constant.
  • the corresponding set values are chosen so that the process is kept in a given process window. In particular, the limits must be selected so as to prevent critical conditions such as a stall resulting in a "fake friend".
  • Both the defocusing and a change in the feed affect the weld depth. This can be achieved by regulating the energy of the line (laser power per feed
  • a camera can be used together with a data processing unit (computer) both on the penetration or weld in hole within the vapor capillary , as well as on the seam inlet on the basis of capillary geometry. Two control circuits then run in parallel, with the camera being able to register the seam inclination signal and the welding depth and to output setpoints for the manipulated variables to a controller via the data processing unit.
  • a data processing unit computer
  • the method according to the invention can advantageously be run with different control strategies. Firstly, defocusing and feed rate can be adjusted so that the required laser power remains almost constant. Furthermore, as described above, this can be regulated that first the focus position is adjusted until the control reserve for the laser power is exhausted. Subsequently, the feed rate is then reduced. Finally, with thick sheets (in which the sheet thickness is large relative to the Rayleigh length of the laser beam), the focus position can influence the welding result. In these cases, the feed rate is preferably adjusted.
  • temporal changes of the reference variables (L, B) can advantageously also be evaluated.
  • "false friends” can be recognized by strong oscillation in the ratio of keyhole length to width, and in this case as well, the melt volume can be adjusted by a feed reduction or a defocusing, observing such a strong oscillation at a wedge-shaped gap. In this case, the same phenomenon is observed as described above: A gap set too large causes a loss of melt in the joining zone and represents the cause of the formation of a "false friend".
  • a laser welding device for welding workpieces by means of a laser beam, with a detection means for detecting changes in the associated with the change of at least a first controlled variable of the welding process, optically detectable feature, which has at least one data processing unit, based on Feature change of the optically detectable feature generates at least a first manipulated variable for processing by at least one control device.
  • the device keeps at least one further controlled variable substantially constant by changing a further manipulated variable.
  • the detection means with less least provided a camera system by means of which the vapor capillary of the laser welding process is geometrically and / or thermally detected.
  • the detection means may comprise a measuring device which detects the vapor capillary three-dimensionally, in particular determines its depth.
  • the at least one control device thus operates, for example, with the reference variables welding depth and keyhole geometry and, for example, as manipulated variables with at least two of the three parameters laser power, feed rate and effective diameter of the laser beam.
  • the latter can be influenced by the following measures: defocusing by changing the working distance or the focal length, changing the beam diameter by a variable imaging ratio of the welding optics, changing the melted weld width by a multi-focal technology with variable focal distance or by a pendulum movement of the focus laterally to the feed direction.
  • the device is provided with measuring devices for detecting the reference variables.
  • the detection can be done by a camera, which receives a thermal image of the molten bath, the capillary geometry sizes are removable bar.
  • the welding depth can be determined by means of the so-called fürsch bathloches.
  • a 3D measuring system which measures the depth of the keyholes relative to the surface of the joining partners.
  • the seam penetration can also be measured.
  • the keyhole length or the melt pool length could also be measured via a camera with additional illumination.
  • the device can thus in addition to the laser power in addition to the seam insertion are regulated, whereby an increase in the strength and flatness of welds during laser welding can be achieved. Moreover, at the same time, the occurrence of seaming defects such as splattering by collapse of the vapor capillary or "false friends" due to enamel loss in the nip can be reduced.
  • 1a is a perspective side view of two workpieces with cooled overlap welds after the welding process without seam (left) and with seam (right)
  • 1 b shows a top view of a lap seam of workpieces recorded coaxially with the optical axis of a laser during the welding process with melting zone, vapor capillary and temperature curves without seam incidence (left) and with seam incidence (right);
  • FIG. 2 shows the relationship between a suture control signal L / B and the manipulated variables beam diameter df, feed rate v and required laser power P;
  • FIG. 1 the seam penetration in the welding process is illustrated as the joining of two partial workpieces 1, 2 along a weld seam 3 to the workpiece 10.
  • FIG. 1 a the weld seams at the overlap joint without and with seam incision are sketched, which manifests itself in a lowering of the surface of the weld seam 3, in particular in the right-hand of the two illustrations of FIG - Direction of the weld 3 projecting edge 31 can be seen.
  • FIG. 1 a the weld seams at the overlap joint without and with seam incision are sketched, which manifests itself in a lowering of the surface of the weld seam 3, in particular in the right-hand of the two illustrations of FIG - Direction of the weld 3 projecting edge 31 can be seen.
  • 1 b shows thermal images of the corresponding welds during the welding process with the observation direction coaxial with the observation means used, wherein for the sake of clarity the representation of the part to be joined in the viewing direction has been dispensed with - surface causes the melt in the molten bath 5 at the rear wall of the capillary 4 to resist less resistance to the vapor pressure in the capillary 4. This results in a longer vapor capillary 4.
  • the gradient increases (perpendicular to the welding direction, y-direction). In the course of the temperature between the surfaces of the molten bath 5 and workpiece 1, 2. Observing the thermal image of the melting zone of Figure 1, one can distinguish the hotter steam capillary 4 from the cooler melt 5 and the even cooler workpiece 10.
  • a suture incidence changes the temperature profile and so that too e Shape of the vapor capillary 4 in the thermal image.
  • T v evaporation temperature
  • the temperature drops to room temperature.
  • T R room temperature
  • T M melting temperature
  • the ratio L / B thus results as a suture signal. If this ratio L / B exceeds a threshold value (in the case of overlap welding on galvanized steel sheets with a thickness of 1 mm and a feed rate of 5 m / min, the threshold value is for example about 3), the molten bath volume can be increased by correspondingly setting manipulated variables and thus counteracting the seam.
  • a threshold value in the case of overlap welding on galvanized steel sheets with a thickness of 1 mm and a feed rate of 5 m / min, the threshold value is for example about 3
  • FIG. 2 the control of the melt volume on the basis of the suture incidence is illustrated by means of diagrams.
  • a lack of melt volume is controlled by meltdown of a larger volume, whereby relatively more melt is available for bridging the gap.
  • several manipulated variables can be changed, namely on the one hand a defocus ⁇ of the laser beam in curve 21 of the second diagram, which leads to broadening of the weld 3 and thus to the desired increase in the melt volume due to the associated increase in effective beam diameter df on the workpiece 10 , Due to the larger beam area, a higher laser power P is required at the same time, cf.
  • a reduction in the manipulated variable feed rate v in curve 22 of the second diagram of FIG. 2 can be used to increase the volume. Based on the weld length, a larger amount of energy is thus introduced into the workpiece 10, which also leads to a spread of the weld and thus to the desired increase in the melt volume. However, since the energy input into the workpiece does not increase inversely proportional to the feed rate, a lower total laser power is required, curve 23b. This is shown in FIG. 2, wherein the choice of the manipulated variable depends on the respective requirement of the welding process. If, for example, the cycle time is to be minimized, the process is preferably kept close to the maximum laser power P.
  • FIG. 3 diagrammatically shows a device 11 which has two control circuits 12, 13, and in which the regulation of the melt volume is linked to a regulation for the welding depth.
  • the regulation of the laser power P takes place on penetration or welding in the upper control circuit 13 for the observer using an image feature in the thermal image of the vapor capillary 3.
  • the camera 7, as detection means 14 together with a data processing unit can apply both to the throughput. or welding hole within the vapor capillary 3, as well as on the seam incidence L / B on the basis of capillary geometry regulate.
  • two control loops 12, 13 run in parallel.
  • the seam signal is determined in the lower feedback branch.
  • the camera 7 registers the sinuous sound signal and, based on the determined values of the control variables, setpoint values for the control variables P, v and df are generated by the control devices 15, 16 provided with corresponding generators, and sent to corresponding controllers, which in the present case are provided by an axis controller 18 and the laser 19 are formed with its control, not shown.
  • the invention described above relates to a method and a device for welding workpieces 10 by means of a laser beam, in which by means of at least one detection means 14 a change in an optically detectable feature associated with the change of at least a first controlled variable of the welding process is detected, and At least one first manipulated variable v, df, P for processing by at least one control device 15, 16 is generated by at least one data processing unit on the basis of the feature change
  • first the first manipulated variable v, df, P is selected and changed depending on process requirements from a plurality of possible first manipulated variables v, df, P, and in order to keep a second controlled variable of the welding process substantially constant , At least one further, different from the selected first manipulated variable v, df, P manipulated variable v, df, P is changed to the corresponding control of the second controlled variable.
  • the occurrence of seaming defects such as splattering by collapse of the vapor capillary 3 or by "false friends" can be reduced by loss of enamel in the nip.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Laser Beam Processing (AREA)

Abstract

L'invention concerne un procédé de fonctionnement d'un dispositif de soudage par laser destiné au soudage de pièces au moyen d'un rayonnement laser. Par le biais de ce procédé, une modification d'une caractéristique, pouvant être détectée de manière optique, intervenant avec la modification d'au moins une première consigne de commande du processus de soudage, est détectée à l'aide d'au moins un moyen de détection, et au moins une première consigne de réglage se trouve générée par au moins une unité de traitement de données en fonction de la modification de la caractéristique pour le traitement par l'intermédiaire d'au moins un dispositif de commande. En outre, l'invention concerne un dispositif pour l'exécution d'un tel procédé. Afin de mettre à disposition un dispositif de soudage par laser et un procédé permettant de faire fonctionner un dispositif de soudage par laser, destinés au soudage de pièces, qui s'adaptent aux conditions de production et minimisent simultanément l'apparition des défauts de soudure, il est proposé que, lors d'une modification d'une caractéristique pouvant être détectée optiquement, tout d'abord, la première consigne de réglage soit choisie parmi une pluralité de premières consignes de réglage possibles en fonction des modifications du processus et soit modifiée, et, pour maintenir sensiblement constante une seconde consigne de commande du processus de soudage, au moins une autre consigne de réglage, différente, parmi les premières consignes de réglage sélectionnées, soit modifiée pour un réglage correspondant de la seconde consigne de commande.
PCT/EP2012/002795 2012-07-03 2012-07-03 Procédé de fonctionnement d'un dispositif de soudage par laser et dispositif WO2014005603A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP12731313.8A EP2869962A1 (fr) 2012-07-03 2012-07-03 Procédé de fonctionnement d'un dispositif de soudage par laser et dispositif
PCT/EP2012/002795 WO2014005603A1 (fr) 2012-07-03 2012-07-03 Procédé de fonctionnement d'un dispositif de soudage par laser et dispositif

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/EP2012/002795 WO2014005603A1 (fr) 2012-07-03 2012-07-03 Procédé de fonctionnement d'un dispositif de soudage par laser et dispositif

Publications (1)

Publication Number Publication Date
WO2014005603A1 true WO2014005603A1 (fr) 2014-01-09

Family

ID=46456494

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2012/002795 WO2014005603A1 (fr) 2012-07-03 2012-07-03 Procédé de fonctionnement d'un dispositif de soudage par laser et dispositif

Country Status (2)

Country Link
EP (1) EP2869962A1 (fr)
WO (1) WO2014005603A1 (fr)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014195023A1 (fr) * 2013-06-07 2014-12-11 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Procédé et dispositif de production d'un assemblage
DE102015016513A1 (de) 2015-12-18 2017-06-22 Audi Ag Online-Prozessüberwachung und Online-Prozessregelung beim Verfahren zum form- oder stoffschlüssigen Verbinden zumindest zweier Bauteile durch ein Fügeverfahren mittels einer Radiometrievorrichtung
CN107798330A (zh) * 2017-11-10 2018-03-13 上海电力学院 一种焊缝图像特征信息提取方法
DE102020211343A1 (de) 2020-09-10 2022-03-10 Trumpf Laser- Und Systemtechnik Gmbh Verfahren zum Laserschweißen mittels eines in einer Doppelkernfaser geführten Laserstrahls sowie zugehörige Laserschweißmaschine und Computerprogrammprodukt

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109518180B (zh) * 2018-10-09 2021-02-12 江苏大学 一种自适应激光沉积修复的装置和方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4333501A1 (de) * 1993-10-01 1995-04-06 Univ Stuttgart Strahlwerkzeuge Verfahren zur Bestimmung der momentanen und Herbeiführung einer gewünschten Eindringtiefe eines Bearbeitungslaserstrahles in ein Werkstück sowie Vorrichtung zur Durchführung dieses Verfahrens
DE19741329C1 (de) 1997-09-19 1998-10-22 Fraunhofer Ges Forschung Verfahren und Vorrichtung zur Materialbearbeitung mit Plasma induzierender Hochenergiestrahlung
WO2003022508A1 (fr) * 2001-08-31 2003-03-20 Netherlands Institute For Metals Research Procede et dispositif de mesure et de regulation d'un processus de soudage au laser
US20060011592A1 (en) * 2004-07-14 2006-01-19 Pei-Chung Wang Laser welding control
WO2011120672A2 (fr) * 2010-04-01 2011-10-06 Baden-Württemberg Stiftung Ggmbh Procédé pour le fonctionnement d'un dispositif d'usinage et dispositif

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4333501A1 (de) * 1993-10-01 1995-04-06 Univ Stuttgart Strahlwerkzeuge Verfahren zur Bestimmung der momentanen und Herbeiführung einer gewünschten Eindringtiefe eines Bearbeitungslaserstrahles in ein Werkstück sowie Vorrichtung zur Durchführung dieses Verfahrens
DE19741329C1 (de) 1997-09-19 1998-10-22 Fraunhofer Ges Forschung Verfahren und Vorrichtung zur Materialbearbeitung mit Plasma induzierender Hochenergiestrahlung
WO2003022508A1 (fr) * 2001-08-31 2003-03-20 Netherlands Institute For Metals Research Procede et dispositif de mesure et de regulation d'un processus de soudage au laser
US20060011592A1 (en) * 2004-07-14 2006-01-19 Pei-Chung Wang Laser welding control
WO2011120672A2 (fr) * 2010-04-01 2011-10-06 Baden-Württemberg Stiftung Ggmbh Procédé pour le fonctionnement d'un dispositif d'usinage et dispositif
DE102010013914A1 (de) 2010-04-01 2011-10-06 Baden-Württemberg Stiftung Ggmbh Verfahren zum Betrieb einer Vorrichtung zur Materialbearbeitung und Vorrichtung

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014195023A1 (fr) * 2013-06-07 2014-12-11 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Procédé et dispositif de production d'un assemblage
DE102015016513A1 (de) 2015-12-18 2017-06-22 Audi Ag Online-Prozessüberwachung und Online-Prozessregelung beim Verfahren zum form- oder stoffschlüssigen Verbinden zumindest zweier Bauteile durch ein Fügeverfahren mittels einer Radiometrievorrichtung
DE102015016513B4 (de) 2015-12-18 2021-08-05 Audi Ag Online-Prozessüberwachung und Online-Prozessregelung beim Verfahren zum form- oder stoffschlüssigen Verbinden zumindest zweier Bauteile durch ein Fügeverfahren mittels einer Radiometrievorrichtung
CN107798330A (zh) * 2017-11-10 2018-03-13 上海电力学院 一种焊缝图像特征信息提取方法
CN107798330B (zh) * 2017-11-10 2021-07-20 上海电力学院 一种焊缝图像特征信息提取方法
DE102020211343A1 (de) 2020-09-10 2022-03-10 Trumpf Laser- Und Systemtechnik Gmbh Verfahren zum Laserschweißen mittels eines in einer Doppelkernfaser geführten Laserstrahls sowie zugehörige Laserschweißmaschine und Computerprogrammprodukt

Also Published As

Publication number Publication date
EP2869962A1 (fr) 2015-05-13

Similar Documents

Publication Publication Date Title
DE102012014323B4 (de) Verfahren und System einer Laserverarbeitung zum Lochen
EP2310163B1 (fr) Procédé d'orientation excentrée d'un faisceau laser par rapport à un axe de buse et de découpage oblique, tête d'usinage laser et machine d'usinage laser correspondantes
EP2869962A1 (fr) Procédé de fonctionnement d'un dispositif de soudage par laser et dispositif
WO2008145237A1 (fr) Procédé d'identification d'erreurs sur un cordon de soudure au cours d'un processus de soudage au laser
DE102014107716B3 (de) Laserstrahlschweißverfahren
WO2013000622A1 (fr) Procédé de détection de défauts sur une soudure non-linéaire ou une fente de coupe non-linéaire au cours d'un processus d'usinage par laser ainsi que dispositif d'usinage par laser correspondant
DE10234242B4 (de) Anordnung und Verfahren zur Regelung der Nahtlage eines laserstrahlgefügten Profils
DE102012017130B4 (de) Laser-Rohreinschweißen
DE102013112244B4 (de) Verfahren zum Strahlfügen
DE102007006330A1 (de) Verfahren und Vorrichtung zum Laserschweißen
DE102016220067B4 (de) Verfahren zum Tiefschweißen eines Werkstücks, wobei eine verkippte Dampfkapillare mittels zweier Laserstrahlen erzeugt wird
EP2551050A1 (fr) Procédé de soudage de tuyaux à paroi mince par soudage à haute température
EP3747585A1 (fr) Procédé de commande automatique d'un procédé de soudage en présence d'un métal d'apport
DE4234339A1 (de) Verfahren zum Laserstrahlschweißen überlappender Bleche und Vorrichtung zu dessen Durchführung
DE102010063236B4 (de) Verfahren und Vorrichtung zum Verschweißen von Bauteilen mittels eines Laserstrahls
DE102010013914B4 (de) Verfahren zum Betrieb einer Vorrichtung zur Materialbearbeitung und Vorrichtung
EP1175955A2 (fr) Procédé et dispositif de lissage de cordon soudé au cours du soudage par faisceau
DE19608074A1 (de) Verfahren zum Schweißen von relativbewegten Werkstücken
DE102020110087A1 (de) Verfahren zur prozesskontrolle bei der lasermaterialbearbeitung
EP1350590B1 (fr) Procédé et dispositif de soudage laser 'key-hole' avec l'aide d'un faisceau chauffant et d'un matériau d'apport
DE102009008328A1 (de) Verfahren und Vorrichtung zum stoffschlüssigen Fügen von Metallfolien
DE102013105960B3 (de) Verfahren zur Herstellung einer Fügeverbindung und Vorrichtung
EP1629931A1 (fr) Procédé et dispositif de soudage laser pour assembler des tôles métalliques avec un jeu entre les tôles controllé par un capteur mesurant le plasma généré par le laser; tôles métalliques revêtues de zinc assemblées par soudage laser
EP3138652B1 (fr) Procédé de soudure électrique
DE102015115183B4 (de) Verfahren zum Herstellen einer Fügeverbindung

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12731313

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2012731313

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012731313

Country of ref document: EP